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A fundamental study on convective transportation phenomena in material 

processing systems is presented.  The study is focused on two aspects of the convection, 

Rayleigh-Bénard-Marangoni instability of convective flow in Czochralski crucibles and 

magnetic damping of natural convection in rectangular boxes. 

Changes in melt flow patterns, such as transition from steady state flow to time 

dependent flow and breaking up from axisymmetric base flow, have a strong effect on the 

crystal structure.  A linear stability analysis of the convective flow in Czochralski crystal 

growth systems is carried out to investigate the changes in the flow patterns.  A numerical 

model of the melts flow in the Czochralski crucible is developed using high order finite 

difference method.  The stability analysis is based on the solution of linearized governing 

equations in a cylindrical coordinates system.  The perturbation equations are discretized 

using the high order finite difference scheme and the resulting eigenvalue problem is 

solved by linear fractional transformation.  Both radiation participating and non-

participating fluids are considered in the stability analysis to reveal how the internal 
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radiation may affect the stability of the melt flow.  The radiative transfer equation is 

solved using discontinuous finite element method.  The discontinuous finite element 

model is coupled with the high order finite difference model via the heat source term 

resulting from the internal radiation.  The results suggest that the internal radiation 

changes the temperature field and therefore the convective flow structure significantly. 

The damping effect of a magnetic field on the thermally-induced convection in a 

rectangular box is investigated experimentally using molten gallium as working fluid.  

The velocity and temperature fields are measured using constant-temperature hot-film 

anemometry and a thermocouple. The hot-film anemometer is calibrated over a narrow 

temperature range using a rotating container filled with gallium following the technique 

outlined by Sajben. The velocity and temperature profiles are measured with and without 

the magnetic field.  Numerical simulations are also performed and found to be in good 

agreement with the experimental results.  The damping effect of the magnetic field occurs 

in both the temperature and the velocity profiles and increases as the strength of the 

magnetic field is increased. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Due to the fast development in electronic industrial over the past several decades, 

significant research interests and efforts have been drawn to the design of advanced 

material processing systems for high quality crystals with high level of solute uniformity.  

It is reported that over 80 percent of the commercially available crystal materials are 

grown from molten state [Pimputkar and Ostrach, 1981].  The solidification process is 

inevitably associated with certain temperature gradient that may induce convective flow 

in melt pool.  Previous studies have shown that the combined effects of the imposed 

temperature gradient and gravity result in improper convective flow patterns, which 

causes macroscopic structural defects, known as segregations or striations, in the solid 

crystals produced [Fleming, 1974; Tiller, 1991; Langlois, 1985; Glicksman et al., 1986].  

During the solidification process, the bulk convective flow changes the microscopic flow, 

heat and/or mass transfer within the dendritic structures near the solidification front 

significantly.  This gives rise to unsteady temperature distributions in the molten zone, 

which causes striation and non-homogeneity in the crystal produced [Hamacher et al. 

1987; Nelson, 1994; Pimputkar and Ostrach, 1981; Coriell and Sekerka, 1981].  Figure 

1.1 shows the inhomogeneous distribution of “swirl” defects, which occur in both 

Czochralski (CZ) and float-zone (FZ) crystal growth systems irrespective of their 

crystallographic orientation.  Therefore, development of effective convection control 
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mechanism is desirable in efforts to produce high quality crystal under either terrestrial or 

microgravity environment.  Deep insights of the physics underlying the convective flow 

in material processing systems are crucial in the development of the convection damping 

mechanism. 

1.2 Literature Review 

Convection is one of the most omnipresent phenomena in engineering practice.  It 

may be driven by several mechanisms such as, buoyancy, surface tension, 

electromagnetic force, etc.  In material processing systems, the melt is subjected to 

certain temperature gradients.  The temperature differences cause density gradients in the 

melts, and hence results in convective flow.  The buoyancy-driven convection practically 

presents in every crystal growth system in terrestrial condition.  Another important 

convection driving force is surface tension.  It is well known that surface tension of liquid 

is a function of fluid temperature.  When free surface of the melt is subjected to 

temperature gradient, convective flow is driven from high temperature to low 

temperature.  The surface tension is the dominating driven force of convective flow in 

microgravity or thin layers of liquid.  A Czochralski crystal growth system is shown 

schematically in Figure 1.2.  In this system, the melt is heated by the RF coil through the 

vertical wall.  The crystal is pulled from the melt pool slowly and the melt is cooled at the 

solid-liquid interface.  The free surface between the solid-liquid interface and the crucible 

wall is cooled by the ambient air.  The convection may be driven by either the buoyancy 

due to the density gradient caused by the laterally heating or the surface tension gradient 

due to the temperature gradient along the free surface.  A recent review of the convection 

in the crystal growth melt was given by Schwabe [1988]. 
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The ever-growing demands for high quality crystal materials have resulted in 

substantial research focused on understanding and eventually controlling the convection 

in the material processing systems. 

1.2.1 Rayleigh-Bénard instability 

Stability of natural convection has been a classic topic of fluid mechanics.  

Systematic investigation of the topic began in the early last century with the experiment 

of Bénard [1900], who observed the formation of convective cells in a horizontal layer of 

fluid heated from below, Figure 1.3.  Rayleigh was the first one studied the stability of 

equilibrium in a horizontal layer of fluid theoretically and determined the threshold point 

for the natural convection [Rayleigh, 1916].  Though later shown by Block [1956] and 

Pearson [1958] that the convective cells observed by Bénard were driven by variation of 

surface tension, Rayleigh’s model is in accord with experiments on thicker layers of fluid 

with rigid boundaries [Drazin and Reid, 1981].  Since then, extensive studies have been 

carried out on convective stability due to various factors, such as, magnetic field, rotation, 

diffusion, penetration of permeable boundaries, surface tension, etc.  Several reviews on 

the stability of the convective flow are available [Chandrasekhar, 1961; Gershuni and 

Zhukhovitskii, 1976; Drazin and Reid, 1981; Koschmieder, 1993]. 

Most of the previous studies were concerned with liquid layers with infinite 

horizontal extent.  Investigations on thermal convection in laterally bounded layer of 

fluid are relatively rare due to the complexity introduced by the sidewall effects.  For 

vertical cylinders heated from below, Charlson and Sani [1970a, 1970b], Stork and 

Müller [1975], Rosenblat [1982], Buell and Catton [1983] and Rubinov et al., [2004] 

have shown that the critical Rayleigh number depends on aspect ratio (height/diameter) 
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of the cylinder.  The most dangerous azimuthal wave number varies between 0 and 1 

when aspect ratio (height/diameter) is between 0.55 and 0.72.   

Three-dimensional numerical simulations of the natural convection in cylindrical 

configuration were conducted by Neumann [1990] and Wanschura et al. [1996].  They 

found that the convective flow pattern beyond the critical points is related to the 

disturbance applied to the initial static condition.  Touihri et al. [1999] carried out 3-D 

simulation of steady convective flow in a vertical cylinder heated from below.  Both 

axisymmetric and non-axisymmetric flow pattern were observed in their simulations.   

1.2.2 Marangoni instability  

In terrestrial environment, both Rayleigh-Bénard effect and the Marangoni effect 

present and often the Marangoni convection is overshadowed by the Rayleigh-Bénard 

convection.  However, for thin layers of fluid or in microgravity environment, the 

thermocapillary effect dominates the flow.  First stability analysis of surface tension 

driven flow was conduct by Pearson [1958].  Since then, numerous efforts have been 

made to understand the Marangoni convection.  Reviews on the topic can be found by 

Levich and Krylov [1969], Davis [1987], and Schatz and Neitzel [2001].  When the 

applied temperature gradient is perpendicular to the free surface, and is small enough, a 

pure conducting basic state is possible.  The convective flow sets in when the applied 

temperature gradient exceeds certain threshold.  When the temperature gradient is 

imposed parallel to the free surface, the convective flow occurs at any value of the 

temperature gradient and no static base flow is possible.  However, when the temperature 

gradient is small enough, the induced convection is either one- or two-dimensional and at 

certain threshold the flow becomes three-dimensional [Schatz and Neitzel, 2001].   
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Same as those for Rayleigh-Bénard convection, most of the previous 

investigations were focused on thermocapillary convection in liquid layers with infinite 

horizontal extent.  Previous studies on thermocapillary convection in laterally bounded 

fluid layer are limited.  For flow layers with free surface in rectangular cavities, stability 

analyses are given by Peltier and Biringen [1993], Sab et al., [1996], and Xu and Zebib 

[1998].     

In cylindrical configurations, Vrentas et al. [1981] investigated the stabilities 

convective flow driven only by buoyant or thermal-capillary effects.  Critical Rayleigh 

numbers and Marangoni numbers are reported for various aspect ratios using a fluid with 

infinite Prandtl number.   

Wagner et al. [1994] conducted 3-D numerical simulations of natural convection 

in an open vertical cylinder with various boundary conditions imposed at the top surface.  

Both 2-D and 3-D perturbations were applied to the flow.  They have shown that 

axisymmetric perturbation may lead to non-axisymmetric 3-D flow.   

Dauby et al. [1997] presented a linear stability analysis of coupled Bénard-

Marangoni convection in a vertical cylinder.  They have presented results over a wide 

range of aspect ratio and found that conducting lateral walls are more stable than 

insulating boundaries.   

For thermocapillary convection driven by horizontal temperature gradient, 

extensive experimental observations have been reported [Schwabe, et al., 1992; Ezersky, 

et al., 1993; Favre et al., 1997; Garnier and Chiffaudel, 2001].  Hoyas et al. [2002] 

studied the stability of large Prandtl number fluid contained in a laterally heated 
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cylindrical annulus.  Two base flow patterns, co-rotating rolls and return flow pattern, 

were observed in their results.   

1.2.3 Internal radiation 

In most of the previous investigations on convective heat transfer, it is a common 

practice that the contribution of thermal radiation is neglected, in other words, the fluid is 

assumed transparent to radiative energy transfer.  However, there are many engineering 

applications in which the radiation can significantly interacts with the convection and 

change the heat transfer mechanism [Siegel and Howell, 1992; Modest, 1993].  In 

materials processing systems, the fact that the melt is absorbing, emitting and scattering 

in thermal radiation frequency range makes it important to understand the interaction 

between the convective heat transfer and the thermal radiation [Shu et al., 2004].  The 

changes in thermal field caused by the radiation may change the convective flow field 

and furthermore, change the crystal structure of the materials produced. 

Several previous works are found on the problem of combined radiation and 

convection [Larson, 1981; Chang et al., 1983; Desreyaud and Lauriat, 1985; Webb and 

Viskanta, 1987].  A review on this problem is given by Yang [1986].   

More recently, Tan and Howell [1991] presented a numerical study on combined 

thermal radiation and convection in a square enclosure.  The radiative transport equation 

is discretized using product-integral method while the equations of momentum and 

energy conservations are discretized using finite difference method.  Simulations were 

carried out at various Rayleigh numbers.  It was found that the presence of internal 

radiation changes the temperature and flow fields significantly.  
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Kassemi and Naraghi [1993] investigated the combined radiation and convection 

in a square box in both terrestrial and microgravity environment using discrete exchange 

factor method.  Their results have shown that the radiation significantly changes the flow 

and temperature fields in both terrestrial and microgravity applications.  In microgravity 

environment, convection is weak and radiation can easily become the dominant heat 

transfer mode. 

The effect of internal radiation on oxide melts was discussed by Tsukada et al., 

[1995].  The P-1 method was used to approximate the radiative heat transfer.  They also 

found that the flow and temperature fields are strongly affected by internal radiation.  The 

solid-liquid interface shape becomes more convex to the melt as the optical absorption 

coefficients of both the crystal and the melt decreases. 

A numerical model for transport and solidification phenomena in oxide melts with 

and without the presence of an applied magnetic field was proposed by Shu et al. [2004].  

The model is base finite element solution of Navier-Stokes equations with the induced 

Lorentz force serving as the damping source.  The radiative transfer equation was solved 

by discontinuous finite-element method.  Their results suggested that the internal 

radiation have significant effect on solidification behavior. 

1.2.4 Magnetic damping 

Since the convective flow is the major cause of some macroscopic defects in the 

crystal produced, it is desirable to remove this deleterious flow.  The ultimate goal of all 

the efforts made on the convection in material processing systems is to control the flow.  

One of the effective means practiced in industry for thermally-induced melt flow control 

is magnetic damping, which derived from the interaction between an electrically 
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conducting melt flow and an applied magnetic field to generate a Lorentz force to damp 

the convective flow in the melt.  The damping effect depends on the strength of the 

applied magnetic field and its orientation with respect to the convective flow direction.  

Substantial theoretical and numerical work thus far has appeared on magnetic damping 

for natural convection as reviewed by Hunt and Shercliff [1971] and Moreau [1990].  

Ozoe and Okada [1989] investigated the magnetic damping effect in a cubic 

cavity with two vertical opposite walls holding at different temperatures numerically.  

They found that the strongest damping effect is achieved with the magnetic field applied 

perpendicular to the hot wall.   

Their results are consistent with the work of Alboussière et al. [1996] who used 

an asymptotic approach to investigate the magnetic damping effect, and found that for a 

rectangular box the damping effect is the weakest when the applied magnetic field is 

horizontal and parallel to the hot wall.   

BenHadid and Henry [1997] studied the damping of steady convection induced by 

temperature gradients using a 4 × 1 × 1 cavity with the magnetic field applied in different 

directions. Their results are in good agreement with the analytical predictions from 

Alboussière et al. [1996] and Garandet et al. [1992].   

Recent research on the subject has been on exploring the possibility of applying 

magnetic damping concept to control the g-jitter induced natural convection in 

microgravity environment [Baumgartl and Müller, 1996; Ma and Walker, 1996; Pan et 

al., 2002; Shu et al., 2002].  

1.2.5 Measurement of melt flow 
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Despite the extensive analytic and numerical work, there appears to have been 

very limited experimental investigations on the natural convection in the melt, in 

particular the direct measurement of convective flows in a thermal gradient. Much of the 

limited experimental work has been on the temperature measurements and the direct flow 

measurements are very scarce for such a system.  

Among the earliest experimental work on the magnetic damping of the thermally 

induced convection are the papers by Hurle [1966] and Hurle, et al. [1974].  They 

observed temperature oscillation in molten gallium contained in an open rectangular 

container.  The oscillation is suppressed when a magnetic field is applied perpendicular to 

the main convective flow.   

Okada and Ozoe [1992] measured temperature profile in the molten gallium 

contained in a cubic cavity.  The measurements validated their modeling results that the 

damping effect is weakest when the magnetic field is horizontal and parallel to the hot 

wall [Ozoe and Okada, 1989].   

Koster et al. [1997] measured temperature field induced by natural convection of 

molten gallium in a rectangular box using a radioscopic technique.  The radioscopic 

technique deduces the temperature field from density variation and is only applicable to 

thin layers of fluid.  Because the temperature in low Prandtl number fluid is a week 

function of density, the resolution of the radioscopic system is limited. 

Davoust et al. [1999] experimentally studied, through thermal measurements, the 

effect of magnetic damping on a horizontal cylinder filled with mercury subjected to a 

vertical magnetic field. The data collected were used to verify the numerical predictions 

of Alboussière et al. [1993] and BenHadid et al. [1996].   
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Juel et al. [1999] conducted a combined numerical and experimental investigation 

on magnetic damping of the temperature gradient induced natural convection.  They 

measured vertical temperature difference in molten gallium contained in a rectangular 

channel with an applied horizontal temperature gradient. Their experimental results agree 

with their numerical predictions well. It is found that with the increase of the Hartmann 

number, flow becomes 2-D.  A similar experimental system was later used by Hof et al. 

[2003] for additional measurements.   

All of the experimental work appeared in literature thus far has been on the 

temperature measurements from which magnetic damping effects are deduced. There 

appears to have been little work, if not at all, on the direct measurement of the thermally-

induced melt convection in the presence of an external magnetic field. An experimental 

study of this type should be of crucial importance in providing a database to directly 

validate the numerical predictions from the numerical models in existence and under 

development. It should also be of great value in direct interpreting the physics governing 

the magnetic damping effects on convective flows in solidification systems.  

Though the measurement of flow velocity is appealing to researchers working on 

material processing and energy conversion systems, to the best of our knowledge, no 

directly measured velocity profiles of the thermal convection are available in the 

literature.  This is due to the lack of instrumentation suitable for melt flow.  Velocity 

mapping in melt flow is plagued by the peculiarities of the liquid metal like opaque and 

chemically aggressive.  The optic methods such as PIV and LDA are not applicable to the 

opaque liquid metal flow.   
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Incorporated magnetic probes have been used in liquid metal flows [Ricou and 

Vives, 1982; Kapulla et al., 2000], and it was found that the accuracy of the measurement 

is impaired severely due to the Ohmic losses.  The size of the probe is considered a major 

limiting factor for the experimental study of natural convection in a typical cavity.   

Brito et al. [2001] used the Ultrasonic Doppler method to measure the local 

velocity of liquid gallium generated by a rotating disc; the main problem they 

encountered is the signal noise that comes from the gallium oxides.  They reported that 

velocity signals could not be clearly identified from noises several minutes after 

measurements have started.   

Eckert and Gerbeth [2002] applied the Ultrasound Doppler method to sodium 

flow in a square duct at 145 ˚C, which was exposed to a traverse magnetic field.  They 

reported a velocity resolution of 9 mm/sec.   

Eckert et al. [2001] proposed a mechano-optical technique for opaque fluid 

measurements, by which successful measurements have been made in the InGaSn 

eutectic melt driven by a rotating magnetic field.  The calibration curves they reported 

showed that the technique is sensitive to the fluid density and therefore, extra 

uncertainties may be introduced when it is used to measure non-isothermal flow.  It was 

also demonstrated that the calibration curves were sensitive to the flow directions.  For 

low velocity melt flow measurements, the signals can be weak and some times a sphere is 

attached at the tip to increase the probe response to the flow. The lowest velocity level 

reported by the researchers was around 2 cm/s.   

Prasad et al. [1994] used a solid-state electrochemical method to study convection 

in liquid tin with atomic oxygen as the tracer species. The convection effect is deduced 
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from the detection of the convection on the species transport using electrochemical cells 

as sensors.  For a given set of experimental observations, however, more than one flow 

pattern may be derived and therefore, the electrochemical method needs to be 

accompanied by numerical simulations in order to generate any acceptable results.   

Davoust et al. [1999] presented an experimental study of the magnetic damping 

effect using a horizontal cylinder filled with mercury under the presence of a vertical 

magnetic field.  Two ends of the cylinder were kept at different temperatures and 

measurement was carried out using a platinum–constantan thermocouple and an electric 

potential sensors.  They deduced the velocity from electric potential measurements. 

In the present study, the steady convective flow in molten gallium that is induced 

by horizontal temperature gradients is investigated.  The induced velocity and 

temperature fields are mapped simultaneously.  Hot-film anemometry is used to measure 

local velocity in the liquid gallium.  The application of the hot-film anemometry in liquid 

metal was made possible by the pioneer work of Sajben [1965], who presented a 

calibration technique that can used to eliminate the effect the impurity layer surrounding 

the hot-film probe.  This technique has been used in liquid metal flow by several other 

researchers and consistent results have been demonstrated [Malcolm, 1969; Gardner and 

Lykoudis, 1971; Robinson and Larsson, 1973].   

Gardner and Lykoudis [1971] studied the effects that a transverse magnetic has on 

mercury pipe flow.  Several different types of hot-film probes were used.  The probes 

were kept in the mercury during the experiment and it was found that the results were 

reproducible after near 300 hours of use.   
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Robinson and Larsson [1973] investigate the mercury flow driven by a 50 Hz 

rotating magnetic field using a conical hot-film probe.  The platinum probe was coated 

with quartz and a thin layer of vanadium was deposit on the quartz layer to reduce the 

fouling effects.  By this means, the changes in heat transfer due to the fouling effects 

were reported never exceeded ± 2.5 %.   

1.3 Research Objectives 

The present study has two major objectives.   

Firstly, a numerical model is developed to simulate the melt flow contained in a 

Czochralski crucible and a linear stability analysis of the axisymmetric base flow based 

on the numerical simulation is carried out.  The intention is to provide a basic 

understanding of the stability of the flows and its relation to the internal radiation.  The 

high order finite difference method with compact scheme is used to obtain the 

axisymmetric flow and temperature fields. The radiative transfer equation for melt 

participating radiation problems is solved using discontinuous Galerkin method [Cui and 

Li, 2004].  The radiative heat flux is coupled with the axisymmetric base flow as a source 

term through iterative process. The stability analyses are performed by studying the 

eigenvalue spectrum using the large-scale eigenvalue solvers. Using the numerical model, 

the critical Grashof numbers for the melt flow instability is calculated as a function of 

Marangoni number and azimuthal wave number.  The mechanism of the flow instability 

is discussed.   

Secondly, an experimental study of natural convection in molten gallium with and 

without an imposed magnetic field is presented. The experimental system consists of a 

rectangular cell with a prescribed thermal gradient controlled by two water baths. The 



 14

temperature is measured using a thermocouples and the melt flow velocity field is 

determined using a hot film probes. The measured velocity and temperature profiles are 

used to compare with the predictions from numerical models developed in early studies 

[Shu et al., 2002].  There exists good agreement between the numerical predictions and 

experimental measurements. Magnetic damping effects are observed in both the 

temperature and the velocity profiles when an external magnetic field is applied.  The 

measured velocity and temperature fields should provide a valuable experimental 

database against which other numerical models developed for natural convection with 

and without an imposed magnetic field can be validated.   

1.4 Dissertation Organization 

This dissertation is organized as following.   

Detailed mathematical descriptions, including the governing equations and the 

boundary conditions for the flow and temperature fields and radiative transfer 

calculations, of the melt flow in a Czochralski crucible are given in Chapter 2.  Also 

presented in the chapter is a description of the experimental setup of the natural 

convection measurement.   

In Chapter 3, the governing equations presented in Chapter 2 are solved for 

axisymmetric base flow using high order finite difference method.  Infinitesimal 

disturbance is applied to the obtained axisymmetric base flow and linear stability analysis 

is carried out.  The numerical simulation results were compared with previous theoretical 

and numerical studies of pure Rayleigh-Bénard convection and Marangoni convection in 

vertical cylinders.  The stability analysis is carried out at various Grashof numbers and 

Marangoni-Reynolds numbers to reveal how the two effects interact with each other in 
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the coupled Rayleigh-Bénard-Marangoni flow.  Stability of the fluid at various boundary 

conditions is also studied to investigate how the boundary conditions affect the stability 

of the flow. 

Chapter 4 extends the numerical model to the melt flow by taking the internal 

radiation effect into account.  A discontinuous finite element model for the radiative 

transfer equation is presented and coupled with the high order finite difference model.  

Stability analysis of the flow is conducted to reveal how the internal radiation changes the 

stability of the melt flow. 

Chapter 5 presents the details, which includes calibration of the probe, 

measurement process, data processing, and measurement results, of the hot-film 

measurement of the natural convection in a rectangular cavity.  The measured velocity 

and temperature fields are compared with the numerical predictions from a previous 

numerical model. 

Finally, conclusions drawn from the present work and suggestions for future work 

are given in Chapter 6. 
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Figure 1.1 Inhomogeneous distributions of “swirl” defects in the preferentially etched Si 

surfaces. (a) CZ crystal and (b) float zone crystal. (From Tiller, 1992) 
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Figure 1.2 Schematics of Czochralski crystal growth system. (From Galazka, et al., 2003) 
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Figure 1.3 Bénard cells under an air surface. (From Koschmieder and Pallar, 1974) 
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CHAPTER TWO 

PROBLEM STATEMENTS 

2.1 Czochralski Crucible 

In Czochralski crystal growth systems, the melt is contained in a vertical 

cylindrical crucible, which is shown in Figure 2.1.  The cylindrical coordinate system 

used in the present study is also shown in the figure.  The crucible is similar to that used 

by Jing [1999].  It is a vertical cylinder with height of H and radius of R.  A constant heat 

flux q is applied at the vertical wall to heat the melt inside the crucible.  The center part 

of the top surface is in contact with a crystal of radius Rd at constant temperature Td.  

Radiative cooling condition is assumed at the free surface. The bottom wall is adiabatic.  

The top surface is non-deformable free surface.   

2.2 Governing Equations 

The melt is an incompressible fluid, to which the Boussinesq approximation 

applies.  This means that the variation of density is neglected everywhere except in 

buoyancy [Drazin and Reid, 1981].  On the basis of this approximation, density of the 

melt is a function of temperature that can be written as 

 

( )[ ]refref Θ−Θ−= βρρ 1 ,                   (2.1) 
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where ρ is the density, Θ the temperature, and β the thermal expansion coefficient of the 

melt.  The subscript ref denotes the properties at a reference state.   

The surface tension of the melt varies with the temperature of the fluid.  The 

equation of state of the surface tension is approximated by 

 

)( refref Θ−Θ−= γσσ ,                    (2.2) 

               

where σ is the surface tension and γ=-dσ/dΘ is the negative rate of change of surface 

tension with temperature [Davis, 1987].  Equation 2.2 implies that the spot with higher 

temperature has lower surface tension and therefore, flow is driven from high 

temperature to low temperature along the free surface due the so called Marangoni or 

thermocapillary effect. 

The melt flow inside the crucible are described by the conservation laws of mass, 

momentum, and energy, of which governing equations are written as  

 

0=⋅∇ u& ,                    (2.3) 
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+∇+−∇=∇⋅+

∂
∂

&&&&
&

& 2µρρ p
t

,                  (2.4) 

( ) Qkc
t

c pp
&&
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∂
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where u& is the velocity vector, t& the time, p&  the pressure, µ the dynamic viscosity, f the 

body force, Cp the specific heat of the melt, k the thermal conductivity of the melt and Q&  

the volumetric heat source. 
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 2.3 Dimensionless Governing Equations in Cylindrical Coordinate System 

In the cylindrical coordinate system (r, z, θ), the governing equations given in 

Equations 2.3-2.5 can be written in terms of dimensionless flow field u(ur, uz, uθ), 

temperature field T and pressure p as, 

 

01)(1
=

∂
∂

+
∂
∂

+
∂

∂
z
u

θ
u

rr
ru

r
zθr ,                   (2.6) 

)211( 222

2

22

2

2

2

2

θ
u

rr
u

r
u

rθ
u

rz
u

r
u

r
p

r
u

θ
u

r
u

z
uu

r
uu

t
u

rrrrr

rr
z

r
r

r

∂
∂

−−
∂

∂
+

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=

−
∂
∂

+
∂

∂
+

∂
∂

+
∂

∂

θ

θθ

,                  (2.7) 

)1(Gr)11( 2

2

22

2

2

2

−−
∂

∂
+

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂

T
r

u
rθ

u
rz

u
r
u

z
p

θ
u

r
u

z
uu

r
uu

t
u

zzzz

zz
z

z
r

z θ

,                 (2.8) 

)211(1
222

2

22

2

2

2

θ
u

rr
u

r
u

rθ
u

rz
u

r
u

θ
p

r

r
uu

θ
u

r
u

z
u

u
r

u
u

t
u

r

r
zr

∂
∂

+−
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

−=

+
∂
∂

+
∂

∂
+

∂
∂

+
∂

∂

θθθθθ

θθθθθθ

,              (2.9) 

Q
r
T

rθ
T

rz
T

r
T

θ
T

r
u

z
Tu

r
Tu

t
T

zr

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

11
Pr
1

2

2

22

2

2

2

θ

,                    (2.10) 

 

 where Gr is the Grashof number which is given by  
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where g is the gravity acceleration, ν is kinematic viscosity and Pr is the Prandtl number 

which is defined as 

 

α
ν

=Pr ,                   (2.12) 

 

where α the thermal diffusivity which is defined as, 
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k

ρ
α = .                   (2.13) 

 

The Grashof number characterizes the strength of the Rayleigh effect. 

Equations 2.6-2.10 were obtained using the following scaling factors,  
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2.4 Boundary Conditions 

To solve the melt flow in the Czochralski crucible, the following constraints are 

applied at the system boundaries.  At the free surface (Rd<r<R, z=H) 
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where Tamb is the temperature of the ambient air, 
κ

εδ HTref
3

Rad =  is the radiation number 

and Reγ is the Marangoni-Reynolds number given by 

 

µν
γ

γ

HTref=Re .                  (2.18) 

 

The Marangoni-Reynolds number characterizes the strength of the Marangoni effect.  It 

is worth noting that Equations 2.14 and 2.15 indicate that the surface tension gradient is 

balanced by the shear stress.  Equation 2.16 means that the free surface is flat and non-

deformable.   

At the crystal interface (r ≤ Rd and z=H), the melt is at constant temperature Td 

and the interface is considered rigid wall, 

 

0=== θuuu zr ,                 (2.19) 

dTT = .                                                         (2.20) 
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At the vertical wall (r=R, 0<z<H), a constant heat flux is supplied to the melt and 

the vertical wall is rigid, 

 

0=== θuuu zr ,                 (2.21) 

q
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∂ ,                  (2.22) 

 

where q is the constant heat flux at the vertical wall.  The heat flux is non-

dimensionalized using  

 

q
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Hq
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&= ,                   (2.23) 

 

where q&  is the primitive heat flux. 

The bottom wall (0<r<R, z=0) of the crucible is adiabatic and rigid, 
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2.5 Magnetic Damping of Natural Convection in a Rectangular Box 

Magnetic damping effect on natural convection is investigated by direct 

measurements of the induced flow and temperature fields.  The molten gallium is used as 

working fluid and is contained in a rectangular box.  A horizontal temperature gradient is 
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applied across the gallium by holding two opposite vertical walls at different 

temperatures.  In this case, convective flow is induced by the density gradient caused by 

the temperature difference with the melt flow upwards near the hot wall and downwards 

near the cold wall, as shown in Figure 2.2. 

A static horizontal magnetic field is applied to damp the natural convection.  The 

applied magnetic field induces a non-uniform electromotive field in the melt.  The 

electromotive field causes electrical currents which interact with the applied magnetic 

field to damp the convective flow in the melt.  
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Figure 2.1 Schematics of the Czochralski crucible under investigation. 

r 

z 

θ 

H 

R 

Rd 

q 

qrad T=Td 



 27

 

Figure 2.2 Magnetic damping of natural convection in a rectangular box (TH>TL).
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CHAPTER THREE 

NUMERICAL SIMULATION AND STABILITY OF RAYLEIGH-BÉNARD-

MARANGONI CONVECTION IN CRYSTAL GROWTH SYSTEMS 

This chapter presents a numerical model of melt flow in Czochralski crystal 

growth systems.  The numerical model uses high order finite difference model to solve 

the governing equations given in Chapter 2 along with the boundary conditions for 

axisymmetric flow in the crucibles.  A linear stability analysis is carried out based on the 

axisymmetric base flow.  Small perturbation is applied to the calculated base flow to 

determine the critical Marangoni numbers and Grashof numbers at which the 

axisymmetry is broken.  The eigenvalue matrix equation is solved using linear fractional 

transformation with banded matrix structure taken into account.  The objectives of this 

chapter are to provide a basic understanding of the physics underlying the melt flow, the 

stability of the axisymmetric flow and its relations to the crucible configurations. 

3.1 Governing Equations for Axisymmetric Base Flow in Czochralski Crucible 

In the last chapter, mathematical descriptions of the melts flow in the Czochralski 

crucibles were presented.  It is well known that when the lateral heat flux, i.e., the 

temperature gradient along the free surface is small enough, the melt flow is 

axisymmetric [Vrentas et al., 1981; Rubinov et al., 2004].  In the cylindrical coordinate 

system, the axisymmetric velocity field ( )0,, zr UUU , temperature field T  and pressure 

flied P  are governed by 
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The corresponding boundary conditions for the axisymmetric base flow are the 

same as those given in the last chapter except that the Marangoni force in θ direction 

given in Equation 2.15 vanishes. 

3.2 Linear Stability Analysis of the Axisymmetric Base Flow 

3.2.1 Hydrodynamic stability theory 

The problem of hydrodynamic stability was introduced to study the transit in flow 

patterns, such as from laminar flow to turbulence.  The basic idea of the hydrodynamic 

stability theory is given as following.   

For steady state solution of the governing equations presented in the last 

section, ( )zyx UUU ,,U , P  and T , infinitesimal perturbations are applied as  
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where the primed variables are the small perturbations have the form of  
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where ε is a small constant number, u(k), p(k) and T(k) are the kth order disturbances 

deviated from the steady state solutions.  If the given disturbances vanish as time 

increases, in other words the perturbations die out eventually, the flow is stable.  The 

flow is considered unstable if the perturbations remain constant or grow with time.  In 

case of unstable flow, the flow pattern changes either from laminar flow to turbulence or 

from one laminar flow pattern to another as time increases. 

Direct solution of the Navier-Stokes equations is notoriously difficult, if not 

impossible, due to their high non-linearity.  With the assumption of small perturbation, 

the Navier-Stokes equations can be linearized.  By inserting the small perturbations given 
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in Equations 3.6-3.8 into the governing equations and neglecting the higher order 

perturbations and their derivatives, the following linearized equations are obtained  

  

 0)1( =⋅∇ u ,                     (3.9) 

 )1(2)1()1()1(
)1(

uUuuUu
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∂
∂ µρρρ p
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,                (3.10) 

 )1(2)1()1(
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∂

∂ uU ρρρ                 (3.11) 

 

For a given steady state solution of the base flow, the first order perturbations u(1), T(1) 

and p(1) can be solved from the linear equation system given in Equations 3. 9-3.11. 

According to the principle of separation of variables, the solutions of the linear 

equations system have an exponential time factor 

 

 ( ) ( )tuu xu ϖφ exp)1( = ,                  (3.12) 

 ( ) ( )tT TT ϖφ exp)1( x= ,                  (3.13) 

 ( ) ( )tp pp ϖφ exp)1( x= ,                  (3.14) 

 

where x is the direction vector.  It is worth noting that ω is the complex wave speed that 

can be written as 

 

 ir iϖϖϖ +=                    (3.15) 
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Here iω  is the azimuthal frequency of oscillation, and rω  determines the degree of 

amplification or damping.  According to the linear stability theory, when 0=iω , the 

disturbance grows or decays monotonically.  When 0≠iω , the perturbation is oscillatory 

with wave speed of iω .  The perturbation decays and the base flow is stable if 0<rω .  

When 0>rω  the perturbation grows with time and the base flow loses its axisymmetry.  

The neutral state is determined by 0=rω . 

Extensive previous efforts have been made to the linear stability analysis of fluid 

flow in bounded configurations with and without heat transfer.  The most widely studied 

wall-bounded cases include Couette, Poiseuille and channel flows.  The methodologies 

for the hydrodynamic stability have been well established, starting from the early days’ 

singular perturbation method to the more recently developed spectral based numerical 

method.  The linear stability analysis theory presented in this section has been widely 

used as a first step to study the flow stability problems, and interests in these problems is 

still growing because of its fundamental and practical importance [Ding and Kawahara, 

1999; Priede and Gerbeth, 1999; Shatrov, et al., 2001]. 

3.2.2 Linear stability analysis of melt flow in Czochralski crucible 

Stability of the axisymmetric convective flow in the Czochralski crucible is 

studied in this section by solving the linearized governing equations.  Small perturbations 

are applied to the axisymmetric base flow.  To carried out the stability analysis, the 

governing equations given in Section 3.1 are rewritten with assumption of slight 

compressibility as [Ding and Kawahara, 1998] 
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where M is the Mach number defined by 

 

 
C
U

=M                    (3.19) 

 

where C is the acoustic speed of the fluid. 

The axisymmetric base flow velocity field ( )0,, zr UUU , pressure P  and 

temperature T obtained using the governing equations in Section 3.1 are perturbed by 

three-dimensional infinitesimal perturbations as 

 

rrr UUU ′+=                    (3.20) 

zzz UUU ′+=                    (3.21) 

θθ UU ′+= 0                    (3.22) 

PPP ′+=                    (3.23) 

TTT ′+= .                   (3.24) 
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The last terms on the right-hand side of Equations 3.20-3.24 are the small 

perturbations applied to the base flow which can be written in the cylindrical coordinate 

system in terms of the normal mode as 

 

( ) ( )timzrUU rr ϖθ +=′ exp,ˆ ,                  (3.25) 

( ) ( )timzrUU zz ϖθ +=′ exp,ˆ ,                  (3.26) 

( ) ( )timzrUU ϖθθθ +=′ exp,ˆ ,                  (3.27) 

( ) ( )timzrPP ϖθ +=′ exp,ˆ ,                  (3.28) 

( ) ( )timzrTT ϖθ +=′ exp,ˆ ,                  (3.29) 

 

where 1−=i  is the imaginary unit and m is the azimuthal wave number. 

Inserting Equations 3.20-3.29 into the governing equations given in Equations 

3.16-3.18 and subtracting the base flow from it, the final perturbation equations are 

obtained as 
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The perturbation equations form an eigenvalue problem with the growth rate being the 

eigenvalue. 

The final perturbation equations are subject to the following boundary conditions.  

At the free surface (Rd<r<R, z=H) 
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At the crystal interface (r ≤ Rd and z=H),  

 

0ˆˆˆˆ ==== TUUU zr θ ,                 (3.39) 

 

At the vertical wall (r=R, 0<z<H),  

 

0
ˆˆˆˆ =

∂
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===
z
TUUU zr θ ,                 (3.40) 

 

At the bottom wall (0<r<R, z=0),  

 

0
ˆˆˆˆ =

∂
∂

===
z
TUUU zr θ .                  (3.41) 

 

The periodic boundary condition in azimuthal (θ) direction is automatically satisfied 

when the wave number m is a set of discrete numbers, i.e., m=0, 1, 2,…. 
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3.3 Numerical Scheme 

In the present study, the high order finite difference method is used to solve the 

governing equations. The spatial derivatives are discretized by the compact method.  The 

method of fractional steps or project method is applied to carry out the time integration.  

The fourth-order compact approximation derived by means of 5-point Legendre 

interpolation is adopted here [Ai, 2004].  

3.3.1 High order finite different scheme 

Various numerical techniques are available for the simulation of fluid flow and/or 

heat transfer phenomena in the materials processing systems.  Spectral method provides 

perhaps the highest order of accuracy among all the available numerical techniques.  

However, it is time-consuming and lack of flexibility in handling complex geometry 

[Pruett and Zang, 1992; Rai and Moin, 1993; Rist and Fasel, 1995; Adams and Kleiser, 

1996].  Recently, high order difference methods [Christie, 1985; Lele, 1992; Sabau, and 

Raad, 1999] have emerged as one of the promising alternative for the spectral method.  It 

has spectral-like accuracy.  The high order finite difference method is also well known 

for its computational efficiency and outstanding flexibility in dealing with irregular 

geometry and various boundary conditions.  In this section, the high order finite 

difference method is used to simulate the axisymmetric melt flow in the Czochralski 

crucibles. 

As one of most widely used high order finite difference methods, the compact 

difference schemes have spectral-like resolution and high order of accuracy [Lele, 1992].  

Previous investigations have shown that the central compact difference schemes are 
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successful in numerical simulation of diffusion dominated flows and the upwinding 

central difference schemes are excellent for solution of the convection dominated 

problems [Christie, 1985; Zhong, 1998].  A brief description of the basic ideas of the 

compact difference schemes used in the present work will be given in the following 

paragraphs. 

In the present work, the high order finite difference model is developed using 

compact central difference scheme, for which approximation of nth order derivative of 

variable u with respect to x at the ith grid point is generally written as 
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where nnn
ki xuu ∂∂=+ /)(  denotes the nth order derivative of variable u with respect to x at 

the ith grid point.  The simulation is carried out on a uniform mesh with grid spacing of h.  

M0 and N0 are the number of points biased with respect to the point i.  If M0=0, the finite 

difference scheme is explicit, otherwise, the method is implicit and also called compact 

difference scheme.  The compact difference scheme has been favored for direct 

numerical simulation of transitional and turbulent flow because of its smaller truncation 

errors and narrow local grid stencils.  The stability analyses have shown that the stability 

properties of compact and explicit finite difference schemes of the same order are similar.  

However, more boundary closures are need for the explicit finite difference method to 

achieve the same order of accuracy as the compact difference scheme.  The explicit finite 

difference method is more efficient in derivative approximations and easier to be 
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incorporated with implicit time-integration schemes.  Between these two schemes, the 

compact difference scheme is more efficient in dealing with periodic boundary conditions 

while the explicit finite difference method is more suitable for non-periodic boundary 

conditions.  However, for the discretization in the directions with non-periodic boundary 

conditions, the accuracy of the approximations is often limited by the accuracy of the 

boundary discretizations.  In this case, both the explicit and the compact finite difference 

schemes can be used. 

Equation 3.42 presents the compact difference scheme central grid stencils used in 

the present study.  The accuracy of the compact difference is determined by the number 

of the points biased with respect to the point i, M0 and N0.  There are total of 2(M0+N0+1) 

coefficients (ai and bi) need to be determined in order to achieve the desired accuracy.  

Christie [1985] has shown that for an upwinding scheme, the maximum approximation 

order for nn xu ∂∂ /  is p=2(M0+N0)-n and for a central scheme, the maximum 

approximation order is p+1. 

In this chapter, the first order derivatives in the governing equations are 

approximated by a fourth order central compact difference scheme, which can be written 

in terms of three grid points as 
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where N is the total number of grids.  The second order spatial derivatives are 

approximated by 
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It is worth noting that as an implicit method, the compact difference method 

involves the solutions of linear equations, which may affect the computational efficiency.  

Generally speaking, the efficiency of solving a linear equations system AX=B depends of 

the structure of the coefficient matrix A, such as its bandwidth, sparsity and stiffness.  

Numerical experiments have shown that the computational efficiency is improved 

significantly for the tri-diagonal coefficient matrices in Equations 3.43 and 3.44 [Ai, 

2004]. 

3.3.2 Combined Runge-Kutta and fractional step method 

It has been described in the last section that the high order finite difference 

scheme is used to discretize the governing equations spatially.  In the present numerical 

model, time integration is carried out by using the method of the combined Runge-Kutta 

and fractional step, as presented by Le and Moin [1991].  The method is based on the 

predictor-corrector algorithm, which is one of the Runge-Kutta methods.  In this method, 

each time step is divided into three sub-steps.  At each sub-step, the KM time-splitting 

scheme developed by Kim and Moin [1985] is used.   
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The three-step time advancing techniques for the governing equations given in 

Equations 3.1-3.4 are written as 
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where k=1, 2, 3 denotes the three sub-step, and ( )
( )⋅
⋅

δ
δ  represents the finite difference 

operator that obtained using the high order compact difference method presented in the 

last section.  The coefficients αk and βk are selected so that the accuracy of the time 

integration scheme is of third order.  The following values are used in the present 

numerical model [Ai, 2004]: 
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22 == βα                    (3.49) 

 133 == βα                    (3.50) 
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At each sub-step, the time integrations are carried out explicitly and the overall 

time scheme has a third order accuracy.  The numerical stability limit of this scheme is 

determined by [Le and Moin, 1991] 
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Applying the KM fractional step to Equation 3.46, the following equations are 

obtained 
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where k
iu~  is intermediate velocity field. 

Equations 3.45 and 3.52 are combined to obtain the Poisson equation 
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Finally, the procedures of numerical solution of the governing equations 

presented in this section are summarized as following: 
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a) Given velocity field 1−k
iu  and temperature field 1−kT , Equation 3.53 is solved 

for k
iu~ ; 

b) The Poisson equation (Equation 3.54) is solved for kp ; 

c) The velocity field at sub-step k is updated using Equation 3.52; 

d)  If k=3, k
iu  is updated as the velocity field at time step n+1.  Otherwise, the 

sub-step time is advanced with k=k+1; 

e) Temperature field is updated using Equation 3.47; 

f) Go to a) until the calculation is complete. 

3.3.3 Eigenvalue problem for linear stability analysis 

The final perturbation equations given by Equations 3.30-3.34 can be discretized, 

along with the corresponding boundary conditions given in Equations 3.35-3.41, using 

the high order compact difference method.  The obtained system of algebra equations is 

cast in the form of an eigenvalue matrix equation as 

 

BXAX ϖ=                    (3.55) 

 

where A and B are the coefficient matrices, X is an assembling vector the eigenfunction 

defined as 
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and ω is the eigenvalue need to be solved. 

In general, the eigenvalue ω of the eigenvalue problem may be either real values 

or complex conjugate pairs.  To locate the threshold at which the flow becomes unstable, 

the most dangerous mode, which is the eigenvalue with the maximum real part, needs to 

be identified. 

In the present study, the Arnoldi’s method with linear fractional transformation is 

used to solve the eigenvalue problem given by Equation 3.55.  It is well known that the 

Arnordi’s method can only be used for the eigenvalue problems with a large module 

[Arnodi, 1951; Saad, 1980].  In order to find the eigenvalues with large real parts, where 

at least the leading eigenvalue with a largest real part included, Nayar and Ortega [1993] 

have shown that a simple eigenspectrum transformation technique can be used to transfer 

the eigenspectrum into the proper one.  The linear fractional transformation is one of the 

most widely used spectrum transformation technique in engineering computations and is 

used in the present model as 
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Using Equation 3.57, the ω spectrum is mapped into the τ spectrum with the eigenvalues 

in the ω plane are transformed into a unit circle in the τ plane.  Therefore, it is much 

easier to use the Arnoldi’s method to find the leading eigenvalues with the transformed 

eigenspectrum.  

Applying the fractional transformation given in Equation 3.57 to the eigenvalue 

problem defined by Equation 3.55, we obtain the following transformed eigenvalue 

problem, 

 

XBAXBA )()( −=+− τ .                  (3.58) 

 

Equation 3.58 is further simplified to the following eigenvalue problem to facilitate the 

application of the Arnoldi’s method, 

 

 jj νϖ BBA =− )(                   (3.59) 

 

where jϖ  (j=1, 2, 3…) is the eigenvalue and jϖ  is the orthogonal basis, which is used in 

the Arnoldi’s iterative method to calculate the eigenvalues and eigenfunctions.  In the 

present numerical model, an LU decomposition of (A-B) with partial pivoting is used in 

the Arnoldi iteration. 

3.4 Validation of the Numerical Model 

In this section, the presented numerical model is validated against previous 

theoretic and numerical studies on the stability of convective flows in laterally bounded 
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horizontal liquid layers.  Two ideal cases, pure Rayleigh-Bénard convection and pure 

Marangoni convection induced by vertical temperature gradients in liquid layers confined 

by cylindrical walls are studied as benchmark tests. 

3.4.1 Rayleigh-Bénard convection 

Rayleigh-Bénard convection in a vertical cylinder is a classic topic in fluid 

mechanics.  Consider a horizontal layer of fluid confined by a vertical cylindrical wall 

shown in Figure 3.1.  The top and bottom surfaces of the liquid layer are in contact with 

rigid walls that are kept at different temperatures.  The top surface is kept at 

dimensionless temperature of 0 and the bottom at dimensionless temperature of 1.  The 

sidewall is adiabatic.  All solid walls are no-slip.   

It is well known that for this case, the stability of the flow is characterized by 

Rayleigh number defined as 

 

µκ
βρ Tg ∆

=Ra ,                   (3.60)  

 

where ∆T is the temperature difference between the top can the bottom.  When Ra is 

small enough, pure conductive and no flow state is possible.  When the Rayleigh number 

reaches certain critical value, convective flow sets in and induced convection becomes 

the primary heat transfer mechanism between the hot and the cold surfaces.  The thermal 

convection in a vertical cylinder has been studied extensively [Charlson and Sani, 1970a; 

Charlson and Sani, 1970b; Wanschuar et al., 1996].  Its neutral curves have been well 
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established.  It has been found that the critical Rayleigh number depends on the aspect 

ratios of the cylinders.  The aspect ratio in the present work is defined as 

 

 
H
R

=A .                   (3.61) 

 

One of most widely studied cases is thermal convection in a cylinder with 

dimensions of R=H=1.  The critical Rayleigh number at various azimuthal wave numbers 

from the present numerical model are compared with those from the Charlson and Sani 

[1970a, 1970b] and Wanschura et al. [1996]’s work in Table 3.1.  The most dangerous 

mode is found to be m=2 by all of the three models.  The critical Rayleigh numbers 

obtained from the present model are with in ± 2% of those of Wanschura et al. [1996] 

and ± 10% of those of Charlson and Sani [1970a and 1970b].   

The critical Rayleigh numbers are also obtained at various aspect ratios for 

azimuthal wave number of 1 and 2, which is plotted in Figure 3.2.  As expected, the 

critical Ra decreases as the aspect ratio of the cylinder is increased because the lager 

aspect ratio decreases the stabilizing effect of the sidewall.  As the aspect ratio increases, 

the critical Ra for both azimuthal wave numbers approach the critical Rayleigh number 

for an infinite liquid layer, which is 1708 [Drazin and Reid, 1981]. 

3.4.2 Marangoni convection 

The second benchmark test used to validate the present numerical model is the 

pure Marangoni convection in a vertical cylinder, as shown in Figure 3.3, the geometry is 

similar to that of Rayleigh-Bénard case except that the top surface is an open free surface 
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cooled by ambient air according to Newton’s cooling law.  The effect of the buoyancy is 

ignored (Ra=0), which means the change of density with temperature is ignored.   

For this case, the stability of the surface tension driven flow is characterized by 

the Marangoni number 

 

 
µκ

γ TH∆
=Ma .                   (3.62) 

 

Here ∆T is the temperature difference between the bottom temperature and the average 

temperature at the top surface.  It is assumed that the small perturbation applied to the 

temperature field does not change the heat loss at the top surface (Bi=0), where Bi is the 

Biot number at the free surface given by  

 

κ
hR

=Bi ,                    (3.63) 

 

where h is the rate of change of heat transfer coefficient per unit temperature change.  For 

this case, since the imposed temperature gradient is perpendicular to the free surface, a 

quiescent base state is possible if Marangoni number is small enough.  When Marangoni 

number is greater than certain threshold, convective flow induced by the Marangoni 

effect sets in.  The Critical Marangoni numbers obtained using the present model are 

compared with those from Dauby, et al. [1997] for a cylinder of aspect ratio of 1 in Table 

3.2.  As shown in the table, the present model is in good agreement with Dauby et al’s 

[1997] results.    
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The critical Marangoni numbers for m=1 and m=2 at various aspect ratios are 

shown in Figure 3.4.  As the aspect ratio is increased, the sidewall effects decrease and 

therefore, the critical Marangoni number decreases and approaches the theoretic 

prediction of that for an unbounded layer of fluid.  For an infinite horizontal layer of 

fluid, Pearson [0] obtained the critical Marangoni number of 79.6 when the bottom wall 

is conducting, i.e., kept at constant temperature.  When the aspect ratio of the cylinder is 

15, our numerical model gives the critical Marangoni numbers of 80 for both wave 

numbers.  As it is indicated above, good agreement has been achieved between the 

present numerical model and the previous studies. 

Based on the benchmark tests presented in this section, the present numerical 

model can be used with confident to simulate the convective flow in the material 

processing systems and study the stability of the flow.   

3.5 Results and Discussions 

The numerical model presented in the previous sections is used to investigate the 

Rayleigh-Bénard-Marangoni convection in the Czochralski crucibles.  The geometric and 

physical configurations of the crucible under investigation are shown in Figure 2.1.  The 

stability of the convective flow in the Czochralski crucibles is governed by the Grashof 

number given in Equation 2.11 and the Marangoni-Reynolds number given in Equation 

2.18.   In this section, the critical Grashof numbers are determined at various Marangoni-

Reynolds numbers to reveal how the thermocapillary effect interacts with the Bénard 

effect under various boundary conditions.   

3.5.1 Mesh dependency test 
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Before any simulation results are presented, a mesh dependency test is carried out 

to determine the mesh to be used in the present study.   For the axisymmetric base flow, 

simulations were carried out for a cylinder of R=H=1 with Reγ=104 and Gr=2×105.  The 

velocities at r=z=0.6 calculated using various uniform meshes are listed in Table 3.3.   A 

uniform grid with 26 nodes in both r and z directions (Nr=Nz=26) is chosen to be used in 

simulation.  Any further refinement will result in less than 2% error in base flow 

simulation. 

It is worth noting that the critical state is determined by the real part of the leading 

eigenvalue.  For the melt flow in a cylinder of R=H=1 with Reγ=0 and Gr=2×105 the 

maximum growth rates obtained using various uniform meshes are list in Table 3.4.  For 

a tradeoff between computational accuracy and optimal computing time, a mesh with 26 

uniformly spaced nodes in both r and z directions is used for the stability results 

presented in this chapter, which is shown in Figure 3.5.  Further refinement of the mesh 

produces results with an uncertainty of less that 4%.   

Other physical and geometrical properties used for the computation are listed in 

Table 3.5.   

3.5.2 Base flow pattern 

Typical flow patterns and isothermals for axisymmetric base flow in a cylinder of 

R=H=1 using the properties listed in Table 3.5 are presented in this section.  

Dimensionless time step used for the simulations is 10-6, unless convergence required 

smaller time step.  The convergence is claimed when the maximum difference of local 

velocity components and temperature between two time steps is less than 10-8.   
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Figure 3.6 shows the base flow when Reγ=104, Gr=106, and Rd=0.  The fluid is 

heated through the sidewall and cooled at the free surface by radiation.   A convective 

loop is formed with the fluid flowing upwards near the vertical wall and downwards at 

the center due to the heating at the lateral wall (Bénard effect).  A small recirculation 

loop can be observed near the upper right corner of Figure 3.6(a).  The flow pattern is 

similar to the first type of base flow observed by Hoyas et al. [2002].  Along the free 

surface, the fluid temperature is higher near the sidewall and lower at the center.  

Marangoni flow from the sidewall towards the center is driven by the temperature 

gradient.  The fluid at the top surface is cooled only by radiation and therefore the 

temperature gradient imposed along it is small.  As a result, the Marangoni flow induced 

along the free surface is weak.   

Simulation is carried out at higher Marangoni-Reynolds numbers to show how the 

Marangoni effect may change the base flow patter.  Figure 3.7 presents the isothermal 

and the velocity vectors for the axisymmetric base flow when Reγ=105, Gr=106, and Rd=0.  

Due to the higher Reγ, stronger Marangoni flow is induced along the free surface.  

However, the stronger Marangoni flow does not change the bulk flow structure.  

Comparing Figures 3.6(b) and 3.7(b), smaller temperature gradient along the free surface 

is observed at the higher Reγ.  This is caused by the higher heat transfer rate resulted from 

the stronger Marangoni flow. 

Figure 3.8 shows the base flow structure and temperature field with the presence 

of a seeding crystal.  When a seeding crystal of Rd=0.5 is in contact with the top surface, 

the top surface is cooled by both the radiation and conduction.  A strong temperature 

gradient is imposed at the edge of the crystal and therefore strong Marangoni flow is 
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induced, see Figure 3.8(a).  The strong Marangoni flow changes the flow pattern near the 

top surface dramatically.  However, it does not have a strong effect on the bulk flow 

structure, of which a big convective loop similar to those in Figures 3.6 and 3.7 is 

observed.  It is found that the temperature distributions are more uniform than those 

obtain for higher Prandtl number fluids [Jing, et al., 1999].  This is caused by the large 

thermal conductivity of the low Prandtl number fluid (liquid metal) used in the present 

study. 

3.5.3 Rayleigh-Bénard-Marangoni stability of the base flow 

In this section, a linear stability analysis of the axisymmetric base flow given in 

the previous section is presented.  As it has been demonstrated, the stability of the base 

flow is characterized by the Marangoni-Reynolds number and the Grashof number.  The 

results shown in this section are focused on the interaction between the two effects and 

how the physical boundary conditions may change the stability of the Rayleigh-Bénard-

Marangoni convection. 

The stability analysis was carried out at three Reγ values, 0, 5000, and 10000, 

respectively.  For each given Reγ number, the base flow is axisymmetric when the 

Grashof number small enough.  The flow loses its axisymmetry eventually as Gr is 

increased.  In the present stability analysis, for each given Reγ value, simulations were 

conducted as different Grashof number to locate the critical Gr at which the real part of 

the leading eigenvalue vanishes.  Gr was updated using bisection method.  The critical 

Grashof number depends on Marangoni-Reynolds number, Reγ, and the azimuthal wave 

number, m.  For laterally bounded liquid layers in cylindrical configurations, the 

continuous wave number is replaced by discrete azimuthal modes [Johnson and 
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Narayanan, 1999].  The present study is focused on the axisymmetry-breaking 

instabilities and the critical Grashof numbers are presented for azimuthal wave number 

from 1 up to 10.   

Figure 3.9 shows the stability curves obtained for a cylinder of R=H=1 with Rd=0.  

At all three Reγ values, the most dangerous azimuthal mode is found to be 1.  For Reγ=0, 

the critical Gr is found to be 190215 while for Reγ=10000 it is found to be 281224.  The 

critical Gr increases as Reγ is increased because of the stabilizing effect of the surface 

tension.   

When a seeding crystal of Rd=0.5 presents, neutral curves at the three Reγ 

numbers are depicted in Figure 3.10.  The most dangerous azimuthal mode for this case is 

also found to be 1.  For this case, the critical Grashof number is creased from 326957 to 

571182 when Reγ is increased from 0 to 10000.  When Reγ=10000, the critical Grashof 

number of 571182 is higher than that of 281224 for the Rd=0 case.  This increase in 

critical Grashof is not surprising considering the fact that the seeding crystal imposes a 

solid boundary at the free surface.  The solid boundaries always stabilize the convective 

flow.   

The typical eigenvalue spectrum of the flow under investigation is shown in 

Figure 3.11.  A T-shape eigenvalue spectrum is observed.  The figure shows that both real 

and complex growth rate are possible.  The complex growth rate always occurs in 

conjugate pairs.  The first five leading eigenvalues for R=H=1, Grcr= 281224, Reγ=104, 

m=1, and Rd=0 are listed in Table 3.6.  As shown in the table, the first leading eigenvalue 

is a real number, which is zero, and the following four leading eigenvalues are all 

conjugate pairs.  This indicates that the first leading eigenvalue mode is a stationary 
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mode and the following four modes are HOPF modes [Ding and Kawahara, 1998].  

Similar structure of the leading eigenvalues spectrum is also observed for the unstable 

base flow at Gr=281230 in Table 3.7. 

To further illustrate the instability mechanism of the convective flow, temporal 

evolution of the perturbation energy is analysis.  In the present study, following the 

definition presented by Ding and Kawahara, [1998], the perturbation energy can be 

calculated as 

 

 ( )222

2
1

θUUUe zr ′+′+′= .                  (3.64) 

 

The evolutions of the total perturbation energy in the axisymmetric plane of θ=0 for the 

first two leading eigenvalues are plotted for two base flows, Gr=281224 and 281230, in 

Figures 3.12 and 3.13, respectively.  Figure 3.12 shows the transient perturbation energy 

for the critical state at Grcr= 281224.  The perturbation energy of the first leading 

eigenvalue decreases monotonically as time is increased (Figure 3.12a).  This monotonic 

profile confirms the T-shape eigenvalue spectrum shown in Figure 3.11, in which the 

leading eigenvalue appears to be a real number (ωi=0).  As listed in Table 3.6, the second 

leading eigenvalue is a pair of conjugate complex numbers.  The perturbation energy 

corresponding to this eigenvalue osculates at a frequency of ωi, which is shown in Figure 

3.12(b).  Figure 3.13 shows the temporal evolution the perturbation energy corresponding 

to the first two leading eigenvalues for an unstable base flow at Gr=281230.  For this case, 

the perturbation energy of the leading eigenvalue increases monotonically, which 

confirms that the base flow is unstable.  An oscillatory second leading eigenvalue 
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perturbation energy profile similar to that for the critical case is observed in Figure 

3.13(b).   

The evolution of the combined perturbation energy for the first five leading 

eigenvalues at the critical state and the unstable base flow are shown in Figures 3.14 and 

3.15, respectively.  The combined perturbation energy of the critical state shown in 

Figure 3.14 oscillates as the dimensionless time is increased.  It is obvious that the 

perturbation energy decays eventually and approaches zero if given enough time.  The 

vanishing perturbation energy implies the perturbations to all the velocity components 

approach zero.  Therefore, the flow at the critical state is stable.  For the unstable base 

flow at Gr=281230, the combined perturbation energy is increased while oscillating, 

Figure 3.15.  It is obvious that the perturbation energy grows infinitely as time increases, 

which implies that the base flow is unstable when subjected to small perturbation.  The 

stationary mode for the leading eigenvalue and the HOPF mode for the second leading 

eigenvalue combine into a HOPF mode.  

Contours of the temperature and energy perturbations for the leading eigenvalue 

at the critical state within the free surface are shown in Figure 3.16.  The perturbation 

pattern consists of a pair of maxima and minima along the azimuthal direction, which is 

corresponding to m=1 [Rubinov, et al., 2004].  It is worth noting that the perturbation is 

asymmetric while the base flow is axisymmetric.  The perturbations are plotted at two 

moments, t=2.5×10-8 and t=5×10-8, respectively.  The perturbation contours do not 

change significantly as time proceeds, which confirms that the leading eigenvalue is 

stationary mode. 
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Based on linear stability theories, the three-dimensional velocity fields 

corresponding to the critical state can be constructed on the basis of the two-dimensional 

steady flow with an arbitrary number of disturbance eigenvectors [Ding and Kawahara, 

1998].  In the present study, considering the fact that the eigenvalues are either real 

numbers or conjugate complex pairs, the three-dimensional velocity fields at the critical 

state are constructed using the leading eigenvalue.  Figure 3.17 shows the produced 3-D 

flow structure and the flow pattern along the free surface.  The 3-D flow consists of two 

co-rotating along the azimuthal directions, which is corresponding to the most dangerous 

mode of 1. 

3.6 Summary 

This chapter presents a numerical study on Rayleigh-Bénard-Marangoni stability 

of low Prandtl number fluid contained in the Czochralski crucibles.  The fluid is heated 

through the sidewall at constant heat flux and cooled at the free surface via radiation.  

The axisymmetric base flow is solved using high order finite difference method.  Small 

perturbations are applied to the base flow with assumption of slight compressibility.  The 

final perturbation equations are projected into eigenvalue matrix equation and solved by 

linear fractional transformation.   The numerical model is compared with previous 

numerical studies for pure Rayleigh-Bénard convection and pure Marangoni convection.  

Good agreements between the present model and the previous studies have been 

achieved.  Critical Grashof numbers are determined as various Marangoni Reynolds 

numbers and it is found that the surface tension stabilize the buoyancy driven convection.  

Neutral curves are also determined at different seeding crystal size and it is found the big 

crystal helps to delay the occurrence of asymmetric flow.  The most dangerous azimuthal 
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mode for all the cases is found to be 1.  The instability mechanism of the convective flow 

is also discussed in this chapter. 
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Table 3.1 Comparison of critical Rayleigh numbers at various azimuthal wave numbers 

between our results and those of Charlson and Sani [1970a and 1970b] and Wanschura et 

al. [1996]. 

 
 
 
 
 
 

 

 

 

  

Table 3.2 Comparison of critical Marangoni numbers at various azimuthal wave numbers 

between our results and those of Dauby et al. [1997]. 

m This model Charlson&Sani 
[1970a & 1970b] 

Wanschura et al. 
[1996] 

1 2914 3164 2875 

2 2514 2687 2500 

3 3342   

4 4952   

m This model Dauby et al. 
[1997] 

0 169 163.57 

1 122 109.08 

2 162 160.15 

3 261 257.86 
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Nr Nz Velocity 

6 6 181.6308 

11 11 193.8589 

16 16 205.9079 

21 21 213.2608 

26 26 217.0745 

31 31 218.7899 

36 36 219.6557 

41 41 220.1121 

46 46 220.3805 

51 51 220.6079 

56 56 220.7098 
 

Table 3.3 Calculated velocity at r=z=0.6 calculated using different uniform meshes for a 

crucible of R= H=1 with Gr=2×105, and Reγ=104. 
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Table 3.4 Maximum growth rate obtained for R=H=1, Reγ=0, Gr=20000, and m=1, using 

different meshes. 

 
 
 

Parameter Value 

Aspect ratio 
(R/H) 1.0 

Pr 0.02 

q 1.0 

Rad 1.0 

Tamb 0.0 

Td 0.0 

 

Table 3.5 Parameters used in calculation. 

Nr×Nz 
Maximum Growth Rate, 

ωr 

16×16 -4.0379 

21×21 -3.8788 

26×26 -3.8049 

31×31 -3.7551 

36×36 -3.7188 

41×41 -3.6909 

46×46 -3.6685 

51×51 -3.6500 
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No. ωr ωi 

1 -3.157085111904772×10-4 -6.642212192579442×10-8 

2 -74.8454058930482 ±5325219.39924455 

3 -96.7482798640753 ±1841190.83924748 

4 -97.0663118926350 ±8505315.86795420 

5 -100.662323779148 ±428.406090965200 

 

Table 3.6 First five leading eigenvalues at R=H=1, Grcr= 281224, Reγ=104, m=1, q=1.0, 

and Rd=0. 

 

No. ωr ωi 

1 5.054353367751870E×10-3 2.848402098983551E×10-7 

2 -74.8454014070957 ±5325219.39924559 

3 -96.7482489277609 ±1841190.83924778 

4 -97.0662481989712 ±8505315.86797078 

5 -100.663188364045 ±428.414857056436 

 

Table 3.7 First five leading eigenvalues at R=H=1, Grcr= 281230, Reγ=104, m=1, q=1.0, 

and Rd=0. 
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Figure 3.1 Physical configurations of Rayleigh-Bénard convection in a vertical cylinder. 
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Figure 3.2 Critical Rayleigh number of Rayleigh-Bénard convection in a vertical cylinder 

for m=1 and m=2 at various aspect ratios. 
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Figure 3.3 Physical configurations of Marangoni convection in vertical cylinders. 
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Figure 3.4 Critical Marangoni number of Marangoni convection in a vertical cylinder for 

m=1 and m=2 at various aspect ratios.
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Figure 3.5 Finite difference mesh used for simulation, 26 nodes uniformly spaced along r 

and z directions. 
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(a) 

 

(b) 

Figure 3.6 Velocity field (a) and isotherms (b) of the base flow corresponding to R=H=1, 

Reγ=104, Gr=106, and Rd=0. 
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(a) 

 

(b) 

Figure 3.7 Velocity field (a) and isotherms (b) of the base flow corresponding to R=H=1, 

Reγ=105, Gr=106, and Rd=0. 
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(a) 

 

(b) 

Figure 3.8 Velocity field (a) and isotherms (b) of the base flow corresponding to R=H=1, 

Reγ=104, Gr=106, and Rd=0.5. 
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Figure 3.9 Critical Grashof numbers for Reγ=0, 5000, and 10000 for R=H=1 and Rd=0. 
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Figure 3.10 Critical Grashof numbers for Reγ=0, 5000, and 10000 for R=H=1 and Rd=0.5. 
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Figure 3.11 Eigenvalue spectrum of critical base flow with R=H=1, Grcr= 281224, 

Reγ=104, m=1, q=1.0 and Rd=0. 
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(b) 

Figure 3.12 Evolution of perturbation energy in the axisymmetric plane at θ=0 for 

R=H=1, Grcr= 281224, Reγ=104 and Rd=0: (a) first and (b) second leading eigenvalue. 
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(b) 
 

Figure 3.13 Evolution of perturbation energy in the axisymmetric plane at θ=0 for 

R=H=1, Gr= 281230, Reγ=104 and Rd=0: (a) first and (b) second leading eigenvalue. 
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Figure 3.14 Evolution of combined perturbation energy for the first five leading 

eigenvalues in the axisymmetric plane at θ=0 for R=H=1, Gr= 281224, Reγ=104 and Rd=0. 
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Figure 3.15 Evolution of combined perturbation energy for the first five leading 

eigenvalues in the axisymmetric plane at θ=0 for R=H=1, Gr= 281230, Reγ=104 and Rd=0.
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.16 Pattern of perturbation of for the leading eigenvalue at the top surface 

corresponding to R=H=1, Reγ=104, Grcr=281224 and m=1: (a) energy at t=2.5×10-8; (b) 

temperature at t=2.5×10-8; (c) energy at t=5×10-8; (d) temperature at t=5×10-8. 
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(a) 

 

(b) 

Figure 3.17 Three-dimensional flow pattern of the leading eigenvalue corresponding to 

the critical state for R=H=1, Rd=0, Reγ=104, Grcr=281224 and m=1: (a) 3-D flow structure; 

(b) top surface flow pattern. 
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CHAPTER FOUR 

NUMERICAL SIMULATION AND STABILITY OF RAYLEIGH-BÉNARD-

MARANGONI CONVECTION IN OF RADIATION PARTICIPATING MELTS 

IN CRYSTAL GROWTH SYSTEMS 

This chapter extends the numerical simulations and stability analysis presented in 

Chapter Three to a radiation participating melt.  In the last chapter, the melt was 

considered transparent, in other words, the melt does not participate in radiative energy 

transfer.  However, it is well known that oxide melts are not opaque to infrared radiation, 

which implies that the internal radiative energy absorption and emission strongly 

influence the heat transfer behavior during the crystal growth [Brandon and Derby, 1992; 

Kobayashi, et al., 1997].  In this chapter, a discontinuous finite element model of internal 

radiation problem is presented and coupled with the high order difference model 

presented in the last chapter to solve the flow and temperature fields in the Czochralski 

crucibles.  A linear stability analysis is carried out base on the numerical simulation to 

investigate how the internal radiation may change the stability diagrams of the melt flow 

at various radiative boundary conditions. 

4.1 Governing Equations for Internal Radiation Problems 

Radiative transfer in a participating medium is described by the radiative 

intensity, which is affected by the interaction between the traveling thermal rays and the 

medium, which includes emission, absorption and scattering.  Radiative intensity is 
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increased due to absorption and incoming scattering.  In the meantime, it is reduced by 

scattering and emission [Modest, 1993]. 

4.1.1 Radiative transfer equation 

The radiative transfer equation governs the distribution of the radiative intensity 

I(r,s), sometimes called radiation intensity, which is a function of both coordinates r and 

direction s, see Figure 4.1.  The radiative intensity is defined as radiative energy flow per 

unit solid angle, and unit area normal to the thermal rays.  The transfer equation is 

derived from the local conservation of radiative energy and has the following general 

form [Seigel and Howell, 1992; Modest, 1993]: 
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where βλ(r)=κ λ(r)+σ λ(r) is the extinction coefficient, κ λ(r) is the absorption coefficient, 

σ λ(r) is the scattering coefficient, s = sinθcosφ î + sinθ sinφ ĵ +cosθ k̂ , and Ω(s) is the 

solid angle associated with direction s, where θ and φ are the discretization angles used to 

define the solid angle Ω, see Figure 4.2. 

In Equation 4.1, c = ds/dt is the speed at which thermal radiation travels. All the 

quantities are a function of location in space, time and wave numbers.  The intensity and 

the phase function are also dependent upon directions s and s´.  For many engineering 

applications, thermal radiation reaches equilibrium far faster than other heat transfer 
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mechanisms and thus a quasi-steady state approximation is often used.  Considering the 

size of the crucible used in the present study (0.1 m in diameter and 0.05 m in height), the 

time needed for the radiative energy to travel across the crucible is approximately 3×10-9 

s.  This allows us to drop out the transient term.  To facilitate discussion, it is further 

assumed that all quantities are spectral independent, although the numerical algorithms 

discussed later in this chapter apply equally to the case where these quantities are spectral 

dependent as well.  With these approximations, Equation 4.1 can be simplified as 
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Equation 4.2 is a first order integral-differential equation for the radiative intensity, in 

which, the first term on the left hand side measures the change in I(s, r) over a 

differential distance in the s direction, the first term on the right represents the loss to the 

medium due to absorption or scattering, the second is the local emission, and the third 

represents the contribution to the intensity in the s direction that results from the 

scattering of intensity in other directions.  The equation needs to be solved for I in each 

given direction s at every position [Li, 2006].  

4.1.2 Boundary conditions for the radiative transfer equation 

To solve the radiative transfer equation given in Equation 4.2, the following 

radiative boundary conditions are applied to the Czochralski crucible shown in Figure 2.1.  

At the vertical wall, bottom and top surface, diffusive grey surfaces are assumed, for 

which the thermal balance gives the following equation, 
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where ε is the boundary emissivity, nw the normal direction of the boundary. 

Along the center line r=0, symmetric boundary condition is used for the radiative 

transfer equation as  
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where the s* is the symmetric vector of radiation direction s, in respect to the tangent of 

the boundary, with both s and s* lying on the plane of t–n (Figure 4.1). 

4.1.3 Radiative heat flux and radiative heat source 

The radiation is rarely the only means of heat transfer in engineering practice.  In 

most of the materials processing systems, the radiation is coupled with convection and 

conduction to transfer heat from high temperature to low temperature.  Often the radiative 

intensity is used to calculate the radiative heat flux and/or radiative heat source to 

facilitate the coupling with other heat transfer mechanisms.  For a grey medium, the 

radiative heat flux and the radiative heat source are calculated using the following 

equations, 
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where σs is the Stephen-Boltzmann constant, q(r) the radiative heat flux and its 

divergence is the radiative heat source. 

4.2 Numerical Schemes 

The radiative intensity I(r, s) depends on five independent variables, three spatial 

coordinates (r) and two direction coordinates (s).  Solution of the integro-differential 

equation presented in Equations 4.2 is a challenging task.  Various numerical schemes 

have been developed to simulate the thermal radiation phenomena and to assist in thermal 

design involving radiative heat transfer.  Among the numerical schemes widely used for 

numerical solution of internal radiation problems are the finite difference, discrete 

ordinates, Monte Carlo method and finite element method.  The details of the 

applications of the numerical methods in thermal radiation are given by Siegel and 

Howell [1992] and Modest [1993]. 

4.2.1 Discontinuous finite element method 

In this study, discontinuous finite element method is employed to solve the 

radiative transfer equation, Equation 4.2.  The discontinuous finite element method, also 

called discontinuous Galerkin method, was first introduced by Reed and Hill [1973] for 

the solution of the neutron transport equation.  It received extensive attention for the past 

decade as a powerful numerical tool in the simulation of fluid flow and heat transfer 
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process.  It has been shown that the discontinuous finite element method is particularly 

powerful in the solution radiative transfer problems in which some physical variables 

vary dramatically within the computational domain [Oden et al., 1998].  Several reviews 

on the developments and applications of the discontinuous finite element method are 

available [Cockburn et al., 2000; Cockburn, 2001].  A monograph on the applications of 

the discontinuous finite element method in heat transfer and fluid flow is given by Li 

[2006]. 

The discontinuous finite element method makes use of the same function space as 

the continuous finite element method, but with relaxed continuity at inter-element 

boundaries.  The essential idea of the method is derived from the fact that the shape 

functions can be chosen so that either the field variable, or its derivatives or generally 

both, are considered discontinuous across the element boundaries, while the 

computational domain continuity is maintained.  From this point of view, the 

discontinuous finite element method includes, as its subsets, both the finite element 

method and the finite difference (or finite volume) method.  Therefore, it has the 

advantages of both the finite difference and the finite element methods, in that it can be 

effectively used in convection-dominant applications, while maintaining geometric 

flexibility and higher local approximations through the use of higher order elements.  

Because of the local nature of a discontinuous formulation, no global matrix needs to be 

assembled; and thus, this reduces the demand on the in-core memory.  The effects of the 

boundary conditions on the interior field distributions then gradually propagate through 

element-by-element connection.  This is another important feature that makes this method 

useful for fluid flow calculations. Computational fluid dynamics is an evolving subject, 
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and very recent developments in the discontinuous finite element method are discussed in 

[Li, 2006]. 

4.2.2 Discontinuous finite element formulation 

In this section, the discontinuous finite element method is applied to solve the 

radiative transfer equation.  Same as of its continuous counterpart, the first step of the 

discontinuous finite element formulation is to discretize the computational domain into a 

collection of finite elements.  It is worth noting that using the discontinuous finite 

element, the solid angles are discretized in the framework of finite element space so that 

the conservation laws are observed, while most of the other numerical methods the solid 

angle integration is carried out using discrete ordinates.   

In the present work, the discontinuous finite element model will be incorporated 

into the high order finite difference method presented in the last chapter, which is used to 

solve the flow and temperature fields.  Therefore, structured triangular elements are used 

to solve the radiative heat transfer, which is shown in Figure 4.3.  The triangular finite 

element mesh is constructed by splitting each of the rectangular finite difference elements 

into two triangular elements, as shown in Figure 4.3.  For the two meshes, the nodes are 

numbered in the same sequence.  The radiative calculation is carried out using primitive 

variables while the flow and temperature fields are solved using dimensionless variables.  

The discontinuous finite element procedures start by integrating Equation 4.2 with 

respect to a weighing function v(Ω,r), 
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where A is the area of the element under consideration and S(r, s) the source term defined 

as 
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Applying integration by parts once to Equation 4.7, we have the following 

expression: 
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where the superscript + means taking the value outside the element boundary and where 

n is the out-normal of the element boundary.  In deriving the above equation, use were 

made to the following divergence theorem,  

 

 ∫∫∫ ∇⋅=∇⋅−⋅
Γ ee VV

IdVdVIdAI φφφ ssns                                                  (4.10)  

 



 84

to convert the domain integral into the boundary integral.  Note that in selecting the 

values of I on the boundary, we have chosen those lying just outside the element under 

consideration. This choice is made in order to be consistent with the upwinding scheme. 

Applying integrate by parts once again and also using the divergence theorem to 

convert the volume integral into the surface integral,  the following integral formulation 

for the radiative intensity I is obtained 
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It is worth noting that in the conventional finite element formulation, the terms on 

the element boundary disappear when they are combined with neighboring elements.  In 

the discontinuous formulation, however, these terms do not cancel when the elements are 

assembled.  Instead, the following limiting values are used: 
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where the superscripts + and – denote the front side and back side of the normal vector, 

respectively.  The above treatment assumes that the two values +
jI and −

jI across the 

element boundaries are not the same, and these jumps are often denoted by, 
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For the thermal radiation problem under consideration, the simplest and yet 

effective treatment of the jump condition is by using the upwinding procedure, which in 

the discontinuous finite element literature is sometimes referred to as the inflow boundary 

value,  
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Appropriate interpolation functions now may be chosen from the finite element 

broken space that does not demand continuity across the inter-element boundaries.  A 

natural choice of shape functions for internal radiation applications is made by taking a 

step function for the solid angle and a polynomial function for the spatial variation, 

v(Ω,r) = ψ(∆Ω l)φ( r).  Here ψ(∆Ω l) is the step function of the solid angle differential 

centered at Ωl , and φ(r) is the shape function of the spatial coordinates. Substituting this 

testing function into the integral expression and re-arranging, the final form of the 

integral presentation of the radiative transfer equation is obtained as 
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Equation 4.15 reduces to the finite volume formulation if a constant shape 

function φ(r) is used, and to the finite element formulation, across the element interface, 
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when [I] = 0 is enforced.  From this perspective, Equation 4.15 represents a general 

integral formulation for all these integral-based methods.  

Following the standard procedure for elemental calculations, Equation 4.15 can be 

solved, once the shape functions are known.  Assembling all these discretized terms 

together for the element, the final discretized equation can be expressed in terms of the 

following matrix form: 

 

 KU = F                  (4.16) 

 

where U contains the unknown intensity vector and  the matrix elements are summarized 

as follows: 
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where Nd being the number of boundaries associated with the ith element. 

For those elements associated with a boundary element, the boundary condition is 

imposed as follows if the boundary is gray: 
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The following equation is used for the symmetry boundary condition,  
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where s* is the symmetric direction of s with respect to the boundary, Figure 4.1.  

Equation 4.16 can be obtained for each element and its neighbors, and the calculations 

are then performed element by element.  Thus, with Equation 4.16, the calculation for the 

ith element starts with selecting a direction and continues element by element until the 

entire domain and all directions are covered.  Because of the boundary conditions, 

iterative procedures are required.  Experience suggests that the successive substitution 

method seems to work well for these types of problems [Li, 2006]. 

It is worth noting that for the axisymmetric geometry under investigation in the 

present study, the discontinuous finite element computation is carried out over two-

dimensional mesh.  This is made possible by mapping the radiative intensity on the r-z 

plane into the entire three-dimensional domain during calculation.  The mapping 

procedure exploits the symmetry and periodic conditions associated with the 

axisymmetry of the problem.  Full details about the mapping procedure are given by Cui 

and Li [2005]. 

4.2.3 Coupling with the high order finite difference model 

The radiation properties solved from the discontinuous finite element model 

presented in the last section is coupled with the temperature and fluid fields obtained 
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from the high order finite difference model given in the last chapter to describe the 

convective phenomena in the Czochralski crucibles. 

As it has been shown earlier, the divergence of radiative heat flux gives 

volumetric heat source, which can be easily incorporated into the energy equation given 

in Equation 2.5 as 
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with ∇·qr calculated using the radiative transfer equation as described in Equation 4.6.  

Since the radiation heat flux contribution appears as a divergence term in the source part 

of the heat balance equation, it can be incorporated in the high order finite difference 

model through the temperature field [Cui and Li, 2005]. 

The combined heat convection and radiation calculations require iterative 

procedures.  In the present study, the temperature distribution is calculated using the 

higher order finite difference method while the internal radiation intensities are calculated 

by the discontinuous finite elements.  The iteration starts with the calculation of 

temperature without radiative heat transfer.  The radiative intensity distribution, and 

hence the divergence of the radiative heat fluxes, are then calculated using the calculated 

temperature field.  The radiation heat flux divergence is then treated as a heating source 

and the temperature distribution is updated.  This process repeats itself until a 

convergence on temperature and intensity is obtained. 

The radiative heat fluxes at the domain boundaries are balanced by the other heat 

transfer modes.  Therefore the thermal boundary conditions given in Chapter Two need to 
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be modified to take the radiative heat flux into account at the boundaries, which leads to 

the following expressions: 

 

dTT = , for r ≤ Rd and z=H                                        (4.22) 
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where qr and qc are the heat flux due to radiation and conduction, respectively.  The 

boundary radiative heat flux is calculated using  
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where Tw is the wall temperature and nw the wall normal pointing into the medium. 

Finally, the numerical computational procedures presented in this section are 

summarized as follows.   For each time step, the governing equations are solved for an 

initial temperature and velocity fields using the high order difference model without the 

internal radiation.  The initial temperature field is then used to calculate the radiative 

transfer intensity using the discontinuous finite element method.  The divergence of the 

obtained radiative intensity is calculated as the radiative heat source and the boundary 

heat flux is calculated.  The heat source and the boundary heat flux are used by the high 

order finite difference model to solve for the temperature and velocity fields again.  An 

iterative process is employed to update the temperature field until convergence is reached 
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between the initial temperature field and the temperature field calculated from the high 

order finite difference model.  The calculated temperature field is then used as initial 

temperature field of the next time step.  The calculation proceeds until the dependant 

variables, which include velocity, temperature and radiative intensity, satisfy certain 

convergence conditions. 

4.3 Results and Discussions 

The discontinuous finite element model is used to solve for convective flow in a 

square box and the Czochralski crucible in this section.  Some of the typical results on 

flow and temperature fields are presented.  A linear stability analysis is carried out based 

on the flow and temperature fields.  The neutral curves are compared with those 

presented in the last chapter to investigate how the internal radiation changes the stability 

of the convection. 

4.3.1 Natural convection in a square box 

Consider a square domain bounded by rigid walls and filled with radiation 

participating medium shown in Figure 4.4.  The square box has a dimension of 1 × 1.  

Two of its vertical walls are held at different temperature with TL=1 at y= 1 and TH=2 at 

y=0.  The two horizontal walls are thermally insulated.  This case has been studied by 

several other researchers [Tan and Howell, 1991; Kssemi and Naraghi, 1993; Shu et al., 

2004]. 

The calculations are carried out using 41 uniformly spaced nodes in both x and y 

directions.  Numerical simulations are carried out at two different Grashof numbers with 

Gr=104 and 105.  The melt has a Prandtl number of 0.7.  It is absorbing, emitting but not 



 91

scattering.  Figure 4.5 shows the velocity and temperature field for Gr=104.  When the 

fluid is considered transparent, both the flow and temperature profiles are anti-symmetric, 

Figure 4.5(a, b).  Strong circulating pattern is formed driven by the temperature gradient 

across the thermal boundaries near the cold and the hot walls.  When the fluid is involved 

in radiative transfer with an absorption coefficient of 1.0, the flow and velocity fields are 

shown in Figure 4.5(c, d).  Both the velocity and temperature fields change dramatically 

due to the presence of the internal radiation.  The thermal boundary layer near the hot 

wall becomes thicker and that near the cold wall becomes thinner, which result in a high 

temperature gradient near the cold wall.  The bulk fluid temperature increases due to the 

internal radiation, which is caused by the fourth order power law of the radiation [Tan 

and Howell, 1991].  The isothermals near the insulated walls are not perpendicular to the 

boundaries due to the radiative heat flux from the solid walls.  Near the hot wall, the fluid 

is heated by the radiation from the insulated walls and near the cold wall it is cooled by 

radiation to the insulated walls. 

Results for Gr=105 are shown in Figure 4.6.  In this case, much strong convective 

flow is induced due the higher Grashof number.  When the fluid does not participate the 

radiative transfer, the flow is nested with two co-rotating vortex near the center of the 

square box, Figure 4.6(a).  The thermal boundary layers near the vertical walls are thinner 

than those for Gr=104, which results in stronger temperature gradients that induce the 

strong flow.  When the fluid is involved in the internal radiation with an absorption 

coefficient of 1.0, the velocity vectors and isothermals are shown in Figure 4.6(c, d).  The 

same changes in temperature profiles are observed.  The isothermals are not orthogonal to 

the horizontal walls due to the radiative heat flux.  The bulk fluid is heated by the internal 
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radiation.  As shown in Figure 4.6(c), the two co-rotating loops merges into one major 

loop near the cavity center when the internal radiation presents.   

The results obtained using the present numerical model compare well with those 

form the previous works [Tan and Howell, 1991; Kssemi and Naraghi, 1993; Shu et al., 

2004].  

4.3.2 Convective flow of radiation participating melt in the Czochralski crucibles 

In this section, the numerical model developed in this chapter is used to solve for 

the convective flow in the Czochralski crucibles.  The main objective of this section is to 

investigate how the internal radiation changes the convective flow pattern.  Numerical 

simulations are carried out at various radiative parameters and the velocity and 

temperature profile are presented in this section. 

The crucible under investigation is similar to that used in the last chapter, which is 

shown in Figure 2.1.  Because the internal radiation properties are calculated using 

primitive variables, a crucible of R=H=0.05m is used for the results presented in this 

section.  Another important parameter for radiation simulation is the reference 

temperature, Tm, of which 1000 K is used in the present study.   

A mesh dependency test is carried out to determine the mesh to be used in the 

present study.   For the axisymmetric base flow, simulations were carried out for a 

cylinder of R=H=1 with Reγ=104, Gr=6×105, κ=1, ε = 1 and σ = 0.  The velocities at 

r=z=0.6 calculated using various uniform meshes are listed in Table 4.1.   A uniform grid 

with 26 nodes in both r and z directions (Nr=Nz=26) is chosen to be used in simulation.  

Any further refinement will result in less than 2% error in base flow simulation.  At each 

node, the solid angle is discretized into 8 elements in both the θ and φ directions.  The 
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meshes are shown in Figure 4.3.  The properties used in the simulations are listed in 

Table 4.2.  The results are plotted in dimensionless variable except for the temperature 

profiles, which are presented in primitive values. 

The flow and temperature fields for the convective flow in the crucible with 

Gr=105 are shown in Figure 4.7.  The fluid ascends near the solid wall and descends at 

the crucible center due to the Rayleigh-Bénard-Marangoni effect.  The fluid temperature 

is higher near the vertical wall due to the constant heat flux supplied.  When there are 

internal radiation involves, the velocity vectors and isothermals are plotted in Figure 4.8 

for Gr=105, κ = 1 m-1, ε = 0.5 and σ = 0 m-1.  In this case, the melt is absorbing, emitting 

but not scattering radiative energy.  As it is shown in Figure 4.8, the internal radiation has 

a strong effect on the temperature distribution.  The temperatures near the vertical wall 

and the free surface are decreased.  This is because that the presence of radiative heat flux 

at the boundaries requires higher temperature gradients to conduct the heat from the walls 

to ensure energy balance.  Considering the reference temperature used in this case (1000 

K), a strong heat flux is imposed at the boundaries, which decreases the melt temperature 

significantly.  At the bottom, the isothermals are not orthogonal to the boundary due to 

the radiative heat flux at the bottom.  The internal radiation does not have a strong effect 

on the velocity profile.  Results for a higher wall emissivity of ε = 1.0 are depicted in 

Figure 4.9.  As it is expected, the temperature is further decreased due to the higher 

boundary heat flux imposed by the higher wall emissivity. 

The effects of the absorption coefficient are depicted in Figure 4.10, which shows 

the velocity vectors and the temperature distribution for κ = 5 m-1, ε = 1 and σ = 0.  A 

comparison between Figures 4.9(b) and 4.10(b) indicates that the bulk temperature is 
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raised by approximately 6 K due to the increase in absorption coefficient.  A careful 

examination of the radiative transfer equation (Equation 4.2) reveals that when a medium 

is absorbing and emitting, but not scattering radiative energy, the radiative intensity 

increases along a given direction s.  It is observed that though the absorption and 

emission tends to increase the melt temperature, the cooling effect from the boundary 

radiative heat flux is much stronger that the bulk temperature is lower than that for the 

radiative transparent medium (see Figure 4.7). 

 One of major aspects of the internal radiation is scattering.  The results presented 

so far are for non-scattering mediums.  To investigate how the scattering may change the 

convective flow pattern, simulation was carried out at Gr=105, κ = 1, ε = 1 and σ = 1, of 

which the velocity and temperature profiles are shown in Figure 4.11.  Comparing with 

the non-scattering results shown in Figure 4.9, it is observed that the melt temperatures 

near the boundaries are decreased due to the back scattering.  The bulk melt temperature 

is decreased due to the scattering. 

When a seeding crystal with radius of 0.5 (0.025 m) is in contact with the melt, 

results are shown in Figure 4.12.  As it has been shown in the last chapter, with the 

presence of the crystal, a strong temperature gradient is imposed along the free surface, 

which induces strong Marangoni flow.  The effect of the strong Marangoni flow is 

limited to where near the free surface.  In other words, the Marangoni effect does not 

change the bulk flow structure much.  Same changes in the temperature profiles are 

observed near the vertical wall as the wall emissivity increases.  However, no obvious 

changes in the temperatures beneath the crystal is observed, which is because that the 

crystal is considered a cold body (Td=0 K) in the present study. 
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4.3.3 Stability of convective flow in radiation participating medium 

In this section, a linear stability analysis is carried out based on the numerical 

simulation results presented in the last section.  The stability analysis is focused on how 

the radiative parameters affect the stability of the flow.  Similar to the last chapter, 

neutral curves are determined as functions of the azimuthal wave numbers and the critical 

Grashof numbers at which the real parts of the leading eignvalues vanish.  For the results 

presented in this chapter, the linear stability analysis is carried out at a fix Marangoni-

Reynolds number of 104 for azimuthal wave numbers ranges from 1 to 8. 

Figure 4.13 shows the critical Grashof numbers for absorbing, emitting but not 

scattering melt in a Czochralski crucible of R=H=0.05 m.  The absorption coefficients, κ, 

used for the analysis are 1 m-1 and 5 m-1, respectively.  The emissivity at the boundaries 

is 1.  The neutral curve for the corresponding transparent melt case is shown in Figure 3.9.  

A comparison between Figures 3.9 and 4.13 reveals that the presence of the internal 

radiation delays the onset of the instability.  The critical Grashof number is raised from 

281224 for transparent melt to 598673 for κ=1 m-1 and 629856 for κ=5 m-1.  It is obvious 

that the internal radiation stabilized the convection and the stabilization effect increases 

as the absorption coefficient increases.  The same stabilization effect has been observed 

in several previous works [Arpci and Gözüm, 1973; Arpci and Bayazitoğlu, 1973].  The 

most dangerous azimuthal mode is changed from 1 to 5 due to the internal radiation. 

The stability diagram at two different boundary emissivities is depicted in Figure 

4.14.  The neutral curves are obtained using the same crucible as the last case.  The melt 

has an absorption coefficient of 1.0 and the vertical wall, the bottom and the top surface 

are emitting diffusively at two emissivities of 0.5 and 1, respectively.  As it is expected, 
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the critical Grashof numbers are increased due to the internal radiation.  The critical 

Grashof number is 476837 for ε=0.5 and 598673 for ε=1.  The most dangerous azimuthal 

mode is found to be 5. 

Figure 4.15 shows the neutral curves for an absorbing, emitting and scattering 

medium in the same crucible.  The melt is absorbing at κ=1 m-1 and the stability curves 

are obtained at two different scattering coefficients of 0 and 1, respectively.  As it can be 

seen from the figure, with the presence of the scattering, the critical Grashof number is 

further increased, which is 641827 when σ=1.  Again, the most dangerous mode is found 

to be 5. 

Figure 4.16 shows typical eigenvalue spectrum of the critical state at Grcr=598673 

for κ = 1, ε = 1 and σ = 0.  The eigenvalues could be either real numbers or conjugate 

complex pairs.  The eigenvalue spectrum has T-shape structure, which is similar to those 

observed in the last chapter.  This means the instability mechanism is the same for the 

radiation participating and non-participating mediums.  Table 4.3 lists the first five 

leading eignvalues.  The first leading eigenvalue is a real number while the rest four 

eigenvalues appear to be conjugate complex pairs.  As it has been shown in the last 

chapter, the first leading eigenvalue is in stationary mode while the rest four eigenvalues 

are in HOPF mode.  The transient evolution of the perturbation energy corresponding to 

the first two leading eigenvalues are plotted in Figures 4.17 and 4.18 for Gr=598673 and 

598700, respectively.  The profiles presented in the figures are similar to those obtained 

in the last chapter and confirm the eigenvalue spectrum shown in Figure 4.16.   

The contours of the perturbation energy and temperature for the leading 

eigenvalue are shown in Figure 4.17.  As it is shown in the figure, because of the most 
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dangerous mode of 5, the contours consist of five pairs of maxima and minima along the 

azimuthal direction. 

Figure 4.18 shows the 3-D flow structure and free surface flow pattern 

constructed using the leading eigenvalue at the critical state of R=H=1, Reγ=104, 

Grcr=598673 and m=5 for κ = 1, ε = 1 and σ = 0.  For this case, 10 co-rotating loops are 

observed along the azimuthal direction, which confirms the perturbation contours plotted 

in Figures 4.16 and 4.17. 

4.4 Summary 

In this chapter, a discontinuous finite element model is developed to simulate the 

internal radiation phenomena in the material processing systems.  The discontinuous 

finite element is incorporated into the high order finite difference model presented in the 

last chapter via an iterative process.   

The integrated numerical model is used to simulate the convective flow of 

radiation participating melt in the Czochralski crucibles.  It is shown that the internal 

radiation has a strong effect on the convective flow pattern in the crucibles.  The radiative 

heat flux imposed by the domain boundaries induces higher temperature gradient near the 

boundaries, which decreases the bulk temperature.  In the mean time, the melt is heated 

by combined absorption, emission and scattering effects.  However, the boundary heat 

flux is strong enough to suppress the internal radiation effect.  

A linear stability analysis is carried out at various radiative boundary conditions.  

It is found that the internal radiation stabilizes the convective flow.  The convective flow 

is also stabilized when the emissivity at the boundaries increases.  The most dangerous 

mode is found to be 5.  The instability mechanism is also discussed in this chapter and the 
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same instability mechanism is found for the radiation participating and non-participating 

melt.  Similar instability mechanism is found for the radiation participating and non-

participating melts. 
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Nr Nz Velocity 

16 16 373.6055 

21 21 398.6386 

26 26 407.9187 

31 31 414.7241 

36 36 419.1348 
 

Table 4.1 Calculated velocity at r=z=0.6 calculated using different uniform meshes for a 

crucible of R= H=1 with Gr=6×105, Reγ=104, κ=1, ε = 1 and σ = 0. 

 

 

Parameter Value 

Aspect ratio (R/H) 
1.0 

(0.05/0.05) 

Pr 0.02 

Reγ 104 

q 1.0 

Rad 1.0 

Tamb 0.0 

Td 0.0 

 

Table 4.2 Parameters used in calculation. 
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No. ωr ωi 

1 - 3.99467906664291390×10-5 - 1.31879272795127343×10-12 

2 - 97.8254841940514410 ± 5325219.45642233454 

3 - 108.995862586469201 ± 783.762223290688439 

4 - 126.372794561720994 ± 1841190.81395929889 

5 - 131.882452964286188 ± 8505316.69366715848 

 

Table 4.3 First five leading eigenvalues for R=H=1, Grcr=598673 for κ = 1, ε = 1 and σ = 

0. 
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Figure 4.1 Schematic representation of discretization angles for internal radiation 

problems [Cui and Li, 2005]. 

 

 

 

Figure 4.2 Schematic representation of internal radiation heat transfer and symmetry 

boundary condition [Li, 2006]. 
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(a) 

 

(b) 

Figure 4.3 Computational meshes: (a) rectangular mesh for finite difference model; (b) 

triangular mesh for finite element model. 

 

 

Figure 4.4 Physical setup of temperature gradient induced convection in a square cavity.
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.5 Internal radiation effects on melt flow and temperature fields in a rectangular 

box at Gr=104 and Pr=0.7: (a) velocity vectors and (b) temperature profile for non 

participating medium; (c) velocity vectors and (d) temperature for κ=1.0 m-1. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.6 Internal radiation effects on melt flow and temperature fields in a rectangular 

box at Gr=105 and Pr=0.7: (a) velocity vectors and (b) temperature profile for non 

participating medium; (c) velocity vectors and (d) temperature for κ=1.0 m-1. 
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(a) 

 

(b) 

Figure 4.7 Velocity field (a) and isotherms (b) of the convective flow corresponding to 

Gr=105 and κ = ε = σ = 0. 
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(a) 

 

(b) 

Figure 4.8 Velocity field (a) and isotherms (b) of the convective flow corresponding to 

Gr=105, κ = 1 m-1, ε = 0.5 and σ = 0 m-1. 
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(a) 

 

(b) 

 

Figure 4.9 Velocity field (a) and isotherms (b) of the convective flow corresponding to 

Gr=105, κ = 1 m-1, ε = 1 and σ = 0 m-1. 
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(a) 

 

(b) 

 

Figure 4.10 Velocity field (a) and isotherms (b) of the convective flow corresponding to 

Gr=105, κ = 5 m-1, ε = 1 and σ = 0 m-1. 
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(a) 

 

(b) 

 

Figure 4.11 Velocity field (a) and isotherms (b) of the convective flow corresponding to 

Gr=105, κ = 1, ε = 1 and σ = 1. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.12 Velocity field and isotherms of the convective flow corresponding to Gr=105, 

κ = 1, σ = 0 and Rd=0.5; (a) velocity vectors and (b) temperature profile for non 

participating medium; (c) velocity vectors and (d) temperature for ε = 0.5; (e) velocity 

vectors and (f) temperature for ε = 1.  
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Figure 4.13 Critical Grashof numbers at κ = 1 and 5 for ε = 1 and σ = 0.  The critical 

Grashof number for the corresponding radiative non-participating case is 281224. 
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Figure 4.14 Critical Grashof numbers at ε = 0.5 and 1 for κ = 1 and σ = 0.  The critical 

Grashof number for the corresponding radiative non-participating case is 281224. 
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Figure 4.15 Critical Grashof numbers at σ = 0 and 1 for ε = 1 and κ = 1.  The critical 

Grashof number for the corresponding radiative non-participating case is 281224. 
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Figure 4.16 Eigenvalue spectrum of critical base flow for R=H=1, Grcr=598673 at κ = 1, ε 

= 1 and σ = 0. 
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(b) 

Figure 4.17 Evolution of perturbation energy in the axisymmetric plane at θ=0 for 

R=H=1, Grcr= 598673, Reγ=104, κ = 1, ε = 1 and σ = 0: (a) first and (b) second leading 

eigenvalue 
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(b) 

Figure 4.18 Evolution of perturbation energy in the axisymmetric plane at θ=0 for 

R=H=1, Gr= 598700, Reγ=104, κ = 1, ε = 1 and σ = 0: (a) first and (b) second leading 

eigenvalue 
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(a) 

 

(b) 

Figure 4.19 Pattern of perturbation of for the leading eigenvalue at the z=0.5 

corresponding to R=H=1, Reγ=104, Grcr=598673, m=5, κ=1, ε = 1 and σ = 0: (a) energy at 

t=2.5×10-8; (b) temperature at t=2.5×10-8. 
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(a) 

 

(b) 

Figure 4.20 Three-dimensional flow pattern of the leading eigenvalue corresponding to 

the critical state for R=H=1, Reγ=104, Grcr=598673 and m=5: (a) 3-D flow structure; (b) 

top surface flow pattern. 
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CHAPTER FIVE 

HOT-FILM MEASUEMENT OF NATURAL CONVECTION IN A 

RECTANULAR CAVITY WITH AND WITHOUT AN APPLIED MAGNETIC 

FIELD 

This chapter presents an experimental investigation on natural convection in a 

molten metal subject to a uniform magnetic field.  The working fluid is molten gallium, 

which is contained in a rectangular box with the two opposite vertical walls held at 

different temperatures. The imposed magnetic fields are parallel to the temperature 

gradient.  The velocity and temperature distributions in the molten gallium are measured 

both with and without an imposed magnetic field.  Numerical simulations of convective 

flows in the system are also performed.  Good agreement exists between the measured 

and computed results for the conditions studied.  Results show that natural convection is 

suppressed with an imposed magnetic field and the magnetic damping effect increases 

with an increase in the applied field strength.  As a consequence of weakened convection 

with an increased magnetic field, the temperature distribution approaches to a nearly 

linear profile across the test cell. 

5.1 Introduction 

The thermally-induced convection plays an important role in affecting the 

formation of defects such as dopant segregation or striation during the melt growth of 

these crystals [Langlois, 1985].  The widespread use of the processes for electronic and 
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optical materials has resulted in extensive research towards the understanding and hence 

control of natural convection in these systems. 

One of the effective means practiced in industry for thermally-induced melt flow 

control is magnetic damping, which is derived from the interaction between an 

electrically conducting melt flow and an applied magnetic field to generate an opposing 

Lorentz force to the convective flows in the melt.  The damping effect depends on the 

strength of the applied magnetic field and its orientation with respect to the convective 

flow direction.   

There seems to be little work, if not at all, on the direct measurement of 

thermally-induced melt convection in the presence or absence of an external magnetic 

field.  The need for these measured data cannot be over-emphasized.  An experimental 

study of this type is of crucial importance in providing a database to directly validate the 

numerical predictions of convective flows from the numerical models in existence and 

under development.  It should also be of great value in direct interpreting the physics 

governing the magnetic damping effects on convective flows in thermal processing 

systems.  

This chapter presents an experimental study of natural convection in molten 

gallium with and without an imposed magnetic field.  The experimental system consists 

of a rectangular cell with a prescribed thermal gradient controlled by two thermal baths.  

The temperature is measured using the thermocouples and the melt flow velocity field is 

determined using the hot wire probes.  The measured velocity and temperature profiles 

are used to compare with the predictions from numerical models developed in early 

studies [Shu, et al., 2002].  Good agreements between the numerical predictions and 
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experimental measurements are achieved.  Magnetic damping effects are observed in 

both the temperature and the velocity profiles when an external magnetic field is applied.  

The measured velocity and temperature fields should provide a valuable experimental 

database against which other numerical models developed for natural convection with 

and without an imposed magnetic field can be validated.   

5.2 Experimental Facility and Instrumentation 

The setup of the present experiment is shown in Figure 5.1.  The system consists 

of a hot-film anemometer, a hot-film probe, an electromagnet, a probe calibration system 

and a test cell.  Detailed descriptions of each of the components are given in this section. 

5.2.1 Gallium 

Molten gallium is used as working fluid because its melting point is 302 K and it 

is inert. Molten gallium is opaque and bright silver in color. Some of its thermal physical 

properties are listed in Table 5.1 along with the properties of two other liquid metals, 

mercury and liquid sodium [Brito et al., 2001 and Aurmou and Olsen, 2001], that are 

commonly used as a working fluid to study heat transfer and convection in liquid metals.  

Gallium’s electrical and thermal conductivities are about four times higher than that of 

mercury, which makes it an outstanding working fluid for MHD research. Compared with 

mercury and sodium, gallium is easier and safer to handle because of its low toxicity and 

low vapor pressure. The initial gallium sample used in the present experiments had a 

purity of 99.99 %. 

5.2.2 Test Cavity 
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The test cell used in this study was a rectangular container 3-cm deep by 3-cm 

wide by 15-cm long, which is shown in Figure 5.2.  The two long vertical walls (shaded 

in Figure 5.2) were made of copper and attached to two constant temperature water baths.  

The temperatures of the water baths were controlled within an accuracy of ± 0.05 K.  A 

horizontal temperature gradient was applied across the gallium inside the cell by holding 

the two water baths at different temperatures.  The open top surface of the cell facilitated 

the traversing of the hot-film probe and the thermocouple.  The other walls of the cell 

were made of 3-mm Plexiglas. The thermal conductivity of the Plexiglss is 0.2 W/(mK), 

which is about 1/150 that of the molten gallium.  It was observed that a layer of the 

gallium covered and stayed on the copper walls shortly after the copper walls were in 

contact with the gallium.  No visual observation reveals further deterioration on the 

copper plates. 

5.2.3 Magnetic field 

The cell containing the gallium was placed between two electromagnet poles, of 

10 in. diameter, of a Walker Scientific Inc. (Model #: HV10H) (see Figure 5.3).  A 

magnetic field strength of up to 104 Gauss over an air gap of 10 cm can be generated with 

the electromagnet.  A Walker Scientific Inc. HS-1785 DC power supply was used as the 

power source for the electromagnets.  The power supply provides a stabilized current 

control, which ensures the stability of the magnetic fields.  The strength of the magnetic 

field was controlled by regulating the D.C. power input to the coils around the 

electromagnets.  In the present experiment, field strengths of 300 and 3500 Gauss, over 

an air gap of 20 cm were used, which corresponded to 15 Amp and 50 Amp DC input at 

75 Volt, respectively.   
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Spatial uniformity of the magnetic field was assessed by measuring the horizontal 

magnetic field using a S. W. Bell 9950 Gaussmeter.  Typical magnetic field distributions 

within the cross sectional plane at the middle of the Z-direction are shown in Figure 5.4.  

Considering the size of the test cell, the spatial variation of the magnetic field strength is 

less than 0.5%. 

5.2.4 Hot-film probe  

A standard TSI 1210 cylindrical single sensor hot-film probe is used with a TSI 

1050 anemometer working in the constant temperature mode with an over heat ratio of 

1.1 for a fluid temperature 341 K.  In most of the cases when a hot-film is used in liquid 

metal, the over heat ratio is within the range of 1.05 and 1.075.  The relatively high over 

heat ratio value of 1.1 was used in the present experiment in order to reduce the 

temperature sensitivity at low velocities [Reed, et al., 1986].  The hot-film probe was 

powered by a TSI 1050 anemometer working under constant temperature mode in the 

present experiment.  The anemometer bridge output voltage was measured with an HP 

3478A voltmeter.  

The probe is 1 mm long with an aspect ratio (length/diameter) of approximately 

20.  A picture of the probe is shown in Figure 5.5.  It is coated with a 1 µm layer of 

quartz to insulate it from the gallium.  At very low velocities, the flow around a hot-film 

anemometer probe is a combination of the externally imposed flow and natural 

convection driven by the temperature difference between the probe and the surrounding 

fluid [Trakas, et al., 1983].  Generally speaking, the effects for the natural convection 

induced by the probe can be neglected if the cubic root of Grashof number for the probe 

is less than the Reynolds number based on the probe diameter [Collis and Williams, 
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1959].  For our experiment, the sensor outer diameter is 50 µm, temperature difference 

between the probe and the gallium is 15 ºC, and typical velocities are 1 cm/s, which give 

a Reynolds number of 1.6, and a Grashof number of 0.025.  Therefore, the effect of probe 

induced natural convection can be neglected except for velocities below 0.2 cm/s.  At 

these low velocities the magnetic field could alter the probe induced natural convection 

flow and therefore the heat transfer from the probe [Malcolm, 1970; Lykoudis and Dunn, 

1973; Holroyd, 1980].  Since the purpose of this work is to investigate the effect of a 

magnetic field on natural convection it is difficult to predict a priori when this effect will 

be important.  But, as long as probe induced natural convection is not important it can be 

assumed the magnetic field will not affect the hot-film measurement. Lykouds and Dunn 

[1973] calibrated hot-film probes in mercury over a Reynolds number range of 0 to 130 

and the Hartmann number ranges from 0 to 4.68.  They found that the cubic root criterion 

suggested by Collis and Williams [1959] predicts the critical Reynolds number between 

the free and forced convection regions well.  In our experiment, the Hartmann number is 

0.78 with 3500 Gauss applied field.  The effect of the magnetic field can be ignored in 

the present study. 

5.2.5 Hot-film probe calibrator 

The hot-film probe was calibrated using a rotating platform consisting of an inner 

container and an outer water jacket.  The system is sketched in Figure 5.6. The 

temperature of the gallium was regulated by running hot water from a constant 

temperature water bath through the water jacket.  The inner container, which held the 

gallium during the calibration, has a diameter of 10 cm and is made of glass.  The outer 

wall of the water jacket was made hollow and filled with water (shaded in Figure 5.6).  
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The large volume and high heat capacitance of the water helped to minimize a 

temperature drift with ± 0.05 K during the calibration.  A variable speed motor capable of 

an angular velocity of 20 to 65 rpm was used to rotate the double container to generate 

the tangential flow needed for calibration.  A type T thermocouple, an ice bath, and an 

HP 33420A nano-voltmeter were used to measure the temperature of the gallium at the 

same radial position that was used to calibrate the hot-film probe.  

5.3 Experimental Procedure and Data Processing 

In the present experiment, the hot-film probe was first calibrated using the 

rotating platform facility described in the last section.  It was then used to measure the 

velocity field in the molten gallium.  In this section, full details of the calibration and 

measurements procedures are presented along with the data processing method use in this 

experiment. 

5.3.1 Calibration of the hot-film probe 

Using a hot-film probe in liquid metals is plagued by the problem of random 

bridge output offset caused by a layer of impurities that form at the interface between the 

liquid metal and the probe surface when the probe is immersed into the liquid metal. The 

impurity layer creates a contact thermal resistance that changes the heat transfer rate 

between the probe and the liquid metal. The thickness of the impurity layer changes each 

time the probe is re-immersed into the liquid gallium. This results in a non-predictable 

offset in anemometer bridge output.  



 126

Sajben [1965] investigated the problem using mercury as working fluid and 

proposed that the effects of the impurity layer can be eliminated by using an X(Pe) 

function, given by 
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where kf is the thermal conductivity of the liquid, Lp the length of the hot-film probe, and 

∆T the temperature difference between the probe and the liquid. Q(0) and Q(Pe) are heat 

transfer rates at a flow velocity of zero and at test conditions, respectively. Pe is the 

Péclet number, which, for a given temperature, is a non-dimensional velocity in liquid 

metal given by  
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where U is the velocity, and d the outer diameter of the hot-film prob.  At steady state, 

the heat dissipation rate from the hot-film probe can be determined from the anemometer 

bridge output by  
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where E is the bridge output from the anemometer, RP the resistance of the hot-film 

probe, and RT the resistance in series with RP.  RT is a combined resistance of the leads 

and the probe holder body, which was measured by a multimeter with the probe replaced 

by a jumper wire.  The combined resistances of RP and RT were measured using the 

resistance decades in the anemometry and then RP was determined by subtracting RT from 

the measured resistance.  The values of the measured resistances are listed in Table 5.2.  

∆T was determined using the operating temperature of the hot-film probe, calculated 

using an over-heat ratio of 1.1 and the temperature coefficient of resistance of the probe, 

and the temperature of the molten gallium, which was measured using a thermocouple.  

Ignoring the temperature dependence of fluid properties and combining Equations 5.1 

and 5.3 give 
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It is worth noting that the X(Pe) given in Equation 5.4 is function of the anemometer 

bridge outputs at no-flow condition, E2(0), and measured condition, E2(Pe), and the fluid 

temperature, which is required to calculate  ∆T. 

It was observed that in addition to the constant offset of the bridge voltage due to 

impurities, the bridge output varied continuously with time. This continuous drifting of 

signal was probably caused by an unknown chemical reaction between the liquid gallium 

and the impurities coating of the hot-film probe. The continuous drifting decreased to an 

acceptable level after the probe had been immersed in the gallium for several hours; 
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therefore the probe was aged in the liquid gallium, with the probe hot, for at least four 

hours before being used. 

As it was mentioned earlier, the anemometer bridge voltage is a function of both 

the velocity and the temperature of the gallium.  Because the flow being studied was 

natural convection and therefore both the velocity and temperature varied through the 

container, the probe had to be calibrated over the full range of temperatures and velocities 

that might occur in the experiment.  Various temperature compensation schemes are 

available [Lomas, 1986; Bruun, 1995].  However, all the available temperature 

compensation schemes require that the temperatures of the fluid and the probe be 

determined with very low bias error.  In this experiment, because only a few 

measurements were required, the uncertainty was minimized by calibrating the probe 

over the full temperature and velocity ranges and building a lookup relationship for each 

measurement.  The calibration was done at four constant temperatures, 328 K, 333 K, 339 

K and 341 K, and for velocities between 0.5 to 2.8 cm/s at each temperature. During the 

calibration process, the bridge output was recorded at no-flow condition and then over the 

entire velocity range at each temperature setting. This process was repeated for each of 

the four temperatures. The measured bridge outputs were converted to X(Pe) using 

Equation 5.4 for each temperature.  The X(Pe)-velocity data for each of the four 

temperatures were curve-fit using  

 

2
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where U is the velocity.  The obtained calibration curves at the four temperature settings 

are plotted in Figure 5.7.  Typical values for the calibration constants in Equation 5.5 are 

given in Table 5.2.  The shape of the curves shown in Figure 5.7 resembles that found by 

Malcolm [1969].  Because the over-heat ratio increases as the fluid temperature 

decreases, the probe is more sensitive at lower fluid temperatures. The calibration was 

reproducible from one experiment to another over two months within ± 10%. Measured 

velocities have an uncertainty of ± 0.2 cm/sec and temperatures have a bias uncertainty of 

± 0.5 K.  

Most liquid metals react with the oxygen in air. Conventionally, the surface of 

liquid metals is covered with a thin layer of water to stop this reaction. In the present 

experiment it was found that keeping a layer of water on the top of open liquid gallium 

surface introduced unwanted disturbance to the temperature field, which may severely 

affect the calibration process, therefore no water was placed on top of the gallium 

surface.  It was observed that after exposing the free surface of the gallium to ambient air 

for several minutes, a layer of gallium oxide formed.  This layer of oxide insulated the 

gallium from direct contact with ambient air.  After each set of measurements, the oxide 

and scum were removed from the gallium to keep the gallium clean.  No residue was 

found at the bottom of the cell after the experiments.  The probe itself was not cleaned 

during the experiments. 

5.3.2 Measurements 

Measurements were taken within cross-sectional surface of Z = 7.5 cm at vertical 

locations of Y = 0.25 cm, 1.5 cm and 2.75 cm and in increment of 0.25 cm in the X 
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direction at each vertical level.  The probe was accurately positioned in the gallium using 

a screw-driven manipulator affixed to the electromagnet.  Each time the probe was 

inserted into the gallium it was allowed to stabilize for at least 4 hours and then the free 

convection bridge output voltage, E(0), was measured for gallium temperatures between 

328 K and 341 K with no temperature gradient and no magnetic field applied. A 

temperature gradient was then applied to the gallium without removing the probe from 

the liquid metal.  When the flow reached a steady state, the velocity field was measured. 

The magnetic field was then applied and when the flow reached a steady state, the 

velocity field was again measured. After all the velocity data were taken, the hot-film 

probe was removed from the gallium and replaced by a type T thermocouple. The 

measurement process was repeated to map the temperature fields under the same 

conditions used when the velocity field was measured.  

Determination of the velocity from the measured anemometer voltage involved 

first finding the zero velocity anemometer voltage, E(0), for each measurement and then 

using E(0) and the measured voltage E(Pe) to find X(Pe) and finally using X(Pe) to find 

the velocity. The no-flow bridge output, E(0), depends on the gallium temperature, which 

means an E(0)–temperature curve was needed in order to process the velocity data at 

different temperatures.  Therefore, before each set of measurements, E(0) was first 

measured over the same temperature ranges as the calibration was carried out.  This 

process was repeated each time the probe was re-immersed into the molten gallium to 

account for the change in the impurity layer. The measured E(0) – temperature data were 

then fitted to  
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2
0 1 2(0)E B B T B T= + + .                   (5.6) 

 

Typical results are shown in Figure 5.8 and typical values for the curve-fitting constants 

are given in Table 5.2.  The zero-velocity voltage decreases as temperature increases 

because of the smaller probe overheat ratio at higher gallium temperatures. 

After all the velocity and temperature data were taken, each anemometer voltage, 

E(Pe), was converted to X(Pe) using Equation 5.4, the zero velocity voltage, E(0), from 

Equation 5.6 and the measured temperature.  For each X(Pe), a velocity can be found that 

corresponds to each of the four calibration temperatures of 328 K, 333 K, 339 K and 341 

K using Equation 5.5 and the constants listed in Table 5.2.  The four velocity-temperature 

pairs can then be curve fit to  

 

2
210 TCTCCU ++= ,                   (5.7) 

 

and measured temperature was inserted into Equation 5.7 to find the velocity.  Typical 

values of the curve-fitting constants are listed in Table 5.2.  

The temperature measurement has a bias uncertainty of ± 0.5 K.  The measured 

velocities have a bias uncertainty of ± 0.5 cm/s. 

5.4 Numerical Model 

The numerical model used to compare with the experimental measurements in the 

present study is described in detail by Shu et al. [2002] and thus only a brief description 

of the points pertinent to the present study is given in this section.  
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5.4.1 Governing equations and boundary conditions 

For molten gallium contained in a rectangular cavity that is subject to a horizontal 

temperature gradient and a static applied magnetic field (Figure 2.2), governing equations 

are the equations of continuity, momentum and energy, which are written in a non-

dimensionalized form as 

 

0=⋅∇ u ,                    (5.8) 

( ) ( )[ ]BBuguuuu
××+−∇+−∇=∇⋅+

∂
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t
,                  (5.9) 
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∇=∇⋅+
∂
∂ u ,                 (5.10) 

 

where u is the velocity vector, T the temperature, p the pressure, t the time, g the vertical 

downward unit vector, and B the applied magnetic field.  In the above equations, length is 

non-dimensionalized using L, velocity using ν/L, time using L2/ν   and temperature using 

ch

c

TT
TT

−
−

, where L is the distance between the two vertical walls in Figure 2.2, ν the 

kinematic viscosity, Th and Tc the temperatures at the hot and the cold wall, respectively.  

The dimensionless numbers governing the flow are Prandtl number (Pr), Grashof number 

(Gr), and Hartmann number (Ha), which are written as 
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where α is the thermal diffusivity, g the gravitational acceleration, β the thermal 

expansion coefficient, σ the electrical conductivity of the fluid, and µ is the dynamic 

viscosity.  For the molten gallium, the Prandtl number used in calculation is 0.02.  The 

last term on right hand side of Equation 5.9 represents the Lorentz force applied by the 

external magnetic field, which is the damping force in the present study.  For the 

simplified square 2-D cavity, the governing equations are subjects to the following 

boundary conditions, 

 

0 and ,1 ,0at    ==== yxx0u , and 1at  0 ==
∂
∂ y

y
u , 

0at  0 ==
∂
∂ y

y
T , 1at  0 == xT , and 0at  1 == xT , 

( ) 1at  =−−=
∂
∂

∞ yTTBi
y
T , 

 

where Bi is the Biot number at the top surface, and ∞T   the ambient air temperature.  The 

two vertical walls are kept at constant temperatures and the bottom wall is thermally 

insulated.  At the top surface, flow is free of shear stress and rejects heat to the ambient 

via convection. 

5.4.2 Numerical scheme 

The governing equations along with the boundary conditions are solved using the 

standard Galerkin finite element method.  The dependent variables u, p and T are 
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interpolated by the shape functions φ, ψ and θ. Then the velocity, pressure, and 

temperature fields are approximated by: 

 

 )()(),( tUxtxu i
T

i φ=                  (5.11) 

)()(),( tPxtxp Tψ=                  (5.12) 

)()(),( tTxtxT Tθ=                  (5.13) 

 

Following the finite element procedures, the governing equations can be written as: 
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Once the forms of shape functionsφ, ψ and θ are specified, the integrals defined in 

the above equations can be calculated numerically over each individual element. 

Combining the discretized momentum, energy, and solute transport equations gives rise 

to the following global finite element stiffness matrix: 
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While constructing the above element matrix equation, penalty formulation is 

applied, and the p in momentum equation is substituted by UEM T
PP

1)/1( −ε .  The 

assembled global matrices are stored in skyline forms and solved using the Gaussian 

elimination method. 

Details of model development and mesh independence study were given by Shu, 

et al. [2002].  In the present study, 900 4-node elements with 31 nodes in both X and Y 

directions are used.  The node spacing decreases from the center toward the walls 

following an arithmetic progressive ratio of 0.2.  The non-uniform mesh ensures denser 

grid near the solid walls. This mesh arrangement is adequate for the present studies and 

any further mesh refinement produces results with an error less than 0.5 %.    

5.5 Results and Discussions 

The hot water in the thermal baths on either side of the container holding the 

gallium was adjusted until the temperature at the inside center of the copper plates 

reached 328 K and 339 K, giving a ∆T = 11 K.  All experimental measurements were 

made for this temperature difference.  During the experiments the room air was fairly 

constant at 293 K.   

The measured and computed temperature profiles with applied magnetic fields of 

0 Gauss, 300 Gauss, and 3500 Gauss are shown in Figures 5.9, 5.10, and 5.11, 
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respectively.  In each of the figures, the temperature profiles across the width of the cell 

are plotted for Y= 2.75 cm, 1.5 cm and 0.25 cm.  The non-linear temperature distributions 

depicted in Figure 5.9 are clearly a manifestation of the strong natural convection present 

in the test cell.  The temperature profiles along the X direction become less-distorted with 

an imposed magnetic field of 300 Gauss, suggesting that the applied field helps to reduce 

the convection. This magnetic damping effect is evident in Figure 5.10.  When the 

applied magnetic field reaches 3500 Gauss, the temperature profile is nearly linear, 

indicating that the convective flow is substantially reduced, and the primary heat transfer 

mechanism between the hot and cold walls is by conduction, as appears in Figure 5.11.  

In an idealized natural convection cell with the top and bottom thermally insulated 

perfectly, the temperature distributions at equal distance above and below the centerline 

(Y = 1.5 cm) exhibit certain symmetry structure [Shu, et al., 2002]. Such a symmetry, 

however, is not observed between the experimental measured temperature profiles at Y = 

2.75 cm and Y = 0.25 cm.  This asymmetric profile is apparently caused by the heat loss 

from the top surface of the gallium to the surrounding cooler air, which decreases the 

temperature near the top surface at Y=2.75 cm.  The heat loss at the top surface, however, 

has little effect on the temperature profiles at Y=1.5 cm and 0.25 cm.  Similar asymmetry 

was also reported by Juel, et al. [2001].  With the presence of the magnetic fields, the 

convective flow becomes weaker, thereby resulting in less heat being lost at the top 

surface and the thermal profiles becoming closer in symmetry to the idealized system.  

For the present system, however, even with a moderate magnetic field strength of 300 

Gauss, an obvious temperature drop is observed along Y=2.75 cm, as appears in Figure 

5.10.   
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As a comparison, numerical predictions are also plotted along with the 

measurements in Figures 5.9, 5.10, and 5.11.  The computed temperature profiles at Y = 

0.25 and 1.5 cm are in good agreement with the experimental data, but less satisfactory at 

Y = 2.75 cm for the case without an applied magnetic field. For all the cases, the 

measured temperature profiles agree with the numerical simulations better along the 

center-line of the test cell.  Various heat transfer coefficients at the top surface were 

tested to match the temperature profile at Y = 2.75 cm.  The numerical simulations show 

that for this system the heat loss at the top surface does not change the calculated velocity 

profile.  

The velocity vector maps from the experimental measurements and numerical 

simulations are depicted in Figure 5.12 for three different magnetic fields applied.  The 

scale factor used for the plot is approximately 1.8 cm/s per cm.  The direction of the 

measured velocities are determined by the numerical predictions, as the hot-wire probes 

measure only the magnitude of the velocity. For a very small velocity, measurement 

uncertainties sometimes generate a non-physical negative velocity magnitude, which was 

set to zero. Examination of the results in Figure 5.12 illustrates that an anti-clockwise 

convection cell is developed in the system as a result of an imposed thermal gradient and 

the fluid moves downward near the cold wall and upward near the hot wall. This 

recirculating flow structure is shown in both predictions and measurements. Note also 

that the velocity magnitudes match very well both qualitatively and quantitatively 

between the predicted and measured data. Both the numerical simulations and 

experimental measurements indicate that the velocity is suppressed with an imposed 

magnetic field and the reduction in velocity is more significant with an increase in 
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applied magnetic fields. With the field strength of 3500 Gauss, the velocity field is 

reduced essentially beyond detection by the hot-film probe. 

To further quantify the magnetic damping effects, the measured velocity 

magnitude distributions across the cell along Y = 2.75 cm, 1.5 cm and 0.25 cm are 

illustrated in Figures 5.13, 5.14, and 5.15, respectively.  Each figure gives the profiles for 

the three levels of the applied magnetic field strength.  In light of the vector velocity 

fields plotted in Figure 5.12, it is clear that the flows are parallel to the top and bottom 

walls, but in the opposite directions, with the maximum at the middle (X=1.5 cm) for 

Y=2.75 cm (Figure 5.13) and Y=0.25 cm (Figure 5.15). The maximum of the measured 

velocity (in magnitude) distribution across the cell at Y=1.5 cm occurs near the two 

sidewalls, where the flow moves upward and downward along the walls.  Once again, the 

velocity attains its maximum at the middle of the walls. Inspection of the results in 

Figures 5.13 to 5.15 indicates that the measured velocity decreases with the applied 

magnetic field increased.  With a moderate magnetic field strength of 300 Gauss, the 

maximum velocity is reduced to about 60% of that without the magnetic field.  As the 

magnetic field strength increases to 3500 Gauss, the velocity is suppressed to nearly zero 

within the experimental uncertainty. This supports the measured near-linear temperature 

profile at 3500 Gauss shown in Figure 5.11.  For the purpose of comparison, Figures 

5.13, 5.14, and 5.15 also show the velocity magnitudes obtained from numerical 

computations.  The computations agree well with the experimental measurements within 

the experimental uncertainty of 0.5 cm/s.   

It could be remarked here that the flow sensed by the hot-film probe is a 

combination of natural convection induced by the probe and the main natural convective 
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flow due to the temperature gradient across the cell.  Therefore the measured velocity 

profiles agree with the numerical simulations better at higher velocity magnitudes, near 

X=15 cm in Figures 5.13 and 5.15 and near the sidewalls in Figure 5.14. 
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                    Properties Gallium Mercury Sodium 

Density kg/m3 6.09×103 13.59×103 0.93×103 

Kinematic Viscosity m2/s 3.1×10-7 1.14×10-7 7.75×10-7 

Electric Conductivity (mΩ)-1 3.68×106 1.04×106 10.35×106 

Thermal Conductivity W/(mK) 31 8.3 142 

Melting Point °C 29 -39 98 

Boiling Point °C 2227 356 881 

Coefficient of thermal expansion K-1 1.27×10-4   

Surface tension N/m 0.735   

 

Table 5.1 Thermal physical properties of some liquid metals [Brito et al., 2001 and 

Aurmou and Olsen, 2001]. 

  

T(K) 328 333 339 341 

A0 5.68×10-2 1.14×10-1 1.35×10-1 4.27×10-3 

A1 3.26×103 4.00×103 6.46×103 1.85×104 

A2 -8.51×105 -1.30×106 -3.41×106 -3.26×107 

B0 1.73×101 

B1 2.40×10-2 

B2 -3.96×10-5 

RP 8.03 Ω 

RT 0.20 Ω 
 

Table 5.2 Calibration constants. 
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Figure 5.1 Picture of overall experimental setup. 
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Figure 5.2 Test cell for the experimental study of thermally-induced melt flows. 
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Figure 5.3 Placement of the experimental apparatus for the measurement of the 

temperature and velocity field distributions in molten gallium subject to applied magnetic 

fields. 
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Figure 5.4 Distribution of the horizontal magnetic field strengths along Y=0.0 cm, 1.5 cm 

and 3.0 cm for air gap of 20 cm and 15 Amp DC power supply.  
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Figure 5.5 Picture of the TSI 1210 cylindrical single sensor hot-film probe used in the 

present experiment. 
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Figure 5.6 The turntable facility for calibration of the hot-wire probe used in the present 

experiment.  
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Figure 5.7 Calibration curves for the constant temperature hot wire probe at different 

temperatures: circles 328.15 K, triangle 333.15 K, squares 339.15 K and diamonds 

341.15 K. 
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Figure 5.8 E(0)-temperature curve for the hot-wire velocity probe. 
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Figure 5.9 Comparison of the experimentally-measured and numerically-calculated 

temperature distributions across the cell at different vertical locations without externally 

applied magnetic field.  
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Figure 5.10 Comparison of the experimentally-measured and numerically-calculated 

temperature distributions across the cell at different vertical locations, subject to an 

externally applied magnetic field of 300 Gauss. 
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Figure 5.11 Comparison of the experimentally-measured and numerically-calculated 

temperature distributions across the cell at different vertical locations, subject to an 

externally applied magnetic field of 3500 Gauss. 
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Figure 5.12 Comparison of computed and measured vector velocity distribution in the 

molten gallium for various field strengths: (a-c) Numerical results without magnetic field 

(a), with the field strength of 300 Gauss (b) and with the field strength of 35Gauss; and 

(d-f) measured velocity field without magnetic field (d), with the field strength of 300 

Gauss and (c) with the field strength of 3500 Gauss. 
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Figure 5.13 Dependence of velocity (in magnitude) distribution upon an applied magnetic 

field along Y = 2.75 cm.  
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Figure 5.14 Dependence of velocity (in magnitude) distribution upon an applied magnetic 

field along Y = 0.5 cm.  
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Figure 5.15 Dependence of velocity (in magnitude) distribution upon an applied magnetic 

field along Y = 0.25 cm.  
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The present study is focused on convective phenomena in the material processing 

systems.  The major conclusions drawn from the present study are summarized in the 

following paragraphs. 

A numerical model has been developed to describe the fluid flow and heat 

transfer process in the crucible.  The temperature and velocity fields are solved using the 

high order finite difference method and the internal radiation problem is modeled using 

the discontinuous finite element method.  The two numerical models are coupled through 

an iterative process.  The integrated numerical model is used to simulate Marangoni-

Rayleigh-Bénard flow of radiation participating melt in the Czochralski crucibles.  Based 

on the numerical simulations, linear stability analysis of the convective flow is carried out 

at various geometric boundary conditions and radiative properties to determine the 

critical Grashof numbers at which the flow loses its axisymmetry.  It is found that when 

the melt is transparent to the radiative energy transfer, the flow consists of a major 

convective loop and a small recirculation near the free surface caused by the Marangoni 

effect.  The Marangoni effect does not have a strong effect on the bulk flow structure.  

Along the free surface, the Marangoni flow and the Bénard flow are both dragged from 

the vertical towards the center and therefore, the Marangoni flow plays a stabilizing role 

in the coupled Marangoni-Rayleigh-Bénard convection.   
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When the melt is radiation-participating, the computed temperature fields are 

changed significantly.  Strong heat flux imposed at the system boundaries tends to 

decrease the melt temperature while the absorption, emission and scattering of the 

radiative energy traveling through the melt increase the melt temperature.  In most of the 

cases, the effect of the boundary heat flux is strong enough to suppress that of the internal 

radiation.  The stability analysis has shown that the fact that the melt is involved in the 

radiative energy transfer delays the occurrence of the three-dimensional convection.  The 

most dangerous azimuthal mode is changed from 1 to 5 due to the internal radiation.  

This implies that the internal radiation has a significant effect on the formation of the 

spoke line along the free surface.  It is found that the internal radiation does not change 

the velocity field significantly. 

An experimental investigation of natural convection driven by a temperature 

gradient in molten metal contained in a rectangular enclosure with and without the 

presence of an external magnetic field is presented.  Molten gallium was used as a 

working fluid.  Both the temperature and velocity fields were measured.  The temperature 

profile was determined using a thermocouple and the melt flow velocity was measured 

using a standard constant temperature hot-film anemometer.  The measured velocity field 

exhibits a recirculating cell, which is consistent with numerical predictions obtained from 

a numerical model reported in an early study.  The flow structure remains the same with 

and without an applied magnetic field.  The magnitude of the velocity, however, is 

reduced with an increase in applied magnetic field strengths.  The reduction in convection 

is also manifested in the measured thermal profiles, which approach to a linear 

distribution across the cell as the magnetic field increases in strength.  The measured 
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velocity and temperature profiles are compared reasonably well with the numerical 

predictions.   

6.2 Future work 

To further extend the present study, the following recommendations are made for 

future investigations. 

• Stability curves over a wider range of the material properties, such as 

Prandtl number, would be helpful in better understanding of the 

convective phenomena in the material processing systems; 

• The nonlinear behavior of the Marangoni flow is important in the 

understanding of the formation of the surface flow pattern such as the 

well-known spoke line pattern.  A nonlinear stability analysis can be used 

to obtain detailed information of transition in flow pattern and understand 

the instability mechanisms that cause the formation and transition of 

certain surface flow pattern; 

• Based on the stability analysis result, three-dimensional numerical 

simulation of the convective flow in the Czochralski crucibles can be 

carried out.  In order to fully capture the highly nonlinear Marangoni 

behavior along the free surface, extremely fine mesh and time-step are 

required, which impose overwhelming high computational load.  A 

parallel algorithm is highly desirable to make the task possible; 

• The present experiment measures the velocity profile using a single sensor 

hot-film probe, which provides only the information on velocity 
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magnitude.  To fully understand the two-dimensional convection in the 

box, further measurements using multi-dimensional probe is desirable; 

• Previous investigations have shown that the magnetic damping effect 

depends on the relative direction of the temperature gradient and the 

magnetic field.  In the present study, only the case in which the 

temperature gradient is parallel to the magnetic field is measured.  

Measurements carried out on other relative directions would be an 

important complement to the present study. 
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