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NON-EQUIPROBABLE MULTI-LEVEL CODING FOR THE ADDITIVE WHITE

GAUSSIAN NOISE CHANNEL WITH TIKHONOV PHASE ERROR

Abstract

by Li Ni, Ph.D.
Washington State University

December 2005

Chair: Benjamin Belzer

In this dissertation, we present new design techniques for non-equiprobable multi-level

codes with iterative decoding, for the AWGN channel with Tikhonov phase error. This

channel models the phase estimation error of a phase lock loop (PLL) circuit with pilot-

tone carrier recovery. Previously published results have shown that the capacity-achieving

PDF for the average-power-constrained AWGN/Tikhonov channel is discrete-amplitude-

uniform-phase (DAUP), and that the DAUP-input capacity can be closely approximated

by multi-ring PSK, which we use in our codes. A key innovation is serially concatenated

binary-input binary output codes with non-equiprobable output bits. These codes consist of

an outer non-linear block code and an inner recursive convolutional code. The codewords

of the non-linear outer code consist of selected sequences from a convolutional code of

known free distance. At 1 bit/symbol, the multi-level codes approach the DAUP-input

capacity within 1.1 dB, and outperform comparable equiprobable codes by 1.70 dB, at

0.5 bit/symbol outperform the equiprobable constellation-constrained capacity by 0.33 dB.

Although targeted at the AWGN/Tikhonov channel, our MLC architecture is easily adapted

to other channels for which the capacity-achieving PDF is DAUP.

iv



Contents

ACKNOWLEDGMENT iii

ABSTRACT iv

1 Introduction 1

1.1 Background on Coded Modulation and Shaping for the AWGN Channel . . 3

1.2 Channel Capacity of AWGN Channel with Tikhonov Phase Error . . . . . . 8

1.3 Gaussian Approximation Technique for PCTCM . . . . . . . . . . . . . . 10

1.3.1 Turbo Codes and LDPC Codes . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Gaussian Approximation for PCTCM . . . . . . . . . . . . . . . . 13

1.4 PEP Metric Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Multi-level Coding for AWGN Channel with Tikhonov Phase Error . . . . 16

2 AWGN with Tikhonov Phase Error Channel Model and Channel Capacity 20

2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Channel Capacity and DAUP-Approximated Constellation-Constrained Ca-

pacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



3 Gaussian Approximation for Parallel Concatenated Bit-Interleaved Turbo Coded

Modulation 26

3.1 Gaussian Assumption for the Extrinsic Information on the AWGN Channel

with Tikhonov Phase Error . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Gaussian Approximation for PCTCM . . . . . . . . . . . . . . . . . . . . 29

3.3 Simulation and Prediction Results . . . . . . . . . . . . . . . . . . . . . . 31

4 Multi-Level Coding for the AWGN Channel with Tikhonov Phase Error 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Code Design Approach with Capacity Rule . . . . . . . . . . . . . . . . . 35

4.2.1 Set Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Capacity Computation and Rate Distribution . . . . . . . . . . . . 38

4.3 Irregular Repeat-Accumulate (IRA) Codes . . . . . . . . . . . . . . . . . . 41

4.4 Non-Equiprobable Serially-Concatenated Code . . . . . . . . . . . . . . . 44

4.4.1 Encoder and Decoder of Serially Concatenated Shaping Codes . . . 44

4.4.2 SISO of Inner Convolutional Code . . . . . . . . . . . . . . . . . . 46

4.4.3 SISO of Outer Non-linear Block Code . . . . . . . . . . . . . . . . 48

4.5 Multi-Level Design Examples . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Design Example at Rate 1 bit/symbol/Hz . . . . . . . . . . . . . . 51

4.5.2 Design Example at Rate 0.5 bit/symbol/Hz . . . . . . . . . . . . . 54

4.6 Code Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



4.7 Reduced-Complexity Code Search . . . . . . . . . . . . . . . . . . . . . . 58

5 Simulation Results 66

5.1 Simulation Results for
���������
	���

at Rate 1 bits/symbol/Hz . . . . . . . . 66

5.2 Simulation Results for
���������
	���

at Rate 0.5 bits/symbol/Hz . . . . . . . 68

6 Conclusion 70

A PEP Computation Using SED Metric 72

A.0.1 Exact PEP Computation for Length
�

Sequence . . . . . . . . . . . 72

A.0.2 Exact PEP Computation for Length � Sequences . . . . . . . . . . 74

A.0.3 Approximate PEP Computation for Length N Sequences Using the

Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



List of Figures

1.1 Block diagram of correlator receiver with pilot-tone PLL . . . . . . . . . . 2

1.2 8-PSK Set Partitioning and its TCM encoder . . . . . . . . . . . . . . . . . 3

1.3 Multi-level coding encoder and decoder . . . . . . . . . . . . . . . . . . . 5

1.4 Mutual information of DAUP, Gaussian, uniform circular and non-equiprobable

4-ring QPSK inputs, for the AWGN/Tikhonov channel with
� � � � �	 ��

. . 9

1.5 Mutual information of DAUP, M-Ring-PSK non-equiprobable and M-Ring-

PSK equiprobable inputs, for the AWGN/Tikhonov channel with
� � � �

�	 ��
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Rate 2/6 PCTCM encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Turbo decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Decoder structure for Gaussian approximation . . . . . . . . . . . . . . . . 14

1.9 Four-ring BPSK and three-ring MPSK constellations . . . . . . . . . . . . 16

1.10 MLC encoder with multi-ring PSK constellation . . . . . . . . . . . . . . . 17

1.11 MLC multi-stage decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Tikhonov PDF for Various Loop SNRs . . . . . . . . . . . . . . . . . . . . 23

viii



2.2 Four-ring BPSK and Three-ring MPSK constellations with DAUP ring prob-

abilities and ring radii; the ring radii are not drawn to scale . . . . . . . . . 24

3.1 Histogram, PDF and CDF of extrinsic information with
� ��� � �	��
�

; the

numbers in parentheses indicate mean and variance . . . . . . . . . . . . . 27

3.2 Histogram, PDF and CDF extrinsic information with
� � �����	 �

. . . . . . 28

3.3 Generalized form of constituent encoder . . . . . . . . . . . . . . . . . . . 30

3.4 Decoder structure for Gaussian approximation . . . . . . . . . . . . . . . . 30

3.5 Extrinsic information SNR input/output curve (PSK natural mapping with

� ��� ���	 �
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Partitioning of 4-Ring BPSK with DAUP ring probabilities for the AWGN/Tikhonov

channel with
��� � � �	 ��

. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 4-Ring BPSK with DAUP ring probabilities for the AWGN/Tikhonov chan-

nel with
� �
� ���	 ��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Partitioning of 3-Ring MPSK with DAUP ring probabilities for the AWGN/Tikhonov

channel with
��� � � �	 ��

. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Total mutual information C and mutual information
���

,
���

and
���

of the

equivalent channels, for the AWGN/Tikhonov channel with
� ��� � �
	���

,

and the constellation of Fig. 4.1 . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Tanner graph for IRA code with parameters ( � �	��
�
�
� ������� ) . . . . . . . . . 43

4.6 Encoder of Serially Concatenated Shaping Code . . . . . . . . . . . . . . . 44

ix



4.7 Iterative decoder for serially concatenated shaping code uses SISO block

for the inner (i) convolutional code and outer (o) non-linear block code . . . 46

4.8 Encoders at each level for the rate 1 bit/symbol/Hz MLC . . . . . . . . . . 51

4.9 Code design example at 1 bit/symbol . . . . . . . . . . . . . . . . . . . . . 53

4.10 Code design example at 0.5 bit/symbol . . . . . . . . . . . . . . . . . . . . 55

4.11 An example of ��� � ��� ���
convolutional systematic recursive encoder with

�
memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.12 �
	����� / ��	�������� curves of outer and inner codes . . . . . . . . . . . . . . . 58

4.13 The structure of the ��� � ��� ���
convolutional code encoder . . . . . . . . . 60

5.1 Simulation results for 1bit/symbol multi-level coding for AWGN channel

with Tikhonov phase error for
� � � ���	��
�

. . . . . . . . . . . . . . . . . 67

5.2 Simulation results for 0.5bit/symbol multi-level coding for AWGN channel

with Tikhonov phase error for
� � � ���	��
�

. . . . . . . . . . . . . . . . . 69

A.1 Vector diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



List of Tables

2.1 DAUP ring radii and probabilities at rate 1.0697 bit/symbol with
� �������	��
�

25

2.2 DAUP ring radii and probabilities at rate 0.5251 bit/symbol with
� �������	��
�

25

3.1 Ratio between the extrinsic information SNR for �� � and �� � (PSK natural

mapping with
���������	 �

)(
����� � � � ���
	
	�����

) . . . . . . . . . . . . . . . 32

3.2 Predicted
����� � � convergence threshold and threshold measured by simu-

lation (QAM radial mapping with
���
� ���	 �

) . . . . . . . . . . . . . . . . 32

4.1 PEP within subsets comparison on different set partitionings . . . . . . . . 38

4.2 Top five codes for rate � ��� RCCC code search and their convergence thresh-

olds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Top five codes for rate � ��� RCCC reduced complexity code search and

their convergence thresholds . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



Chapter 1

Introduction

In a digital communication system, the propagation delay in the transmitted signal results

in a carrier phase offset, which must be estimated at the receiver if the detector is phase-

coherent. The phase-lock-loop (PLL) circuit with pilot-tone is a commonly used phase

estimation scheme in wireless communication receivers. Fig. 1.1 describes the receiver

block diagram with PLL. The pilot tone � � � � can be isolated from � � � � by means of a tone-

in-band scheme such as [3]. Due to the loop noise, the PLL outputs the recovered phase

with a phase estimation error �����
�
��� , so the channel phase cannot be perfectly recovered.

From the point of either theory or practice, it is a challenge to investigate the coding prob-

lem on such a channel with the phase estimation error. In this dissertation, we design power

and bandwidth efficient coded modulation for the partially coherent additive white Gaus-

sian noise (PCAWGN) channel, where the channel noise is assumed to be additive white

Gaussian noise (AWGN) and the partial coherence comes from the phase estimation er-

ror in PLL circuit. Specifically, the AWGN/Tikhonov channel models the phase estimation

1
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Figure 1.1: Block diagram of correlator receiver with pilot-tone PLL

error with the Tikhonov probability distribution function (PDF). The starting point of chan-

nel coding is to look into the Shannon channel capacity. Some results of previous work on

PCAWGN channel capacity give us guidelines for designing the modulation and channel

coding. Since the PCAWGN channel capacity indicates the potential of non-equiprobable

signaling, the combination of non-equiprobable multi-ring PSK constellations and multi-

level coding allows us to achieve both coding and shaping gain, and is therefore a good

choice for the PCAWGN channel.
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Figure 1.2: 8-PSK Set Partitioning and its TCM encoder

1.1 Background on Coded Modulation and Shaping for the AWGN

Channel

The goal of the coded modulation is to jointly optimize coding and modulation in or-

der to approach channel capacity, subject to power and bandwidth constraints. It allows

the achievement of significant coding gains without compromising bandwidth efficiency.

The most powerful applicable coded modulation schemes were presented in 1976/1977

by Ungerboeck [7], [8] and Imai and Hirakawa [9]. Ungerboeck’s approach is named

trellis-coded modulation (TCM). It is based on mapping by set partitioning to maximize

the minimum intra-subset Euclidean distance, which minimize the symbol error rate. This

scheme employs redundant non-binary modulation in combination with a convolutional

code, which is a finite-state encoder represented by a trellis structure. This trellis con-

trols the selection of modulation signals to generate coded signal sequences. In Fig. 1.2, a

simple 8-PSK set partitioning and its TCM encoder are shown. One uncoded information

3



bit is used to select the signal from a subset
���

,
������� �

, and two coded bits from a

convolutional encoder are used to select the subset
���

. The decoder uses a soft-decision

maximum-likelihood (ML) sequence algorithm, e.g. Viterbi algorithm (VA), with squared

Euclidean distance (SED) metric. A simple four-state 8-PSK TCM can achieve 3 dB gain

over uncoded 4-PSK modulation on AWGN channel. With more complex TCM, the coding

gain can reach 6 dB or more.

In contrast, Imai’s idea of multilevel coding (MLC) uses several error-correcting codes

in parallel. Fig. 1.3 shows multi-level coding’s encoder and decoder structure. The trans-

mitted symbols are constructed by concatenating the bits from the encoders at each level

into a binary codeword, which is then mapped to a constellation symbol. Usually, these

codes are binary error-correcting codes and have different error-correcting capabilities.

The decoder uses multi-stage decoding, i.e., each level’s decoding is based on not only

the channel output, but also the decoded results from the upper levels. At each level, either

hard or soft decision decoding can be used. Soft decision will give the extra performance

gain (typically 1-2 dB). This MLC scheme provides flexible transmission rates. Addition-

ally, any code, e.g., block codes, convolutional codes, or concatenated codes, can be used

as component codes in a MLC scheme.

The field of “shaping” has grown up out of the traditional field of constellation de-

sign. The shape of the signal constellation determines the average signal power. The power

reduction due to constellation shaping is called shaping gain. Among all the multidimen-

sional constellations, the spherical signal constellation is optimal and minimizes average

4
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Figure 1.3: Multi-level coding encoder and decoder

signal power, and in the limit as � � � , the shaping gain of the � -sphere over the

� -cube approaches ���
����� � 	
	��

dB. Forney introduced shaping of multidimensional con-

stellations including cross and generalized cross constellations, lattice-bounded constella-

tions and trellis-bounded constellations in [31], [32] and [30]. Shaping codes based on

non-equiprobable signaling are described in [29].

A shaping code is a probabilistic code for use with points in a modulation signal con-

stellation. It saves power by using non-equiprobable signaling, without either reducing

transmission rate or increasing bit error probability. A shaping encoder is a nonlinear en-

coder which can generate output sequences in a multidimensional space so that the coded

sequences can induce a desired probability distribution in a low dimensional space which

can achieve capacity. For the well-known coherent AWGN channel, the capacity-achieving

signal is Gaussian and hence a good shaping code must induce a nonuniform, Gaussian-

5



like distribution over a somewhat expanded constellation. In general, for fixed-rate shap-

ing, a high-dimensional spherical constellation with a uniform distribution of signal points

is used, which will induce the desired Gaussian distribution on its lower-dimensional con-

stituent constellation. Most of the shaping gain on the coherent AWGN channel occurs at

high rates. Hence large constellations are needed to realize significant shaping gain on the

coherent AWGN channel at high transmission rates.

For the coherent AWGN channel, several methods to obtain shaping gain have been

found. One is called shaping on regions [29]. In this approach, a low-dimensional sig-

nal constellation � is partitioned into nested annular sub-constellations � ��� 
�
�
 � ����� � of

equal size by scaling a basic region. Signal points in the same sub-constellation � � are

used equiprobably, and the shaping code selects sub-constellation � � with probability � � .

To implement the shaping code, a simple table look-up is used to address points in the

constellation. Trellis shaping, proposed by Forney [30] is a method of using the "Voronoi

region" of a trellis code to shape the constellation. Trellis shaping selects a minimum-

weight sequence from an equivalence class of possible transmitted sequences by a search

through the trellis diagram of a shaping convolutional code. It is a dynamical programming

that induces a truncated Gaussian distribution onto a constellation with a finite number of

symbols. Motivated by the scalar-vector quantizer (SVQ), a shaping method called SVQ

shaping is described in [33]. A class of constellations called SVQ constellations is defined

and SVQ indexing algorithms are specified. The authors of [33] show that the N-sphere

shaped constellation optimal for AWGN is a special case of a SVQ constellation, and so

6



the indexing algorithms of the SVQ constellation can be used for N-sphere shaping.

The above-mentioned approaches require sufficiently many signals in the constellation

to be selected. The SVQ shaping approach [33] requires that the number of signals to be

shaped be larger than the corresponding coding rate. Forney’s trellis shaping has the same

requirement, while the regional shaping does not have such a requirement.

The shaping code we describe in Chapter IV is related to the shaping on regions ap-

proach of [29]. It uses a non-linear block code to select sequences with the desired prob-

ability. We don’t use the shaping code on higher dimensions since the capacity achieving

PDFs for the AWGN channel with Tikhonov phase error are not continuous in low dimen-

sion, and therefore are not induced by geometrically simple high-dimensional shape.

Recently, Huber in [25] explains the MLC scheme from the point of information theory

and combines shaping and MLC. The techniques of [25] make digital communication close

to the Shannon limit possible. In [25], the concept of equivalent channel is introduced,

which is based on the well-known chain rule for mutual information, and also practical

design rules for MLCs are formulated. The capacity rule, the balanced distance rule and

two other rules based on the random coding exponent and cutoff rate are investigated. It is

shown that if and only if the individual rates of the component codes are properly chosen,

power and bandwidth-efficient digital communication close to the Shannon limits is pos-

sible. Also significant shaping gains are achievable in practice if the optimum assignment

of code rates to the individual levels and optimum sharing of redundancy between coding

and shaping is used. In [25], Forney’s trellis shaping algorithm [30] is combined with an

7



MLC scheme, where the trellis shaping algorithm is used to generate a distribution of signal

points approximating the theoretical Maxwell-Boltzmann distribution while preserving the

optimum entropy. The codes in [25] achieve performance within 1 dB of the 2D AWGN

capacity at 4 bits/symbol/Hz.

1.2 Channel Capacity of AWGN Channel with Tikhonov Phase Error

In [1, 2], the AWGN/Tikhonov channel capacity is studied under an average power con-

straint, and it is shown that the capacity-achieving input for this channel is discrete-amplitude-

uniform-phase (DAUP), i.e., consists of concentric rings around the origin. An alternate

proof of these results (without the lower bound computation) appears in [4, 5]. Assuming

a finite number of rings, [1] uses a gradient approach to numerically compute the tightest

known lower bound on the capacity of the AWGN/Tikhonov channel. The results show

that the DAUP-input capacity has more than 0.8dB gain over the Gaussian-input capacity

when the transmission rate is no more than 1 bits/symbol/Hz, the pilot-tone power fraction

�
� �	 ��

, and the loop-bandwidth symbol-interval product
� ����� �	 ��

. This observation

suggests the potential of good performing non-equiprobable signaling codes.

In Fig. 1.4, the capacity lower bound with a finite-number-of-rings DAUP input for the

channel with �
� �
	���

and
����� � �
	���

is numerically computed. At low SNR, this bound

is significantly higher than the Gaussian-input bound [6]. Four-ring QPSK with the DAUP

ring probabilities gives essentially the same results as DAUP. This motivates us to choose

8
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� � � � �	 ��
.

proper constellations to approximate the DAUP capacity-achieving inputs. The shaping

gain, lower bounded by the gap between the DAUP and circularly-uniform-area in input, is

�
1.5 dB at 1bit/symbol and

�
3.5 dB at 0.5 bit/symbol.

The computation of signal-constrained capacities of non-equiprobable and equiprob-

able signaling for the channel with �
� �	 ��

and
� �
� � �	��
�

motivates us to design

codes with non-equiprobable signaling in the following chapters. Fig. 1.5 shows signal-

9



constrained capacities of non-equiprobable and equiprobable signaling for the channel with

�
� �
	���

and
� ��� � �	��
�

. At rate 1.0697 bit/symbol/Hz, the four-ring BPSK with the

DAUP ring probabilities and ring radii gives the result close to that of DAUP, with only

0.024 dB loss. In contrast, the mutual information of four-ring BPSK with the DAUP

ring radii but equiprobable ring probabilities gives about 0.50 dB loss. At rate 0.5251

bit/symbol/Hz, 3-ring MPSK ( using BPSK on the two inner rings and QPSK on the outer

ring) with the DAUP ring probabilities and ring radii approximates the DAUP capacity with

0.02 dB loss. For the equiprobable case, the loss is about 1.91 dB.

1.3 Gaussian Approximation Technique for PCTCM

1.3.1 Turbo Codes and LDPC Codes

Iterative decoding of product or concatenated codes, using two or more “soft-in/soft-out”

decoders with fairly simple component codes in an interleaved scheme, has been termed

“turbo” decoding. Using log-likelihood algebra, any decoder can be used which accepts

soft inputs, including a priori values, and delivers soft outputs. When the decoder input

LLRs are subtracted from the soft output LLRs, the result is the extrinsic information LLRs.

The extrinsic information is used as a priori information for the other decoder(s).

Parallel concatenated turbo coded modulation (PCTCM) encoder architectures can be

classified into two main types. The bit-interleaved architecture of [39] uses a separate

interleaver for each input bit shared between the two constituent encoders. The symbol-
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PSK equiprobable inputs, for the AWGN/Tikhonov channel with

� � � � �	 ��
.

interleaved approaches of [40] and [41] employ symbol interleavers, which permute the

symbol sequence but preserve the mapping of input bits to symbols. The authors of [41]

obtain about a 0.4 dB gain over [39] in the waterfall region of the bit-error-rate (BER)

performance curve; however, they point out that the gain in performance at lower SNRs

given by symbol-interleaving comes at the cost of a higher error floor. In Chapter III, we

employ the the bit-interleaved architecture of [39], and propose a Gaussian approxima-
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Figure 1.6: Rate 2/6 PCTCM encoder

tion technique to improve performance in the waterfall region. Fig. 1.6 is an example of

rate * � � bit-interleaved PCTCM encoder. Two constituent systematic encoders (usually

we use systematic recursive convolutional codes) are concatenated in parallel, and sepa-

rate interleavers I1 and I2 are used to avoid the situation that finite-weight inputs generate

finite-weight outputs. The mapping block is a non-linear bit-to-symbol mapping. Iterative

decoding follows the "turbo principle". As shown in Fig. 1.7, two MAP decoders are se-

rially concatenated and exchange extrinsic information. The extrinsic information inputs

of decoder 2 are interleaved versions of the decoder 1 outputs, and then decoder 2 outputs

the deinterleaved extrinsic information to decoder 1. The interleaver and deinterleaver are

denoted � and � �
�
.

Recently, another class of codes exhibiting similar characteristics and performance was

rediscovered. This class of codes, called low-density parity-check (LDPC) codes, was

12
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Figure 1.7: Turbo decoder

first introduced by Gallager in 1963 [36]. The decoding of LDPC uses a message-passing

(belief-propagation) algorithm, where the message, i.e. extrinsic information, is transfered

along the branches connecting the variable and check nodes forward and backward. This

decoding scheme is parallelizable and has lower complexity than turbo decoding. Cur-

rently, interest has focused on computing the message’s density function, and then using

the density function to compute the convergence threshold, which indicates the code’s per-

formance compared with the Shannon limit. Codes can be optimized to have convergence

thresholds within less than 0.1 dB of the Shannon limit, when the block size is large ( �
� ���

bits). In [37], Richardson uses density evolution to design irregular LDPC codes under

message-passing decoding. In [38], Chung approximates the message densities as Gaus-

sian random variables and analyzes sum-product decoding of LDPC codes.

1.3.2 Gaussian Approximation for PCTCM

Gaussian approximation can also be used in turbo decoder analysis. In [23], it is demon-

strated that the extrinsic information from constituent MAP decoders is well approximated

by Gaussian random variables when the channel inputs to the decoders are Gaussian (from

13



an AWGN channel). For the AWGN with Tikhonov phase error, even though the channel

inputs are not Gaussian, we have observed experimentally that the extrinsic information can

be well approximated as Gaussian [34]. In Chapter III (and [34]), the Gaussian approxima-

tion technique is used on bit-interleaved PCTCM to predict the convergence threshold. In

the convergence threshold prediction, the extrinsic information SNR input/output relation

is computed. The decoder used has a similar structure to the turbo decoder in Fig. 1.7 but

without iterative operations. Fig. 1.8 is the decoder used for Gaussian approximation.

There are several problems that arise when applying the above described Gaussian ap-

proximation method to PCTCM. First, in PCTCM, two binary inputs are applied and the

outputs from the linear encoders are independent. When these outputs are mapped to con-

stellation symbols, the extrinsic information is not independent due to the nonlinearity of

the mapping. By tracking the ratio of two decoder’s SNRs and maintaining the correct ra-

tio during the convergence threshold prediction, these problems are solved. The Gaussian

approximation technique of Chapter III applicable to any channel where bits are correlated

due to bit-to-symbol mapping.

U2in1

U1in1 π1U1in2

U2in2

Y1 Y2

Decoder1
SNR1

U1out1

SNR2
U2out1 π2

Decoder2
π1

−1

π2
−1

U1out2

U2out2

Y1 Y2

Figure 1.8: Decoder structure for Gaussian approximation
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1.4 PEP Metric Computation

In a coded modulation scheme, let X
�

and
�
X
�

denote two complex symbol sequences of

length
�

. The pairwise error probability (PEP) � � X � �
�
X
� �

is defined as the probability

that
�
X
�

is chosen by the receiver when X
�

is actually sent, when the receiver chooses

only between X
�

and
�
X
�

. From [20], we know that the union bound on the symbol error

probability can be expressed in terms of the PEP:

� � � � �
��
��� �

�
X �

�
X ����	�X �

� � X � � � � X � � �
X
� �

Appendix A describes the PEP computation for the AWGN/Tikhonov channel, when the

squared Euclidean distance (SED) metric is used for symbol sequence comparisons..

The VA decoding simulation shows that the result based on ML metric outperforms the

one based on the SED metric by 2 dB for the AWGN channel with moderate Tikhonov

phase error, e.g.
����� � �	��
�

. However due to the lower computational complexity of the

SED decoding metric, the PEP based on the SED metric may be used as the code design

criterion on such a channel. For the AWGN channel with large phase errors, the authors

in [34] show that PEP based on optimal ML metric instead of SED is a good code design

criterion which gives the turbo codes with low error floor and low convergence thresholds.

The difference between our derivation of PEP and the description in [21] is as follows. Our

results are valid for arbitrary constellations and give an exact expression when code length

� � �
, and a central limit theorem (CLT) approximation for � 
 �

. In [21], the CLT
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approximation was used to derive the SED-based PEP for M-PSK constellations, with an

upper bound given for the case � � �
.

1.5 Multi-level Coding for AWGN Channel with Tikhonov Phase Er-

ror

4−Ring BPSK 3−Ring MPSK

Figure 1.9: Four-ring BPSK and three-ring MPSK constellations

The main contribution of this dissertation is a MLC architecture for multi-ring PSK

constellations with unequal ring probabilities. Fig. 1.9 shows examples of four-ring BSPK

and three-ring MPSK. On the three-ring MPSK, BPSK is used on the two inner rings and

QPSK on the outer ring. The ring radii and probabilities are equal to those of the channel

capacity-achieving DAUP distributions. In practice, we use PSK modulations on each

ring and the phase is not uniformly distributed. Numerical computations show that this
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Figure 1.10: MLC encoder with multi-ring PSK constellation

constellation-constrained capacity is a good approximation of DAUP capacity.

In [35], the block non-coherent AWGN channel is considered, where the unknown

phase is constant for a block � complex symbols and independent from block to block.

The capacity-achieving PDF for this channel is also proved to be DAUP. The scheme called

unitary modulation is used, which is different from our multi-ring PSK. The unitary modu-

lation consists of one point located at zero and other points located on the outer ring based

on a discrete Fourier transform. The shaping gain is achieved by increasing the frequency

of the zero mass point transmission, i.e. augmenting the unitary modulations with the zero

sequence. The coding scheme is the standard SCCC with convolutional codes as inner and

outer codes.

Fig. 1.10 is our MLC encoder structure. The rate and desired binary bit probability of

each level are derived from MLC’s capacity design rule. Each decoder level corresponds

to a level in the constellation set partitioning. The information blocks are partitioned ac-
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cording to the individual rate. Different codes are used at each level to achieve the desired

probabilities. For the level 0, we use the irregular repeat-accumulate (IRA) codes of [26].

In our multi-level coding with multi-ring PSK modulation, a key innovation is serially

concatenated binary-input binary-output codes with non-equiprobable output bits, used at

level 1 and level 2. These codes consist of an outer non-linear block code and an inner

recursive convolutional code. The codewords of the non-linear outer code consist of se-

lected sequences from a convolutional code of known free distance (the “design code”), so

that the outer code free distance is at least that of the design code. Both the design code

and the inner convolutional code are designed according to the technique in [11, 12]. The

encoded bits at each level are grouped column by column and mapped to the symbol on

the multi-ring PSK. The decoder of our MLC is multi-stage decoding shown in Fig. 1.11.

Multi-stage decoding proceeds from top to bottom; the decoded results of upper levels are

used in decoding the lower levels. It is thus necessary to achieve very small bit error rates

on the upper level codes to prevent error propagation. This fact motivates the use of high

performance turbo decoding schemes at each level.

Although targeted at the AWGN/Tikhonov channel, our MLC architecture is easily

adapted to other channels for which the capacity-achieving PDF is DAUP. The list of such

channels includes, e.g., the peak-power-constrained AWGN channel [13], the memory-

less Rayleigh fading channel [14], the non-coherent AWGN channel (a special case of the

AWGN/Tikhonov channel) [15], and the non-coherent Ricean fading channel with average

power and 4th moment constraints [16, 17].
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Figure 1.11: MLC multi-stage decoder

This dissertation is outlined as follows. A brief summary of the channel model and

channel capacity is given in Chapter II. Also, different DAUP-approximating constellations

with target radii and probabilities are listed. In Chapter III, the Gaussian approximation

for parallel concatenated bit-interleaved turbo coded modulation is introduced, which pre-

dicts the convergence threshold and gives a criterion for code search. Chapter IV provides

the details of multilevel coding for the AWGN/Tikhonov channel, including code design

approach with capacity rule, combination of coding and shaping for multi-ring PSK, non-

equiprobable serial concatenated codes, and design examples. The simulation results are

given in Chapter V. Chapter VI concludes the dissertation. Appendix A describes the PEP

computation using SED metric.
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Chapter 2

AWGN with Tikhonov Phase Error Channel Model and Channel

Capacity

In this chapter, we introduce the AWGN with Tikhonov phase error channel model, where a

PLL is used for carrier phase tracking in a coherent receiver. We approximate DAUP signals

with multi-ring PSK (MRPSK) constellations with the DAUP ring radii and probabilities.

The constellation-constrained capacity of the MRPSK is computed and compared with the

DAUP capacity lower bound.

2.1 Channel Model

In coherent receivers, the phase-locked loop (PLL) is commonly used to track carrier phase.

Fig. 1.1 describes the receiver block diagram with PLL. It is assumed that the PLL input

� � � � is a pilot-tone with carrier phase ��� � � � and constant amplitude � � ����� � � � , where ��� is

the average symbol power and � is a positive real number (
���

�
� �

). It is assumed that

the channel amplitude gain � � � � � � 	
The pilot tone � � � � is used by the PLL to estimate the
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carrier phase
�
��� . Due to the loop noise the PLL outputs the recovered carrier phase but with

the phase error � � � � �
�
��� , which can be described by a random variable. For a first-order

PLL, the phase estimation error � has the Tikhonov probability density function (PDF)

[18]. The interleaver-deinterleaver in the PLL circuit makes the phase estimation errors in

different symbol intervals independent, and also makes the noise independent. Hence the

resulting channel is memoryless.

The discrete-time AWGN/Tikhonov channel model used in this dissertation is:

� � ��� �
�������
	 � � (2.1)

where
� � ��� � � 	� � � � and � � � � � � 	� � � � are the transmitted and received symbols in the

�
th symbol interval, � � has Tikhonov PDF

� ��� � � ������� ����������� � �
* ��� � ��� � � � �

� � � � � (2.2)

and � � is a complex zero-mean Gaussian r.v. with independent real and imaginary parts,

each having variance  �! � � � � * . In (2.2), � � � 
 � is the 0th order modified Bessel function

of the first kind, and � � �
� � � � * � � � �
��� , where

� �
is the one-sided PLL bandwidth,

�
is

the symbol interval,
� � is the average symbol energy, and � is the power fraction alloted to

the carrier pilot reference; in this dissertation, we always use �
� �
	���

. The � � and � � are

assumed independent from one symbol interval to the next. The model assumes that the
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carrier pilot tone is not interleaved, so the PLL tracks the time-varying channel phase with

an effective observation interval of
��� � ������� symbols. There is a trade-off in choosing the

value of
� � �

. Reducing
�����

reduces the effect of noise on the PLL tracking; however,

��� � � ��� � should be less than or equal to the coherence time of the channel phase process

��� � � � , so that the PLL responds quickly enough to track � � � � � . Fig. 2.1 is the Tikhonov

PDF of the phase estimation error. Different PLL SNRs � give different PDF shapes. The

smaller � , the wider the PDF. When � goes to 0, the PDF is uniformly distributed, which

means the PLL does not perform well. The larger power fraction � , the larger � , hence, the

better PLL performance. However, a larger � also decreases the transmission capacity. So,

there is a trade-off.

When the phase error � � is considered to be modulo * � , the above Tikhonov model

accounts for cycle slips in the first-order PLL [18]. For higher-order PLLs, the Tikhonov

model is only accurate at loop SNR’s high enough to make cycle slips rare. The effect

of cycle slips in higher-order PLL’s is not considered in this dissertation. The Tikhonov

model has been widely used in past publications on phase robust modulation (e.g., [18,

19, 20, 21]). The Tikhonov model also applies to pilot-tone aided systems with open-loop

phase tracking, as the Tikhonov PDF closely approximates the phase error PDF of simple

one-shot estimators. (See e.g. [22, pp. 266-269].)
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Figure 2.1: Tikhonov PDF for Various Loop SNRs

The conditional channel PDF used in this dissertation is [19]

� � � � � � � � ��� � � �	� � � � � �
�

* �� �! �����
�
� � �� � 	 � �� �

*  �! � � � � �
�
� �� � 	 � �� �

*  �! � � � ��� � � �� � ��� � (2.3)
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4−Ring BPSK 3−Ring MPSK

Figure 2.2: Four-ring BPSK and Three-ring MPSK constellations with DAUP ring proba-
bilities and ring radii; the ring radii are not drawn to scale

where

� � � � � � � � � � � 	 � � � � � �
 �! 	 � � � 	 � � � � � � � � � � � � � �

 �! � � 	 (2.4)

2.2 Channel Capacity and DAUP-Approximated Constellation-Constrained

Capacity

We use the four-ring BPSK constellation shown in Fig. 2.2 to approximate the DAUP ca-

pacity at rate 1.0697 bit/symbol with
� ��� � �	 ��

. As shown in Fig. 1.5, the four-ring

BPSK with the DAUP ring probabilities and ring radii has mutual information close to that

of DAUP, with only 0.024 dB loss. The DAUP ring probabilities and ring radii are listed in

Table 2.1 [1].
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Table 2.1: DAUP ring radii and probabilities at rate 1.0697 bit/symbol with
� �������
	���

ring number 1 2 3 4
radii 0.5 3.2148 5.4537 8.0099

probability 0.60636 0.30856 0.07662 0.00846

Table 2.2: DAUP ring radii and probabilities at rate 0.5251 bit/symbol with
� �������
	���

ring number 1 2 3
radii 0.1 3.294111 5.814085

probability 0.809123 0.179967 0.010910

At rate 0.5251 bit/symbol, we use 3-ring MPSK in Fig. 2.2 to approximate the DAUP

capacity, where we use BPSK on the two inner rings and QPSK on the outer ring. There is

only 0.02 dB loss. The DAUP ring probabilities and ring radii are listed in Table 2.2.
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Chapter 3

Gaussian Approximation for Parallel Concatenated Bit-Interleaved

Turbo Coded Modulation

3.1 Gaussian Assumption for the Extrinsic Information on the AWGN

Channel with Tikhonov Phase Error

The extrinsic information from constituent MAP decoders is well approximated by Gaus-

sian random variables when the decoder channel inputs to the decoders are Gaussian [23].

Even though the AWGN/Tikhonov channel variables are not Gaussian, we have observed

experimentally that the extrinsic information can be well approximated as Gaussian. After

several iterations, the PDF of the extrinsic information will converge to a Gaussian PDF.

In Fig. 3.1, the left plot is the histogram of the extrinsic information when
� �
� � �	��
�

after 8 iterations, and its PDF fit with the same mean and variance as the histogram. The

Gaussian PDF fits the histogram very well. To verify this fit, we plot the cumulative distri-

bution functions (CDFs) of the extrinsic information and of the Gaussian r.v with the same
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Figure 3.1: Histogram, PDF and CDF of extrinsic information with
� ��� � �	��
�

; the
numbers in parentheses indicate mean and variance

mean and variance respectively in the right plot in Fig. 3.1. It shows that the CDF of the

extrinsic information tracks the Gaussian r.v very well. Fig. 3.2 verifies Gaussian assump-

tion for extrinsic information when
� ��� � �	 �

. It turns out that the Gaussian assumption

is reasonable even on the channel with severe phase estimation errors.

Based on these observations, the decoder convergence threshold can be predicted us-

ing the Gaussian approximation. The Gaussian approximation for turbo decoding was first

described in [23]. The convergence threshold is the minimum
� ��� � � under which the itera-
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Figure 3.2: Histogram, PDF and CDF extrinsic information with
� �
� � �	 �

tive decoder will converge with zero error probability. We focus on a single parameter: the

extrinsic information SNR which is computed from � � ��� � � �
	�� � , where � � is the error

probability of the decoder extrinsic information outputs. By feeding independent Gaussian

extrinsic information with different SNRs to the decoders, we can get the extrinsic infor-

mation SNR input/output curve. The convergence threshold is the minimum
� � � � � under

which there is no intersection between the SNR input/output curve and the line �
	 � �� =

�
	 ������� . This method of predicting the convergence threshold is based on the assumption
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that the intrinsic and extrinsic information are jointly Gaussian and statistically indepen-

dent. When the turbo decoders are symmetric, the extrinsic information from only one

decoder is needed.

3.2 Gaussian Approximation for PCTCM

A problem arises when applying the above Gaussian approximation method to PCTCM.

Consider, e.g., a bit-interleaved two-encoder PCTCM in Fig. 3.3 where two binary inputs

� � and � � are applied to each encoder, and the encoder output bits are mapped into constel-

lation symbols. (Although the following discussion assumes two input bits, generalization

to more than two input bits is straightforward.) Due to the nonlinear mapping of encoder

output bits to constellation symbols, the associated decoder extrinsic information r.v.s �� �

and �� � are correlated, so that, at each decoder iteration, a specific ratio exists between their

SNRs �
	�� � and ��	�� � . We denote ��	�� � as the SNR of �� � and �
	�� � as that of �� � . We

should maintain the correct ratio �
�����
�
����� during the convergence threshold prediction. The

structure of the decoders is given in Fig. 3.4. Since � � is the systematic output of decoder

1, initially �
	�� �	� ��	�� � at the output of decoder 1; for decoder 2, �
	�� �
� �
	�� � for

the same reason. After many iterations, the ratio �
�����
�
��� � � 1. However, assuming that �

�����
�
��� �

= 1 at the first iteration leads to an incorrect prediction of the convergence threshold.

In our approach to predicting the convergence threshold, by concatenating the two de-

coders as in Fig. 3.4, we get the extrinsic information SNR input/output relations for �� � and
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Figure 3.3: Generalized form of constituent encoder

�� � respectively. At each
� ��� � � , the initial �� � � ! � and �� � � ! � are set to zero. After decoder 1,

we measure the SNRs of �� �"!$#&% � and �� �'!(#)% � from the decoder 1 extrinsic bit error probabilities

� � �+* as �
	 � �-,.0/21'35476 � � � � � � �'8 6:9+/ � � � , for ; � � � * . These extrinsic information variables

are approximated by independent Gaussian random variables with the correct SNR ratio

�
���=<5>3@?BADCFEG?IH
�
���=<5>3:J"ADCFEG?IH and injected into decoder 2. After one iteration, the SNRs of �� * !(#)% � are com-

puted from decoder 2 extrinsic error probabilities � � �+* as ��	�� ��,.0/'1'3I4LK � � � � � � �'8 K59+/ ��� � .
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Figure 3.4: Decoder structure for Gaussian approximation
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Then we use the ratio �
��� <I>3I?BADC"E J)H
�
��� <I>32J"ADC"E J)H as the ratio �

���=<5>3 ? � � ? H
�
���=<5>3 J � � ? H for the next point on the SNR in-

put/output curve. The �� � � ! � and �� � � ! � are independent Gaussian random variables with

mean
�

sign � � * ��� * SNR � �� * � ! � and variance
� 	

SNR � �� * � ! � , where ; � � � * . Under such

a scheme, the correct ratio between extrinsic information SNRs for �� � and �� � is maintained,

so that the correct input/output relation of the extrinsic information is obtained. The con-

vergence threshold is the minimum
� ��� � � under which neither the SNR input/output curve

for �� � nor that for �� � intersects the line �
	����� = �
	 ����� � .

3.3 Simulation and Prediction Results

The above method to predict the convergence threshold is much faster than an actual turbo

decoding simulation. In an actual simulation much time is needed to achieve an accurate

estimate of the lowest
� ��� � � at which � � falls below

� � ��� . However, the prediction of

convergence threshold using the Gaussian approximation takes only one iteration for each

injection of the extrinsic information SNR. At each computation of the output extrinsic

information SNR, the intersection condition is checked. If intersection occurs, the com-

putation is stopped and
��� � � � is increased. The computation stops at the first

� � � � � for

which intersection does not occur; this is the predicted convergence threshold.

Table 3.1 compares the ratio �
�����
�
��� � computed by Gaussian approximation and by actual

measurement in a turbo decoding simulation.

An example extrinsic information SNR input/output curve is shown in Fig. 3.5. From
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Table 3.1: Ratio between the extrinsic information SNR for �� � and �� � (PSK natural map-
ping with

���������	 �
)(
����� � � � ���
	
	�����

)

Iteration Gaussian Approx. Actual measurement
1 7.7444 7.9123
2 4.4057 4.4285
3 3.0257 3.0015
4 2.2799 2.2358
5 1.6959 1.6171
6 1.4057 1.3359
7 1.2356 1.2106

Table 3.2: Predicted
����� � � convergence threshold and threshold measured by simulation

(QAM radial mapping with
��� �����	 �

)

Connection Matrix prediction simulation
B A C D (

��
) (

��
)

19 1 33 13 12.14 12.375
38 1 71 1 12.18 12.395
23 4 120 1 12.20 12.405

109 4 150 9 12.24 12.435
219 4 58 9 12.28 12.445

the figure, it is clear that the iterative decoder will converge to � � � �
for

��� � � � �
���
	 � �� �

, but for
����� � � � ���
	 � * �� the probability of error will be bounded away from

zero even if the number of iterations is unbounded. Therefore, the predicted convergence

threshold is about 17.16
��

.

The predicted convergence threshold and the actual simulation results are listed in Ta-

ble 3.2, for the generalized encoder structure of Fig. 3.3. The simulation convergence

threshold is the minimum
� ��� � � at which � ��� � � ��� . The simulation used two 16384 bit

S-random interleavers [42], one for each input bit. From the table, it is seen that the pre-
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Figure 3.5: Extrinsic information SNR input/output curve (PSK natural mapping with� �������
	 �
)

dicted results track the simulation results reasonably well. The simulated results are about

0.2 dB higher than the predicted threshold, due to use of finite-length interleavers in the

simulation. The Gaussian approximation technique described in this chapter is useful for

any turbo decoding scheme where the MAP decoders have multiple extrinsic inputs which

can be modeled as correlated Gaussian r.v.’s.
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Chapter 4

Multi-Level Coding for the AWGN Channel with Tikhonov Phase

Error

4.1 Introduction

Since DAUP signals achieve capacity on the AWGN/Tikhonov channel, our approach is to

try to approximate this optimal DAUP signal by coding on M-PSK constellations with the

DAUP probabilities and radii. Huber showed in [25] that for practical coded modulation

schemes, the capacity of the modulation scheme can be achieved by multi-level codes to-

gether with multistage decoding if and only if the individual rates of the component codes

are properly chosen. Moreover, this multi-level coding technique can be used for arbitrary

signaling and labeling of signal points. The combination of coding and shaping is possible.

The key point is the well-known chain rule for mutual information. The chain rule provides

a model with virtually independent parallel channels for each address bit at the different

partitioning levels, called equivalent channels. Among the practical rules for designing and
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constructing coded modulation schemes, the capacity rule is the most powerful one, and,

in theory, makes achieving the Shannon limit possible. And it provides the flexibility of

selecting the rate on each equivalent channel. For our non-equiprobable DAUP signals and

their approximations by M-PSK constellations, this multi-level technique offers a design

framework within which we can search for and find good coded modulation schemes.

4.2 Code Design Approach with Capacity Rule

4.2.1 Set Partitioning

At rate 1.0697 bit/symbol, the partitioning of four-ring BPSK is shown in Fig. 4.1. This

partitioning is designed to maximize the squared Euclidean distance (SED) within each

subset. Results in [24] show that maximizing SED between coded symbol sequences is a

good design strategy for the
��� � � �	 ��

AWGN/Tikhonov channel. We can also show

that this partitioning is consistent with PEP results based on the ML metric. The ML

metric between transmitted complex point
�

and received point � on the AWGN/Tikhonov

channel is:

���
� �
� � �	� � � ��� � � � � � � � � � � � � � �

*  �! ��� ��� � � ��� � � � 	 (4.1)

Equation (4.1) follows by taking the log( 
 ) of the conditional channel PDF (2.3). For the 4-

ring BPSK in Fig. 4.2, we list the PEP based on the ML metric in matrix A. Element � � � � � �

is the probability that the � %
	 point is decoded given that the
� %
	

point was transmitted, when
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Figure 4.1: Partitioning of 4-Ring BPSK with DAUP ring probabilities for the
AWGN/Tikhonov channel with

��� � � �	 ��

the receiver chooses only between
�

and � . When
� � � , PEP is always 1, since the receiver

has only one choice. We will exclude the PEP in the diagonal of matrix A. With the result

of matrix A, we compare the PEP of two set partitionings listed in Table 4.1 and choose the

one with the minimum max PEP within the subsets, which is the one we use in the Fig. 4.1.

The max PEP is computed by picking the maximum value from � � � � � ��� � � � � for all
�

and

� in the subset, where � � � � is the probability of
� %
	

point.
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Figure 4.2: 4-Ring BPSK with DAUP ring probabilities for the AWGN/Tikhonov channel
with

� � � ���	 ��

A
�

���������������������������
�

� �	 *��* 	 	 �
	 	�� � � 	 �	
	�� � � 	 �
	�� � � *�� �	 � � � � � �	 � � � � � �	�� � � � �
�	 * �* 	 	 � �
	 	�� � � 	 �	
	�� � � 	 �
	�� � � � � �	 � � � *�� �	 � � � � � �	�� � � � �
�	�� *�* 	
� �	 � *�* 	 � � �	 � * �� � �
	�� * 	 	 * �	 � * 	 	 * �	 � � ����	 �	�� � � � �
�	�� *�* 	
� �	 � *�* 	 � �
	�� * �� � � �
	�� * 	 	 * �	 � * 	 	 * �	 � � � � � �	�� � � ��	
�	�� � � � � �	 � � � ��� �
	�� * 	 	 	 �	 � * 	 	 	 � �	 � *�* 	�� �	 �� 	 � � �	��
� 	�� �
�	�� � � � � �	 � � � � � �
	�� * 	 	 	 �	 � * 	 	 	 �
	�� *�* 	�� � �	 �� 	 � � �	��
� 	�� �
�	�� � � � � �	 � � � � � �
	�� � � � 	 �	 � � � � � �
	��� 	 � * �	 �� 	 � * � �	�� * � � �
�	�� � � � � �	 � � � � � �
	�� � � � � �	 � � � � 	 �
	��� 	 � * �	 �� 	 � * �	 � * � � � �

����������������������������
�

.

PEP matrix

At rate 0.5251 bit/symbol, the partitioning of 3-ring MPSK is shown in Fig. 4.3, which

maximizes the SED within each subset.
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Table 4.1: PEP within subsets comparison on different set partitionings

subsets max PEP
(1 3 6 8) (2 4 5 7) 0.1791

(1 6) (3 8) 0.000024254
(2 5) (4 7) 0.000024254

(1 3 5 7) (2 4 6 8) 0.1791
(1 5) (3 7) 0.000084890
(2 6) (4 8) 0.000084890

4.2.2 Capacity Computation and Rate Distribution

Using the approach of [25], from the chain rule the mutual information of each equivalent

channel
�

in a � level multi-level code (MLC) can be easily calculated by:

� � � � �
� � � � 
�
�
 �

� � � � � � � � � �
�

�
�
 ��� � � � � � 
�
�
 �

� � � �

� � � � � �
��� � 
�
�
 � � � � � � � 
�
�
 �

� � 	
(4.2)

For levels 0, 1 and 2 in Fig.4.1, the mutual informations are:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � (4.3)

� � � � � � � � � � � � � � � � � � � � � � � � �	
� �* � ��� � � � � � � � � � � � � ���

� �	 ���� � * � � ��� � * � � � � � � ��� � � (4.4)
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Figure 4.3: Partitioning of 3-Ring MPSK with DAUP ring probabilities for the
AWGN/Tikhonov channel with

��� � � �	 ��

� � � � � � � � � � � � ���	
� �* � ��� � � � � � � � � � � � � ��� 	 �	 ���� � * � � ��� � � � � � � � � ��� � 	
(4.5)

Fig. 4.4 shows the mutual information of the equivalent channels. The rate of each level

is designed by the capacity rule, i.e. the rate �
�

at the individual coding level
�

of a multi-

level coding scheme should be chosen equal to the capacity
� �

of the equivalent channel
�
.

So for 1.0697 bits/symbol, we get:

�
� � �

� � �
� ���	 � �� ��� �
	 	
� 	 	 � �	 � � ���	

(4.6)

At 0.5251 bit/symbol, according to the partitioning in Fig. 4.3 and the capacity rule, we
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, and the constellation

of Fig. 4.1

get the rate at each level as:

�
� � �

� � �
� ���	��
� 	 ��� �
	 	 	 � ��� �	 � 	��
� 	 (4.7)

Irregular Repeat-Accumulate (IRA) codes [26] and serially concatenated shaping codes

are used as component codes in the proposed MLC architecture.

Serially concatenated shaping codes are used on the shaping levels (level 1 and 2).
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Each such code consists of a cascade of an outer encoder, an interleaver permuting the

outer codewords bits, and an inner encoder whose input words are the permuted outer

codeword. The outer is a non-linear code which gives the desired probabilities of "0" and

"1" bits. The overall code is designed according to [28]; that is, the outer code is chosen

to have largest possible ��������� , and the inner code is chosen to be a systematic recursive

convolutional code with maximum ���
	 , the minimum weight among all output sequences

corresponding to weight-2 input sequences. An iterative decoding algorithm is developed

and can offer superior performance.

4.3 Irregular Repeat-Accumulate (IRA) Codes

On the equiprobable level (level 0), we use a linear IRA code [26]. IRA codes are a gen-

eralization of the repeat-accumulate codes in [27]. They combine many of the favorable

attributes of turbo codes and LDPC codes. Like turbo codes, they can be encoded in lin-

ear time. Like LDPC codes, they are amenable to an exact Richardson-Urbanke style

analysis. The simulated results show that the performance is slightly superior to turbo

codes of comparable complexity, and just as good as the best known irregular LDPC codes.

Fig. 4.5 shows a Tanner graph of an IRA code with parameters ( � �	��
�
�
� ��� ��� ), where � � � �
,

� � � � � �
and � is a positive integer. A Tanner graph is a bipartite graph with two kinds

of nodes: variable nodes (open circles) and check nodes (filled circles). For a systematic

IRA code, the information nodes corresponding to the information bits, which are trans-
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mitted as part of the codeword. The remain codeword bits come from the parity nodes
� �

through
���

. If there are ; variable nodes on the left, called information nodes, there are

� � �$; � � � � � � � check nodes and � variable nodes on the right, called parity nodes. Each

information node is connected to a number of check nodes. The degree of a node is the

number of edges connected to it. The fraction of information nodes connected to
�

check

nodes is denoted � � , and � is the check degree, i.e., there are exactly � information nodes

connected to each check node. The value of a parity node is determined uniquely by the

parity-check equation, i.e., the mod-2 sum of the values of the variable nodes connected

to each of the check nodes is zero. This encoding algorithm has the recursive form, so the

encoding complexity is linear with the code block size. For the systematic IRA code, the

rate is

� ��� � � �
� 	 � � � � �

	
(4.8)

IRA codes admit an iterative sum-product message-passing decoding algorithm. All

messages are assumed to be in the form of LLRs. The outgoing message from a variable

node to a check node represents information about this variable node, and a message from a

check node to a variable node represents information about this check node. The outgoing

message from a variable node to a check node is the summation of the incoming message

from all neighbors except the targeted check node. And the outgoing message from a check

node to a variable node follows the tanh rule [26]. The permutation in the encoder is a kind

of interleaver; careful design of this permutation will lead to good decoding performance
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by increasing the girth (the minimum cycle length) of the Tanner graph and improving its

connectivity.

In [26], the fixed point analysis based on Gaussian approximation is used to design

the degree sequences
� �

of IRA codes with given rates, where
� �

is the fraction of edges

between the information and the check nodes that connect to an information node of degree

�
. With the

� �
, the fraction � � can be computed by � � � � � � � � � � � � �

�

�
� � � . This design

problem is converted to a linear programming problem. Given the maximum variable node
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degree � , the check node degree � and the target rate � , this linear programming will yield

good degree sequences such that the IRA codes have noise thresholds close to the Shannon

limit. The noise threshold is the maximum noise variance for which the code converges to

zero decoding errors when the code block size goes to � .

4.4 Non-Equiprobable Serially-Concatenated Code

4.4.1 Encoder and Decoder of Serially Concatenated Shaping Codes

U
k/p

o io U CC i

q/n
Outer Code Inner Code

Interleaver
N−bit

Figure 4.6: Encoder of Serially Concatenated Shaping Code

The structure of the serially concatenated shaping code is shown in Fig. 4.6. It consists

of the outer code with rate �
! � ; � � which is a non-linear block code, and an inner

systematic recursive convolutional code with rate �
� ����� � , joined by an interleaver of

length � bits. � must be an integer multiple of � and
�
.

The non-linear block code is encoded using a lookup table. Under a given rate, this

lookup table will give the desired probabilities � � and � � of binary bits. Also a large

minimum Hamming distance is desirable. The lookup table consists of selected codeword

sequences from a convolutional code. The construction procedure is:

1. Find all remerge paths of length � codeword bits. These remerge paths start and end
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at the same state. The quantity � is the length of the lookup table codeword and it

must be an integer multiple of the convolutional code’s output.

2. Select paths which will give the right probabilities � � and � � of the binary outputs.

It is guaranteed that the minimum Hamming distance of the lookup table is
 � � ��� of the

convolutional code. So we should choose the convolutional code with large
 ����� � . More

memories in the convolutional code gives larger
 � � ��� , but less paths starting and ending at

the same state of length � codeword bits. There is a tradeoff between minimum Hamming

distance and number of paths which will give the right probabilities. If the lookup table

gives the probability of bit "1" as � � , then the probability of bit "1" ���� at the output of the

inner code is:

� �� � � � � � 	 ����� � � � �	
	
�

	
(4.9)

where
�

is the number of systematic bits of the inner convolutional code and � is the num-

ber of output bits. Here we assume that the parity bits of the inner code are uniformly

distributed. Note that all code designs presented in this dissertation assume
� � ��� �

.

The block SISO (Soft-Input Soft-Output) is used within the iterative decoding algorithm

as shown in Fig. 4.7. The notations of
� �

and
� !

indicate input symbols of the inner

and outer code, and
� !

is the output symbol of the outer code. The input and output

extrinsic informations of SISOs are denoted by “I” and “O”. The SISOs exchange extrinsic

information about the inputs or codewords in the form of LLRs ( the
�

s). The interleavers

( � s) ensure that the extrinsic information input to a SISO is independent of the SISO’s
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Figure 4.7: Iterative decoder for serially concatenated shaping code uses SISO block for
the inner (i) convolutional code and outer (o) non-linear block code

estimate of the input or codeword bits.

4.4.2 SISO of Inner Convolutional Code

For the inner SISO, a MAP algorithm based on the convolutional code trellis is used. It

works at the symbol level, i.e. for our � � � � � convolutional code, it operates on informa-

tion symbols belonging to an alphabet with size *�� and on code symbols belonging to an

alphabet with size * ! . The log-likelihood ratio (LLR) for a symbol
�

is defined as [28]:

� � � � 
 ��� � � �
�
� � � � 
 �
� � � ����� � 
 � � 	 (4.10)

When
�

is a binary symbol, “0” or “1”,
� �����

is assumed to be the “1”. When
�

belongs to an

� � ary alphabet,
� �����

is chosen as one of the
�

symbols (we choose the all “1”s symbol).

Here, � � � � 
 � is given by (2.3) and (2.4). At time ; , ; � � � 
�
�
 �
	 , the output extrinsic
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LLRs are computed as [28]:

� * � � ��� � � ���� ���� � < � H � # 	 �
* � ��
��� � � ��� 	 � * 
 � � � � � � � 	�� * 
���� � � ����� 	 � � � � 	�� # (4.11)

where
� � � � and

� � � � are the information and code symbols associated to the edge � and� � � � � and � � � � � are the starting and ending states. The prior LLR of symbol U is denoted

by
� � � � , and � # are normalization constants. Note that, due to the non-linear outer block

code, the prior LLRs
� � � � seen by the inner code are not

�
. The quantities �

* � 
 � and � * � 
 �
in (4.11) are obtained through the forward and backward recursions, as

�
* � � � � ���� ���� ��� < � H � � 	 �

* � ��
��� � � ��� 	 � * 
 � � � � � � � 	 � * 
 � � � � � � ��� (4.12)� * � � � � ���� ���� � � < � H � � 	 � * � ��
� � � � ��� 	 � * � ��
 � � � � � � � 	 � * � ��
 � � � � � � ��� � (4.13)

with initial values

� � � � � � !""# ""$ � � �&% �
� � ' � � � �)( � � � � �+* � % � � � !""# ""$ � � �&% *

� � ' � � � �)( � � � 	
The operator � � � � performs the following operation:

���� �
�

� � �
� � � ���-, ��

�
� � �

� .�/ 	
(4.14)
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In order to perform bit interleaving, we need to transform the symbol extrinsic LLRs into

bit LLRs before they enter the de-interleaver. The bit LLRs need to be compacted into

symbol LLR’s before entering the inner SISO. These operations are performed under the

assumption that the bits forming a symbol are independent:

� � � � � � � � ���� �� � # � � � 
 � � � ��� � 	 � � � � � ���
� ���� �� � # � � � 
 � � � ��� � 	 � � � � � ��� � � � � � � � � � (4.15)

� � � � � ��
� � �

� � � � � � 	 (4.16)

4.4.3 SISO of Outer Non-linear Block Code

For the outer SISO, since the outer block code is non-linear, there is no trellis structure or

generating matrix that can be used. The bitwise LLRs are computed based on a lookup

table. For simplicity, we denote � � � 
�
�
 � * � ��� � * � ��
�
�
 �
�
�

as
���

; then the probability that the

; %
	 outer codeword bit � * is � � , given the extrinsic information from the inner SISO, is:

� � � * � � � � � �	
�
�
 �
�
� � � � � * � � � � ��� � � * �

� � � � � � * � � � � � * � � � � � * � ��� � � � ��� �
� � � � � � * �

� � � � * � � � � � * � ��� �
� � � * � � � � � � � � * � � � � ��� � � � � * � � * � � � � ��� �

� � � * � � � �
� � � � * � � � � � � �

� � � * � � � � * � � � � � * � � � � * �
� � � * � � ���

� � � � * � � � � � � � � � � * � � � � � * �
� � � * � � ���

	
(4.17)

48



Since the interleaver makes the
� �	
�
�
 �

� independent, the equality on the third line of (4.17)

follows from

� � � * � � � � � � � � * � � and (4.18)

� � � * � � * � � � � � � � � � � � * � � * � � � � � � � � * � � � � � * � � � � * �
� � � * � � � �

	
(4.19)

Hence, from (4.17),

� � � * � � � � � � � � � � � * � � � � � � 
�
�
 �
�
� � � � * � � ���

� � � * � � � � � * � 	
(4.20)

Using the result of (4.17), the extrinsic information of codewords is computed as :

�� * � � ��� � �
log

� � � * � � � � � � �
� � � * � 	 � � � � �

�
log

� � � * � � � � � � 
�
�
 �
�
� � � � * � 	 � � � * � � � � * � � ���

� � � * � 	 � � � ��
�
�
 �
�
� � � � * � � � � � * � � � � * � 	 ���

�
log

� � � * � � � � � � 
�
�
 �
�
�

� � � * � 	 � � � ��
�
�
 �
�
� � log

� � � * � � � � � * �
� � � * � 	 � � � * � 	 log

� � � * � � ���
� � � * � 	 ���

�
log

�
� � �

�
� � � � � � � � ��
�
�
 �

�
�

�
� � �

�
� � � � � � � � ��
�
�
 �

�
��� � * 	 log

� � � * � � ���
� � � * � 	 ��� � (4.21)

where � is the length of codewords in the lookup table. Since the interleaver is used,
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� � 
�
�
 �
� are independent. So

� � � � � � 
�
�
 �
�
� � ��

* � � � � �
* � � � 
�
�
 �

�
�

� � � * � � � � � * � � ��� �

� 	 � � �

� � � * � 	 � � � * � � �
� 	 � � �

	
(4.22)

The LLRs of input bits are computed as:

� * � � ��� � �
log

� � � * � � � � � �	
�
�
 �
�
�

� � � * � 	 � � � ��
�
�
 �
�
�

�
log

� � � # �
� � � � � � � � � 
�
�
 �

�
�

� � � # �
� � � � � � � � � 
�
�
 �

�
� � (4.23)

where,

� � � � � ��
�
�
 �
�
� � � � � ��� � �
����� � � � � � � � 
�
�
 �

�
� 	

(4.24)

If
� * � � ��� � � �

, we decode the information bit as
�
, otherwise

�
.

In order to speedup the decoding, a suboptimal search procedure is implemented as

follows:

1. Based on the extrinsic information LLR of codewords from Inner SISO, a codeword

is decoded by hard decision.

2. From the whole lookup table, select codewords whose Hamming distance with the

decoded codeword is no larger than � . A larger � gives more accurate decoding, but
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Figure 4.8: Encoders at each level for the rate 1 bit/symbol/Hz MLC

requires longer time. The selected codewords consist of a smaller subtable. In our

simulation, we use � � �
.

3. Compute the extrinsic information and LLRs as in (4.21) and (4.23) using the sub-

table.

4.5 Multi-Level Design Examples

In this section, we list the details for code designs of 1 bit/symbol and 0.5 bit/symbol.

4.5.1 Design Example at Rate 1 bit/symbol/Hz

As shown in Fig. 4.1, the partition gives the target multi-level code rate distribution as

(4.6), where the rate �
�

code is constructed by two codes with rates 0.5053 and 0.15427

respectively. Fig. 4.8 shows how the encoders work at each level, assuming the ideal rates

of (4.6).

� The output block length at each level is � .
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� At level 0, a linear code is used and the input block length is �
� � � with �

� �
�	 � �� �

.

� At level 1, a non-linear shaping code is used with output bit probabilities 0.683 and

0.317, and the input block length is �
� � � with �

� ���	
	
� 	 	
. There are

�	 � � � � �
“1” output bits and

�	 ���� � � “0” output bits. In practice, there may not be exactly

�	 � � � � � “1” output bits at this level. In this case, a small number of “0” or “1” bits

are coded with the wrong code. Because this number is small compared to the large

block size, the effect is negligible.

� At level 2, two non-linear shaping codes are used. One corresponds to level 1 “1”

bits and has �
� � � �
	 	 � 	��

and output bit probabilities 0.8878 and 0.1122. The input

block length is �
� � � �	
� � � � � and output block length is

�	
� � � � � . The other

code corresponds to level 1 “0” bits and has �
�� ���	 � 	 	 * and output bit probabilities

0.9733 and 0.0267. The input block length is �
�� � �	 �
��� � � and output block length

is
�	 ���� � � . Overall rate on level 2 is

�
	
� � � � �
� � 	 �	 ���� � �

�� ���
	 � ��� �
.

In our design, we use the following MLC rate distribution:

�
� � �

� � �
� ���	 * 	 	���� �
	 	 � � ��� �	 * 	 � 	
	 (4.25)

These rates vary from the ideal rates in (4.6), due to tradeoffs involved in achieving the

desired ring probabilities.
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Fig. 4.9 shows the code design details at each level.

P1

P1

P1

P1

level 2

level 1 π22/33 7/80.6691

21/68

16/136

IRA code Rate = 0.2449level 0
= 0.5

 = 0.6480

 = 0.8991

 = 0.9636

Figure 4.9: Code design example at 1 bit/symbol

� At level 0, a linear IRA code with rate 0.2449 is used. The IRA code is designed

with the maximum variable node degree of 34, and fixed check node degree of 3.

� At level 1, the inner code is a rate �� convolutional code with
 � � ��� � 	

and 4 memories

[11]. The lookup table of the outer code, which is constructed by 3 stages of the
� �� �

convolutional code with
 � � ��� � �

and 4 memories [11], gives the probability of

� � ���	
��� ��
; then the probability of “1” at the output of inner code is 0.6480.

� At level 2, there are two different shaping codes. One is constructed by 4 stages

of the
� ��

�
convolutional code with

 ������� � �
and 5 memories [11], which gives the

probability of � � � �
	 � ���� . The other is constructed by 8 stages of the same
� ��

�

convolutional code, which gives the probability of � � � �	 � � ���
. Both codes are
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decoded non-iteratively because of the larger Euclidean distance at level 2.

The final achieved ring probabilities are 0.5826, 0.3392, 0.0654 and 0.0128 from the

inner to the outer; the target probabilities are 0.60636, 0.30856, 0.07662 and 0.00846. The

average symbol energy of 6.4177 is a little higher than the target of 6.1622.

4.5.2 Design Example at Rate 0.5 bit/symbol/Hz

In our design, we use the following multi-level codes rate distribution:

�
� � �

� � �
� ���	 � *�* � * � �	
	 	 	�	 	 � �	 � 	 � ��	 	 (4.26)

These rates vary from the ideal rates in (4.7), due to tradeoffs involved in achieving the

desired ring probabilities.

Fig. 4.10 shows the code design details at each level.

� At level 0, a linear IRA code with rate 0.02202 is used. The IRA code is designed

with the maximum variable node degree of 2800, and fixed check node degree of 2.

� At level 1, the inner code is a rate
�
� convolutional code with

 ������� � 	
and 4 mem-

ories. The lookup table of the outer code, which is constructed by 3 stages of

the
������ convolutional code with

 ����� � � �
and 4 memories, gives the probability of

� � ���	 � � *�� ; then the probability of “1” at the output of inner code is 0.7692.

� At level 2, there are two different codes. One only uses shaping block code which is
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P = 0.94861

= 0.9847

= 0.7692

1

1
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21/42

19/323

18/288

Figure 4.10: Code design example at 0.5 bit/symbol

constructed by 18 stages of the
� �� � convolutional code with

 � � ��� � �
and 4 memories,

with an additional 35 ’1’s appended to each codeword, and gives the probability of

� � ���	 � � 	 � . Iterative decoding is not necessary due to the large SED between signal

points at this level. The other is a serially concatenated code. The inner code is a rate

������ convolutional code with
 ����� � � 	

and 4 memories. The look up table of the outer

code is constructed by 18 stages of the
� �� � convolutional code with

 ����� � � �
and 4

memories, which gives the probability of � � ���	 � � �� � .

The final achieved ring probabilities are 0.7574, 0.2189 and 0.0236 from the inner to

the outer; the target probabilities are 0.809123, 0.179967 and 0.01091. The average symbol

energy of 3.1820 is higher than the target of 2.3297.
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4.6 Code Search

In 0.5 bit/symbol code design, at level 1, we use a serially concatenated shaping code in

Fig. 4.10. To improve this code’s performance, there are two solutions. We can either max-

imize the minimum Hamming distance of the outer block code and the
 � � ��� of the inner

convolutional code, or decrease the convergence threshold. We found that more memo-

ries in the convolutional code gives larger
 ����� � , but less paths starting and ending at the

same state of length � codeword bits, and so there is a tradeoff between minimum Ham-

ming distance and number of paths which will give the right probabilities. Thus, there are

limitations when we seek the first solution.

U

U

U

U

0

1

n−2

2

PDD

A A10 AM−1 MA

B B B B0 1 M−1 M

Figure 4.11: An example of ��� � � � � �
convolutional systematic recursive encoder with

�
memories

When the Gaussian approximation technique is used to predict a code’s convergence
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threshold, then the convergence threshold can be used as a code search criterion. For level

1’s serially concatenated shaping code, since the outer block code is fixed, we can search

for inner convolutional codes with good convergence threshold to improve the performance.

Fig. 4.11 shows a rate � � � ��� � � systematic recursive convolutional encoder with
�

mem-

ories. The connections of the recursive part are denoted by � � � � �	
�
�
 ��� , with values
�

or
�
, and ��� is always

�
. The quantities

� � � � � 
�
�
 � � indicate the input connections to

the modulo-2 summers, with values between
�

and * ! � � . Since the outer block code is

fixed, its �
	����� / �
	 ����� � curve is also fixed as shown in Fig. 4.12. In practice, the curve

does not move very much at different
� � � � � . Given an inner convolutional code, we plot

its �
	����� / ��	�������� curve and check whether there is an intersection with the outer �
	����� /

�
	 ������� curve. The convergence threshold is the minimum
� � � � � under which there is no

intersection between the inner and outer codes’ �
	�� �� / �
	�������� curves.

All the connections in Fig. 4.11 are taken over GF(2). So for the case
� � 	

and

� � �
, all together there will * � 
 * ��� � � * � � possible codes. The following constraints are

applied to narrow the search space.

1. The recursive connections � � � � � 
�
�
 ��� � � can not all be zeros.

2. Each input should have at least one connection with the modulo-2 summer.

After applying these conditions, the total number of codes left in the search space is close

to the number � * � � ��� 
 � * � � � * � � 
 � � . This is still a huge search space.

The partial code search results for rate � ��� RCCC with 4 memories are listed in Table
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Figure 4.12: �
	����� / �
	�������� curves of outer and inner codes

4.2. We use the first code in our best simulation results. The last code was used in a

previous simulation done before the code search was performed.

4.7 Reduced-Complexity Code Search

To reduce the complexity of code searches for good high-rate � � � � � ���
convolutional

codes, we use the encoder construction techniques in [12]. Fig. 4.13 is the overall convo-
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Table 4.2: Top five codes for rate � ��� RCCC code search and their convergence thresholds

Connection Matrix Convergence Threshold
� � � � � � � � � �

� � � � � � �
�

�
� (

��
)

1 1 1 0 1 255 255 255 255 255 10.10
1 1 0 0 1 255 255 255 255 255 10.10
0 0 0 1 1 255 255 255 255 255 10.10
1 0 0 0 1 0 0 0 0 255 10.20
1 1 0 0 1 239 30 141 91 255 10.20

lutional encoder, which is composed of two constituent encoders: a rate � � � � � ; � block

encoder associated to the parallel edges, and a low-to-moderate rate �(; � ; � ��� convolutional

encoder that defines the dynamical part of the trellis, with additional � � ; ’0’s appended

to each codeword. The final output codeword is the modulo-2 summation of two length-n

codewords from the block code and the convolutional code. With this construction, the

polynomial generator matrix
� ��� �

is given by:

� ��� � �
���
�

��� � ��� �

� � � � ��� �

� ��
� �

where
��� � ��� �

is the ��� � ; � � � generator matrix of the constituent block encoder,
�

is a

�(; � ��� � ��� � ; � all-zero matrix, and
� � � ��� �

identifies the �$; � ��� � ; generator matrix

of the constituent convolutional encoder.

With the encoder structure in Fig. 4.13, we can use the following search procedure.

1. Search all rate ��� � � � ; � block codes with ��� � ! greater or equal to the maximum

� � ����� .
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Figure 4.13: The structure of the � � � ��� ���
convolutional code encoder

2. For each block code, search all rate �$; � ; � ���
RCCCs.

This procedure significantly reduces the search complexity, since it is somewhat split into

two simpler searches. In the code search for rate � ��� RCCCs with 4 memories, we pick

; � 	
, and the two constituent codes are a rate

	 ���
block code and a rate

��� 	
RCCC. To

have � � � ! � �
, in the

	 � 	
parity-check matrix of rate

	 ���
block codes, the vectors’ weights

should be at least 2. There are
� �

� 	 � �
� 	 � �

�
� � �

such vectors, and therefore
� �� � � 	 � *

parity-check matrices. The overall complexity is 462 systematic block codes times * � �

possible RCCCs, which is less than * � �
, and represents a factor of * � � of improvement with

respect to the direct search. One example of the code search is the following. The generator

matrix
� ��� �

is:

60



� ��� � �

���������������������������
�

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � ���

�
���
�
�
� �
�
� �

� �
�
� �
�
�
� �

� � � � � � � � � �
�
� �
�
�
� �
�

� �
�
� �
�
�
� �

� � � � � � � � ���
�
���
�
�
�

� �
�
� �
�
�
� �

����������������������������
�

where the upper
	 � �

submatrix describes the constituent block encoder and the
� � 	

lower

right submatrix defines the constituent RCCC encoder. The block code has � � � ! � �
. The

equivalent systematic encoder
� � � � ��� �

is obtained by multiplying
� ��� �

by the inverse

matrix of the left � � � submatrix of
� ��� �

, then

� � � � ��� � �

���������������������������
�

� � � � � � � � � �
�
� �
�
�
� � �

� �
�
� �
� �

� � � � � � � � � �
�
� �
�
�

� �
�
� �
� �

� � � � � � � � � �
�
� �

� �
�
� �
� �

� � � � � � � � � �
�
� �
�
�

� �
�
� �
� �

� � � � � � � � �
�

� �
�
� �
� �

� � � � � � � � � �
�
� �
�
�
� �
�
� �

� �
�
� �
�
�
� �

� � � � � � � � ���
�
���
�
�
� �
�

� �
�
� �
�
�
� �

� � � � � � � � ���
�
���
�
�
�

� �
�
� �
�
�
� �

� ��������������������������
�
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In the code search, we use the constraint condition that no numerator and denominator in

the right column of
� ��� � cancel out. The codes searched under this condition have lower

error floors.

To speed up the code search, we use the Dual-MAP algorithm for high-rate convo-

lutional codes [43] to decode the inner convolutional code. This Dual-MAP algorithm

reduces the computational complexity by using reciprocal dual convolutional codes, since

the number of codewords to consider is decreased for codes of rate greater than
��� * . For

a rate � � � ��� � � RCCC, there are * ! � � possible codewords at each state, while its dual

code has rate
��� � and only 2 possible codewords at each state. The number of trellis states

for the original � � � ��� � � RCCC is same as for its dual code. Thus when � is large, the

computational complexity is reduced exponentially by using the Dual-MAP algorithm.

The dual convolutional code
���

of a rate � ��� ��� � � convolutional code
�

consists of all

code sequences � � ��� �
orthogonal to all code sequences � ��� ��� �

.
���

is a rate
��� � convo-

lutional code generated by any generator matrix � ��� �
with the property

� ��� � � � ��� � ���
.

The generator matrix of a reciprocal convolutional code �� is obtained by substituting � � �

for � in
� ��� �

and by multiplying the � th row,
� � � � ��� �

, of the resulting matrix with

��� < �
H
, where �
� � � is the degree of the � th row of

� ��� �
. Then, a sequence �� ��� �	� �� is

equal to the time-reversed sequence � ��� � � � .

An example of a rate * ��� convolutional code
�

is described by the polynomial generator

matrix
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� ��� � ��� � �
���
�
� � �� � � � � �
� � � � � �� � � � � �

����
� 	

The rate
� ���

dual code
���

is encoded by

� ��� � � �
� � 	 � � � 	 � 	 � � � 	

Hence, the reciprocal dual code �� � has the generator matrix

�� ��� � � �
� � � 	 � � � 	 � 	 � � � 	

The bit-wise MAP decoding for high-rate � � � � � � � convolutional codes using its re-

ciprocal dual code is described by the following equations. The LLR of the � th bit is given

by

� � �� � � � � � � � � � � � 	 � � �
� � � � �� � � � � � ��� ��� < � � H � % � ��� � �� % � � � ��� � � � � � % � � � � � �

� � � � �� � � � � � ��� ��� < � � H � % � ��� � � � ��� ���
	��� < � ��� � � H �� % � � � ���	� � � � � % � � � � � � �
(4.27)

where

� % � � � � � � �
� � � ��� < � H � % � � � � 
 � % � � � � � � � � � � � � � �

(4.28)

� % � � � � � � �
� � � ��� < � H � % � � � � 
 � % � � � � � � � � � * � � � � (4.29)

� % � ���	� � � � � ! � ��
� � �


 tanh � � � � % ! � � � � % ! � � � � * ��� � � < � � � � � H � (4.30)
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�� % � � � ���	� � � � � ! � ��
� � � � � �� � � % !


 tanh � � � � % ! � � � � % ! � � � � * ��� � � < � � � � � H 	 (4.31)

The notations of
%

� � � � and
% � � � � describe the possible transitions between a state �

and another state within one trellis stage. To be specific,
%

� � � � contains the starting states� � such that the transitions � � � � exist whereas
% � � � � is the set of destination states � �

within reach from state � (transition � � � � ). Bit associated with transition � � � ��� are

combined in the � � tuple � � � � � �	����� � ��
�
�
� � ! � � � ��� � � � � � . The time index
�

indicates the trellis

stage, and there are totally � stages.

The reduced complexity code search results for rate � ��� RCCC with 4 memories are

listed in Table 4.3. All these codes are searched with the block code having the following

generator matrix:

� ��� � �

���������������
�

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� ��������������
�

We note that all five of the top codes in Table 4.3 have slightly smaller (and hence

better) convergence threshold than the top codes in the larger code search results shown in

Table 4.2.
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Table 4.3: Top five codes for rate � ��� RCCC reduced complexity code search and their
convergence thresholds

Connection Matrix Convergence Threshold
� � � � � � � � � �

� � � � � � �
�

�
� (

��
)

0 1 1 1 1 61 239 30 85 153 10.06
0 1 0 0 1 75 164 61 135 85 10.06
1 0 1 0 1 35 75 164 75 153 10.08
1 1 0 1 1 153 210 204 239 35 10.08
0 1 1 0 1 241 239 30 204 85 10.08
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Chapter 5

Simulation Results

5.1 Simulation Results for ���������
	��� at Rate 1 bits/symbol/Hz

The simulation results for 1bit/symbol multi-level coding for AWGN channel with Tikhonov

phase error for
� � � � �	 ��

are shown in Fig. 5.1. The bit error rate curve for the non-

equiprobable multi-level codes is about 1.1 dB away from non-equiprobable constellation-

constrained capacity at � � � � � ��� , which outperforms the comparable iteratively decoded

equiprobable code by 1.70 dB. The block length used in the non-equiprobable MLC is

� � * 	 � � 	 � . We set the maximum number of iterations on level 0, level 1 and level 2 to

be 200, 30 and 1 respectively. (Recall level 2 uses non-iterative decoding for 1 bit/symbol.)

The equiprobable code is constructed by multi-level codes using IRA codes as component

codes, using the BPSK constellation of Fig. 2.2 with the same ring radii but equiprobable

rings. According to the capacity rule of MLC, the rate of each level of the equiprobable
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MLC is chosen as:

�
� � �

� � �
� � �	 � 	 	 	 ��� � �	 � � � � 	 � � �	 ��� * �����	 (5.1)

The average power of this equiprobable MLC is 26.1216. In the simulation, the block

length � is set to be 240059 and the maximum number of iterations is 350.
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Figure 5.1: Simulation results for 1bit/symbol multi-level coding for AWGN channel with
Tikhonov phase error for

� ��� ���	��
�
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5.2 Simulation Results for ���������
	��� at Rate 0.5 bits/symbol/Hz

The simulation results for 0.5bit/symbol multi-level coding for AWGN channel with Tikhonov

phase error for
� � � � �	 ��

are shown in Fig. 5.2. The bit error rate curve for the non-

equiprobable multi-level codes, which is marked with � is about 1.58 dB away from con-

stellation capacity at � � � � � ��� . It outperforms the equiprobable constellation-constrained

capacity by 0.33 dB, and shows that no equiprobable code can beat our codes, since

our codes’ operation points are below the equiprobable constellation-constrained capac-

ity. The computation of the equiprobable constellation-constrained capacity assumes that

three rings are equiprobable with
� ���

probability on each ring, and the points on each are

also equiprobable. The block length used in the non-equiprobable MLC is � � � 	 � � �* .

The maximum number of iterations on level 0, level 1 and level 2 is set to be 300, 35 and 1

respectively.

The bit error rate curve with � markers is about 0.2 dB better than the one marked by ' .

This 0.2 dB gain comes from two parts. One is due to the power savings; by redesigning

the non-linear lookup tables on level 1 and level 2, which give the probabilities closer to

the desired ones, we get about 0.072 dB power savings. The other is the code search for

the RCCC on level 1 with better convergence thresholds. The convergence threshold of the

new RCCC used on level 1 is improved by 0.10 dB. At level 0, a low rate IRA code is used.

A low rate Turbo-Hadamard code introduced in [44] might be a possible alternative to our

low rate IRA codes.
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Figure 5.2: Simulation results for 0.5bit/symbol multi-level coding for AWGN channel
with Tikhonov phase error for
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Chapter 6

Conclusion

This dissertation has presented a new multi-level coding architecture for the AWGN chan-

nel with Tikhonov phase error. The architecture employs multi-ring PSK constellations

with non-equiprobable rings; the ring-radii and probabilities are chosen to closely ap-

proximate the capacity-achieving PDF for this channel. To handle the non-equiprobable

rings, new serial concatenated binary-input binary-output codes with non-equiprobable

output bits have been developed. The performance of the new MLC scheme on the 1

bit/symbol/Hz AWGN/Tikhonov channel with
� �������	��
�

is only
� 	 �

dB from constellation-

constrained capacity, and is significantly better than a comparable equiprobable MLC. At

0.5bit/symbol/Hz, our MLC performance is about 1.58 dB away from constellation capac-

ity, which outperforms the equiprobable constellation-constrained capacity by 0.33 dB. It

indicates that no equiprobable code can beat our codes, since our codes’ operation points

are below the equiprobable constellation-constrained capacity. The non-equiprobable MLC

architecture demonstrated in this dissertation has applications not only to AWGN/Tikhonov
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channel, but also to other important communication channels whose capacity-achieving

PDFs are DAUP and can also be approximated by multi-ring PSK.

In this dissertation, another significant work presented is the Gaussian Approximation

technique for parallel concatenated turbo-coded modulation which is used to predict the

convergence threshold; this technique can be applied to any bit-interleaved Turbo-TCM

system.

As for the MLC coding, an important open problem to be solved is to design non-linear

non-equiprobable binary codes with algebraic structure and good distance properties, and

with low encoding and decoding complexity. This would eliminate the need for lookup

tables; we could use much longer and more powerful codes.
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Appendix A

PEP Computation Using SED Metric

For the AWGN channel with moderate Tikhonov phase error, e.g.
� ��� � �	 ��

, the VA

simulation based on the SED metric has a 2 dB loss compared to that of the ML metric.

Nonetheless it may be desirable to use the SED decoding metric due to its lower compu-

tational complexity, or to ensure backward compatibility with a pre-existing decoder. The

PEP based on the SED metric can be considered as the code design criterion on such a chan-

nel. In [21], the CLT approximation was used to derive the SED-based PEP for M-PSK

constellations, with an upper bound given for the case � � �
. The following derivation

gives an exact expression when � � �
, and a CLT approximation for � 
 �

; both cases

are valid for arbitrary constellations.

A.0.1 Exact PEP Computation for Length
�

Sequence

Fig. A.1 is a vector diagram of the transmitted and received complex symbols
�

and � .
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Figure A.1: Vector diagram

Let vector � be

�
� � � � � � 
 � � � � 	 �

��� ��� � � 
 �

� � ��
 � � 	 � � � ��� � � � � � � � � � ��� � � 	 � ��
 � � 	 � � � ��� � � � ��� 	 � � � ��� � � �
where � � � � 	 � � � is the unit vector � �

�� � �� �� � � � . Conditioned on � , the PEP is

� � � �
�� � � � � � ��� 
 � � � �� �

*
� � (A.1)
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and � is a Gaussian r.v. with mean � and variance  � , where

� � � � � � � � � �� � � � �� �� � � � 
 � � ��� � � � � ��� � � � � ��� � � 	 �� � � � �� �� � � � 
 � � ��� � � � � � � 	 � � � ��� � � � (A.2)

 � � � 
 � � ��� � � � � � � � � 
 � � � � 	 � �� � 
 � �� � � � � � * 	 (A.3)

Then

� � � �
�� � � � � �

� * �
� ���

�

� �
��� 	
	�� � � � �

�
� ��� ��� � �

� � � � �
� ��� � � � �� �

� * � � �� *
� � ��� � (A.4)

and

� � � �
�� � � ���

� � � � � � � �� �
� * � � �  *

� � � � ����� ��� �
* ��� � � � � � �

	
(A.5)

A.0.2 Exact PEP Computation for Length � Sequences

Let
� �

and
�� �

denote two complex symbol sequences of length � . Since the successive

� � and � � are independent, the PEP is

� � � �
�

�� � � � ���
� � ���

� � 
�
�
 ���
� � ��� � � � � �

�� � � �
� * � � �  *

� � ��� ����� ��� � �
* ��� � ��� � 
�
�


����� ��� � �
* � � � � � � � � � 
�
�
 � �

�
(A.6)
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where

� � �� � � � �
�� � � �

�
�
� � �


 � � � � ��� � � � � � � � � � � � � ��� � � � � �� � � � � � � �

	 � � � � ��� � � � � � � � 	 � � � � � � � � � � �� � � � � � � � � 	 (A.7)

As computation of the � -dimensional integral (A.6) is impractical for large � , we derive

a CLT approximation in the next subsection.

A.0.3 Approximate PEP Computation for Length N Sequences Using the Central

Limit Theorem

Conditioned on � � � � � 
�
�
 � � , the PEP is

� � � 
 � � * � � ��� � � 
�
�
 � � � (A.8)

where � � � � � � �
�� � � � and � is the Gaussian r.v. [21]:

�
� �

�

�
�
� � � �

�� � � � � � � � � � � 	
�
�

�
�
� � � �

�� � � � � � � � � � �

	
�
�

�
�
� � � �

� � � ��� � � � � � � � � � � � � ��� � � � � �� � � � � � � �

	
�
�

�
�
� � � �

� � � ��� � � � � � � � 	 � � � � � � � � � � �� � � � � � � � 	 (A.9)
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We note that

�
�
*
� �

*

�
�
� � ��� �

�� � � � � � � � � 	 � �� � � � � � � � � ��� � (A.10)

so that

�
*
� �

* �

�
�
� � � � � �� � � � 	 � � � � � � * � �� � � � � � 	 �� � � � � � � � 	 (A.11)

Rearranging the inequality � 
�� � by using (A.11) gives:�
�
� � �

�� � � � � � �
� � � � 	

�
�
� � �

�� � � � � � �
� � � �



�
* �

	 �
�
� � �


 � �� � � � � � � � � � � 	 *

�
�
� � �


 � �� � � � � � � �� � � � � � � � ��� � � �
� *

�
�
� � �


 � �� � � � � � � � � � � 	 � �� � � � � � � � � � � � ��� � � � ��	 (A.12)

For simplicity, we rewrite the probability equation as:

� ��� 
 � � * � � � � � �
�
�
 � � � � � �
� � 


�
* � � � � � � �

� � * � � � (A.13)

where

� �
�

�
�
� � �

�� � � � � � �
� � � � 	

�
�
� � �

�� � � � � � �
� � � � 	 (A.14)

In (A.13) and (A.14), � � is a Gaussian r.v. with zero mean and variance
� �
� and � is a r.v.

76



given by:

� �
�
�
� � �

� � 	 *

�
�
� � �

� � � ��� � � � *

�
�
� � � �

� � � � � �

� � � � �� � � � � � � � � �
� � � �� � � � � � � �� � � � � �

� � � � �� � � � � � � � � � � 	 � �� � � � � � � � � � � 	 (A.15)

If the error sequence is long enough, the random variable � can be approximated by a

Gaussian random variable according to the central limit theorem [21], with mean

� �
�

�
�
� � �

� � 	 *

�
�
� � �

� 
 � � � � � � � � � *

�
�
� � �

� 
 ��� � � � � � �
�

�
�
� � �

� � � * � � � �
�

� � � � �
�
�
� � � �

�
(A.16)

where
� 
 � � � � � � � �

and
� 
 ������� � � ��� � < � H� � < � H . The variance of � is

 �� � � 
 � � � � �
� � �

� �
�
� � * �

�
� � �

� � � � � � � � *

�
�
� � � �

� ��� � � � 	 * � � ���
�

� � ��� �
�
�
� � � �

� � � ��
� 	

�
�
� � �

� 
 � � � � � � � � �� 	 	
�
�
� � �

� 
 ��� � � � � � � �� � 	 � �� ��� �
� �� ��� �

�
�
� � � �

�� 	
(A.17)
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Since � is approximated by a Gaussian r.v. the PEP for length-N sequence is simplified as

� � � �
�

�� � � � � �
� �

� �
� � 
 �

* � � � � � � � �
� � �

� �
� � �

� � * � � � � � � � � � (A.18)

where � � � � is the Gaussian PDF with � � and  �� given in (A.16) and (A.17).
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