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SAND STATE AND PERFORMANCE ANALYSIS OF MICROPILES 
 

Abstract 

 
by SHANZHI SHU, Ph.D. 
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December 2005 

 
 
 
 

Chair: Balasingam Muhunthan 

 

The incomplete description of the state of sand in current micropile design and 

past full scale tests have resulted in a number of anomalous results.  A state dependent 

bounding surface sand constitutive model within the framework of critical state soil 

mechanics is formulated here. The constitutive model is coded with C++ and 

implemented into the finite difference geotechnical software FLAC3D.  The model and 

its implementation are verified by using laboratory triaxial tests on Toyoura, Ottawa, and 

Fontainbleau sands. 

The performance of single, vertical group, and inclined network piles installed in 

sands with different initial state is studied systematically using the state dependent 

constitutive model.  The finite difference grid in FLAC 3D for pile arrangement with the 

state dependent sand model was first validated using a full scale test on a micropile group 

on Fontainbleau sand.  The FLAC3D model was then used to study the effect of key 

variables that control the performance of micropiles. 

The results show that the side resistance of micropiles is influenced by the initial 

normal stress applied to the pile and its positive increment by shear induced dilation of 
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dilative sand and negative increment due to contraction of contractive sand. The load 

transfer in a group of piles is controlled by two mechanisms: one due to overlap of 

stresses induced by adjacent piles, and the other due to dilatancy. Overlap of shear 

stresses as determined by pile spacing might lead to a positive group effect on side 

resistance. Shear induced dilation in dilative sands contributes to a positive group effect 

on side resistance in bored piles with well developed interfaces; however its effect is 

negative for contractive sand. Both mechanisms contribute positively to the group effect 

on tip resistance. The studies also show that the effect of inclination on pile resistance is 

affected by the sand state. When considered as structure elements, outward inclined 

network pile groups have higher resistance than inward inclined pile groups. 
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CHAPTER 1 
 

INTRODUCTION 
 
1.1 General 

 Bridges, road embankments, and viaduct infrastructure require sound performance 

of deep foundations. The increase in static and seismic loading demands imposed by 

codes in recent years has resulted in the need to retrofit many of the existing deep 

foundations.  The selection of the type of retrofit is often influenced by site constraints 

such as limited access, overhead clearance, proximity to sensitive facilities, and the 

presence of hazardous materials in soils.   

 Micropiles are increasingly being used to retrofit deep foundations.   This is due 

in part to their small boring diameter, which allows their construction with smaller 

equipment than those used for traditional piles. Micropiles can also be installed in almost 

any ground condition (Mascardi, 1982).  In the current state of practice, micropiles are 

often installed in a group pattern with vertical elements.  Installation of micropiles in a 

network pattern with some or all inclined members has also been advocated (Lizzi, 

1982).  

 Experimental results of laboratory and full-scale experiments reported by various 

investigators indicate significantly different and apparently contradictory group effects on 

micropile as well as conventional pile systems (Lo, 1967; Vesic, 1969; O’Neil, 1983; 

Lizzi and Carnevale, 1979; Plumelle, 1984; and FOREVER, 2002). Lizzi and Carnevale 

(1979) showed a dramatic positive group effect (220%) on the capacity of reticulated 

micropile networks over those vertically installed micropile groups with the same number 

of piles with identical dimensions. This dramatic increase was not observed by other full-
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scale experiments conducted to reexamine the results of Lizzi (FOREVER 2002).  Many 

past field experiments on displacement piles have also shown positive as well as negative 

effects on bearing capacity (Bustamante & Gianeselli, 1993; Brown & Drew, 2000; 

NeSmith, 2002).   

It is believed that the disagreements described above on the behavior of group and 

network piles are in part due to not accounting for the state of sand in the different test 

programs and in the interpretation of their results.  Most full-scale tests replicate the sand 

with its field relative density (or the void ratio).  Such replication is insufficient to 

account for the important effects of confinement stress and the fabric of sand (geometric 

arrangement of particles and voids).  The manner and installation of micropile elements 

would affect the existing state of sand.  Thus, it would be difficult to compare the results 

of laboratory and full-scale experiments from a unified perspective, without accounting 

for the state of sand.  

Numerical analysis is an effective way to study the behavior of micropiles as, 

once a model is verified, conditions can be changed with little effort to conduct a 

parametric study on the system variables.  Foerster and Modaressi (1995), Estephan and 

Frank (2001), Sadek (2002), and Sadek & Shahrour (2004) have performed numerical 

analyses of micropiles under various conditions.  Most of them have, however, not 

focused on the effects of sand state on the performance of a micropile, group, or network.  

A constitutive model with explicit accounting of the soil state is needed in order 

to numerically analyze soil resistance to micropiles under different initial soil states. The 

concept of critical state (Roscoe et al., 1958) has been successfully applied to modeling 

the behavior of cohesive soils. However, many studies have shown that it is very limited 



 3

for applications in sand because, unlike clay, sand does not possess a unique relationship 

between the void ratio e and effective confining pressure p for a particular stress ratio 

η=q/p  in triaxial testing (Manzari and Dafalias 1997).   

A comprehensive bounding surface sand model has been formulated within a 

critical-state framework by Li (2002).  The state parameter ψ  (Been & Jefferies, 1985) 

expressed as the difference between the current void ratio and the void ratio at the critical 

state at the same confining pressure was explicitly incorporated into this model.  The 

model assumes the dilatancy of a granular soil to be dependent not only on the stress ratio 

η=q/p, where q and p are the deviatoric and mean effective normal stresses respectively, 

but also on the state parameter. It has the potential to capture the effects of sand state on 

the performance of micropiles. 

This study uses the widely used commercial 3-dimensional geotechnical software 

FLAC3D developed by HC Itasca to study micropile and group network performance.  

The user interface feature of FLAC3D is used to incorporate the state based constitutive 

sand model. 

1.2 Objectives and Scope of Study 

The objectives of this study are to: 

1. Formulate a state parameter based constitutive model for sand behavior. 

2. Implement the constitutive model into FLAC3D.  

3. Verify the model using laboratory element and model tests on micropiles, and 

4. Use the FLAC3D model to investigate the effects of sand state on the 

performance of single, group, and network micropiles. 
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1.3 Organization of the Thesis 

Chapter 2 presents a review of the current state of performance of micropiles. 

Classification and the type of applications of micropiles are reviewed. Previous results 

Studies on group effect of micropiles and piles conducted by are summarized. The review 

also includes the state of research on network effects and displacement effects of 

micropiles. 

The basic framework of critical state soil mechanics is briefly presented in 

Chapter 3.  Concepts such as the critical state, dilative, and contractive behavior and state 

parameter are introduced.  The relationship between resistance of piles and state 

parameter of sand are discussed. 

Chapter 4 presents details of the state parameter based model formulated in the 

study.  It is a critical state soil mechanics based bounding surface sand model (Li & 

Dafalias, 2000; Li, 2002).  The basic features of the bounding surface plasticity theory 

and an early version of the model is presented in Appendix A.  Chapter 4 is completed 

with the presentation on the determination of the model parameters. 

  The implementation of the constitutive model into FLAC3D is detailed in 

Chapter 5. The Explicit, Dynamic Solution (EDS) scheme used in Itasca series software 

is introduced. The mechanical time step for numerical stability and mixed discretization 

technique are presented as well.  The procedures of implementation of the model into 

FLAC3D are provided. The listing of the constitutive code in the C++ language is 

provided in Appendix B. 
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The verification of the FLAC3D model is presented in Chapter 6.  The model is 

used to simulate element test results in the laboratory as well as the load displacement 

characteristics of a model test conducted by the FOREVER program. 

FLAC3D with the new constitutive model is used in Chapter 8 to simulate the 

state dependent performance of micropiles under vertical load. The analyses are 

subsequently extended to study the effect of spacing and initial state on the performance 

of groups of piles and network groups of piles. 

A summary and findings of the study as well as some recommendations for 

further research are presented in Chapter 8.   
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CHAPTER 2  

MICROPILES:  STATE OF PERFORMANCE 

2.1 Micropiles 

Micropiles are defined as small diameter, drilled, cast-in-place, or grouted piles 

that are typically reinforced.  It is widely assumed that the range of diameter of 

micropiles is limited to less than 300 mm. 

Micropiles can withstand axial and/or lateral loads, and may be considered as a 

substitute for conventional piles or as one component in a composite soil/pile mass, 

depending upon the design concept employed.  Due to its relatively large flexibility, it 

can be effective in resisting seismic loads.  Construction of micropiles is less limited by 

site conditions, so they can be effective for underpinning. 

Most of the applied load on conventional cast-in-place replacement piles is 

structurally resisted by the reinforced concrete; increased structural capacity is achieved 

by an increase in cross-sectional and surface areas. Micropiles, by comparison, 

structurally derive a large portion of their stiffness and strength from high capacity steel 

reinforcement elements, which may occupy as much as 50% of the bore volume (Misra & 

Chen, 2004). The special drilling and grouting methods used in micropile installation 

allow for high grout/ground bond values along the interface. The grout transfers the load 

through friction from the reinforcement to the ground in the micropile bond zone in a 

manner similar to that of ground anchors.  Due to the small pile diameter, the end-bearing 

contribution in micropiles is generally neglected. Primarily, the ground type and grouting 

method used, i.e., pressure grouting or the gravity feed, influences the grout/ground bond 
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strength achieved. The role of the drilling method is also influential, although less well 

quantified (Sharma, 2001). 

A major advantage when using micropiles for underpinning is that the system can 

be designed to have very low settlements. The earliest piles were constructed with 

diameters of 100 mm and they were tested to loads of more than 400 kN with no record 

of grout-ground interfacial failures (Bruce et al. 1995). It is common for these piles to 

develop settlements on the order of a few millimeters or less under working loads.  Under 

these conditions, its bearing capacity is not fully mobilized (Ellis 1985).  Another 

advantage when using micropiles for underpinning is that the drilling and grouting 

procedures used to construct a micropile induces much less vibration and reduces adverse 

effects to a structure compared with other conventional pile installation techniques. 

Micropiles can be installed with as little as 1.5 m headroom if casing for drilling is used 

in short segments that can be screwed together (Ellis 1985) 

Primary applications of micropiles can be classified into two main categories: 

A. As Structural Support 

• Foundation for new structures 

• Seismic retrofitting  

• Underpinning of existing foundation 

• Repair / Replacement of existing foundations  

• Arresting / Prevention of movement  

• Upgrading of foundation capacity 

 
    B. For In Situ Reinforcement 

• Embankment, slope and landslide stabilization  

• Soil strengthening and protection  
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• Settlement reduction  

• Structural stability. 
The current micropile classification system is based on two criteria: i) philosophy of 

behavior (design) and ii) method of grouting (construction). The philosophy of behavior 

dictates the method employed in designing the micropile. The method of grouting defines 

the grout/ground bond capacity, which is generally the major constructional control over 

pile capacity. 

Design philosophy 

The design of an individual or group of micropiles differs greatly from that of a 

network of closely spaced reticulated micropiles. This led to the definition of CASE 1 

micropile elements, which are loaded directly and where the pile reinforcement resists the 

majority of the applied load (Figure 2-1). CASE 2 micropile elements circumscribe and 

internally reinforce the soil to make a reinforced soil composite that resists the applied 

load (Figure 2-2).  

CASE 1 micropiles can be used as substitutes for more conventional types of piles 

to transfer structural loads to a deeper, more competent or stable stratum. Such directly 

loaded piles, whether for axial or lateral loading conditions, are referred to as CASE 1 

elements.  The load is primarily resisted structurally by the steel reinforcement and 

geotechnically by the grout/ground bond zone of the individual piles. At least 90 percent 

of all international applications to date, and virtually all of the projects in North America 

have involved CASE 1 micropiles.  Such piles are designed to act individually, although, 

they may be installed in groups. 

The remaining applications involve networks of reticulated micropiles as 

components of a reinforced soil mass, which is used for stabilization and support. These 
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micropiles are referred to as CASE 2 elements. The structural loads are applied to the 

entire reinforced soil mass, as opposed to individual piles. CASE 2 micropiles are lightly 

reinforced because they are not individually loaded as CASE 1 elements. They serve to 

circumscribe and then to internally strengthen the reinforced soil composite.  Note that 

the description of CASE 1 and 2 is not complete.  There are a number of cases where a 

combination of the two cases will be necessary to describe a micropile group (Pearlman, 

et al, 1992). 

Method of Grouting 
 

The micropile classification based on the method of grouting consists of a letter 

designation (A through D) based primarily on the method of placement and pressure 

under which grouting is used during construction (Juran et. al, 1999).  The classification 

is shown schematically in Figure2-3. 
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Figure 2-1.  CASE 1 Micropiles (directly loaded) (Sharma, 2001)  
 

 
Figure 2-2.  CASE 2 Micropiles % Reticulated Pile Network with Reinforced Soil Mass 
Loaded or Engaged (Sharma, 2001) 
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Type A: The type A classification indicates that grout is placed under gravity head only. 

Sand-cement mortars, as well as neat cement grouts, can be used because the grout 

column is not pressurized. The pile hole may be underreamed to increase tensile capacity, 

although this technique is not common or used with any other pile type. 

Type B: Type B indicates that neat cement grout is placed into the hole under pressure as 

the temporary steel drill casing is withdrawn. Injection pressures typically range from 0.5 

to 1 MPa, and are limited to avoid hydro fracturing the surrounding ground or causing 

excessive grout takes, and to maintain a seal around the casing during its withdrawal, 

where possible. 

Type C: Type C indicates a two-step process of grouting: 1) neat cement grout is placed 

under gravity head as with Type A, and 2) prior to hardening of the primary grout (after 

approximately 15 to 25 minutes), similar grout is injected one time via a sleeved grout 

pipe without the use of a packer (at the bond zone interface) at a pressure of at least 1 

MPa. This pile type appears to be used only in France, and is referred to as IGU 

(Injection Globale et Unitaire). 

Type D: Type D indicates a two-step process of grouting similar to Type C with 

modifications to Step 2. Neat cement grout is placed under gravity head as with Types A 

and C and may be pressurized as in Type B. After hardening of the initially placed grout, 

additional grout is injected via a sleeved grout pipe at a pressure of 2 to 8 MPa. A packer 

may be used inside the sleeved pipe so that specific horizons can be treated several times, 

if required. This pile type is used commonly worldwide, and is referred to in France as 

the IRS (Injection Répétitive et Sélective). 



 12

 
 

Figure 2-3.  Micropile Classification Based on Type of Grouting (Sharma, 2001) 
 

2.2 Performances of Micropiles 

2.2.1 Group and Network Effects 

Micropiles support loads individually, as a group, or as a network. In cases of groups 

and networks, the micropiles and the surrounding soil will form a composite block to 

resist the applied loads. This may lead to a group capacity or network capacity that is 

different from the total capacity of individual piles consisting of the group or network. As 

structural elements, micropiles are considered as equivalent to conventional piles. Thus, 

the group effect on micropile performance can be examined by observing conventional 

piles.  

The group effect of piles in granular soil has been studied by many researchers. The 

results have been inconsistent and a plausible explanation has not been made up to now.  
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In the study piles under vertical loading, a parameter termed as efficiency is often used to 

evaluate the group effect: 

s

g

nQ
Q

=η        (1-1) 

where η is the number of group piles, Qg is the capacity of the group piles, and Qs is the 

capacity of a reference pile that is identical to a group pile but is isolated from the group. 

The group effect is called positive if 1>η  and negative if η < 1. 

 Lo (1967) presented group efficiencies of piles versus spacing under different 

numbers of micropiles in the group, sand density, and micropile roughness, which were 

measured by different researchers. The results are shown in Figure 2-4, where it can be 

found that the group effect is not consistent, but most of piles present positive group 

effect. 

 Vesic (1969) presented group efficiencies against pile spacing for different pile 

numbers in the group (Figure 2-5). All tested piles presented positive group effects, 

however, unfortunately density states of the sand are unknown for the tests. 

 O’Neil (1983) made a comprehensive study of the behavior of pile groups under 

axial loading. Figure 2-6 shows a compilation of results of reduced scale model tests 

where piles were driven into friction soils. It was concluded that, for loose soils, the 

efficiency coefficient of the group is always higher than 1 and reaches a maximum for 

spacing of S/B=2. The coefficient also increases with the number of piles. On the other 

hand, for dense soils, with a spacing 2<S/B<4 (typical case) the efficiency coefficient is 

slightly greater than unity, as long as the piles are installed without boring or injection. 
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     Lizzi & Carnevale (1979) and Lizzi (1985) reported some model test results of 

group effect on micropiles on coarse sand. The layout of the test is indicated in Figure 2-

7. The experimental program consisted of four series of tests, with piles length of 

50,100,150, and 200 pile diameter, respectively. Each series consisted of 6 groups of 3 

piles each, spaced at 2 to 7 diameters, plus additional single piles. The results of the tests 

are as summarized in the Figure 2-7. It can be seen that for spacing between 2 and 7 

diameters, the load bearing capacity of the piles in groups is higher than the load bearing 

capacity of a single pile. 

 Another result of model tests reported by Lizzi is on the added beneficial 

‘network effect’ for a reticulated pali radice micropiles. Tests were carried out on three 

groups of piles: one formed by three vertical piles, spaced at 17.5 diameters; the second 

formed by 18 vertical piles, spaced at 7 diameters; and the third formed by 18 piles again 

spaced 7 diameters, but arranged in a basket like network (Figure 2-8). Assuming the 

value of load bearing capacity for a pile belonging to group No. 1 as 100% (widely 

spaced piles), the efficiency of group of 18 vertical piles was 68%. The corresponding 

efficiency for an 18-pile network was122%. 

 The FOREVER (2002) National Project conducted in France through 1993 to 

2001 presented several experimental studies in full-scale conditions and on reduced scale 

models (Table 2-1). These tests were aimed to investigate the influence of pile spacing on 

the group effect. In all 54 vertical loading tests performed on groups of vertical 

micropiles. The majority had an efficient less than or close to 1, but only the groups with 

a large number of micropiles had efficiency greater than unity. 



 15

 Ismael (2003) reported some axial load tests on bored piles and pile groups in 

medium dense to very dense cemented sands. It was found that the group efficiency was 

equal to 1.22 when the pile spacing was two-pile diameter increasing to 1.93 for a 

spacing of three-pile diameters.  
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Figure 2-4.  Measured values of efficiency coefficients for groups of piles in sand   (Lo, 

1967) 
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Figure 2-5.  Measured values of efficiency coefficients for groups of piles  (Vesic, 1969) 
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Figure 2-6. Measured values of efficiency coefficients for pile groups in sand (O’Neill, 

1983) 
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Figure 2-7.  Efficiency of piles in groups (after Lizzi, 1985) 
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Figure 2-8.  Group effect and network effect: Layout of the tests (after Lizzi, 1985) 

 

Table 2-1. Values of the efficiency coefficient for different micropiles groups tested 
in the FOREVER National Project (Fontainebleau sand) 

Organization Type of test N Installation 
method 

Spacing 
S/B 

D  
m 

B 
cm ID Efficiency 

η 
CEBTP Full-scale site 4 Boring 2 5 10 0.57 0.8-1.1 
LCPC Centrifuge 10g 3 Jacking 1.5-3 0.5 1.2 0.65 0.76-1.05 

LCPC Centrifuge 20g 9-
36 Jacking 4-10 0.2

5 6 0.57 1.18-1.53 

LCPC Centrifuge 10g 18 Cast-in-
place 7 0.2 0.2 0.8 1.56-1.61 

L3S Experimental 
tank 4 Jacking 2, 3 1.5 2.5 0.5 0.8-1.1 

L3S Experimental 
Tank 18 Jacking 3.5, 7 1 2 0.45/0.5 1.6-2.2 

CERMS 
Mini-

calibration 
chamber 

5 Jacking 2.1 0.2 1.1
2 

0.36/0.5 
/0.76 0.59-0.95 

CERMS 
Mini-

calibration 
chamber 

5 Jacking 2.8 0.5 2 0.45/ 
0.55/0.8 0.75-0.87 

CERMS 
(2001) 

Mini-
calibration 
chamber 

5 Cast-in-
place 4 0.5 1 0.55 0.63-0.74 
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2.2.2 Displacement Effect  

 The effects of displacement on driven piles have been widely investigated. It is 

agreed that the displacement effect caused by driven pile or displacement pile leads to 

increase of bearing capacity of pile in loose sand but a decrease in dense sand. The 

displacement effect is essentially reflected in the group effect of driven or displaced pile 

as well, where group effect of piles in loose sand is positive, but might be negative in 

dense sand.  Micropiles are often considered as a kind of drilled, cast-in-place, small 

diameter grouted piles.  When micropiles are installed in network due to their inclination 

it is still possible to develop a displacement effect. In practice, Auger displacement piles 

(the displacement drill tool as shown in Figure 1-19) are often used in loose sand to 

increase bearing capacity of piles (Bustamante & Gianeselli, 1993; Brown & Drew, 2000; 

NeSmith, 2002).  It has been hypothesized that the installation results in densification and 

a change in the coefficient of earth pressure from its rest value K0 to its passive value Kp.   

This condition would result in increased shaft resistance in soils.  

The effect of displacement on pile performances in sand is determined by sand 

state. Therefore, the displacement effect, group effect and network effect of micropiles in 

sand soil cannot be explained by traditional theory of pile-soil interaction neglecting 

state-dependence strength of sand. It is essential that a “state parameter” should be 

considered in the evaluation of performances of micropiles in sand. 
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Figure 2-9.  Displacement Drill Tool 
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CHAPTER 3 

MODELING THE STATE OF SOIL AND ITS RESPONSE 

3.1 General 

 The comprehensive description of the state of a granular soil must take into 

account its void ratio (or the relative density), confining stress, and its fabric. Critical 

state soil mechanics (Schofield and Wroth, 1968) has made a significant contribution to 

the description of a state of soil in this regard.  It considers the state of soil to be 

determined by the combination of both void ratio e and effective confining pressure p.  It 

neglects the consideration of fabric, which has been shown recently to affect the behavior 

of sand significantly (Masad and Muhunthan, 2000; Dafalias et al. 2004).  Following the 

critical state framework, this study first considers the state description in terms of void 

ratio and mean stress.  This will be extended to consider the effect of fabric as necessary. 

3.2 Critical State and State Parameters 

The critical state is generally defined in a three dimensional mean effective stress, 

deviator stress and specific volume (p′, q, v) space, where: 

the mean normal effective stress, p′, is defined in principal stress space by: 

 ( )321 σσσ
3
1p' ′+′+′=                (3-1) 

and the deviator stress, q,  by: 

 ( ) ( ) ( )( )2
1

2
21

2
13

2
32 σσσσσσ

2
1q ′−′+′−′+′−′=             (3-2) 
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σ1′, σ2′, σ3′ are the principal effective stresses. For a triaxial compression test 

conditions, σ2′ = σ3′, and Eqs. (3-1) and (3-2) reduce to: 

 ( )31 σ2σ
3
1p' ′+′=             (3-3) 

 31 σσq ′−′=              (3-4) 

 The specific volume v is defined by: 

 e1v +=             (3-5) 

Roscoe, Schofield and Wroth (1958) quoted experimental evidence that the ultimate state 

of any soil specimen during a continuous remolding and shear flow will lie on a critical 

state line with equation: 

 Γ = v + λ ln p′ = vκ + (λ - κ) ln p′   (3-6) 

shown in Figure 3-1.  The critical state line with equation (v + λ ln p′) = Γ can be seen as 

one of a family of parallel lines with equation (v + λln p′) = vλ. 

The critical state line can be used to distinguish the two different types of 

behavior of soils.  There are states for which the combinations of specific volume v and 

mean normal effective stress p′ lie further away from the origin than the line of critical 

states, so that, 

 v + λ ln p′ > Γ , or vk + (λ – κ) ln p′ > Γ ,  or  vλ > Γ  (3.7) 

and these states have been called “wetter than critical”; shearing there causes aggregates 

to compress to more dense packing and emit water with ductile stable yielding of a test 

specimen and this type of soil may be called contractive soil.  There are also states of 

specific volume v and mean normal effective stress p′ such that  

 v + λ ln p′ < Γ , or vk + (λ – κ) ln p′ < Γ ,  or  vλ < Γ (3-8) 
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and these states have been called “drier than critical”; where shearing causes aggregates 

to dilate and suck in water and ground slips at peak strength with unstable failures and 

this type of soil may be called dilative soil. 

Therefore, the critical state line can be used to develop a state parameter that 

combines the effect of void ratio and effective confining pressure.  This idea was 

proposed by Wroth and Basset (1965) but the proposal to use a state parameter became 

widely accepted after the publication of Been and Jefferies (1985).  Since then many  

variations of the parameter have been adopted in practice (Atkinson 1993). 

A state parameter ψ (Wroth and Basset, 1965; Been and Jefferies, 1985) is 

defined by the difference of the void ratio and the critical state void ratio corresponding 

to an effective confining pressure (Figure 3-2).  It was demonstrated that sand 

characteristics are dependent on the state parameter and its use provided a powerful 

means to describe its features. 

The ratio of current mean effective stress to mean effective stress at critical state 

for current void ratio (
cs

s p
p

R
'
'0= ), has also been used as a state parameter (Klotz & Coop, 

2001; Jovicic & Coop, 1997, Wang, 2002).  If the slope of the critical state line and the 

series of consolidation lines are assumed parallel, then sR and ψ are related by: 

λ
ψ

eRs =          (3-9) 

Where λ  is the slope of the critical state line. 
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Figure 3-1 The Critical State line in v-lnp ′and vk-lnp′ space. 
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Figure 3-2 Definition of state parameters 
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3.3 Soil Resistance to State Parameter 

Been et. al. (1986) examined the interpretation of the cone penetration test in sand 

in terms of the state parameterψ .  Existing data obtained from calibration chamber tests 

were reinterpreted to provide the relationship of cone tip resistance with the state 

parameter. It was found that the normalized cone tip resistance correlated well with the 

state parameter. Been et. al. (1987) expanded the range of application for several types of 

sand, and proposed a normalized cone resistance- ψ relationships for normally 

consolidated sands as 

    )exp(
'

ψmk
p

pqc −=
−       (3-10)   

where p is mean normal total stress, 'p  is mean normal effective stress, m is the slope of 

the normalized ψ−cq relationship and k is the normalized cq value at 0=ψ . Since λ is  

a significant variable in controlling the resistance of sand to cone penetration, 

relationships between λ and m , k  were obtained by plotting the m and k against λ  for 

different sands as: 

λln1.8 −=m            (3-11) 

01.0
55.08

−
+=

λ
k         (3-12) 

Equations (3-10)-(3-12) may be combined to provide a complete relationship for cone 

resistance in terms of the key factors controlling sand behavior during shear (ψ and λ ) as 

follows 

( )[ ]ψλ
λ

ln1.8exp
01.0

55.08
'

−−⎟
⎠
⎞

⎜
⎝
⎛

−
+=

−
p

pqc      (3-13) 
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 Equation (3-13) correlates cone penetration resistance cq  to state parameter through 
λ and p . 
 

Since the study by Been et al (1986) several researchers have correlated the 

resistance of granular soils to pile and penetrometers in terms of the soil state parameter 

ψ  (Carriglio et. al., 1990; Konrad, 1998; Klotz & Coop, 2000). Carriglio, et. al. (1989) 

also showed a relationship between normalized cone resistance and ψ obtained from 

calibration chamber in situ tests performed on pluvially deposited, predominantly silica 

Ticino as: 

)06.3exp(9.33
'

ψ−=
−
p

pqc         (3-14)                               

Note that
minmax ee −

=
ψψ . 

 Klotz & Coop (2001) investigated the behavior of driven piles in sand by means 

of physical model testing. An instrumented model pile was developed, which was tested 

in two sands: a typical quartzitic sand (Leighton Buzzard sand) and a carbonate sand 

(Dog’s Bay sand). It was found that both normalized base resistance and normalized shaft 

friction of the two sands correlated well to the state parameter 
cs

s p
pR
'
'0= . However, the 

results obtained from the study indicated that there are no correlations existing between 

either normalized base resistance or normalized shaft friction of the two sand and the 

state parameter ψ .  The sand state in the study was limited in the zone denser than 

critical state discussed by Pillai & Muhunthan (2002). Therefore, further studies are 

needed to investigate the correlation between bearing capacity of pile and sand state. 
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CHAPTER 4        

STATE-DEPENDENT BOUNDING SURFACE MODEL  

4.1 General 

 It is well appreciated that, whilst the original Cambridge, critical state models 

work well for normally consolidated clays, significantly more complex models are 

required to capture the essential properties of the mechanics of sands. There is now a vast 

literature both on the experimentally determined behavior of sands and the construction 

of mathematical models, which attempt to predict this behavior. It is generally agreed that 

non-associated flow rules, some form of shear hardening, induced anisotropy, and the 

improved modeling of dilatancy, must be added to the basic structure of critical state soil 

mechanics in order to obtain an acceptable degree of realism in these models. Many of 

these models make use of the “state parameter” concept proposed by Been and Jefferies 

(1985).  In these models the void ratio e is replaced by a “state parameter” as the 

fundamental variable, which determines the size of the yield surface and the flow rule.  

Li & Dafalias (2000) and Li (2002) developed a comprehensive bounding surface 

sand model that is formulated within a critical-state framework. The basic formulations 

of bounding surface plasticity theory are presented in Appendix A.  The dilatancy of 

granular soils is assumed to depend not only on the stress ratio 
p
q

=η , where q and p are 

the deviatoric and mean effective normal stresses respectively, but also on the current 

material internal state in reference to the critical state in η−− pe  space. The material 

internal state is defined in the model by state parameter ψ (Been & Jefferies, 1985). The 

model was shown to simulate well both contractive and dilative responses of granular 
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soils over a wide range of variations in stress and material internal states in general multi-

dimension space under different loading and drained conditions. It is used here to 

investigate the effects of material internal states on the performance of micropiles. 

4.2 Dilatancy 

  It has been well observed in triaxial tests that, subjected to a shear under drained 

conditions, dense sand dilates accompanied by strain softening and loose sand contracts 

accompanied by straining hardening, as shown in Figure 4-1. The dilation or contraction 

of sand under different states is in essence the coupling between shear and volumetric 

strains, or, more appropriately, defined by the dilatancy, D, the ratio of plastic volumetric 

strain increment to plastic deviatoric strain increment. In triaxial space and multi-

dimensional space, the dilatancy is defined, respectively, as:  

    p
q

p
v

d
d

D
ε
ε

=       (4-1a) 

      
p
ij

p
ij

p
kk

dede

dD

3
2

ε
=      (4-1b) 

where  p
v

p
kk εε =  is the plastic volumetric strain which is defined as compression positive, 

and  3
ij

p
kkp

ij
p

ije δεε −=  are the components of the plastic deviatoric strain tensor. 

 Rowe (1962) suggested an expression for dilatancy D based on the theory of least 

rate of internal work as: 

     ( )
η

η
MM

MD
239

9
−+
−

=      (4-2) 

Eq. (4-2) is similar to the original and modified Cam-clay flow rules: 

η−= MD         (4-3a)    
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η
η

2

22 −
=

MD       (4-3b) 

The similarity is the result of assuming a unique relationship between the stress ratio η  

and the dilatancy p
q

p
v

d
d

D
ε
ε

= . Mathematically, this relationship can be written in a general 

form as: 

( )CfD ,η=           (4-4) 

where C is a set of intrinsic material constants. The function expressed by Equation (4-4) 

implies that a soil yielding at M=η  is coincident with D = 0; i.e., whenever a plastic 

deformation takes place at M=η  the material reaches its ultimate failure. This, however, 

is not always in agreement with experimental observations.  Especially in dense sands D 

may become zero well before the sand reaches its critical state.   On the other hand, in 

Equations (4-2) and (4-3), C only refers to the stress ratio M of soil in critical state that is 

determined by friction between the mineral surfaces of the particles.  Thus, Equations (4-

2) and (4-3) do not reflect the important dependence of dilatancy on density and pressure 

because they ignore material internal state. In fact, ignorance of the dependence of 

dilatancy on the internal state of the material in the classical stress-dilatancy relations is 

the major obstacle to unified modeling of sand behavior.     
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Figure 4-1 Typical response of sand in loose and dense states in triaxial compression 

Li & Dafalias (2000) proposed a general form of the state-dependent dilatancy in 

triaxial compression space, which can be generalized to multi-axial space as follows: 

    ( )CQeRDD ,,,,θ=           (4-5)       

where θ  is the Lode angle, varying from -300 for triaxial compression to  +300 for 

triaxial extension; and R  is a stress ratio invariant defined as: 

p
J

rrR D
ijij

23
2
3

==           (4-6) 

22
ijij

D
ssJ = . Note that R  here is a slightly different from that defined by Wang, et. al 

(1990) as described in Appendix A. e  is void ratio; Q  and C , as collective terms, denote 

internal state variables other than the void ratio e  and intrinsic material constants, 
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respectively. At the critical state, cee =  and the stress ratio ( )θMR = , where M is the 

critical stress ratio for the shear mode characterized byθ . Therefore, at the critical state: 

( )[ ] 0,,, === CQeeMRD cθ          (4-7) 

4.3 General Framework 

There are two bounding surfaces in the model defined in pJ D −−θ2  space: a 

cone with straight meridians and a flat cap, as shown in Figure 4-2(a). The cone-shaped 

surface is associated with plastic loading induced by a change in stress ratio, ijr , and the 

cap is associated with the plastic loading due to a change in p  under a constant ijr . 

Because the surface meridians are straight, the cone can be fully described by a cross-

section in the θ−R  plane, as shown in Figure 4-2(b). 

 
 

Figure 4-2 Shear bounding surfaces 1F  and bounding cap surface 2F  
 

The cone-shaped bounding surface is analytically expressed by: 

( ) 011 =−= H
g

RF
θ

         (4-8) 
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where the superposed bar indicates that the quantity is evaluated on the bounding 

surfaces. ( ) ( )ijij rrRR θθ == ,  are two non-trivial invariants of the image stress ratio 

tensor ijr on 1F , and 1H  defines the size of the cone and is a function of the internal state 

variables that are associated with the evolution of 1F . ( )θg  represents the variation of 

R on the bounding surface with θ  and it is defined as: 

( ) ( ) ( ) θ
θ

3cos11
2

cc
cg
−−+

=        (4-9) 

where c is a material constant.  ( )θg  varies smoothly from unity for triaxial compression 

( 030−=θ ) to c for triaxial extension ( 030=θ ) for all evolving bounding surfaces 

including the ones at the critical state. Thus, c in effect defines the ratio of R  at triaxial 

extension over that at triaxial compression for all evolving bounding surfaces and can 

simply be expressed as 
c

e

M
M

c = . Note that F2 (Fig. 4-2) is a straight line form with F2= 

p-H2=0. 

 The consistency condition of Equation (4-8) requires 01 =dF  leading to: 

011 =− dLKrdnp pijij       (4-10) 

or, in terms of the actual stress ratio increment, 

011 =− dLKdrnp pijij        (4-11) 

where ijn  is a zero-trace unit tensor normal to 1F  at the image stress ratio ijr , 1pK  (as 

well as 1pK ) is the plastic modulus controlling the evolution of 1F , and 1dL  is a scalar 

loading index. Note that 1pK is related to 1pK  in such a way that when the stress ratio is 

on 1F  (i.e. ijij rr = ), 11 pp KK = . 
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The consistency condition for the cap, 02 =dF , results in:  

022 =− dLKpd p         (4-12) 

or, in terms of the actual mean normal stress increment as: 

022 =− dLKdp p         (4-13) 

where 2pK (as well as 2pK ) is a plastic hardening modulus that controls the evolution of 

the cap, and 2dL   is a scalar loading index associated with it. 2pK is related to 2pK  in 

such a way that when the mean normal stress, p , is on the cap 2F  (i.e. pp = ), 

22 pp KK = . 

 Assuming that the associative flow rule applies to a constant p subspace (Baker 

& Desai, 1982): 

21
21 dLmdLndedede ijij

p
ij

p
ij

p
ij +=+=       (4-14) 

where 1p
ijde and 2p

ijde are the plastic deviatoric strain increments associated with the 

loading indices 1dL and 2dL , respectively. ijm is a unit tensor that defines the direction of 

plastic deviatoric strain increment due to a change in p under a constant stress ratio ijr . 

Wang, et. al. (1990) proposed that 
ij

ij
ij r

rm =  (See Appendix A). 

 Assuming that a plastic volumetric strain increment can be decomposed into two 

parts, 1p
vdε and 2p

vdε , they are paired with 1p
ijde and 2p

ijde respectively, as: 

( ) ( )2211
22

2
11

1
21

3
2

3
2 dLDdLDdedeDdedeDddd p

ij
p
ij

p
ij

p
ij

p
v

p
v

p
v +=+=+= εεε            (4-15) 
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where 1D and 2D are the two dilatancy functions associated with 1p
vdε and 

2p
vdε respectively. 

Assuming that the elastic responses are based on Hooke’s law, the elastic 

incremental strains can be expressed as: 

G
dpr

G
pdr

d ijije
ij 22

+=ε       (4-16a) 

K
dpd e

v =ε        (4-16b) 

Using Equations (4-13) (4-15) and (4-16b), dL2 can be determined: 

22

11

2

3
2

3
2

p

v

KKD

dLKDKd
dL

+

−
=

ε
       (4-17) 

Combining Equations (4-11), (4-14), (4-15), (4-16) results in: 

( ) ( ) ( ) 03223222 22111 =−−+−−− dLrnKDmnGdLKrnKDGrnKddenG ijijijijpijijijijvijij ε  

             (4-18) 

Substituting Equation (4-17) into the above equation and solving for 1dL  leads to: 

ijijddL εΘ=1          (4-19) 

where 

( )
( ) 11322

2

ppqpq

ijrsij
ij KBrnKDG

BnKnG
++−

+−
=Θ

δ
     (4-20) 

in which 

22

2

32
322

p

ijijijij

KKD
rnKDmnG

B
+

−
=        (4-21) 
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and substitution of Equation (4-19) into Equation (4-17) yields 

ijijdZdL ε=2            (4-22) 

where 

22

1

32
32

p

ijij
ij KKD

KDK
Z

+

Θ−
=

δ
       (4-23) 

 The incremental stress-strain relationship can be written as 

( ) ( ) ( )[ ]2211 27232 dLDmdLDndEddEdEd klklklklklijkl
p

klklijkl
e
klijklij δδεεεεσ +−+−=−==

             (4-24) 

where ijklE  is the elastic stiffness tensor, defined by the elastic moduli G and K . By 

substituting Equations (4-19) and (4-22) into Equation (4-24), one has 

    klijklij dd εσ Λ=         (4-25) 

where the elastoplastic stiffness tensor is given by 

( ) ( )[ ]klpqpqklpqpqqlpkijpqijkl ZDmDnE δδδδ 21 272272 +−Θ+−=Λ                         (4-26)  

It can be seen from Equations (4-26) (4-20) (4-21) (4-23) that the elastoplastic 

stiffness tensor is determined by the elastic parameters G and K , the plastic moduli 

1pK and 2pK , the dilatancy function 1D and 2D , and the zero-trace unit tensors ijn and 

ijm .   

4.4 Mapping Rules 

Mapping rules by which the current stress state is projected to an image stress 

state on the bounding surface play a very important role in bounding surface plasticity. 

The unit tensors ijn and ijm , the dilatancy function 1D and 2D , and the plastic moduli 

1pK and 2pK  in the elastoplastic stiffness matrix are all dependent on the image stress 
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state. So, the mapping rules in the model determine the constitutive properties of the soil. 

Since the yielding is governed by two stress components, ijr and p , two mapping rules 

are needed. 

 For ijr mapping, a relocatable projection center, ijα , is defined in the deviatoric 

space as the stress ratio at which the last reversal of loading direction from loading to 

unloading took place. The loading direction reversal is signaled by the change of the sign 

of 1dL  from positive to negative.   The image stress ratio ijr  is obtained by projecting ijr  

to the bounding surface 1F  from projection center, ijα  as shown in Figure 4.3. According 

to Equation (4-11), the negative 1dL  occurs when the tensor ijdr  is inward to the loading 

surface, which leads to projection center, ijα , relocated as shown in Figure (4-4). The 

projection center relocation immediately brings 1dL  back to positive again. This means 

that plastic deformation is always produced whenever 01 ≠dL . Note that, even though 

there are two approaches to calculate the value of 1dL  (one is from stress increment 

Equation (4-10), another one is from strain increment Equation (4-19)), it is suggested 

that Equation (4-19) be used to avoid false unloading caused by strain softening. 

Additional details of the projection rule are found in Wang (1990).   

According to Equation (4-10), with positive 1dL  and non-zero plastic modulus 

1pK  at the image stress state ensures a non-zero ijij rdn& . The sign of ijij rdn&  is dependent 

on that of 1pK . Negative 1pK  corresponds to soil softening and contraction of the 

bounding surface 1F . On the contrary, positive 1pK  corresponds to soil hardening and 

expansion of the bounding surface 1F . 



 37

 
 

Figure 4-3 Mapping rule in deviatoric stress ratio space  
 

 
Figure 4-4 Relocation mechanism of projection center, ijα  
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Figure 4-5 shows the mapping scheme of p . As seen for p  mapping, another 

relocatable projection center, β , is defined on the hydrostatic axis with an initial position 

set at zero. The projection center β  will stay at the current position until the mean 

normal stress increment, dp , changes its sign. In this case, β jumps to the reversal point. 

The image mean normal stress, p , is either on the cap 2F , if 0>dp , or at the origin, 

0=p if 0<dp . Similar to ijr mapping, 02 ≥dL  is ensured by assuming that the sign of 

2pK is same as that of dp and the moving direction of the cap 2F  is associated with the 

sign of dp .  

 
 

Figure 4-5 Mapping rule for p under constant ijr  

4.5  Model Variables and Parameters 

The following gives a summary of the model parameters. 

4.5.1 Elastic Moduli 

The elastic shear modulus, G , is calculated using following empirical equation 

(Richart et al., 1970): 
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where 0G is a material constant, and rp is a reference pressure, taken as aKP101 (the 

atmospheric pressure at sea level). In the equation, the current void ratio, e , is used 

instead of the initial void ratio. The elastic bulk modulus, K , is equal to: 
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ν
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where  ν is Poisson’s ratio, assumed to be a constant. 

4.5.2 State Parameterψ  

The state parameter in the model is defined as follows (Li and Wang, 1998) 
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where Γe , cλ , ξ  are the material constants determining a straight critical-state line in the 

ξpe − space.   

4.5.3 Plastic Modulus 1pK  and Dilatancy 1D   

The plastic modulus associated with a stress ratio increment takes the following form: 

( )[ ]RgM
R

GhK n
cp −= − ψθ exp1       (4-30) 

where n is a model constant (a scaling factor for ψ ), and Gh  is a scaling factor for the 

modulus. The elastic shear modulus, G , serves as a reference quantity, rendering h  a 

dimensionless parameter. It was found that a h value that varies with soil density and 

loading history fitted the experimental data notably better (Li 2002). Accordingly, the 

following empirical function was suggested: 
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( ) ( ) ( ) ( )[ ]{ }kk Lfhehhh 11131121 1 ρρρρ −+−=     (4-31) 

where 1h , 2h and 3h are material constants. The power k is an arbitrary but large number, 

say 10, which makes the term ( ) 011 ≈kρρ  unless 1ρ approaches 1ρ very closely. ( )1Lf  

is a function of the accumulated loading index, ∫= 11 dLL , a measure of the magnitude of 

the accumulated plastic deformation due to changes in stress ratio. This function is 

incorporated to better reflect the influence of previous loading cycles. The following 

function was suggested for this purpose: 
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where 1b , 2b  and 3b  are parameters for the fine adjustment of the reverse loading 

responses. 

 The plastic modulus, 1pK , can be obtained by letting 11 ρρ =  in Equation (4-30).   

 The dilatancy function was suggested as follows. 
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in which 1d  and m are two positive model constants. 

4.5.4 Plastic Modulus 2pK  and Dilatancy 2D  

The plastic modulus under a constant stress ratio takes the following form: 
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where 4h and a  are two positive models constants. The elastic shear modulus, G , serves 

as a reference again, rendering 4h  dimensionless. 

The dilatancy associated with a dp -induced plastic deformation is as follows: 

( )
dp
dp

R
gMdD c 122 −=

θ      (4-36) 

where 2d is a positive model constant. Note that 2D  is not ψ -dependent, therefore the 

dilatancy along a constant stress ratio ( )θη g
R=  is uniquely related to that stress ratio. 

4.5.5 Unit Tensors ijn  ijm  

For each stress state ijr , the corresponding image stress, ijr , is obtained by 

projecting, ijr , to the bounding surface from the projection center, ijα . The zero-trace unit 

tensor, ijn , is outward normal to 1F  at ijr . 
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where 
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and kijkij rrrQ =  

As discussed earlier, determination of ijm  is much easier. It is the unit tensor of ijr  and 

expressed as 

ij

ij
ij r

rm =       (4-39) 
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4.6 Determination of Model Constants 

 The model parameters are summarized in Table 4-1.  They constitute  2 elastic 

parameters, 5 critical state parameters, 6 parameters associated with plastic properties 

induced by increments of the stress ratio tensor, 2 parameters associated with plastic 

properties induced by increments of mean effective stresses, and 4 parameters which can 

be considered as internal parameters used to fine tune the reverse loading responses. 

Barring these 4 internal parameters, the 15 parameters are determined from triaxial tests 

as described by Li and Dafalias (2000) and Li (2002). A brief description is presented 

here. 

Table 4-1 Summary of model parameters 

Elastic 
parameters 

Critical state 
parameters 

Parameters 
associated with 
dr-mechanisms 

Parameters 
associated with 
dp-mechanisms 

Default 
parameters 

G0 ,ν M, c, eΓ , λc ,ξ d1, m, h1, h2 ,h3, n d2 ,h4 a=1, b1=0.005 
b2=2,b3=0.001 

 

The five critical state parameters are determined by directly fitting the critical stress ratio 

and the critical state line in e - lnp′ space. 

Based on Equation (4-33):  

M
Mm

d

d ln1
ψ

=         (4-40) 

where dψ and Md are the values of ψ  and η  at the phase transform state, 

measured from drained or undrained test results. 

Based on Equation (4-30) 

bb M
Mn ln1

ψ
=         (4-41) 
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where bψ and Mb are the values of ψ  and η  at drained peak stress state. 

Ignoring the small elastic deformation in drained tests, the parameter d0 can then 

be calibrated based on Equation (4-42) and the qv εε − curves: 
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With all the material constants known inside the brackets in Equation (4-43), hG0 

can be calibrated based on the experimental qq ε−  curves. 
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In undrained tests, 0=vdε , which leads to following equation. 
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( ) ( )νν 21312 0 −+G  can be obtained by fitting Equation (4-44) to the undrained 

qp −'  curves. 

If elastic response is very important, G0 must be determined by some 

experimental methods. Otherwise, one may pick up a v value first and then calculate G0 

and h.  hG0 or h, as we know, is reverse-proportionally related to the density of soil with 

parameters of h1 and h2 in the virgin loading case.  Then h1 and h2 can be obtained with 

two different density experiments. h3 control plastic modulus under during non-virgin 

loading and can be determined by best fitting qp − or τ−p  paths from undrained cyclic 

triaxial or simple shear tests. 
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d2 is a parameter which characterizes the dilating response under  the stress path 

of a constant stress ratio. The stress path of a constant stress ratio can be simulated by 

one-dimensional consolidation tests in which following relation exists. 
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In the description of the model, we have known that d2 and h4 can be expressed as 

follows: 
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The sand model has been extensively verified through laboratory tests by Li & 

Dafalias (2000) and Li (2002). 
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CHAPTER5 

MODEL IMPLEMENTATION  

5.1 General 

 The Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) developed 

by Itasca Consulting Group, Inc. is a widely used finite difference commercial code in the 

geotechnical field. It has been successfully used to numerically simulate a number of 

geotechnical problems.  Besides many built-in soil constitutive models, it provides a user 

interface to implement new constitutive models.  FLAC3D is therefore selected to 

implement the state dependent sand model. 

5.2 Explicit, Dynamic Solution (EDS) Scheme 

Numerical solution schemes face several difficulties when geomaterial models are 

implemented (Hart and Detournay, 2005).  Three characteristics of geomaterials cause 

specific problems in implementing constitutive models. 

1. Physical instability: Physical instability occurs in materials with softening 

behavior, such as rock, concrete and over-consolidated soils. The softening 

behavior occurs when the material fails and parts of it accelerate and the stored 

energy is released in the form of kinetic energy. Numerical solution schemes 

often have difficulties at this stage because the solution may fail to converge 

when a physical instability arises. 

2. Path dependence of nonlinear materials: In most geo-mechanical systems, there 

are an infinite number of solutions that satisfy the equilibrium, compatibility and 

constitutive relations that describe the system. These solutions are corresponding 

to different stress paths, respectively. A correct solution needs to be identified for 
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the actual stress path. For example, if an excavation is made suddenly (e.g., by 

explosion) then the solution may be influenced by inertial effects that introduce 

additional failure of the material. This may not be seen if the excavation is made 

gradually. The numerical solution scheme should be able to accommodate 

different loading paths in order to apply the constitutive model properly. 

3. Nonlinearity of the stress-strain relation. This is referred to as the dependence of 

the elastoplastic stiffness matrix on the stress state. The numerical scheme needs 

to be able to accommodate the various forms of nonlinearity. 

 In the Itasca series of software, an approach called explicit, dynamic 

solution (EDS) scheme is used. The above three characteristics of geo-materials, 

which cause difficulties in implementing the constitutive model, can all be addressed. 

The scheme allows the numerical analysis to follow the evolution of a geologic 

system in a realistic manner, without concerns about numerical instability problems.  

In the explicit, dynamic solution scheme, the full dynamic equations of  motion are 

included in the formulation, and the static equilibrium state is reached by absorbing 

the energy in the system through inertial terms added in the formulation. During the 

‘collapse’ failure process in softening materials, some of strain energy in the system 

is transferred into kinetic energy. The kinetic energy radiates from the source and 

dissipates through the inertial terms in the full dynamic formulations.  Therefore, the 

numerical solution is always stable even when the system being modeled is unstable. 

 On the contrary, schemes that do not include inertial terms must use some 

numerical procedure to treat physical instabilities. Even if the procedure is successful 

at preventing numerical instability, the stress path taken may not be a realistic one. 
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However, the EDS scheme can follow the physical path and simulate the effect of the 

loading path on the constitutive response. 

 The EDS scheme also allows the implementation of strongly nonlinear 

constitutive models because the general calculation sequence allows the field 

quantities (velocities/displacements and forces/stresses) at each element in the model 

to be physically isolated from one another during one calculation step. This 

implementation in the general calculation sequence is described as follows. 

 The general calculation sequence for the EDS scheme is illustrated in 

Figure 5.1. The figure presents the calculation sequence of one loop calculation for 

one time step and for each tetrahedron element. In each sequence loop of the time 

step, the calculation solves two sets of equations: equilibrium of motion and 

constitutive relationships. The former is invoked to derive the new velocities and 

displacements from stresses and forces at each mass point. By application of the 

Gauss divergence theorem to the tetrahedron element, the derived velocities at each 

mass point are used to express the strain rates of the tetrahedron element. Then, the 

constitutive equations are used to calculate new stress from strain rates.  The key 

feature here is that each box in Figure 5.1 updates all model variables from known 

values that remain fixed while control is within that box. For example, the lower box 

takes the set of velocities already calculated and, for each tetrahedron element, 

computes new stresses. The velocities and other variables are assumed to be frozen 

for the operation of the box, i.e., the newly calculated stresses do not affect the 

existing velocities. The assumption is valid provided the time step is so small that the 

calculated variables cannot propagate from one element to another during this time 
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step. This EDS approach makes the implementation of the non-linear constitutive 

model possible. All inputs of strain rates and other variables in one tetrahedron 

element, during the time step, they are fixed and not affected by the calculations in 

other elements. The stress increment calculation from strain rate is straightforward 

and there is no need to use any iteration process even if the constitutive law is highly 

nonlinear. 

       

Figure 5.1 Calculation loop of EDS scheme in FLAC3D 

 

 

5.3 Mechanical Time Step for Numerical Stability 

  The differential motion equations cannot provide valid answers unless the 

numerical scheme is stable. In FLAC, the idealized medium in the system is viewed 

as an assembly of point masses (located as the nodes) connected by linear springs. It 

was found from studying the oscillating mass-spring system with a finite difference 

Equillibrium Equation
 (Equation of Motion)

Stress/Strain Relation 
(Constitutive Equation)

       New 
Velocities and         
displacements

    New 
 Stresses 
and Forces

(for all mass-points)

(for all elements)

Strainrates are 
fixed during this
 calculation

Forces are 
fixed during this
 calculation
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scheme that a time step must be used that does not exceed a critical time step related 

to the minimum eigenperiod of the total system. Similarly, The EDS scheme in 

implementing non-linear constitutive models requires that the time step is so small 

that the calculated variables cannot propagate from one element to another during the 

time step.  Hence, the stability criterion for the numerical scheme must provide an 

upper bound for the values of the time steps used in the finite difference scheme.     

  In FLAC3D, a characteristic of the numerical scheme is that a uniform 

unit time step t∆ is adopted for the whole system. And, the nodal masses in the 

motion equations are taken as variables and adjusted to fulfill the local stability 

conditions. 

  The one-dimensional, one series mass-spring system governed by the 

differential equation 

td
xdmkx 2

2

=−           (5-1) 

where k is the stiffness of the spring, and m is the point mass. The critical time step 

corresponding to a second-order finite difference scheme for the equation is given by 

k
mt 4

=∆          (5-2) 

For an infinite series spring-mass case, the limit-stability criterion has the form 

     ( )2tkm ∆=          (5-3) 

By selecting 1=∆t , the system will be stable if the magnitude of the point mass is 

greater than or equal to the spring stiffness. In FLAC3D, the validity of Equation (5-3) is 

extended to one tetrahedron by interpreting m as the nodal mass contribution ml at local 

node l and k as the corresponding nodal stiffness contribution kl. The nodal mass 
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contribution as derived from the infinite series criterion provides an upper-bound value 

for the system under consideration. In order to obtain a stable numerical scheme, the 

nodal mass contribution should be given a value that is equal to or larger than the nodal 

stiffness contribution.  By a simple diagonalization technique of the local stiffness matrix, 

the nodal stiffness contribution at local node l is given by  

     [ ]21

9
ll

qqq Sn
V

k α
=         (5-4) 

where GK 341 +=α , K is the bulk modulus, and G is the shear modulus. No summation 

is implied on repeated index q of kqq, which runs from 1 to 3. Then the upper-bound value 

for the nodal stiffness contribution can be expressed as: 

),,max( 332211 kkkk l =        (5-5) 

which yields the expression for the tetrahedron mass contribution at node l: 
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to provide a numerically stable solution. 

5.4 Mixed Discretization 

The EDS scheme in FLAC3D is set up on the basis of tetrahedron elements. The 

tetrahedron element is a constant strain-rate, three-dimensional element and it has the 

advantage of not generating hourglass deformation compared to other constant strain-rate 

elements. However, these elements do not provide for enough modes of deformation. For 

example, they cannot deform individually without change of volume as required by 

certain important constitutive laws and exhibit an over-stiff response as compared to that 

expected from the theory. To overcome this problem, a process of mixed Discretization is 

applied in FLAC3D. 
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For the mixed discretization technique, more volumetric flexibility is applied to 

an element by proper adjustment of the first invariant of the tetrahedral strain-rate tensor. 

A coarser discretization in zones is superposed on a finer tetrahedral discretization. Then, 

the technique is accomplished by assigning the first strain-rate invariant and the first 

stress tensor invariant of any particular tetrahedron as the volumetric-average over all 

tetrahedra elements in a zone. As shown in Figure 5.2, the individual tetrahedron will not 

keep constant volume when subjected to the pattern of deformation, however the total 

volume of the assembly of the tetrahedral elements (i.e. the zone) remains constant under 

that deformation pattern. 

In FLAC3D, the discretization starts with zones. Then, each zone is internally 

discretized into tetrahedral elements. An eight-node zone, for instance, can be discretized 

into two different configurations of five tetrahedral elements (corresponding to overlay1 

and overlay2 in Figure 5-3). The calculation of nodal force can be carried out using one 

overlay or a combination of two overlays. The advantage of the two-overlay approach is 

to ensure symmetric response for symmetric loading. 
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Figure 5-2 Deformation model for which mixed discretization would be most efficient 
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Figure 5-3 An 8-node zone with 2 overlays of 5 tetrahedra in each overlay 

 

5.5 Model Implementation 

External constitutive models can be written in C++ and compiled as DLL 

(dynamic link library) files that can be loaded whenever it is needed in FLAC3D 

simulation. The main function of the constitutive model is to return new stresses, given 
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strain increments. C++ is an object-oriented computer language using classes to represent 

objects. The data associated with an object are encapsulated by the object and are 

invisible outside the object. Communication with the object is by member functions that 

operate on the encapsulated data. In addition, there is strong support for a hierarchy of 

objects. New object types may be derived from a base object and the base-object’s 

member functions may be superceded by similar functions provided by the derived 

objects. This arrangement confers a distinct benefit in term of program modularity and 

the program can access the derived classes through the base objects.   

The emphasis of the object-oriented approach of C++ is to provide a base class 

that includes a framework for implementing constitutive models, which are classes 

derived from the base class. The base class, called ‘ConstitutiveModel’, is termed an 

‘abstract’ class because it declares a number of ‘pure virtual’ member functions. This 

means that no object of the base class can be created and that any derived-class object 

must supply real member functions to replace each of the pure virtual functions of the 

base class. The methodology of writing a constitutive model in C++ for operation in 

FLAC3D includes descriptions of the base class, member functions, registration of 

models, information passed between the model and FLAC3D, and the model state 

indicators.  The implementation is achieved by supplying real member functions to 

replace each of the pure virtual functions of the base class.  

A member function “ const char *Run(unsigned uDim, State *ps)” as a main 

interface is called for each sub-zone (up to ten per zone for a two-overlay case ) at each 

cycle from within FLAC3D’s zone scan. The model is coded within the member function 

and updates the stress tensor from the strain increment tensor for each sub-zone at each 
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cycle. The structure “ps” contains the current stress components and the computed strain 

increment components for the sub-zone being processed.  For each sub-zone cycle, 

besides updated stress tensor, the state parameters must also be returned . 

As opposed to the implementation of constitutive models based on the 

conventional plasticity, the trial-and-correction approach, which is adopted by all built-in 

models implementation in FLAC3D manual, is not used in the implementation of state-

dependent bounding surface constitutive model. This is because the yielding surface that 

defines the pure elastic deformation range doesn’t occur in the bounding surface models. 

The main objective of the current model implementation is to calculate the elastoplastic 

stiffness matrix ijklΛ  shown in Equation (3-26). Another difference is that some state 

parameters in the current model, such as the projection center, need to be updated in each 

cycle for each zone.  

The flow chart for programming the state dependent sand model is shown in 

Figure 5.4. This program is included in the member function “ const char *Run(unsigned 

uDim, State *ps)”. Each tetrahedral element calls this member function for each cycle to 

update the stress state of the tetrahedron. After all tetrahedral elements in the zone are 

scanned, the state variables of the zone are modified according to the rule of the mixed 

discretization scheme. However, the modification of the stress state of the zone will be 

left for FLAC3D. The member function ConfineModulus(void) is used to return a value 

for its best estimate of the maximum confined modulus. This is used to determine the 

stable time step. 
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Figure 5-4 Flow chart for coding the constitutive model 
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CHAPTER 6 

FLAC 3D MODEL VERIFICATION  

 
 
 The constitutive model implemented into the FLAC3D program was verified first 

by simulating a number of test results on Toyoura, Ottawa, and Fontainbleau sands.  The 

FLAC 3D discretization was then verified using the full scale loading test result on a 4-

pile micropile group conducted by the FOREVER program. 

6.1 Stress path and deformation of Toyoura Sand 

Li (2002) and Li and Dafalias (2000) have shown the constitutive model to 

predict the behavior of Toyoura sand under various test conditions. This prediction is 

repeated first to ensure that the FLAC 3D model coding was done properly.  This study is 

restricted to the simulation of drained element tests with special emphasis on the effects 

of initial void ratio and Lode angle on sand behavior.  

Three common shear modes which include conventional triaxial compression 

(TC), triaxial extension (TE) and plane strain compression (PS) were selected. An 

isotropic stress of 300 kPa was set as the initial stress state in all simulations. Two 

relative densities of 65% and 15% corresponding to “dilative” and “contractive” states, 

respectively, were used.  The predicted response of the two specimens under the different 

shear modes are as shown in Figures 6-1 and 6-2, respectively. 
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A. Stress ratio invariant response 

 

 

B. Volumetric strain response 

Figure 6-1. Drained response of dense sand under various shear modes (Dr = 65%) 
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The set of model constants listed in Table 6-1 was used in the simulations. 

 

Table 6-1  Model parameters for Toyoura sand (Li, 2002) 

Elastic 
parameters 

Critical state 
parameters 

Parameters 
associated with 
dr-mechanisms 

Parameters 
associated with 
dp-mechanisms 

Default 
parameters 

G0=125 
ν=0.25 

M=1.25 
c=0.75 

eΓ=0.934 
λc=0.019 

ξ=0.7 

d1=0.41 
m=3.5 

h1=3.15 
h2=3.05 
h3=2.2 
n=1.1 

d2=1 
h4=3.5 

a=1 
b1=0.005 

b2=2 
b3=0.001 

 

In the figures γoct is the octahedral shear strain and R is the stress ratio invariant defined 

earlier (Eq. 4-6).  The predictions were identical to those values predicted by Li and 

Dafalias (2000).  It is evident from the figures that the dense sand dilates with a peak 

stress ratio greater than critical stress ratio, and the loose sand contracts without such a 

peak. Different Lode angles associated with the shear modes also result in different peak 

and critical state stress ratios in terms of the invariant, R. 
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A. Stress ratio invariant response 

 

 
 

B. Volumetric strain response 

Figure 6-2.  Drained response of loose sand under various shear modes (Dr = 15%) 
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6.2 Ottawa Sand Tests 

  The FLAC3D model was also used to verify some triaxial tests conducted on 

Ottawa F-35 sand at Washington State University (Olcott, 2001).  This sand is 

manufactured by U. S. Silica from Ottawa, Illinois and is a silica sand consisting of 

mostly rounded grains with a specific gravity of 2.65, a mean grain size of 0.44mm, a 

coefficient of uniformity of 1.51 and coefficient of curvature of 0.97. 

 The parameters for the model were determined using the procedure outlined in 

Chapter 4.  Olcott (2001) established the critical state line in the in e-lnp′ space.  It is 

transformed onto the straight line in e-pξ space as shown in Figure 6-3 and a best fit line 

drawn to determine the critical state parameters eΓ, λc and ξ (Eq. 4-29).  Mc and Me for 

this sand were reported as 1.14 and 0.85, respectively (Olcott, 2001).  Thus, C=Me/Mc = 

0.75. 

y = -0.0373x + 0.7764
R2 = 0.8202

0.716

0.72

0.724

0.728

0.732

0.736

0.74

0 0.5 1 1.5 2

(p/pa)ξ

e

ξ=0.2

 

Figure 6-3 Critical state line in e-pξ space 

The parameter m (Eq. 4-40) is determined from undrained tests. The typical stress 

path of undrained tests of Ottawa sand is as shown in Figure 6-4.  Using the values of Md, 
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and ψd for the phase transformation state, m can be calculated and its average is shown in 

Table 6-2. 

Table 6-2 Determination of parameter m 

Initial pressure  

(p', kpa) 
Void ratio Md ψd m 

Average of 

m 

100 1.06 -0.0182 5.2 

300 1.13 -0.0152 0.56 

400 

0.719 

0.94 -0.0298 7.34 

4.4 
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Figure 6.4 Stress path of undrained tests of Ottawa sand 
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Similarly the parameter n (Eq. 4-41) can be calculated and its average is as shown 

in Table 6-3. 

Table 6-3 Determination of parameter n 

Initial pressure  

(p’, kpa) 
Void ratio Mb ψb n Average of n

200 1.246 -0.0337 2.64 

600 
0.67 

1.251 -0.035 2.64 
2.64 

   

The parameter d1 (Eq. 4-42) is determined by plotting the ratio of p
q

p
v

d
d

ε
ε

against 

⎟
⎠
⎞

⎜
⎝
⎛ −

M
em ηψ  as shown in Figure 6-6. 
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Figure 6.5 Determination of parameter d1 
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Finally, the parameters h1, h2, h3, d2 and h4 are empirically determined. The 

complete set of model parameters for Ottawa sand is shown in Table 6-4.  

Table 6-4. Model parameters for Ottawa sand 

Elastic 
parameters 

Critical state 
parameters 

Parameters 
associated with 
dr-mechanisms 

Parameters 
associated with 
dp-mechanisms 

Default 
parameters 

G0=60 
ν=0.29 

M=1.14 
c=0.75 

eτ=0.776 
λc=0.037 

ξ=0.2 

d1=0.8 
m=4.4 
h1=3.9 
h2=1.0 
h3=2.2 
n=2.6 

d2=0.5 
h4=4.5 

a=1 
b1=0.005 

b2=2 
b3=0.001 

 

Drained tests corresponding to two initial states of the samples were selected to 

verify the model. The first initial state is 100 kPa effective isotropic stress and 0.644 void 

ratio and the second one is 600kPa effective isotropic stress and 0.73, which represent 

dilative and contractive states, respectively.  
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 65

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0 0.05 0.1 0.15 0.2

Axial Strain

Vo
id

 R
at

io

experiment
P'=100kpa
e=0.64

numerical
P'=100kpa
e=0.64

experiment
P'=600kpa
e=0.73

Numerical
P'=600kpa
e=0.73
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Figure 6.6 Drained tests on Ottawa Sand 
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Figure 6.7 Stress path changes in Ottawa sand. 
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The predicted stress strain response and the stress path variation of the samples 

under triaxial compression are shown in Figures 6-6 and 6-7, respectively.  It can be seen 

that the FLAC3D results match the test results well.   

 

6.3 Fontainebleau Sand Tests 

 The full scale tests on micropiles by the FOREVER program were conducted on 

Fontainebleau sand.  Since the critical state parameters were not available, it was decided 

to deduce them from basic index tests.  The grain size distribution and the relevant 

characteristic of Fontainebleau sand are as shown in Figure 6-8 and Table 6-5 (Mendonca 

and Lopes, 2004). It was found that the grain size distribution and characteristics of 

Fontainebleau sand are very close to Toyoura sand (Table 6-5 and Figure 6-8). Since 

model parameters for Toyora sand were known already, it was decided to simulate 

Fontainbleau sand using the properties of the former.   

Gaudin et. al. (2002) performed compression tests on Fontainebleau sand 

behavior carried out using a standard triaxial device in drained conditions with one or 

more cycles of unloading-reloading under initial effective mean stress of 90kPa, 60 kPa 

and 30 kPa. The initial relative density of the specimen was 71%.  The stress strain 

response of the loading and unloading of this sand using the FLAC3D model is as shown 

in Figure 6-9. It is evident that the model with Toyoura sand properties captures 

Fontainbleau sand behavior well for all initial states. 
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Table 6-5.  Comparison of Fontainebleau sand and Toyoura sand 

 γs (kN/m3) emax emin D50  (mm) Cu Cc 

Fontainebleau 26 0.844 0.527 0.17 1.57 0.64 

Toyoura 26 0.973 0.609 0.19 1.25 1.01 
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Figure 6.8 Grain size distribution of Fontainebleau sand and Toyoura sand 
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Figure 6.9. Response of deviatoric stress from experiments and simulation  

 

6.4 Case Study of Micropiles  

Full-scale load tests of micropiles were conducted by the French research 

program FOREVER.  These tests, as mentioned before, were conducted on homogeneous 

Fontainebleau sand. The data corresponding to the group of 4 micropiles which were 

gravity grouted and tested under vertical loading was selected to verify the FLAC3D 

discretization.  

The site was homogeneously backfilled to a height of 6m with Fontainebleau sand 

and the micropiles were installed as shown in Figure 6-10.  The principal characteristics 

of the fine Fontainebleau sand and the micropiles are: 

Fontainbleau Sand: 

Dry Density:    14.4kN/m3<γd<14.82kN/m3 

            Density Index:  0.53<ID<0.62  
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 Water content:    7.9%<w<10.8% 

Micropiles: 

 Anchored length: L=5m 

 Diameter: B=100mm 

 Steel tube: diameter 50/40mm 

  With Esteel=2.105MPa  

           Egrout=104Mpa 

4 micropiles were distributed in a square pattern with a spacing of 2 diameters. 

10.00m

1

1

4.00m 4.00m

4.00m

2.00m

4.00m

5.00m

ground

Placed and compacted sand

Test pad
4-micropile group B=100mm

 

  Figure 6-10. Micropile layout of the experiment (FOREVER, 2002)  

The numerical simulation of the pile load test was performed using FLAC3D with 

the state-dependent sand model. A finite difference mesh including a 2×2 micropile 

group was prepared. Micropiles were simulated through the pile structure element 

provided by FLAC3D. The normal and shear properties of the soil-pile interface were 

buit-in as elastic-perfectly plastic in FLAC3D and cannot be altered by the users.  The 
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parameters of the micropiles and the interfaces are shown in Table 6-4.  The Fontainbleau 

sand was assumed to have the properties described earlier. 

Table 6.6. Parameters of soil-pile interfaces and piles 

Elastic 
modulus 

(piles, Pa) 

Poisson ratio 
(pile) 

Normal 
stiffness 
(N/m2) 

Shear 
stiffness 
(N/m2) 

Shear 
friction 
angle 

Shear 
cohesion 

 

2.71×1010 

 

0.3 1.5×1010 7.5×109 20 0 

 

The simulated displacement-loading relationship is plotted along with the in-situ 

experimental relation (Figure 6-11). It can be seen that the simulation captures the 

behavior well.  

 

   

Figure 6.11. The experimental and simulated load-displacement relation of single 

micropile 
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CHAPTER 7 

ANALYSIS OF MICROPILE PERFORMANCE  

The state of sand around micropiles is determined by the combination of both 

density and effective mean pressure. However, the mechanical properties for sand in pile 

design are currently based only on the relative density alone.  Use of this parameter alone 

in full scale test results cannot replicate the important effects of confinement.  This has 

resulted in conflicting results with regard to the interpretation of test results.  The use of 

the state parameter, ψ, a measure of the combination of density and effective stress, 

would provide a means of quantifying the results better. Sands with ψ < 0 are dilative and 

those with ψ > 0 are contractive under shear loading.  Thus, their mechanical properties 

and their contribution to pile resistance will be different.  Note that sand with ψ = 0 are at 

the critical state with no changes in volume and its mechanical properties are controlled 

by critical state friction only. 

This chapter makes use of the state dependent sand model implemented in 

FLAC3D to study the performance of micropiles under vertical loading.  The first set of 

analyses was performed for a single pile. The analyses were extended later to group of 

piles and a network group of piles, respectively.  Attention is focused on external (i.e. 

ground-related) carrying capacity influenced by the sand state rather than the capacity 

controlled by the selection of the pile components and grouting process.  It is noted that 

these latter processes have also been shown to be significant in micropile design (Juran 

1999). Furthermore, micropiles are discretized as structural elements as in the case of 

conventional piles, but with a smaller diameter.   
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7.1 Effect of Sand State on Resistance of a Single Pile  

7.1.1 Model Setup 

The dimensions of the model were selected as 5×5×10m3 and the finite difference 

mesh utilized consisted of 8960 elements and 10404 nodes (Fig. 7.1). The pile is assumed 

to be installed in a homogenous profile of uniform Toyoura sand.  The model parameters 

of Toyoura sand are as shown in Table 5-1.  The initial state parameter of the sand is 

assumed to be uniform; hence, the void ratio distribution with depth is varied.  Figure 7.2 

shows the void ratio distribution for a ψ = 0 model as an example.  

The micropile considered is of Case 1 with pile structure elements linked to the 

soil by normal and shear interface springs. The length and diameter of pile are chosen to 

be 6m and 200mm, respectively, corresponding to 30=D
L .  Innovative drilling and 

grouting methods are utilized in modern micropile installation.  This results in high 

grout/ground bond along the periphery of the micropiles.  Thus, the normal and shear 

stiffness and strength of the interface in the FLAC3D model are preset with values large 

enough to ensure that the deformation and failure of a micropile is controlled by the 

surrounding soil and not by the interface when the micropile is subjected to vertical 

loads.  

The vertical loads were applied by displacement control as specified in the 

FLAC3D manual. Small values of continuous vertical displacements were applied to the 

top node of the pile to trigger the side and tip resistance of micropiles from the 

surrounding soil.  Note that since the L/D of micropiles is high, a major contribution to its  
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Figure 7.1 Finite difference mesh 

 

Figure 7.2 Void ratio distribution of TOYOURA sand model for ψ=0 
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capacity comes from friction.  However, we also focus on tip resistance to examine the 

effects of state parameters on its variation. 

 
7.1.2 Results 

The variation of the side and tip resistance of the pile with displacement is as 

shown in Figures 7.3 and 7.4, respectively.  The state parameter values of 0.1, 0.0, -0.1, 

and –0.2 were chosen to represent contractive as well as dilative behavior of sand.  It can 

be seen that the both side and tip resistance are dependent on the state parameter values. 
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Figure 7.3: Side resistance of the pile against displacement under different sand states  

The side resistance of the pile is determined by the normal stress on the interface 

between pile and sand and the critical state strength of sand. The critical state strength is 

frictional and depends only on the mineralogical and particle characteristics of the sand.  

It does not depend on the state of sand.  However, the normal stress of the interface is 

dependent on the type of dilatancy when it is subjected to shearing. The dilative sand 
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with negative ψ values would expand under shearing but contractive sand with positive ψ 

values would contract.  Since the pile is constrained from movement in the normal 

direction, volume changes in sand will be accommodated by variations of stress along the 

interface.  Thus, the dilative behavior would result in an increase in normal stress 

whereas contractive behavior would result in a decrease in normal stress. 
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Figure 7.4:  Tip resistance of the pile against displacement under different sand states 

   The typical variation of normal stress contribution is shown in Figure 7.5, where 

σzi is initial normal stress applied to the pile surface and ∆σz is the normal stress variation 

induced by sand expanding or contracting under shearing.  For contractive sand, ∆σz 

would be negative and for dilative sand it will be positive.  Based on the above 

discussion, it is evident that the side resistance will be related to the state parameter (Fig. 

7.3).   
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Figure 7.5 Normal stress contribution 

The results show that the side resistances are completely mobilized when the pile 

penetration is between 0.5 mm and 3 mm, depending on the state of the sand. On the 

contrary, the sand deformation at the pile tip is elastic for all sand states except for the 

case ψ=0.1.  Thus, that the tip resistance is not yet completely mobilized at this stage 

(Fig. 7.4).  Juran et. al. (1999) gave a range of 20 to 40 times the ratio of displacement to 

fully mobilize the tip resistance over the displacement to fully mobilize the side 

resistance, but the value should change greatly with the value of L/D and soil properties. 

 Characteristics of both side resistance and tip resistance of the pile determine its 

total resistance. Both components increase from the contractive state to the dilative state.   

Therefore, the total resistance increases with a decrease in the state parameter, as shown 

in Fig. 7.6. 
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Figure 7.6:  Total resistance of the pile against displacement under different sand 

states 
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7.2 Analysis of the Behavior of Groups of Piles 

 Several studies have been carried out in the past to investigate the behavior of a 

group of piles and micropiles in sand. However, as in the case of single piles, most of 

these studies were based on replicating the density of the sand and not the state.  Thus, 

laboratory and full-scale experimental results reported by various investigators led to 

contradictory observations pertaining to the behavior of group and network micropile 

systems (Lizzi, 1978; Plumelle, 1984; Maleki, 1995). Therefore, FLAC3D analyses are 

extended here systematically to examine the effect of initial state on the behavior of 

groups of piles. 

7.2.1 Group Pile Model Setup 

The model dimensions and the sand are the same as in the case of a single pile. A 

3-pile group with pile diameter of 200 mm and length 6 m were vertically installed in the 

center as shown in Figure 7.7. The normal and shear stiffness and strength of the 

interface between pile and sand are also set with values large enough to ensure that 

failure occurs in the surrounding sand. 

The spacing of the piles is varied from 2D to 4D, where D is the pile diameter, to 

evaluate its effect on group behavior for a given state of sand. State parameters of 0.1, 0.0 

and –0.1 were chosen to represent sands with contractive and dilative behavior. Small 

values of continuous vertical displacements were applied at the top nodes of the pile 

group to trigger side and tip resistances of micropiles from the surrounding sand. The 

side and tip resistance against displacement were recorded when the pile was pushed 

downward. The recorded curves are used to compare with those for a single pile. 
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Figure 7.7 Setup for group effect 

7.2.2 Results 

 The variations of side, tip, and total resistances of an individual pile in a group for 

initial state parameter -0.1, 0.0 and 0.1 are as shown in Figures 7-8, 7-9, and 7-10, 

respectively.  There are several features associated with these variations as discussed 

below. 

 In all cases, the initial slope of the total and side resistance of the group piles, 

regardless of the spacing or state parameter, are lower than that of a single pile.  The 

behavior changes with increase in displacement. All of the curves for side, tip and total 

resistance appear to reach an ultimate value that is higher or lower than that the single 

pile depending on spacing and initial state parameter.  The variation of total resistance of 

group piles was not consistent.  The ultimate total resistance was larger than 100 percent 

in most cases.  However, the ultimate total resistance of group piles with spacing of 2D 

under ψ = 0.0 and 0.1 is observed to be lower than 100 % (Fig. 7.9(c) and 7.10(c)).  
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 (a):  Side resistance variation with Spacing  
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 (b): Tip resistance variation with spacing  
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 (c): Total resistance variation with spacing  

Figure 7-8:  Behavior of Group of Piles (ψ = -0.1) 

Most past investigations on group effects on piles had only considered the total 

resistance in order to compare performance with a single pile and this led to similar 

inconsistencies.  However, as shown later, a closer examination of the variations of side 

resistance and the tip resistance developed here enables us to put forward a concept that 

can better interpret the behavior of group piles. 

 The group effect of tip resistance in dilative sand is less than 100 percent or a 

negative contribution (Figure 7-8 (b)).  However it is larger than 100% or a positive 

contribution for sands with ψ = 0.0 and ψ = 0.1 (Figures 7-9 (b) and 7-10 (b)). 
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(c)  Total resistance variation with spacing 

Figure 7-9:  Behavior of Group of Piles (ψ = 0) 

 The group effect of ultimate side resistance for dilative sand (ψ = -0.1) is larger 

than 100 percent resulting in a positive contribution.  However, results are mixed for 

sands with ψ = 0.0 and ψ = 0.1 ((Figures 7-8 (a) 7-9 (a) and 7-10 (a))). While most 

groups had a positive contribution, piles with the closer spacing (2D) had a negative 

effect. 

The total resistance or capacity of a pile under vertical loading is the sum of side 

and tip resistances.  Thus, both components must be monitored in practice to understand 

the behavior of a group of piles.  As mentioned before, most past studies did not do this 

except in a study conducted by Vesic (1969).  Vesic reported the results of tests on model 

groups of four and nine piles.  The tip resistance and the side resistance were measured 

separately.  Vesic concluded that when the efficiency of closely spaced piles was greater 
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than unity, such increase was mainly registered in the shaft rather than in the tip 

resistance.  These results were not theoretically supported nor verified by other 

subsequent researchers. 
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(b)  Tip resistance variation with spacing  
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(c)  Total resistance variation with spacing 

Figure 7-10:  Behavior of Group of Piles (ψ = 0.1) 
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7.2.3 Proposed mechanism of group pile behavior  

It is proposed that the group effect of pile resistance is controlled by two 

mechanisms: one due to volume changes or dilatancy and the other due to an overlap of 

shear stresses from the presence of adjacent piles.  The effect of dilatancy on group 

behavior is different for driven piles and bored piles.  In driven or displacement piles, 

the installation process results first in the displacement of the surrounding sand in the 

normal direction followed by shearing as shown in Figure 7-11.  Thus, the initial 

displacement would cause the dilative sand to loosen, thereby reducing its potential for 

dilatancy.  On the contrary, displacement will densify contractive sand thus reducing its 

potential for further reduction in volume.  The process of displacement can be 

represented in the state diagram, as shown in Fig. 7.12.  Thus, in displacement type 

group piles, irrespective of the initial state, subsequent shearing will not change its state 

or volume changes very much. 

Most bored piles are installed with little displacement in the normal direction 

(Figure 7-11).  The boundary conditions imposed on the piles here resemble the case of 

bored piles. Thus, very little change will occur to its initial state during installation.  The 

dilative or contractive nature of the initial state will in turn influence the development 

the side resistance as discussed in the case of a single pile.  However, in the case of 

closely spaced group piles, geometric limitations will alter the effect of dilatancy from 

the case of a single isolated pile.  In the case of contractive sands, group effects will 

result in the reduction of the normal stress and hence in the side resistance as compared 

to an isolated pile case.  The opposite will be true in the case of dilative sands.  The 

numerical results imply these observations as seen from Figures 7-8 (a). 7-9 (a) and 7-10 
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(a)), and the interpretation will be given subsequently, combined with a stress 

overlapping mechanism. 

 

 

Displacing +Shearing
           (Driven)

Shearing    
 (Bored)

 

Figure 7-11 Schematic of driven and bored pile installation  
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Figure 7-12 State variation of surrounding sand due to pile driving 
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The second mechanism of side resistance in group piles results from an overlap of 

shear stresses.  The pile load induced shear stresses are shown in Figure 7-13.  The 

variation of the shear stress with radial distance on a single pile is as shown in Fig. 7-14. 

 

Before pile 
loading

Pile load 
induced shear 
stresses

 

Figure 7-13 Schematic of pile load induced shear stresses  

 

 

Figure 7-14 Schematic of shear stress distribution in sand for isolated pile 
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(a) Schematic of shear stress components induced by two piles (left side not shown) 

 

 

(b) Superposition of shear stress components induced by two piles 

Figure 7-15:  Overlap of shear stress in surrounding sand for pile group 
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It is seen that the shear stress decreases with distance to near zero values.  The 

variation of individual shear stress with distance for two closely spaced piles is as shown 

in Figure 7-15 (a).  Superposition of the individual shear stresses will result in the shear 

stress variation as shown in Fig. 7-15(b).   

It can be seen that while the overlap of shear stresses from the two piles balance 

each other in the segment in between, they increase the shear stresses on the outside of 

the two piles.  Thus, the overlap of shear stresses might contribute to positive increase in 

side resistance in group piles regardless of the state. 

To verify the above overlap mechanism of shear stress contribution, group 

analyses were carried out on piles installed in an elastic sand (dilatancy effects were 

zeroed).  The variations of side resistance with pile spacing are as shown in Figure 7-16.  

It is evident that group piles reach a higher ultimate resistance than a single pile. 

Since there is no dilatancy involved, the increase must have come from overlap of 

stresses. It is also of interest to note that piles with the closest spacing (2D) reached the 

highest value whereas the ones with 3D and 4D reached only a moderate increase.  This 

means that the overlap stress effect decays with an increase of pile spacing. 
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Figure 7-16 Side resistance due to overlap of stresses 

The discussion supported by the above analyses shows that overall side resistance 

in group piles is dependent on both dilatancy (volume change) and stress overlap 

mechanisms.  In the case of dilative sands, both mechanisms produce a positive effect 

resulting in increased overall side resistance as seen in Figure 7-8 (a). However, in the 

case of contractive sands, increase or decrease in the overall side resistance in group piles 

would depend on the dominant mechanism. It is believed that the volume change 

mechanism (contractive) is dominant in Figure 7-10 (a) resulting in a negative 

contribution for the closely spaced pile spacing of 2D.  However, the mechanism of stress 

overlap dominates pile spacings of 3D and 4D, leading to positive side resistance effect. 

The variation of the tip resistance of group piles in an elastic medium is as shown 

in Figure 7-17.  It can be seen that when contributions from overlap of stresses are only 

considered, the tip resistance in group piles is positive for pile spacing of 3D and 4D but 

negative for pile spacing of 2D. 
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Figure 7-17 Tip resistance due to overlap of stresses 

 The dominance of the mechanism of volume change or overlap of stresses would 

also affect the overall variation of the tip resistance in group piles.  When piles are pushed 

into dilative sands the increase in volume changes might result in a reduction in tip 

resistance.  The effect will be opposite in the case of contractive sands.   

 In the case of the tip resistance variation in dilative sand, as in Figure 7-8 (b),  

both mechanisms combine and contribute to the reduction of the tip resistance.  Figures 

7-9 (b) and 7-10 (b) show that group effects of tip resistance for piles in contractive sand 

are larger than 100 percent or close to 100 percent, however, if considering that the group 

effect contributed to by the stress overlapping mechanism is negative for pile spacing of 

2D, it is believed that the group effect contributed by the dilatancy mechanism are all 

positive for the piles in contractive sand. 
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7-3. Analysis of Inclined and Network Piles 

A micropile network consists of a group of inward and outward inclined piles. As 

discussed previously, the model studies of Lizzi showed a substantial increase in the 

capacity of piles (220%) when arranged as a network.  Plumelle (1984) investigated the 

effects of inclination on the performance of driven micropile groups and found that 

inclination of the micropile led to a network effect that significantly increased the 

ultimate axial loading capacity and decreased the movement of the micropile group. On 

the contrary, full scale tests conducted by the FOREVER program on Lizzi’s network 

arrangement showed only moderate increase in capacity. 

As in the case of vertical group piles, most previous full scale and model tests on 

the network effect of micropiles, except those that used centrifuge tests, did not account 

for the state of sand correctly.  Model tests were performed on sands with replication of 

density alone.  As discussed before, such replication is not sufficient to replicate the state 

of sand.  This led to the contradictory observations. Thus, numerical analyses were 

extended here to study the performance of network groups of piles. Both inward and 

outward inclined piles are considered. 

7.3.1 Network Model Setup 

Figure 7-18 shows an inclined pile and a network of a 3-pile group. Note that 

when the inclination angle α = 0°, the network is identical to the vertical group.  α > 0° 

constitutes outward inclined piles and α < 0° consists of inward inclined piles. The latter 

is referred to as a “basket” group of micropiles following Lizzi (1985).  

The individual piles were of the same dimension as in the previous analyses.  The 

piles were placed at a constant spacing of 400 mm on center (2 diameters) at the top. 
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Note that network micropiles are often categorized in practice as reinforcement type   

(Case 2 in Chapter 2).  However, in order to maintain consistency with the previous 

investigation of vertical group, freestanding micropiles (Case 1) was chosen here.  

Very small values of continuous vertical velocity (less than 10-5 m/s), as the cases 

of single pile and pile group, were applied to the top nodes of the pile network to trigger 

the side and tip resistances of micropiles from the surrounding soil. The side and tip 

resistances against displacement were recorded when the pile was pushed downward. 
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Figure 7-18 Model setup for network group 

7.3.2 Performance of Inclined Pile 

 The first set of analyses was conducted on a single inclined pile.  The chosen 

micropile inclination angles were 0°, 5°, 10°, and 15° and sand state parameters were 0.1, 

0.0, and –0.1, corresponding to contractive, critical state, and dilative sands, respectively.  

 The variations of the side, tip, and total resistance with displacement of an 

inclined pile are as shown in Figures 7-19 to 7-21. It can be seen that the ultimate total 

resistance of an individual pile generally increases with increase in inclination angle for 

both dilative sand (ψ = -0.1) and contractive sand (ψ=-0.1) (Figure 7-19 (c), 7-20 (c) and 

7-21 (c)).  Exception to this behavior occurs for the pile with inclination angles of 50 and 

100 in critical state sand (ψ = 0.0) where the total resistance of the former is found to be 

larger than that of the latter. 

 The ultimate side resistance of an inclined micropile in dilative sand is less than 

that of a vertical micropile (Figure 7-19 (a)).  It is also evident that the ultimate side 
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resistance of inclined pile does not change much with inclination angle. On the contrary, 

the ultimate side resistance of an inclined micropile in contractive sand is larger than that 

of a vertical micropile (Figure 7-21 (a)).  In addition, the ultimate side resistance is found 

to increase with pile inclination angle.  The ultimate side resistance of a pile in the critical 

state sand also increases with inclination angle but with an exception for inclination 

angles of 50 and 100.  

 Tip resistance variation with pile inclination angles are as shown in Figures 7-19 

(b), 7-20 (b), 7-21 (b). The ultimate tip resistance increases with pile inclination angle for 

all sands. Exception to this behavior, as observed previously in total and side resistances, 

is for piles in critical state sand with inclination angles of 50 and 100. 
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a) Side resistance variation with pile inclination  
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b) Tip resistance variation with pile inclination 
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c) Total resistance variation with pile inclination 

Figure 7-19 Inclination effect of an individual pile for ψ=-0.1  
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a) Side resistance variation with pile inclination 
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b) Tip resistance variation with pile inclination 
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c) Total resistance variation with pile inclination 

Figure 7-20 Inclination effect of an individual pile for ψ=0.0  
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a) Side resistance variation with pile inclination 
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b)  Tip resistance variation with pile inclination 
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c) Total resistance variation with pile inclination 

Figure 7-21 Inclination effect of an individual pile for ψ=0.1  
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7.3.3 Performance of Outward network Piles 

 Figures 7-22 to 7-24 show the variation of the side, tip and total resistance of 

outward inclined micropile group with inclination angle.  

 It is seen that for dilative sand the side resistance is a maximum in the case of a 

vertical pile. It decreases slightly with inclination angles from 50 to 150 (Fig. 7-20 a).  

However, for the same sand, all of the total resistance curves for inclined network piles 

plot above the vertical micropile group (α=0°).  Moreover, the ultimate resistances of the 

piles reach a higher value with increased angle of inclination up to 10°.  Further increase 

in angle of inclination, however, appears to result in a lower value for the ultimate total 

resistance as seen in the case for α = 15°.  Note that this was not the case for a single pile 

where the total resistance increased with inclination for all cases.  The variation of the tip 

resistance is similar to that of the total resistance with its maximum attained for an 

inclination angle of 100.  

 The variation of side resistance of piles installed in critical state sand with 

inclination is different from that in dilative sand in that it reaches a maximum at an 

inclination angle of 100(Figure 7-23 (a)). However, the total and tip resistance of piles 

installed in this sand show the same behavior as found in dilative sand (Figures 7-23 (b) 

and (c)).   

 In the case of piles installed in contractive sand, total, side and tip resistances 

increased with pile inclination angle (Figures 7-24 (a), (b) and (c)). 
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b) Tip resistance variation with pile inclination 
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c) Total resistance variation with pile inclination 

Figure 7-22 Inclination effect of outward inclined pile group for ψ=-0.1 
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a) Side resistance variation with pile inclination 
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b) Tip resistance variation with pile inclination 
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c) Total resistance variation with pile inclination 

Figure 7-23 Inclination effect of outward inclined pile group for ψ=0.0 
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a) Side resistance variation with pile inclination 
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c) Total resistance variation with pile inclination 

Figure 7-24 Inclination effect of outward inclined pile group for ψ=0.1 

7.3.4 Performance of Inward Network Piles 

Figures 7-25 to 7-27 show the variation of the side, tip and total resistance of 

inward inclined micropile group with inclination angle. 

As observed in the cases of individual and outward group piles, the side resistance 

is a maximum in the case of a vertical pile for micropiles installed in dilative sand.  The 

variation of the side resistance, however, does not show any consistent pattern with pile 

inclination angle (Figure 7-25 (a)).  The total resistance of piles in dilative sand is 

observed to increase with pile inclination angle consistently (Figure 7-25 (c).  The 

variation of tip resistance with inclination was not consistent (Figure 7-25 (b)).   

The variation of side resistance of piles installed in critical state sand with 

inclination is mixed and different from that in dilative sand in that it reaches a maximum 

at an inclination angle of 100(Figure 7-26 (a)). The variation of the tip resistance of piles 
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installed in this sand was not consistent either Figure 7-26 (b). However, the total 

resistance of piles showed the same behavior as found in dilative sand (Figure 7-26(c)).   

 In the case of piles installed in contractive sand, total, side and tip 

resistances increased with pile inclination angle (Figures 7-27 (a), (b) and (c)). 
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c) Total resistance variation with pile inclination 

Figure 7-25 Inclination effect of inward inclined pile group for ψ=-0.1 
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c) Total resistance variation with pile inclination 

Figure 7-26 Inclination effect of inward inclined pile group for ψ=0.0 
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c) Total resistance variation with pile inclination 

Figure 7-27 Inclination effect of inward inclined pile group for ψ = 0.1 
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7.3.5  Comparison of Inward and Outward Network Pile Performance  

 Figures from 7-28, 7-29 and 7-30 show comparison of the total resistance, side 

resistance and tip resistance of piles installed in dilative, critical state and contractive 

sands with same inclination angle but different inclination dip directions at inclination 

angles of 50, 100, and 150. It is seen that, without consideration of reinforcement effect by 

micropile network, side, tip and total resistances of outward inclined piles in all sand 

states are basically higher than those of inward inclined ‘basket’ micropile network. 

Exception to this occurs in the side resistance of the piles installed in critical state 

(ψ=0.0) sand with an inclination angle of 50 (Figure 7-29 (a)). It is noted that tip 

resistance of piles installed in contractive sand with an inclination angle of 150 and 50, 

dilative sand with an inclination angle of 50, and critical state sand with an inclination 

angle of 150   for both cases are very close ( Figures 7-28 (a), 7-29 (c), 7-30 (a) and (c)).    

 

0

20000

40000

60000

80000

100000

120000

140000

160000

0.00E+00 1.00E-03 2.00E-03 3.00E-03 4.00E-03 5.00E-03 6.00E-03

Displacement (m)

R
es

is
ta

nc
e 

(N
)

Tip (outward)

Tip (inward)

side (outward)

side (inward)

Total (outward)

Total (inward)

ψ=-0.1

 

(a) α = 50  



 114

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0.00E+00 1.00E-03 2.00E-03 3.00E-03 4.00E-03 5.00E-03 6.00E-03 7.00E-03

Displacement (m)

R
es

is
ta

nc
e 

(N
)

Tip (outward)

Tip (inward)

Side (outward) Side (inward)

Total (inward)

Total 
(outward)

ψ=-0.1

 

(b) α = 100  

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0.00E+00 1.00E-03 2.00E-03 3.00E-03 4.00E-03 5.00E-03 6.00E-03 7.00E-03 8.00E-03 9.00E-03

Displacement (m)

R
es

is
ta

nc
e 

(N
)

Tip (outward) Tip (inward)

Side (inward)Side (outward)

Total (inward)

Total (outward)

ψ=-0.1

 

(c) α=150  

Figure 7-28 Comparison of inward and outward inclined pile network (ψ=-0.1) 
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(c) α=150  

Figure 7-29 Comparison of inward and outward inclined pile network (ψ=0.0) 
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(c) α = 150  

Figure 7-30 Comparison of inward and outward inclined pile network (ψ=0.1) 
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7.3.6 Proposed Mechanisms of Load Transfer in Inclined and Network Piles 

The numerical results of the performance of an inclined pile and network piles 

installed in sand under the three initial states, dilative, critical state, and contractive, 

enable us to put forward new mechanisms to describe the observed load transfer.   

A vertical concentric load applied on an inclined pile or a pile group can be 

decomposed into two components: axial component parallel to the axis of the pile and a 

lateral component normal to it. The schematic of the initial distribution of normal stress 

due to the axial load on an inclined pile is as shown in Figure 7-31 (a). The distribution is 

approximated to be a linear for simplicity.  Imposition of a lateral load component on the 

pile would alter the above distribution of the normal stress as shown in Figure 7-31 (b). 

.

Assumed initial linear 
distribution of normal 
stress

The normal 
stress increment 
due to vertical 
load

A

A'

B'

B

∆σ'nA

∆σnA

∆σnB

∆σ nB

 

     (a)                                                                              (b) 

Figure 7-31 Schematic of normal stress distribution on an inclined pile due to 

application of vertical load 
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The neighborhood of the pile is divided into 4 zones as shown in Figure 7-31 (b).  

Zones A and B are in passive state of pressure and zones A and B are in active state. The 

stress distribution is not symmetric due to the difference in passive and active earth 

pressure coefficients and development of potential gap along the interface. 

The change in normal stress distribution would lead to corresponding changes in 

the load transfer of piles.  First, it would result in a change of the shear strength along the 

pile.  Second, it would alter the state of the sand surrounding the pile. The dilative sand in 

zone A would be loosened due to the squeezing but the contractive sand in zones A and B 

will be further densified. On the contrary, both contractive sand and dilative sand in 

zones A and B would be loosened.  The alteration of sand state would lead to additional 

changes in the shear strength along the pile. 

Since the passive earth pressure coefficient is much larger than the active earth 

pressure coefficient, the resulting normal stress change within the zones will be as 

follows: 

    'nAnA σσ ∆≥∆       (7-1) 

'nBnB σσ ∆≥∆       (7-2) 

where,  nAσ∆  is the absolute magnitude of normal stress increment applied to the pile in 

Zone A;   'nAσ∆  is the absolute magnitude of normal stress increment applied to the pile 

in Zone A’; nBσ∆  is the absolute magnitude of normal stress increment applied to the 

pile in Zone B, and 'nBσ∆  is the absolute magnitude of normal stress increment applied 

to the pile in Zone B’. 
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 As a result, the side resistance due to the variation in normal stress profile caused 

by the lateral load component would be increased.  The lateral load is but a component of 

vertical load applied to the pile that is controlled by inclination angle.  Increase in 

inclination angle will lead to a larger lateral component but a corresponding decrease in 

the axial load applied on the pile.  However a large increase in inclination angle will 

decrease the depth of bottom of the pile, and make the total normal force applied the pile 

lower and decrease the side resistance.  

The alteration of sand state due to lateral load will also change the side resistance 

along the pile. The normal stress and side resistance will be decreased when the 

surrounding sand is contractive, however the normal stress and side resistance will be 

increased when it is dilative.  Figure 7-19 (a) shows that the side resistance is decreased 

when the pile is inclined in dilative sand. This is because the lateral component of the 

vertical load applied to the inclined piles would make the surrounding sand to dilate and 

loosen.  This will in turn reduce the beneficial effect of shear induced dilation in the sand. 

Therefore, the ultimate side resistance of inclined pile group would be less than that of 

vertical pile group.  Similar situation would occur in the sand with ψ = 0.0 (Figure 7-20 

(a)).  

In the case of contractive sand, however, the lateral component of the vertical 

load applied to the inclined pile would make the sand in zones A and B to be densified.  

Thus, shearing and contraction of the densified sand around the inclined pile would be 

less than that of contractive sand around a vertical pile.  This would result in the ultimate 

side resistance of inclined pile to be larger than that of a vertical pile (Figure 7-21 (a)).  

The variation of ultimate side resistance with inclination angle of outward and inward 
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micropile groups would essentially follow the same variation as the individual pile with 

only a few exceptions as noted in case of the critical state sand.  A summary of the 

observed behavior is tabulated in Table 7-1. 

Table 7-1 Ultimate side resistance variation with pile inclination 

sand types 
  

ψ=-0.1 ψ=0.0 ψ=0.1 
References 

Individual micropile decrease decrease increase Figures 7-19,20,21 (a)

Outward inclined micropile group decrease increase increase Figures 7-22,23,24 (a)

Inward inclined micropile group decrease mixed increase Figures 7-25,26,27 (a)

 

The tip resistance of inclined micropile increases with inclination angle regardless 

of the state of sand and the geometry of the pile installation (Figures 7-19, 20, 21, 22, 23, 

24, 25, 26, and 27 (b)). Only few exceptions occur in outward inclined pile group and 

inward inclined pile group in both dilative and the sand with ψ = 0.0 (Figures 7-22 (b), 7-

23 (b) and Figures 7-25 (b), 7-26 (b)).  

It is of interest to find that the side resistance of outward inclined pile group for a 

given inclination angle is always larger than that of inward pile group regardless of the 

state of sand and pile geometry (Figures 7-28, 7-29 and 7-30). A plausible mechanism for 

this observation is described as follows. 

Figure 7-32 shows two piles arranged in vertical, inward, and outward 

arrangement.  The spacing between the mid points, Dmid, and the tip, Dtip of inclined piles 

are related to the spacing D of vertical piles as: 

αα
midmid DDD << −       (7-3) 

 αα
tiptip DDD << −       (7-4) 



 122

where –α indicates that the pile group inward inclined with an angle of α, but +α 

indicates that the pile group outward inclined with same angle of α.. 

D D

−α

Deq

DTIP

D

α

Deq

DTIP

 

Figure 7-32  Pile spacing of vertical, inward inclined and outward inclined pile groups 

The lateral component induced by the inclination of micropiles leads changes in 

normal stress and state as discussed before in the case of an inclined pile.  In the case of 

dilative sand these changes would reduce the beneficial effect of shear induced dilation. 

The amount of decrease would be less for outward inclined pile group rather than for 

inward inclined pile group as Dmid of the latter is less.  Thus, the sand within inward 

inclined pile group would be more prone to dilate than that in the outward inclined pile 

group after the beneficial effect of shear induced dilation is reduced. 

The contractive sand within the inward inclined pile group would also be more 

susceptible to densification than that within an outward inclined group. This densification 

will increase the ultimate side resistance. However, the contractive sand within the 

inward inclined sand would be more susceptible to contract by shearing as well. The 
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contraction will reduce the ultimate side resistance. The ultimate side resistance is finally 

balanced by both the increase induced by densification and the reduction induced by 

contraction.  From Figure 7-30, it is found that the ultimate side resistance may still be 

dominated by contraction resulting in a decrease in normal stress along the piles instead 

by densifying of contractive sand leading to increases in normal stress and shear strength 

along piles. Therefore, inward inclined pile group with less Dmid would be more 

susceptible to decrease in the normal stress and ultimate side resistance than an outward 

inclined pile group that had larger pile spacing between mid points.   

The tip spacing (Equation 7-4) and the relative magnitudes of pile spacing for 

vertical, inward inclined and outward inclined pile group are same as those for side 

resistance case. Therefore, the tip resistance would not change much for both inward and 

outward inclined pile groups.  

Finally it is noted that the above discussion on the mechanisms of load transfer 

was based on inclination angles in a range of 0-15°.  Further studies are needed before the 

discussion can be extended for other inclinations. 
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CHAPTER 8 
SUMMARY AND CONCLUSIONS 

 
8.1 Summary 

  This study implemented a state parameter based constitutive model for sand.  

The state parameter is a combined measure of the void ratio and confining stress.  Past 

studies have treated the effects of void ratio and confining stress separately.  It had led to 

problems associated with the interpretation of sand behavior in many laboratory and field 

tests.  The widely used terms of loose and dense sand behavior of sand was contrasted 

with contractive and dilative characteristics. 

  The bounding surface sand model was formulated within the critical-state 

framework following Li and Dafalias (2000) and Li (2002).  The state parameter 

ψ,  expressed as the difference between the current void ratio and the void ratio at the 

critical state at same confining stress was explicitly incorporated into this model.  The 

model assumes the dilatancy of sand to be dependent not only on the stress ratio η = q/p, 

but also on the state parameter.  The model was coded in C++ language and implemented 

into the widely used geotechnical finite difference code FLAC3D.  The code was first 

verified by comparison with laboratory tests and then used to simulate the results of a full 

scale study on micropiles.  The model highlighted the dependency of the shear behavior 

of sand on stress path and Lode angle. 

 

 FLAC3D model was subsequently used to investigate the effects of sand state on the 

performance of single, group, and network micropiles. The study focused on the variation 

of side and tip and resistance with pile displacement.   

 



 125

8.2 Conclusions 

Based on numerical analysis of a laboratory element tests, single micropile and three-

pile micropile group and network, the following conclusions are drawn: 

1. Shear behavior of sand is very much dependent on state, stress path, and Lode 

angle.  The constitutive model formulated in the study can capture the complex 

characteristics of sand shear behavior.  

2. Sand resistance to a single pile and micropile consists of two components: one 

based on critical state friction and the other due to dilatancy.  The critical state 

friction is dependent on mineral and particle characteristics and not on the initial 

state.  Dilatancy on the other hand depends on state parameter.  The normal stress 

imposed on the periphery of the pile is affected by dilatancy.  Thus, the side 

resistance and total resistance are affected by initial state.  The numerical 

simulations confirmed this important effect on resistance to pile. 

3. The stress overlapping due to group effect in micropiles contributes to an 

increase in shaft resistance. 

4. The group effect on shaft resistance of displacement piles in dilative sand would 

be either positive or negative.  This is determined by both value of initial state 

parameter and the degree of displacement. On the contrary, in contractive sands 

the side resistance of piles in group is always positive and dominated by the 

amount of displacement. 

5. For bored piles with good bond between pile and its surrounding sand, especially 

micropiles injected with high pressure, group effects of shaft resistance of piles in 

dilative sand contributed by both friction and dilatancy are positive; group effects 
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of shaft resistance of piles in contractive sand contributed by dilatancy is 

negative. Thus, the resultant group effect on shaft resistance of pile in contractive 

sand might be either positive or negative.  The final values is determined by the 

relative magnitude of the positive group effect contributed by friction and the 

negative group effect contributed by dilatancy. 

6. The total group effect of tip resistance is positive for contractive sand, but it is 

negative for dilative sand. As a result overlap of stress in group piles its 

contribution to tip resistance is positive when pile spacing large (3D or 4 D), but 

negative when the pile spacing is small (2D).      

7. For piles installed in dilative sand with inclination angle less than 150 (individual, 

inward and outward network), ultimate shaft resistance is less than that of vertical 

piles. However, the behavior is opposite for piles installed in contractive sand. 

8. The tip resistances of inclined piles are always larger than those of vertical piles 

for both contractive sand and dilative sand. 

9. When micropiles are considered as structure elements, shaft resistances of 

outward inclined micropiles are higher than those of inward inclined micropiles 

regardless of the state of sand. However, the tip resistances are nearly the same 

for both inclined piles. 

10. The group effect of micropiles and piles in sand depends on types of installation, 

sand state, pile spacing, ratio of length over diameter, properties of pile-sand 

interface.  The FLAC3D model developed here is a useful means of quantifying 

the effects for design.  
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8.3 Suggestions for Further Research 

  The important effects of initial state identified by the numerical analyses on 

micropiles could be enhanced by the use of physical centrifuge models.  Centrifuge 

is the only type of tests that can control of both density and confinement. 

  The computations using FLAC3D were limited by computer RAM.  Thus, 

the number of piles in group and network was limited to only three piles.  The 

analyses could be extended to a larger number of piles within a group and network 

using parallel processing computational algorithms. 

  The study focused on effect of vertical loads on the performance of piles. 

Recent problems with geotechnical infrastructure have brought forth the need to 

study the response of micropiles under lateral loads.  Their response under lateral 

loads as a function of state remains unexplored.  Since FLAC3D is a 3-D program it 

will be useful to extend the analyses to lateral loads as well.  It is also necessary to 

extend the numerical analyses to micropiles under dynamic loading. 

  The study did not account for the reinforcement effect of inward network 

piles.  Such effect would change the initial state of sand by changing both void ratio 

and confining stress.  Thus, it is necessary to develop a model that can predict 

changes in initial state during installation of network piles. 

  Finally, even though the constitutive model used in the study is useful for 

modeling complex situations it uses a large number of parameters. It is necessary to 

examine the influence of the parameters on sand response and limit the numbers to 

only the most important ones.  Such a model is currently under development at 

Washington State University. 



     128

REFERENCES 

Atkinson J., 1993, An introduction to the Mechanics of Soils and foundations through 
Critical State Soil Mechanics, McGraw-Hill 
 
Baker, R. and Desai, C. S., 1982, Consequences of deviatoric normality in plasticity with 
isotropic strain hardening. Int. J. Numer. Anal. Methods Geomech., 6(3), 383-390. 
 
Bardet, J. P., 1990, Hypoplasticity model for sand, Journal of engineering mechanics, 116 
(9), 1973-1998. 

 
Been, K. and Jefferies, M. G., A state parameter for sands, Geotechnique, 35(2),99-112. 

 
Been, K., Crooks, J. H. A., Becker, D. E. and Jefferies, M. G., 1986, The cone penetration 
test in sands: part I, state parameter interpretation, Geotechnique, 36(2), 239-249. 

 
Been, K., Jefferies, M. G., Crooks, J. H. A. and Rothenburg, L., 1988, The cone 
penetration test in sands: part II, general inference of state, Geotechnique, 37(3), 
285-299. 
 
Benslimane, A., Juran, I., and Bruce, D. A., 1995, Group and network effect in micropile 
design practice, Foundation upgrading and repair for infrastructure improvement, 
Proceedings of the symposium sponsored by the deep foundations committee of the 
grotechnical engineering division of American society of civil engineers in conjunction 
with the ASCE convention in San Diego, California, October 23-26, 1995.  

 
Boulanger, R. W., 2003, Relating αK to relative state parameter index, Journal of 
geotechnical and geoenvironmental engineering, 129(8), 770-773. 

Bruce, D. A., DiMillio, A. F., and Juran, I., 1995, Primer on Micropiles, Civil Engineering, 
65(12) 51-54. 

Brown, D and Drew, C., 2000, Axial capacity of augured displacement piles at Auburn 
University, Proceedings of Geo-Denver 2000, Denver, CO, 397-403. 
 
Bustamante, M. & Gianeselli, L. 1993, Design of auger displacement piles from in situ 
tests, Proceedings of the 2th international geotechnical seminar on deep foundation on 
bored and auger piles, Ghent, Belgium, 21-34. 
 
Cantoni, R., Collotta, T., Ghionna, V. N. and Moretti, P. C., 1989, A design method for 
reticulated micropile structures in sliding slopes, Ground Engineering, No. 5, 41-47. 
 
Carriglio, F., Ghionma, V. N., Jamiolkowski, M. and Lancellota, R., 1990, Stiffness and 
penetration resistance of sands versus state parameter, Journal of geotechnical 
engineering, 116(6), 1015-1020. 
 



     129

Dafalias, Y. F., and Popov, E. P., 1976, Plastic internal variables formalism of cyclic 
plasticity, Journal of applied mechanics, ASME, 43, 645-651 
 
Dafalias, Y. F., 1981, A novel bounding surface constitutive law for the monotonic and 
cyclic hardening response of metals, Transactions, 6th international conference on SMIRT, 
Vol. 1, paper No. L 3/4,Paris, France, August, 1981. 

 
Dafalias, Y. F., 1986, Bounding surface plasticity. I: Mathematical foundation and 
hypoplasticity, Journal of Engineering Mechanics, 112(9), 966-987. 
 
Dafalias, Y. F., Papadimitriou, A. G., Li, X. S., 2004, Sand plasticity model accounting for 
inherent fabric anisotropy, Journal of Engineering Mechanics, 130(11), 1319-1333.  

 
Drucker, D. C., 1988, Conventional and unconventional plastic response and 
representation, Appl. Mech. Rev., 41,151-167. 

Ellis, I., 1985, Piling for underpinning, Symposium on building appraisal, maintenance 
and preservation, at University of Bath, Bath, 88-96 

Estephan R. et Frank R., 2001, Analyse du comportement de groupe et de réseaux 
élémentaires de micropieux sous chargement vertical et horizontal. Application aux 
essays de chargement du réseau de Saint-Rémy-lés-Chevreuse. Rapport interne 
N0FO/98-99/06. 

Foerster, E. et Modaressi, H. 1995, Modélisation en elements finis des réseaux ou des 
groupes de micropieux. Rapport interne No. FO/94/04. 

FOREVER, 2002, Synthesis of the results of the national project on micropiles. Research 
Report, IREX. 

Garg, K. G., 1979, Bored pile groups under vertical load, Journal of the geotechnical 
engineering division, Proceedings of the American Society of Civil Engineers, 105 
(GT80). 

Gaudin C., Serratrice J.F., Thorel L., Garnier J. (2002) : Caractérisation du comportement 
d’un sol par essais triaxiaux pour la modélisation numérique d’un écran de soutènement. 
Symposium International Identification et détermination des paramètres des sols et des 
roches pour les calculs géotechniques, 2-4 Sept. 2002, Paris, France, 8 p (90%). 

Hana, T. H., 1963, Model studies of foundation groups in sand, Geotechnique, 13, 
334-351. 

Hashiguchi, K.,1980, Constitutive equations of elastoplastic materials with elastic-plastic 
transition, Journal of Applied Mechanics, 47 (2), 266-272. 



     130

Hashiguchi, K.,1989, A mathematic modification of two surface model formulation in 
plasticity, International journal of solids structure, 25 (8), 917-945. 

Hashiguchi, K., Saitoh, K., Okayasu, T. and Tsutsumi, S., 2002, Evaluation of typical 
conventional and unconventional plasticity models for prediction of softening behavior of 
soils, Geotechnique, 52(8), 561-573.  
 
Hart, R. D., and C. Detournay, 2005, Geotechnical constitutive models in an explicit, 
dynamic solution scheme, Soil constitutive models: evaluation, selection and calibration 
(Proceeding of geo-frontiers 2005, Austin, Texas, January 2005), ASCE geotechnical 
special publication No. 128, pp. 185-203. 
 
Herrmann, L. R., Kaliakin, V., Shen, C. K., Mish, K. D. and Zhu, Z. Y., 1987, Journal of 
engineering mechanics, 113 (4), 500-519. 

 
Hill, R., 1950, The mathematical theory of plasticity, The Oxford Engineering  Science 
Series 11, Oxford University Press, Oxford, UK. 

Ismael N.F, Axial Load Tests on Bored Piles and Pile Groups in Cemented Sands, Journal 
of Geotechnical and Geoenvironmental Engineering ,Vol.129 ,pp.184-185 ,February 
,2001 . 

Itasca Consulting Group, Inc. FLAC3D, Fast Lagrangian Analysis of Continua in 3 
Dimensions User’s Guide, Version 2.1, 2002. 

Jovicic, V. and Coop, M. R., 1997, Stiffness of coarse grained soils at small strains, 
Geotechnique, 47(3), 545-561. 

 
Juran, I., Bruce, D. A., Dimillo, A. and Benslimane, A., 1999, Micropiles: the state of 
practice. Part II: design of single micropile and groups and networks of micropiles, 
Ground improvement, 3, 89-110. 

 
Klotz, E. U. and Coop, M. R., 2001, An investigation of the effect of soil state on the 
capacity of driven piles in sands, Geotechnique, 51(9), 733-751. 

 
Konrad, J. M., 1996, In situ sand state from CPT: evaluation of unified approach at two 
CANLEX sites, Canadian Geotechnical Journal, 34,120-130. 

 
Konrade, J. M., 1998, Sand state from cone penetraometer tests: a framework considering 
grain crushing stress, Geotechnique, 48(2), 201-215. 
 
Krieg, R. D. 1975, A practical two-surface plasticity theory, Journal of applied mechanics, 
ASME, 42, 641-646. 
 
Lee, C.J., Bolton, M. D. and Al-tabbaa, A., 2002, Numerical medalling of group effects 
on the distribution of dragloads in pile foundations, Geotechnique, 52 (5), 325-335.  



     131

 
Li, X. S., 1997, Modeling of dilative shear failure, Journal of geotechnical and 
geoenvironmental engineering, 123(7), 609-616. 

 
Li. X. S., Dafalias, Y. F. and Wang, Z. L., 1999, State-dependent dilatancy in critical-state 
constitutive modeling of sand, Canadian Geotechnical  Journal,  36, 599-611. 

 
Li, X. S. and Dafalias, Y. F, 2000, Dilatancy for cohesionless soils, Geotechnique, 50(4), 
449-460. 

 
Li, X. S., 2002, A sand model with state-dependent dilatancy, Geotechnique, 52(3), 
173-186. 
 
Lizzi, F., 1978. Reticulated root piles to correct landslides, Proceedings, ASCE Annual 
Meeting, Chicago. 

 
Lizzi, F., 1985, ‘Pali radice’ (root piles and ‘ reticulated pali radice’, Underpining, 
Glasgow [Lanark]: Surrey University Press, 84-151. 
 
Lo,1967, Discussion to paper by Y.O. Beredugo. Canadian Geotechnical Journal, 
Volume 4, pp.353-354. 
 
Sadek, M and Shahrour, I., 2004, A three dimensional embedded beam element for 
reinforced geomaterials, Int. J. Numer. Anal. Meth. Geomech., 28:931-946. 
 
Sadek, M., 2002, Three-dimensional finite element modeling of reinforced soil by 
micrpiles. Ph.D. Thesis, University of Sciences and Technologies of Lille, France.   

 
Manzari, M. T. and Dafalias, Y. F., 1997, A critical state two-surface plasticity model for 
sand, Geotechnique, 47(2), 255-272. 
 
Masad, E. A. and Muhunthan, B. 2000,  Three-Dimensional Characterization and 
Simulation of Anisotropic Soil Fabric, Journal of Geotechnical and Geoenvironmental 
Engineering, ASCE, Vol. 126, No. 3, pp. 199 - 207. 
 
Ming, H. Y. and Li, X. S., 2003, Fully Coupled analysis of failure and remediation of 
lower San Fernando Dam, Journal of geotechnical and geoenvironmental engineering, 
129 (4), 336-349. 
 
Misra, A. and Chen, C. H., 2004, Analytical solution for micropile design under tension 
and compression, Geotechnical and geological engineering, 22, 199-225. 
 
Mroz, Z., 1967, On the description of anisotropic workhardening, Journal of the 
mechanics and physics of solids, 15, 163-175. 
 
Nair, K. Gray, H and Donovan, N. C., 1969, Analysis of pile group behavior, 



     132

Performance of deep foundations, ASTM STP 444, 118-159. 
 
NeSmith, W. M., 2002, Static capacity analysis of augered, pressure-injected 
displacement piles, Proceedings, Deep Foundations 2002: An International Perspective 
on Theory, Design, Construction, and Performance, Orlando, Florida. 
 
Nusier, O. K. and Alawneh, A. S., 2004, Micropile technique to control upward 
movement of lightweight structures over expansive soils, Geotechnical and geological 
engineering, 22, 89-104. 
 
O’Neil,1983, Group action in offshore piles. Proceedings. ASCE Conference, 
Geotechnical Practice in Offshore Engineering , Austin,pp. 25-64. 

 
Pillai, V. S. and Muhunthan, B., 2002, Discussion on ‘An investigation of the effect of 
soil state on the capacity of driven piles in sands, Geotechnique, 52(8), 620-621. 

 
Pearlman, S. L., cambell, B. D. and Withiam, J. L., 1992, Slope stabilization using in situ 
earth reinforcements, ASCE specialty conference on stability and performance of slopes 
and embankments-II, June 29-July 1, Berkeley, California.  
 
Plumelle, C., 1984, ‘‘Improvement of the Bearing Capacity of Soil by Inserts of Group 
and Reticulated Micropiles,’’ Proceedings, International Conference on In-situ Soil and 
Rock Reinforcement, Paris, France, pp. 83–89. 
 
Randolph, M. F., 2003, Science and empiricism in pile foundation design, Geotechnique, 
53 (10), 847-875. 
 
Richart, F. E. Jr., Hall, J. R. & Woods, R. D. (1970). Vibrations of soils and foundations. 
International Series in Theoretical and Applied Mechanics, Englewood Cliffs, NJ: 
Prentice-Hall. 
 
Rowe, P. W., 1962, The stress-dilatancy relation for static equilibrium of an assembly of 
particles in contact. Proc. Roy. Soc. Lond. A269,  500-527. 
 
Rosco, K. H., Schofield, A. N. and Wroth, C. P., 1958, On the yielding of soils, 
Geotechnique, 8(1), 22-53. 
 
Russo, G., 2004, Full-scale load tests on instrumented micropiles, Proceedings of the 
institution of civil engineers, Geotechnical engineering 157, Issue GE3, 127-135. 
 
Sadek, M. and Shahrour I., 2001, Finite element modeling of inlined micropiles, 
International workshop on micropiles- IWM 2001, France. 
 
Schofield, A.N. and Worth, P. (1968).  Critical State Soil Mechanics, McGraw-Hill. 
 
Shahrour, I. And Juran I., 2004, Seismic behaviour of micropile systems, Ground 



     133

improvement, 8 (3), 109-120. 
 
Sharma, S., 2001, Micropile design and construction guidelines, Implementation Manual, 
CD Version, Publication No. FHWA-SA-97-070. 
 
Vesic, 1969, Experiment with instrumented pile groups in sand. ASTM Special Technical 
Publication No. 444, pp. 172-222. 
 
Wang, Z. L., Dafalias, Y. F. and Shen, C. K., 1990, Bounding surface hypoplasticity 
model for sand, Journal of engineering mechanics, 116(5), 983-1001. 
 
Wang, Z. L. & Makdisi F. I., 1999, Implementing a bounding surface hypoplasticity 
model for sand into the FLAC program, FLAC and numerical modeling in geomechanics, 
Detournay, C. and Hard, R., eds, Balkema, The Netherlands, 483-490. 
 
Wang, Z. L., Dafalias, Y. F., Li, X. S. and Makdisi, F. I., 2002, State pressure index for 
modeling sand behavior, Journal of geotechnical and geoenvironmental engineering, 128 
(6), 511-519. 
 
White, D. J. and Bolton, M. D., 2004, Displacement and strain paths during plane-strain 
model pile installation in sand, Geotechnique, 54(6), 375-397. 
 
White, D. J. and Lehane, B. M., Friction fatigue on displacement piles in sand, 
Geotechnique, 54 (10), 645-658. 
 
Wroth, C.P., Bassett, R.H., 1965. A stress–strain relationship for the shearing behavior of 
a sand. Geotechnique, 15, 32–56. 
 
Wood , D. M., Belkher, K. and Liu, D. F., 1994 1984, Strain spftening and state 
parameters for sand modeling, Geotechnique, 44(2), 335-339. 



 134

APPENDIX A  

A.1 Bounding Surface Plasticity 

The bounding surface concept proposed by Dafalias (1986) was motivated by the 

observation that any stress-strain curve for monotonic loading or for loading-unloading 

process eventually converges to certain “bounds” in the stress-strain space.  Description 

of plastic deformation within the bounding surface is achieved through a variable plastic 

modulus, which is often defined as a continuous function of the distance from the current 

stress to a properly defined image stress on the bounding surface.  Figure A1 describes 

this concept on the uniaxial stress-plastic strain space.  The plastic modulus, Ep, depends 

upon the distance, δ, between the current state of stress and a corresponding stress on the 

bounding line. In the elastic region, CD, the plastic modulus, Ep, is infinite.  At Point B, 

Ep has a finite value, which decreases as the process goes to C.  The zone CC′  represents 

a plastic behavior during which Ep is assumed to remain constant.  The stress-strain 

response is thus bounded by the two lines 

Figure A2 shows the schematics of the bounding surface concept in a two-

dimensional stress space.  The outer surface is the bounding surface and the inner surface 

is the loading surface.  The bounding surface always encloses the loading surface inside 

of which represents the elastic behavior.  Any given stress state within or on the bounding 

surface is projected onto a “image” stress point on bounding surface by proper mapping 

rule. And the plastic strain modulus at current stress state is specified based on: i) a 

measure of distance between current stress state and it’s corresponding “image” stress 

state at bounding surface, ii) the plastic modulus at the “image” stress state.  Thus, the 

bounding surface plasticity can be viewed as a generalization of the yield surface 
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plasticity or conventional plasticity when the plastic moduli function with the bounding 

surface takes such large values through the adoption of certain model parameters that the 

actual deformation within the bounding surface is dominated by elastic strain and the 

bounding surface acts as a yielding surface. 

 

 
 
 
Figure A.1: Schematic illustration of the bounding surface in uniaxial stress-strain space 
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Figure A.2 Schematic Diagram of Bounding Surface and Related Concepts 
 

The total strain rate is decomposed into elastic and plastic parts according to: 

           p
ij

e
ijij εεε &&& +=                                                       (A.1) 

where a superposed dot indicates the rate; ijε is the strain component; and the superscripts 

e  and p  denote the elastic and plastic parts, respectively.  The rate form of elastic 

equations is given by: 

   e
ijijklijijijkl

e
ij EorC εσσε &&&& ==                           (A.2) 

 
 
where the summation convention over repeated indices applies.  The fourth order tensor 

of elastic tangent compliance ijklC  and modulus ijklE  (inverse of ijklC ) are assumed to be 

functions of the stress tensor ijσ and directional properties. If we define ijL as the loading 

direction, ijR  as the flow direction of plastic strain, and nr  as the direction of the 

evolution of internal variables, the plastic rate equations of evolution and the total strain 

rate - stress rate relations for an elastic plastic state can be expressed by (Dafalias, 1986): 
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p

ij RL=ε&                                                                                 (A3) 

nn rLq =&                                                 (A.4)                               

ijijklij D σε && 1−=                               (A.5) 

klijijklijkl QPBLhED 1−−=              (A.6) 

abijabijrsklrskl REPLEQ == ;         (A.7) 

cdabcdabp RELKB +=          (A.8) 

klklijij
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K

L εσ &&
11

==         (A.9) 

 
 
where pK is the plastic modulus; L is the loading index; )(Lh is the Heavyside step 

function defined as zero at 0=L , and the Macauley brackets define the operation of 

Heavyside step function. ijL is along the gradient of a loading surface 0=f   passing 

through the point ijσ in stress space, i.e. 

n
ij

p
ij

ijnij rfKfLqf
σσ

σ
∂
∂

=
∂
∂

== ;;0),(                                (A.10) 

A bounding surface in stress space and its stress gradient direction are defined by:                                          
 

ij
ijnij

fL;0)q,(F
σ∂
∂

==σ                                                        (A.11) 

Where a bar over stress quantities indicates their association with 0=F , which always 

encloses the loading surface 0=f  or it may contact it at a point tangentially or even 

become identical with it but never intersects it. The analytical description of the 

foregoing requires the following steps: 

i) A unique “image” stress on 0=F is defined for any ijσ  on 0=f by a proper, 

noninvertible  continuous mapping rule as: 

    ),( nklijij qM σσ =                                                              (A12) 
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which together with Equations (A.10) and (A.11) must satisfy the identity conditions 

ijij σσ =  and ijij LL =  when the ijσ lies on 0=F  in a continuous manner. The identity 

conditions guarantee that f and F  cannot intersect, and hence, they impose restrictions 

on their relative evolution. Notice that for ijσ  inside 0=F , ijL  may be different from 

ijL in size and/or direction. 

ii) For any ijσ&  such that 0≥L , a corresponding ijσ&  occurs at the image stress point due 

to the change of ijσ and the hardening of 0=F  as determined by the nq . Since ijσ  must 

always remain on 0=F , use of Equations (A.4), (A.9) and (A.11) in the consistency 

condition 0=F  yields: 

   σσ && ij
p

ijij
p

L
K

L
K

L 11
==                                                         (A.13) 

   n
n

p r
q
FK

∂
∂

−=                                                                         (A.14)     

 in which, pK is the bounding plastic modulus at the “image” stress ijσ . It is given from 

Equation (A.14) for known values of nr . 

iii) The actual plastic modulus pK , instead of being given by Equation (A.10), is related 

to pK  via the Euclidian distance ( )( )[ ]2
1

ijijijij σσσσδ −−= between ijσ& and ijσ  by an 

equation of the general form 

),,,(ˆ
nijpp qKKK σδ=                                                            (A.15) 

Such that pKK >ˆ  for 0>δ , pp KKK ==ˆ for 0=δ , and 0ˆ >∂
∂

δ
K . With pK known 

from Equation (A.15), Equation (A.9) becomes a restriction on the remaining quantities 
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for the consistency condition 0=f  to be satisfied. Equation (A.15) embodies the salient 

feature of the bounding surface formulation, namely that plastic deformation may occur 

within 0=F with a magnitude dependent on δ via the value of pK . 

A.2 Bounding Surface Hypoplasticity 

Dafalias (1981, 1986) further advanced the bounding surface concept with 

another class of constitutive formulations called hypoplasticity. The main distinguishing 

feature of hypoplasticity is the dependence of the plastic strain rate and the rate of the 

internal variables on the stress rate direction in addition to the overall dependence on the 

stress rate. Thus, hypoplasticity defines an incremental nonlinearity of the stress-strain 

rate relations. In the frame of hypoplasticity, the functions ijL , ijR , nr  and pK in the 

previous section depend on the state variables ijσ , nq  and the direction not only on the 

magnitude of stress rate ijσ& , but also on 
ij

ij

σ
σ

&

&
 .  So Equation (A.5) implies   

incrementally nonlinear relations in the frame of hypoplasticity. 

Wang et. Al. (1990) presented a bounding surface hypoplasticity model for sand. 

It was developed in the space of deviatoric stress ratio (rij) and mean effective stress (p). 

The deviatoric stress ratio (rij) plays a very important role sand behavior and is defined 

as: 

p
s

r ij
ij =       (A.16) 

ijijij ps δσ −=      (A.17) 

where  ijσ  is effective stress components, sij is deviatoric stress components, p is mean 

effective stress and ijδ is kronecker delta function. 
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The isotropic invariants are therefore introduced
2
1

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ijij ss

J , 
3
1

3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= kjikij sss

S , 

p
JrrR ijij =⎟

⎠
⎞

⎜
⎝
⎛=

2
1

2
1 , 

3

2
333cos ⎟

⎠
⎞

⎜
⎝
⎛=

J
Sα . The α is different from the classic Lode angle. 

Here, 00=α  and 060=α correspond to triaxial compression and extension, respectively.  

The rate form of ijσ&  using Eq. (A.16) becomes: 

p
prpps ij

ijijijij

σ
δσ &&&&& +=+=       (A.18) 

Using Equation (A.18) and the decomposition of the elastic strain rate eε& into 

deviatoric and volumetric parts ee& and etrε& , respectively, leads to: 
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The G and K  are incremental elastic shear and bulk moduli. 

The incrementally irreversible response is attributed by the two different 

mechanisms; the first associated with rp& and the second with p& . Each mechanism will, 

in turn, produce a deviatoric and volumetric part. Thus, the total plastic strain rate can be 

written as: 
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Where rH and rK  are plastic shear and bulk moduli, respectively, associated with ijr& ; 

pH and pK  are plastic shear and bulk moduli, respectively, associated with p& . D
ijn  is a 

unit vector in the stress space along the direction of the deviatoric part of p
ijε& caused by 
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ijr& , and N
ijn is the associated deviatoric unit loading direction. Both D

ijn and N
ijn depend on 

the direction of ijr& , thus, introducing the hypoplastic character and incremental 

nonlinearity of the formulation (Dafalias, 1986). Due to the foregoing dependence, the 

term N
ijij nrp &  will always be nonnegative, in contrast to classical plasticity with 

loading/unloading. However, the values of rH and rK  change according to a loading 

criterion. mp is the maximum value of p experienced in the past loading. Note that the 

heavyside step function )( mpph − and the Macauley brackets p&  indicate that the 

plastic mechanism due to p& operates only when mpp = and .0>p&  

Stress rate tensor and strain rate tensor is related by Equation (A.21) 

ijijklij εσ && Λ=         (A.21) 
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The above hypoplasticity model (Wang, et. al 1990) was developed on the basis 

of bounding surface ideal and can simulate the sand response under very complex and 

diversified loading conditions. However this model was not developed within the 

framework of critical state soil mechanics (Li, et. al., 1999).  It also does not capture the 

some important behaviors of sand, such as shear-induced dilatancy and state dependence 

of dilatancy. 

A.3 Critical State Two-surface Plasticity Sand Model 

 Manzari & Dafalias (1997) coupled the two-surface formulation of plasticity with 

the state parameter ψ  within the critical state soil mechanics framework to construct a 

constitutive model for sand in a general stress space.  In this model, the operation of the 

two-surface model in the deviatoric stress-ratio space is as in Wang’s (1990) 

hypoplasticity model but the state parameter is used to define the peak and dilatancy 

stress ratios of sand. It makes us of a modification to the proposal made by Wood et al. 

(1994) in that a “virtual” peak or bounding stress ratio is related to the critical stress ratio 

M by way of ψ. Denoting the bounding stress ratio by b
cM  for compression and b

eM  for 

extension, and with cM the critical stress ratio in compression and eM  the critical stress 

ratio in extension, we can write: 

ψα −+=+= b
cc

b
c

b
c kMmM               (A-24a) 

ψα −+=+= b
ee

b
e

b
e kMmM               (A-24b) 

where b
ck , b

ek  are positive quantities and the Macauley brackets  define ψψ −=−  if 

0>−ψ and 0=−ψ  if 0≤−ψ .  The word ‘virtual’ is used because b
cM  or b

eM  is not 

actually the peak stress ratios that will be reached by the current stress ratios η, but it 
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changes with ψ  until it is met by η  at a different value, where it becomes the peak. The 

effect of b
cα  and b

cα  is the equivalent of a back-stress for a given m corresponding to 

bounding stress ratio in compression and extension and ensuing kinematic hardening in 

plasticity.  

Manzari & Dafalias (1997) defined the phase transform line dM  described in 

Ishihara et al. (1975) as dilatancy line and assumed it to vary with the state parameterψ . 

Similarly, a proposition to formulate the dilatancy lines d
cM  in compression and d

eM  in 

extension was adopted. 

ψα −+=+= d
cc

d
c

d
c kMmM               (A-25a) 

ψα −+=+= d
ee

d
e

d
e kMmM               (A-25b) 

where d
ck , d

ek  are positive quantities. Equations (A-25) give a dilatancy ratio below 

cM or eM  for 0<ψ  (denser than critical) and above cM or eM  for 0>ψ  (looser than 

critical), while c
d
c MM =  and e

d
e MM =  at 0=ψ . Also Equations (A-25) introduce the 

corresponding back-stress dilatancy ratio d
ca , d

ea  as a function of ψ . 

From Equations (A-24) and (A-25), the critical back-stress ratio c
ca , c

ea  for 0=ψ  are 

defined according to: 

mM c
cc +=α                  (A-26a) 

mM c
ee +=α                  (A-26b) 

Equations (A-24, A-25, A-26) interrelate the bounding dilatancy and critical back-stress 

ratios through ψ . 
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  The yield surface, which appears as a circular cone in stress space with its apex at 

the origin, is given by the equation (Manzari and Dafalias 1997): 

   032)])([( 2
1

=−−−= mrrf ijijijij αα      (A-27) 

Where the back-stress ratio deviatoric tensor ijα determines the position of the axis of the 

cone and the stress ratio scalar variable m determines the ‘size’ of the cone. 

 The loading direction, which is normal to yield surface, is given by: 
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where ijn  is the unit deviatoric stress-ratio tensor, that is, 1=ijij nn .  

 The plastic strain rate is given by: 

   ij
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where ijR  is the ‘direction’ of pε& consisting of a deviatoric part ijn  and a volumetric part 

ijDδ
3
1  with D the dilatancy coefficient.  L is the loading index and is defined by  
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Where pK is the plastic modulus.  

By considering p
ij

e
ijij εεε &&& += , 

G
s

e ije
ij 2
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K
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v
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& =ε  and manipulation of 

Equations (A-29) and (A-30) leads to: 
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    ( )ijijijvijij KDGnLKeG δδεσ +−+= 22 &&&    (A-31) 

Note that L can be expressed in terms of ije&  and vε&  as shown in Equation (A-30), one can 

write Equation (A-31) in the form kl
ep
ijklij E εσ && =  with ep

ijklE  the elastoplastic tangent 

stiffness moduli, used in a numerical implementation. 

 Hardening variables ijα  and m evolving according to  

   mLm =&                  (A-32a) 

   ijij L αα =&                  (A-32b) 

The consistency condition 0=f&  together with Equations (A-27) (A-30) and (A-32) 

implies 
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