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GRAVITATIONAL WAVE DETECTION, DETECTOR CHARACTERIZATION, AND

PARAMETER ESTIMATION USING A NETWORK OF INTERFEROMETER

DETECTORS

Abstract

by Aaron Matthew Rogan, PhD.
Washington State University

December 2006

Chair: Sukanta Bose

Although the existence of gravitational waves have been indirectly proven, the direct

detection of the first gravitational wave will mark a significant turning point in the under-

standing of gravitational waves (GW) and gravity in general. For decades there have been

several narrow band bar detectors in operation but it has only been the last decade that the

most promising gravitational wave detectors have begun to come online. The broad band

detectors possess the ability to see a large portion of the known frequencies that are expected

from theories which are physically unavailable to bar detectors.

Considering that GW signals are inherently weak, inspiral signals are very promising

sources for both Earth based and space based interferometer detectors due to their known

waveforms. The duration that a signal is available to a given detector increases the chances

of detection significantly. With several interferometer detectors currently operating across

the globe and the commissioning of the first space based detector in the coming years, two of

the few remaining hurdles that are covered in this dissertation are maintaining the detector
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sensitivity to signals and making the very first direct detection of a GW.

Owning to the fact that these interferometric detectors are composed of some of the

most advanced laser systems in existence, they require many monitoring tools that assist in

characterizing the state of the detectors. One such tool detailed herein would be GainMon,

which is a software tool that allows operators to monitor the long baseline Fabry-Perot

cavities for drifts in the unity gain frequencies (UGF).

Once it has been determined that the detector is in an acceptable operating state, the

data that it collects must then be studied to determine if a signal is present. If the detector

is incapable of recovering source parameters within a certain degree of accuracy then a

detection serves as nothing more than a mathematical challenge with little science to be

gained. Therefore if a signal is identified, some constraints must be placed on the results

that indicate how accurately the recovered signal agrees with the actual source.
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Chapter 1

Introduction

For millennia now, the stars and the sky have been a source of amazement, curiosity and

knowledge. Technological advances like airplanes and automobiles have brought humans

closer to each other in a way that could not have been imagined just a few hundred years

ago making the Earth seem not so vast as it once was perceived. Similarly, technological

advances have brought the heavens closer to us over the centuries as well. When Galileo

looked upon the moon’s surface for the first time, suddenly Earth’s closest satellite was no

longer so far out of reach. As telescopic systems advanced, the solar system was increasingly

becoming smaller and smaller as our knowledge increased. Although knowledge about the

orbits of the planets existed well before the telescope had become an everyday tool for

astronomers, what was once no more than a sparkling celestial body had suddenly become

almost as defined as the Earth itself. Valleys and craters were apparent on the moon, the

rings of Saturn could now be seen and sun spots were finally evident.

For centuries, the telescope has been improved time and time again but for a long time

it only provided a single picture of the universe albeit the improvements allowed a deeper
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glimpse into the known universe. However, the first images that were obtained with the aid

of telescopes would later be proven to be only a small fraction of an enormous ”picture”. It

wasn’t until 1932 when Karl Jansky first detected radio waves from the central part of the

galaxy that more of the ”picture” came into focus [2]. The advent of radio astronomy marked

the first new avenue available to astronomers in over 300 years and with this new tool came

a whole new understanding of the workings of the universe around us. The development of

the optical telescope allowed us to gain a better understanding of objects that were already

known to exists. Contrarily, radio telescopes opened our eyes to a universe that could not

previously been dreamed. Radio astronomy gave astronomers the ability to see relics of such

exotic objects like black holes, pulsars, and radio galaxies.

Astronomy is just now reaching another pinnacle of technology and with it a whole

new understanding of the universe will follow. The past decade marks the beginning of

a new era in astronomy namely, gravitational wave astronomy. With the first generation

of the United States’ long baseline gravitational wave detectors just now reaching their

design goals, the possibilities are seemingly endless. All astronomy to date has focused on

observing the universe using primarily electromagnetic (EM) radiation. Radio astronomy

showed the astronomy community that they were not considering all the possibilities that

were available in the EM band. Up until now, astronomy focused on simply looking through

space-time to gain some understanding of how the universe works and it continues to provide

insightful new discoveries. However gravitational radiation is more than just looking at the

universe in different wavelengths of light, it is looking at space-time itself. The remarkable

distinction between the two methods of observation is electromagnetic radiation is oscillations

of electromagnetic fields which propagate through space-time. Gravitational radiation, on
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the other hand, is oscillations of space time itself. By measuring these oscillations directly,

a more complete picture of the source can possibly be reconstructed. This is important

considering that a complete picture of astrophysical sources can can aid in developing a larger

”picture” of the universe. Radio astronomy provided the first indirect measurement of a black

hole by observing the high frequency EM radiation that the infallling matter generates.

However, this is still not a direct measurement of a black hole. Direct measurements of

black holes are now possible by precisely measuring the gravitational radiation that they will

generate. Gravitational waves can provide a more complete understanding of many other

astronomical events as well such as the big bang or supernovae. Just as radio astronomy

brought with it more surprises than could have ever been imagined, the most interesting

GW sources will be those that have not even been contemplated.

Although there are numerous types of sources that could be available to GW astronomy,

one of the more likely candidates for the first detection would be an inspiral source. These

sources are comprised of two orbiting compact objects such as white dwarfs (WD), neutron

stars (NS) or black holes(BH). Just as EM radiation in produced by accelerating electric

charges, GW radiation is generated by accelerating masses. As two compact objects orbit

each other about their center of mass, they will impart energy in the form of GW. The loss

of energy will result in a reduction in the orbital diameter over time and ultimately cause the

merger of the two compact objects. Once the two objects merge they begin to ”ringdown”,

which continues until the now one body achieves a state of equilibrium.

As briefly outlined above, a binary system has three stages of evolution: inspiral, merger

and ringdown. However the inspiral stage itself can further be classified into three separate

regimes: capture, stationary, and chirping. Each separate regime can be thought of as a part
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of the lifetime of the inspiral.

During the capture stage, the inspiral is in its infancy. The two orbiting bodies have just

begun to fall towards each other under their mutual gravitational attraction. The gravita-

tional waves emitted during this stage are so small that no current generation GW detector

or even any proposed GW detector would be capable of measuring the GW generated at

this point in the inspiral. The two compact objects are orbiting at astronomical distances on

the order of light years and because of the enormous separations, which results in extremely

small GW emission frequencies that are well outside the bandwidth of any current or pro-

posed GW detector. This is by far the longest stage of the inspiral with the source spending

millions of years evolving before it would pass into a detectable bandwidth. The amplitude

of the GW emissions, length of time spent in any given stage and emission frequency vary

drastically depending on the mass of the sources.

Although older forms of GW detectors have been around for years, namely bar detectors,

they suffered from intrinsic problems which has prevented any detection to date. Considering

the fact that gravitational wave amplitudes are so small, the displacements that need to be

measured are proportional to the size of the detector as follows:

∆L = hL (1.1)

where L is the overall length of the detector and h is the signal amplitude. With typical

signal amplitudes on the order of 10−21 and bar detectors measuring at most a few meters

long, the problem becomes attempting to measure length changes smaller than 10 billionths

the size of a hydrogen atom. To make matters worse, bar detectors are only sensitive to GW

with wavelengths comparable the length of the bar itself. This means that a bar detector
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can only see signals in a very narrow band that also have a significantly large amplitude. To

combat this issue, the creation of long baseline interferometric detectors was suggested and

is now being implemented. These Earth based detectors now employ the use of a Michelson

interferometer with arms as long as 4 km. To increase the overall displacements that would

be measured many of these detectors utilize a technique known as power recycling whereby

they recycle the laser in long Fabry-Perot cavities in an effort to increase the overall effective

length of the arms from several kilometers to hundreds of kilometers.

Owing to the fact that a Michelson interferometer is highly sensitive to changes in arm

length, interferometric detectors have a significantly larger band of frequencies for which

they remain sensitive compared to bar detectors. For example, the Laser Interferometer

Gravitational Wave Observatory (LIGO) is sensitive to frequencies ranging from tens of Hz up

to several thousand Hz in contrast to the AURIGA [1] resonant bar detector whose frequency

band ranges from around 905 Hz to 940 Hz. However, a large portion of known sources will

emit GW well beyond the range of frequencies that both of the aforementioned detectors are

capable of observing. To combat this issue, the Laser Interferometer Space Antenna (LISA)

is scheduled to be flown in the coming decade. This is a space-based version of the Earth

based interferometric detectors. However, LISA will have 5 million km arm lengths, which

will further increases the size of the measured displacements. Consequently, this will also

increase the chances of detection. LISA will be sensitive to frequencies ranging from 0.1

mHz to 1 Hz and within this frequency range there are several guaranteed sources that will

be available.

Although interferometry is a well established technology, the remaining challenges are to

maintain the detector sensitivity, accurately identify a GW signal and then place bounds on
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the accuracy of the extracted parameters. This dissertation will cover the entire strategy of

detecting a gravitational wave starting from the theory of gravitational waves to maintaining

the GW detectors to the challenges involved with the real time searches currently being

implemented. All of these topics will be discussed in great detail in the coming chapters.

The second chapter contains all the relevant background material that will be necessary

to understand the remaining chapters. This chapter will outline the fundamentals of gravi-

tational radiation as derived from the the General Relativity principles over 100 years ago

as well as an introduction to some of the new developments that have occurred over the past

few decades including the principles behind how an interferometer can be used to detect

gravitational waves.

The data analysis software for searches using the LIGO interferometers has been estab-

lished and in production mode for several years now. This software provides users the ability

to perform a variety of tasks as well as a variety of searches. The development of the LISA

Data Analysis Software Package (LDASP) was driven by the desire to have a similar soft-

ware suite available for LISA data analysis. The current software outlined in chapter 3 is the

first generation of a series of packages that will provide the same utilities that are currently

available for the earth based interferometers.

The development of the first optimal statistic for searching for gravitational waves using

LISA is outlined in chapter 4. This was the first optimal statistic to be presented to the grav-

itational data analysis community. The optimal statistic presented in chapter 4 is the only

statistic that is defined in the frequency domain so as to make use of the Fast Fourier Trans-

form (FFT) algorithms currently available to real time searches. This statistic incorporates

all of LISA dynamics including TDIs and Doppler shifting of the central frequency.
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Chapter 5 outlines how accurately LISA will function ,as a gravitational wave detector.

This work is unique in that no others have truly modeled the response function of LISA

when trying to model LISA’s parameter extraction capabilities. By properly accounting for

the TDIs and frequency dependance of the response functions, one obtains vastly different

parameter errors. This is outlines in a little more detail in the appendix where the parameter

errors using eccentric waveforms are obtained. These results are for the simple toy model

that has been used throughout the literature to date. A direct comparison with those results

obtained in chapter 5 illustrates the vast differences that arise when not properly tracking

all of LISA’s dynamics.

A real time coherent search using LIGO has been the driving force behind Washington

State University’s Relativity group since its inception. The backbones were established

previously but the code was never properly tested and tuned to the point where it was ready

to be integrated into the real time searches. Chapter 6 outlines the final development, testing

and tuning of the coherent section of the real time search pipeline. Along side of this, the

software tool known as GainMon is also presented. This is the first software of its kind

that is used to monitor the unity gain frequency of all LIGO interferometers in an effort to

maintain the maximum amount of all interferometer’s operational time.
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Chapter 2

Gravitational Wave Physics

2.1 What is a metric?

The metric is one of the most important mathematical tools in General Relativity. A metric

is a measure of the distance between any two points in a given space-time [3, 5]. The

metric contains all the geometry of a specific space-time. For example, a common metric

encountered in special relativity is the flat metric, ηµν . This flat metric is often used to

measure the separation between any two space-time events as follows:

ds2 = −dx02
+ dx12

+ dx22
+ dx32

= ηµνdxµdxν (2.1)

where µ and ν are indices ranging from 0 to 3. The flat metric, η, has componets that take

the form

ηαβ =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (2.2)
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The incorporation of the effects of mass distributions into the theory of Special Rela-

tivity resulted in the development of General Relativity. In most cases, except when near

an extremely compact object, the space-time can be expressed as nearly flat with small

perturbations to the metric introduced in eq. 2.2 as follows:

gαβ = ηαβ + hαβ. (2.3)

This is the metric tensor that will be used primarily throughout this chapter and later

chapters unless otherwise specified.

The effects of mass on the surrounding space-time is determined by using Einstein’s Field

Equations, which are analogous to the inhomogeneous wave equation in electromagnetism.

The field equations, which yield the space-time dynamics, can be expressed in terms of

the Einstein Tensor, G, and the Stress-Energy Tensor, T . In geometrized units, the field

equations take the following form:

Gαβ = 8πT αβ. (2.4)

Equation 2.4 is actually a more compact representation of a total of 16 coupled equations.

As with electromagnetism, the proper choice of gauge can help simplify the field equations

and from those simplified equations the gravitational wave solutions follows. The common

gauge choice used is the transverse traceless gauge (TT gauge). In this gauge, the Einstein

tensor is related to the metric perturbations as such:

Gαβ = −1

2

(
− ∂2

∂t2
+∇2

)
hTT αβ

. (2.5)

Now for the vacuum solution, the left side of eq. 2.4 is zero leaving the following wave
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equation
(
− ∂2

∂t2
+∇2

)
hTT αβ

= 0, which has a solution that takes a form similar to that in

electromagnetism. If ~k is a null vector whose components can be written as, ~k = {ω,x},

then one obtains hTT αβ
= <

[
Aαβeikγxγ

]
as the plane wave solution to the wave equation. In

the TT gauge, the solution to the wave equation must obey the following constraint:

Aαβkβ = 0, (2.6)

which implies that Aαβ must be orthogonal to ~k and therefore Aα0=Aα3 for a wave traveling

in the x3 direction [4]. The TT gauge imposes two further restrictions on the plane wave

amplitude:

Aα
α = 0 (2.7)

AαβUβ = 0, (2.8)

where Uβ is a constant four velocity [3]. These are further restrictions in the transverse

traceless gauge. Equation 2.7 implies that the amplitude matrix is traceless while eq. 2.6

and eq. 2.8 imply that the wave amplitude is transverse to the direction of propagation.

In this gauge, the amplitude matrix has only two independent components. For a wave

traveling in the z direction, the amplitude matrix takes the following form:

(ATT
αβ ) =




0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0


 . (2.9)

These two independent components of the amplitude matrix represent two independent

polarization states.

The effects of the individual polarizations can be seen in fig. 2.1. The top panel rep-
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resents the ”plus” (Axx) polarization while the bottom figure represents the ”cross” (Axy)

polarization. The difference between electromagnetic radiation and gravitational radiation

are most evident from the two polarization states. Electromagnetic radiation polarization

states are rotated by 90 degrees with respect to each other as opposed to 45 degrees as with

gravitational radiation. This difference arises from the varying spins between the graviton

and the photon [6].

Figure 2.1: These figures illustrate the effect that an impinging gravitational wave would
have on a set of freely falling test masses. The top panel illustrates the effects of the plus
polarization and the bottom panel illustrates the effects of the cross polarization both for
only 3/4 of a wavelength.

2.2 Sources of Gravitational Waves

Just as accelerating charges produce electromagnetic radiation, accelerating masses pro-

duce gravitational radiation and similarly there is neither electromagnetic or gravitational

monopole radiation. Conservation of mass is what prohibits any monopole radiation but con-
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servation of momentum further restricts gravitational radiation to be at least quadrupolar.

It can be shown that the quadrupole term, when present, is most dominant in the generation

of gravitational waves as the dipole term, when present, is most dominant in the generation

of electromagnetic waves. For the sources considered herein, the ”quadrupole approxima-

tion” is used. The approximation maintains only the quadrupole term in the gravitational

potential expansion. This approximation is valid when the size of the source, l, is small

compared to the reduced wavelength, λ, it emits [7]. This is the case for all the sources that

will be discussed throughout this dissertation.

In this quadrupole approximation, sources with a time varying quadrupole moment will

generate gravitational waves. In geometrized units, the metric perturbation is directly pro-

portional to the second time derivative of the moment of inertial tensor as illustrated in eq.

2.10.

hTT
jk =

2

r
Ïjk. (2.10)

In eq. 2.10, r is the distance to the source and Ijk is the moment of inertia tensor.

Considering how promising inspiral sources are, they will be discussed in great detail

throughout the remaining chapters. In general, an inspiral can be broken up into three

distinct stages: capture, stationary, and chirping. Each one of these three stages represent a

distinct class of signals all in of themselves. Some of these signals are detectable by currently

operating GW detectors such as LIGO whereas some would be detectable by the space-based

version LISA. However, there are still some signals that neither LISA or LIGO would be able

to detect. Before delving into the characterization of these three distinct inspiral stages, the

mechanics of the inspiral evolution needs to be addressed.

12



Qualitatively, the amplitude of the radiation emitted by a binary system can be expressed

as follows:

h ∼ M5/3f 2/3

r
, (2.11)

where M = m
3/5
1 m

3/5
2 /(m1 + m2)

1/5 is the chirp mass and f is the frequency of the emitted

GW. From eq. 2.11 it can be seen that highly eccentric orbits would emit a large portion of

their radiation near the pericenter or when the binaries are closest. Therefore, the release of

energy at pericenter would act as an impulse which would maintain the pericenter distance

while the apocenter distance would decrease [8]. Thus for highly eccentric orbits, the gravi-

tational radiation would circularize the orbits over time. A more precise calculation of how

fast the semi major axis changes was first developed by Peters. It was found that the rate

of change of the semi-major axes of a binary inspiral to be as follows in SI units:

〈da

dt
〉 =

−64

5

G3µM2

c5a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
(2.12)

where µ is the reduced mass and M is the total mass. For circular orbits, the frequency of

the emitted gravitational waves are twice the orbital frequency or fGW =
(

GM
π2a3

)1/2
which

yields the following:

da

df
= −2

3
(GM/π2)1/3f−5/3 (2.13)

and implies

ḟ =
96

5
π8/3

(
GM
c3

)5/3

f 11/3 (2.14)

These equations provide two very important insights into binary inspirals, the further the
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separation of the individual masses then the longer they spend at a given frequency and

the lower the total mass of the system then the longer the binary will remain at the same

separation.

2.2.1 The Wonder Years

The capture stage is the earliest stage of an inspiral. The beginning of this stage can be

classified as the point when when two massive objects just begin to fall in towards each other

under their mutual gravitational attraction. Inspirals spend a majority of their lifetime in

this stage of the inspiral. In this stage of the inspiral, the two constituent masses are very

far apart and remain at the same frequency for a large majority of the inspiral lifetime.

Looking at eq. 2.13 and 2.14 for a binary white dwarf system of with M = 0.6M¯ emitting

GW at .01 mHz, one can infer that it would take nearly the Hubble time for that system

to merge. On the opposite end of the spectrum, super massive black holes will capture each

other at a significantly larger separation distance than a white dwarf binary and therefore

would also spend a large portion of their time at even lower frequencies. This stage of binary

inspirals can therefore be classified as binaries with frequencies below 0.01 mHz. The higher

mass binaries will have correspondingly lower frequencies with smaller mass binaries having

corresponding larger frequencies within this inspiral classification. Although this stage of

binary inspirals are currently beyond the realm of detection, these are possibly the most

populated type of inspiral sources considering the length of time that is spent at this early

stage of evolution.
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2.2.2 Midlife Crisis

The stationary stage of a inspiral evolution is the stage where the inspiral frequencies are

large enough so that they would be currently detectable by a space-based GW detector such

as LISA. These binary systems have begun to circularize and are emitting GW at frequencies

upwards of 0.01 mHz. The orbital separation of these inspirals are significantly closer than

with the capture sources and the frequencies are just beginning to slowly evolve over time.

However, during this stage the frequency evolution is so slow that it is nearly immeasurable

using modern GW detectors. This stage is classified as binaries whose masses can take a large

range of values from white dwarf binaries up to stellar mass black hole binaries. Although

one should note that the emission frequency is highly dependant upon the masses being

considered. During this stage the amplitude of the GW are small, however, provided a long

observational period, they are still detectable. Throughout the observational period, the

frequency will remain essentially constant with just a slight variation as the systems evolve.

Many of these systems would be accessible to LISA.

2.2.3 One Last Breath

The chirping stage of an inspiral is the final stage just before coalescence. This stage can

be as brief as a few seconds. The binary systems have completely circularized and the GW

amplitudes are increasing significantly with every orbit. The frequencies again are highly

dependant upon the masses that make up the binary but can be as low as several mHz and

as high as several hundred Hz. Throughout the observational period, the frequency will

increase rapidly until the two masses finally merge. Considering the frequency range that
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this stage covers, these sources would be available to LIGO.

2.3 Gravitational Wave Detectors

There are two types of gravitational wave detectors that will be discussed throughout the

remaining chapters. These two types are Earth based and space based detectors. Each of

these detectors have their advantages and disadvantages as well as being sensitive to different

stages of an inspiral evolution. At the heart of each type of modern day GW detector is an

interferometer that is used to measure the infinitesimal deviations in path length changes.

The basic principle that allows an interferometric observatory to detect GW can be

understood by examining the phase difference between two arms of an interferometer as a

gravitational wave passes perpendicular to the plane of the interferometer. For the laser light,

the metric provides the following interval between the ends of the x-arm of the interferometer

in geometrized units:

0 = −dx02
+ (1 + h+)dx12

, (2.15)

where hxx = −hyy = h+. As pointed out in eq. 2.3, the impinging gravitational wave

introduces a small perturbation to the flat Minkowski metric. The phase along just the

x-arm of an interferometer accumulated from one round trip along that arm can then be

expressed as:

Φx =
∫ τf

0
2πfdx0, (2.16)

however eq. 2.15 shows that dx0 =
√

(1 + h+)dx1. With this in hand, eq. 2.16 becomes:
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Φx = 2πf

(∫ L

0

√
(1 + h+)dx1 −

∫ 0

L

√
(1 + h+)dx1

)
≈ 4πf

∫ L

0
(1 +

h+

2
)dx1 = 4πfL(1 +

h+

2
),

(2.17)

where L is the unperturbed length of the interferometer arm and f is the frequency of the

laser light. Now for light traveling along the y-arm of the interferometer, the gravitational

wave will have the reverse effect as that along the x-arm. If the x-arm is expanding then

the y-arm will contract as illustrated in fig. 2.1. Therefore the calculation is very similar

just the sign of the metric perturbation is reversed giving Φy = 4πfL(1 − h+

2
). Now when

combined, the phase difference between the x-arm and the y-arm will be:

∆Φ = Φx − Φy = 4πfLh+. (2.18)

If no impinging gravitational wave is present then the laser light from the x- and y-arms

would combine destructively at the antisymmetric port of the interferometer to produce a

dark spot on the photodetectors. However when a wave impinges, the phase shift in eq.

2.18 would produce a oscillating bright and dark spot at the photodetector. By carefully

monitoring the antisymmetric port of the interferometer, one can measure an impinging

gravitational wave.

2.3.1 Laser Interferometer Gravitational Wave Observatory

Although the basics of how an interferometer can be used to identify GW signals has been

addressed, each detector has many other issues to contend with to obtain the necessary sensi-

tivities to actually detect a signal. LIGO is one of the Earth based broad band interferometer

detectors with a observation window from roughly 40Hz to several thousand Hz. It behaves
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just like a traditional Michelson interferometer with a few adjustments. The arm lengths are

fixed at 4km for the first Hanford detector (H1) and the Livingston detector (L1) and 2km

for the second Hanford detector (H2). The fixed arm lengths allow the LIGO detectors to

mitigate noise that arises from fluctuations in the central frequency of the laser source. If not

for this fact, any possible signal would be overridden with this noise source, which is several

orders of magnitude larger than the signal LIGO is trying to detect. The x and y arms of

the LIGO detector make up the largest Fabry-Perot cavities in existence. These cavities are

used to increase the effective length of the interferometers arms. By recirculating the laser

light though these cavities two hundred times, the impinging gravity wave would cause a

resulting phase shift 200 times what is expressed in eq. 2.18. This makes the problem of

detecting an impinging wave a little more tractable as the phase difference builds up after

each pass.

Laser frequency fluctuations aside, there remain several contributing noise sources that

LIGO must first overcome before it can be sensitive to any impinging GW. The two major

contributing noise sources that bound the high and low frequency sensitivity curves are shot

noise and seismic noise respectively. The noise curves for both LIGO and LISA are illustrated

in fig. 2.2. The rise in the curve for LIGO at high frequencies is due to the presence of shot

noise which is caused by the uncertainty in the number of photons that define the laser beam.

The rise in the noise curve at low frequencies is due to the presence of seismic noise. LIGO

is equip with seismic isolation units whose sole purpose is to mitigate the seismic vibrations

from various sources such as plate tectonics, construction, incoming and outgoing tides.

However, many of these sources can not be completely removed resulting in an increasing

noise source at low frequencies that can result in the laser losing alignment with the optics.
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Additional software tools have been developed to attempt to counter these effects as best as

possible. To date, the software tools have resulted in moving the low frequency cutoff for

inspiral searches using LIGO from 100 Hz in S1 to 40 Hz in S5.

Figure 2.2: This is a plot of the noise curves for both LIGO and LISA. Also illustrated in
this figure are the various sources available to both detectors [11].

Unlike traditional optical observatories that focus their aperture towards the direction

they are interested in observing, gravitational wave detectors are always looking in all di-

rections simultaneously. The sensitivity any given detector has to a single sky position is

determined by slow varying weighting functions that can modulate the signals at the detec-

tor’s output. These weighting functions are commonly referred to as beam pattern functions

or antennae pattern functions [13]. Several Earth based detector beam pattern functions

are illustrated in fig. 2.3. What is important to note is that there are several sky positions

where one detector may be nearly blind. The angles α and δ refer to the right ascension and

declination respectively. Therefore it is possible for a signal to go undetected by a single in-
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terferometer but have a very strong signal-to-noise ratio (SNR) in a complementary detector.

Another important point is that as the Earth rotates and orbits the sun, these sensitivity

plots will vary drastically where the minima in one plot can later become a maxima.

Figure 2.3: This figure shows several beam pattern functions for a variety of Earth based
detectors. These are all valid at only a single point in Earth’s orbit. The angle α is the right
ascension and the angle δ is the declination. [12]

The frequency range that LIGO is sensitive to means that it would be observing the final

stage of inspirals, i.e. the chirp stage. Inspiral signals in LIGO’s band are on the order of
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seconds. This means that the detector orientation with respect to the source is fixed for the

duration of the signal and hence no further modulation of the signal will occur. Additionally

because these signals are so short lived and the detectors are essentially stationary with

respect to the source for the signal duration, a single detector can not triangulate the position

of a possible source by itself. The accurate triangulation of a source requires at least two

more separate detectors.

2.3.2 Laser Interferometer Space Antenna

LISA is a very different type of interferometric detector. It is a space based version of

the ground based interferometers and is sensitive to GW with frequencies ranging from 0.1

mHz up to 1 Hz. LISA is not a traditional 90 degree Michelson interferometer but instead

LISA maintains a 60 degree nearly equilateral triangle. This is achieved by flying the three

vertices that comprise LISA in three separate orbits around the sun each tilted 60 degrees

with respect to the ecliptic and rotated π/3 with respect to each other. This allows LISA to

maintain its orientation without the use of additional thrusters although some microthrusters

are used to make fine adjustments when needed. LISA’s center will lag the Earth at one of

its Lagrange points as it completes one orbit around the sun a year. Due to the flight paths

of each craft, the LISA triangle as a whole completes one full retrograde rotation a year as

well. The arm lengths of LISA are approximately 5 million km. Again considering that the

measurement of a GW is relative, the longer the arms used then the larger displacement the

impinging wave will create. Another major departure from your traditional interferometer

is the fact that the laser light from one craft is not reflected back from the partner craft.
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After the laser light traverses a 5 million km arm, the beam diffraction has reduced the total

number of photons that are received at the neighboring craft to such a level that it would

be unable to reflect a significant number of photons back to the original craft. Instead the

incoming light from any craft is phase locked with another new beam that is returned to the

neighboring craft.

A direct results of LISA being a space based interferometer is that it does not suffer from

the common low frequency noise that plagues earth based interferometers namely, seismic

noise. However, the arm lengths in LISA are not fixed but are allowed to vary as much as 1%

which introduces the noise associated with laser frequency fluctuations. Without devising

means of mitigating this noise source, LISA would be unable to function effectively as a

gravitational wave detector. A strategy called time delay interferometer (TDI) is a means

of combining the data obtained from LISA that would effectively remove all noise from laser

frequency fluctuations. Much more on the TDI will be discussed later. Once this laser

frequency fluctuations are removed from the data, there remain several sources of noise that

LISA must still contend with when searching for a signal. The two main sources are shot

noise again and proof mass noise that set the limits on LISA’s sensitivity at high and low

frequencies respectively. Again shot noise is what determines the high frequency sensitivity

of LISA. Proof mass noise is the noise associated with the random motions of the proof

masses and this dominates the sensitivity of LISA at low frequencies.

Although there are some sources that may merge within the LISA band such as super

massive black holes, a large majority of inspiral sources visible to LISA will be in the early

stages of inspiral namely, the stationary stage. This means that the signals will be long

lasting and visible to LISA for possibly the entire projected mission lifetime.
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Whereas the beam pattern functions for Earth based detectors are constant for the in-

spiral signals for which they would observe, the beam pattern functions for the inspiral

signals that would be visible to LISA vary drastically over the observation period. This

introduces additional modulations of the data at the photodetectors and these modulations

will vary depending upon where the source is located in the sky. This modulation for an

originally monochromatic sinusoid can bee seen in fig. 2.4. It the additional complications

that arise from the time varying beam pattern functions that provide LISA with the ability

to accurately track a source location.

Figure 2.4: This figure shows how the orbital and rotational motions of LISA will modulate a
previously monochromatic sinusoid waveform. The values on the vertical axes are normalized
to unity. The plot on the left is for a source located within the ecliptic plane whereas the
plot on the right is for a source located near either of the poles of the ecliptic coordinate
system.

Although much of the complications that arise when using TDI will be relegated for

later chapters, the symmetry of these combinations will be addressed here. The natural

symmetry of LISA is a π/3 symmetry arising from a Michelson combination of the LISA

data. This is represented in fig. 2.5. What is obvious from the first panel of plots is the

π/3 symmetry. However, other than just mitigating the laser frequency noise, the TDI
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combinations also generate a more traditional π/2 symmetry associated with traditional

Michelson interferometers as illustrated in the second panel in fig. 2.5. What should be noted

is the normalization scheme used here. The plus polarization for the Michelson combination

is normalized to unity. To maintain the relative magnitude difference between the plus and

cross polarizations, the cross polarization is normalized to the maximum value obtained

in the plus polarization plot. Therefore this plot illustrates that the cross polarization is

roughly 1/3 the magnitude of the plus polarization. The TDI combinations in the bottom

panel are not normalized at all but do illustrate the same the relative magnitude difference

between the plus and cross polarizations.
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Figure 2.5: These plots illustrate the symmetry of the average sensitivity of the beam pattern
functions to all sky positions. The top two plots are the average all sky response of the
Michelson combinations to the plus and cross polarizations respectively. The bottom set
of plots is the average all sky response of the TDI combinations to the plus and cross
polarizations.
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Chapter 3

LISA Data Analysis Software Package

3.1 Data Flow

When developing the software tools necessary to simulate and analyze signals with LISA,

the first step is to understand the flow of data that will occur. Although this is a rather

simple statement, there is a tremendous amount of detail that must be maintained to yield

a efficient and portable software analysis package. The flow of data must be such that the

overall pipeline completes in a reasonable amount of time, maintains the highest degree of

accuracy and is reproducible. For example, the brute force method for this case would be

to write the entire modulated waveforms as a function of as many as 12 parameters and

then evaluate this at any given region of parameter space that is interesting. This method

is the simplest straight forward approach. When utilizing a 30 node beowulf cluster, the

computational time required for analyzing just a small sample of the parameter space using

the brute force method is on the order of weeks. The actual pipeline developed can achieve

better accuracy than the brute force method mentioned above and analyze the same volume
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of parameter space in less than a day on a single desktop PC. Once parallelized across a

computing cluster, the advantages are obvious.

The pipeline that has been developed has multiple applications. The original motivation

for developing this software package was to estimate parameter uncertainties for specific

regions of parameter space to ascertain how these uncertainties vary as you traverse the

parameter space. As the software developed, the secondary functionality of animating and

plotting various features of LISA was incorporated into the software package. This feature

can give a better physical understanding of the physics of LISA as well as to present as

much data in a closed and concise form as possible for later interpretation. Finally, the

latest addition to the software repository was to perform real searches in noisy data using

the search statistics developed in chapter 4. This will be very beneficial when LISA comes

online and data has begun to accumulate.

The current status of each one of these packages are different. Figure 3.1 illustrates the

data flow for all software processes that can occur. The software currently can analyze the

parameter uncertainties at any regions of parameter space with little user input. This is

all done in the analysis section of the pipeline. The user just needs to specify what region

he/she is interested in and the software will automatically produce the appropriate results

and properly segregate the resulting data. However, the animation/plotting package is not

nearly as intuitive and requires more user input in the form of post processing scripts. In

both these cases, the preprocessing is identical. This is not the case for the searches, which

require the most preprocessing and post processing by the user. Considering that neither the

animation/plotting functionality nor the signal search functionality were never the primary

focus of the software, these abilities were never fully completed. What should be noted is
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Figure 3.1: This figure illustrates the hierarchy of the data flow for the software. This is not
a flow chart for the actual analysis software.

that the general algorithm for these additional functionalities have been established and the

remaining tasks leave room for future work and improvements.

The preprocessing section of data flow is where all static variables are assigned. This

mainly encompasses the beam pattern functions, the Doppler phase shift and the TDI phase.

The beam pattern functions have been explained but the Doppler phase and TDI phase have

not. The Doppler phase is the contribution to the phase of any monochromatic signal based

upon its relative motion towards or away from a source. The incorporation of TDI results in

additional phase terms that will be discussed in a later chapter. This additional phase term is

another static variable that is assigned at this stage of the data flow. These three functions

are evaluated for all sky positions of interest and roughly every 3 arc seconds of LISA’s

orbit. This is one of the key features that allows this pipeline to function more efficiently

than the brute force method. If one chooses to analyze the signal at the bare minimum

discretization that is computationally possible and still able to produce a decent sinusoid
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with the brute force method, the result is the sinusoid waveform illustrated in the left plot

in fig. 3.2. Remember that the brute force method has to contend with the a balancing act

between the calculation costs and the desired resolution that can not be circumvented. On

account of the fact that the actual signal phase varies on a much shorter time scale then the

beam pattern functions, one can afford to fold in the beam pattern functions slowly over the

course of a year. For every 10 minutes the beam pattern functions, Doppler phase and TDI

phase are treated as constant while the rest of the phase of the signal is allowed to evolve

naturally during this time period. The 10 minute duration is small enough to provide a

smooth transition from one value of the beam pattern function, Doppler phase or TDI phase

to the next, which is required for the utmost accuracy. This also means that you do not need

to calculate the signal phase for the entire year duration but instead only need to calculate

it once for a set number of cycles. Whatever the choice for the total number of cycles were,

the requirement that they do not span a length of time shorter than the interval at which

the static variables span, namely 10 minute, was enforced. For the highest frequency of 0.1

mHz to have a duration that was at minimum 10 minutes, the total number of cycles was

determined to be 61. This was the value that was then used for all subsequent frequencies.

In doing so, the resolution for the signal phase is increased dramatically as illustrated in the

right plot in fig. 3.2. So once the static variables for the beam pattern function, the Doppler

phase and TDI phase are created, the calculation of the signal for any point in the parameter

space can almost be done on the fly. Something that should be taken away from the plots

in fig. 3.2 is even for larger frequencies, the discretization can afford to be very fine. This

is something that the brute force method could simply not achieve for every frequency that

was to be analyzed. In the past, either the computational time or desired resolution had to
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vary with frequency. Previously, the low frequencies could afford to have very course spacing

seeing how the phase evolved very slowly but as you increased the frequency so increased

the computational time to account for the faster evolving phase. This is no longer an issue

considering that the phase is always evaluated for the same number of cycles in advance

regardless of the frequency. So the total number of cycles that are evaluated is identical for

all frequencies and therefore so is the total computational time required to complete a study

regardless of the frequency. This however does introduce the added complication whereby

the total time or segment length that is spanned by each frequency now varies. This requires

appropriately incorporating the beam pattern functions to compensate for the varied lengths

of the segments.
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Figure 3.2: The plot on the left is the minimum discretization that can be allowed with a
calculation time on the order of weeks for a 30 node beowulf cluster. The plot on the right
is a sample of how discreetly the new method allows with the calculation finishing in under
a day for a single desktop PC.

An additional complication that had not originally been anticipated came when trying to

incorporate eccentric waveforms. The original application used the same discretization for all

frequencies which allowed the pipeline to obtain the resolution illustrated in fig. 3.2. However

30



when considering eccentric waveforms, this discretization again would have to vary depending

on the degree of eccentricity. Figure 3.3 illustrates a single cycle for both the plus and cross

polarizations for varying values of eccentricity. The top and bottom panels in fig. 3.3 are the

plus and cross polarizations respectively. In these plots, the eccentricity increases from left

to right with the values e = 0, e = 0.3 and e = 0.6. As is evident in fig. 3.3, the discretization

can not be constant throughout the cycle if one is to accurately characterize the features of

the eccentric waveform. Additionally, the discretization would have to be a function of the

eccentricity parameter as well. These facts once again lead to exhausting the computational

resources. A new method had to be specifically designed to combat this particular case

that would also leave the current pipeline for the Newtonian waveforms in tact. Considering

that the eccentric waveforms are by definition a superposition of monochromatic waveforms,

the most natural method was to just break any eccentric waveform up into its individual

harmonics. Each harmonic could use the same discretization scheme already developed and

then the proper weighting of the individual harmonics would have to follow. Once this was

achieved, the eccentric waveforms would have the desired resolution and the computational

time in computing these waveforms would be reasonable. This technique proved to be the

most efficient and natural way to approach this issue and the end result could obtain SNR

values that are as accurate as those that would be obtained from the plots presented in fig.

3.3.

The analysis section of the pipeline is the heart of the software package. This section

allows one to analyze any type of monochromatic signal or even slightly chirping signal where

the frequency slowly increases over time. The following chapter is dedicated to the theory

of signal analysis so for now all that needs to be addressed is how this stage of the pipeline
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Figure 3.3: The top three plots are for the plus polarization and the bottom three are for the
cross polarization. In both sets of three, the eccentricity value increases from left to right
with the values e = 0, e = 0.3 and e = 0.6.

functions and the details of signal analysis will be relegated for future chapters. Using the

static variables created during the preprocessing section of the data flow, the analysis section

of code will calculate the SNR as well as any number of other quantities related to the signal

that may be of interest. This stage is ideal for animating how the SNR behaves in any

region of parameter space. The routines provided allow one to view the animations as a

function of any number of other parameters. For example, using the function EvalSNR.m

one can animate the sky position dependance of the SNR as you increase the frequency or

as a function of time. The animations serve as a very useful tool in identifying the physical

behavior of LISA with respect to various types of sources. Many animations have already

been created and are just starting to be cataloged and will soon be available to the public

on the following web site: http : //gravity.physics.wsu.edu/. This stage also provides

the means of calculating the variance-covariance matrix in any region of parameter space

using the function EvalInfoMatrix.m. The importance of the variance-covariance matrix is

something that will be discussed at some length in a later chapter. The last addition also
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provided the means to perform matched filtering which is an algorithm for searching for

signals embedded in noisy data. A more detailed discussion of what a matched filter is will

also be handled in a later chapter.

The post processing section is where one interprets and sifts through the vast amount of

data that is generated in the analysis section of the data flow. This stage is very open ended

with no real structure considering that the interpretations are the driving force behind this

section. Therefore, if one desires to examine how the errors associated with the frequency

parameter vary as a function of sky position then one simply reads in the appropriate files

generated in the analysis section and combines them in the proper fashion. Similarly for

the animations and the searches. In the end, this section is determined purely by what the

users intentions were at the onset of the start of the data flow pipeline. The backbones of

this section will remain the same and are currently in place but the details of the output

will vary from analysis to analysis and hence the existing functions will have to be modified

accordingly.

3.2 Analysis Software

Although the preprocessing and postprocessing sections of the data flow are important, they

are simple enough that they do not require further detailed descriptions. All the beam

pattern functions, Doppler phase and TDI phase values have already been calculated for all

possible values they can take and therefore there is no need to repeat this calculation for any

future run of the analysis pipeline depicted in fig. 3.4. As already mentioned, there basic

structure of the postprocessing section of the data flow is in place but the desired output is
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what real shapes this section and that will vary from run to run of the pipeline. So this is

why the pre and post processing sections can remain some what opaque for this discussion.

The code that runs a given analysis is one of many types depending on what output

the user desires. All of the main codes are named with Eval as a prefix. For example, to

calculate the parameter uncertainties, the code to run would be EvalInfoMatrix.m. This will

call many other helper functions that I will discuss below. There are similar codes that are

used for just evaluating the SNR or evaluating a template mismatch that are also provided.

The general behavior of each Eval*.m code is the same other than the output produced.

They all utilize the same generalized routines, have the same data management, and have

the same organizational schemes.

The pipeline for the analysis section makes up roughly 80% of the analysis software. This

stage allows users to define many different classes of signals. This stage also provides the

means to perform simple searches or determine the parameter uncertainties in any number of

the 12 dimensional parameter space. The first step of the pipeline is where the user defines

the dynamic variables for the current run, i.e. frequency, inclination, declination, right

ascension, masses etc. This is done in one of two places, either at the command line when

running the function or in a configuration file called configureFile.m. The second method is

more convenient if the user is going to continually focus on a given region of parameter space

since in this case some of these dynamic variables will remain fixed from run to run. There

is also the combination option where the user chooses some parameters to be defined at the

command line and other to be defined within the configuration file. The last method is the

most common usage. For example, this method allows the user to examine the frequency

dependance or sky dependance of parameter errors while keeping the source orientation and
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masses the same from run to run.

Once the dynamic variables have been set, the code then determines which type of wave

form to use: Newtonian or Post-Newtonian (PN). The Newtonian waveforms are accurate

for circular orbits which will apply to many source that will be available to LISA. The PN

waveforms apply corrections to the Newtonian waveforms to properly account for additional

complications such as the periastron advances of eccentric sources that would be available to

LISA [15]. Although the PN waveforms reduce to the Newtonian waveforms in the proper

limits, the Newtonian waveforms are more desirable when dealing with this limiting case due

to the simplicity of the waveforms, which results in noticeably less computational time for

the analysis.

After the desired waveform has been selected, the pipeline then loads the beam pattern

functions for the entire observation period. This is done using getBeamPatternFuncs.m or

getSNRBeamPatternFuncs.m. The main difference between these two functions is that the

later of the two is an abbreviated version of the former. The getSNRBeamPatternFuncs.m

function does not need to load any of the derivative functions just the basic beam pattern

functions. This would be used for a straight up search. However, in order to calculate the

parameter uncertainties, all the derivatives of the beam pattern functions are required as

well. The process of loading in all the derivatives of the beam pattern functions for the entire

observational period takes substantially longer and requires significantly more memory than

just loading the beam pattern functions themselves. What should be noted is that there are

two time scales that come into play at this stage. The first is the short step time scale, which

is the time steps for the monochromatic phase. This time scale is the duration that the 61

total cycles mentioned previously span, which will be different at different frequencies. The
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Figure 3.4: This is a flow chart of the analysis pipeline. The pipeline flows from top to
bottom.
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second time step is the long time step, which is the time step between successive points in the

beam pattern functions. To get a handle on how slowly these beam pattern functions and

their derivatives vary for a one year observation period, the beam pattern function for just

a single arm of LISA is plotted in fig. 3.5. This should be compared with the actual signal

that has hundreds of thousands of oscillations in the same observation period as illustrated

in fig. 2.4. Figure 3.5 is a plot of the actual discretization used in the analysis pipeline. As

is evident in the plot, the discretization was chosen such that the variations were smooth

from one point in the orbit to the next.
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Figure 3.5: This is a plot of the beam pattern function for arm 1 during a 1 year observation
period for a source located within the elliptic plane.

Once the beam pattern functions have been loaded, the pipeline is then equip to handle

one of four possible cases: bare, Doppler, chirp, and complete. This option is determined by

a set of flags. The bare case considers a non-physical signal that does not have any Doppler

frequency shifting and assumes a stationary frequency for the entire observation period. The

Doppler case is the physical signal with Doppler shifting incorporated but still assumes a
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stationary frequency. The chirp case is again non-physical case where Doppler shifting is not

incorporated but the frequency is allowed to evolve slowly over the course of the observation

period. The final case is the complete case where the Doppler shifting is incorporated and the

frequency is allowed to evolve over the course of the observation period. As will be discussed

in a later chapter, all the non-physical cases are used to furnish a better understanding of

how the modulations that are introduced from each part of a signal’s phase contribute to

the signal as a whole.

Once all the parameters have been set, the beam pattern functions loaded and the par-

ticular case has been selected, there are now two avenues to take. The first is to analyze

the parameter uncertainties and the second is to do an actual search. Both of these options

allow for the possibility to generate animations. This is why there is the dashed line to that

stage of the pipeline. The animation stage is not a necessary stage so the user can turn this

stage off and on at will.

The last two stages of the pipeline are in some sense a single step. This amounts to

getting the proper phase at each time point as well as weighting each time point by the

proper beam pattern weighting coefficient. When all is said and done the overall SNR can

be written as a double summation as follows:

SNR =

√√√√√
1year∑

tl=0


Wtl

long time step∑

ts=0

sin(Φtl + Φts)


 ∆ts, (3.1)

where tl indicates the interval between terms is the long time step, ts indicates the interval

is now the short time step and Φtl + Φts is illustrated in eq. 3.2 below as just Φ. Regardless

of what type of analysis is performed, the phase recombination is identical. During this
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stage, all the phase contributions must be tracked. This amounts to properly adding the

monochromatic part of the phase to the remaining parts of the phase. Equation 3.2 illustrates

the entire phase for the complete signal.

Φ = 2πft + φD + φTDI + φchirp, (3.2)

where φD is the Doppler phase and φTDI is the TDI phase both of which are calculated in

advance. The monochromatic (2πft) and chirp (φchirp) part of the phase are the only pieces

that vary in the short time steps while the remainder is held constant until the short time

steps sum up to the long time step. This method requires precise tracking of the signal phase

in order that the remaining phase terms are consistent and accurate. Aliasing effects must

also be avoided when combining one long time step with the next consecutive long time step.

Once this is done, the signal is complete and interpretation of the results can follow.
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Chapter 4

Detecting Signals with LISA

The Laser Interferometric Space Antenna is being designed as a space-based detector to

observe low-frequency GWs to complement the high-frequency observation of its Earth-based

counterparts. Many of the sources of low-frequency GWs fall in the category of compact

binary objects such as neutron star binaries or white dwarf binaries. During the early stages

of the inspiral, these compact binaries will produce essentially monochromatic low-frequency

gravitational waves, which will be potential sources for LISA.

The first section will begin by enunciating the three noise-independent data combinations,

or “pseudo-detectors”, that were first obtained in Ref. [16] by combining the frequency shifts

of the six laser beams exchanged among the LISA spacecrafts through time-delay interferome-

try [17]. The following section will then study the antenna patterns of these pseudo-detectors

at different points in LISA’s orbit, emphasizing how their relative sensitivities to a mildly

chirping source vary as a function of sky position and source frequency. The studies bear

out the fact that noise-independence of detectors is a property distinct from their geometric

independence. Indeed, at GW wavelengths larger than about 0.1 AU, which will be termed
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as the long-wavelength limit, the strain of the third pseudo-detector tends to the difference

of the strain of the first two.

The optimal statistic for detecting gravitational waves from compact binary inspirals by

coherently combining the data of the three pseudo-detectors will then be addressed for both

the Newtonian waveforms as well as Post-Newtonian.

The statistic obtained in these calculations tracks the Doppler modulation of the signal

phase induced by the motion and time-varying orientation of LISA with respect to a given

source, and allows for a slightly “chirping” source [18]. Additionally, an estimate of the

number of templates required to institute a search using the statistic developed here follows.

Figure 4.1: LISA consists of 3 spacecrafts located at the vertices of an equilateral triangle.
These craft exchange six elementary data streams, labeled Ui and −Vi. The Ui beams
propagate clockwise, whereas the −Vi propagate counterclockwise.
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4.1 The pseudo-detectors

As illustrated in Fig. 4.1, LISA consists of three spacecrafts, labeled 1, 2, and 3, located

clockwise at the correspondingly labeled vertices of an almost equilateral triangle. Let the

arm-lengths of this triangle be L1, L2, and L3, such that Li is the length of the arm facing

the vertex i. For specifying the orientation of each arm, we assign unit vectors n̂i along them,

such that their directions are oriented anticlockwise about the triangle. Each spacecraft will

have two optical benches (denoted as i and i∗ in Fig. 4.1) equipped with independent lasers,

beam-splitters and photodetectors. Thus, each spacecraft will shoot two beams towards the

other two spacecrafts, respectively, resulting in six one-way beams along the 3 arms.

The effect of an impinging GW on these beams is to cause a shift in the frequency of the

laser beam. If ν0 is the central frequency of all the lasers in LISA, then the fractional shift

caused in the beam originating at spacecraft i is

Ci(t) ≡ ∆νi(t)

ν0

. (4.1)

Similarly for the beam from craft i∗. However, what is measured is the frequency fluctuation

in the beam from i relative to that originating at i∗ ± 1 for the −Vi and Ui data streams

respectively. 1 For instance, as shown in Fig. 4.1, U1(t) := C3(t − L2) − C1(t), is the data

stream that is measured by beating the beam transmitted by craft 3 against that of craft 1,

measured at time t at craft 1. If a data stream x(t) is acted on by the time-shift operator ζi,

the result of time-shifting the data is ζix(t) = x(t− Li). The label i denotes the arm along

which the time-shift is affected. Thus, the time-shift operators are given by,

1Note that i, or i± 1 can take only 1, 2, and 3 as values. Thus, when i = 3, one must really take i + 1 as
(i + 1)%3 which is just 1. Similarly, when i = 1, we take i− 1 as 3.
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ζi = eiΩiLi . (4.2)

One can thus define the 6 inter-craft steams as follows[20]

U1 = ζ2C3 − C1 , U2 = ζ3C1 − C2 , U3 = ζ1C2 − C3

V 1 = C1 − ζ3C2 , V 2 = C2 − ζ1C3 , V 3 = C3 − ζ2C1 . (4.3)

Note that a delay of
∑3

i=1 αiLi is effected by the operator
∏3

i=1 ζαi
i .

These shifts, however, are expected to suffer from several noise sources, two of which,

namely, laser-frequency fluctuation and optical-bench motion, tower over others. Let the

random velocities of the optical benches be vi and vi∗ , and the frequency shifts suffered

by the laser in the optical fibers connecting the optical benches in craft i be ηi. Then the

intra-craft beams originating at crafts 1 and 1∗ are [20]:

y1 = C1 − C1∗ + η1 − 2n̂3 · v1

y1∗ = C1∗ − C1 + η1 + 2n̂2 · v1∗ . (4.4)

Also, the intra-craft beams associated with these crafts get modified to:

U1 = ζ2(C3 − n̂2 · v3)− (n̂2 · v1∗ + C1∗) ,

V 1 = −ζ3(C2∗ + n̂3 · v2∗) + (C1 − n̂3 · v1) . (4.5)

Following the work of Tinto and Armstrong [17], it was shown by Dhurandhar et al. that by

acting on the 6 inter-craft streams, Ui, Vi, and the 3 intra-craft streams, Wi := (yi − yi∗)/2,

with certain polynomials of time-delay operators, p
(A)
i , q

(A)
i , and r

(A)
i , one can form pseudo-

detectors,
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xA(t) =
3∑

i=1

[
p

(A)
i V i(t) + q

(A)
i U i(t) + r

(A)
i W i(t)

]
, (4.6)

that have the laser-frequency noise eliminated. Above, A is the pseudo-detector index. Thus,

the polynomials p
(A)
i , q

(A)
i , and r

(A)
i form a representation of the xA(t).

Of the several possible pseudo-detectors, only 3 are independent [16, 59]. The three that

will be discussed here are given in terms of the ordered set,

{p(A)
1 , p

(A)
2 , p

(A)
3 ; q

(A)
1 , q

(A)
2 , q

(A)
3 ; r

(A)
1 , r

(A)
2 , r

(A)
3 }, (4.7)

as follows:

x1 = {1− ζ, 1 + 2ζ,−2− ζ; 1 + 2ζ, 1− ζ,−2− ζ;

ζ2 − 1, ζ2 − 1, 2(1− ζ2)},
x2 = {−ζ − 1, 1, ζ;−1, 1 + ζ,−ζ; 1− ζ2,−1 + ζ2, 0},
x3 = {1, 1, 1; 1, 1, 1;−1− ζ,−1− ζ,−1− ζ} . (4.8)

In the above expressions, it is assumed that all arm lengths are almost identical. Therefore,

ζ1 ' ζ2 ' ζ3 ≡ ζ. It is also important to note that these data combinations diagonalize

the noise covariance matrix [22]. Although the laser-frequency noise is eliminated in the

xA(t), there is still noise associated with the acceleration of the proof mass used onboard

each craft along with photon shot noise. The raw shot noise is characterized by the noise

power-spectral density Pshot = 1.8 × 10−37[f/1Hz]2Hz−1 and the raw noise associated with

the on board proof mass is characterized by Pproof = 2.5 × 10−48[f/1Hz]−2Hz−1 as outlined

in Ref.[37]. The proof mass noise enters in the very low frequency band of LISA and the shot

noise enters the higher end of LISA’s sensitivity band. However, these raw noise sources will

be modulated differently for the pseudo-detectors in Eq. (4.8). The resulting noise spectra
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for each pseudo-detector is [19]:

Px1(f) = Px2(f) = 32 sin2(πfL) sin2(3πfL)([6 + 4 cos(2πfL)

+ 2 cos(4πfL)]Pproof + [2 + cos(2πfL)] Pshot) ,

Px3(f) = 8 [1 + 2 cos(2πfL)]2 sin2(3πfL)
[
4 sin2(πfL)Pproof + Pshot

]
. (4.9)

Therefore, the data analysis challenge is to detect signals in this remaining noise.

4.2 Newtonian Waveforms

The energy lost through gravitational radiation will eventually circularize many eccentric

sources that are potential candidates for LISA. For this reason, Newtonian waveforms have

been implemented as first step approach to the data analysis challenge. These waveforms

can be modified appropriately to account for radiation reaction and other PN effects while

maintaining significantly accurate waveforms. Before examining how eccentricity will effect

the detection statistic, the simpler circular orbit case is examined in depth. Using the

knowledge gained from the simplified model, the modifications for eccentric waveforms can

be obtained straightforwardly.

4.2.1 The Signal

A gravitational wave propagating in the ŵ direction away from the source will create a

perturbation at spacetime location (t, r) given by

hkl(t, r) = h+(t− ŵ · r)(θkθl − φkφl) + h×(t− ŵ · r)(θkφk + θlφl) (4.10)

where h+(t) and h×(t) are the two GW polarizations. The sky position {θ, φ} defines the
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Cartesian components of the propagation direction, i.e., ŵ = (sin θ cos φ, sin θ sin φ, cos θ).

Also, θk and φk define the plane transverse to ŵ:

θ̂ :=
∂ŵ

∂θ
, φ̂ :=

1

sin θ

∂ŵ

∂φ
. (4.11)

In the time domain, the strain induced along the ith arm is

hi(t) = hkl(t)n
k
i n

l
i = h+(t)ξi+(w1, w2) + h×(t)ξi×(w1, w2) , (4.12)

where we used Einstein’s summation convention over the repeated indices k and l. Above,

ξi+ = (θ̂ · n̂i)
2 − (φ̂ · n̂i)

2 , ξi× = 2(θ̂ · n̂i)(φ̂ · n̂i) (4.13)

are the beam-pattern functions of the ith arm for the two polarizations.

An impinging GW causes a change in the light-travel time along an arm that can be

calculated by solving the null geodesic equation in the corresponding perturbed spacetime.

This in turn causes a time-varying Doppler shift, which clearly depends on the difference in

the GW strains at the two crafts at the end of the arm. One also expects this shift to be

dependent on the position of the source relative to the arm, ŵ · n̂i. The fractional frequency

shift associated with data stream Vi is given by [20]

δνi(t)

ν0

=
−1

2(1− ŵ · n̂i)
[h(t− ŵ · ri+1)− h(t− ŵ · ri−1 − L)] (4.14)

where ri is the position vector of the ith craft in the LISA frame. The speed of light is set

to unity.

Next would be to consider the effect of a signal from a compact binary on δνi(t)/ν0. The

two polarization amplitudes for the ith arm are

46



hi+ (t) = H(Ω0)

[
1 + cos2 ι

2
cos 2ψ cos(Φi(t) + δc) + cos ι sin 2ψ sin(Φi(t) + δc)

]
,(4.15)

hi× (t) = H(Ω0)

[
−1 + cos2 ι

2
sin 2ψ cos(Φi(t) + δc) + cos ι cos 2ψ sin(Φi(t) + δc)

]
,(4.16)

where Φi(t) is the phase received at that arm, {ψ, ι} are the polarization and inclination

angles of the binary source and δc is the initial phase at the origin of the LISA frame. For a

nearly monochromatic signal Φi(t) = Ω0(t− Liτi) + φD where

φD(t) = Ω0d¯ sin θ cos
(

2πt

P
− φ

)
and τi :=

1

2

(
1− ŵ · r̂i√

3

)
(4.17)

with d¯ = 1AU and P=1 year. The last two terms in Φi(t) above are attributed to the relative

motion of LISA with respect to a given source. Above, H(Ω0) is the signal amplitude at

LISA defined as:

H(Ω0) = 1.188× 10−22

[ M
1000 M¯

]5/3 [
R

1Gpc

]−1 [
Ω0

2π 1mHz

]2/3

(4.18)

where M is the chirp-mass and R is the distance to the source. By using Eqs. (4.12) and

(4.15) in the frequency-shift expression Eq. (4.14), and taking the Fourier transform of the

result gives

δν̃i(ω)

ν0

= H(Ω0)T

[
sinc ((ω − Ω0) T ) e−iδc

(
l∗+(ψ, ι)F ∗

Vi+1;+
(Ω0) + l∗×(ψ, ι)F ∗

Vi+1;×(Ω0)
)

+ sinc ((ω + Ω0) T ) eiδc

(
l+(ψ, ι)FVi+1;+(Ω0) + l×(ψ, ι)FVi+1;×(Ω0)

) ]
, (4.19)

where ω is the angular frequency variable. The angles {ψ, ι} have been separated out in the

factors l+,×, which are defined in terms of the Gel’fand functions [24] as follows:
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l× = −i
(
T 2

2 (ψ, ι, 0)− T−2
2 (ψ, ι, 0)

)
,

l+ =
(
T 2

2 (ψ, ι, 0) + T−2
2 (ψ, ι, 0)

)
. (4.20)

On the other hand, the orientation of the ith arm resides in the functions,

FVi+1;+,× = −ibi ξi;+,× sinc
(
Ω0Lik

−
i

)
eiτiΩiLi

FUi+1;+,× = ibi ξi;+,× sinc
(
Ω0Lik

+
i

)
eiτiΩ0Li , (4.21)

where

bi :=
Ω0Li

2
and k±i =

(1± ŵ · n̂i)

2
, (4.22)

are both real quantities. The FUi;+,× determine the fractional frequency shift in the Ui data

stream.

The GW strain contributing to the data combinations, xA, can now be found by using

the fractional frequency-shift expression (4.19) in Eq. (4.6). In the Fourier domain, the

strains are:

h̃A(ω) = iH(Ω0)T
3∑

i

[
e−i(δc+σA

i )sinc ((ω − Ω0) T ) T ρ∗
2 DA∗

ρi e−iτiΩ0Li

+ei(δc+σA
i )sinc ((ω + Ω0) T ) T ρ

2 DA
ρie

iτiΩ0Li

]
(4.23)

where there is an implicit sum over ρ = ±2. Also, we define

DA
±2j := πbj|MA

j |
(
ξj+ ∓ iξj×

)
, (4.24)

where
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MA
i := qA

i−1sinc
(
Ω0Lik

+
i

)
− pA

i+1sinc
(
Ω0Lik

−
i

)
(4.25)

and σA
i = arg(MA

i ).

The time-domain expression of the GW strain in the pseudo-detector A is obtained by

taking the Fourier transform of h̃A(ω), and is found to be

hA(t) = H(Ω0)
3∑

j=1

<
[
e−iδEA∗

j Sj(t)
]

, (4.26)

where δ = δc + π/2,

SA
j := eiΦj+iσA

j /gA and EA
j := gAT ρ

2 D A
j ρ . (4.27)

Above, gA is a normalization constant such that

〈SA
j , SA

j 〉 = 1 , (4.28)

which implies that for an observation duration (i.e., signal integration time) T ,

gA =

[
T

2πPA(Ω0)

]1/2

. (4.29)

When considering a slightly chirping source, the straight substitution of Ω0t with Ω0t+
1
2
Ω̇0t

2

will suffice where

Ω̇ =
48

5

(
GM

2

)5/3

Ω11/3. (4.30)

This requires a modification to hA(t) which occurs in the SA
i term:

SA
j := eiΩ0(t−Ljτj)+iφD(t)+i( 1

2
Ω̇0t2+σA

j )/gA. (4.31)

Note that apart from the normalization constant, SA
j is a pure phase term. We will find this
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useful when deducing the matched filter in the following section.

4.2.2 The Optimal Statistic

Given three independent pseudo-detectors, xA, we now ask what is the optimal detection

statistic to look for GW signals, hA, in them. In the absence of any prior probabilities and

costs, the optimal detection strategy is the one that minimizes the rate of false dismissals

for a given rate of false alarms. This is termed as the Neyman-Pearson criterion. Under this

criterion and in zero-mean Gaussian noise, the detection statistic is the likelihood ratio, λ,

defined as [25]

ln λ =
3∑

A=1

(
〈hA, xA〉(A) − 1

2
〈hA, hA〉(A)

)
, (4.32)

where the first term is the cross-correlation of the expected signal, hA, in each pseudo-

detector and the respective data, xA. The second term is an overall normalization that is

independent of the data. The cross-correlation can be performed in either the frequency

domain or time domain. It is defined to be

〈a, b〉 =
2

P (f)

∫ ∞

0
a(t) b(t)dt = 2<

∫ ∞

0

˜a(f)
∗ ˜b(f)

P (f)
df (4.33)

where ˜a(f) is the Fourier transform of a(t). Substituting for hA from Eq. (4.26), we get:

3∑

A=1

〈hA(t), xA(t)〉(A) =
3∑

A=1

3∑

i=1

<
[
e−iδ EA∗

i C A
i (t)

]
, (4.34)

where

CA
i (t) := 〈Si(t), x

A(t)〉(A) . (4.35)
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The double summation in Eq. (4.34) can be replaced with the single sum over a new index

k,

3∑

A=1

3∑

i=1

Y A
i :=

9∑

k=1

Y
d k

3
e

(k−1)%3+1 , (4.36)

where A = Ceiling(k/3) = dk
3
e and i = Mod(k − 1, 3) + 1 = (k − 1)%3 + 1. Below, we

will simplify the expressions by identifying Y
d k

3
e

(k−1)%3+1 with Y k, which will comprise the

components of the 9-dimensional vector Y. We use this algorithm to map the DA
i , EA

i , and

CA
i to the components, Dk, Ek, and Ck of 9-dimensional vectors D, E, and C, respectively.
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Figure 4.2: Sensitivities zA :=
∑3

i=1 Ei∗
A EA

i /(gA)2 of the three pseudo-detectors as functions
of sky positions, {θ, φ}, in radians. These plots have been evaluated for Ω0 = 1 mHz at the
“initial” orbital position of LISA labeled t = 0. As illustrated above, direction of maximum
sensitivity varies from one pseudo-detector to another.

In the new notation, the cross-correlation statistic becomes

3∑

A=1

〈hA(t), xA(t)〉(A) =
9∑

k=1

<
[
e−iδ E∗

k C k
]

= <
[
e−iδ E ·C

]
(4.37)

and

3∑

A=1

〈hA(t), hA(t)〉(A) = H2(Ω0) ‖ E ‖2≡ κ2 , (4.38)

where ‖ Y ‖ denotes the norm of vector Y. Therefore, κ2 is a measure of the drop in the
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peak power H2(Ω0) owing to LISA’s non-optimal orientation to a given source. The relative

sensitivities of the three pseudo-detectors to different sky positions can now be studied by

plotting the analogue of κ2 for each individual pseudo-detector, as shown in Fig. 4.2. This

figure, plotted for Ω0 = 1 mHz, verifies the fact found in Ref. [16] that the third pseudo-

detector has a much smaller sensitivity than the first two. It also, shows that the peak

sensitivity of the pseudo-detector labeled as A = 1 is the best of the three. However, at any

given location on LISA’s orbit, there are sky positions to which pseudo-detector 2 has the

best sensitivity. We also plot in Figs. 4.3 and 4.4, the sensitivities of pseudo-detector 1 and

the optimal combination of all the pseudo-detectors, for three different locations on LISA’s

orbit. These figures show that for all sky positions the optimal-sensitivity is better than the

usually best pseudo-detector, labeled A = 1.

The likelihood ratio now takes the following form:

ln λ = κ
3∑

A=1

〈ĥA, xA〉(A) − 1

2
κ2, (4.39)

where

ĥA ≡ hA

H(Ω0) ‖ E ‖ . (4.40)

This can be maximized over κ and δ to give

ln λ |κ̂,δ̂=
1

2
| Q ·C |2 . (4.41)

Note that the parameters {ψ, ι} appear only in Q.

To make further progress, let us introduce the normalized network (or multi-detector)

vector,
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Q := E/ ‖ E ‖ , (4.42)

such that ‖ Q ‖= 1. Q can be expressed in terms of its components as follows:

Q := Q+2D̂+2 + Q−2D̂−2, (4.43)

where

D̂±2 :=
D±
‖ D ‖ and Q±2 :=

T±2
2 ‖ D ‖
‖ E ‖ . (4.44)

Above, we have used the fact that ‖ D+ ‖=‖ D− ‖≡‖ D ‖. The statistic in Eq. (4.41)

has all the {ψ, ι} dependence on Q. Therefore, it stands maximized with respect to those

parameters when Q gets aligned with C. The fact that this is realizable was shown in Ref.

[27]. The maximized statistic is

ln λ|κ̂,δ̂,ψ̂,ι̂ =
1

2
‖ CH ‖2, (4.45)

where CH is the projection of C on the 2-dimensional complex spaceH spanned by {D̂+2, D̂−2}.

Since it is always possible to choose a pair of real basis vectors to define this two-dimensional

space, we take these vectors to be

v̂± :=
(
d̂1 ± d̂2

)
/ ‖ d̂1 ± d̂2 ‖ , (4.46)

where d1 = <(D+2) and d2 = =(D+2). Thus, we may define the network search statistic as

Λ :=‖ CH ‖2= |C+|2 + |C−|2 = (c+
0 )2 + (c+

π/2)
2 + (c−0 )2 + (c−π/2)

2 , (4.47)

where C± := v̂± ·C =: c±0 + ic±π/2.

The above statistic is still a function of the sky position through the parameters {w1, w2}.
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Since it is not possible to maximize the statistic over these parameters analytically, one must

resort to a numerical maximization scheme as described in the next section. By comparing

the values of the statistic for each pixel in the sky with a threshold value, Λ0, a decision

on the presence or absence of a signal in the data can be made. The threshold itself is

determined by the false-alarm probability that one can afford. Note that in the absence of

a signal, Λ is a random variable that has a χ2 probability distribution,

p0(Λ) =
Λ

4
exp (−Λ/2) , (4.48)

with 4 degrees of freedom [24]. The false-alarm probability is

Q0 =
∫ ∞

Λ0

p0(Λ)d(Λ) =
(
1 +

Λ0

2

)
exp (−Λ0/2) . (4.49)

In the presence of a signal, the probability distribution of Λ is non-central χ2,

p1(Λ) =

√
Λ

2κ
exp

(
−Λ + κ2

2

)
I1

(
κ
√

Λ
)

, (4.50)

with the non-centrality parameter as κ2, which is a measure of the signal strength [24].

Above, I1 is the modified Bessel function.

4.2.3 Template Spacing and Computational Costs

The Λ statistic in Eq. (4.45) must be maximized over the remaining intrinsic parameters,

namely, ϑ = {Ω0, w1, w2}. The maximization can be achieved numerically using a discrete

template bank over this three-dimensional parameter space. The drop in the value of the

statistic and, therefore, the signal-to-noise ratio that one can afford determines how coarsely

one can space the templates. In practice, there are limits posed by the available computa-
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Figure 4.3: Sensitivity z1, as defined in Fig. 4.2, evaluated at Ω0 = 1 mHz for three different
angular orbital positions (in radians), {0, π

3
, 2π

3
}, with respect to the “initial” location denoted

in Fig. 4.2. The left plot above is identical to the left plot in Fig. 4.2 since it corresponds
to the same pseudo-detector and orbital location. Note that the sky positions corresponding
to the sensitivity maxima vary from one location to another on LISA’s orbit.
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Figure 4.4: Network sensitivity zopt :=‖ E ‖ /(g1)2 evaluated at Ω0 = 1 mHz for the
same orbital positions that appear in Fig. 4.3. It is manifest that pseudo-detector 3 makes
negligible contribution to the zopt at this frequency. Note that g1 = g2. At any given sky
position, the optimal statistic has better sensitivity than any zA.

tional resources on how fine the spacing can be. The loss in SNR is related to the template

spacing through the ambiguity function [25].

The ambiguity function corresponding to the Λ statistic is derived from it by replacing

the data xA there by a signal hA(ϑ′). We distinguish the signal parameter values from those

of the template by denoting the former with a prime. The parameter values of a template

used in a search may not be the same as those of a signal hiding in the data. Let the
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parameter mismatch be ∆ϑ := (ϑ′ − ϑ). Then the ambiguity function is a real quantity

expressed as

m(ϑ, ∆ϑ) := p l
k Q

′k Q
′∗
l Θ(k)(l), (4.51)

where Q
′k depends only on the signal parameters and

Θ(k)(l) = 〈S ′ k, Sk〉∗(k)〈S
′ l, Sl〉(l)

= eiΨkeiΨlsinc(Ω
′
kT − ΩkT )sinc(Ω

′
lT − ΩlT ), (4.52)

and p l
k := v+lv+

k + v−lv−k is an amplitude factor. It is important to note that as ∆ϑ → 0,

one has m(ϑ, ∆ϑ) → 1, which is the maximum value it can attain. The correlation phase,

Ψk, is defined as

Ψk = L(Ω
′
kτ

′
k − Ωkτk) = Ωk

r̂k1

2
√

3
∆w1 + Ωk

r̂k2

2
√

3
∆w2 − τk∆Ωk. (4.53)

The drop in the value of m(ϑ, ∆ϑ) caused by non-zero, but small ∆ϑµ, can be ascertained

by Taylor expanding it about the maximum at ∆ϑ = 0 [26, 27]. The first order term is zero

since by definition the statistic has a maximum when the template parameters match the

signal parameters. Thus,

1−m(ϑ, ∆ϑ) ' γαβ∆ϑα∆ϑβ , (4.54)

γαβ is determined from the second order term in that expansion:

γαβ = −1

2

(
∂2m(ϑ, ∆ϑ)

∂∆ϑα∂∆ϑβ

)∣∣∣∣∣
∆ϑ=0

. (4.55)

It defines the metric on the 3-dimensional parameter space.
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The computational cost for the search can be reduced by taking advantage of the Fast

Fourier Transform algorithms [28] and computing the cross-correlation components, C, in

the Fourier domain. This defines the strategy for searching for the source frequency, Ω0.

To search for the remaining parameters, {w1, w2}, one must design a bank of “templates”

with values of these sky positions spaced such that the loss in SNR is never more than the

desired fraction, say, µ. To find the metric, gij, on the two-dimensional space P , spanned by

{w1, w2}, one must project γαβ orthogonal to Ω0,

gij = γi j − γ0 iγ0j

γ00

, (4.56)

where i and j span only the {w1, w2} space, and the index 0 denotes the Ω0 axis. The volume

of a P is then given by

V =
∫

P

√
det‖gab‖dP ϑ , (4.57)

where P = 2 is the dimensionality of the space. The number density of templates, ρP (µ), is

determined as a function of µ to be [27]:

ρP (µ) =

(
1

2

√
P

µ

)P

. (4.58)

Setting the fractional SNR loss µ = 3% yields a template density of ρ2(0.03) = 16.6. There-

fore, the total number of templates is just the overall parameter volume times the template

density, i.e., Ntemplates = V × ρP (µ).

The parameter volume, obtained via the metric computation, turns out to be about

5 for Ω0 = 1 mHz. Considering that the template density per unit volume is only 16.6

implies that the number of sky-position templates required for a search with 3% loss of SNR
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will be around 80. The smallness of this number is not surprising, given how slowly the

ambiguity function varies as a function of ∆θ and ∆φ, as shown in Fig. 4.5. What should

be noted is that although the total number of templates needed is small, this only ensure

that a signal will not go undetected but still does not provide the necessary resolution to

properly identify actual source parameters. This topic will be discussed in greater detail in

the following chapter.

As is manifest from Eq. (4.51), in principle, this variation can arise from either the time

delays in Θkl or the weights p l
k . However, for wavelengths much larger than the LISA arm

length, the ability to discern between different sky positions through the time delays in Θkl

is negligible. The main contribution to m(ϑ, ∆ϑ), therefore, arises from the p l
k . A detailed

study of the angular resolution achievable by LISA is covered in the following chapter or the

reader may refer to the following chapter Refs. [66, 67].
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Figure 4.5: The ambiguity function m plotted as a function of the template parameters,
{θ, φ}, for three different source sky positions (in radians), namely, {θ′, φ′} = {π/2, 4π/3},
{π/6, π/3}, and {π/2, π}.

To get a handle on the computational costs associated with a search of this nature, one

must determine the overall number of sampling points in a single data train. For our analysis,

a chosen a sampling rate of 1 Hz was used. Therefore, the number of sampling points is just
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the length of the data train, T . The number of floating point operations associated with an

FFT with T sampling points is:

Nfl−opts = T log2T. (4.59)

Considering that this must be done for each template, the resulting expression for the total

number of floating point operations for an arbitrary template bank is just Ntemplates×Nft−opts.

However, the real quantity of interest is the number of operations per second,

Cflops :=
Ntemplates ×Nft−opts

T
= Ntemplateslog2T . (4.60)

Therefore, the computational costs of implementing a real-time search with about 80 tem-

plates is trivial since the number of flops scales logarithmically with the integration time.

In the analysis presented here, the template bank is only valid in a time frame where the

beam pattern functions are relatively constant. This can be anywhere from a few hours to

a day. Therefore there would be separate banks for each integration period. This results in

a little overhead associated with switching to the new template bank for each integration

period but it is minimal and has been ignored here.

4.3 Eccentric Waveforms

The Laser Interferometer Space Antenna (LISA) is projected to detect numerous galactic

stellar-mass compact binaries [37] of which a good fraction is expected to possess moderate

to large values of orbital eccentricity in the LISA band. It was demonstrated that a natural

consequence of an asymmetric kick imparted to neutron stars (NSs) at birth is that a ma-
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jority of them in binaries should have highly eccentric orbits with short orbital periods [38].

Assuming stationary distribution for NS-NS binaries in the galaxy, Gusev et al. argued that

LISA will see a number of NS–NS, NS–black hole (BH) and BH–BH binaries in eccentric

orbits [43]. Moreover, using Monte Carlo simulations to model galactic globular clusters, it

has been predicted that LISA may see several stellar-mass BH binaries in highly eccentric

orbits [44]. Observing these binaries with LISA is of great astrophysical interest because

for many of them it will provide at least the total mass [15], angular resolution sufficient to

identify their location [44] and, in principle, a bound on the mass of gravitons [41].

Owing to the possibility of signals from many eccentric binary compact objects (EBCOs)

populating LISA’s data, we examine how one must search for them. To beat the noise

from laser-frequency fluctuation and optical-bench motion, we take the data to be the first

generation time-delay interferometric (TDI) observables A, E, and T [16]. We make a

start here by focusing on the relatively simple, yet astrophysically relevant, case of EBCOs

satisfying the following two conditions. First, we consider only those EBCOs whose orbital

dynamics are negligibly affected by gravitational radiation reaction, thus, allowing us to

treat individual signal harmonics as monochromatic in an observation period of a few years.

However, we keep the orbital dynamics to be fully first post-Newtonian (1PN) accurate.

This is because for stellar-mass compact binaries in eccentric orbits, with orbital frequency

around 1mHz, it is more important to include the frequency shift due to periastron advance

(which appears at the 1PN order) than that caused by radiation reaction, appearing at the

2.5PN order [15]. The second requirement is that here we limit the orbital eccentricities to be

less than 0.6. This allows us to simplify the TDI analysis by effecting the long-wavelength

approximation, where the wavelengths of the dominant harmonics are larger than LISA’s
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arm-length.

The data analysis problem for our eccentric binaries is essentially that of tracking mul-

tiple Doppler-shifted lines, with frequencies defined by the source masses, orbital angular

frequency, and eccentricity. There are a few relevant extrinsic parameters as well, namely,

the initial phase of the signal, and the initial and final harmonics, since the LISA noise curve

may make it sub-optimal to search for power below and above certain frequencies. This prob-

lem is reminiscent of tracking multiple pulsars with multiple detectors, studied by Cutler and

Schutz [36]. There are some important differences though: In our case (a) the line strengths

of the different harmonics are not independent, (b) the antenna-pattern functions of LISA’s

arms are frequency dependent, but are all determined by the same sky-position, and (c) the

current analysis is in TDI observables. Owing to point (a) above, the optimal statistic is

not a simple linear sum of the statistics of individual harmonics (even if the harmonics are

well separated such that the detector noise at their frequencies are uncorrelated). Rather, as

we show below, the optimal search statistic for this case has important cross terms between

harmonics, bearing testimony to the linear dependence of the different harmonics.

4.4 The gravitational waveforms and the associated

LISA signal

We present a recent prescription that provides accurate gravitational-wave polarizations

associated with compact binaries of arbitrary masses moving in slowly precessing eccentric

orbits with negligible inspiral [47]. This prescription is heavily influenced by the orbital

61



phasing formalism given in Refs. [45, 46]. Consider a (non-spinning) EBCO with component

masses m1 and m2, such that the total mass is m = m1 + m2 and the symmetric mass ratio

is η = m1m2/m
2. Let its luminosity distance be R and its orbital inclination relative to

the line of sight be ι. Let r and ϕ denote the relative separation and the orbital phase of the

binary. Then the dominant quadrupolar contributions to the two polarization components

of the source moving in non-circular orbit are [45]:

h+(t) =
(1 + cos2 ι)

2
[hx(t) cos 2ϕ(t)− hy(t) sin 2ϕ(t)] + sin2 ι hz(t)

=
(1 + cos2 ι)

2
H(t) sin (2ϕ(t) + 2γ(t)) + sin2 ι hz(t) , (4.61)

h×(t) = cos ι [hx(t) sin 2ϕ(t) + hy(t) cos 2ϕ(t)]

= cos ι H(t) sin (2ϕ(t) + 2γ(t)) , (4.62)

where we define the following dimensionless quantities

hx,y(t) = −h0

(
Gm

c2r
± r2ϕ′2

c2
− r′2

c2

)
, hz(t) =

2 h0 rr′ϕ′

c2
, (4.63)

H(t) =
√

h2
x(t) + h2

y(t) , γ(t) = arctan

(
hy(t)

hx(t)

)
, (4.64)

where h0 ≡ 2Gmη/c2R and the prime denotes a time derivative. In Eqs. 4.63, the temporal

evolutions are provided by the 1PN accurate evolution of r, ϕ, and their time derivatives.

in a suitably defined center-of-mass frame. With the help of 1PN accurate quasi-Keplerian

parameterization for compact binaries in eccentric orbits [39], we provide the following 1PN

accurate parametric descriptions of these variables in terms of the eccentric anomaly, u [see

sec. IV in Ref. [45] for the computational details]:
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r =
(

Gm

n2

)1/3

(1− et cos u)
[
1 +O

(
1

c2

)]
,

r′ =
et(Gmn)1/3

(1− et cos u)
,
[
1 +O

(
1

c2

)]
ϕ′ =

n
√

1− e2
t

(1− et cos u)2

[
1 +O

(
1

c2

)]
, (4.65)

where n is the 1PN accurate mean motion, defined by n = 2π/P , P being the orbital

period. Also, et is the eccentricity associated with the 1PN accurate Kepler equation (KE),

l ≡ n t = u− et sin u, where l is termed as the mean anomaly.

The parametric description for the orbital phase requires special consideration and is

given by

ϕ(l) = p n t + W (l) + ϕ0 , (4.66)

where ϕ0 is the initial orbital phase. The quantities W and p are, respectively,

W (l) = p(v − u + et sin u), p = 1 +
3ζ2/3

1− e2
t

, (4.67)

with

v = 2 arctan
[(

1 + eϕ

1− eϕ

)1/2

tan
u

2

]
, eϕ = et

[
1 + ζ2/3 (4− η)

]
, (4.68)

and ζ ≡ Gmn/c3. The explicit time evolution of h+(t) and h×(t) is found by solving the

1PN accurate KE given above. The most efficient and accurate (numerical) way of solving

it, adapting a method found by Mikkola [40], was recently employed in Ref. [47].

Let (θ, φ) denote the sky-position of a GW source in the ecliptic coordinate system with

its origin at the solar system barycenter, and ŵ(θ, φ) be the unit vector pointing at that

source. Then the strain in LISA’s ith arm caused by GWs arriving from it is
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hi(t) = h+(t)ξi+(θ, φ) + h×(t)ξi×(θ, φ) , (4.69)

where ξi+(t) = (θ̂ · n̂i(t))
2 − (φ̂ · n̂i(t))

2 and ξi×(t) = 2(θ̂ · n̂i(t))(φ̂ · n̂i(t)) are that arm’s

antenna-pattern functions. Here, n̂i(t) is a unit vector along LISA’s ith arm, θ̂ ≡ ∂ŵ/∂θ,

and φ̂ ≡ ∂ŵ/∂φ. The length of each arm is taken to be Li ≡ L, for all i.

Following Ref. [36], the total signal can be written as:

hi(t) =
4∑

a=1

λahia + ξi+hz(t) . (4.70)

Above, the basis waveforms are:

hi1(t) = Fi+(t)H(t) cos(2χ(t)) , hi2(t) = Fi×(t)H(t) cos(2χ(t)) ,

hi3(t) = Fi+(t)H(t) sin(2χ(t)) , hi4(t) = Fi×(t)H(t) sin(2χ(t)) , (4.71)

with the sky-position-dependent Fi+,× related to ξi+,× as follows:

(
ξi+

ξi×

)
≡

(
cos 2ψ sin 2ψ
− sin 2ψ cos 2ψ

) (
Fi+

Fi×

)
, (4.72)

and

χ(t) ≡ pl(t) + W (t) + γ(t) + ϕD(t : θ, φ) , (4.73)

where ψ is the initial polarization angle and ϕD is the Doppler phase. The expansion

coefficients here are the same as those for long-duration monochromatic sources [48]

λ1 = h+0 cos 2ϕ0 cos 2ψ − h×0 sin 2ϕ0 sin 2ψ ,

λ2 = h+0 cos 2ϕ0 sin 2ψ + h×0 sin 2ϕ0 cos 2ψ ,

λ3 = −h+0 sin 2ϕ0 cos 2ψ − h×0 cos 2ϕ0 sin 2ψ ,

λ4 = −h+0 sin 2ϕ0 sin 2ψ + h×0 cos 2ϕ0 cos 2ψ , (4.74)
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where h+0 ≡ (1 + cos2 ι)h0/2 and h×0 ≡ cos ι h0. For eccentricities less than 0.6, the

contribution of hz to the total strain is found to be negligible [47].

4.5 The GW signal in TDI observables

There are three noise-independent TDI observables, termed as A, E, T , following Ref. [16].

In the long-wavelength (LW) limit, whereby the antenna-pattern functions can be treated

as frequency independent, the magnitudes of the GW strain in these are,

AGW '
[
(2F2+(t)−F1+(t)−F3+(t))

(
λ1S(t)− λ3C(t)

)

+ (2F2×(t)−F1×(t)−F3×(t))
(
λ2S(t)− λ4C(t)

) ]
,

EGW '
√

3
[
(F3+(t)−F1+(t))

(
λ1S(t)− λ3C(t)

)

+ (F3×(t)−F1×(t))
(
λ2S(t)− λ4C(t)

) ]
, (4.75)

and TGW ' O
(
(nL)4

)
. Above, we defined

S(t) =
∑

J

6
√

2 (ωJL/c)3 (αJ cos (ωJt)− βJ sin (ωJt)) , (4.76)

C(t) =
∑

J

6
√

2 (ωJL/c)3 (αJ sin (ωJt) + βJ cos (ωJt)) , (4.77)

where ωJ ≡ n(J + 2p), and the frequency index J varies within an integral range, {J0, Jc},

determined by the relative strength of the signal harmonics and LISA’s sensitivity curve.

Also, αJ and βJ are eccentricity-dependent 1PN accurate Fourier components [47]. Just like

h(t), the TDI observables can also be linearly expanded over the λa, viz., XGW ' ∑
a λaXa,

where X is A, E, or T . Thus, the 1PN EBCO waveforms are parameterized by twelve

parameters, (R, ϕ0, ψ, ι, m, η, n, et, θ, φ, J0, Jc), with the first four being interchangeable with
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the λa.

4.6 The detection statistic

For eccentric binaries, the GW polarization components are constituted of several harmonics

of the orbital frequency. A suitable representation of the EBCO signal in terms of these

harmonics is given in Ref. [47]. Past experience with the monochromatic signals suggests

that the optimal statistic will entail cross correlations between the TDI observables and the

GW templates in that data [19, 49]:

UA ' 2〈A1, A1〉 = 2〈A3, A3〉 , VA ' 2〈A2, A2〉 = 2〈A4, A4〉 ,
QA ' 2〈A1, A2〉 = 2〈A3, A4〉 , PA ' 2〈A1, A4〉 = −2〈A2, A3〉 , (4.78)

where for each harmonic of frequency ω, we defined

〈Xa, Xb〉 ≡ 8(ωL/c)2 sin2(3ωL/2c)

TobsSLW
X (ω)

∫ Tobs

0
Xa(t)Xb(t) . (4.79)

Above, Tobs is the integration time and SLW
X (ω) is the noise PSD in observable X, in the LW

limit. One obtains analogous quantities for E and T . In the LW limit, these can be further

combined into network TDI templates, Z = ZA + ZE, where Z is U , V , Q, or P .

As has been explored in multiple papers [48, 19, 49, 50], the detection statistic derived

from maximizing the likelihood ratio over the four parameters, λa, is the F -statistic:

F =
1

TobsD

[
U |Nv|2 + V |Nu|2 − 2< (WNvN

∗
u)

]
, (4.80)

where W ≡ Q + iP , D ≡ UV − |W |2 and, in the LW limit,

66



Nu '
∫ Tobs

0
dt

[√
3 (2F2+(t)−F1+(t)−F3+(t)) A(t) + (F3+(t)−F1+(t)) E(t)

] ∑

J

κJeωJ t

SLW
A (ωJ)

Nv '
∫ Tobs

0
dt

[√
3 (2F2×(t)−F1×(t)−F3×(t)) A(t) + (F3×(t)−F1×(t)) E(t)

] ∑

J

κJeωJ t

SLW
A (ωJ)

,

(4.81)

such that κJ ≡ 2
√

6(ωJL/c)3 (αJ + iβJ).

4.7 The Signal-to-Noise Ratio

In this section, we compute the SNRs associated with the above search statistic for EBCO

signals with different eccentricities in LISA data. However, for simplicity, here we explore

the behavior of the SNR as a function of the eccentricity for signals in Michelson variables.

(In a subsequent paper, we study its behavior in TDI variables and also explore the accuracy

with which LISA will measure the astrophysical characteristics of EBCOs.) The Michelson

data combinations can be simply written in terms of the individual arm strains, εi ≡ δLi/L,

as follows:

hI(t) = ε1(t)− ε2(t) , (4.82)

hII(t) =
1√
3

[ε1(t) + ε2(t)− 2ε3(t)] , (4.83)

where the superscripts I and II refer to the Michelson data combinations.

The results presented here assume the LW approximation, For a monochromatic signal

with frequency up to about a millihertz, this causes less than a few percent loss in SNR

relative to the exact case [51]. For the LW approximation to be valid for an EBCO signal,
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the highest harmonic that contributes a non-negligible fraction of the total EBCO power

should remain within a millihertz. This holds when the fundamental frequency and the

eccentricity are low enough. This is because the contribution of the higher harmonics to the

overall signal tapers off with increasing frequency. For that reason, eccentricities only up to

et = 0.6 are presented. We are also accounting for the fact that the noise PSD is different at

the different frequencies. It should be noted that a full rigorous solution that does track the

individual frequency components with the rigid adiabatic approximation is currently being

studied.

One can now see in Fig. 4.6 how the SNR behaves as one varies the eccentricity. This

behavior is expected to hold for a more general EBCO as well. The three plots shown in Fig.

4.6 are for the same region of the parameter space, except for the eccentricity, which takes

on the values et = 0, 0.4, 0.6, respectively. The other parameter values are n/2 π = 1mHz,

ψ = 0, and ι = 3π/10 rads. These plots are normalized such that the largest SNR value

among these plots is unity. This figure demonstrates the expected property that, all other

parameters remaining equal, an EBCO with a larger eccentricity will emit more energy than

one with a smaller eccentricity.

68



Figure 4.6: Normalized SNR, plotted as a function of sky position, for three different EBCOs,
which have all other parameters identical, except et = 0, 0.4, 0.6 (left to right). The plots
are normalized such that the highest SNR among the points plotted here is unity (which
occurs in the left plot). Here, the ecliptic is oriented horizontally.
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Chapter 5

Estimating Signal Parameters with

LISA

Unlike LISA’s existing earth-based counterparts, which include LIGO [53], VIRGO [54],

TAMA [55], GEO [56], and LCGT [57], it will enjoy guaranteed sources, specifically galactic

binaries, such as AM CVn, HP Lib, WD 0957-666, RXJ1914+245, and 4U1820-30 [58, 59].

In fact, LISA will be so sensitive that the population of galactic binaries of compact objects,

which comprise white dwarfs (WDs), neutron stars (NSs), and black holes (BHs), will create

source confusion noise that towers over LISA’s instrumental noise near the sweet spot of its

observation band [60, 61, 62]. This can potentially affect the detection of other GW sources.

The confusion noise from WD binaries will be especially worse below about 3 mHz,

where a good fraction of it, with low signal strengths, will be unresolvable. This is due to

the large population of existing binaries that are predicted by many populations models.

Recent studies have suggested that there can be upwards of 108 galactic binaries that could

contribute to this background confusion noise [35]. Galactic binaries that are bright enough
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or orbiting fast enough form a potentially resolvable population extending up to about 20

mHz. LISA’s ability to resolve this latter class of sources will largely depend on how well one

can estimate their signal parameters. Population models have determined that the source

that LISA will be able to resolve within a 1 year integration time can be as many as 5943

for white dwarf binaries or as low as 6 for binaries containing stellar mass black holes [35].

Although the development of algorithms for resolving the component sources is still at its

nascency [63, 64, 65], it is already clear that the smallness of the parameter errors is of

utmost significance to the success of any of these algorithms. The focus of this chapter is

to study the role of different sources of these errors and determine the limits on how small

these errors can be kept.

The problem of parameter-estimation accuracy has been studied for a variety of LISA

sources in the past. Cutler did the first systematic study on this subject for monochromatic

sources and super-massive black hole mergers [66]. Takahashi and Seto [67] studied the

problem exclusively in the context of low-mass compact binaries. They placed emphasis on

the determination of the chirp parameter and its role in unraveling the distance to a binary,

following an idea due to Schutz [68]. Barack and Cutler [69] studied this problem in the

context of extreme-mass-ratio inspiraling binaries. Vecchio and Wickham [51] extended ear-

lier parameter estimation studies to beyond the long-wavelength approximation by including

the frequency-dependent modulation of LISA’s beam-pattern functions arising at higher fre-

quencies. They showed that invoking this approximation results in at most a 3% loss in the

SNR, but can have significant effects on the parameter accuracy (anywhere from 5% to a

factor of 10) in the source frequency range 3mHz <∼ ν <∼ 10mHz.

All of these works, however, assumed that the data being filtered are two linearly indepen-
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dent LISA data streams, called Michelson variables, which measure the differential changes

of length in LISA’s three arms. While these early works were instrumental in deriving useful

lower-limits on the parameter errors of high signal-to-noise ratio sources, the attainability of

these limits is unclear because the Michelson variables will suffer from the presence of excess

noise arising from the laser frequency fluctuations and optical bench motion. The first noise

source alone is sufficient to ruin LISA’s characteristic strain sensitivity by several orders of

magnitude. Fortunately, this critical problem has been addressed by the introduction of the

TDI variables that were addressed in the previous chapter.

In this chapter, like Takahashi and Seto, the parameter estimation accuracy of low-mass

compact binaries that are not necessarily monochromatic are considered. But unlike that

work, the accuracy limits here are based on TDI variables and do not use the long-wavelength

approximation. An in depth study of the role that the chirp-parameter, which is tantamount

to a monotonic increase in the inspiral frequency, has in affecting the accuracies of all signal

parameters is discussed. The effects of the Doppler-phase modulation is also studied to the

same end. The study shows in what regions of the parameter space the effects of searching

for the chirp parameter or the effect of Doppler-phase modulation are not negligible. This

can be useful in simplifying prototypical studies for those sources for which these effects are

small. On the other hand, parameter regions where a search for the chirp in a signal can hurt

the accuracy of the other parameters estimates are identified. Moreover, it is demonstrated

that the sensitivity sky-pattern of a network of TDI variables is very different from that of a

network of Michelson variables. A similar difference exists in parameter accuracies achievable

by these two types of networks. Since any realistic search will be conducted in a network of

the former type, inferences based on a network of the latter type will be off.

72



10
−4

10
−3

10
−2

10
−1

10
−44

10
−42

10
−40

10
−38

10
−36

10
−34

f (Hz)

P
S

D

First Gen.
Second Gen.

Figure 5.1: Plots of the first and second generation noise power-spectral densities (in units
of Hz−1).

5.1 Estimating signal parameters

In estimating the parameters of a signal, an observer has to confront the inherently noisy

nature of the detector or receiver, which introduces a degree of randomness in the parameter

measurements. Thus, an ensemble of multiple copies of the detector will return a distribution

of parameter values that is affected by the characteristics of the detector noise. The spread

in the distribution indicates the noise-limited accuracy of the detector.

Before continuing it is important to note that even in the absence of instrumental noise,

a typical detector has physical limits on its measurement accuracy. In this context, there

are two important time-scales that affect LISA’s observations: The first arises from LISA’s

orbital baseline, the mean light-travel time for which is close to 1000s. Thus, the frequency
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of a wave with wavelength equal to this distance is about 1mHz. The other scale arises from

LISA’s 5 million-km arm-length, which corresponds to a light-travel time of 16.67s. Thus,

waves with frequencies that are odd-integral multiples of 0.03Hz will drive the two craft at

the ends of an arm out of phase by 180 degrees. This makes LISA’s sensitivity oscillatory at

the higher end of its band (see Eqs. (5.1) and Fig. 5.1.)

To ascertain how large the noise-limited errors will be in the parameter values, the

parameter values themselves are taken to be the maximum likelihood estimates (MLEs).

Owing to noise, the MLEs, ϑ̂, can deviate from the true values of the signal parameters

and can influence the determination of other parameters. The magnitude of these deviations

and influences can be quantified by the elements of the variance-covariance matrix, γmn =

{ϑ̂m, ϑ̂n} [25].

A relation between the γmn and the signal is available through the Cramer-Rao inequality,

which dictates that

‖ γ ‖ ≥ ‖ Γ ‖−1 , (5.1)

where Γ is the Fisher information matrix [13]:

Γmn =
2∑

A=1

〈
∂mhA(ϑ), ∂nh

A(ϑ)
〉

(A)

≡
2∑

A=1

2

PA(f)

∫ T

0

[
∂mhA(t; ϑ)

] [
∂nh

A(t; ϑ)
]
dt . (5.2)

In this chapter, the values of Γmn for signals from low-mass compact binaries in LISA data

are determined. Therefore, Γ−1/2
mm gives the lower bound on ∆ϑm (which is the expected

random error in the MLE of ϑm). The two are equal in the limit of large SNR.
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Since the amplitude and the initial phase are extrinsic parameters, one can analytically

maximize the likelihood ratio with respect to them [49]. Here, it is assumed that this has

been done. In such a case, the Fisher information matrix is six-dimensional. The errors

in the phase and the amplitude can be derived in terms of the errors in the remaining six

parameters as demonstrated, e.g., in Ref. [80]. This is the method used to compute the error

in H. One can similarly infer the error in δ.

The errors in the sky-position angles will be presented in terms of the error in the mea-

surement of the sky-position solid angle, defined as:

∆ΩS = 2π
(
∆ϑ5∆ϑ6 − 〈∆ϑ5∆ϑ6〉

)
. (5.3)

The error in the measurement of the source-orientation solid angle similarly defined:

∆ΩL = 2π
(
∆ϑ3∆ϑ4 − 〈∆ϑ3∆ϑ4〉

)
, (5.4)

where the subscript L denotes the orbital angular momentum of the binary.

5.1.1 Scaling of parameter errors with SNR

Although the expressions above can be used to compute the error estimates for any parameter

values, the results for specific values of some of these parameters are illustrated: Unless

specified otherwise, an integration time of one year, an emission frequency of ν = 3 mHz,

and source orientation angles ψ = π/3 and ι = π/4 are used. The emission frequency is

chosen to be large enough so that the Doppler-phase modulations have a significant effect.

The source orientation is chosen somewhat arbitrarily, except to ensure that the signal is

not linearly polarized.
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All the parameter estimates studied below are obtained by normalizing the estimates

given in Eq. (5.2) by the network sensitivity,
[∑2

A=1〈hA, hA〉(A)

]−1
. Thus, the parameter-

estimate values shown in the plots here are for a signal with an SNR of 1. To get an estimate

for an arbitrary SNR, one simply multiplies the value shown in the plots by the SNR scale

given in Table 5.1.

Table 5.1: The table lists how the errors in different parameters scale with the SNR. Since
all the error plots are given for an SNR of unity, to assess the error for any other SNR one
simply needs to multiply the plot value with the scale read from this table.

∆ΩS ∆ΩL ∆H/H T∆ν T 2∆ν̇
SNR scale SNR−2 SNR−2 SNR−1 SNR−1 SNR−1

An alternative way of understanding the parameter estimate normalization is through

the Fisher information matrix. The idea here is to first divide the Fisher information matrix

by the network template norm,
∑2

A=1〈hA, hA〉(A), as follows:

Γ̂mn =
Γmn∑2

A=1〈hA, hA〉(A)

. (5.5)

One then obtains the normalized error estimates from the covariance matrix derived by

inverting Γ̂mn.

5.2 Doppler-phase modulation

When a template does not track the Doppler-phase modulation of a signal, over time it gets

increasingly phase-incoherent relative to the latter. We quantify the degree of coherence

between the two by the template mismatch:
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m(ϑ, ϑ′) =

∑2
A=1〈hA(ϑ), hA(ϑ′)〉(A)√∑2

B=1〈hB(ϑ), hB(ϑ)〉(B)
∑2

C=1〈hC(ϑ′), hC(ϑ′)〉(C)

, (5.6)

where the value of the “template parameter” ϑ′ is, in general, different from that of the

“signal parameter” ϑ. This quantity is inherantly different from the fitting factor. The fitting

factor is a measure of the fraction loss in SNR that occurs when searching for a signal with

templates from different regions of parameter space. With the fitting factor you maximize

the quantity in eq. 5.6 over all the search parameter space. This allows for the possibility for

a trigger to occur in a completly different region of parameter space than where the signal

resides. The fitting factor is used understand how difficult it is for a signal to go undetected.

In a heirachical search, once a detection has been made you then need to recover the source

parameters. This will require laying a finer template bank in the region of parameter space

that generated the original trigger. The template mismatch is a measure of the fraction

drop in SNR that occurs when you try and dig out the actual source parameters with an

imperfect template. The plot of the above function, with hA(ϑ′) as the template without

Doppler shifting and hA(ϑ) as the signal with that shifting accounted for, is given in Fig. 5.2.

As can be inferred from that figure, when the Doppler-phase modulation is not accounted for

in the search templates, the SNR suffers an appreciable drop across the entire LISA band. It

also exhibits large oscillations with a period that depends on LISA’s orbital speed and that

decreases linearly with increasing source frequency, as is characteristic of Doppler frequency

shifting. It is important to note the locations of the nodes in the plot: The first minimum is

at approximately f =1/2L, which occurs when the phases of a gravitational wave impinging

along an arm are different by 180◦ at the two craft at the two ends of that arm.

In conclusion, since the effect of discounting Doppler-phase modulation is so marked on
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Figure 5.2: This is a plot of the template mismatch between two similar templates, one with
the Doppler-phase modulation included and the other without it.

the SNR at any LISA frequency of interest, one must account for its effect on parameter

estimation throughout the LISA band.

5.3 Effect of source frequency evolution

For binary compact object that are spiraling in fast enough, LISA will be able to measure

their chirp mass and luminosity distance. Expression (4.18) shows that the amplitude,

H(ω), of a signal from such an object depends jointly on r and Mc. However, neither

of these parameters affects any other part of a monochromatic (or ν̇) signal, as given in

Eq. (4.26). Thus, one can not separately estimate either of them purely from the amplitude.

Nevertheless, if a signal has an appreciable amount of inspiral or frequency evolution, defined

in Eq. (4.30), then the measurement of ν̇, along with H(ω), determines both the chirp mass

and the source distance.

In order to ascertain the individual masses of the binary, additional information is nec-

essary. Traditional astronomical methods using optical or radio measurements can be used
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to help identify the total mass of the binary system. However for many unknown sources

or optically invisible sources this is not an option. In some cases where the binary orbit is

noticeably eccentric, the accurate tracking of the emission frequency can provide information

on the total mass of the system. This datum, together with the chirp mass, can be used to

infer the individual masses of the system [15].
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Figure 5.3: Template mismatches of low-mass compact binaries with a range of chirp masses
are plotted as functions of frequency. Here the template mismatch is between two template
families, one with a physical set of eight parameter values and another with the chirp (ϑ0)
set to zero, artificially, for all source frequencies. For the above plots, the sources are located
on the ecliptic, with θ = π/2, φ = π/2, and their orientation is ι = π/4, ψ = π/3. As a
reference, an equal-mass binary, with m1 = m2 ≡ 0.35 M¯ has Mc = 0.3 M¯. Template
mismatches for equal-mass binaries with m =1,2,3,...6 M¯ can also be read from here.

Before analyzing the quantitative effects of a chirping waveform on parameter estimation,

the role that a non-negligible ν̇ plays in searching for a signal is briefly studied. Specifically,

the template mismatch defined in Eq. (5.6) to determine the fractional loss in the SNR

while searching for a chirping source with monochromatic (i.e., ν̇ = 0) templates is used.

When subtracted from unity, the above function measures the fractional drop in the SNR

owing to a parameter mismatch of ∆ϑ ≡ ϑ−ϑ′. In Fig. 5.3, m(ϑ,ϑ′) with ∆ϑm = 0, for all
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m 6= 0 is plotted; the “template parameter”, ϑ′ 0, is set to zero, while the “signal parameter”,

ϑ0, is determined by Eq. (4.30) for any given emission frequency and chirp mass. For any

given chirp mass, note how rapidly the SNR drops as a function of frequency. Also, since

at any given frequency the chirping causes a smaller mismatch between the two template

families for a smaller chirp mass, the SNR drop occurs at a higher frequency for a smaller

chirp mass. Just like Fig. 5.2, this template mismatch too has oscillatory features. However,

owing to the polynomial frequency behavior of ν̇, the oscillations here do not exhibit the

linear decrease in the node-spacing found in Fig. 5.2.

Now the role of ν̇ in the estimation of the signal parameters is examined. As shown

in Sec. 5.1, the expansion of the template parameter space in order to include another

parameter affects the parameter estimation through the Fisher information matrix, which is

a different construct than the template mismatch. Once a detection has been made using the

most appropriate template, the error values presented here provide the standard deviation

that should be expected for an ensemble of signal measurements made by LISA. However,

one still needs to establish for what ranges of ω and Mc it is possible to measure a non-

vanishing chirp in a signal. Outside these ranges, including ω̇ in ones template-parameter

space can result in worse estimates for other parameters. A smaller parameter volume for

estimating parameters is also desirable because it leads to a lesser computational burden:

This is more so since the problem of detection in the presence of LISA’s source confusion

noise is intricately linked with the problem of parameter estimation.

Figure 5.4 shows that for binaries with Mc ' 5.3 M¯, the error in the estimation of its

chirp is at least as large as the value of the chirp itself (for an SNR of 10) for ν <∼ 2.5 mHz. As

shown in Fig. 5.5, this is very close to the frequency where the inclusion of the chirp starts
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Figure 5.4: These plots illustrate the values (in number of cycles) of the chirp parameter for
two values of the chirp mass (Mc = 0.3M¯ and 5.3M¯), along with the errors in determining
the chirp and frequency for an SNR of 10. All plots are for an observation period of T =
1 year. Note how for the larger chirp mass the error in determining the chirp remains
comparable to the value of the chirp itself up to about 1.5mHz, before improving at higher
frequencies.

hurting the estimation of the frequency. On its own merit, this would argue for the dropping

of the ν̇ parameter from the search templates (i.e., setting ϑ0 = 0) for Mc
>∼ 5.3 M¯ and

ν <∼ 2.5 mHz. However, the template mismatch plot shows that doing so can vastly reduce

the probability for detecting the correct signals with ν >∼ 1 mHz. Therefore a region in the

parameter space where entertaining the prospects of a proper detection requires taking a

beating in estimating the source parameters has been identified. This adds an additional

layer of challenge in the quest for cleaning what is deemed as the resolvable part of the

confusion noise spectrum.
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Figure 5.5: These figures show how the errors in the different signal parameters behave as
a function of the source frequency for the following four cases (a) with no Doppler-phase
modulation and no chirp, (b) with chirp only, but no Doppler-phase modulation, (c) with
Doppler-phase modulation, but no chirp, and (d) with both Doppler-phase modulation and
chirp included. The sky-position assumed is: θ = π/2, φ = π/2; also, ι = π/4, ψ = π/3.

5.4 Frequency Dependence of parameter errors

Imagine a one-parameter family of sources, which have everything else identical, except

for the emission frequency, ν. The parameter-estimation errors for such a family are not

invariant across LISA’s bandwidth. This is because both the Doppler-frequency shifting and

the frequency evolution increase with ν. Additionally, the sensitivity of LISA itself varies
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across the band, as shown in Fig. 5.6. For nearly monochromatic signals, the latter effect

gets essentially factored away when considering SNR-normalized estimates. Figure 5.5 shows

the frequency dependence of the parameter errors, normalized for an SNR of unity, for four

different cases: Case (a) depicts these errors when a signal has no Doppler-phase modulation,

and no frequency evolution (where the latter is unphysical). Case (b) presents the same when

there is frequency evolution natural to the binary, but no Doppler-phase modulation (such

as if LISA were at the SSB). Case (c) includes the effect of Doppler phase modulation but

has the frequency evolution (artificially) turned off. Finally, plot (d) has effects from both

the Doppler phase modulation and the frequency evolution.

It is interesting to note that in Fig. 5.5a the error in the estimate of each of the pa-

rameters is essentially independent of the emission frequency. The primary contribution to

the frequency dependence of the Fisher information matrix in Eq. (5.2) arises from LISA’s

own sensitivity reflected in its noise PSD. The elements of this matrix depend on PA(f),

which is the same for both A = 1, 2. However, when the parameter errors are obtained by

scaling this matrix by the template norm, as described in Eq. (5.5), the factor of PA(f) for

near-monochromatic signals gets canceled away, thus rendering the plots in Fig. 5.5 mostly

flat.

Next is to consider the effect of Doppler-phase modulation on the parameter estimation

accuracy. Comparing Figs. 5.5a and 5.5c shows that the errors in all parameters are mostly

unaffected except for the error in sky-position. That error actually worsens with frequency

in the 0.1-1 mHz band, before rapidly improving at higher frequencies. This is because

at wavelengths longer than 1 AU, the Doppler-phase modulation acts like noise on the

sky-position dependent σA
i term in the phase of the signal in Eq. (4.35), thus, affecting
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Figure 5.6: These are plots for the sensitivity of LISA as a function of the frequency (in Hz)
for the first and second generation TDIs, respectively.

sky-position estimation. On the other hand, at high frequencies, it does a better job at

resolving a binary’s direction than do the beam-pattern-function induced modulations of the

amplitude and the phase.

The effect of the chirp can be understood by comparing Figs. 5.5c and 5.5d (or, al-

ternatively, Figs. 5.5a and 5.5b): It worsens the estimation of the amplitude and source

orientation at low frequencies, i.e., for ν <∼ 1.5 mHz. It also reduces the accuracy of its own

estimate and that of the source frequency at high frequencies, i.e., for ν >∼ 1.5 mHz. Here,

one may wonder why at frequencies below 1.5 mHz, the chirp’s inclusion ruins the determi-
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nation of the source orientation, but not the frequency. The answer is that during the course

of a year one integrates through a very large number of cycles of a signal, which averages out

the noise in the estimation of the frequency arising from the chirp. The same would be true

about the orientation if one were to integrate for a large number of LISA orbits (or years).

Interestingly, at frequencies higher than 2 mHz, while the chirp leaves the estimation of the

source orientation unaffected, it hurts the estimation of the source frequency. This is because

starting at around a milli-Hertz, the chirp acts as a source of noise in the determination of

the frequency.

In summary, the general behavior of the SNR normalized parameter-estimation errors as

functions of ν can be understood as follows. Primarily, there are two competing parts of the

signal that provide information about the source: The amplitude modulation and the phase

modulation. The amplitude is modulated differently throughout the course of a year depend-

ing on the source location and orientation. The amplitude modulations provide information

about these two source parameters in a manner that the SNR-normalized error in them

remains invariant across LISA’s band (as can be inferred from Fig. 5.5 a). Whereas track-

ing the phase provides information about the source location, source frequency, frequency

evolution and, hence, the chirp mass. The main difference between the two modulations

is that the phase modulation is highly dependent on the emission frequency of the source,

whereas amplitude modulation is not. Since the amplitude modulation is less sensitive to

the emission frequency, its contribution to any parameter estimate is relatively unchanged

over LISA’s band. Contrastingly, phase modulation provides less information at low emis-

sion frequencies. This is due to the relatively fewer cycles one obtains in a given observation

time for low frequencies compared to higher ones. For the frequency range that LISA is
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projected to observe, this translates into roughly a factor of 103 less cycles that would be

obtained for the smallest observable frequencies with respect to the largest ones. However,

as the frequency increases the contribution from the phase modulation eventually surpasses

that due to the amplitude modulations.

5.4.1 Excluding frequency evolution from the templates

The preceding discussion shows that at any given LISA frequency searching for the frequency

evolution of a binary affects the determination of one or the other parameter, except the sky

position. For a source with an initial frequency, ν >∼ 1.5 mHz, its inspiral hurts the error in

the estimation of ν by a factor of over 3.5 relative to that of sources with ν <∼ 1 mHz. It has

been verified that increasing the integration time to 2 years reduces this relative error factor

to about 2, confirming what is shown in Ref. [67]. This reduction may be insufficient for the

resolution of the galactic binary confusion noise. This makes a case for a mission lifetime

that is longer than 2 years. Otherwise, the only other option available for maintaining the

parameter accuracies is to exclude the chirp parameter from the search templates, since

doing so improves the SNR-normalized parameter estimates. This, however, has different

consequences for the parameter accuracies of binaries with different chirp masses.

The template mismatch plots in Fig. 5.3 show that for the lowest astrophysically inter-

esting chirp mass, Mc ' 0.3M¯, such an exclusion has little effect on the SNR until about 4

mHz, which happens to be just below the high-frequency-end of the confusion noise arising

from extreme mass-ratio inspiral (EMRI) sources. The effect on the estimates of the other

parameters is a systematic bias by an amount that depends linearly on T 2ν̇ [81], which is
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about 0.1 (cycles) for T = 1year and at ν = 4 mHz. While this introduces a negligible bias

in the estimates of all parameters, it has the advantage of reducing the level of the random

estimation errors to the same level as that shown in Fig. 5.5a. At frequencies as high as even

6 mHz, the SNR drop due to such an exclusion would be more than 30%, thus, jeopardizing

both the prospects of an accurate detection and the adequate parameter resolution required

for cleaning the WD-WD confusion noise.

On the other hand, note that for a binary with Mc ≥ 5.3M¯, such an exclusion causes

the same fractional drop in the SNR at frequencies as low as 1.5 mHz, which is where the

parameter estimates start getting affected (see Fig. 5.5b or 5.5d). Thus, for binaries with

Mc ≥ 5.3M¯, turning off the chirp parameter in the search templates is unlikely to improve

the parameter estimation for ν ≥ 1.5 mHz. Among the sources most affected from this

“chirp search” problem are galactic low-mass binaries containing a black hole.

5.5 Sky-position dependence of parameter errors

In this section, the behavior of the parameter errors as functions of the direction to a bi-

nary is addressed. Illustrated below is the sky-position dependence of the SNR-normalized

parameter errors for the same source polarization state and frequency as the one chosen in

Sec. 5.4 for the frequency plots in Fig. 5.5. The source frequency choice, viz., ν = 3 mHz

is interesting for multiple reasons: As observed above, it is close to the high-frequency-end

of the unresolvable WD-WD confusion noise. Figure 5.5d shows that it is also in the re-

gion of transition in the behavior of the parameter errors as functions of frequency. All the

same, it is not too small for the Doppler-phase modulation to have a negligible effect on the
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parameter accuracies.

When studying these errors as functions of frequency in Fig. 5.5, the sky position of

the source remains fixed. For this reason, while computing the SNR-normalized errors, the

possibility that the SNR may vary with the sky position was not a concern. This possibility

is addressed below. The dependence of the SNR on the polarization state can be studied

similarly.

5.5.1 Sky-position dependence of the SNR

The SNR normalization performed on the Fisher information matrix in Eq. 5.5 is useful in

that the parameter errors computed from such a matrix can be easily scaled for a signal of

any SNR using the scaling factors given in Table 5.1. In this context, it is important to note

that the SNR of a standard candle is not uniform across the sky owing to the non-uniform

sensitivity of LISA to different sky positions. This quantity is plotted for four different cases

in Figs. 5.7 and 5.8, where the latter set is the 3D rendition of the former set. These plots,

called “sky plots”, are normalized so that the maximum value attained in each case is unity.

These four cases are identical to those considered for studying the frequency dependence of

parameter errors in Figs. 5.5. As in that study, here too Fig. 5.7a (or, equivalently, Fig.

5.8a) is for an artificial signal, with ν̇ set to zero), when compared with Fig. 5.7b, it allows

one to graphically assess how useful or detrimental the presence of frequency evolution is in

detecting a signal. Similarly for Fig. 5.7c, when compared with Fig. 5.7d. Note that as per

the definitions of cases (a) and (b), Figs. 5.7a and 5.7b have the Doppler-phase modulation

turned off.
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Figure 5.7: These are plots of the template-norm-squared for the same four cases of LISA
motion and source frequency evolution considered in Fig. 5.5. The plot for each case is
normalized to have a maximum value of unity. Both θ and φ are given in radians, with the
origin, (0, 0), in the bottom left corner of each plot. Note that this is the first of a series
of colored sky-plots; gresyscale prints of these plots can give a misleading impression of the
color values.

5.5.2 Explaining the sky-position dependence

Given that LISA’s orbital motion is confined to a nearly circular orbit on the ecliptic, one

may expect the SNR plots to be axisymmetric. This is indeed the case for the network

comprising the two Michelson variables, as can be seen in Fig. 5.9, where the focus is limited

to their geometric sensitivity and momentarily ignore the fact that they will be severely
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Figure 5.8: Spherical renditions of the template-norm-squared plots shown in Fig. 5.7.

limited by the laser frequency-fluctuation noise. Figures 5.9a and 5.9b reveal that although

the SNR for neither of the Michelson variables is axisymmetric, their quadrature combination

is so. For comparison, the analogous plots for the Ā and Ē TDI variables in Figs. 5.10 are

presented. All these plots are normalized relative to the maximum value attained among the

template norms of the individual Michelson and Ā-Ē variables.

Interestingly, however, the SNRs for the Ā and Ē TDI variables, plotted in Fig. 5.10,
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are more dumbbell-shaped than axisymmetric, where the pattern depends on the initial

orientation of LISA. Also, since there is a slight difference between the overall sensitivities

of the two variables, their quadrature combination is more of an inflated version of the Ā

variable. As one would expect, it also resembles well the SNR of Fig. 5.8a.

Figure 5.11 illustrates the sensitivity of a single arm to all sky positions. What is evident

from this figure is its striking similarity to the Ā TDI data combination. The features of

this plot are well understood geometrically. For a single arm, spinning and orbiting the

SSB, there exists a periodicity of π radians under axial rotations. However, this figure shows

that there are two distinct and orthogonal directions, and their antipodes, that stand out.

These locations correspond to the global maxima and minima in the sensitivity of this arm

to impinging gravitational waves. These very same extrema are present in the SNR plots as

well. To understand the origin of these global extrema, the orbital motion of LISA’s centroid

is not as important as the spin of LISA’s individual arms. Therefore, consider how a single

arm spins during the course of a year. Let it begin in an orientation that is parallel to the

ecliptic plane. In this orientation, a low-frequency source that is in a direction perpendicular

to the arm will create the maximum strain in that arm. Conversely, when such a source is in

a direction along the arm, the strain caused in that arm is zero. Let us call these directions 1

and 2, respectively. With the exception of their antipodes, there is no other orbital position

that will attain such extrema in the sensitivity for that particular arm during its orbit. As

the arm rotates out of the ecliptic plane, the sensitivity to direction 1 will begin to degrade.

However, because direction 1 will never be parallel to the same arm, it will never attain

the same minima that direction 2 attained initially and, vice versa. Therefore, the orbital

position where these global extrema are obtained is forever imprinted upon the integrated
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results regardless of the duration of observation.

Figure 5.9: The template-norm-squared for the Michelson variables as functions of sky
position: for Michelson variable I as a function of sky position (left), II. for Michelson
variable II as a function of sky position (center), III. for the network comprising both
Michelson variables (right). All plots are presented for the following source parameters:
{ι = π/4, ψ = π/3, ν = 3 mHz}

Figure 5.10: The template-norm-squared for the Ā and Ē TDI variables as functions of sky
position: I. for the Ā TDI data combination (left), II. for the Ē TDI data combination
as a function of sky position (center), and III. for the network comprising both Ā and
Ē TDI data combinations. All plots are presented for the following source parameters:
{ι = π/4, ψ = π/3, ν = 3 mHz}.

5.5.3 Parameter errors

The parameter errors are plotted as functions of sky position in Figs. 5.12, 5.13, and 5.14 for

the same source polarization state and frequency as described earlier in this section. Note
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Figure 5.11: A single arm’s template-norm-squared. All plots are presented using the fol-
lowing parameters: {ι = π/4, ψ = π/3, ν = 3 mHz}.

that these parameter-error sky plots are presented for the ĀĒT̄ pseudo-detector network.

Altering ν, the polarization state, or the pseudo-detector network will, in general, change

the details found in these plots. However, certain qualitative aspects, discussed below, will

remain unaffected.

While all four cases (i.e., (a)-(d)) are plotted for sky-position and frequency errors in

Figs. 5.12 and 5.13, respectively, only the full case (i.e., case (d)) is plotted for the remaining

parameters in Fig. 5.14. This is because the plot for each case of these remaining parameters

strongly resembles the frequency-error sky plot of the corresponding case in Fig. 5.13.

Indeed, a quick examination of all the error plots reveals that they can be divided into two

sets based on their apparent symmetry: (1) those for the sky-position and (2) those for the

rest of the parameters. The first set displays a strong axisymmetry (i.e., symmetry with

respect to translations along the φ axis) that is missing in the other set. The reason behind

this divide is that the Fisher information matrix and, therefore, the parameter covariance

matrix, is predominantly block diagonal, with two blocks. The first block comprises just the
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sky-position (θ, φ) variance-covariance and the second one comprises the variance-covariance

of the rest of the parameters. The elements outside of these two blocks are not all zeros,

but are much smaller than the elements within the blocks. Consequently, any error in a

parameter in one set influences that in another parameter from the same set much more

strongly than in the other set. This explains why the patterns in each case of the second

set are so similar among all parameters within that set, as is manifest in Fig. 5.14. Also,

the reason why the sky-position error plots are predominantly axisymmetric while the other

ones are not is because while the latter are affected by the beam-pattern functions alone,

the former are affected by them as well as their parameter derivatives. It is worth noting

that the deviation from axisymmetry is still apparent in Figs. 5.12, however, this effect is

significantly reduced with respect to the other parameters.

There is an alternative way of understanding the three “unphysical” cases (i.e., cases

(a)-(c)) studied in Figs. 5.12 and 5.14. Starting with the last of these, case (c), note that

it is identical to the physical case where the chirping is negligible. This is indeed the case

when the chirp mass is as low as 0.3M¯. As seen in Fig. 5.3, for such a case, filtering the

data with chirp-less templates causes negligible SNR loss. Thus, the case (c) plots in these

figures indicate the expected random errors in such a search.

Case (b) resembles the physical case where the Doppler-phase modulation is negligible,

which occurs when the source frequency is below a milli-Hertz (barring the slight ruining

of the sky-position estimates). Since the chirp rate was fixed in this plot, to compensate

for lowering the frequency to below 1 mHz one must increase the chirp mass, which affects

the signal amplitude but not the SNR-normalized error shown here. Thus, case (b) is the

expected error plot for all sources that have frequencies less than about 1 mHz but chirp
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masses commensurately larger than 5.3M¯ (such that M5/3
c ω11/3 = constant). Comparing

the plots for cases (b) and (d) then shows that the SNR-normalized error tends to increase

at low frequencies, more so at the poles than near the ecliptic.

Finally, case (a) represents the physical case where ν < 1 mHz and Mc is very small,

such that both Doppler-phase modulation and source chirping are negligible. (Note that the

sky-position error is almost constant in the LISA band below 1 mHz (cf. Fig. 5.5).) However

as Fig. 5.2 illustrates, this will not occur in the LISA band.

For parameter errors for eccentric sources please see the appendix.
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Figure 5.12: These are plots of the errors associated with determining the sky position
measured in terms of a solid angle spread ∆ΩS. The four plots are for the four cases
described in Fig. 5.5. All plots are made for the following source parameters: {ι = π/4, ψ =
π/3, ν = 3 mHz}.
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Figure 5.13: These are plots of the errors associated with determining the dimensionless
emission frequency parameter T∆ν. The four plots are for the four cases described in Fig.
5.5. All plots are made for the following source parameters: {ι = π/4, ψ = π/3, ν = 3 mHz}.
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Figure 5.14: Plots of the errors associated with the remaining parameters: ∆H/H, T 2∆ν̇,
and ∆ΩL. They all correspond to case (d) described in Fig. 5.5. Both Doppler-phase
modulation and frequency evolution are included here. All plots are made for the following
source parameters: {ι = π/4, ψ = π/3, ν = 3 mHz}.
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Chapter 6

LIGO Instrument Characterization

and Coherent Inspiral Searches

The search for gravitational waves with LIGO is markedly different than that with LISA.

Unlike LISA, LIGO has no guaranteed sources and the predicted event rates are significantly

smaller than those for LISA as a result. The studies presented in this chapter will focus on

searching for binary neutron star (BNS) inspirals. At LIGO’s current sensitivity, population

model studies have suggested the event rates for these systems range from 3−4 − 2.5−1 per

year [92]. The improvements that will come with advanced LIGO [94, 93] increase the overall

sensitivity of the detectors to impinging gravitational waves. The increased sensitivity will

elevate the BSN event rates for advanced LIGO to the range of 2-1300 per year [92, 95, 94].

Considering that these signals last at most a few minutes, it is still possible to have a signal

go undetected within a year’s worth of data. This fact motivates the development of ever

evolving search algorithms as well as monitoring tools so as to maximize the chances of

recovering the first GW signal.

99



6.1 GainMon

6.1.1 What is GainMon?

LIGO utilizes one of the most advanced Nd:YAG laser systems in the world to continuously

search for GW. In order to attain the desired sensitivities for LIGO, a suite of monitoring

tools is necessary and it continues to be improved. All the monitoring tools relay current

information about the state of the detector to control room operators or scientific monitors

(scimons). The ultimate goal of any of these tools is to maintain the highest duty cycle

for the detector. If the detector drops out of what is called ”science mode” then the data

collected at that time is no longer valid data to search for GW. These tools provide operators

and scimons with insights that may allow them proactively prevent future detector related

problems.

GainMon is a monitoring tool that allows operators and scimons to determine if the

laser system drifts away from optimal alignment. Seeing that the optimal alignment is

dynamic depending on environmental conditions, the information provided by GainMon to

control room operators can be used to either maintain the current sensitivity during small

seismic related events or possibly used to slightly increase the detector sensitivity in some

circumstances. GainMon monitors the 4km and 2km Fabry-Perot that comprise the three

LIGO detectors for drifts in the unity gain frequency. These drifts indicate that the laser

alignment has been altered by some mechanism and therefore the operators may need to

adjust the alignment manually to compensate. Ideally, the UGF should remain constant

over time. However, the photodetectors can saturate if the laser drifts to far towards the

center of the optics. As the laser drift towards the center of the optics, a subsequent rise
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in the UGF would occur. The sudden rise in the UGF would indicate to the operator that

the photodetectors may soon become saturated. The manual alignment of the laser at this

point could prevent the detectors from dropping out of science mode. On the other hand if

the laser alignment drifts to far towards the edge of the optics, this would cause an increase

in the backscattered light. GainMon would then register a relative drop in the UGF, which

would indicate to the operator that the lasers need to be recentered on the optics. The

feedback that GainMon provides is in real time as it reports 1 second trends of the current

UGF. This allows operators to make crucial adjustments that aid in maintaining an overall

higher duty cycle.

This tool also serves a secondary function as a backup for SenseMonitor. SenseMonitor

also provides 1 second trends of the detector’s current range sensitivities. If the distance

that is currently available to the detector varies, it would show simultaneously in both

SenseMonitor and GainMon. Considering that both SenseMonitor and GainMon function

in a very similar fashion, if SenseMonitor ceases to function for any period of time due to

some hardware failures then the operators can use GainMon as a secondary monitor for the

detectors current range sensitivity.

6.1.2 How GainMon Works

The UGF is the frequency at which the open loop gain (OLG) function, G(F ), is unity.

Owing to the fact that the OLG function changes linearly with time, determining the OLG

function at the start of a given science run will determine the OLG function and subsequently

the UGF for all later times. The OLG at any later time is directly proportional to the OLG
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at t = 0 which is written as:

G(f, t) = α(t)β(t)G(f, t = 0) (6.1)

where α(t) and β(t) are calibration factors that must be monitored in real time for GainMon

to function effectively. Contrastingly, the open loop gain at any instant of time can also be

written in terms of three response functions as follows:

G(f) = C(f)A(f)D(f) (6.2)

where C(f) is the sensing function, A(f) is the actuation function and D(f) is the digital

filter function. The servo loop for LIGO is depicted in fig. 6.1 and it illustrates the roles of

these three functions. The sensing function monitors the response of LIGO’s optical cavities,

the actuation function monitors the mechanical response of the suspended test masses, and

the digital filter function describes how the digital filters are incorporated into the loop [82].

Each one of these function can vary independently of one another and must be monitored

separately. The evolution of the sensing function is entirely defined by the α(t) calibration

factor and the evolution of the digital filter response is entirely defined by the β(t) calibration

factor as shown in eqs. 6.3 and 6.4.

C(f, t) = α(t)C(f, t = 0) (6.3)

D(f, t) = β(t)D(f, t = 0) (6.4)

GainMon monitors these individual response functions for any changes and then calcu-

lates the OLG in 1 minute intervals. Considering that the interferometer calibrations are

assumed to change in a linear fashion, GainMon interpolates the OLG to the frequency

102



Figure 6.1: The servo loop for the three LIGO detectors [82].

where it is unity and reports this in 1 minute trends. A secondary output by GainMon is the

actual α and β factors. GainMon also reports the amplitude of the injected calibration lines,

which are used to track the interferometers response to possible signals [84]. The output

from GainMon is used to trend the UGF as well as the various calibration factors for LIGO

operators to monitor in the two LIGO control rooms. The trends produced by GainMon

were incorporated into the LIGO Figures of Merit (FOM) at the start of Science Run 5 in

November 2005 and will continue to be used as an effective monitoring tool for all future

science runs.

6.2 LIGO Coherent Search

The ultimate goal of any interferometer detector is to detect the first GW signal. This daunt-

ing task is hindered by the overall sensitivity of the individual detectors used in searching for

these elusive GW signals. The inspiral pipeline [85, 90, 91] uses an algorithm developed to
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identify chirp waveforms [86] in interferometric detectors. Incorporating the coherent code

into the full inspiral search pipeline is the driving force behind the remainder of this chapter.

The coherent search is a multi-detector search algorithm that combines the output from as

many as four interferometers in an effort to obtain a larger sensitivity. The larger sensitivity

increases the likelihood of detecting the first GW signal. The coherent search pipeline for

LIGO was originally developed by Shawn Seader [6] and Sukanta Bose but the completion,

testing and incorporation into the real time LIGO search pipeline was never realized until

recently.

6.2.1 Coherent Search Statistic

The coherent code can currently combine data from up to four different interferometers (ifos)

in a variety of fashions to obtain a single network statistic. The network statistic is derived

in a similar fashion as the network statistic for LISA in section 4.2.2. One main difference

between these two statistics is the normalization constat gA which is now as follows:

gA =
4

3
f

4/3
s(A)

∫ ∞

fs(A)

df

f 7/3Ph(A)(f)
, (6.5)

where fs(A) is the seismic cut-off frequency and Ph(A) is the noise PSD of the Ath detector.

In this instance, the normalization constant is chosen such that

〈SA, SA〉A = 2 (6.6)

as opposed to unity as was the case for LISA. Another main departure from the statistic

developed for LISA is that the beam pattern functions for inspiral signals in the LIGO

band are constant. Admittedly, the constancy of the beam pattern functions simplifies the
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detection problems. However, the signal phase, which will be denoted Ψ(f ; fs, tc, ξ1,2), is

significantly more complex than that which was presented in the earlier chapters. The signal

phase for LIGO is expressed as:

Ψ(f ; fs, tc, ξ1,2) = −2πfs


 f

fs

tc +
3

5
ξ1

(
f

fs

)−5/3

+ ξ2

(
f

fs

)−1

 +

π

4
, (6.7)

where tc is the time that the inspiral will take to coalesce and ξ1,2 are chirp times that are

defined to be:

ξ1 = 34.5

( M
M¯

)−5/3 (
fs

40Hz

)−8/3

sec., (6.8)

ξ1 = 0.0837
(

743

84
+

11µ

M

) (
M¯
µ

)−5/3 (
fs

40Hz

)−2

sec.. (6.9)

The phase at any other detector can be defined by replacing tc with tc + τ(A) where τ(A) is

the relative time delay between detectors. Therefore, the phase at any other detectors can

be written in terms of 6.7 as Ψ(A)(f ; fs, tc, ξ1,2) = Ψ(f ; fs, tc, ξ1,2) − 2πfτ(A). With these

quantities defined as such, the statistic will follow the same outline that was derived for the

LISA case with some minor deviations due to these quantities defined above.

Although the coherent code has the capabilities to combine output from as many as

four detectors, the joint searches with non-LIGO detectors is just now coming to fruition

and to date no coherent study has been completed on these cases. Therefore, the primary

focus of this section will be to outline the search strategies that incorporate only the two

Hanford detectors as well as the Livingston detector. The network statistic for the various

types of networks can be written in terms of the constituent detector’s quadrature phase

values. For the three LIGO detectors, there are a total of three possible ways of combining
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the constituent detectors quadrature phases.

Case 2a would only include the two Hanford detectors. These detectors are co-located,

have identical orientations and share the same noise PSD. As a result, the signal measured

by these two detectors are not statistically independent. Therefore the network statistic is

written as:

Λ2a =
1√
2
| C∗

1 + C∗
2 |=

1√
2

√
ρ2

1 + ρ2
2 + 2(c1;0c2;0 + c1;π/2c2;π/2), (6.10)

where ρi =
√

c2
i;0 + c2

i;π/2. At this point it helps to redefine some parameters. For the purpose

of presentation, the cross term will be defined to be cross= 2(c10c20+c1π/2
c2π/2

) = 2ρ1ρ2cos(φ)

and the ρ2 without any index will imply the sum of the individual ρ2’s. So for this two

detector case, ρ2 = ρ2
1 + ρ2

2.

Case 2b would be the network that incorporates a single Hanford detector and the Liv-

ingston detector. These detectors are physically separated with different orientations and

noise PSD. As a result, these detectors are statistically independent and the network statistic

is then written as:

Λ2b =
√
| C1 | + | C2 | =

√
ρ2

1 + ρ2
2. (6.11)

For this particular case, the coherent statistic Λ is equivalent to the total ρ2 as defined above.

Case 3 would be the network that incorporates all the LIGO detectors. The two Hanford

detectors are co-located and statistically dependant where as the Livingston detector would

be statistically independent. The network statistic can then be written as:

Λ3 =
√
| C∗

1 + C∗
2 | + | C3 | =

√
ρ2

1 + ρ2
2 + ρ2

3 + 2(c1;0c2;0 + c1;π/2c2;π/2), (6.12)
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where index 1 refers to H1, index 2 refers to H2, and index 3 indicates the L1 detector.

6.3 New Functionality and Changes

The end result of the coherent code is to provide as much information about possible signals

as possible. In an effort to achieve this goal, many new additions have been implemented

within the code to provide necessary information or just additional information to make

analysis of triggers more straight forward in the future. All of these functionalities will be

discussed at great length throughout the rest of this chapter. The first necessary functionality

that was incorporated into the coherent code as the ability to track the source location in

geocentric coordinates. Another useful functionality that was incorporated into the coherent

code is the ability to output the quadrature phase values from all detectors that are involved

with a particular trigger. The ability to perform time slides was also built into the coherent

code. This required appropriately tracking the events at the single detector level as well.

Although the conversion from equatorial coordinates to geographical coordinates was not

a difficult change to implement, it does provide a more traditional astronomical measurement

of the source location. The necessary changes were isolated to just coherent inspiral.c.

Tracking the individual detector’s quadrature phase values at the time of a coherent

trigger proved to be a significantly more challenging change to implement. As illustrated in

the previous section, the individual detector’s quadrature phase values are need to construct

the coherent SNR. However, these values can also be used to determine how well the phase

agrees between two participating detectors when trigger has been recorded. As will be

illustrated in the following section, one of the powers of the coherent code is the ability to
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make signal based vetoes on certain parameters that are only available to the coherent code.

The phase difference that occurs between the H1 and H2 detectors in Case 2a and Case

3 is one of the possible veto parameters that has been considered for the coherent search.

Considering that a real event would have phase agreement between two collocated detectors,

the ability to calculate this phase on the fly once you have a series of events is crucial to rule

out noise events or other detector related issues. This change required subsequent changes

in several other files such as coherent inspiral.c, CoherentInspiralFilter.c, LIGOLwXML.c,

LIGOLwXMLInspiralHeaders.h and LIGOMetadataTables.h. The actual tracking of the

phase is performed in CoherentInspiralFilter.c but the output of all triggers generated is

performed in coherent inspiral.c so that needed to be altered as well. The addition of new

fields to the table of events as well as outputting these entries into the xml files required

altering the remaining files listed above.

The incorporation of time slides was the final change that was implemented in the coher-

ent code. Time slides are a particular study whereby the data from one detector gets slide in

time with respect to the data from another detector by some predetermined amount. When

this occurs, any trigger that is found while searching over this ”slide” data can not possibly

be a real trigger and must be associated with a noise event. This in essence allows one to

study how the ”background” behaves in the absence of real events. This is important if one

desires to make vetoes based on different parameters such as the phase agreement between

two detectors. For example, recent searches have indicated that the background is evenly

distributed in phase difference between two detectors but the injected signals are clustered

near small phase differences. This suggests that this study can be used to determine what

value of the phase difference can be used to rule out triggers generated by noise events.
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6.4 Coherent Searches

Before the coherent search can be implemented in the real time searches, there are several

studies that are required to demonstrate the functionality of the coherent search as well as

to illustrate the power of the coherent search over the coincident search methods that are

currently being implemented. The studies that are presented throughout the rest of this

section serve as the determining factor for the Inspiral Working Group’s (IWG) decision

to incorporate the coherent code as the final stage of the inspiral pipeline. The studies

performed were on S3 and S5 data. The S3 study consisted of studying software injections

in the S3 science data, time slides of the S3 science data and then a zero-lag study. The

injection and time slide studies are used as benchmarks to determine parameter tuning

before you implement a real search on the S3 data whereas the zero-lag study is an actual

search over the S3 data that incorporates the parameter tunings determined by the previous

studies. The difference between software and hardware injections is straight forward. The

software injections are performed on raw data after it has been collected by the detectors

whereas the hardware injections are performed by actuating the test masses to replicate an

impinging inspiral signal. The S5 study was very similar to the S3 study in that it looked

at the software injections, time slides and zero-lag studies to see how well the coherent code

performed during the current science run. With all these studies, the individual detector

results will be presented along side the coherent results. The individual results are presented

with the coherent results to serve as a direct comparison to what the current search pipeline

is already capable of achieving.
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6.4.1 Science Run 3

The Science Run 3 (S3) study provided the first measure of how accurately the coherent code

was performing on data collected from all three LIGO detectors. It also furnished the LIGO

Science Collaboration (LSC) with the first benchmarks on phase vetoes whereby possible

triggers could be ruled out if the phase did not agree between the two Hanford detectors.

These crucial first steps provided the foundation for all future studies using the coherent code

and illustrate the necessity to incorporate the coherent code into LIGO’s real time search

pipeline.

S3 Vetoing

When any detector registers a possible event, the candidate event must pass a series of

rigorous tests before the event can be classified as a real event or simply related to some

noise event. At the single detector level, LIGO performs a series of vetoes when a trigger is

registered. For example, when both Hanford detectors are operational any candidate event

must occur in both detectors and the time at which they are registered by the two detectors

must be within a few milliseconds. Any trigger that is does not meet these requirements

are vetoed. Determining these threshold values is one of the remaining challenges that will

always be associated with real time searches for current and future science runs. These

values must be chosen to minimize the false alarm probability so that the detector does not

continually registering false triggers. At the same time, the vetoes must be chosen in such a

way so as to minimize the false dismissal probability as well so that a real event does not go

undetected.
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These studies must be performed separately for each science run considering that the

state of the detectors, such as its sensitivity and noise power spectral densities, vary from

one science run to the next. There are two main studies that are performed to determine how

to apply vetoes, namely time slides and injections. As mentioned above, time slides give a

measure of the noise background for the LIGO detectors. Injection studies involve injecting

known signals into the data or physically inject the signals into the detector by actuating

the test masses. The goal is then to see how well the detector can recover the injected

signals. These two can be used to determine the false alarm and false dismissal probabilities

associated with any given cuts performed. One other useful study is the zero-lag study where

a real search is performed on the data without injections or time slides. In the absence of

real events, this study should mimic the results obtained in the time slide studies. Figure

6.2 illustrates the bare results with no cuts performed. The axis labeled cos(φ) refers to part

of the cross term that was defined below 6.10. This is a measure of the phase agreement

between the two collocated detectors. The axes labeled Log(H1) or Log(H2) refer to the

Log of individual detectors search statistic. The search statistic is comprised of ρ and χ2 as

follows [89]:

S = ρ4/
(
χ2(ρ2 + 250)

)
, (6.13)

where χ is a statistical quantity that measures whether observed results differ substantially

from the expected results [25, 88].

As is evident from fig. 6.2, the injections have a significant separation from the back-

ground triggers. To filter out the background, a paraboloid cut in the H1 − H2 − cos(φ)

space is performed. The veto criteria is as follows:
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Figure 6.2: This figure shows the results of the S3 studies that were performed using time
slides, zero-lag and injections before any vetoes were performed. The second plot is the same
results from the first plot just projected onto the H1-H2 search statistic plane.

0 > δcos(φ)(cos(φ)−∆cos(φ))
2+ δ1 (cos(ϑ)SH1 − sin(ϑ)SH2 −∆H2)

2 (6.14)

− δ2 (cos(ϑ)SH2 + sin(ϑ)SH1 −∆H1), (6.15)

where δcos(φ) determines how fast the paraboloid rises in the cos(φ) direction, δ1 and δ2

determine how fast the paraboloid rises in the H1-H2 plane The parameters ∆cos(φ), ∆H1,

and ∆H2 determine where the apex of the paraboloid is set and ϑ determines the inclination

of the paraboloid in the H1-H2 plane. Although the general expression for the veto criterion

will be valid for each science run, the values for the variables chosen may change from

one run to the next. For S3, the values were chosen such that all the background triggers

were removed without removing a single injection. This amounted to the following values,

δcos(φ)=100, δ1=1, δ2=0.3, ϑ=0.661 radians, and ∆cos(φ)=1. The choice for the two other

displacements were determined by a simple rotation in the H1-H2 plane defined as follows:

∆H1 = H10 cos(−ϑ) + H20 sin(−ϑ) (6.16)
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∆H2 = −H10 sin(−ϑ) + H20 cos(−ϑ), (6.17)

where H10=-0.4 and H20=-2. Figure 6.3 illustrates the veto criterion without removing any

triggers. The shaded region outlines the region of parameter space where all triggers must

remain if they are to pass the veto criterion. Figure 6.4 just illustrates the effectiveness of

the cut where all background triggers have been vetoed using the criterion defined in eq.

6.14 above. Although there are not many low SNR injection triggers, the choice for the apex

of the paraboloid is such that it will still allow for the possibility of significantly smaller SNR

triggers to pass the veto stage. This is important so that the false dismissal probability is

still minimized and also provides the ability to detect actual signals from sources that are

significantly further away.
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Figure 6.3: This is the same plot as fig. 6.2 just with the veto paraboloid in place but before
the veto criterion has been implemented. Any triggers in the shaded region will be kept and
those outside will be vetoed. The second plot is simply a projection of the first plot onto
H1-H2 search statistic plane.
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Figure 6.4: This figure shows the results of the S3 studies that were performed using time
slides, zero-lag and injections after the vetoing has been performed. Notice how only the
injection blue cross remain. Again, the second plot is the same results from the first plot
just projected onto the H1-H2 search statistic plane.

S3 Search Accuracy

With the vetoing in place, the next logical step is to examine how accurately the searches

are recovering the injected triggers. Just as the studies performed with LISA illustrated, the

accuracy with which a source parameter can be identified instills confidence in the search

algorithms that are being used. This process of identifying parameter accuracies is the final

stage before any new search algorithm can be accepted into the search pipeline by the IWG.

Another large benefit of this step is that it has and will continue to help identify possible bugs

in the search pipeline. In this subsection, the parameter accuracies that will be presented

should agree with those obtained in the earlier stages of the pipeline and therefore will be

presented along with those results for direct comparison.

The first parameter that will be examined is the timing accuracy. This is a measure of

how well the coherent search recovers the injected signal’s end time. Any large outliers in

the timing accuracy would be cause for concern and warrant immediate investigation. This
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is important when using matched filtering because a small offset in the timing can cause the

entire phase of the template to be offset with that of the injected signal. Any offset in a

signal phase with a template would substantially reduce the overall SNR of the recovered

trigger, which is why it is so important to accurate recover the signal end time. The timing

accuracy is measured in units of seconds and can be written as a simple difference as seen

below:

∆t = tinject − trecovered. (6.18)

Figure 6.5 are histograms of the timing accuracies for the coherent code as well as the

individual detectors that participated in the coherent trigger.
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Figure 6.5: These are histograms of the timing accuracy returned from the coherent code as
well as the associated triggers from the individual detectors. The histogram on the left is the
results from the coherent code, the histogram in the center is the results from H1 detector
and the histogram on the right is that for H2 detector.

The overall SNR of recovered triggers can be affected in a variety of ways. If the injected

signal is very distant and nearing the horizon distance, which is a measure of how far the

detector is capable of seeing, the SNR will be significantly lower than a similar signal that is

much closer. Another mechanism that can contribute to a drop in SNR was briefly mentioned

earlier, if the template used for the matched filtering does not exactly match the actual
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injected signal, the overall SNR will suffer as well. Therefore, the larger the recovered SNR

the better agreement the template should have with the injected signal. This is what is

illustrated in fig. 6.6. The timing accuracy is plotted against the SNR of the trigger. As

the SNR of the injected signals increases, the code is able to determine the start time of the

signal more accurately. This effect is even more pronounced for other search parameters.
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Figure 6.6: These plots illustrate how the code returns increasing more accurate values as
the SNR of the associated triggers increases. The plot on the left illustrates the results from
just the coherent code whereas the plot on the right has the results from both the H1 and
H2 detectors.

The next parameter of interest is the chirp mass. The chirp mass has significant con-

tribution to the signal phase seeing that it determines how fast the frequency of the chirp

signal will evolve. Just as with other parameters, errors in the chirp mass can results in

signals remaining undetected. Figure 6.7 are histograms of the accuracy in which the search

pipeline can recover the chirp mass. The chirp mass accuracy is a unitless quantity defined

to be:

∆Mchp = ∆M =
Minject −Mrecovered

Minject

. (6.19)

The larger SNR triggers should again show increased resolution in the chirp mass parameter
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Figure 6.7: These are histograms of the chirp mass accuracy returned from the coherent
code as well as the associated triggers from the individual detectors. The histogram on the
left is the results from the coherent code, the histogram in the center is the results from H1
detector and the histogram on the right is that for H2 detector.

as is illustrated in fig. 6.8. Currently, the coherent code uses the chirp mass from template

than rang off with the highest SNR from the individual detector when performing the co-

herent search. Therefore, the chirp mass accuracy as a function of SNR should resemble

the largest SNR triggers in the individual detector case as illustrated in fig. 6.8. In some

cases, the chirp mass accuracy is identical to the triggers from H1 and in other cases it is

identical to the triggers in H2. Since a large majority of the time the larger SNR trigger is

also more accurate, the current implementation of the coherent code will as a whole yield

more accurate results for the chirp mass than any single detector search would. Essentially,

the coherent code will more often than not chose the template for its filtering that has the

more accurate chirp mass.

The next parameter that will be considered is the effective distance. The effective dis-

tance is at most equal to the actual injected distance when a detector is optimally oriented

with respect to a given source. However, more often than not it can deviate from the actual

distance when a detector is suboptimally oriented with respect to the source under consider-

ation. The relationship between the actual distance and the effective distance is determined
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Figure 6.8: These plots illustrate how the code returns increasing more accurate values as
the SNR of the associated triggers increases. The plot on the left illustrates the results from
just the coherent code whereas the plot on the right has the results from both the H1 and
H2 detectors.

by the following equation [83]:

Deff =
D√

F 2
+(1 + cos2(ι))2/4 + F 2

x cos2 ι
(6.20)

Determining the effective distance from the detector dependant quantities was first developed

by Duncan Brown. For the individual detector case, the effective distance can be expressed

as [24]:

Deff =

√
4∆tTS

N
ρ−1 = σ/ρ, (6.21)

where ρ is the individual detector SNR, ∆t is the time point spacing, N is the total number

of time points, T is the template norm and S is the detector dependant norm. For the

two detector network comprising both Hanford detectors, the effective distance takes the

following form:

Deff = |σ1 + σ2|/(
√

2ρcoh). (6.22)
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For notational simplicity, D is assumed to be Deff unless otherwise specified. The distance

accuracy is also a unitless quantity defined to be

∆D =
Dinject −Drecovered

Dinject

. (6.23)

Figure 6.9 shows the first major problem with the coherent code. The individual detector

histograms do not show any significant offset and appear to be centered at 0 as they should.

However, the coherent code result does in fact show an offset. This was attributed to the

method in which the coherent code was determining the effective distance. The individual

detector norms were not accounted for properly and this resulted in the systematic offset

that is apparent in the first histogram in fig. 6.9. Figure 6.10 is a side by side comparison

of the results from the new implementation of calculating the effective distance and the pre-

vious incorrect method. What is evident from this figure is the remarkable improvement in

determining the effective distance. Figure 6.11 is the accuracy vs. SNR plot. Again, it is

important to note the improvements in the calculation of the effective distance above the

individual detector case. The individual detector’s sigma values weight each detector’s con-

tribution to the effective distance differently. This results in an overall increased resolution

in effective distance when compared to the individual detector case.

Coherent analysis provides the means to measure source locations provided there are

enough participating detectors. Case 2b or 3 that include at least one Hanford detector and

the Livingston detector will not be sufficient to triangulate a source location. However, a

two detector network can determine the cone angle at which the source is located. This is

illustrated in figure 6.12. Knowing the light travel time between the Hanford and Livingston

detectors (10ms) as well as the time of arrival difference between triggers generated by the
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Figure 6.9: These are histograms of the distance accuracy returned from the original coherent
code as well as the associated triggers from the individual detectors. As illustrated, there
appears to be a significant error associated with the way the coherent code is determining
the effective distance. The histogram on the left is the results from the coherent code, the
histogram in the center is the results from H1 detector and the histogram on the right is
that for H2 detector.
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Figure 6.10: This figure illustrates the difference between the old and new implementation
of the effective distance calculation in the coherent code. The histogram on the left is the
old method and the one on the right is the new corrected method.
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Figure 6.11: These plots illustrate how the code returns increasing more accurate values as
the SNR of the associated triggers increases. The plot on the left illustrates the results from
just the coherent code whereas the plot on the right has the results from both the H1 and
H2 detectors.

two sites, (∆t), the cone angle is simply α = cos−1 (∆t/10ms).

Figure 6.12: This figure illustrates how one can determine the cone angle from the time
delays.

The accuracy in which the time delays can be measured is the limiting factor in this

measurement. The higher stages of the pipeline do a coincidence analysis whereby the

triggers from Hanford are checked for coincident triggers in Livingston data. This can

provide some measurement of the time delay but as is illustrated in fig. 6.13 this method is

very inaccurate when compared to the results obtained using the coherent code.
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Figure 6.13: These plots illustrate one of the more powerful features of the coherent code.
The histogram on the left is the results obtained by the coherent code whereas the histogram
on the right is the results obtained from the single detector coincidence study.

6.4.2 Science Run 5

Science run 5 (S5) has a great many improvements over the past science runs. S5 marks

the first time that LIGO will be actively searching for signals with all three detectors for

an entire year of coincidence data acquisition. This science run also marks the first time

that LIGO has achieved its design sensitivity. Therefore the noise in the data is significantly

lower and as a result the data collected is much cleaner than in previous science runs. In

addition to all the improvements that this science run has over the past science runs, it will

also be the first time that the coherent code will be implemented in the real time searches.

This is possible mainly in part to the results presented for the S3 searches as well as the

preliminary study on the first epoch of S5 data presented in this subsection. The first epoch

of S5 data covers the first 64 days of S5 and all results obtained in the following subsections

reflect the runs that were performed only on this small subset of S5 data.

S5 Vetoing

The S3 study furnished the inspiral group with the first coherent veto that could effectively

eliminate many background triggers without removing a single injected trigger. Although
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this study laid the foundation of the coherent veto, the tuning of the parameters for S5

data is an ongoing process. For each epoch, the veto will be retuned and then applied to

the inspiral search pipeline. However, to date the tuning of the first epoch veto is still a

work in progress. In the S3 data, all the studies presented above were performed on what

is termed ”playground” data. This is 10% of the entire data set that is used for parameter

tuning and adjustments before applying the tuned parameters to the full data set. This is

necessary so that one does not bias the zero-lag studies that could possibly contain actual

signals. However, the time slide and injection studies can be performed on the entire data

set without such a bias being present. In the past, this was not necessary owing to the fact

that the S3 data was very noisy and the playground study supplied a significant number

of triggers to develop reasonable statistical results. The difference in S5 is that the time

slides on just the playground data will not generate enough triggers to provide an accurate

representation of the background. Therefore, the time slide studies are performed on the

entire data set for this very reason. As a result, the study requires significant more time

and will continue to evolve as LIGO continues to collect data for S5 well into 2007. The

time slide study for the first epoch will be completed in the coming months and then a true

coherent veto using the formula defined in eq. 6.14 can be applied for the S5 search.

S5 Search Accuracy

The S5 search is very similar to the S3 search with the exception of the veto parameters

discussed previously. The results presented in this subsection are for the same parameters

presented earlier in the S3 study.

Although this study involves a significantly larger population of triggers, the overall re-
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sults are in very close agreement with those found in the S3 study. This provides significantly

better statistics which in turn instills more confidence in the functionality of the coherent

code. As already mentioned, the increased confidence in the performance of the coherent

code resulted in the recent decision to implement the coherent search as the final stage of

the LIGO’s online search pipeline. Figures 6.14 and 6.15 are the timing accuracy results

for S5. Figures 6.16 and 6.17 are the mass accuracy results for S5. Figures 6.18 and 6.19

are the distance accuracy results for S5 and 6.20 is the time delay accuracy results for S5.

As illustrated in all these aforementioned figures, the coherent search in S5 just as in S3

is in many cases performing better than any single detector study that was performed. As

the search methods improve and the detector sensitivities increases, overall the parameter

resolutions should continue to increase just as they have from S3 to S5.
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Figure 6.14: These are histograms of the timing accuracy returned from the coherent code
as well as the associated triggers from the individual detectors. The histogram on the left
is the results from the coherent code, the histogram in the center is the results from H1
detector and the histogram on the right is that for H2 detector.
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Figure 6.15: These plots illustrate how the code returns increasing more accurate values as
the SNR of the associated triggers increases. The plot on the left illustrates the results from
just the coherent code whereas the plot on the right has the results from both the H1 and
H2 detectors.
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Figure 6.16: These are histograms of the chirp mass accuracy returned from the coherent
code as well as the associated triggers from the individual detectors. The histogram on the
left is the results from the coherent code, the histogram in the center is the results from H1
detector and the histogram on the right is that for H2 detector.
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Figure 6.17: These plots illustrate how the code returns increasing more accurate values as
the SNR of the associated triggers increases. The plot on the left illustrates the results from
just the coherent code whereas the plot on the right has the results from both the H1 and
H2 detectors.
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Figure 6.18: These are histograms of the distance accuracy returned from the coherent code
as well as the associated triggers from the individual detectors. The histogram on the left
is the results from the coherent code, the histogram in the center is the results from H1
detector and the histogram on the right is that for H2 detector.
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Figure 6.19: These plots illustrate how the code returns increasing more accurate values as
the SNR of the associated triggers increases. The plot on the left illustrates the results from
just the coherent code whereas the plot on the right has the results from both the H1 and
H2 detectors.
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Figure 6.20: These plots illustrate one of the more powerful features of the coherent code.
The histogram on the left is the results obtained by the coherent code whereas the histogram
on the right is the results obtained from the single detector coincidence study.
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Chapter 7

Conclusion

The search for gravitational waves can be defined by several stages that have been discussed

throughout this dissertation. The first stage would be to define what a gravitational wave

signal is, how the signal evolves over time and what are the parameters that define the

signal. The second stage would be to devise a method to detect these signals whether it is

using a bar detector, an earth based interferometric detector or space based interferometric

detectors. The third stage would be to ascribe the upper limits on how well a chosen detector

would perform in properly identifying a real signal as well as properly extracting the actual

source parameters. The fourth stage is maintaining an operating gravitational wave detector

so that future searches can be implemented. The final stage is to use the methods developed

in the previous stages to complete real time searches for GW signals.

This dissertation has followed the entire progress of searching for GW signals from the

very basics of gravitational wave physics through the actual real time searches that are

currently being performed. The development of the search statistic for LISA as well as

establishing an upper limit on LISA’s ability to resolve source parameters serves as the

128



foundation for the proposed spaced based mission. What has been demonstrated through-

out chapters 4 and 5 is that the detection and parameter estimation problem are related

in a very complicated manner. Chapter 4 illustrated that searches with LISA can be ac-

complished with a very small template bank, however, these very same searches may not

properly characterize the source accurately. This suggests the need for a hierarchical search

algorithm where a course bank would be initially searched. Once a candidate event has been

discovered, a second search using a significantly finer bank would then have to be performed.

This point was explained in detail in the parameter estimation results presented in chapter 5,

which illustrated the need to use a much finer template bank if one is to accurately identify

source parameters. This is a challenge that LIGO does not face. The fine template banks

that LIGO currently implements allow for the simultaneity of the detection and parameter

estimation process as alluded to in chapter 6. Considering that the signals that will be

available to LISA are long duration signals, the resulting template bank can afford to be

very coarse without the fear of missing out on signals. However it is these same course banks

that can result in misleading information about source parameters if followup searches are

not performed.

It has also been demonstrated that the ability to resolve source parameters in the presence

of the TDI variables as well as other noise contributions is very feasible. With NASA’s current

funding issues, it is studies such as those presented in this dissertation that may serve as

the determining factor as to when LISA will actually fly. The upper limits established here

illustrate that LISA science is achievable and if the opportunity is available, LISA will serve

as a necessary counterpart to the operating Earth based GW detectors.

One of the main uncertainties involving GW detection is the ever evolving event rates for
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the possible source that are available to any given detector. Since the event rates for most of

the sources outlined in chapters 5 and 6 are changing periodically, the ability to detect each

class of GW signal is imperative. The ability to search for as many varieties of signals as

possible will increase the likelihood of eventually detecting a signal whether it is with LIGO

or LISA. Another major benefit of both space based and earth based detectors functioning

is that they provide complimentary information about similar sources, which can yield a

complete picture of the evolution of inspiral signals. This is something that neither a Earth

based or Space based detector can provide on their own.

The current generation of operating GW detectors are just now attaining design sensi-

tivities in part to the software that has continually been refined over the past few years.

Other than the obvious goal of detecting the first GW, the secondary goal of S5 is to collect

a years worth of triple coincident data with all three LIGO detectors. It is new software

tools like GainMon that provide the means to accomplish this task. The increased sensi-

tivity has brought with it increased parameter resolution and a larger number of available

sources, which in turn has increased the chances of detection using LIGO. The studies per-

formed have allowed for the search methods discussed to finally be implemented into real

time searches starting November 2006. The coherent search strategy will be the only search

method currently be implemented that has the ability to identify source locations in addition

to providing enhanced parameter resolution. The S5 science run will be the first time this

search method is utilized and time will bare out its power over single detector searches. The

final acceptance of the coherent code marks the end of the first stages of a GW search and

the beginning of the final stage which will ultimately lead to the first GW detection.
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Appendices
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.1 Parameter Errors for Eccentric Sources

The parameter errors for the sources detailed in the section on eccentric waveforms in chapter

4 are significantly different from those presented in chapter 5. This is attributed to the

additional information gained when incorporating the eccentricity as a parameters as well

as the additional accuracy that comes with using the PN waveforms. As the eccentricity

is increased, the PN waveforms departure from the Newtonian waveforms becomes more

pronounced and therefore the error estimates should deviate from the Newtonian values as

well. The direct comparison of the results presented here and those developed in chapter

5 is not possible. This is because those results presented in chapter 5 accounted for all

the complications that arise when doing LISA data analysis including the Doppler phase as

well as the incorporation of the TDI variables. The results here have been developed using

a toy model that consists of analyzing just the pure monochromatic frequency using the

Michelson variables and that is one reason they have been relegated to the appendix instead

of incorporated directly into chapter 5. Although the direct comparison with the TDI results

presented in chapter 5 can not be made, what will hold is the variation that the errors incur

as you increase the eccentricity. For a more direct comparison of explicit values when there

is no eccentricity, one should compare the results presented here with a similar study using

Newtonian waveforms and the Michelson variables performed by Takahashi and Seto [67].

The code now exists to perform the complete study that incorporates all of the additional

complications mentioned above, which leaves room for future work and publications.

All the figures in this section will be presented in a series of three plots. The first one

on the left will always be the e = 0 case, the middle plot will always be the e = 0.4 case,
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and the far right plot will be the e = 0.6 case unless otherwise specified. Just as illustrated

in fig. 4.6, while all other parameters are held fixed, increasing eccentricity provides an

increase in the overall SNR. As a direct result, parameter accuracies shown improvement

with increasing eccentricity values as presented in fig. 1, 2, 3, 4, 5, and 6. The ability to

measure the eccentricity parameter itself, which is illustrated in fig. 6, is only available once

the eccentricity parameter is turned on. Therefore the left and right plots in fig. 6 are for

the e = 0.4 and e = 0.6 case respectively. The parameters chosen for this study are the same

as those presented in the eccentricity study in chapter 4 namely, m1 = 1M¯, m2 = 10M¯,

f = 1 mHz, ψ = 0, and ι = 3π/10 rads.

Figure 1: Frequency error plots for three different eccentric EBCOs, which have all other
parameters identical, with e = 0, e = 0.4, and e = 0.6 (left to right).

Figure 2: cos ι error plots for three different eccentric EBCOs, which have all other param-
eters identical, with e = 0, e = 0.4, and e = 0.6 (left to right).
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Figure 3: Source location solid angle error plots for three different eccentric EBCOs, which
have all other parameters identical, with e = 0, e = 0.4, and e = 0.6 (left to right).

Figure 4: η error plots for three different eccentric EBCOs, which have all other parameters
identical, with e = 0, e = 0.4, and e = 0.6 (left to right).

Figure 5: Total mass error plots for three different eccentric EBCOs, which have all other
parameters identical, with e = 0, e = 0.4, and e = 0.6 (left to right).

.2 Acronyms and Abbreviations

BBH-Binary black hole
BH-Black holes
BNS-Binary neutron star
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Figure 6: Eccentricity error plots for three different eccentric EBCOs, which have all other
parameters identical, e = 0.4 and e = 0.6 (left to right).

CHP-chirp
EBCO-Eccentric binary compact objects
EM-Electromagnetic
EMRI-Extreme mass-ratio inspiral
FOM-Figures of merit
GW-Gravitational waves
H1-First gravitational wave detector at Hanford site
H2-Second gravitational wave detector at Hanford site
IFO(s)-Interferometer(s)
IWG-Inspiral working group
L1-Only gravitational wave detector at Livingston site
LIGO-Laser Interferometer Gravitational Wave Observatory
LISA-Laser Interferometer Space Antennae
LSC-LIGO science collaboration
LW-Long wavelength approximation
MLE-Maximum likelihood estimates
NS-Neutron stars
OLG-Open loop gain
PN-Post-Newtonian
PSD-Power spectral density
Scimon-Scientific monitor
S(1,2,3,4,5)-Science run (1,2,3,4,5)
SNR-Signal-to-Noise ratio
TDI-Time delay interferometry
TT-Transverse traceless
WD-White dwarfs
UGF-Unity gain frequency
XML-Extensible Markup Language
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