
CLUSTERING, GROUPING, AND PROCESS OVER NETWORKS

By

YONG WANG

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

DECEMBER 2007

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of YONG WANG find it satisfac-

tory and recommend that it be accepted.

Co-Chair

Co-Chair

ii

ACKNOWLEDGEMENT

I would like to begin by thanking Dr. Zhe Dang and Dr. Min Sik Kim, my dissertation advisors. They

have been wonderful advisors, providing me with invaluableadvice and support. Their enthusiasm for

research and their breadth of knowledge always impress me. Their encouragement gives me confidence in

conducting the research presented here. I thank them for thetime and efforts that have been invested into

my research.

I would also like to thank Dr. K. C. Wang for agreeing to be on mycommittee. I thank him for reading

my dissertation and providing me helpful comments. I am fortunate enough to work with him.

Also I would like to thank to the folks in WSU, including Yuanyuan Zhou, Tao Yang, and Linmin

Yang, for helping each other and having fun together.

I would like to thank our graduate secretary Mrs. Ruby Young,for all her help at WSU.

Finally, I would like to thank my family. I am forever indebted to my parents for everything that they

have given me. Their unconditional support and encouragement give me strength to finish this work. I am

very lucky to have such a wonderful family. I dedicate this work to them, and to all the people who love me

and whom I love.

iii

CLUSTERING, GROUPING, AND PROCESS OVER NETWORKS

Abstract

by Yong Wang, Ph.D.
Washington State University

December 2007

Chair: Zhe Dang and Min Sik Kim

During the last few years there has been a rapid development in computer networks, especially wireless

networks which enable mobile applications. Because of the increasing number of devices involved in

network applications, it is necessary to investigate approaches to organize those devices based on their

application requirements and make them perform the given tasks. The essential functionalities of a

computer network is to establish relationships among network nodes, which are called grouping. An initial

form of grouping, called clustering, has been observed by researchers whose research goals are to provide a

network architecture that can be used to improve the networkperformance. In this dissertation, we first

propose a number of clustering techniques including SMC, BAC, DCC, and TC, which, in some cases,

outperform the existing ones.

A more sophisticated form of grouping, in contrast to clustering, is to build relationships among

network nodes based on the nodes’ functionalities. To do this, we first propose a specification language,

called NetSpec, for studying this more general form of grouping. Using NetSpec, users can describe the

desired functionalities of an individual network node, howa subset of nodes, called a group or a bond, are

logically connected between each other, and, finally, how such groups evolve. For a network application

specified in NetSpec, a compiler is described to translate the specification into a program that will run over

a network virtual machine. In the dissertation, we describethe instruction set to support the virtual machine

that runs above a physical network. The instruction set is powerful enough to execute the upper layer

NetSpec specification while it is simple enough to be efficiently implemented by network protocols

running on the under layer physical network. To thread instructions in the instruction set into an execution

of the NetSpec specification, we also describe how to implement a non-deterministic scheduler to address

iv

fairness, synchronization, group communication control,and concurrency control.

Essentially, NetSpec specifies how groups of network nodes evolve. Looking from the angle of each

individual node, such an evolution can be characterize as a thread of atomic transitions, each of which is

local; e.g., involving two network nodes. Inspired by this view, in the last part of this dissertation, we

propose a form of network processes and study, theoretically, its computability and realization on a

physical network.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

ABSTRACT v

LIST OF TABLES xi

LIST OF FIGURES xii

CHAPTER

1. INTRODUCTION 1

2. CLUSTERING FOR NETWORKS 7

2.1 Overview 7

2.2 Related Work 11

2.3 Size-bounded Multi-hop Clustering (SMC) 14

2.3.1 Proposed Clustering Approach 15

2.3.2 Dealing with Message Overhead and Consistency 16

2.3.3 Performance Evaluation 17

2.4 Bandwidth-adaptive Clustering 21

2.4.1 Basic Clustering 21

2.4.2 Bandwidth-adaptive Clustering 24

2.4.3 Performance Evaluation 26

2.5 Dual-clusterhead Clustering 30

2.5.1 DCC-SH .31

2.5.2 DCC-MH .35

2.5.3 Balancing Workload of Clusterheads 39

2.5.4 Performance Evaluation 39

vi

2.6 Typed Clustering (TC) for Mobile Ad Hoc Networks 48

2.6.1 Type-related Logic for Clustering 48

2.6.2 Example Clustering Scenario 49

2.6.3 Clustering For The Example Scenario 51

2.6.4 Maintenance of Clusters 51

2.6.5 Message Overhead 52

2.7 Summary 52

3. SPECIFICATION LANGUAGE (NETSPEC) FOR GROUPING OVER NETWORKS 54

3.1 Overview 54

3.2 Related Work 56

3.3 Illustrated Scenarios 58

3.4 Computation Model 59

3.5 Data Type 59

3.5.1 Primitive Data 59

3.5.2 Constant .. . 60

3.5.3 Class and Object 61

3.6 Set and Bond 64

3.6.1 Set .64

3.6.2 Bond .64

3.6.3 Basic Operations on Set and Bond 66

3.6.4 More Bond Examples 67

3.7 Transitions 67

3.7.1 Helicopter Rescue Application 71

3.7.2 Highway Information Application 73

3.7.3 Pervasive Marketing Application 74

3.8 Summary 75

vii

4. VIRTUAL MACHINE OVER NETWORKS AND ITS INSTRUCTION SET 76

4.1 Overview 76

4.2 Related Work 77

4.3 Assumptions 79

4.4 Definitions 80

4.5 Illustrated Scenarios 80

4.6 Instruction Sequence Program Layout 81

4.7 Instruction Set 83

4.7.1 test .. 83

4.7.2 findlocknode 83

4.7.3 findlockbond 84

4.7.4 findinternalnode 84

4.7.5 numnode .. 85

4.7.6 bond .85

4.7.7 leave .. 85

4.7.8 switch .. . 85

4.7.9 join .. 85

4.7.10 change .. . 86

4.7.11 unlock 86

4.7.12 checkbondintegrity 86

4.7.13 wait .. . 86

4.7.14 send .. . 86

4.7.15 jump .. 86

4.7.16 nondeterministicjump 87

4.8 Code Translation 87

4.8.1 Decide The Transition Starter 88

4.8.2 Find and Lock Involved Objects 89

4.8.3 Unlock Entities 90

viii

4.8.4 Execution of Bond Operation Instructions 90

4.8.5 Check Bond Integrity 92

4.9 Translated Transition Code Blocks For Helicopter Rescue System 92

4.10 Execution of Transition Code Blocks 97

4.10.1 Computation Model 97

4.10.2 Deciding Starter of Each Transition Code Block Execution 98

4.10.3 Scheduling Transition Code Block Execution 98

4.10.4 Execution of Instructions Inside A Transition Code Block 99

4.10.5 Local Parallelism And Non-deterministic Jump 100

4.11 Implementation Issues of the Network Virtual Machine 101

4.11.1 Initialization of Object Attributes 101

4.11.2 Locating and Locking Entities 101

4.11.3 Leader Election 102

4.11.4 Maintenance of Bonds 103

4.11.5 Synchronization among Transition Code Block Executions 103

4.12 Instruction Implementation 104

4.12.1 test .. . 104

4.12.2 findlocknode, findlockbond 104

4.12.3 findinternalnode 104

4.12.4 numnode .. . 104

4.12.5 bond .. 104

4.12.6 leave, switch, join 105

4.12.7 change .. . 105

4.12.8 checkbondintegrity 105

4.12.9 wait and send 105

4.12.10 jump .. . 105

4.12.11 nondeterministicjump 106

4.13 Performance Evaluation Through Simulation 106

ix

4.14 Summary 108

5. PROCESS OVER NETWORKS 117

5.1 Overview 117

5.2 Related Work 118

5.3 Example Scenario 119

5.4 Process Graph 119

5.5 Computability of Process Graphs 120

5.6 Implementation of Functions Represented by Process Graph Using Underlay Networks . . . 133

5.6.1 Process ID and Token 134

5.6.2 Locating and Locking Entities 134

5.6.3 Message Mechanism 135

5.6.4 Synchronization Among Objects 135

5.7 Summary 135

6. CONCLUSION 137

APPENDIX

A. SYNTAX OF NETSPEC 140

B. SPECIFICATION FOR EXAMPLE SCENARIOS 145

B.1 Helicopter Rescue System Specifications 145

B.2 Highway Information System Specifications 147

B.3 Pervasive Marketing System Specifications 148

C. HELICOPTER RESCUE SYSTEM INSTRUCTION SEQUENCE PROGRAM 151

BIBLIOGRAPHY 156

x

LIST OF TABLES

Page

2.1 Simulation Parameters for SMC 17

2.2 Simulation Parameters for BAC 27

2.3 Simulation Parameters for DCC 40

4.1 Simulation Parameters for Helicopter Rescue System 107

4.2 Simulation Results for Helicopter Rescue System 107

xi

LIST OF FIGURES

Page

1.1 Helicopter Rescue System 2

1.2 System Layout of Proposed Solution 5

2.1 Number of Clusters for SMC Performance (Static) 18

2.2 Hops from Clusterhead for SMC Performance (Static) 18

2.3 Convergence Time for SMC Performance (Static) 19

2.4 Number of Clusters for SMC Performance (Mobile) 20

2.5 Number of Cluster Changes for SMC Performance (Mobile) 20

2.6 Number of Clusters over Time for SMC Performance (Mobile) 21

2.7 Hops from Clusterheads over Time for SMC Performance (Mobile) 21

2.8 Number of Messages 22

2.9 Network Scenario for Analysis ofPrecv . 26

2.10 Probability of Receiving CLUSTER Messages 27

2.11 Effect of Upper Bound of Cluster Size on the Number of Clusters for BAC Performance

(Static) 28

2.12 Effect of Upper Bound of Cluster Size on Average Hops from Clusterhead for BAC Perfor-

mance (Static) 29

2.13 Effect of Upper Bound of Cluster Size on Convergence Time for BAC Performance (Static) . 30

2.14 Effect of Communication Range on Clusters for BAC Performance (Mobile) 31

2.15 Effect of Communication Range on Number of Cluster Changes for BAC Performance (Mo-

bile) .. 32

2.16 Reduced Number of CLUSTER Messages vs Average Cluster Size for BAC Performance

(Mobile) .. . 33

2.17 Number of Clusters over Time for BAC Performance (Mobile) 34

xii

2.18 Short Communication Paths between Clusterheads and Members over Time for BAC Per-

formance (Mobile) 35

2.19 Communication Range vs Number of Messages for BAC Performance (Mobile) 36

2.20 Example Scenario of DCC-SH 36

2.21 Example Scenario of DCC-MH 38

2.22 Number of Clusters vs Upper Bound for DCC Performance 40

2.23 Number of Clusters vs Transmission Range for DCC Performance 41

2.24 Cluster Size Standard Deviation vs Upper Bound for DCC Performance 41

2.25 Cluster Size Standard Deviation vs Transmission Rangefor DCC Performance 42

2.26 Hops from Clusterheads vs Upper Bound for DCC Performance 42

2.27 Hops from Clusterheads vs Transmission Range for DCC Performance 43

2.28 Percentage of Non-single Clusters vs Upper Bound for DCC Performance 43

2.29 Percentage of Non-single Clusters vs Transmission Range for DCC Performance 44

2.30 Number of Messages vs Upper Bound for DCC Performance 44

2.31 Number of Messages vs Transmission Range for DCC Performance 45

2.32 Average Clusterhead Workload vs Upper Bound for DCC Performance 45

2.33 Average Clusterhead Workload vs Transmission Range for DCC Performance 46

2.34 Standard Deviation of Clusterhead Workload vs Upper Bound for DCC Performance 47

2.35 Standard Deviation of Clusterhead Workload vs Transmission Range for DCC Performance . 47

2.36 Average Node Energy Consumption vs Communication Range for DCC Performance 48

2.37 Maximum Node Energy Consumption vs Communication Range for DCC Performance . . . 49

4.1 Generalization of NetSpec Specification 81

4.2 Specification Translated Into Instruction Sequence Program 82

4.3 Transition Specification Translation 109

4.4 Example Transition Specification Translation 110

4.5 Transition T1 in NetSpec And Its Translated Code 111

4.6 Transition T2 in NetSpec And Its Translated Code 112

xiii

4.7 Transition T3 in NetSpec And Its Translated Code 113

4.8 Transition T4 in NetSpec And Its Translated Code 114

4.9 Transition T5 in NetSpec And Its Translated Code 115

4.10 Token Layout 116

4.11 Synchronization of Transitions 116

5.1 A Process Graph for The Helicopter Rescue System 121

5.2 Simulate VASS Using Process Graph 126

5.3 Process Graph G 132

5.4 1-server Process Graph G’ 133

xiv

Dedication

This dissertation is dedicated to my parents

who are always there for me

xv

CHAPTER 1

INTRODUCTION

During the last few years there has been a rapid development in computer networks, especially wireless

networks which enable mobile applications. A mobile ad hoc network (MANET) is defined as a collection

of mobile platforms or nodes where each node is free to move around arbitrarily [1]. It is a distributed,

mobile, wireless, multi-hop network that operates withoutany existing infrastructure. Sensor networks are

composed of hundreds, and potentially thousands of tiny sensor nodes, functioning autonomously, in many

cases, and without access to renewable energy resources. Cost constraints and the need for ubiquitous,

invisible deployments will result in small sized, resource-constrained sensor nodes. Sensor networks are

actually ad hoc networks, in most cases not mobile or with occasional mobility. This can eliminate the

nightmare brought by mobility in mobile ad hoc networks. What they share with mobile ad hoc networks is

the probabilistic nature of the graph, the problem of connectivity and density control, medium sharing, and

scalability.

In addition to the above mentioned difficulties, provided the increasing number of devices involved

in network applications, it is necessary to investigate approaches to organize those devices based on their

application requirements and make them perform the given tasks. The essential functionality of a computer

network is to establish relationships among the network nodes, or grouping. It is natural to investigate

how to group entities in the network efficiently according toapplication requirements. One typical example

scenario is the helicopter rescue system. The system automatically assigns a helicopter to pick up a sick

people and carry him or her to a hospital. When a helicopter carrying a sick people finds that there is a

hospital available, it will send that sick people to that hospital and leave the hospital. When a sick people

becomes healthy, he or she will leave the hospital. During this process, several groupings happen in the

system. First the sick people is grouped with the helicopter. Then, the sick people leaves the helicopter and

grouped with a hospital. At the end, the people becomes healthy and leaves the hospital. This process is

depicted in Figure 1.1.

In fact, grouping entities in network is initially observedby researchers studying the clustering prob-

lems. For large networks with many devices, it is not necessary and not feasible for each device to maintain

1

Figure 1.1: Helicopter Rescue System

the whole network’s information. To make the operations of anetwork more efficient and more scalable, it

is appealing to select a portion of devices to construct and maintain a control structure. Clustering provides

the basis of a group structure. It is defined as partitioning the whole network into groups of devices. In each

cluster, there is one clusterhead responsible for controlling the local group of devices, or members. Cluster-

heads of the network form the backbone of the network. With clustering, local changes are not necessary

to be propagated to all other devices in the network. They areonly confined to the local group of devices.

Efficient routing algorithms [2], data aggregation [3], andnetwork security [4] can be achieved with the aid

of clustering. In Chapter 2 we propose some improved clustering approaches for networks, including Size-

bounded Multi-hop Clustering (SMC), Bandwidth-adaptive Clustering (BAC), Dual-clusterhead Clustering

(DCC), and Typed Clustering (TC) for MANET and WSN.

However, most of the time, the application scope of clustering is limited to providing infrastructure to

improve performance of networks, because researchers previously focus on optimizing the performance of

communication networks, such as bandwidth, reliability, security and so on. The problem of how to pro-

gram the applications on the networks is overseen. It is difficult to design, build, and deploy distributed

2

software systems for a network system consisting of large number of devices. Existing approaches to build-

ing software system for network applications are not properto handle this because of the following two

challenges.

One challenge is that programmers may deal explicitly with the under layer network utilities using

low level programming languages like C++. Thus programmersfocus more on under layer details than

functionalities of applications.

Device heterogeneity is another challenge brought by large-scale networks. It is not practical to have all

devices in the network of the same type. Grimm et al [5] propose that programming distributed applications

is increasingly unmanageable because of heterogeneity of devices and system platforms. They also point

out that this can lead to duplicated different versions of the same application for different computation de-

vices due to the fact that some existing applications are typically developed for specific devices or system

platforms. For example, different applications require different clustering approaches. Though these clus-

tering approaches share a lot of essential similarity, theyhave to be developed individually. Adopting the

idea of JAVA virtual machine [6], a general solution should describe the application functionalities using a

specification language, which can be translated into under layer instructions running on a common virtual

machine. This can eliminate the redundant effort in developing network applications and let the user focus

on the functionalities of applications instead of under layer details.

Our research group proposed Bond Computing System (BCS) [7]targeting at modeling the high-level

dynamics of network computing systems. BCS is based on the work of P system, which is an unconven-

tional computing model motivated from natural phenomena ofcell evolutions and chemical reactions [8]. It

abstracts from the way living cells process chemical compounds in their compartmental structures. Thus,

regions defined by a membrane structure contain objects thatevolve according to given rules. The objects

can be described by symbols or by strings of symbols, in such away that multisets of objects are placed in

regions of the membrane structure. The membranes themselves are organized as a Venn diagram or a tree

structure where one membrane may contain other membranes. By using the rules in a nondeterministic,

maximally parallel manner, transitions between the systemconfigurations can be obtained. A sequence of

transitions shows how the system is evolving. However, P systems assumes maximal parallelism, which is

extremely powerful. Considering a network computing modelthat will eventually be implemented over a

3

network, the cost of implementing the maximal parallelism is unlikely realistic, and is almost impossible in

unreliable networks.

The basic building blocks of a BCS are objects, which are logical representations of physical (computing

and communicating) entities. In a BCS, objects are grouped in a bond to describe how objects are associated.

A configuration is specified by a multiset of bonds, called a collection. The BCS has a number of rules, each

of which specifies how a collection evolves to a new one. In BCS, there is no maximal parallelism in a BCS.

Rules in a BCS fire asynchronously, while inside a rule, some local parallelism is allowed.

BCS provides a theoretical model for grouping over networksand does not describe how to implement

in real network systems. Taking a further step, in Chapter 3,we propose NetSpec, which is a high-level

specification language for grouping over network and also a script language of a generalized version of

BCS. The challenge is to make NetSpec powerful enough to encode complicated applications, and yet

simple enough to efficiently parse into network protocols. The targeted applications for NetSpec are network

systems containing computing devices that can move in the system area. The identities of devices are not

critical to the applications, while types, or functionality of devices matters. Using NetSpec, users can

describe the desired functionalities of an individual network node, how a subset of nodes, called a group or

a bond, are logically connected between each other, and, finally, how such groups evolve. For a network

application specified in NetSpec, a compiler is described totranslate the specification into a program that

will run over a network virtual machine, which is described in detail in Chapter 4. The system layout is

depicted in Figure 1.2.

From the figure, we can see that the virtual machine separatesthe translated program from the under

layer network services. It supports a set of instructions, which are powerful enough to encode complicated

applications, and yet simple enough to efficiently parse into network protocols. As long as the virtual ma-

chine supports the instruction set, the program encoded in the instruction set can run on different networks.

Compilers, or users can program applications using the provided instruction set. The targeted program is a

so-calledinstruction sequence program. To support the instruction set, the network virtual machine deals

with synchronization, group communication control, and concurrency control. To execute an instruction,

the virtual machine should locate involved entities. To maintain the bond, leader election mechanism is

necessary to elect proper entity to maintain the bond information. To ensure the correctness of instruction

4

A
p
p
l
i
c
a
t
i
o
n
s

N
e
t
w
o
r
k

V
r
i
t
u
a
l

M
a
c
h
i
n
e

N
e
t
w
o
r
k

S
e
r
v
i
c
e
s

Figure 1.2: System Layout of Proposed Solution

execution, entities should be locked before the operation.Different from programs running on a single pro-

cesser, the virtual machine provides mechanisms to achievethe sequentialism of instruction executions in

network computing systems. The virtual machine also provides concurrency mechanism for interactions

among transition executions.

Essentially, NetSpec specifies how groups of network nodes evolve. Looking from the angle of each

individual node, such an evolution can be characterize as a thread of atomic transitions, each of which is

local; e.g., involving two network nodes. Inspired by this view, in Chapter 5 of this dissertation, we propose

a form of network processes, called network process graphs,and study, theoretically, their computability

and realization on a physical network.

A network process graph describe a process working on a collection of objects, which are representation

of physical entities in a network. Objects are typed but addressless. Objects have their own states (drawn

from a finite state set) and change the states as the process goes. The critical part of the graph is the rules,

which specify how the process evolves. A rule, for example, describes that, given a source object of type

a with states and a target object of typeb with stateq, can evolve into, respectively, an object of typea

with states′ and an object of typeb with stateq′. The process executes sequentially; i.e., each time, only

one instance of a rule is fired. Additionally, a rule (as the one shown in above) can only be fired when

the object of typea with states is the source specified in the rule and the source currently holds the token

(there is only one token throughout the system) and after thefiring, the target object of typeb with stateq′

5

in the rule receives the token. We demonstrate examples of using such graphs to specify network processes.

In particular, we show that the computing power of network process graphs is equivalent to that of VASS

(vector addition systems with states). Finally, we describe how to implement the graphs on a physical

network.

6

CHAPTER 2

CLUSTERING FOR NETWORKS

2.1 Overview

During the last few years there has been a rapid development in mobile ad hoc networks (MANET). A

MANET is defined as a collection of mobile platforms or nodes where each node is free to move around

arbitrarily [1]. We abstract devices in the network as nodes. It is a distributed, mobile, wireless, multi-hop

network that operates without any infrastructure.

To make the operations of a MANET more efficient, especially for large networks with many nodes,

one approach is to construct and maintain a hierarchical structure. Clustering is such a natural approach to

achieve local independent operations and control functions efficiently. Clustering is defined as partitioning

the whole MANET into groups of nodes. In each cluster, there is one clusterhead responsible for controlling

the local group of nodes, or members. Clusterheads of a MANETform the backbone of the network. With

clustering we can achieve efficient routing algorithms [2],data aggregation [9], and network security [4].

Based on the number of hops that a member is from the clusterhead, clustering methods fall in two cat-

egories, one-hop [10, 11, 12, 13, 14] and multi-hop [15, 16, 17] approaches. One-hop clustering approaches

may form a large number of clusters for large and sparse MANETs. Compared to one-hop clustering ap-

proaches, multi-hop approaches can form fewer clusters to allow more control and flexibility [15]. Multi-hop

clustering approach can also reduce changes in the cluster structure in case of node movement. In one-hop

clustering approaches, if a member moves out of one-hop communication range of the clusterhead, a reclus-

tering process is necessary for the member to find a new cluster to join. In multi-hop clustering approaches,

when a member moves out of the one-hop communication range ofthe clusterhead, if it can still contact

the clusterhead with the aid of other forwarding nodes within the same cluster, reclustering process is not

necessary, which can reduce the amount of restructuring of clusters.

In this chapter, we first propose a weight-based distributedSize-bounded Multi-hop Clustering (SMC)

for MANETs. The main contributions of SMC are as follows. In SMC, clusters are formed and maintained

autonomously using only local topology information. In some previous multi-hop clustering approaches

7

like [15, 17], the number of hops that a member can be away froma clusterhead is bounded by a prede-

fined value to approximately control the cluster size. To ensure that clusterheads are not overloaded, SMC

bounds each cluster’s size byU (a predefined value). To achieve the flexibility inherent in multi-hop clus-

tering and shorten the communication paths between clusterheads and members, instead of bounding the

number of hops a member can be away from a clusterhead, SMC uses RelativeWeight, which represents the

attractiveness of a clusterhead to other nodes and decreases with the number of hops away from the clus-

terhead, to achieve compactness of clusters. Further, SMC does not require expensive time synchronization

mechanisms. The cluster structure evolves with changes in the network topology to adapt to mobility. We

compared SMC with other clustering approaches in literature: Lowest-ID [14], WBACA [12], MobDHop

[15], and MOBIC [18]. Simulation results show that despite mobility, SMC achieves fewer consistent clus-

ters with short communication paths between clusterheads and members for the given size bound and incurs

fewer changes in the face of mobility, which are the desirable properties for clustering especially when

scalability is the main concern.

Based on SMC, we propose Bandwidth-adaptive Clustering (BAC), which can adapt to network condi-

tions and reduce the clustering message overhead. BAC formsand maintains multi-hop clusters using only

local topology information. To reduce the message overhead, BAC makes members forward the received

maintenance messages probabilistically based on network conditions. Lee and Campbell [19] propose that

relying only on the buffer occupancy is inaccurate to measure the network condition. Thus, in BAC, mem-

bers base the forwarding probability on the available bandwidth. The more bandwidth is available, the more

probably the maintenance messages will be forwarded. In congested networks, the chance of successful

reception of messages is small and the broadcasting of messages can aggravate the congestion. BAC’s

multi-hop nature can reduce changes when nodes’ movement occurs. For multi-hop clustering, when a

member moves out of the communication range of the clusterhead, if it can still contact the clusterhead with

the aid of other forwarding nodes within the same cluster, reclustering is not necessary. Usually, a multi-hop

cluster has more nodes than a one-hop cluster. But if there are too many nodes in a cluster, the clusterhead

will be kept busy serving members. To alleviate clusterheads’ workload, BAC bounds each cluster’s size by

U (a predefined value). To further reduce the changes, BAC adoptsMergeoperation to combine neighboring

clusters in whole. To form compact clusters, BAC bounds the number of hops between a member and its

8

clusterhead byH (a predefined value).

Then we propose dual-clusterhead clustering (DCC) for wireless sensor network (WSN). Compared to

traditional clustering approaches, instead of placing therole of clusterhead on a single node and exhausting

the resources on that node, DCC forms clusters with two clusterheads in each cluster using local topology

information without requirement of time synchronization mechanism. Liu, Wu, and Pei [20] discuss the

two advantages of maintaining multiple active sensor nodesto collect data in a cluster, which is the typical

task of a clusterhead. First, it can improve the reliabilityof data collection. If both of the clusterheads in a

cluster are active to collect data, one clusterhead’s lost data can be restored in the other active clusterhead.

Second, it can help to shorten delays in response to cluster changes. Chiasserini et al. [21] propose that the

life-time of cluster-based network is strongly related to clusterheads’ failure. In DCC, in the case that one

clusterhead fails, the other clusterhead can overtake the failed one. Yang et al. [22] also propose to select

two clusterheads in a cluster for robust routing of WSN, while this clustering approach is a centralized

one. However, having more than one clusterhead in a cluster brings the problem of coordination and task

scheduling. Further, having two clusterheads active in each cluster at the same time will consume more

energy. Thus there is a tradeoff between the advantages and disadvantages of having two clusterheads in

a cluster. To save energy, in DCC, only one of the two clusterheads in a cluster is active at a time. The

active role rotates between the two clusterheads to balancethe energy consumption. In large scale WSN,

especially for the multi-hop clustering approach, if thereare too many nodes in a cluster, the clusterhead will

be kept busy serving members in the cluster and become a bottleneck. Ee and Bajcsy [23] propose that a

node at the root of a subtree, where a clusterhead is typically located, could be overloaded, which can easily

result in scalability issues for large scale WSN. Thus, to alleviate clusterheads’ workload, DCC bounds each

cluster’s size byU (a predefined value). The two clusterheads in each cluster formed by DCC are within the

communication range of each other to save energy spent on forwarding messages and increase the reliability

of communications.

We investigate two different methods to form clusters with two clusterheads in each cluster for DCC,

namely DCC-SH (Single Hop) and DCC-MH (Multiple Hops). In DCC-SH, a member is one hop away

from one of the clusterhead and can be at most two hops away from the other clusterhead. In DCC-MH,

a member can be multiple hops away from the clusterheads to form fewer denser clusters than DCC-SH at

9

the price that the multi-hop forwarding of messages in DCC-MH consumes more energy than DCC-SH and

incurs more messages. Despite the multi-hop nature, DCC-MHforms compact clusters because longer delay

in receiving messages from farther clusterheads makes nodes join closer clusters. Simulation results confirm

that both DCC-SH and DCC-MH balance the workload of clusterheads, nodes’ energy consumption, and

cluster size better than those of the popular Lowest-ID and HEED.

In the previous researches, all nodes are considered to be ofthe same type. None of them takes node

type information into account while performing the clustering. However, in reality, nodes represent physical

entities. Different physical entities have different types. For example, in a helicopter rescue system, we

only want to group a helicopter and several patients together. It is meaningless to group helicopters togeth-

ers. Thus, it is useful to take nodes type information into account while clustering nodes. With the type

information, we impose more useful and more specific constraints on clustering.

Thus we propose Typed Clustering (TC), which takes nodes’ type information into account while clus-

tering them. TC forms and maintains multi-hop clusters using only local topology information. Each node

has the type information associated. We describe the constraints based on node types that can be imposed on

clustering. Based on our recent work on a specification language for network computing, which is described

in details in Chapter 3, we describe how to depict these constraints. To make the description of TC more

concrete, we describe how to construct a specific clusteringprotocol for such an application. TC is based

on a multi-hop hop-bounded clustering. TC’s multi-hop nature can reduce changes when nodes’ movement

occurs. For multi-hop clustering, when a member moves out ofthe communication range of the clusterhead,

if it can still contact the clusterhead with the aid of other forwarding nodes within the same cluster, reclus-

tering is not necessary. To form compact clusters, TC boundsthe number of hops between a member and its

clusterhead byH (a predefined value). To make the description of TC more concrete, we give an example

application scenario, in which each type of nodes in a cluster are bounded within a given upper limit.

The rest of this chapter is organized as follows. Section 2.2introduces the related research work. Sec-

tions 2.3, 2.4, 2.5, and 2.6 describe SMC, BAC, DCC, and TC in details. Section 2.7 contains the summary.

10

2.2 Related Work

With the rapid development of MANET, various clustering methods have been proposed. Based on different

criteria, clustering algorithms fall into different categories. Depending on the number of hops an ordinary

node is from the clusterhead, clustering methods fall in twocategories, one-hop [10, 11, 14, 24, 13] and

multi-hop [25, 15, 26, 17] approaches. Different applications have different requirements on the mobility of

nodes. Depending on whether nodes in the network are mobile or not, they fall into two further categories,

static [27, 3, 26, 13] and mobile [18, 11, 12, 15, 28, 17] approaches.

In the Lowest-ID algorithm [14], a node that has the lowest IDamong its neighbors, that have not joined

any other cluster, will declare itself the clusterhead. Other nodes will select one of the clusterheads, if it is

a direct neighbor, to join and become members. If there is a lowest-ID node with highest mobility, it will

cause a lot of changes in clustering. Basagni [10] proposes to use nodes’weightsinstead of IDs or node

degrees to select clusterheads. Two one-hop clustering methods that work for static and mobile networks

are proposed separately. The approaches select nodes with the highestweight in one-hop neighborhood to

be clusterheads.

Chatterjee, Das, and Turgut [11] propose another weight-based one-hop clustering, Weighted Cluster-

ing Algorithm (WCA), in which, each node has acombined weightthat is based on the node’s degree,

transmission power, mobility and battery power. Nodes withthe smallestcombined weightare chosen as

clusterheads. Each clusterhead can supportδ (a predefined value) nodes in its cluster. Extending this,

Dhurandher and Singh [12] propose a one-hop size-bounded clustering algorithm, Weight Based Adaptive

Clustering Algorithm (WBACA). Each node calculates itsweight, based on transmission power, transmis-

sion rate, mobility, battery power and degree, to indicate its capability to be a clusterhead. If there is no node

with a smallerweightin the one-hop neighborhood, the node itself becomes the clusterhead. Otherwise, the

node joins the neighboring clusterhead with the smallestweight.

Gong, Midkiff and Buehrer [24] also describe a size-boundedone-hop clustering algorithm developed

specifically for Ultra Wideband (UWB) networks to minimize the summation of interference generated by

all clusters. A node’s transmission range in this approach is adaptive to ensure there is another node in

contact. Nodes with the minimum interference factor are elected as clusterheads.

Basu, Khan and Little [18] propose another one-hop weight-based clustering approach, MOBIC, that

11

uses the received power levels between two nodes to compute the relative mobility. Extending this, Er and

Seah [15] propose a mobility-basedd-hop clustering (MobDHop), in which, a clusterhead is the most stable

one among all its neighboring nodes. Computing the moving pattern, however, is computationally complex.

The distance between two nodes are estimated by measuring the received signal strength, which requires

extra hardwares and is only accurate for isotropic networks. Sivavakeesar, Pavlou and Liotta [16] propose a

clustering approach that is based on mobility prediction toenable each mobile node to predict the availability

of its neighbors and, however, needs location information.

Younis and Fahmy [13] present a one-hop clustering, HEED (Hybrid Energy-Efficient Distributed clus-

tering), which periodically selects clusterheads according to a combination of the node residual energy and

a secondary parameter, such as node proximity to neighbors or node degree.

In LEACH (Low-Energy Adaptive Clustering Hierarchy) [3], the main purpose is to distribute energy

consumptions throughout clusters in sensor networks. Clusterheads are chosen based on probability. A node

chooses the closest clusterhead to join based on received signal strength. Bandyopadhyay and Coyle [27]

propose a LEACH-like randomized clustering algorithm for wireless sensor network. A node becomes a

clusterhead with probabilityp and advertises this to nodes withink hops away. A node that receives such

advertisements and is not a clusterhead joins the closest cluster. A node that is neither a clusterhead nor has

joined any cluster becomes a clusterhead.

Ohta et al. [28] propose an approach that uses cluster division and merging to bound the size of a cluster

between a lower and upper bound. When the network is sparse and the degrees of nodes are less than the

lower bound, it is not feasible to achieve the lower bound of clusters.

Xu and Gerla [17] propose aK-hop clustering algorithm to form the backbone for the routing algorithm.

K is the predefined maximum number of hops that a member of the cluster can be away from the clusterhead,

and allows approximate control of the number and size of clusters.

Amis et al. [25] propose the max-min d-cluster approach, in which a member can be at mostd hops away

from its clusterhead. All nodes operate asynchronously. This approach runs for2d rounds of information

exchange.

Krishnan and Starobinski [26] propose a message-efficient size-bounded clustering method for wireless

sensor networks. An initiator distributes thegrowth budgets, which is the number of nodes that can join the

12

cluster, evenly among neighbors and each neighbor continues distributing receivedgrowth budgetsfurther.

Yang et al. [22] propose to select two clusterheads in a cluster for the robust routing for WSN. They

formulate the problem of selecting two clusterheads with the minimum cost in a cluster as a classical trans-

portation problem. The sink node, which maintains the location and energy information of all the nodes

in the WSN, runs network flow algorithms to solve the formulated transportation problem. Thus it is a

centralized approach instead of a distributed one like DCC.

Manjeshwar and Agrawal [29] classify sensor networks into proactive and reactive networks based on

their mode of functioning. They introduce TEEN (Threshold sensitive Energy Efficient sensor Network

protocol), which is the first protocol developed for reactive networks. Each node has two thresholds, hard

threshold and soft threshold. A node will transmit the data in the current cluster only when the current value

of the sensed attribute is greater than the hard threshold and the current value of the sensed attribute differs

from the stored value by an amount equal to or greater than thesoft threshold. The main drawback is that

if the thresholds are not reached, the nodes will never communicate, the user will not get any data from the

network at all and will not come to know even if all the nodes die. Thus, this scheme is not well suited for

applications where the user needs to get data on a regular basis.

Krishnan and Starobinski propose a message-efficient clustering method for wireless sensor networks

[30]. In this approach, the initiator distributes thegrowth budgetsevenly among its neighbors, which dis-

tribute the receivedgrowth budgetsfurther. Thegrowth budgetis the number of nodes that can join the

cluster of an initiator node. They assume that only one initiator is active in the same neighborhood at the

same time. To ensure this, they provide a probabilistic algorithm to guarantee that initiators will not interfere

with each other.

Karmakar and Gupta [31] also propose a size-bounded clustering algorithm to reduce the average node-

clusterhead separation for energy-efficient communications. Based on the distance a clusterhead is from a

node, clusterheads are grouped into ranks. The rank is defined as the sequence of the closest clusterhead

to a node. They present a cost-based greedy heuristic which generates clusters of bounded size with low

average rank of the nodes. However, this approach requires the location information of nodes. Durresi

and Paruchuri [32] present Adaptive Clustering Protocol (ACP) for WSNs. The network is divided into

a uniform hexagonal grid and a node closest to the center of the hexagon is selected as the clusterhead.

13

However, it is also assumed that each node knows its location.

Li et al. [33] propose an Energy-Efficient Unequal Clustering (EEUC) mechanism that addresses the hot

spots problem in multi-hop WSNs. It partitions the nodes into clusters of unequal size. Clusters closer to the

base station have smaller sizes than those farther away fromthe base station to preserve energy for the inter-

cluster data forwarding. However, this approach also requires location information. Chiasserini et al. [21]

propose a clustering algorithm aiming at maximizing the lifetime of the network by determining optimal

cluster size and optimal assignment of nodes to clusterheads. However, they assume that the locations of the

clusterheads are known. Moreover, clusterheads are assumed to be chosen a priori and fixed. Venkataraman,

Emmanuel, and Thambipillai [34] propose DASCA, a degree andsize based clustering for WSN, which

restricts the size of each cluster and the number of next hop neighbors a node in a cluster for achieving

balance of loads. However, this approach needs the expensive location information of nodes.

Liu, Wu, and Pei [20] propose to group sensor nodes into clusters such that the sensor nodes within each

cluster have current strong spatial correlation. However,the dissimilarity measure is application specific,

thus it is impossible to use a common dissimilarity measure to accommodate all application scenarios.

The dominating set problem is related to the clustering problem. Rajagopalan provides clustering for ad

hoc network based on dominating sets [35]. Depending on how nodes in the backbone are selected, various

kinds of dominating sets, such ask-dominating set [36, 37],k-clustering [38],k-connectedk-dominating set

[39], d-hop connected andd-hop dominating set [40], and connected dominating set [41,42] are proposed.

2.3 Size-bounded Multi-hop Clustering (SMC)

In SMC, we assume that all nodes have the same communication range. Like the approach in [10], each

node is associated with aWeightvalue. Depending on the metric emphasized, theWeightcan represent the

capability, node degree, movement speed, and so on. The bigger a node’sWeightis, the more capable that

node is and more suited to be a clusterhead.

The attractiveness of a clusterhead to another node should decrease as the distance between them in-

creases. In existing multi-hop clustering approaches, like [15, 26], the attractiveness of clusterheads does

not decrease as distance increases, which may result in uneven clusters. To achieve the flexibility inherent in

multi-hop clustering and shorten the communication paths between clusterheads and members in the result

14

cluster structure, we defineRelativeWeight(y, x) to represent the attractiveness of a clusterheady to an-

other nodex and make it decrease inversely proportionally with the number of hops between them. We have

tried, in addition to this inversely proportional decrease, quadratic and exponential functions. Both of these

make theRelativeWeightdecrease faster and lead to more clusters, more changes and thus do not adapt to

mobility very well.

To deal with mobility, message exchanges are necessary to reflect topology changes in time. Further,

because of mobility, each node cannot wait to gather all of the neighboring nodes’ information to join the

one with the highestRelativeWeightor become a clusterhead, since within the waiting interval,the network

topology could continue to change.

2.3.1 Proposed Clustering Approach

Initially, all nodes are clusterheads by themselves and periodically broadcast CLUSTER messages contain-

ing the address,Weightand cluster size. If a clusterheadx is going to join another clusterheady, we allow

for two possible join operations,Join andGroupJoin.

• If x, which is a clusterhead by itself, finds thatRelativeWeight(y, x) is greater thanWeight(x) and

y’s size is less than the upper boundU , it sends a JOIN message toy to become a member ofy’s

cluster.

• If x, whose cluster size is greater than one, finds thatRelativeWeight(y, x) is much greater than

Weight(x) (exceeding a thresholdδ) and the new cluster size does not exceedU , x usesGroupJoin

to merge withy’s cluster by sending a GROUPJOIN message.

The difference between the two kinds of join operations is that if a node usesJoin, it just requests to

become a member of the new cluster by itself. While forGroupJoin, which is only used by clusterhead, the

clusterhead needs to inform all its members to join the new cluster. Because a large number of small clusters

are not desirable, the condition forJoin operation is looser than that forGroupJoinoperation.

The clustering approach should be stable and sensitive to topology changes. It should not change the

structure drastically in the case of node movement. At the same time, clustering should evolve with changes

in the topology of the network. This is a tradeoff between stability and sensitivity to topology changes. The

smallerδ is, the more sensitive the clustering structure is to mobility and vice versa.

15

The primary objective to employ theGroupJoinoperation is to reduce the number of cluster changes.

If a clusterhead joins the new clusterhead without informing all the members in its cluster to join the new

clusterhead, a member may have to try several clusterheads before finding a new clusterhead or becoming a

clusterhead, which can cause more changes.

If x is a member belonging to clusterheadz’s cluster, it can choose tojoin clusterheady if Rela-

tiveWeight(y,x)is much greater thanRelativeWeight(z, x) (exceeding a thresholdγ) andy’s cluster size

is less than upper boundU . The smallerγ is, the more sensitive the clustering is to mobility and viceversa.

On receiving the JOIN message fromx, if y finds that its cluster size has not reached upper bound

U , it will reply with an ACKJOIN message to accept. Thenx will become a member ofy’s cluster and

inform z about this by sending a LEAVE message so thatz can update its member list. Otherwise,y will

send a NOJOIN message to refuse theJoin request. Upon receiving the GROUPJOIN message fromx, if

y finds that the new cluster’s size will not exceedU , it will send an ACKGROUPJOIN message tox to

accept. Otherwise,y will send a NOGROUPJOIN message to refuse theGroupJoinrequest. On receiving

the ACKGROUPJOIN message,x will inform all members in its cluster to joiny by sending a SWITCH

message to them. Because members can choose other clusterhead to join, on receiving the SWITCH message

from x, a member will check whetherx is still its clusterhead. If this is true, it will joiny.

Because of the possibility of packet losses in wireless communications, after sending out the JOIN or

GROUPJOIN messages, if a node receives no reply after a waiting period, it will interpret that the message

has been lost and will try to join some other cluster or remainin its current cluster.

Each clusterhead broadcasts CLUSTER messages with a predefined frequency. Each member responds

with HELLO messages to its clusterhead at the same frequency. Data link disconnection is detected from

failure to receive CLUSTER or HELLO messages within a predefined interval.

2.3.2 Dealing with Message Overhead and Consistency

The broadcasting of CLUSTER messages constitutes a large part of the messages. To reduce the number

of messages, CLUSTER messages are rebroadcasted only amongmembers in the same cluster. Because of

this, there are no chances for members in other clusters to bepresent in the communication path connecting

the clusterhead and members, causing inconsistency in a cluster. Because of the broadcast nature of wireless

communications, nodes in the direct vicinity of a cluster can still receive CLUSTER messages and have the

16

chance to join.

During each HELLO interval, each clusterhead broadcasts one CLUSTER message. In the same interval,

each member sends one HELLO message and forwards its own clusterhead’s CLUSTER message. For a

network consisting ofn nodes andm clusters, during each HELLO interval, there aren CLUSTER messages

and at mostr(n − m) HELLO messages, wherer is the maximum number of hops that a member is away

from the clusterhead. The number of maintenance messages increases asm decreases. UsingRelativeWeight

tends to keepr small, as simulation results confirm, and leads to small message overhead.

2.3.3 Performance Evaluation

We used NS-2 [43] to run our simulations to evaluate SMC. We compare SMC with the widely used Lowest-

ID and the weight-based size-bounded one-hop clustering, WBACA, which extends the work of the popular

WCA. We also compare SMC with MobDHop and MOBIC that are multi-hop clustering approaches and

focus on the stability of clusters. The simulation parameters are listed in Table 2.1 except where pointed

out.

Table 2.1: Simulation Parameters for SMC
Parameter Value

Number of nodes 50

Network size 670 m× 670 m

Average speed of node movement 20 m/s

Transmission range 200 m

HELLO and CLUSTER messages

frequency

Once per second with

clock drift

Simulation time 100 seconds

Each node is randomly assigned aWeightat the beginning of simulations. For more realism, random

waypoint model [44] is used for node mobility. We used AODV [45] as the underlying routing algorithm,

which can reduce the number of broadcasts resulting from link breaks and thus is adaptive for high mobility

[45]. Each data point reported is the average of 10 runs.

Static Networks

Fig. 2.1 shows the number of clusters formed with different upper bounds of cluster size for SMC, WBACA,

which is a size-bounded approach among the four approaches,and the simple lower bound of number of

17

0 2 4 6 8 10 12 14
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

N
um

be
r o

f C
lu

st
er

s

Upper Bound of Cluster Size

 SMC
 WBACA
 Simple Lower Bound

Figure 2.1: Number of Clusters for SMC Performance (Static)

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

H
op

s
fro

m
 C

lu
st

er
he

ad

Upper Bound of Cluster Size

 Average Hops (SMC)
 Maximum Hops (SMC)
 Hops (WBACA)

Figure 2.2: Hops from Clusterhead for SMC Performance (Static)

clusters, which is the result of the total number of nodes divided by upper bound of cluster size. For

a given upper bound of cluster size, SMC can achieve fewer clusters than WBACA and is closer to the

simple lower bound. As the upper bound increases, the numberof clusters decreases as expected. Because

theRelativeWeightof a clusterhead decreases as the number of hops increases, increasing the upper bound

beyond a certain limit does not result in a corresponding reduction in the number of clusters. This plateauing

effect can also be observed in Fig. 2.1.

Fig. 2.2 shows that the average number of hops between members and clusterheads for SMC is close

18

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

Upper Bound of Cluster Size

C
lu

st
er

in
g

Ti
m

e
(S

ec
on

ds
)

 SMC
 WBACA

Figure 2.3: Convergence Time for SMC Performance (Static)

to 1 and the maximum number of hops is around 2. This reflects the short communication paths between

clusterheads and members, or the compactness of a cluster, due to the fact that usingRelativeWeightmakes

nodes join nearby clusterheads.

Fig. 2.3 shows that SMC takes slightly more time to converge than WBACA, as expected, due to multi-

hop communication delays and contentions. If there are no cluster changes in 10 seconds, which is 10

message-exchange rounds and long enough for nodes gathering information from nearby nodes, we take it

as the convergence of the clustering process. Because members tend to join nearby clusterheads, SMC’s

convergence time is only slightly more than that of WBACA.

Mobile Networks

Fig. 2.4 shows the number of clusters formed for SMC, MobDHop, Lowest-ID, and MOBIC. The data for

MobDHop, Lowest-ID, and MOBIC are from [15] and the simulation scenarios are also adapted to those

described in [15]. SMC without upper bound forms fewer clusters than the other three clustering methods

that are not size-bounded approaches. Fig.2.5 shows that SMC incurs fewer changes than WBACA for

two networks consisting of 50 nodes and 75 nodes separately.Besides the multi-hop nature of clusters,

GroupJoinfurther reduces the number of changes.

Fig. 2.6 and Fig. 2.7 show the number of clusters formed and the average number of hops between

members and clusterheads, respectively, as time elapses from 6 seconds to 50 seconds. Despite mobility,

19

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 N
um

be
r o

f C
lu

st
er

s

Transmission Range (m)

 MOBIC
 Lowest-ID
 MobDHop
 SMC

Figure 2.4: Number of Clusters for SMC Performance (Mobile)

0 20 40 60 80 100 120
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

Transmission Range(m)

N
um

be
r o

f C
ha

ng
es

 SMC (75 Nodes)
 SMC (50 Nodes)
 WBACA (75 Nodes)
 WBACA (50 Nodes)

Figure 2.5: Number of Cluster Changes for SMC Performance (Mobile)

SMC forms fewer clusters with short communication paths between clusterheads and members. And the

number of clusters remains nearly stable. However, the number of clusters formed by WBACA goes up over

time, which shows that SMC is more adaptive to mobility. Fig.2.8 shows that SMC has about less than

two times the messages as that of WBACA for static and mobile networks, even though SMC is a multi-hop

clustering.

20

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

N
um

be
r o

f C
lu

st
er

s

Time(Second)

 SMC (Upper Bound: 8)
 SMC (No Upper Bound)
 WBACA (Upper Bound: 8)
 WBACA (No Upper Bound)

Figure 2.6: Number of Clusters over Time for SMC Performance(Mobile)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
ve

ra
ge

 H
op

s
fro

m
 C

lu
st

er
he

ad

 SMC (Upper Bound: 8)
 SMC (No Upper Bound)
 WBACA

Time (Second)

Figure 2.7: Hops from Clusterheads over Time for SMC Performance (Mobile)

2.4 Bandwidth-adaptive Clustering

In this section, we describe a new clustering approach for MANETs, bandwidth-adaptive clustering (BAC).

We first describes the basis and a special case of BAC. Then we describes BAC’s adaptivity to bandwidth.

2.4.1 Basic Clustering

In this section, we describe BAC’s size-bounded and hop-bounded clustering with deterministic forwarding

of maintenance messages, which is the basis and a special case of BAC. We assume that all nodes have the

21

0 2 4 6 8 10 12 14
0

2000

4000

6000

8000

10000

12000

N
um

be
r o

f M
es

sa
ge

s

Upper Bound of Cluster Size

 WBACA (Static)
 WBACA (Mobile)
 SMC (Static)
 SMC (Mobile)

Figure 2.8: Number of Messages

same communication range. Each node has a unique ID and is associated with aWeightvalue. TheWeight

can represent the node’s capability, resources, and so on. The greater a node’sWeightis, the more capable

that node is and more suited to be a clusterhead.

Constructions of Clusters

Initially, all nodes are clusterheads and periodically broadcast CLUSTER messages containing the ID,

Weight, the number of hops that the message has traveled, and the cluster size information.

For a node to join another cluster, BAC allows two possible operations,Join andMerge. The difference

between them is that if a node usesJoin, it just requests to become a member of the new cluster by itself.

Mergeis only used by a clusterhead with some members in its cluster. The clusterhead needs to inform all

its members to join the new cluster. EmployingMergeoperation can reduce members’ attempts to find new

clusters to join, and the changes.

If x, which is a clusterhead by itself, finds thatWeight(z) is greater thanWeight(x) andz’s cluster

size is less than the upper boundU , it sends a JOIN message toz to request toJoinz’s cluster. If clusterhead

y, whose cluster size is greater than one, finds thatWeight(z) is much greater thanWeight(y) (exceeding

a thresholdδ) and the new cluster size does not exceedU , y usesMerge to combine withz’s cluster by

sending a MERGE message containing its cluster information. The smallerδ is, the more likely clusters

are to combine with each other, leading to fewer clusters andmore changes. There is a tradeoff between

22

stability and sensitivity to topology changes.

If a memberm of clusterheadv’s cluster finds thatWeight(z) is much greater thanWeight(v) (ex-

ceeding a thresholdγ) andz’s cluster size is less than upper boundU , it will request toJoin clusterheadz’s

cluster by sending a JOIN message toz.

On receiving the JOIN message fromx or m, if z finds that its cluster size has not reached the upper

boundU , it will reply with an ACKJOIN message to accept. Otherwise,z will send a NOJOIN message to

refuse. If theJoin request is accepted,m will inform v so thatv can update its cluster information.

On receiving the MERGE message fromy, if z finds that the new cluster’s size will not exceed upper

boundU , it will send an ACKMERGE message toy to accept. Otherwise,z will send a NOMERGE

message to refuse. On receiving the ACKMERGE message,y will inform members in its cluster to joinz’s

cluster. Members more thanH hops away fromz will join some other cluster or become a clusterhead.

After sending out the JOIN or MERGE message, if a node cannot receive any reply after a waiting

period, it will assume that the message has been lost and try to join some other cluster or remain in its

cluster based on itsWeight.

Maintenance of Clusters

Nodes exchange messages to reflect changes in topology. Eachclusterhead broadcasts CLUSTER messages

periodically. Each member responds with HELLO messages andforwards its clusterhead’s CLUSTER

messages that are withinH hops away from the clusterheads. Thus, members in other clusters cannot be

in the communication paths between the clusterheads and members, causing inconsistency. Because of

the broadcast nature of wireless communications, nodes in the direct vicinity of a cluster can still receive

CLUSTER messages and have the chance to join.

If a member does not receive a CLUSTER message from its clusterhead afternallowed CLUSTER mes-

sage intervals, it assumes that its clusterhead cannot be contacted and will either compete as a new cluster-

head or join some other cluster based on itsWeight. If a clusterhead does not receive a HELLO message

from a member afternallowed HELLO message intervals, it assumes that the member cannot be contacted

and will remove it from the member list.

Because of congestions, a CLUSTER message may have traveledmore hops before reaching a member

even though the clusterhead does not move away. This will cause a member’s incorrect update of the

23

number of hops away from the clusterhead. To distinguish theactual movement of nodes from congestions,

if a member detects that a CLUSTER message has traveled more hops than the previously received one,

it will check with the neighbor from which it receives the previous CLUSTER message. If that neighbor

also becomes more hops away from the clusterhead, the memberwill update the number of hops away

information accordingly. Otherwise, it will not update.

Deterministic Forwarding Message Overhead

For a network consisting ofn nodes andm clusters, during each CLUSTER message interval, because a

CLUSTER message will be forwarded by members in that cluster, there aren CLUSTER messages. A

HELLO message will be forwarded by each node on the path between the member and the clusterhead. So

in response to the CLUSTER messages, there are at mostH(n − m) HELLO messages.

2.4.2 Bandwidth-adaptive Clustering

Random Forwarding of Messages

The benefits of clustering come at the cost of additionally generated messages to control the clusters. To

reduce the message overhead, BAC makes members forward the received CLUSTER messages probabilisti-

cally. The forwarding probability,PF , is calculated based on the available bandwidth. The more bandwidth

a member has, the more probably that member will forward the received CLUSTER messages. Renesse et

al. [46] propose an approach to estimating the usage of bandwidth by calculating the size of sent, received,

and sensed packets over a fix period of time. Wan, Eisenman, and Campbell [47] propose CODA (COnges-

tion Detection and Avoidance), which uses a sampling schemethat activates local channel monitoring at the

appropriate time to save energy. Because energy is usually not a major concern for MANET, we adopt the

approach of [46].

If S is the size of all packets sent, received, and sensed by a nodeover a period ofT , the average used

bandwidth overT is:

BWused =
S

T
(2.1)

24

The available bandwidth percentage,Pavl, is:

Pavl =
BWmax − BWused

BWmax
(2.2)

In (2.2),BWmax is the maximum available bandwidth. The forwarding probability, PF , is defined as:

PF =























0 Pavl ≤ Lmin

Pavl−Lmin

Lmax−Lmin
Lmin < Pavl ≤ Lmax

1 Pavl > Lmax

(2.3)

Lmin andLmax are the lower and upper thresholds.

Because of the probabilistic forwarding of maintenance message, for a member ath hops away from

the clusterhead, the probability that it cannot received a CLUSTER message afternallowed consecutive

CLUSTER message intervals is:

Ploss(h) =

nallowed
∏

j=1

(

1 −

h−1
∏

i=1

PFij

)

(2.4)

In (2.4), PFij is the forwarding probability of nodei at thejth time during the consecutivenallowed

CLUSTER message intervals. IncreasingPF at each node can reducePloss, reflecting the tradeoff be-

tween the number of forwarded CLUSTER messages and the probability that members lose contact with the

clusterheads.Ploss increases ash increases, which enhances the compactness of clusters.

Reduced Message Overhead

We assume that nodes are uniformly distributed on a 2-dimensional space with densityd. All nodes have

the same fixed communication ranger and can receive every packet withinr. We assume thatx is the only

clusterhead and there is no nearby interfering cluster. In Fig. 2.9,Ain denotes the intersection area of the

two nodes’ communication range. We assume that the forwarding probability,PF , is the same for all nodes.

We usePrecv(s) to denote the probability that membery can receive CLUSTER messages from clusterhead

x at the distances. We give the analysis results forPrecv(s) wheny is at most two hops away fromx.

25

A
in

r

r

x

y

z

Figure 2.9: Network Scenario for Analysis ofPrecv

If s ≤ r, y can receive the CLUSTER messages fromx directly. We have:

Precv(s) = 1 (2.5)

If r < s ≤ 2r, using the result in [48], the size ofAin, Ain(s), can be calculated as:

Ain(s) = 2r2 arccos
(s

2r

)

−
1

2
s
√

4r2 − s2 (2.6)

The probability that at least one relay node is located inAin is:

P (nin ≥ 1 | s) = 1 − e−dAin(s) (2.7)

Thus, whenr < s ≤ 2r, we have:

Precv(s) = PF ×
(

1 − e−dAin(s)
)

(2.8)

Using the parameters in Table 2.2, Fig. 2.10 showsPrecv(s) with differents andd values givenPF =

0.8.

2.4.3 Performance Evaluation

We used NS-2 [43] to compare BAC and BAC-D, which is a special case of BAC with deterministic for-

warding of maintenance messages, with the weight-based size-bounded one-hop clustering, WBACA, which

26

200

250

300

350

400

0

0.2

0.4

0.6

0.8

1

1.2

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance Between Nodes (m)Node Density

P
ro

ba
bi

lit
y

of
 R

ec
ei

vi
ng

 C
LU

S
T

E
R

 M
es

sa
ge

s

Figure 2.10: Probability of Receiving CLUSTER Messages

Table 2.2: Simulation Parameters for BAC
Parameter Value

Number of nodes 50
Network size 670 m× 670 m
Average speed of nodes 20 m/s
Communication range 200 m
Maximum bandwidth 1M bps
(Lmin, Lmax) (0.1, 0.9)
nallowed 3
CLUSTER message fre-
quency

Once per second
with clock drift

Simulation time 100 seconds

extends the popular WCA, and the multi-hop hop-bounded clustering,K-hop clustering. The simulation pa-

rameters are listed in Table 2.2 unless mentioned otherwise. Each node is randomly assigned aWeightat the

beginning of the simulations. To increase ties,Weightsare discretized into 16 levels. We used the random

waypoint model [44] with node speed varying between 16m/s and 24m/s, and no pause time. For more

realism, each node sends a 200-byte data packet randomly at least every 0.5 second as background data traf-

fics. We used AODV [45] as the underlying routing algorithm, which makes use of advantages from both

distance-vector and on-demand. AODV can also reduce the number of broadcasts resulting from broken

links and thus is adaptive for high mobility [45]. Each data point reported is the average of 10 runs.

27

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

Upper Bound of Cluster Size

N
um

be
r o

f C
lu

st
er

s

 BAC-D Hop Bound: 2
 BAC-D Hop Bound: 3
 BAC Hop Bound: 2
 BAC Hop Bound: 3
 K-hop Hop Bound: 2
 K-hop Hop Bound: 3
 WBACA

Figure 2.11: Effect of Upper Bound of Cluster Size on the Number of Clusters for BAC Performance (Static)

Static Networks

In Fig. 2.11, we show that for a given cluster size bound, the number of formed clusters for BAC and BAC-D

is fewer than WBACA and close to the non-size-boundedK-hop clustering. For BAC and BAC-D, because

the number of neighbors within a given number of hops is limited, increasing the size bound beyond a certain

limit does not result in a corresponding decrease in the number of clusters.

In Fig. 2.12, we show that the average number of hops between members and clusterheads for BAC and

BAC-D is close to 1 and fewer than that ofK-hop clustering. This reflects the compactness of clusters due

to the reason that BAC and BAC-D bound the cluster size and thenumber of hops that a member can be

away from a clusterhead.

If there is no cluster change in 10 seconds, which is 10 message-exchange rounds and long enough for

nodes exchanging information, we take it as the convergenceof the clustering. In Fig. 2.13, we show that

BAC and BAC-D take slightly more time to converge than WBACA.

Mobile Networks

In Fig. 2.14, we show that as the communication range increases, the number of formed clusters decreases

accordingly. The one-hop clustering, WBACA, forms more clusters than the multi-hop clustering ap-

proaches. BAC forms nearly the same number of clusters as BAC-D. In Fig. 2.15, we show that the multi-hop

clustering approaches, BAC, BAC-D, andK-hop incur fewer changes than one-hop WBACA in the case of

28

0 2 4 6 8 10 12 14
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

A
ve

ra
ge

 H
op

s
fro

m
 C

lu
st

er
he

ad

Upper Bound of Cluster Size

 BAC-D Hop Bound: 2
 BAC-D Hop Bound: 3
 BAC Hop Bound: 2
 BAC Hop Bound: 3
 K-hop Hop Bound: 2
 K-hop Hop Bound: 3

Figure 2.12: Effect of Upper Bound of Cluster Size on AverageHops from Clusterhead for BAC Perfor-
mance (Static)

nodes’ movement. Because of the probabilistic forwarding of maintenance messages, BAC incurs slightly

more changes than BAC-D.

To show the effectiveness ofPF in reducing message overhead, we experimented with the samePF for

all nodes and made it vary from 0.1 to 1 with the cluster size bound being 8 and the hop bound being 3. In

Fig. 2.16, we show that asPF decreases, more CLUSTER messages are reduced, while the average cluster

size remains nearly the same. This is due to the reason that a member can still receive CLUSTER messages

from several forwarding nodes although a single node’sPF is reduced.

In Fig. 2.17, we show that the number of clusters formed by BACand BAC-D is between those ofK-hop

clustering and WBACA, and remains nearly stable over time. In Fig. 2.18, we show that BAC and BAC-D

have short communication paths between clusterheads and members over time.

In Fig. 2.19, we show that BAC and BAC-D incur slightly more messages than WBACA and fewer

than K-hop clustering, even though BAC and BAC-D are multi-hop clustering approaches. The reason

is that the HELLO messages from members are triggered by CLUSTER messages for BAC and BAC-D.

However, WBACA makes nodes send HELLO messages periodically and the more changes of it lead to

more messages. Because of the employment of probabilistic forwarding of CLUSTER messages, BAC

incurs fewer messages than BAC-D. As the nodes’ communication range increases, the network gets denser

29

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

20

Upper Bound of Cluster Size

C
on

ve
rg

en
ce

 T
im

e
(S

ec
on

d)

 BAC-D Hop Bound: 2
 BAC-D Hop Bound: 3
 BAC Hop Bound: 2
 BAC Hop Bound: 3
 K-hop Hop Bound: 2
 K-hop Hop Bound: 3
 WBACA

Figure 2.13: Effect of Upper Bound of Cluster Size on Convergence Time for BAC Performance (Static)

and the available bandwidth decreases, which makes BAC dropmore messages.

2.5 Dual-clusterhead Clustering

In DCC, we assume all nodes have the same communication range. Each node has a unique ID and is

associated with aWeightvalue. Depending on the metrics emphasized, theWeightcan represent the node’s

capability, resources, and so on. The bigger a node’sWeight is, the more capable that node is and more

suited to be a clusterhead. Basagni [10] proposes that weight-based approach can choose those nodes that

are better suited for the role of clusterheads. We propose two different methods for DCC, namely DCC-

SH and DCC-MH. For both of the two methods, the two clusterheads in the same cluster are within the

communication range of each other to increase the reliability of the communications between them and

save energy spent on intermediate forwarding nodes. In the quasi-one-hop DCC-SH, each member has at

least one clusterhead within the communication range. A member can be at most two hops away from the

other clusterhead. In the multi-hop DCC-MH, a member can be multiple hops away from the clusterhead.

Because the data packets from closer clusterheads arrive earlier than those from farther away clusterheads,

nodes prefer to join closer clusterheads.

30

0 40 80 120 160 200
0

5

10

15

20

25

30

35

40

N
um

be
r o

f C
lu

st
er

s

Communication Range (m)

 BAC-D Size Bound: 8 Hop Bound: 3
 BAC-D No Size Bound Hop bound: 3
 BAC Size Bound: 8 Hop Bound: 3
 BAC No Size Bound Hop Bound: 3
 K-hop Hop Bound: 3
 WBACA Size Bound: 8
 WBACA No Size Bound

Figure 2.14: Effect of Communication Range on Clusters for BAC Performance (Mobile)

2.5.1 DCC-SH

DCC-SH has two major phases: pairing phase and clustering phase. In the pairing phase, a node with

the highestWeightin the one-hop neighborhood will try to pair with another node to become clusterheads

together. Then, in the clustering phase, the paired clusterheads broadcast CLUSTERHEAD messages to let

non-clustered nodes join. Because we do not assume time synchronization, the two phases can happen at

the same time in different clusters.

Pairing Phase

Initially, all nodes’ are non-clustered. Each node broadcasts HELLO messages containing its ID andWeight

information. On receiving the HELLO messages from nodes within its communication range, each node cre-

ates a list of neighbors. Because of the unreliable nature ofwireless communications, each node broadcasts

the HELLO message twice to increase the chance of correct receiving of the HELLO messages.

After gathering neighbors’ HELLO messages, if a non-clustered nodex finds that it has the highest

Weight in the one-hop neighborhood, it will try to pair with anothernon-clustered node,y, by sending a

PAIR message. In the case that there are more than one highestWeightnodes in the neighborhood, nodes’

31

0 40 80 120 160 200
0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r o

f C
lu

st
er

 C
ha

ng
es

Communication Range (m)

 BAC-D Size Bound: 8 Hop Bound: 3
 BAC-D No Size Bound Hop Bound: 3
 BAC Size Bound: 8 Hop Bound: 3
 BAC No Size Bound Hop Bound: 3
 K-hop Hop Bound: 3
 WBACA Size Bound: 8
 WBACA No Size Bound

Figure 2.15: Effect of Communication Range on Number of Cluster Changes for BAC Performance (Mobile)

IDs are used to break the ties. To reduce the chance of conflicts, y is randomly chosen. Upon receiving the

PAIR message, ify has not been paired with any other node nor has joined some cluster, it will reply with

an ACKPAIR message to accept this pair request. Otherwise,y will reply with a NOPAIR message to refuse

the pair request. Upon receiving the NOPAIR message,x will try to pair with another neighbor by sending

PAIR message to it unless there is no non-clustered neighbor.

Clustering Phase

If x successfully pairs withy, x andy will both become clusterheads. To converge fast and bound the size of

each cluster, adopting a similar method as that in [30], we divide the upper bound of cluster size,U , evenly

between the two clusterheads. IfU is an even number, each clusterhead will accept at mostU/2 − 1 nodes’

join request. IfU is an odd number, the clusterhead with smaller ID will acceptat most(U + 1)/2 − 1

nodes, the other one will accept at most(U − 1)/2 − 1 nodes. One assumption in [30] is that each time,

only one clusterhead is active to accept nodes’ join requests, which can ensure that there is no conflict in

the process of attracting member nodes. We do not have this assumption so that multiple CLUSTERHEAD

messages can be received by a single node, which chooses the first one to join.

The paired clusterheadsx andy broadcast CLUSTERHEAD messages to let neighboring non-clustered

32

0 500 1000 1500 2000
0

1

2

3

4

5

6

A
ve

ra
ge

 C
lu

st
er

 S
iz

e

Reduced Number of CLUSTER Messages

Figure 2.16: Reduced Number of CLUSTER Messages vs Average Cluster Size for BAC Performance
(Mobile)

nodes to join. Upon receiving a CLUSTERHEAD message, a non-clustered nodem will send a JOIN

message to join the cluster without choosing the clusterhead with highestWeight. If x or y receives this

JOIN message, it will check whether the upper bound of cluster size is reached. If the upper bound is not

reached,x or y will send an ACKJOIN message to accept the join request. Otherwise, it will refuse the join

request by sending a NOJOIN message.

On receiving the ACKJOIN message,m will broadcast a MEMBER message to let neighbors know that

it has become a member node of a cluster so that a non-clustered node can removem from its one-hop

non-clustered neighbors list. If a non-clustered node findsthat it becomes the highestWeightnode in the

one-hop neighborhood, it will start the pairing phase.

Upon receiving the NOJOIN message or after a waiting period without any response from the intended

clusterhead, the non-clustered nodem will try some other clusterhead. Ifm cannot join any existing cluster

and finds that it has the highestWeightamong all the non-clustered one-hop neighbors, it will try to pair with

a non-clustered neighbor to become a clusterhead. Thus, thechance for a non-clustered node to be a member

node is higher than to be a clusterhead, which leads to fewer and denser clusters. If a node completes the

execution of DCC-SH without selecting to join a cluster or becoming a clusterhead, it becomes a clusterhead

by itself.

33

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

N
um

be
r o

f C
lu

st
er

s

Time (Second)

 BAC-D Size Bound: 8 Hop Bound: 2
 BAC-D No Size Bound Hop Bound: 2
 BAC Size Bound: 8 Hop Bound: 2
 BAC No Size Bound Hop Bound: 2
 K-hop Hop Bound: 2
 WBACA Size Bound: 8
 WBACA No Size Bound

Figure 2.17: Number of Clusters over Time for BAC Performance (Mobile)

An Example of DCC-SH

In Figure 2.20, the numbers in the parentheses are theWeightsof the nodes. The numbers beside the

parentheses are the IDs of nodes. An edge between two nodes represents that the two nodes are in the

communication range of each other. We assumeU (the upper bound of cluster size) is 8. Node 1 finds that

it has the highestWeightin the neighborhood. It will try to pair with another node to become clusterheads.

If node 1 gets paired with node 2, these two nodes will send CLUSTERHEAD messages to let neighboring

nodes join. The upper bound of cluster size is divided evenlybetween nodes 1 and 2. Each will accept

another three nodes’ join requests. They accept the join requests of nodes 3, 4, 5, 6, 7, 8. The join requests

of nodes 10 and 12 will be refused. Upon receiving the MEMBER message from node 6, node 10 finds that

it has the highestWeightamong the non-clustered one-hop neighbors. It gets paired with node 9 to become

clusterheads. After sending out the CLUSTERHEAD messages,they form another cluster with nodes 11,

12, 13.

34

0 10 20 30 40 50
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

A
ve

ra
ge

 H
op

s
fro

m
 C

lu
st

er
he

ad
s

Time (Second)

 BAC-D Size Bound: 8 Hop Bound: 3
 BAC-D No Size Bound Hop Bound: 3
 BAC Size Bound: 8 Hop Bound: 3
 BAC No Size Bound Hop Bound: 3
 K-hop Hop Bound: 3

Figure 2.18: Short Communication Paths between Clusterheads and Members over Time for BAC Perfor-
mance (Mobile)

2.5.2 DCC-MH

DCC-MH has two major phases: clustering phase and core selection phase. In the clustering phase, multi-

hop clusters are constructed based on nodes’Weights. In the core selection phase, two nodes in the core

of each cluster are selected to act as clusterheads. Nodes inthe core of a cluster are not always those

that have the highestWeights. But choosing core nodes as clusterheads can reduce energy consumption on

other forwarding nodes. This is a tradeoff between selecting nodes with highWeightand reducing energy

consumption on forwarding nodes. Similar to DCC-SH, because we do not assume time synchronization,

the two phases can happen at the same time in different clusters.

Clustering Phase

Initially, all nodes are non-clustered. To reduce the initial contentions among nodes and save energy, a

portion of nodes are selected to be clusterheads. The decision is made by each node choosing a random

number between 0 and 1. If the random number is less than a threshold,CHprob = λ
Upperbound

≤ 1, then

the node will become a clusterhead. Because a clusterhead can become a member node by combining with

another cluster,λ should be big enough to ensure coverage of clustered nodes. There is a tradeoff between

λ and the energy consumed for initial clusterheads. The bigger λ is, the more energy will be consumed for

initial clusterheads.

35

0 40 80 120 160 200
0

2000

4000

6000

8000

10000

12000

14000

16000

N
um

be
r o

f M
es

sa
ge

s

Communication Range (m)

 BAC-D Size Bound: 8 Hop Bound: 3
 BAC-D No Size Bound Hop Bound: 3
 BAC Size Bound: 8 Hop Bound: 3
 BAC No Size Bound Hop Bound: 3
 K-hop Hop Bound: 3
 WBACA Size Bound: 8
 WBACA No Size Bound

Figure 2.19: Communication Range vs Number of Messages for BAC Performance (Mobile)

1(20)
 2(16)

3(8)

4(9)

5(7)

8(6)

7(10)

6(12)

9(8)
 10(10)

11(5)

13(6)

12(4)

Figure 2.20: Example Scenario of DCC-SH

Each selected clusterhead broadcasts CLUSTERHEAD messages containing its ID,Weight, and cluster

size information. If a node is going to join another cluster,we allow for two possible operations,Join and

GroupJoin. The difference between them is thatJoin is used by a non-clustered node to request to become

a member of a cluster, whileGroupJoincan only be used by a clusterhead to combine the two clusters in

whole. The purpose to adoptGroupJoinoperation is to produce fewer bigger clusters and reduce thenumber

36

of changes when combining clusters.

A non-clustered node,x, requests toJoin a clusterhead,y, by sending a JOIN message toy. The JOIN

message containsx’s ID and the neighbor’s ID, whichx receives the CLUSTERHEAD message from and

is the parent ofx in the tree structure, to lety have the complete information about the tree structure of the

formed cluster. On receiving the JOIN message fromx, if y finds that its cluster size has not reached the

upper boundU , it will reply with an ACKJOIN message to accept and addx to the member list.x will

forward CLUSTERHEAD message ofy further. Otherwise,y will send a NOJOIN message to refuse the

Join request.x will try some other clusterhead.

If clusterheadz receives CLUSTERHEAD messages fromy and finds thaty’s Weight is bigger than

its Weight, z will try to combine its cluster in whole withy’s cluster by sending a GROUPJOIN message

to y. Upon receiving the GROUPJOIN message fromz, if y finds that the new cluster’s size will not ex-

ceed the upper boundU , it will send an ACKGROUPJOIN message toz to accept. Otherwise,y will

send a NOGROUPJOIN message to refuse. On receiving the ACKGROUPJOIN message,z will inform all

members in its cluster to joiny’s cluster by sending a SWITCH message to them and forward theCLUS-

TERHEAD messages ofy further. To reduce the energy spent on changing clustering structures, members

are not allowed to join some other cluster except for theGroupJoinoperation. Because of possible packet

losses in wireless communications, after sending out the JOIN or GROUPJOIN messages, if a node receives

no reply after a waiting period, it will assume that the message has been lost and try to join some other

cluster or remain in its current cluster.

Core Selection Phase

When a clusterhead finds no more changes in the cluster, it will begin the core selection process. The nodes

in a cluster form a tree structure. By reducing the length of the communication pathes between members

and clusterheads, we can reduce the energy used for forwarding messages. Thus it is desirable to place

clusterheads at the middle of a tree. The center of a tree is the subgraph induced by the nodes of minimum

eccentricity [49]. It consists of either a single node or a pair of adjacent nodes [50]. Because the clusterhead

has the complete information about the tree, it uses the algorithm in [50] to compute the center of the tree.

First it removes all the nodes of degree one, together with their incident edges. Then it repeats the process

until a single node or two adjacent nodes are left, which is the center of the tree.

37

1(5)

2(4)

3(10)

4(3)

5(6)

6(6)

7(5)

8(3)

9(2)

10(2)

Figure 2.21: Example Scenario of DCC-MH

Because two nodes need to be selected to be the core, if the tree has just one node in the center, a neighbor

of the center node will be selected as the other core node. After identifying the two nodes of in the core

of the tree, the original clusterhead will inform the newly selected core nodes to become the clusterheads.

If the original clusterhead is not in the core, it will give upthe role as the clusterhead. The newly selected

clusterheads in the core will inform other nodes in the cluster about the new clusterheads information. If a

node completes the execution of DCC-MH without joining a cluster or becoming a clusterhead, it becomes

a clusterhead by itself.

An Example of DCC-MH

In Figure 2.21, we assumeU (the upper bound of size) is 6 and initially all the nodes become clusterheads.

Node 3 has the highestWeightamong its neighbors. Assume nodes 1, 2, 4, 5 receive the CLUSTERHEAD

messages from node 3 first. They find that theWeightof node 3 is bigger than theWeightsof themselves

and each will send a GROUPJOIN message to node 3. Assume the sequence of the GROUPJOIN messages

arrivals at node 3 is 1, 2, 4, 5. Node 3 will accept theGroupJoinrequest of nodes 1, 2, 4, 5 by replying

with ACKGROUPJOIN messages. Then nodes 1, 2, 4, 5 will forward the CLUSTERHEAD messages of

node 3 further. Nodes 6, 9, 10 will find that theWeightof node 3 is bigger than their ownWeights. They

will also request toGroupJoinnode 3’s cluster. If the GROUPJOIN message of node 9 arrives first, nodes 3

will accept this. When node 3 receives the GROUPJOIN messagefrom nodes 6 and 10, it will find that the

cluster size has reached the upper bound and send NOGROUPJOIN messages to nodes 6 and 10 to refuse

theGroupJoin requests. Because node 6 has the biggestWeightamong its neighbors, node 6 will remain

as a clusterhead. Upon receiving the NOJOIN message, node 10will try to find some other cluster to join.

38

At this time, node 6 sends CLUSTERHEAD messages. Then nodes 4, 7, and 10 can also hear the message.

Because node 4 has already joined node 3’s cluster, node 4 will not join node 6’s cluster. Node 10 will

GroupJoinnode 6’s cluster. Node 7 is the clusterhead of the cluster formed with node 8. Now node 7 finds

that it can combine its cluster with node 6’s cluster. It willsend a GROUPJOIN message to node 6. Upon

receiving such a message, node 6 finds that the cluster size will not exceed the upper bound, so it replies

with a ACKGROUPJOIN message to accept. Then, node 7 sends theSWITCH message to let node 8 join

node 6’s cluster.

When clusterheads 3 and 6 find no more changes in the clusters,they will begin the core selection phase.

Clusterhead 3 will identify itself and node 2 as the core. It will inform node 2 to become the new clusterhead

and other nodes in its cluster about the new clusterheads information. Clusterhead 6 will identify itself and

node 7 as the core. It will inform node 7 to become the new clusterhead and also inform other nodes in its

cluster about the new clusterheads information.

2.5.3 Balancing Workload of Clusterheads

After the construction of dual-clusterhead clusters, member nodes send data packets to the clusterheads to

process and send to the base station. In DCC, to save energy, each time, only one of the two clusterhead

in each cluster is active to collect data packets from members and aggregate them into one data packet to

send it to the base station. To balance the workload between the two clusterheads of a cluster, the active

role of clusterhead rotates between the two clusterheads ata predefined frequency. If an inactive clusterhead

receives data packets from a member node, it will forward them to the active clusterhead and inform the

member node about the current active clusterhead so that themember node can send data packets to the

active clusterhead directly.

2.5.4 Performance Evaluation

We used NS-2 [43] to implement DCC. We compare DCC-SH and DCC-MH with the widely used Lowest-

ID [14] and HEED [13], which extends the work of the popular LEACH [9]. Most of the simulation param-

eters are similar to those in [13] and are listed in Table 2.3 unless mentioned otherwise. We used a similar

radio model as that in [9]. In order to transmitk bits data over distanced, the power spent on the radio is

k(Eelec + Eamp × dn) J, wheren = 2 for d < d0, andn = 4 for d ≥ d0. Eamp varies according to the

39

distanced between the sender and receiver.Eamp = ǫfs whend < d0, while Eamp = ǫmp whend ≥ d0. To

receive a data packet of lengthk bits, the energy spent iskEelec J. Each node is randomly assigned aWeight

at the beginning of the simulations. To increase ties,Weightsare discretized into 20 levels. We use AODV

[45] as the underlying routing algorithm for multi-hop communications between nodes for DCC-MH. Each

data point reported is the average of 10 runs.

Table 2.3: Simulation Parameters for DCC
Parameter Value

Number of nodes 100
Network size 100 m× 100 m
Initial energy 2 J/battery

Simulation time 200 seconds
Communication range 30 m
Base station location (50,175)
Eelec 50nJ/bit

ǫfs 10pJ/bit/m2

ǫmp 0.0013pJ/bit/m4

Threshold distance(d0) 75 m

Characteristics of Clusters

8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

50

N
um

be
r o

f C
lu

st
er

s

Upper Bound of Cluster Size

 DCC-SH
 DCC-MH

Figure 2.22: Number of Clusters vs Upper Bound for DCC Performance

In Figure 2.22, we show that for a given upper bound of clustersize, the multi-hop DCC-MH forms

40

10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

N
um

be
r o

f C
lu

st
er

s

Communication Range (m)

 DCC-SH (Upper Bound: 10)
 DCC-MH (Upper Bound: 10)
 Lowest-ID
 HEED

Figure 2.23: Number of Clusters vs Transmission Range for DCC Performance

fewer clusters than DCC-SH. As the size bound increases, thenumber of clusters decreases as expected. In

Figure 2.23, we show that DCC-MH can form fewer clusters thanHEED and DCC-SH, and slightly more

clusters than the unbounded Lowest-ID approach. The numberof formed clusters remains almost stable

for DCC with the increase of communication range, while the performance of HEED is affected by the

communication range more.

8 10 12 14 16 18
0

2

4

6

8

10

12

S
ta

nd
ar

d
D
ev
ia

tio
n
of

 C
lu

st
er

 S
iz
e

Upper Bound of Cluster Size

 DCC-SH
 DCC-MH

Figure 2.24: Cluster Size Standard Deviation vs Upper Boundfor DCC Performance

41

10 20 30 40 50 60
0

2

4

6

8

10

12

Communication Range (m)

S
ta

nd
ar

d
D
ev
ia

tio
n
of

 C
lu

st
er

 S
iz
e

 DCC-SH (Upper Bound: 10)
 DCC-MH (Upper Bound: 10)
 Lowest-ID
 HEED

Figure 2.25: Cluster Size Standard Deviation vs Transmission Range for DCC Performance

In Figure 2.24 and Figure 2.25, we show the standard deviation of cluster size with different size bound

and communication range separately. DCC controls and balances cluster size better than Lowest-ID and

HEED, because the size-bounded nature of DCC confines the variance of clusters’ size.

8 10 12 14 16 18
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
um

be
r o

f H
op

s
fro

m
 C

lu
st
er

he
ad

s

Upper Bound of Cluster Size

 DCC-MH AVG
 DCC-MH MAX

Figure 2.26: Hops from Clusterheads vs Upper Bound for DCC Performance

In Figure 2.26 and Figure 2.27, we show that the average number of hops between members and their

42

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
um

be
r o

f H
op

s
fro

m
 C

lu
st
er

he
ad

s

Communication Range (m)

 DCC-MH AVG (Upper Bound: 10)
 DCC-MH MAX (Upperbound: 10)

Figure 2.27: Hops from Clusterheads vs Transmission Range for DCC Performance

closer clusterheads for DCC-MH is close to 1 and the maximum number of hops is around 3. This reflects

the short communication paths between members and clusterheads, or the compactness of clusters. Besides

DCC-MH’s size-bounded nature, the longer delay for a node tocommunicate with a farther away node

makes a node prefer joining nearby clusters.

8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

Upper Bound of Cluster Size

P
er

ce
nt

ag
e

of
 N

on
-s

in
gl

e-
no

de
 C

lu
st

er
s

 DCC-SH
 DCC-MH

Figure 2.28: Percentage of Non-single Clusters vs Upper Bound for DCC Performance

In Figure 2.28 and Figure 2.29, we show the percentage of non-single-node clusters. Single-node clus-

ters arise when a node is forced to form the cluster by itself because of not joining some cluster or not pairing

43

10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Communication Range (m)

P
er

ce
nt

ag
e

of
 N

on
-s

in
gl

e-
no

de
 C

lu
st

er
s

 DCC-SH (Upper Bound: 10)
 DCC-MH (Upper Bound: 10)
 Lowest-ID
 HEED

Figure 2.29: Percentage of Non-single Clusters vs Transmission Range for DCC Performance

with some node. DCC-MH has a higher percentage of non-single-node clusters than DCC-SH and close to

Lowest-ID, which is not size-bounded. The reason is that a node in DCC-MH can join a clusterhead more

than one hop away, while for DCC-SH a non-clustered node cannot get clustered if it cannot pair with any

other non-clustered node or join any cluster in the one-hop neighborhood. Both DCC-SH and DCC-MH

produce higher percentage of non-single-node clusters than HEED.

Message Overhead

8 10 12 14 16 18
0

500

1000

1500

2000

2500

Upper Bound of Cluster Size

N
um

be
r o

f M
es

sa
ge

s
fo

r C
lu

st
er

in
g

 DCC-SH
 DCC-MH

Figure 2.30: Number of Messages vs Upper Bound for DCC Performance

44

10 20 30 40 50 60
0

500

1000

1500

2000

2500

Communication Range (m)

N
um

be
r o

f M
es

sa
ge

s
fo

r C
lu

st
er

in
g

 DCC-SH (Upper Bound: 10)
 DCC-MH (Upper Bound: 10)
 Lowest-ID
 HEED

Figure 2.31: Number of Messages vs Transmission Range for DCC Performance

In Figure 2.30 and Figure 2.31, we show the number of messagesfor clustering with different size bound

and communication range separately. The multi-hop DCC-MH incurs more messages than DCC-SH to form

fewer and bigger clusters. The number of messages decreasesas the upper bound increases because of the

decrease of the amount of contentions. Because of the paringand core selection operations, DCC-SH and

DCC-MH incur more messages than Lowest-ID and HEED.

Workload of Clusterheads

8 10 12 14 16 18
0

1

2

3

4

5

6

7

Upper Bound of Cluster Size

A
ve

ra
ge

 C
lu

st
er

he
ad

 W
or

kl
oa

d DCC-SH
 DCC-MH

Figure 2.32: Average Clusterhead Workload vs Upper Bound for DCC Performance

45

10 20 30 40 50 60
0

10

20

30

40

50

60

Communication Range (m)

W
or

kl
oa

d
of

 C
lu

st
er

he
ad

s

 DCC-SH (Upper Bound: 10)
 DCC-MH (Upper Bound: 10)
 Lowest-ID
 HEED

Figure 2.33: Average Clusterhead Workload vs TransmissionRange for DCC Performance

In Figure 2.32 and Figure 2.33, we show the average workload of clusterheads with different size bound

and communication range separately. After the clustering,each member sends data packets to the cluster-

heads at a predefined frequency. Clusterheads will aggregate the received data packets and send them to the

base station. The workload is defined as the number of data packets a clusterhead receives and processes

during each interval. DCC has much lower workload of clusterheads than Lowest-ID and HEED. Clus-

terheads’ workload of Lowest-ID increases quicker than theother three approaches when increasing the

communication range, due to the fact that a clusterhead willattract more member nodes for the unbounded

Lowest-ID approach when the communication range is increased.

In Figure 2.34 and Figure 2.35, we show the standard deviation of clusterheads’ workload with different

size bound and communication range separately. The standard deviation of clusterheads’ workload for DCC-

SH and DCC-MH increases with the upper bound of cluster size.When increasing the communication range

of nodes, the standard deviation of clusterheads’ workloadof Lowest-ID and HEED increases much more

than that of DCC, while that of DCC remains nearly stable.

Energy Consumption

In Figure 2.36 and Figure 2.37, we show the average and maximum energy consumption of nodes during the

whole simulation interval separately with different communication range. DCC consumes more energy than

46

8 10 12 14 16 18
0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

Upper Bound of Cluster Size

S
ta

nd
ar

d
D
ev
ia

tio
n
of

 C
lu

st
er

he
ad

s'
 W

or
lo

ad DCC-SH
 DCC-MH

Figure 2.34: Standard Deviation of Clusterhead Workload vsUpper Bound for DCC Performance

10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Communication Range (m)

S
ta

nd
ar

d
D
ev
ia

tio
n

of
 W

or
la
od

 o
f C

lu
st
er

he
ad

s DCC-SH (Upper Bound: 10)
 DCC-MH (Upper Bound: 10)
 Lowest-ID
 HEED

Figure 2.35: Standard Deviation of Clusterhead Workload vsTransmission Range for DCC Performance

Lowest-ID approach because of the extra operations and message overhead for selecting two clusterheads

in each cluster. Because HEED has a higher percentage of single-node clusters, the single-node cluster has

to communicate to the base station by itself, which leads to more energy consumption. The maximum node

energy consumption for both DCC-SH and DCC-MH is less than Lowest-ID and HEED, which shows the

effectively balanced energy consumption of DCC. We can infer that DCC will last longer before the first

node depletes its energy. Because of the energy consumptions of intermediate forwarding nodes, DCC-MH

consumes more energy than DCC-SH.

47

10 20 30 40 50 60
0.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

A
ve

ra
ge

 N
od

e
E

ne
rg

y
C

on
su

m
pt

io
n

(n
j)

Communication Range (m)

 DCC-SH (Upper Bound: 10)
 DCC-MH (Upper Bound: 10)
 Lowest-ID
 HEED

Figure 2.36: Average Node Energy Consumption vs Communication Range for DCC Performance

2.6 Typed Clustering (TC) for Mobile Ad Hoc Networks

2.6.1 Type-related Logic for Clustering

Based on the node type information, we can impose more meaningful and more useful constraints on clus-

tering. In this section we describe the possible constraints that can be imposed on clustering and how to

program these constraints using the specification language.

A cluster can be viewed as a collection of typed nodes that satisfy given constraints and are grouped

together. For instance, a helicopter carrying a people can be considered a cluster (of two nodes). Later, when

the helicopter picks up one more people, the cluster then contains three objects. In our system, clusters do

not overlap; i.e., one node cannot appear in more than one cluster at the same time. The cluster information

is maintained by the clusterhead in each cluster. Because ofnodes moving, the constraints of some clusters

may not be satisfied. In this case, the cluster will break up and all nodes become clusterhead by themselves.

To be efficient to describe the clustering process, the specification language should provide the following

utilities.

It is desired to get the number of nodes of a designated type. “#” is a prefix unary operator that returns

the number of nodes of designated types. For example, for a cluster containing three types of nodes,A, B,

andC, #(A) will give the number ofA objects in the cluster.

In some cases, we need to specify the existence of certain nodes that satisfy the given constraints in the

48

10 20 30 40 50 60
0

1x108

2x108

3x108

4x108

5x108

6x108

M
ax

im
um

 N
od

e
E

ne
rg

y
C

on
su

m
pt

io
n

(n
j)

Communication Range (m)

 DCC-SH(Upper Bound: 10)
 DCC-MH (Upper Bound: 10)
 Lowest-ID
 HEED

Figure 2.37: Maximum Node Energy Consumption vs Communication Range for DCC Performance

cluster. Adopting the idea of SQL used in database system, weuseSelect statement to check whether

there exists such a node that satisfies given requirements inthe cluster. The syntax of theSelect statement

is similar to that of the SQLSelect statement. TheWhere clause is a Boolean expression that determines

which node to choose. In some other cases, we need to impose the constraints on all nodes in the cluster.

TheSelectEach statement’s syntax is similar to theSelect statement, except that it is used to check

whether all nodes in the given cluster match the constraintsin theWhere clause.

2.6.2 Example Clustering Scenario

To make the description of TC more concrete, we give an example clustering scenario that can be specified

using TC. In this example, we have three types of nodes in the network,A, B, andC. For a noden, Type(n)

gives the type information ofn. We define that priority of a typet node to be a clusterhead as,Priority(t).

Nodes of the same type have the same priority. The higher a node’s priority is, the more suited the node is

to be a clusterhead. For two nodes of the same priority, the node with higherWeightvalue is more suited

to be a clusterhead. To balance the cluster size and alleviate the workload of clusterheads, the constraint of

each cluster bound the number of each type of nodes within a given range. The maximum number of typet

nodes are given as,Bound(t). That is the number of nodes of typet should be less or equal toBound(t),

which can be expressed as#(Type(t)) < Bound(t).

49

Construction of Clusters

In this section, we describe TC’s multi-hop and hop-boundedclustering process. We assume that all nodes

have the same communication range. Each node has a unique ID,a type, and aWeightvalue. TheWeight

can represent the node’s capability, resources, and so on. The greater a node’sWeightis, the more capable

that node is and more suited to be a clusterhead.

Initially, all nodes are clusterheads and periodically broadcast CLUSTER messages containing the ID,

type,Weight, the number of hops that the message has traveled, and the cluster size information.

For a node to join another cluster, TC allows two possible operations,Join andMerge. The difference

between them is that if a node usesJoin, it just requests to become a member of the new cluster by itself.

Mergeis only used by a clusterhead with some members in its cluster. The clusterhead needs to inform all

its members to join the new cluster. EmployingMergeoperation can reduce members’ attempts to find new

clusters to join, and the changes.

If x, which is a clusterhead by itself, finds that clusterheadz’s type is more suitable to be a clusterhead

thanx, or Weight(z) is greater thanWeight(x), and after joiningz’s cluster the cluster constraint is still

satisfied, it will send a JOIN message toz to request toJoin z’s cluster. If clusterheady, whose cluster

size is greater than one, finds that a nearby clusterhead,z, is more suitable to be a clusterhead based on the

type information or they are of the same type andWeight(z) is much greater thanWeight(y) (exceeding

a thresholdδ) and after combining the two clusters, the new cluster stillsatisfies the cluster constraints,y

usesMergeto combine withz’s cluster by sending a MERGE message containing its clusterinformation.

The smallerδ is, the more likely clusters are to combine with each other, leading to fewer clusters and more

changes. There is a tradeoff between stability and sensitivity to topology changes.

To reduce the cluster changes happened in the network, we do not allow a member of a cluster to actively

leave the current cluster and join another cluster. This canonly be performed through theMergeoperation.

On receiving the JOIN message fromx, if z finds that the new cluster’s constraints will still be satisfied,

it will reply with an ACKJOIN message to accept. Otherwise,z will send a NOJOIN message to refuse.

On receiving the MERGE message fromy, if z finds that the new cluster’s constraints will still be

satisfied, it will send an ACKMERGE message toy to accept. Otherwise,z will send a NOMERGE message

to refuse. On receiving the ACKMERGE message,y will inform members in its cluster to joinz’s cluster.

50

Members more thanH hops away fromz will join some other cluster or become a clusterhead.

After sending out the JOIN or MERGE message, if a node cannot receive any reply after a waiting

period, it will assume that the message has been lost and try to join some other cluster or remain in its

cluster based on itsWeight.

2.6.3 Clustering For The Example Scenario

In this section, we describe the specific clustering processfor the example scenario. The broadcasted CLUS-

TER messages include information about the number of each type of nodes in the cluster contains. Ifx,

which is a clusterhead by itself, finds thatPriority(z) > Priority(x), or Priority(z) = Priority(x)

andWeight(z) > Weight(x), and after joiningz’s cluster, the new cluster’s#(Type(x)) is within the

bound,Bound(Type(x)), it will send a JOIN message toz to request toJoin z’s cluster. If clusterheady,

whose cluster size is greater than one, finds that a nearby clusterhead,z, Priority(z) > Priority(y), or

Priority(z) = Priority(y) andWeight(z) is much greater thanWeight(y) (exceeding a thresholdδ)

and after combining the two clusters, for each node of typet, the constraint#(t) ≤ Bound(t) is satisfied,

y usesMergeto combine withz’s cluster by sending a MERGE message containing its clusterinformation.

On receiving the JOIN message fromx, if z finds that#(Type(x)) ≤ Bound(Type(x)) for the new

cluster, it will reply with an ACKJOIN message to accept. Otherwise,z will send a NOJOIN message to

refuse.

On receiving the MERGE message fromy, if z finds that the constraint#(t) ≤ Bound(t) is satisfied, it

will send an ACKMERGE message toy to accept. Otherwise,z will send a NOMERGE message to refuse.

On receiving the ACKMERGE message,y will inform members in its cluster to joinz’s cluster. Members

more thanH hops away fromz will join some other cluster or become a clusterhead.

2.6.4 Maintenance of Clusters

Nodes exchange messages to reflect changes in topology. Eachclusterhead broadcasts CLUSTER messages

periodically. Each member responds with HELLO messages andforwards its clusterhead’s CLUSTER

messages that are withinH hops away from the clusterheads. Thus, members in other clusters cannot be

in the communication paths between the clusterheads and members, causing inconsistency. Because of

the broadcast nature of wireless communications, nodes in the direct vicinity of a cluster can still receive

51

CLUSTER messages and have the chance to join. The clusterhead is also responsible to check whether the

constraints of clusters are satisfied or not. For the examplescenario, the clusterhead needs to check whether

the constraint for node typet, #(t) ≤ Bound(t) is satisfied or not. If the constraints are not satisfied

because of nodes’ moving, the cluster will break up. All nodes become clusterheads by themselves just as

the beginning the clustering.

If a member does not receive a CLUSTER message from its clusterhead afternallowed CLUSTER mes-

sage intervals, it assumes that its clusterhead cannot be contacted and will either compete as a new cluster-

head or join some other cluster based on itsWeight. If a clusterhead does not receive a HELLO message

from a member afternallowed HELLO message intervals, it assumes that the member cannot be contacted

and will remove it from the member list.

Because of congestions, a CLUSTER message may have traveledmore hops before reaching a member

even though the clusterhead does not move away. This will cause a member’s incorrect update of the

number of hops away from the clusterhead. To distinguish theactual movement of nodes from congestions,

if a member detects that a CLUSTER message has traveled more hops than the previously received one,

it will check with the neighbor from which it receives the previous CLUSTER message. If that neighbor

also becomes more hops away from the clusterhead, the memberwill update the number of hops away

information accordingly. Otherwise, it will not update.

2.6.5 Message Overhead

For a network consisting ofn nodes andm clusters, during each CLUSTER message interval, because a

CLUSTER message will be forwarded by members in that cluster, there aren CLUSTER messages. A

HELLO message will be forwarded by each node on the path between the member and the clusterhead. So

in response to the CLUSTER messages, there are at mostH(n − m) HELLO messages.

2.7 Summary

In this chapter, we describe the various proposed clustering approaches, SMC, BAC, DCC, and TC, for

MANET and WSN. All the proposed clustering approaches form and maintain clusters using only local

topology information.

By bounding the size of each cluster, SMC alleviates the clusterheads’ workload. It achieves fewer

52

clusters for a given upper bound, which is a desirable property for large scale networks. AdoptingRela-

tiveWeightachieves short communication paths between clusterheads and members. Besides the multi-hop

nature of clusters,GroupJoinfurther reduces the number of cluster changes. Simulation results show that

the message overhead of SMC is well controlled.

To reduce the message overhead for clustering, BAC makes members forward the maintenance mes-

sages probabilistically based on network conditions. BAC’s multi-hop nature andMergeoperation reduce

the changes in case of nodes’ movement. Different from theRelativeWeightof SMC, BAC achieves the

compactness of clusters by directly bounding the number of hops between members and clusterheads. BAC

achieves better performance on construction and maintenance of clusters, adaptivity to network conditions,

and effectiveness in reducing messages with nearly no performance degradation.

By bounding the size of each cluster and rotating the active role between the two clusterheads in each

cluster, the workload of clusterheads, nodes’ energy consumption, and cluster size are better balanced for

DCC than Lowest-ID and HEED. The quasi-one-hop DCC-SH formsmore clusters than multi-hop DCC-

MH, while the multi-hop forwarding of messages in DCC-MH consumes more energy than DCC-SH and

incurs more messages. Despite the multi-hop nature, DCC-MHalso achieves compactness of clusters be-

cause longer delay in receiving messages from farther away clusterheads makes nodes join closer clusters.

TC takes node type information into account while clustering them to impose more meaningful and more

useful constraints on clusters. Based on our recent work on specification language for network computing,

we describe how to depict the constraints using the specification language. TC forms and maintains clusters

using only local topology information. TC’s multi-hop nature andMerge operation reduce the changes

in case of nodes’ movement. TC achieves the compactness of clusters by directly bounding the number of

hops between members and clusterheads. To make the description of TC more concrete, we give an example

application scenario, in which each type of nodes in a cluster are bounded within a given upper limit. We

describe how to construct a specific clustering protocol forsuch an application.

53

CHAPTER 3

SPECIFICATION LANGUAGE (NETSPEC) FOR GROUPING OVER NETWORKS

3.1 Overview

With the development in technologies, computers are becoming smaller and more powerful, while wireless

communications are becoming faster and more reliable. All these allow users to move around while still

be able to have access to computing power and network resources. This has made applications of network

systems feasible [51].

It is difficult to design, build, and deploy distributed software systems from network computing systems.

Existing approaches to building software system for network computing systems are not proper to handle

this, because of the following two challenges as we mentioned in Chapter 1.

One challenge to program for network computing systems is that, programmers may deal explicitly with

the under layer network utilities using low level programming languages like C++. Thus programmers focus

more on under layer details than functionalities of applications.

Device heterogeneity is another challenge brought by network computing. It is not practical to have

all devices in the network system of the same type. Grimm et al[5] propose that programming distributed

applications is increasingly unmanageable because of heterogeneity of devices and system platforms. They

also point out that this can lead to duplicated different versions of the same application for different compu-

tation devices due to the fact that some existing applications are typically developed for specific devices or

system platforms.

In distributed computing systems, middlewares like CORBA [52] and Java RMI [6] have been developed

to provide a uniform access to resources independent of under layers. Adopting a similar idea, by using

high level specification language, programmers can encode all of the necessary functions in one program. A

compiler then translates the program into network protocol, which is then deployed on under layer network

platforms. This can solve the challenges brought by device heterogeneity in network computing environment

and increases the portability and reusability of the application codes. Further, programmers can focus on the

functionalities of applications instead of under layer details.

Taking all the above issues into account, we propose NetSpec, a high-level specification language for

54

network computing. The work is based on our group’s previouswork [7] and to make it more general

and more application-oriented. The challenge is to make NetSpec powerful enough to encode complicated

applications, and yet simple enough to efficiently parse into network protocols. The targeted applications for

NetSpec are network systems containing computing devices that can move in the system area. The identities

of devices are not critical to the applications, while types, or functionality of devices matters.

NetSpec is a strongly typed language. Each data type is predefined as part of the programming language.

All constants and variables defined for a given program must be described with one of the data types. Integer,

Real, Boolean, and String are primitive types. Constants inNetSpec are variables whose values cannot be

changed over the execution period of the system.

The basic building blocks of NetSpec areobjects, which are logical representations of computing and

communicating entities in network computing systems. An object is an instance of aclass. The class con-

struct of NetSpec is similar to the“struct” in C, as it definesan abstract representation of a real world object

with attributes. The aggregate of all attributes of an object represents its current state (Note that in BCS

[7], objects do not have states). One object’s state is different from another by the values of attributes. The

attribute values are initialized by physical entities themselves in the network system to reflect the character-

istics of them in reality.

Objects are grouped into bonds to show relations among them.A bond 1 is a collection of objects that

satisfy a given constraint and are grouped together. For instance, a helicopter carrying a people can be

considered a bond (of two objects). Later, when the helicopter picks up one more people, the bond then

contains three objects. In our system, bonds do not overlap;i.e., one object cannot appear in more than one

bond at the same time. In the network system, it is not practical to adopt a centralized approach to storing

bond information. Adopting a distributed method, the bond information is maintained by objects in each

bond. Thus, we do not allow the existence of empty bonds for the reason that there is no object to store the

empty bond’s information.

In NetSpec, a network system has some transitions to operateon bonds and objects. Transitions allow

objects to change their states, form new bonds, or join, switch and leave bonds. In our system, transitions

are fired non-deterministically. A transition, similar to abond, has some Boolean expressions that defines

1We interchangely use the term bond and group in this dissertation.

55

its constraints. Once the constraints have been met, the transition can be executed by a run-time mechanism.

If two or more transitions are enabled simultaneously, a non-deterministic choice will occur and only one

of them will be executed. To ensure the consistency and correctness of the system, operations of transitions

are atomic. A transition can be fired only when its constraints are met. The detailed semantics of a NetSpec

specification can be found in the next Chapter.

The rest of the this chapter is organized as follows. Section3.3 describes the illustrated scenarios used

throughout the paper to describe how to program such applications using NetSpec. Section 3.4 describes the

computation model of NetSpec. Sections 3.5, 3.6, and 3.7 describe the essential parts of NetSpec. Section

3.8 contains the summary. In the appendix, we give the syntaxof NetSpec and the complete specifications

of the three example applications.

3.2 Related Work

Our model of network computing system is closely related to pervasive computing. Weiser [53] defines

pervasive, or ubiquitous computing as the creation of environments saturated with computing and commu-

nication capability and gracefully integrated with human users. The basic idea behind network computing

is to deploy different kinds of computing devices throughout the designated working or living spaces [5]. In

this section, we summarize the current state of pervasive programming approaches, which are also network

computing system involving large scale networks. A key issue that programming approaches are trying

to address application development complexity too adequately deal with heterogeneous devices, varying

degrees of connectivity, and dynamic data sources.

Saif et al. [54] propose that users express the requirementsas an abstract high-level goal. Then the sys-

tem automatically satisfy this goal by assembling, on-the-fly, an implementation that utilizes the resources

currently available to the user. This automatic runtime adaptation is the common technique used to convert

the device-independent representation to a device-specific representation. They build O2S to offer a general-

purpose architectural framework for engineering goal-oriented adaptive systems. Goals are formalized as a

language construct and used to guide thee automatic construction of a component-based system. Heuristics

are used to choose the a proper implementation of the goal based on the estimate of the most acceptable im-

plementation choice. One of the pitfalls of this approach isits reliance on automatic runtime adaptation of

56

the device-independent representation. It can work when the content is simple or when the device variations

are not too great.

Grimm et al. [5] introduce a system architecture for pervasive computing, calledone.world. This ar-

chitecture provides an integrated and comprehensive framework for building pervasive applications. They

argue for a single application programming interface (API)and a single binary distribution format that can

be implemented across the range of devices in a pervasive computing environment. This makes it possible

to program once in common API. A single, common binary formatenables the automatic distribution and

installation of applications.

Kagal et al. [55] propose a policy language designed for pervasive computing applications that is based

on deontic concepts and grounded in a semantic language. It consists of a few flexible constructs to allow

different kinds of policies to be specified. It allows the security functionality to be modified without changing

the implementation of the entities involved. This is similar to NetSpec, while NetSpec focuses on the

functionalities of the applications, instead of security policies.

Java’s write-once-run-everywhere property allows objectcode to be moved and dynamically loaded into

a process. Based on this, the Jini system aims to provide the minimal set of rules to allow clients and services

to find each other and interact [56].

Sivaharan, Blair, and Coulson [57] propose GREEN, a highly configurable and reconfigurable publish-

subscribe middleware to support pervasive computing applications. They use an extensible subscription

language, FEL to enable the definition of filters for subscription purposes.

Coelho, Anido, and Drummond [58] propose QuickFrame, a development framework, which has a spec-

ification language to define application interface and checkspecific device capabilities. Both QuickFrame

and GREEN’s specification language is only used to provide a universal method to describe the interface or

subscription, instead of specification of system behavior.

Roman et al. [59] propose the Gaia computation environment,which defines a programming envi-

ronment based on the Model-View-Controller abstraction. Using this abstraction, applications in Gaia are

partitioned into four parts: a model to encode the logic of the application, a view to expose the model’s

state, a controller to map events in the environment of the application as input messages to the model, and a

coordinator responsible for storing the bindings of different components in the application’s model as well

57

as mechanisms to access and alter these bindings. Gaia uses ahigh level scripting language, LuaOrb, to

capture events and trigger specific actions when certain conditions are met. Thus, compared to NetSpec,

LuaOrb’s function is limited.

Taking Gaia as a meta-operating system, Ranganathan et al. [60] propose Olympus as a high-level

programming model for pervasive computing. It allows developers to program pervasive computing envi-

ronment without dealing with how common operations are implemented by the under layers. Developers

program in terms of virtual entities. The framework takes care of discovering appropriate entities that satisfy

developer constraints as well as other constraints in ontologies and user and space policies. The framework

also implements some commonly used operations, which are specified as operators in Olympus. Programs

developed on the Olympus model consist of two main segments,virtual entities and high-level operators.

Olympus takes a more centralized approach to control the entities globally. It does not specify how entities

interact with each other distributed.

Carlan et al. [61] propose Aura, which defines a high-level abstraction,task layer, to representing user

intent. Aura’s architecture is focused on adaptation and adjusting performance dynamically.

Chen and Kotz [62] propose thesolar system framework that allows resourdes to advertise context-

sensitive names and for applications to make context-sensitive name queries. It has a specification language

that allows composition of context processing operators tocalculate the desired context.

3.3 Illustrated Scenarios

To make the description of NetSpec more concrete and more meaningful, we use example scenarios to

illustrate how to program them using NetSpec. These examples are used throughout the chapter.

In the helicopter rescue application, the system automatically assigns a helicopter to pick up a sick

people and carry him or her to hospitals. When a helicopter carrying a sick people finds that there is a

hospital available, it will send that sick people to that hospital and leave the hospital. When a sick people

becomes healthy, he or she will leave the hospital.

The highway information system application is to provide aninfrastructure to share highway traffic

information efficiently. Researchers recently even propose vehicular ad hoc networks (VANETs) [63] to

address the communication issues for future vehicular networks. In this highway information system, some

58

special vehicles, information centers, are designated to collect surrounding traffic information and collabo-

rate with each other to exchange the information and disseminate it to vehicles on the road. When a vehicle

comes to the communication range of the information center,it will get the traffic information automatically.

The purpose of the pervasive marketing system application is to deploy an infrastructure, based on which

customers and venders can trade goods automatically. It hasfour kinds of objects: customer, bank, vender,

and goods. Initially, each customer will get some initial money from a bank. Then the customer will use

this amount of money to get some goods from venders. All goodsshould be got from certain venders.

3.4 Computation Model

Non-deterministic computation. The computation model of NetSpec is based on non-deterministic state

machines and assumes no maximal parallelism (Note that P systems [8] assume maximal parallelism). If

two or more transitions are enabled simultaneously, a non-deterministic choice will occur and only one of

them will be executed. Considering a network computing model that will eventually be implemented over

a network, the cost of implementing the maximal parallelism(which requires a global lock) is unlikely

realistic, and is almost impossible in real unreliable networks. Hence, in our system, transitions are fired

asynchronously.

Sequential And Local Parallel Computations. In a network system, inside a transition, to utilize the power

of parallel computation, programmers can specify some local statements to be executed in parallel, provided

that the sequence of the statement execution does not affectthe final result.

Persistence of Objects. The fundamental building blocks of network systems are objects, which represent

physical entities in reality. Thus, in our system, objects cannot evolve into other objects. All objects exist

from the beginning to the end.

3.5 Data Type

NetSpec is a strongly typed language. Each data type is predefined as part of the programming language

and all constants or variables defined for a given program must be described with one of the data types.

3.5.1 Primitive Data

Integer, Real, Boolean, and String are primitive types. Other complex types can be built based on these.

Primitive type is usually used to define attributes of class type, which will be discussed in section 3.5.3.

59

The primitive type Integer represents the set of integers asdefined in mathematics: all positive and

negative natural numbers, plus zero. The implementation ofthe language may somehow limit this set

depending on the memory allocated for value, but for the purposes of NetSpec specification, we assume that

the Integer type encompasses all mathematical integers.

Similarly, the primitive type Real represents the set of real numbers as defined in mathematics, which can

be defined informally as any number that can be given a finite orinfinity decimal representation. Again, the

implementation of the language may limit this set further toa more finite set of numbers, but this language

specification will assume that Real encompasses all real numbers.

String represents a sequence of zero or more (any size, though not infinite) characters, where a character

is a symbol that can be given a unique numerical representation.

The primitive type Boolean encompasses a set of two distinctvalues: “true” and “false”. Every Boolean

value is either “true” or “false”, making it the simplest of the primitive types. Often, Boolean values are

used to perform logical operations.

<primitive_def> ::= <type> <id> ’;’

The above is the formal syntax of primitive type definition.<type> can be Integer, Real, Boolean, or

String. id is the name of the variable.

Boolean healthy;

indicates whether a people is healthy or not in the helicopter rescue system.

Integer plate_number;

indicates the plate number of a vehicle in the highway information system.

3.5.2 Constant

Constants in NetSpec are variables whose values can not be changed over the execution period of the system.

A user can define constants with theconst keyword preceding the definition of Integer, Real, Boolean,and

String variables.

<const_def> ::= ’const’ <type> <id> { ’=’ <literal> } ? ’;’

60

In the constant type definition,<type> can be Integer, Real, Boolean, or String.<literal> specifies the

initial value of the constant. In some cases, the initial value is set by the user. In some other cases, the initial

value is set by the under layer system.

For the pervasive marketing application,

const Integer initial_money=1000;

specifies the initial amount of money each customer can have.

We can also specify the attributes of an object to be constant, which means that after the initialization of

the constant by the system, the value remains unchanged.

In the helicopter rescue system, forHelicopter class we have

const Integer capacity;

to specify the maximum number of people a helicopter can hold. Usually, a helicopter’s capability is given

and remains unchanged during the life cycle of the program. Thus we define it as a constant.

3.5.3 Class and Object

The basic building blocks of a network system specified by NetSpec areobjects, which are logical represen-

tations of physical computing and communicating entities.An object is an instance of aclass. The aggregate

of all attributes of an object represent its current state. One object’s state is differentiated from another by

the values of attributes. The attribute values are initialized by physical entities themselves in the network

system to reflect the characteristics of them in reality. Transitions discussed in section 3.7 can change the

values of attributes.

The following is the syntax of the definition of a class.

<class_def> ::= ’Class’ <id> ’{’ {<primitive_def> | <const _def>} * ’}’

As an example, in the following we give the definition of threeclasses defined in the helicopter rescue

system:People , Helicopter , andHospital .

Class People {

Boolean healthy;

61

const Integer age;

}

A People object represents a physical people in reality.healthy attribute indicates the people is

healthy or not. We also defineage attribute to indicate the age of a people.

Class Helicopter {

Integer color;

const Integer capacity;

}

defines anHelicopter class. Thecolor attribute specifies the color of the helicopter andcapacity

attribute specifies the number of people it can hold. Usuallythe capacity of a helicopter is given and fixed

for a specific helicopter, thus we make it a constant. The initialization of the constant attribute is done by

the under layer utilities.

Class Hospital {

Integer ID;

const Integer capacity;

}

defines aHospital class. Thecapacity attribute indicates the number of people it can host. This is

also a constant.

From the formal definition of class and the three examples, wecan see that the class definition of NetSpec

is similar to a “struct” in C, as it defines an abstract representation of a real world object through a series

of attributes. A class is a composition type that contains one or more primitive or constant values. Class

attributes may only be primitive or constant definitions (i.e. composition of classes within other classes is

not possible). We can use the member-of operator, “.”, to access any of the attributes of an object. Class

definitions allow us to abstract real world objects, but in NetSpec, we never actually instantiate new objects,

nor do we often care about an object’s identity, which is different from the “struct” in C, because of the

fundamental difference in the targeted applications.

62

In the following we define the two classes used in the highway information system, vehicle and infor-

mation center.

Class Vehicle {

Integer plate_number;

}

defines aVehicle class. Theplate number attribute indicates the plate number of the vehicle.

Class Infocenter {

Integer capability;

}

defines theInfocenter class to represent information center. It has thecapability attribute to indi-

cate the capability of the information center. The larger the capability value is, the more capable the

information center is.

In the following we describe the definitions of the three classes used in the pervasive marketing system:

bank, customer, and vender.

Class Bank {

Integer money;

}

defines aBank class. Themoney attribute indicate the amount of money the bank has.

Class Customer{

Integer money;

Boolean initialized;

}

defines aCustomer class. Theinitialized attribute indicates whether the customer has got some

initial amount of money from a bank.

Class Vender{

Integer money;

}

63

defines aVender class. Themoney attribute indicates the amount of money the vender currently has.

3.6 Set and Bond

In NetSpec, operations are performed on objects. Thus, we need to indicate which objects should perform

the designated operations. It is inconvenient and sometimes impossible to enumerate every single involved

object. In our network computing system, an object is typed but not addressed. Thus it is desirable to

organize objects of the same or close properties into sets orbonds and operate on them. Both set and bond

are used to specify a group of objects. The difference between them is that in a set, all objects are of the

same type and there is no constraint on the relations among the objects. While for a bond, it can contain

objects of different data types and there are constraints onthe relations among objects in the bond.

3.6.1 Set

Whenever we define a new class type, the language will also provide a set type associated with the class. A

set is an aggregation of instantiations of a single class type. The following is a formal definition of a set

<set_type> ::= <id> ’Set’

When we define a class type of<id> , <id> ’Set’ is the set type that contains the objects of type<id> .

Every time a new class type is defined, an associative set typeis also created for the class. Users do not need

to explicitly declare the set type. The order and identity ofthe objects within a set are not known by the set

itself; rather, the set merely serves as a way to group objects of the same class type together.

In the helicopter rescue application, after we definePeople class,People Set represents a collec-

tion of People objects. Similarly, we haveHelicopter Set andHospital Set . For the high-way

information application, we haveInfocenter Set andVehicle Set . For the market application, we

haveBank Set , Customer Set , Vender Set , andGoods Set .

3.6.2 Bond

A bond is a collection of objects that satisfy given constraints and are grouped together. Each bond has

an argument list to specify the involved objects. We use setsin the argument list to specify the involved

objects. Thus, a bond can be viewed as a super set that contains several subsets of objects. The body of

a bond’s definition consists of a sequence ofBondSelect or BondSelectEach statements to define

64

relations among objects that are specified. All involved object instances are subject to these constraints. In

each of theBondSelect or BondSelectEach statement, the<expr> can only reference the variable

in its own statement or those in the header of the bond definition. In the following is the formal definition

of bond types.

<bond_def> ::= ’Bond’ <id> ’(’ <set_type> <id> {’,’ <set_ty pe>

<id>} * ’)’ ’{’ <bond_select_stmt> * <expr> ’;’ ’}’ }

In the following, we describe the two bonds used in the helicopter system.

Bond People_Helicopter (People Set ps, Helicopter Set hes) {

BondSelectEach (People p) From ps

Where p.healthy==false && #(ps)>=1;

BondSelect (Helicopter h) From hes

Where #(hes)==1 && #(ps) <=h.capacity;

}

The constraint ofPeople Helicopter bond requires that it should have one helicopter and at least

one people. The number ofPeople objects in the bond should also within the capacity of the helicopter.

Objects in the bond are divided into two sets,ps andhes . BondSelect operation non-deterministically

chooses aHelicopter object to operate.BondSelectEach operation specifies that for allPeople

objects, the constraints should be satisfied.BondSelect andSelectEach are explained in more details

in Section 3.6.3.

Bond Hospital_People (Hospital Set hos, People Set ps) {

BondSelectEach (People p) From ps

Where p.healthy==false || p.healthy==true;

BondSelect (Hospital h) From hos

Where #(ps)<=h.capacity && #(hos)==1 && #(ps)>=1;

65

}

Hospital People bond specifies that one hospital and at least one people can form the bond. The

number of people should be within the capacity of the hospital. Because a hospital can also host people who

are just getting well, we have the constraint

(p.healthy==false||p.healthy==true),

which is simply true, to allow both healthy people and sick people to stay in the hospital.

From the above syntax definition and examples, we can see that<set type> <id> specifies the set

of objects that can be contained in this bond. TheBondSelect , BondSelectEach statements, and the

expressions specify the constraints on objects in the bond.

In some applications, we need to check whether an object belongs to a bond or not. Thus each object

has a default attributeBoolean bonded to indicate whether the object is bonded or not. If an object

has not become a member of any bond, itsbonded attribute’s value is false. Otherwise, it is true. The

value ofbonded is set by the system instead of the user. Programmers cannot change it explicitly in the

program. Usually the value ofbonded is set when executing the operation ofJoin, Leave, or Switch, which

are described in Section 3.7.

3.6.3 Basic Operations on Set and Bond

is a prefix unary operator that returns an Integer expressionas the number of objects in the set. For

example, forPeople Set ps , #(ps) will give the number ofPeople objects inps .

The bond and set type can specify a group of objects. In some operations, we also need to specify the

objects involved.

A BondSelect statement arbitrarily chooses an object from the set provided. Since objects are not

identifiable or enumerated within sets and bonds, this is theonly way to choose and operate on individual

objects in a set or bond. The syntax of theBondSelect statement is similar to that of the SQL Select

statement. TheWhere clause is a Boolean expression that determines which objectto choose. If multiple

objects in the set meet the constraints provided, one is chosen arbitrarily. Alternatively, theWhere clause

can be omitted to randomly select any one object. Every identifier used in a transition must first be bound

by aBondSelect statement. TheBondSelectEach statement’s syntax is similar to theBondSelect

66

statement, except that it is used to select all objects within the given set that match the constraints in the

Where clause.

In the following we give the formal syntax ofBondSelect andBondSelectEach statements.

<Bond_Select_stmt> ::= <bondselect> ’(’ <type> <id> {’,’ < type>

<id>} * ’)’ ’From’ <location> {’Where’ <expr>}? ’;’

<bondselect> ::= ’BondSelect’ | ’BondSelectEach’

3.6.4 More Bond Examples

In this section, we describe the other bonds used in the illustrated examples.

Bond Infocenter_Vehicle (Infocenter Set is, Vehicle Set vs) {

BondSelect From Where #(is)==1 && #(vs)>=1;

}

Infocenter Vehicle bond specifies that one information center and at least one vehicle can form the

bond.

Bond Vender_Goods(Vender Set vs, Goods Set gs) {

BondSelect From Where #(vs)==1 && #(gs)>=1;

}

Vender Goods bond specifies that one vender and at least one goods can form this bond.

Bond Customer_Goods(Customer Set cs, Goods Set gs){

BondSelect From Where #(cs)==1 && #(gs)>=1;

}

Customer Goods bond specifies that one customer and at least one goods can form this bond.

3.7 Transitions

Transitions operate on bonds and sets of objects. It allows objects to change their state, form new bonds, or

join, switch and leave bonds. In our system, transitions arefired non-deterministically. A transition, similar

67

to a bond, has a Boolean expression that defines its constraint. To ensure the consistency and correctness

of the system, the operations of transitions are atomic. Theconstraints of the transition and the bonds that

are involved will only be check before and after the firing of the transition. During the execution of the

transition, relations among objects are being adjusted. Inthis process, some constraints may not be satisfied.

Once the constraints of a transition have been satisfied, it can be executed by the run-time mechanism.

If two or more transitions are enabled simultaneously, a non-deterministic choice will occur and only one of

them will be executed.

<transition_def> ::= ’Transition’ <id> ’(’ <transition_p aram> <id>

{’,’ <transition_param> <id>} * ’)’ ’{’

<select_stmt> * ’if’ ’(’ <expr> ’)’ ’{’

<transition_stmt> * ’}’ ’}’

The above is the syntax of the definition of a transition. In the following we describe one of the transi-

tions in the helicopter rescue application.

Transition T1 (People Set ps, People_Helicopter ph) {

Select (People p) From ps;

Select (Helicopter h) From ph;

if(p.healthy==false && #(ph.ps)<h.capacity)

{

p join ph;

}

}

T1 states that when an unbonded sick people finds that there is aPeople Helicopter bond and the

bond is not full, the sick people will join theph bond and become bonded. The two arguments passed to the

transition arePeople Set andPeople Helicopter , which specify the involved objects. The transi-

tion first selectsPeople objectp. If the constraint(p.healthy==false && p.bonded==false)

is true,p will join the ph bond. Forph bond to accept the join request, it needs to be not full. Thus we will

68

check the constraint#(ph.ps)<h.capacity . #(ph.ps) gives the number ofPeople objects in the

ph bond.

Thus we can see that in the syntax of the transition definition, <transition param> specifies

the involve objects, using sets or bonds. TheSelect statements choose the individual objects to per-

form the operations. Theif statements specify the constraints to fire it. The<expr> of the if state-

ment is a boolean expression that specifies the constraints among the involved objects and bonds. The

<transition stmt> describe how to adjust the relations among the involved objects and bonds. It can

contain thenew statement to create new bonds.

A Select statement arbitrarily chooses an object from the set provided. The syntax of theSelect

statement is the same asBondSelect . Below we give the formal definition ofSelect statements.

<select_stmt> ::= <Select> ’(’ <type> <id> {’,’ <type> <id> } * ’)’

’From’ <location> {’Where’ <expr>}? ’;’

The <type> <id> specifies the chosen objects’ handles.<location> is the set of objects or bonds.

The<expr> in aSelect statement is a boolean expression that defines the constraints on the objects that

can be chosen.

The difference betweenSelect andBondSelect is thatSelect is used to choose an operational

objects from a given set or bond. In fact,BondSelect defines an∃-quantifier.

For example, if we want to operate on aPeople object with age above 18, we can program as:

Select (People p) From ps Where p.age>18

If we want to choose aPeople object with the name Smith from thePeople Set ps , we can use the

following codes:

Select (People p) From ps Where p.name==Smith

A new bond can be created with a “new” statement and so long as its constraints are satisfied, the bond

remains. Because we do not allow empty bonds, when creating abond, we should specify the objects that

will form the bond.

69

new Bond People_Helicopter ph(p, h);

creates a newPeople Helicopter bond instanceph with two objects,p andh. An example transition

in the helicopter application,T2, shows the usage of thenew.

Transition T2 (People Set ps, Helicopter Set hes) {

Select (People p) From ps;

Select (Helicopter h) From hes;

if(p.healthy==false)

{

new Bond People_Helicopter ph(p, h);

}

}

T2 states that when an unbonded sick people finds that there is anunbonded helicopter, the sick people and

the helicopter can form the bondPeople Helicopter and become bonded. The twoselect state-

ments choose onePeople object and oneHelicopter object respectively. Then we test the constraint

(p.healthy==false) . If this is true, this means that the people is sick. Then we will create a new

People Helicopter bond,ph with the selectedPeople object andHelicopter object.

Three basic operations,Join, Switch, andLeave, are fundamental to the adjustment of relations between

objects and bonds.

• Join operation is for an unbonded object to join a bond and become bonded.

• Switchis for a member of a bond to leave the current bond and become a member of another bond.

• Leaveis used by a member to leave its current bond and become unbonded.

An example transition in the helicopter application,T3, shows the usage of theSwitch.

Transition T3 (People_Helicopter ph, Hospital_People hp) {

Select (People p) From ph;

Select (Hospital h) From hp;

70

if(#(hp.ps)<h.capacity)

{

p switch hp;

}

}

T3 states that when a helicopter carrying sick people finds thatthere is a hospital available, it will send the

sick people to that hospital. It selects aPeople object usingSelect (People p) From ph . Then

we need to test whether the hospital is full by checking the constraint#(hp.ps) < h.capacity . If

this is true, becausep previously belongs toph bond,p switches tohp bond. If the helicopter is carrying

more than one people andT3 is further executed, more people will be sent to the hospital.

In NetSpec, if the order of the execution of some statements does not affect the result, to fully utilize

the computation capability of distributed devices, some statements in a transition can be executed in parallel

manner. These statements are specified usingdoparallel keyword. Otherwise, by default, statements

are executed sequentially.

doparallel {

Statement1;

Statement2;

Statement3;

Statement4;

}

For example, the above codes specify thatStatement1 ,Statement2 ,Statement3 , andStatement4

can be executed at the same time (i.e., using the interleaving semantics, these statements can be executed in

any order.).

3.7.1 Helicopter Rescue Application

In the following we show how to program the transitions for the helicopter rescue application using NetSpec.

Transition T1’ (People Set ps, Helicopter Set hes) {

71

Select (People p) From ps Where p.name=Smith;

Select (Helicopter h) From hes Where h.color=red;

if(p.healthy==false)

{

new bond People_Helicopter SpRh(p,h);

}

}

T1’ states that when an unbonded sick people named as Smith finds that there is an unbonded red helicopter,

the people and the red helicopter form the bondSpRh. The boolean constraint can be placed in theSelect

statement. It can also be placed in theif statement after theSelect statement as the following shows.

Transition T1’’ (People Set ps, Helicopter Set hes) {

Select (People p) From ps;

Select (Helicopter h) From hes;

if(p.healthy==false && p.name=Smith && h.color=red)

{

new bond People_Helicopter SpRh(p,h);

}

}

The difference betweenT1’’ andT1’ is that theHelicopter object chosen byT1’ is better refined than

that chosen byT1’’ . Thus it is more likely thatT1’ will finish successfully thanT1’’ . It is preferable

to place more restricted constraints in theSelect statements to reduce the chance of transition rollback

because of unsatisfied constraints.

Transition T4 (People_Helicopter ph, Hospital Set hos){

Select (Hospital hospital) From hos;

Select (People p) From ph;

new Bond Hospital_People hp(p, hospital);

}

T4 states that when a helicopter carrying a sick people finds that there is an unbonded hospital available, it

will send the sick people to that hospital. We first useSelect (Hospital hospital) From hos

72

to select aHospital object. Then we useSelect (People p) From ph to select a people object

from thePeople Helicopter bond. Then we create the new bondHospital People hp . Because

previously thePeople object p belongs toph bond, p will switch to new bond hp. If the helicopter

is carrying more than one people andT4 is further executed, more and more people will be sent to the

hospital, until there is no people on the helicopter.

Transition T5 (Hospital_People hp) {

Select (People p) From hp;

if (p.healthy==true)

{

p leave;

}

}

T5 states that if a people in a hospital becomes healthy, the people will leave the hospital and become

unbonded. If the hospital has no people, the bond will break up, though this circumstance seldom happens

in reality.

3.7.2 Highway Information Application

In this section we show how to program transitions for the highway information application using NetSpec.

Transition T1 (Infocenter_Vehicle iv, VehicleSet vs) {

Select (Vehicle v) From vs;

v join iv;

}

T1 states that if an unbonded vehicle comes into the communication range of a bond consisting of informa-

tion center and vehicle,iv , it will join the bond.

Transition T2 (Infocenter Set is, Vehicle Set vs) {

Select (Vehicle v) From vs;

Select (Infocenter i) From is;

new Infocenter_Vehicle iv (i,v);

}

73

Similarly, T2 states that if an unbonded vehicle comes into the communication range of an unbonded infor-

mation center, they will form the new bond,iv .

3.7.3 Pervasive Marketing Application

In this section we describe how to program the pervasive marketing application using NetSpec.

Transition T1(Customer Set cs, Vender_Goods vs){

Select (Customer c) From cs;

Select (Goods g) From vs;

select (Vender v) From vs;

if(c.money>=g.value)

{

c.money-=g.value;

v.money+=g.value;

new Bond Customer_Goods cg (c,g);

}

}

T1 states that when an unbonded customer has the sufficient amount of money, the customer can get some

goods from a vender. The customer will transfer the amount ofmoney equal to the value of the goods to the

vender.

Transition T2(Customer_Goods gs, Vender_Goods vs){

Select (Customer c) From gs;

Select (Goods g) From vs;

select (Vender v) From vs;

if(c.money>=g.value)

{

c.money-=g.value;

v.money+=g.value;

g switch vs;

}

}

74

T2 states that a customer with some goods can still get some goods from a vender.

Transition T3 (Bank Set bs, Customer Set cs){

Select (Customer c) From cs;

Select (Bank b) From bs;

if(c.initialized==false)

{

b.money-=initial_money;

c.money=initial_money;

c.initialized=true;

}

}

T3 is to let the customer get some initial amount of money from the bank. The initial amount of money that

a customer can get is defined as a constant value.

3.8 Summary

This chapter introduces NetSpec, a specification language for grouping over networks. It is a script language

of BCS, which has well defined semantics. NetSpec is designedto solve the problems brought by network

systems, such as low level detail-oriented programming, device heterogeneity, and the poor portability of

codes. Using NetSpec, programmers can encode the necessaryfunctions in a NetSpec specification. A com-

piler then translates the specification into a program running on a network virtual machine which again can

be implemented through different network protocols that can be deployed on different under layer network

platforms, which will be discussed in detail in Chapter 4. Tomake the description of NetSpec concrete,

we use concrete illustrated examples, such as helicopter rescue system, highway information system, and

pervasive marketing system, to show how to program them using NetSpec. The complete syntax definition

and the examples specified in NetSpec can be found in the appendices.

75

CHAPTER 4

VIRTUAL MACHINE OVER NETWORKS AND ITS INSTRUCTION SET

4.1 Overview

In this chapter, we propose a virtual machine over networks.The virtual machine stays in between a NetSpec

and the under layer network. That is, after users specify a network application using NetSpec, a compiler

can then translate the specification into a targeted programcalled ainstruction sequence programrunning

on the virtual machine. The virtual machine separates the program from the under layer network services.

As long as the virtual machine supports its own instruction set, the program encoded in the instruction set

can run on different networks, which eliminates the redundant effort in developing different versions of

the same application for different networks. The instruction set is powerful enough to encode complicated

applications, and yet simple enough to efficiently parse into network protocols.

We propose how to construct the compiler that can translate the specification codes written in NetSpec

into virtual machine instructions. Then, we describe how toimplement a non-deterministic scheduler to

ensure the fairness when firing transition code blocks.

To support the instruction set, the network virtual machinehas to deal with synchronization, group

communication control, and concurrency control. To execute an instruction, the system need locate the

involved entities. To maintain a bond, a leader election mechanism is necessary to elect a proper entity

to maintain the bond information. To ensure the correctnessof an instruction execution, entities should

be locked before the execution. Different from programs runon a single processer, the virtual machine

provides mechanisms to achieve the sequentialism of instruction executions in network computing systems.

The system provides a concurrency mechanism for interactions among transition executions. To evaluate

the performance of the proposed solution in real networks, we used NS-2 [43] to simulate an approximated

implementation of the helicopter rescue system. The results demonstrate that the proposed solution works

well even in unreliable wireless networks.

The rest of the this chapter is organized as follows. Section4.2 describes the related work. Section 4.3

describes the assumptions of the network virtual machine. Section 4.4 describes the definitions of termi-

nologies used in this chapter. Section 4.5 describes the example scenario used in the chapter to show how the

76

network virtual machine operates. Section 4.6 describes the layout of a typical instruction sequence program

and the typical functionality blocks included in a instruction sequence program. Section 4.7 describes the

instruction set. Section 4.8 describes how to implement thetranslator to translate an NetSpec specification

into an instruction sequence program. Section 4.9 gives thetranslated transition code blocks for the exam-

ple helicopter rescue system. Section 4.10 describes how the transition code blocks are chosen to run in the

system. Section 4.11 and Section 4.12 discusses the implementation issues of the instruction set. Section

4.13 describes the simulation of the helicopter rescue system. Section 4.14 contains the summary of this

chapter.

4.2 Related Work

When we design and investigate implementation issues of thenetwork virtual machine, we find close rela-

tionships with the group and resource management approaches used in existing research of group commu-

nications, peer-peer networking, and mobile agent systems.

Group communication is a means for providing communications between multiple entities and multiple

entities by organizing them in groups [64]. It provides membership and reliable multicast services. The task

of a membership service is to maintain a list of currently active and connected entities in a group. Initially,

group communication systems were developed to facilitate the development of fault-tolerant distributed

systems. It includes replication using a variant of replication approach [65]. Recently, group communication

systems have been exploited for collaborative computing [66].

Cristian [67] first defined membership services for synchronous distributed systems. He and Schmuck

[68] then consider timed synchronous systems. Fischer, Lynch, and Paterson [69] show that consensus is

impossible in fully asynchronous system even if only one process may fail. Later on, Chandra et al. [70]

prove that the primary-partition group membership problemcannot be solved in asynchronous systems with

crash failures, even if one allows the removal or killing of non-faulty process that are erroneously suspected

to have crashed. Despite the awareness of the original impossibility results and its potential applicability to

membership services, Isis [71] and Tansis [72] perform significant work in asynchronous system and make

use of membership services.

77

Peer-peer networking has recently emerged as a new means forbuilding distributed networked applica-

tions. It is a completely decentralized network of nodes each of which can act both as a server and as a client.

What peer-peer networking shares with our network computing system is that it involves the management

of peers to accomplish a common task. Peer-peer system dealswith resource locating, which can be used by

the network virtual machine system to locate specific entities. Ge et al. [73] classify the currently proposed

peer-peer file sharing systems into three different categories. The earliest design uses a central server to

coordinate participating nodes and to maintain an index of all available files being shared. When a peer

node joins the system, it contacts the central server and sends a list of the local files that are available for

other peers to download. To locate a file, a peer sends a query to the central server, which responds with a

list of peers that have the desired file. If a peer leaves the system, its list of shared files is removed from the

central server. An example of such a system is the Napster network [74].

The other two kinds of approaches distribute the indices of available files among participating nodes.

They differ from each other in how they distribute the file indices. In one approach, each peer is responsi-

ble for maintaining the indices of only the files it stores. A limited-scope query message is flooded to the

network when a peer wants to locate a file in the system. An example of such a system is Gnutella network

[75]. The third approach eliminates flooding by systematically distributing the file indices among participat-

ing nodes, with queries being routing directly to the node responsible for that subset of the file index. This

approach is used by Chord [76], CAN [77], and Pastry [78].

Straber, Baumann, and Hohl [79] model agents as clusters of objects without references to the outside.

The agent is the transitive closure over all the objects the main agent object contains a reference to. They can

communicate with other agents either locally inside one location or globally with agents on other locations.

Mobile Agents furthermore can migrate from one location to another. Mechanisms for the communication

between agents and for the migration of agents have to be provided by the Mobile Agent System.

Baumann and Radouniklis [80] propose to group agents in mobile agent environment. Agent groups

consist of agents working together on a common task. Each agent works on a subtask. In order to perform

their subtasks, agents themselves may dynamically create subgroups of agents. The system has three kinds

of group entities, which are group initiator, group member,and group coordinator. It provide means for the

group members to communicate, get synchronized, and get terminated.

78

Satoh [81] presents a framework of reusable mobile agents tomanage clusters. The framework enables

a mobile agent to be composed of two layered components whichare mobile agents. The first is a carrier for

the second over particular networks independent of any management tasks and the latter defines management

tasks performed at each host, independent of any networks. The frameworks also offers a mechanism for

matchmaking the two components. This involves selecting mobile agents according to given criteria. It

matchmakes between task agents and navigator agents by comparing the itineraries of the navigator agents.

It provides a specification language for the itineraries of mobile agents.

The process over networks emphasizes on high-level programming approaches for network applications.

It involves the specification language, which provides a method to describe network applications, and the

compiler, which converts the upperlayer specifications into the instruction sequence program that can run on

network supporting the instruction set. Mobile agent technology provides a method to migrate executable

codes among computing devices in the network. Its essentialidea is used by the network virtual machine,

which is a part of the framework, as the underlay implementation utilities.

4.3 Assumptions

In the following, we describe the assumptions of the virtualmachine over networks.

Broadcasting of status. All the operations are based on message exchanges. Entitiesin the network broad-

cast their attribute values, or state, information periodically. Through the reception of nearby entities’ state

information, an entity can know its surrounding environment’s information.

Reliable communications. Entities in the network can interact with each other throughthe under layer

communication network. Cooperation is modeled with implicit message passing rather than with data shar-

ing. To simplify the discussion, we assume that messages canbe reliably sent and received. In reality,

reliable communications can be achieved by under layer network protocols, such as TCP.

Asynchronous processing. We make no assumptions about the relative speeds of processes or about the

delay time in delivering a message.

Global clock. All entities are in a fully distributed system. To use the time-out algorithms to detect the in-

activity of entities, we assume that processes have access to a synchronized global clock. Researchers have

developed successful clock synchronization protocols forcomputer networks over the past few decades.

79

Current clock synchronization protocols for wireless networks can be classified into two categories: proba-

bilistic [82, 83] and deterministic approaches [84].

4.4 Definitions

In this section, we describe the definitions of some terminologies used in this chapter.

Bond Leader. An object which is responsible for maintaining the information of its bond. It also controls

the bond operation. In each bond, there is only one node elected as the bond leader.

Instruction Sequence. A sequence of codes that describe the functions in the provided instruction set.

Transition Code Block. A transition code block is defined as an execution of a sequence of instructions,

which is the counter part of the transition in NetSpec. A transition code block consists of a sequence of

instruction, which may be internal computation, message transmissions, or changes to the membership of

bonds that it creates or joins.

Transition Leader. An entity which is responsible for controlling the execution of the transition code

block. For each transition code block, at each phase of the execution process, there is only one object as the

transition leader.

Instruction Issuer. An instruction execution may involve several objects. An instruction issuer can be an

unbonded object or a bond leader, that starts the execution of a single instruction.

4.5 Illustrated Scenarios

To make the description of the virtual machine’s operationsmore concrete and more meaningful, we use an

example scenario to illustrate how to use the supported instructions to program them. This example is used

throughout the chapter. In the helicopter rescue application, the system automatically assigns a helicopter to

pick up a sick people and carry him or her to hospitals. When a helicopter carrying a sick people finds that

there is a hospital available, it will send that sick people to that hospital and leave the hospital. When a sick

people becomes healthy, he or she will leave the hospital. InChapter 3 we have given the specification of the

helicopter rescue system. Figure 4.1 depicts the relation between the general functionality blocks and the

specifications. A specification consists of essentially data type definitions, bond definitions, and transitions.

We treat data type definition and bond definition differently.

80

D
a
t
e

T
y
p
e

D
e
f
i
n
i
t
i
o
n

B
o
n
d

D
e
f
i
n
i
t
i
o
n

T
r
a
n
s
i
t
i
o
n
s

O
b
j
e
c
t

D
e
f
i
n
i
t
i
o
n

o
f

P
e
o
p
l
e
,

H
e
l
i
c
o
p
t
e
r
,

a
n
d

H
o
s
p
i
t
a
l

B
o
n
d

D
e
f
i
n
i
t
i
o
n

o
f

P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r
,

a
n
d

H
o
s
p
i
t
a
l
_
P
e
o
p
l
e

T
r
a
n
s
i
t
i
o
n

T
1
,

T
2
,

T
3
,

T
4
,

a
n
d

T
5

Figure 4.1: Generalization of NetSpec Specification

4.6 Instruction Sequence Program Layout

In Figure 4.2 we depict the relation between a specification and a typical instruction sequence program. In

the left is the specification layout. In the right is the instruction sequence program layout. Thedata type

definitionpart defines all the data types used in the program, which may be classes or primitive data types.

The bond definitionpart defines all the bond types used in the instruction sequence program. The bond

definition can be used to check the bond integrity. The transitions in NetSpec are translated into transition

code blocks in the instruction sequence program. One transition in NetSpec has one corresponding transition

code block. A transition code block is independent from other transition code blocks. It is fired individually.

An instruction sequence program consists of a sequence of instructions, which will be described in detail in

Section 4.7. Section 4.8 describes how to translate each part in NetSpec into instructions supported by the

virtual machine. Section 4.10 describes how those instruction programs run on the virtual machine. Further,

we discuss the implementation issues of the instruction setin Section 4.11 and Section 4.12.

Figure 4.3 depicts the relation between a transition in NetSpec and a transition code block in instruction

sequence program. In the left of Figure 4.3 is the transitionin NetSpec. It includes transition header,

selection statements, and conditions and operations. The transition header specifies the involved set of

objects and bonds. The selection statements will find the involved objects. If the conditions are satisfied,

81

D
a
t
a

T
y
p
e

D
e
f
i
n
i
t
i
o
n
s

B
o
n
d

T
y
p
e

D
e
f
i
n
i
t
i
o
n
s

T
r
a
n
s
t
i
o
n

D
a
t
a

T
y
p
e

D
e
f
i
n
i
t
i
o
n
s

B
o
n
d

T
y
p
e

D
e
f
i
n
i
t
i
o
n
s

T
r
a
n
s
t
i
o
n

C
o
d
e

B
l
o
c
k

T
r
a
n
s
t
i
o
n
 T
r
a
n
s
t
i
o
n

C
o
d
e

B
l
o
c
k

.
.
.
 .
.
.

Figure 4.2: Specification Translated Into Instruction Sequence Program

operations on these objects will be performed.

In the right of Figure 4.3 is the transition code block in the instruction sequence program. The start

point of the execution of an instruction sequence program isalways a starter. It is decided through the

execution oftest instructions, which check whether the given constraints are satisfied. Thetest instructions

are generated from the header of a transition and theSelection statements in the specification. If the

constraints are satisfied, instructions following it will be executed. Otherwise, the instruction sequence will

not start to execute. The instruction issuer of thetest instruction is the first transition leader of the program,

or the starter. During each phase of the instruction execution, there is only one transition leader, while the

leadership may be transferred among entities in the network. In the Looking for and Lock Entitiespart,

the transition leader of the transition code block starts tofind and lock the involved entities. Depending on

82

different networks, the under layer identities of entitiesmay be in different formats. Although BCS has the

nature of single process, to make the proposed solution moreapplicable, the virtual machine still provides

locking mechanisms to ensure the correctness of operations. Locked entities are only allowed to interact

with other locked entities in the same locked group. We need to ensure the sequentialism of the instruction

executions. The transition leader is responsible for controlling the transition code block execution. After the

completion of the execution of instructions, all the involved locked entities are unlocked for other operations.

4.7 Instruction Set

In this section, we describe the instruction set of the network virtual machine. To support the instruction set,

the network virtual machine deals with the underlay networkservices, which will be described in detail in

Section 4.11.

4.7.1 test

test(entity, [condition])

test instruction tests whether the entity, which can be an objector a bond, satisfies the given condition.

This is the entry point of all instruction sequence programs. Usually, an instruction sequence program has

severaltest instructions. If one of the test instruction’s constraint is true, the instruction sequence program

will be executed. Otherwise, the execution will be aborted.Thecondition can be expressed in the following

format.

[attribute1==value1 op attribute2==value2 op ...]

whereop stands for boolean operation. It can be&&standing for logicaland, or || standing for logicalor.

Usually we test object type in thecondition part.

4.7.2 findlocknode

destination = findlocknode(condition)

Thefindlocknode instruction is used to find and lock the unbonded destinationthat satisfies the given

conditions. It returns the handle indestination, which points to an object that satisfies the given condition

in the network. If more than one objects satisfying the condition are found, a random one is chosen. The

condition is a boolean expression that determines which object to choose.

83

To ensure the atomism and correctness of operations,when anentity is found, it will also be locked. Only

operations among the locked entities are allowed after theyare locked. The locked entities cannot interact

with other entities in the system.

Thecondition can be expressed in the following format.

[attribute1==value1 op attribute2==value2 op ...]

whereop stands for boolean operation. It can be&&standing for logical and, or|| standing for logical or.

For example, if we want to find one people above age 18 and namedSmith, we can program the condition

as:

[type==People && age>18 && name==Smith]

Thetype attribute is default to each object, which represents the class type of the object.

4.7.3 findlockbond

destination = findlockbond(condition)

The findlockbond instruction is used to find and lock the bond that satisfies thegiven conditions. It

returns the handle,destination, which points to a bond that satisfies the given condition in the network. If

more than one bonds satisfying the condition are found, a random one is chosen. The condition is a boolean

expression that determines which object to choose. It can bespecified in a similar way as thefindlocknode

instruction.

4.7.4 findinternalnode

destination = findinternalnode(bond1, condition)

The findinternalnode instruction is used to find a member that satisfies the given conditions in the

bond,bond1. It returns the handle indestination, which points to a member that satisfies the given con-

dition. Because thefindinternalnode instruction operates on a locked bond, it is not necessary tohave

redundant lock here. The condition is a boolean expression that determines which node to choose. It can be

specified in the same way asfindlocknode. If more than one members satisfying the condition are found,

a random one is chosen. If there is no member satisfying the condition, the destination will be an empty

handle.

84

4.7.5 numnode

num = numnode(objectset)

numnode instruction is to obtain the number objects of given type in abond. It is equivalent to the#

operator in NetSpec.

4.7.6 bond

handle = bond(ent1, ent2, ent3, ..., condition)

Thebond instruction is used to bond entities together. The entitiescan be nodes or bonds. If the entities

are objects, the objects will form a new bond. If one of the entity is a bond, the other entities will join

the bond. Thehandle points to the result bond. Thecondition specifies the constraints that the new

bond should satisfy. Usually thecondition contains the bond type of the newly created bond. The bond

constraints can be inferred from the bond definition. In the following we give the definition ofcondition

[field1==value1 op field2==value2,...]

whereop can be&&and|| , which are logic “and” and “or”.

4.7.7 leave

leave(source)

leave is used bysource object to leave its current bond and become unbonded.

4.7.8 switch

switch(source, destination)

Thesource should be an objet. Thedestination should be a bond.switch instruction is for thesource

object to leave the current bond and become a member ofdestination bond.

4.7.9 join

switch(source, destination)

Thesource should be an objet. Thedestination should be a bond.join instruction is for thesource

object to become a member ofdestination bond.

85

4.7.10 change

change(objecthandle, changelist)

change instruction is used to change the value of an object. The new values of attributes are specified

in thechangelist, which ia a list of assignment operations and can be specifiedas:

[attribute1 = value1, attribute2 = value2, ...].

4.7.11 unlock

unlock(entity1, entity2, ...)

unlock instruction is used to unlock the locked entities, which canbe objects or bonds.

4.7.12 checkbondintegrity

checkbondintegrity(bondhandle)

checkbondintegrity instruction is used to check whether the given bond satisfiesthe given constraints

in the bond definition.

4.7.13 wait

wait([type == messagetype, time = waitingtime])

wait instruction is used to synchronize instruction execution sequences, which will be explained in

detail in Section 4.11.5. Before receiving the desired message specified bymessagetype or the expiration

of thewaitingtime, the transition code block execution will pause. If the desired message is received before

the expiration time, the transition code block will continue to execute. If no message is received before the

expiration of the timer, the transition code block will abort the execution.

4.7.14 send

send([type = messagetype])

send instruction is used to send out the given type of messages to synchronize execution of transition

code block executions.

4.7.15 jump

jump instruction is used to implement the switch structure in a program.

jump(condition, location)

86

Forjump, if the condition is true, the execution of the transition code block will start from thelocation,

which is a label. If no condition is specified, the transitioncode block will unconditionally continue the

execution from thelocation.

4.7.16 nondeterministicjump

nondeterministicjump(L1, L2, ...)

nondeterministicjump instruction nondeterministically starts the next instruction from one of the

location specified in the arguments asL1 , L2 ,

4.8 Code Translation

In this section, we discuss how to construct the compiler that can translate a specification written in NetSpec

into instruction sequences programmed using the given instruction set. The sequence of the following

subsection is in the order of the block sequence in the right part of Figure 4.3.

To make the description of the code translator concrete, we describe a typical example specification in

NetSpec, which captures its key features. The essential functions of NetSpec include data type definition,

bond definition, and transitions as depicted in the left of Figure 4.3. In the following, we give the example

specification.

Bond bondType1 (obj1Type Set os1, obj2Type Set os2, obj3Typ e Set

os3) {

BondSelect From Where #(os1)==1 && #(os2)>=1 && #(os3)>=1

}

Transition Template (obj1Type Set obj1Set, obj2Type Set ob j2Set,

obj3Type Set obj3Set, bondType1 bond1)

{

Select obj1 From obj1Set Where obj1.attr1==value1;

87

Select obj2 From obj2Set Where obj2.attr2=value2;

Select obj3 From obj3Set Where obj3.attr3=value3;

obj1 join bond1;

obj2 join bond1;

obj3 join bond1;

}

Figure 4.4 shows the relation between the program written inNetSpec and the translated instruction

sequence program. It also shows the inserted instructions,such as lock, unlock, and bond integrity check.

Those instructions are inserted to ensure the atomism and correctness of the instruction executions.

4.8.1 Decide The Transition Starter

The transition starter is the first instruction issuer, which starts the execution of one of the transition code

block in the instruction sequence program. It is decided from the involved objects or bond leaders. The

entity selection part of each transition in NetSpec includes a sequence ofSelect statements to identify the

involved entities, which can be free objects or bond leaders. Given

Select obj1 From obj1Set where obj1.attr1==value1;

the translator will generate codes

test(this, [type==obj1Type && attr1=value1]);

obj1=findlocknode([type==obj1Type && attr1=value1]);

When executing this, if thetest instruction is successful, the object that executes this instruction will

start the instruction sequence program. This also means thefindlocknode instruction will return the

88

handle to itself, which will be ignored. Otherfindlocknode instructions will be executed to identify and

lock the involved objects.

4.8.2 Find and Lock Involved Objects

After deciding the starter of each transition code block, weshould identify the involved objects and lock

them to ensure correctness. This can be inferred from two parts, the transition header and theSelect

statements.

The transition header contains the parameter list of a transition in NetSpec. Besides the object sets, it can

specify the involved bonds. When the compiler encounters the bonds types, it will use thefindlockbond

instruction to locate the involved bonds. The object sets are used to indicate the involved object types,

which can be inferred from followingSelect operations. Thus the translator will only deal with the bond

parameters in the header.

For the transition header as

Transition Template (obj1Set, obj2Set, obj3Set, bond1)

the compiler will encode as

bond1=findlockbond([type=bondType1])

wherebondType1 is inferred through the definition ofbond1 , which is also a part of the specification.

In NetSpec,Select statements are used to identify the involved objects. In theinstruction set,findlocknode

instruction is used to perform the essential functions ofSelect statements. The constraints ofSelect

statements, which is defined in the’Where’ <expr> , can be specified correspondingly in the constraint

parts offindlocknode instruction.<expr> is essentially a boolean expression.

For

Select obj1 From os1 Where obj1.attr1==value1 ,

we can code using instruction

obj1=findlocknode([type==obj1Type && attr1==value1])

If the Select statement is to choose an object from a bond, we should first use findlockbond instruc-

tion to find and lock the bond. Then we should use thefindinternalnode instruction to choose the

object in the bond. Before we usefindinternode instruction to reference internal objects in a bond, we

lock the bond to ensure correctness.

89

4.8.3 Unlock Entities

After the execution of transition code block, we should unlock the involved objects. This is done by inserting

theunlock instructions.

In the Figure 4.4 we have codes

unlock(obj1, obj2, obj3, bond1)

4.8.4 Execution of Bond Operation Instructions

Operations on bond involve the creation of bonds and bond membership adjustment. When there is no object

in a bond, the bond does not exist. Thus we do not have the explicit instructions to delete bonds.

Thebond instruction is used to create new bond to bond entities together, which can be used to imple-

ment the entity grouping functions.

new Bond bond2Type bond2(obj1, obj2, obj3)

can be encoded as

bond(obj1, obj2, obj3, [type==bondType2])

The constraints on bonds can be inferred from the bond definition.

join , leave , andswitch instructions are used to adjust the bond memberships. They perform the

same functionalities as those in NetSpec. They can implement directly their counter parts in NetSpec.

For example,

p join bond1

can be implemented directly as

join(p, bond1)

wherep andbond1 are handles in the instruction sequence program.

To utilize the nature of network systems, we have local parallelism in NetSpec, which is specified with

the keyworddoparallel . For example, the following code specifies thatStatement1 andStatement2

can be executed in parallel, which also means that the sequence of the execution does not affect the final

result.

doparallel{

90

Statement1;

Statement2;

}

Thus, the translation of the parallel statements involves the non-deterministic jump and a permutation of

all possible execution sequences of the translated codes tobe executed in parallel. The above code can be

translated into,

nondeterministicjump(L1, L2);

L1: TransStatement1;

TransStatement2;

jump(end);

L2: TransStatement2;

TrasStatement1;

jump(end);

end:

There are two possible combinations of the two statements’ translated codes,TransStatement1 and

TransStatement2 . We label them with labelL1 andL2 . Thenondeterministicjump instruction

makes a non-deterministic jump to one of the label.

91

4.8.5 Check Bond Integrity

When a transition code block’s execution is finished, all involved bonds will be checked for integrity by

insertingcheckbondintegrity instructions. The transition leader knows the bond leader of each bond. It

will inform the leader of each bond to execute this instruction. The constraints of a bond can be inferred

from its definition.

For example,

checkbondintegrity(bond2)

will check the integrity ofbond2 .

To implement this, each bond leader needs to maintain a data structure, called an object table, which

contains detailed attributes information of each objects in its bond. By reading the constraints given in the

specification, which are a sequence ofBondSelect andBondSelectEach statements, and checking

the object table, the bond leader can check the constraints sequentially.

The translator can infer thatbond2 is of typebond2Type . Looking at the definition, the constraint is

#(os1)==1 && #(os2)>=1 && #(os3)>=1

Then the bond leader can check whether the above boolean expression is satisfied or not by looking at the

object table. The# operator can also be implemented by checking the number of objects of each type in the

object table.

4.9 Translated Transition Code Blocks For Helicopter Rescue System

program T1 {

test(this, [type==People]);

test(this, [type==People_Helicopter]);

b=findlockbond([type==People_Helicopter]]);

p=findlocknode([type==People]);

92

h=findinternalnode([type==Helicopter], b);

jump([NOT(p.healthy==false && numnode(b.ps)<h.capacit y)], end);

join (p, b);

end: checkbondintegrity(b);

unlock(p,b);

};

Figure 4.5 depicts the relation between the Transition T1 inNetSpec and its translated code.

T1 states that when an unbonded sick people finds that there is aPeople Helicopter bond, the sick

people will join the bond. First the sick people will start the execution with code:

test(this, [type==People]);

wherethis is a special entity handle, which points to the entity that issues the instruction, the instruction

issuer.

Then we find aPeople Helicopter bond using

b=findlockbond([type==People_Helicopter]);

We use thejump instruction to test theif statement’s condition.checkbondintegrity should

be performed before theunlock instruction, because after unlocking the entities, they can be involved in

other operations.

program T2

{

test(this, [type==People]);

93

test(this, [type=Helicopter]);

h=findlocknode([type==Helicopter]);

p=findlocknode([type==People]);

jump([NOT(p.heathy==false)], end);

ph=bond(p, h, [type==People_Helicopter]);

end: checkbondintegrity(ph);

unlock(p,h);

}

Figure 4.6 depicts the relation between the Transition T2 inNetSpec and its translated code.

T2 specifies that when an unbonded sick people finds that there isan unbonded helicopter, the sick

people and the helicopter can form the bondPeople Helicopter and become bonded.

program T3

{

test(this, [type==People_Helicopter]);

test(this, [type==Hospital_People]);

ph=findlockbond([type==People_Helicopter]);

94

hp=findlockbond(type==Hospital_People);

p=findinternalnode(ph, [type==People]);

h=findinternalnode(hp, [type==Hospital]);

jump([NOT(numnode(hp.ps)<h.capacity)], end);

switch(p, hp);

end: checkbondintegrity(hp);

checkbondintegrity(ph);

unlock(hp, ph);

}

Figure 4.7 depicts the relation between the Transition T3 inNetSpec and its translated code.

T3 specifies that when a helicopter carrying sick people finds that there is a hospital available, it will

send the sick people to that hospital. It selects aPeople object usingfindinternalnode(ph,

[type=People]) . p switches tohp bond. If the helicopter is carrying more than one people andT3 is

further executed, more people will be sent to the hospital.

program T4

{

test(this, [type==People_Helicopter]);

test(this, [type==Hospital]);

95

ph=findlockbond([type==People_Helicopter]);

hospital=findlocknode([type==Hospital]);

p=findinternalnode(ph, [type==People]);

hp=bond(p, hospital, [type==People_Hospital]);

checkbondintegrity(ph);

checkbondintegrity(hp);

unlock(hospital, ph);

}

Figure 4.8 depicts the relation between the Transition T4 inNetSpec and its translated code.

T4 specifies that when a helicopter carrying sick people finds that there is an unbonded hospital avail-

able, it will send the sick people to that hospital. It selects aPeople object usingfindinternalnode(p,

[type=People]) . After p leavesPeople Helicopter bond, it is bonded together with the hospital.

program T5

{

test(this, [type==Hospital_People]);

hp=findlockbond(type==Hospital_People);

p=findinternalnode(hp, [type==People]);

96

jump([(p.healthy==true)],end);

leave(p);

end: checkbondintegrity(hp);

unlock(hp);

}

Figure 4.9 depicts the relation between the Transition T5 inNetSpec and its translated code.

Program T5 states that if a people in a hospital becomes healthy, the people will leave the hospital and

become unbonded.

4.10 Execution of Transition Code Blocks

As shown in Figure 4.4, the translated instruction sequenceprogram consists of transition code blocks,

which have no dependency on each other and are the execution function units. In this section we describe

how to execute the transition code blocks.

4.10.1 Computation Model

The computation model of the network virtual machine is the same as that of NetSpec. The transition

scheduler’s task is to choose the ready-to-execute transition code block and make sure that at each moment

only one transition code block is executing in the system. This is based on non-deterministic state machines

and assumes no maximal parallelism. If two or more transition code blocks are enabled simultaneously, a

non-deterministic choice will occur and only one of them will be executed. This takes into consideration

that the network virtual machine will eventually be implemented over a network, the cost of implementing

the maximal parallelism (which requires a global lock) is unlikely realistic, and is almost impossible in

real unreliable networks. Hence, transition code blocks are fired asynchronously. To implement the non-

deterministic scheduling of transition code blocks’ execution, there is only one scheduler for one application

97

in the system.

4.10.2 Deciding Starter of Each Transition Code Block Execution

Each object in the system has a copy of the compiled instruction sequence program code. The first section of

each transition code block consists of a sequencetest instructions. Through the execution of thesetest

instructions, each node can decide whether it can start the execution of the instruction sequence program,

or whether it can become the starter. If one of thetest instruction’s constraints are satisfied, the object

will become the starter and try to start the execution of the instruction sequence program. All the objects

periodically check whether it can become the starter and start to execute one of the transition code block.

4.10.3 Scheduling Transition Code Block Execution

If the transition code block’s execution can be started, before this, the transition code block starter will

contact the scheduler in the system. A transition scheduleris responsible for choosing the right transition

code blocks to fire. In realism, more than one transition codeblock execution fire request can not arrive at

the scheduler at the exact same time. There is a order of the request arrival. When there is no transition

code block is executing in the system, the scheduler will accept the current fire request. All the following

requests will be refused if there is one transition code block executing in the system.

When designing the transition code block scheduler, we should also address the fairness issue. In large

systems, if one transition code block’s starter’s fire request can always arrive at the scheduler earlier than oth-

ers, its fire request has more chance to be accepted by the scheduler, which may cause unfairness. Adopting

the mechanism of deferring before the request as that used inthe CSMA [85], before a starter of a transition

code block issues the transition fire request, it will defer an amount of time.

tdefer = α ×
succrate

rtt
(4.1)

In (4.1), tdefer is the amount of defer time.α is a factor.rtt is the round trip time for the entity to send

and receive a probing data packet from the scheduler.rtt is measured periodically. The more frequentlyrtt

is measured, the more accuratertt is. The shorter thertt is, the more the defer time is. To further ensure the

fairness, we also take into account the past successful requests. The more request is successful, the longer

98

the defer time is.

If S is the number of successful requests by an entity over a period of T , succrate can be calculated as:

succrate =
S

T
(4.2)

The smallerT is, the more accurate thesuccrate is.

Because of the clock drift of local clocks, to make the measurement ofrtt more accurate, it is necessary

to synchronize local clocks on each entity. This also justifies the global clock in the system.

4.10.4 Execution of Instructions Inside A Transition Code Block

The body of each transition code block consists of a sequenceof instructions. Each instruction has a instruc-

tion issuer controlling the execution of the instruction.

To obtain globally correct behavior from applications, it is necessary to synchronize the order in which

actions are taken. Thus some instructions should be executed in a sequential manner, which means, an

instruction cannot start until the proceeding instructionis completed. This is important to ensure the cor-

rectness and consistency of the execution of the program in acompletely asynchronous system, although is

more complex compared to achieving the sequentialism on a single processor by using the program counter

(PC).

There are two different approaches to achieving the sequential execution of instructions. One approach

is to use a central server for each transition code block execution. Each transition code block execution

has a transition leader, which triggers the execution of theinstructions. Each instruction has an issuer to

start the execution of the instruction. The transition leader serves as the central server for the central server

approach. It synchronizes the execution of instructions bycollecting the execution results from involved

objects and instructing the next instruction issuer to start. Each instruction issuer is responsible for informing

the transition leader of the completion of the instruction execution.

The other approach is to distribute the control functionalities among involved entities in the execu-

tion. To take advantage of the fact that each entity in the network computing system can have a complete

copy of the network computing program and avoid the bottleneck created by the central server, we adopt

99

the distributed approach. For the distributed approach, ineach transition code block’s execution, there is

a token passed among the involved instruction issuers. The transition leader is responsible for creating

the token. The layout of the token is illustrated in Figure 4.10. The token contains the instructions and

each instruction’s issuer, which can be obtained after executing thefindlocknode, findlockbond, and

findinternalnode instructions. In the token, the context of the current execution of the transition code

block, such as instruction execution results, is also recorded for the next instruction issuer to check whether

it can start the execution of the instruction and obtain the desired execution results of the instructions pre-

ceding it. When an instruction issuer gets the token, it willcheck whether the execution constraints are

satisfied. The constraints can be checked by looking at the context information recorded in the token. If

they are satisfied, it will start the instruction execution.After the execution of the instruction, the instruction

issuer needs to pass the token and informs the following instruction’s issuer to start the execution.

instruction1;

instruction2;

instruction3;

For example, in the above codes, we assume the issuers of eachinstruction isi1, i2, i3 . After i1

determines the completion of the execution ofinstruction1 , it will pass the token to informi2 . In a

similar manner,i2 can informi3 , until the completion of the execution of the instruction sequence. After

the execution of the transition code block, the transition leader reports to the scheduler about this so that the

scheduler can continue to fire executable transition code blocks.

4.10.5 Local Parallelism And Non-deterministic Jump

In NetSpec, if the order of the execution of some statements does not affect the result, to fully utilize the

computation capability of distributed devices, some statements in a transition can be executed in parallel

manner. These statements are specified usingdoparallel keyword. Otherwise, by default, statements

are executed sequentially.

In the translated instruction sequence program, we usenondeterministic instruction and the combi-

nation of all possible execution sequences to implement this. The non-deterministic selection of executable

transition code block is made in a pseudo-random manner. Theinstruction issuer of thenondeterministic

100

instruction chooses the next instruction randomly according to some criteria, such as time, location, or ID.

4.11 Implementation Issues of the Network Virtual Machine

In this section, we discuss the implementation issues of thenetwork virtual machine. We first discuss

initialization of objects. To execute an instruction, we have to locate involved entities. To maintain the bond,

leader election mechanism is necessary to elect proper entity to maintain the bond information. To ensure the

correctness of instruction execution, entities should be locked before the operation. For some applications,

the network virtual machine provides concurrency mechanism for interactions among execution of transition

code blocks, which are executions of instruction sequence programs in the system.

4.11.1 Initialization of Object Attributes

Since objects represent the physical entities in reality, the attribute values are initialized by the entities. The

aggregate of all objets attribute values constitute the state of the system. One state is differentiated from

the other by different object attribute values. A fundamental question tightly related to communication is

how the entities are identified. There is a need for globally unique entity Ids, though entity identity is not

crucial for the upperlayer instruction codes. Identifier schemes that provide for migration transparency are

well-understood today, such as those deployed in IPv6 [86] and Mobile IPv4 [87].

4.11.2 Locating and Locking Entities

To implement thefindlocknode andfindlockbond instructions, we need to provide an efficient method to

locate and lock entities that satisfy the given constraints.

To locate the entities, there are two approaches. One is a completely distributed approach. Each entity

is responsible for finding out the desired entities through cooperations among them by broadcasting, or

multicasting to a limited scope the lookup request to other entities in the network. This approach is close

to multicast DNS name resolution [88]. The other approach isa hierarchical approach, which deploys

some servers in the network to maintain entities information, which is similar to the naming and discovery

approach, such as Jini [56], Salutation [89], and Service Location Protocol [90]. All entities need to register

their properties with one of the servers. An entity can submit the lookup request to the server, which returns

the handle of the desired entity by looking up its local lookup table, or collaborating with other servers in

the system. To make the network virtual machine scalable andavoid the bottleneck of servers, we adopt the

101

distributed approach.

To ensure the correctness of instruction operations, a transition leader should lock the discovered entities

and unlock them at the end of the transition code block execution. Only operations among the entities in the

same locked group can interact with each other.

For bond, the transition leader will lock with bond leaders first. Then bond leaders will then lock the

local members in bonds. For unbonded objects, they will be locked individually.

When a transition leader,p, wants to find an entity that satisfies the given constraints,it will broadcast

theLookUpmessage. Upon receiving theLookUpmessage fromp, if an object,q, finds that it satisfies the

constraints and is not locked, it will reply withACKLookUpto p and become locked. Ifq is locked, the

request will be placed in a waiting queue so that whenq is unlocked, the reqeusts on the waiting queue of

that item are processed first in first out (FIFO) order.p may receive several objects’ACKLookUpmessages.

It will randomly choose one and sendAcceptmessage to that object. After accept one object’sACKLookUp,

for all the other receivedACKLookUp, p will reply with Refusemessage. Ifq receives theRefusemessage,

q will become unlocked and can accept new lookup requests.

If the desired object cannot be obtained after several trials or within a given period of time, the execution

of the instruction sequence will be aborted. The transitionleader has the complete information about the

previously discovered and locked entities. Because there has not been any operation on the locked objects,

unlocking them will abort the execution.

At the end of the execution of the transition code block, all the locked entities will be unlocked by the

unlock instruction.

4.11.3 Leader Election

In each bond, an entity is elected through distributed leader election algorithm as the bond leader to maintain

the information of that bond control the bond operations. Transition leaders are usually elected among

involved bond leaders. Existing clustering approaches, such as [25, 10, 11, 15, 14, 30, 17], can be adopted to

elect suitable clusterheads as leaders to meet different application requirements. Related work of clustering

is described in Section 2.2

For thebond instruction, if the two involved entities are both bonds, one of the bond leader is elected

as the operation leader to issue the bond operation. Usually, leaders have the complete information of the

102

group through message exchanges. Thus they should be more capable than other members.

4.11.4 Maintenance of Bonds

Although we are talking about reliable network communications. While in reality, we may encounter un-

reliable communications. Entities exchange messages to reflect changes in topology. Each bond leader

broadcasts BOND messages periodically. Each member responds with HELLO messages. The bond leader

also needs to check whether the bond constraints ar satisfiedor not. If the constraints are not satisfied, the

bond will break up. If a member does not receive a BOND messagefrom its leader after a given period,

it assumes that its leader cannot be contacted. If a bond leader does not receive a HELLO message from

a member after a given period of time, it assumes that the member cannot be contacted and will remove it

from the member list.

4.11.5 Synchronization among Transition Code Block Executions

During the execution of a transition code block, says1, it may need the input of another transition code block

execution, says2. To synchronize the execution of the two transition code blocks, we use the instructions,

wait andsend. The scenario is depicted in Figure 4.11. During the execution of s1, it waits for a message

of typemsg1 with instruction,

wait([type==msg1, time=100s]);

s2 at some time sends out the message of typemsg1 by executing

send([type=msg1]);

Thens1 can continue to execute. To prevent an endless waiting, if the desired messages are not received

for a given period of time, specified by the waiting time parameter,s1 will stop execution. The sent message

can flood the whole network area to ensure the receipt of it. Orto reduce the consumption of network

bandwidth, it can be broadcasted to a limited scope.

The Object Management Group (OMG) event services specification [91] defines the Event Service in

terms of suppliers and consumers, which also provides the synchronization mechanism for distributed enti-

ties. Suppliers are objects that produce event data and provide them via the event service, consumers process

103

the event data provides by the event service. The event channels decouple the suppliers and consumers. For

out completely distributed system, it is not feasible to deploy the event channels.

4.12 Instruction Implementation

Based on the issues we address in Section 4.11, we describe the implementations of each individual instruc-

tion in this section.

4.12.1 test

test instruction tests whether the entity, which can be an objector a bond, satisfies the given condition. This

is the entry point of all instruction sequence programs. Thus each object can actively execute this instruction

to check whether it satisfy the give constraints. Usually, an instruction sequence program has several test

instructions. If one of the test instruction’s constraint is true, the transition code block will be executed.

4.12.2 findlocknode, findlockbond

Thefindlocknode instruction is used to find the unbonded destination that satisfies the given conditions.

The findlockbond instruction is used to find the bond that satisfy the given conditions. The instruction

issuer of thefindlocknode or findlockbond instruction use the mechanism described in Section 4.11.2 to

find and lock the designated objects.

4.12.3 findinternalnode

Thefindinternalnode instruction is used to find a member that satisfies the given conditions in the bond,

bond1. Each bond leader maintains the complete information of itsbond. The bond leader can locate the

member through the use of its object table, which is described in Section 4.8.5.

4.12.4 numnode

numnode instruction is to obtain the number objects of given type. Itis equivalent to the# operator in

NetSpec. This information can also be obtained by looking atthe object table. The bond leader can count

the number of specified type of objects.

4.12.5 bond

Thebond instruction is used to bond entities together. The entitiescan be nodes or bonds. If the entities are

objects, the objects will form a new bond. If one of the entityis a bond, the other entities will join the bond.

104

4.12.6 leave, switch, join

These instructions should be executed after locking the involved objects. Each object maintains information

about whether it is a bond leader or it is a bond member. If an object is a bond member, it should maintain its

bond leader information. A bond leader should maintain the object table data structure, which keeps record

of its member information. To change the membership information involves the update of the object table

information on the bond leader side and the membership information on the bond member side.

4.12.7 change

change instruction is used to change the value of an object. By looking at thechangelist, the object can

change the attribute values accordingly.

4.12.8 checkbondintegrity

checkbondintegrity instruction is used to check whether the given bond satisfiesthe given constraints in the

bond definition. The bond leader is the place that performs the integrity check. The check is performed by

comparing the information in the object table and the bond definition, which can be performed as described

in Section 4.8.5.

4.12.9 wait and send

wait instruction is used to synchronize instruction execution sequences. During the execution of the tran-

sition code block, when encounteredwait instruction, the instruction issuer just stop at the point and wait

for the desired message. If the desired message is received before the expiration time, the transition code

block will continue to execute. If no message is received before the expiration of the timer, the transition

code block will abort the execution.

send instruction is used to send out the given type of messages to synchronize execution of transition

code block executions. This can be implemented using network message communication mechanism.

4.12.10 jump

jump instruction is used to implement the switch structure in a program.

For jump, if the condition is true, the current instruction issuer will pass the token to the instruction

issuer of the destination instruction. Execution of the transition code block will start from the destination.

105

4.12.11 nondeterministicjump

nondeterministicjump instruction is used to nondeterministically start the nextinstruction from one of

the location specified in the arguments asL1 , L2 , The instruction issuer ofnondeterministicjum

chooses the next instruction in a pseudo random manner basedon some criteria, such as time, location, and

ID. Then the instruction issuer passes the token to the chosen instruction’s issuer.

4.13 Performance Evaluation Through Simulation

We used NS-2 [43] to evaluate the implementation of the helicopter rescue system. NS-2 provides the sim-

ulation environment of the wireless networks, which are reliable in nature, though we assume the reliable

communications. In the simulation scenario, there are three types of objects in the network: patient, he-

licopter, and hospital. All nodes are stationary in the network. When a patient is sick, it will broadcast

LookUpmessages to find an available helicopter, which is in correspondence to the resource finding and

locking phase of the instruction programs. We define that each helicopter can hold at most four patients.

If any helicopter is available, it will reply so that the patient can know the information about the available

helicopters in range. Then the patient will join the helicopter. Between the point that the patient issuing the

join request and its join request is accepted or refused, thepatient will refuse any further operation, which

is locked. If a helicopter gets a patient, it will broadcastLookUpmessages to find a hospital. If there is

any hospital available, it will respond. Then the helicopter will transfer the patients on it to the hospital.

Periodically, the hospital will determine which patient can be healthy and get the patient out of the hospital.

In the simulation, a patient will become unhealthy every 10 seconds, with random clock drift to make it

more realistic.

The simulation parameters are listed in Table 4.1 unless mentioned otherwise. We used AODV [45] as

the underlying routing algorithm, which makes use of advantages from both distance-vector and on-demand.

The final results are the the average of 10 runs. We simulate two network cases, with the communication

range of 400 m and 800 m respectively. The 800 m network is an extreme case because the communication

range is equal to the network diameter.

The simulation results are listed in Table 4.2.

The lookup failures and join failures are detected through timeout mechanism. After sending out the

106

Table 4.1: Simulation Parameters for Helicopter Rescue System
Parameter Value

Number of nodes 50
Number of patients 35
Number of helicopter 9
Number of hospitals 6
Network size 670 m× 670 m
Communication range 400 m, 800m
Patient sickness frequency Once per 10 sec-

onds with clock
drift

Maximum bandwidth 10M bps
Simulation time 200 seconds

Table 4.2: Simulation Results for Helicopter Rescue System
Communication range 400m 800m
Number of lookups per object 30.736 20.788
Lookup failures per object 0.068 1.109
Percentage of lookup failures
per object

0.122 5.628

Number of joins per object 30.456 19.279
Join failures per object 0.061 0.002
Percentage of join failures per
object

0.367 3.78e-3

lookup request or the join request, if there is no response, we take it as a failure. For the lookup request, if

there is no reply after the given period of time, the patient or the helicopter will send out the lookup request

again, until it finds one

Although we have the assumption that the underlay networks should be reliable, in the unreliable case,

the number of lookup failures and the number of join failurescan be neglectable. For the 400 m network, it is

less congested compared to the 800 m network. Thus the numberof lookup failures is fewer than the 800 m

network. Because of the more successful lookup operations,the 400 m network also has more join requests

than the 800 m network. Because data communications are morereliable for 400 m network, patients can

get out of hospital more frequently, which makes the 400 m network occur more lookups than the 800 m

case.

107

4.14 Summary

This chapter introduces a virtual machine for grouping overnetworks. The network virtual machine is

designed to solve the problems brought by network systems, such as device heterogeneity, and the poor

portability of codes. It separates the upperlayer program from the under layer network services. As long

as the virtual machine supports the instruction set, the program encoded using the instruction set can run

on different networks, which eliminates the redundant effort in developing different versions of the same

application for different networks. Then we propose how to construct the compiler that can translate the

specification codes written in NetSpec into under layer instruction sequence programs. We also describe

how to implement the non-deterministic scheduler to ensurethe fairness when firing transition code blocks.

To work on real networks, the network virtual machine deals with synchronization, group communication

control, and concurrency control. To make the description of the network virtual machine concrete, we

use a concrete illustrated example, the helicopter rescue system, to show how to translate the transitions

encoded in NetSpece into instruction sequence programs. Toevaluate the performance of the proposed

solution in real networks, we used NS-2 to evaluate the performance of an implementation of the helicopter

rescue system. The results demonstrate that the proposed solution works well even in unreliable wireless

networks.

108

T
r
a
n
s
i
t
i
o
n

H
e
a
d
e
r

S
e
l
e
c
t
i
o
n

S
t
a
t
e
m
e
n
t
s

C
o
n
d
i
t
i
o
n
s

A
n
d

O
p
e
r
a
t
i
o
n
s

S
t
a
r
t
e
r

L
o
o
k

F
o
r

a
n
d

L
o
c
k

E
n
t
i
t
i
e
s

E
x
e
c
u
t
i
o
n

O
f

T
h
e

I
n
s
t
r
u
c
t
i
o
n
s

C
h
e
c
k

B
o
n
d

I
n
t
e
g
r
i
t
y

U
n
l
o
c
k

T
h
e

I
n
v
o
l
v
e
d

E
n
t
i
t
i
e
s

Figure 4.3: Transition Specification Translation

109

T
r
a
n
s
i
t
i
o
n

T
e
m
p
l
a
t
e

(
o
b
j
1
T
y
p
e

S
e
t

o
b
j
1
S
e
t
,

o
b
j
2
T
y
p
e

S
e
t

o
b
j
2
S
e
t
,

o
b
j
3
T
y
p
e

S
e
t

o
b
j
3
S
e
t
,

b
o
n
d
T
y
p
e
1

b
o
n
d
1
)

S
e
l
e
c
t

o
b
j
1

F
r
o
m

o
b
j
1
S
e
t

W
h
e
r
e

o
b
j
1
.
a
t
t
r
1
=
=
v
a
l
u
e
1
;

S
e
l
e
c
t

o
b
j
2

F
r
o
m

o
b
j
2
S
e
t

W
h
e
r
e

o
b
j
2
.
a
t
t
r
2
=
v
a
l
u
e
2
;

S
e
l
e
c
t

o
b
j
3

F
r
o
m

o
b
j
3
S
e
t

W
h
e
r
e

o
b
j
3
.
a
t
t
r
3
=
v
a
l
u
e
3
;

o
b
j
1

j
o
i
n

b
o
n
d
1
;

o
b
j
2

j
o
i
n

b
o
n
d
1
;

o
b
j
3

j
o
i
n

b
o
n
d
1
;

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
o
b
j
1
T
y
p
e

&
&

a
t
t
r
1
=
v
a
l
u
e
1
]
)
;

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
o
b
j
2
T
y
p
e

&
&

a
t
t
r
2
=
v
a
l
u
e
2
]
)
;

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
o
b
j
3
T
y
p
e

&
&

a
t
t
r
3
=
v
a
l
u
e
3
]
)
;

j
o
i
n
(
o
b
j
1
,

b
o
n
d
1
)
;

j
o
i
n
(
o
b
j
2
,

b
o
n
d
1
)
;

j
o
i
n
(
o
b
j
3
,

b
o
n
d
1
)
;

c
h
e
c
k
b
o
n
d
i
n
t
e
g
r
i
t
y
(
b
o
n
d
1
)
;

u
n
l
o
c
k
(
o
b
j
1
,

o
b
j
2
,

o
b
j
3
,

b
o
n
d
1
)
;

T
r
a
n
s
i
t
i
o
n

H
e
a
d
e
r

S
e
l
e
c
t
i
o
n

S
t
a
t
e
m
e
n
t
s

O
p
e
r
a
t
i
o
n
s

o
b
j
1
=
f
i
n
d
l
o
c
k
n
o
d
e
(
[
t
y
p
e
=
=
o
b
j
1
T
y
p
e

&
&

a
t
t
r
1
=
v
a
l
u
e
1
]
)
;

o
b
j
2
=
f
i
n
d
l
o
c
k
n
o
d
e
(
[
t
y
p
e
=
=
o
b
j
2
T
y
p
e

&
&

a
t
t
r
2
=
v
a
l
u
e
2
]
)
;

o
b
j
3
=
f
i
n
d
l
o
c
k
n
o
d
e
(
[
t
y
p
e
=
=
o
b
j
3
T
y
p
e

&
&

a
t
t
r
3
=
v
a
l
u
e
3
]
)
;

b
o
n
d
1
=
f
i
n
d
l
o
c
k
b
o
n
d
(
[
t
y
p
e
=
=
b
o
n
d
T
y
p
e
1
]
)
;

S
t
a
r
t
e
r

L
o
o
k

F
o
r

a
n
d

L
o
c
k

E
n
t
i
t
i
e
s

E
x
e
c
u
t
i
o
n

o
f

T
h
e

I
n
s
t
r
u
c
t
i
o
n
s

U
n
l
o
c
k

t
h
e

I
n
v
o
l
v
e
d

E
n
t
i
t
i
e
s

C
h
e
c
k

B
o
n
d

I
n
t
e
g
r
i
t
y

Figure 4.4: Example Transition Specification Translation

110

T
r
a
n
s
i
t
i
o
n

T
1

(
P
e
o
p
l
e

S
e
t

p
s
,

P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r

p
h
)

S
e
l
e
c
t

(
P
e
o
p
l
e

p
)

F
r
o
m

p
s
;

S
e
l
e
c
t

(
H
e
l
i
c
o
p
t
e
r

h
)

F
r
o
m

p
h
;

i
f
(
p
.
h
e
a
l
t
h
y
=
=
f
a
l
s
e

&
&

#
(
p
h
.
p
s
)
<
h
.
c
a
p
a
c
i
t
y
)
{

p

j
o
i
n

p
h
;
}

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
P
e
o
p
l
e
]
)
;

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r
]
)
;

h
=
f
i
n
d
i
n
t
e
r
n
a
l
n
o
d
e
(
[
t
y
p
e
=
=
H
e
l
i
c
o
p
t
e
r
]
,

b
)
;

j
u
m
p
(
[
N
O
T
(
p
.
h
e
a
l
t
h
y
=
=
f
a
l
s
e

&
&

n
u
m
n
o
d
e
(
b
.
p
s
)
<
h
.
c
a
p
a
c
i
t
y
)
]
,

e
n
d
)
;

j
o
i
n

(
p
,

b
)
;

u
n
l
o
c
k
(
p
,
b
)
;

c
h
e
c
k
b
o
n
d
i
n
t
e
g
r
i
t
y
(
b
)
;

T
r
a
n
s
i
t
i
o
n

H
e
a
d
e
r

S
e
l
e
c
t
i
o
n

S
t
a
t
e
m
e
n
t
s

O
p
e
r
a
t
i
o
n
s

b
=
f
i
n
d
l
o
c
k
b
o
n
d
(
[
t
y
p
e
=
=
P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r
]
]
)
;

p
=
f
i
n
d
l
o
c
k
n
o
d
e
(
[
t
y
p
e
=
=
P
e
o
p
l
e
]
)
;

S
t
a
r
t
e
r

L
o
o
k

F
o
r

a
n
d

L
o
c
k

E
n
t
i
t
i
e
s

E
x
e
c
u
t
i
o
n

o
f

T
h
e

I
n
s
t
r
u
c
t
i
o
n
s

U
n
l
o
c
k

t
h
e

I
n
v
o
l
v
e
d

E
n
t
i
t
i
e
s

C
h
e
c
k

B
o
n
d

I
n
t
e
g
r
i
t
y

Figure 4.5: Transition T1 in NetSpec And Its Translated Code

111

T
r
a
n
s
i
t
i
o
n

T
2

(
P
e
o
p
l
e

S
e
t

p
s
,

H
e
l
i
c
o
p
t
e
r

S
e
t

h
e
s
)

S
e
l
e
c
t

(
P
e
o
p
l
e

p
)

F
r
o
m

p
s
;

S
e
l
e
c
t

(
H
e
l
i
c
o
p
t
e
r

h
)

F
r
o
m

h
e
s
;

i
f
(
p
.
h
e
a
l
t
h
y
=
=
f
a
l
s
e
)

{

n
e
w

B
o
n
d

P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r

p
h
(
p
,

h
)
;
}

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
P
e
o
p
l
e
]
)
;

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
H
e
l
i
c
o
p
t
e
r
]
)
;

j
u
m
p
(
[
N
O
T
(
p
.
h
e
a
t
h
y
=
=
f
a
l
s
e
)
]
,

e
n
d
)
;

p
h
=
b
o
n
d
(
p
,

h
,

[
t
y
p
e
=
=
P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r
]
)
;

u
n
l
o
c
k
(
p
,
h
)
;

c
h
e
c
k
b
o
n
d
i
n
t
e
g
r
i
t
y
(
p
h
)
;

T
r
a
n
s
i
t
i
o
n

H
e
a
d
e
r

S
e
l
e
c
t
i
o
n

S
t
a
t
e
m
e
n
t
s

O
p
e
r
a
t
i
o
n
s

h
=
f
i
n
d
l
o
c
k
n
o
d
e
(
[
t
y
p
e
=
=
H
e
l
i
c
o
p
t
e
r
]
)
;

p
=
f
i
n
d
l
o
c
k
n
o
d
e
(
[
t
y
p
e
=
=
P
e
o
p
l
e
]
)
;

S
t
a
r
t
e
r

L
o
o
k

F
o
r

a
n
d

L
o
c
k

E
n
t
i
t
i
e
s

E
x
e
c
u
t
i
o
n

o
f

T
h
e

I
n
s
t
r
u
c
t
i
o
n
s

U
n
l
o
c
k

t
h
e

I
n
v
o
l
v
e
d

E
n
t
i
t
i
e
s

C
h
e
c
k

B
o
n
d

I
n
t
e
g
r
i
t
y

Figure 4.6: Transition T2 in NetSpec And Its Translated Code

112

T
r
a
n
s
i
t
i
o
n

T
3

(
P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r

p
h
,

H
o
s
p
i
t
a
l
_
P
e
o
p
l
e

h
p
)

S
e
l
e
c
t

(
P
e
o
p
l
e

p
)

F
r
o
m

p
h
;

S
e
l
e
c
t

(
H
o
s
p
i
t
a
l

h
)

F
r
o
m

h
p
;

i
f
(
#
(
h
p
.
p
s
)
<
h
.
c
a
p
a
c
i
t
y
)
{

p

s
w
i
t
c
h

h
p
;
}

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r
]
)
;

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
H
o
s
p
i
t
a
l
_
P
e
o
p
l
e
]
)
;

p
=
f
i
n
d
i
n
t
e
r
n
a
l
n
o
d
e
(
p
h
,

[
t
y
p
e
=
=
P
e
o
p
l
e
]
)
;

h
=
f
i
n
d
i
n
t
e
r
n
a
l
n
o
d
e
(
h
p
,

[
t
y
p
e
=
=
H
o
s
p
i
t
a
l
]
)
;

j
u
m
p
(
[
N
O
T
(
n
u
m
n
o
d
e
(
h
p
.
p
s
)
<
h
.
c
a
p
a
c
i
t
y
)
]
,

e
n
d
)
;

s
w
i
t
c
h
(
p
,

h
p
)
;

u
n
l
o
c
k
(
h
p
,

p
h
)
;

c
h
e
c
k
b
o
n
d
i
n
t
e
g
r
i
t
y
(
h
p
)
;

c
h
e
c
k
b
o
n
d
i
n
t
e
g
r
i
t
y
(
p
h
)
;

T
r
a
n
s
i
t
i
o
n

H
e
a
d
e
r

S
e
l
e
c
t
i
o
n

S
t
a
t
e
m
e
n
t
s

O
p
e
r
a
t
i
o
n
s

p
h
=
f
i
n
d
l
o
c
k
b
o
n
d
(
[
t
y
p
e
=
=
P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r
]
)
;

h
p
=
f
i
n
d
l
o
c
k
b
o
n
d
(
t
y
p
e
=
=
H
o
s
p
i
t
a
l
_
P
e
o
p
l
e
)
;

S
t
a
r
t
e
r

L
o
o
k

F
o
r

a
n
d

L
o
c
k

E
n
t
i
t
i
e
s

E
x
e
c
u
t
i
o
n

o
f

T
h
e

I
n
s
t
r
u
c
t
i
o
n
s

U
n
l
o
c
k

t
h
e

I
n
v
o
l
v
e
d

E
n
t
i
t
i
e
s

C
h
e
c
k

B
o
n
d

I
n
t
e
g
r
i
t
y

Figure 4.7: Transition T3 in NetSpec And Its Translated Code

113

T
r
a
n
s
i
t
i
o
n

T
4

(
P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r

p
h
,

H
o
s
p
i
t
a
l

S
e
t

h
o
s
)

S
e
l
e
c
t

(
H
o
s
p
i
t
a
l

h
o
s
p
i
t
a
l
)

F
r
o
m

h
o
s
;

S
e
l
e
c
t

(
P
e
o
p
l
e

p
)

F
r
o
m

p
h
;

n
e
w

B
o
n
d

H
o
s
p
i
t
a
l
_
P
e
o
p
l
e

h
p
(
p
,

h
o
s
p
i
t
a
l
)
;

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r
]
)
;

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
H
o
s
p
i
t
a
l
]
)
;

p
=
f
i
n
d
i
n
t
e
r
n
a
l
n
o
d
e
(
p
h
,

[
t
y
p
e
=
=
P
e
o
p
l
e
]
)
;

h
p
=
b
o
n
d
(
p
,

h
o
s
p
i
t
a
l
,

[
t
y
p
e
=
=
P
e
o
p
l
e
_
H
o
s
p
i
t
a
l
]
)
;

u
n
l
o
c
k
(
h
o
s
p
i
t
a
l
,

p
h
)
;

c
h
e
c
k
b
o
n
d
i
n
t
e
g
r
i
t
y
(
p
h
)
;

c
h
e
c
k
b
o
n
d
i
n
t
e
g
r
i
t
y
(
h
p
)
;

T
r
a
n
s
i
t
i
o
n

H
e
a
d
e
r

S
e
l
e
c
t
i
o
n

S
t
a
t
e
m
e
n
t
s

O
p
e
r
a
t
i
o
n
s

p
h
=
f
i
n
d
l
o
c
k
b
o
n
d
(
[
t
y
p
e
=
=
P
e
o
p
l
e
_
H
e
l
i
c
o
p
t
e
r
]
)
;

h
o
s
p
i
t
a
l
=
f
i
n
d
l
o
c
k
n
o
d
e
(
[
t
y
p
e
=
=
H
o
s
p
i
t
a
l
]
)
;

S
t
a
r
t
e
r

L
o
o
k

F
o
r

a
n
d

L
o
c
k

E
n
t
i
t
i
e
s

E
x
e
c
u
t
i
o
n

o
f

T
h
e

I
n
s
t
r
u
c
t
i
o
n
s

U
n
l
o
c
k

t
h
e

I
n
v
o
l
v
e
d

E
n
t
i
t
i
e
s

C
h
e
c
k

B
o
n
d

I
n
t
e
g
r
i
t
y

Figure 4.8: Transition T4 in NetSpec And Its Translated Code

114

T
r
a
n
s
i
t
i
o
n

T
5

(
H
o
s
p
i
t
a
l
_
P
e
o
p
l
e

h
p
)

S
e
l
e
c
t

(
P
e
o
p
l
e

p
)

F
r
o
m

h
p
;

i
f

(
p
.
h
e
a
l
t
h
y
=
=
t
r
u
e
)

{

p

l
e
a
v
e
;
}

t
e
s
t
(
t
h
i
s
,

[
t
y
p
e
=
=
H
o
s
p
i
t
a
l
_
P
e
o
p
l
e
]
)
;

p
=
f
i
n
d
i
n
t
e
r
n
a
l
n
o
d
e
(
h
p
,

[
t
y
p
e
=
=
P
e
o
p
l
e
]
)
;

j
u
m
p
(
[
N
O
T
(
p
.
h
e
a
l
t
h
y
=
=
t
r
u
e
)
]
,
e
n
d
)
;

l
e
a
v
e
(
p
)
;

u
n
l
o
c
k
(
h
p
)
;

c
h
e
c
k
b
o
n
d
i
n
t
e
g
r
i
t
y
(
h
p
)
;

T
r
a
n
s
i
t
i
o
n

H
e
a
d
e
r

S
e
l
e
c
t
i
o
n

S
t
a
t
e
m
e
n
t
s

O
p
e
r
a
t
i
o
n
s

h
p
=
f
i
n
d
l
o
c
k
b
o
n
d
(
t
y
p
e
=
=
H
o
s
p
i
t
a
l
_
P
e
o
p
l
e
)
;

S
t
a
r
t
e
r

L
o
o
k

F
o
r

a
n
d

L
o
c
k

E
n
t
i
t
i
e
s

E
x
e
c
u
t
i
o
n

o
f

T
h
e

I
n
s
t
r
u
c
t
i
o
n
s

U
n
l
o
c
k

t
h
e

I
n
v
o
l
v
e
d

E
n
t
i
t
i
e
s

C
h
e
c
k

B
o
n
d

I
n
t
e
g
r
i
t
y

Figure 4.9: Transition T5 in NetSpec And Its Translated Code

115

I
n
s
t
r
u
c
t
i
o
n

1
(
I
s
s
u
e
r

h
a
n
d
l
e
,

r
e
s
u
l
t
)

I
n
s
t
r
u
c
t
i
o
n

2
(
I
s
s
u
e
r

h
a
n
d
l
e
,

r
e
s
u
l
t
)

I
n
s
t
r
u
c
t
i
o
n

3
(
I
s
s
u
e
r

h
a
n
d
l
e
,

r
e
s
u
l
t
)

I
n
s
t
r
u
c
t
i
o
n

4
(
I
s
s
u
e
r

h
a
n
d
l
e
,

r
e
s
u
l
t
)

.
.
.

Figure 4.10: Token Layout

s
2

s
1

s
e
n
d

e
v
e
n
t

w

a
i
t

f
o
r

e
v
e
n
t

Figure 4.11: Synchronization of Transitions

116

CHAPTER 5

PROCESS OVER NETWORKS

5.1 Overview

In the previous chapters, we describe a specification language, NetSpec, to let users specify the desired

functionalities of applications, and a virtual machine over networks, which supports an instruction set so

that programs encoded using the instruction set can run on different networks provided the networks support

the virtual machine. Essentially, NetSpec specifies how groups of network nodes evolve. Looking from the

angle of each individual node, such an evolution can be characterize as a thread of atomic transitions, each

of which is local; e.g., involving two network nodes. Inspired by this view, in this chapter, we propose a

form of network processes, called network process graphs, and study, theoretically, their computability and

realization on a physical network.

A network process is a executing program running over network objects. In a real network, a network

process first grabs some network entities, and consume theirresources. When some entities finish their

computation tasks, the process would release the entities and then move on to others. In our model, we

abstract this phenomena as: the process walks through objects, and objects change their states as the process

passing by. We discuss only the single process model, in which only one process is running in the network.

Traditionally, automata theory addresses the computability problem by studying the form of languages

accepted by an automaton. Similar to the idea of graph representation tools usually used by automata

theory, we propose a class of process graphs to depict the behavior of a network process. Essentially, a

process graph is an automaton and a word accepted by the automaton representing a process demonstrated

by the application that is modeled by the graph.

This chapter1 is organized as follows. We first present an example that is modeled using a process graph

and, informally, interpret its semantics. Then, we formally define the syntax and semantics of the process

graphs. We will also prove that the computing power of the process graphs is equivalent to VASS. Finally,

we will discuss how to implement a process graph on a network.

1This chapter is part of a joint work with Linmin Yang and Prof.Zhe Dang, who both agree to include the part in this dissertation.

117

5.2 Related Work

Mobile agent concept is close to the concept of process over networks. Straber, Baumann, and Hohl [79]

model agents as clusters of objects without references to the outside. The agent is the transitive closure

over all the objects the main agent object contains a reference to. They can communicate with other agents

either locally inside one location or globally with agents on other locations. Mobile Agents furthermore

can migrate from one location to another. Mechanisms for thecommunication between agents and for the

migration of agents have to be provided by the Mobile Agent System.

Serugendo, Muhugusa, and Tschudin [92] presents a comparative survey of formalisms related to mobile

agents. It describes theπ-calculus and its extensions, the Ambient calculus, Petri nets, Actors, and the family

of generative communication languages. Each of these formalism defines a mathematical framework that

can be used to reason about mobile code. They also show how these formalisms can be used to represent

the mobility and communication aspects of two mobile code environment: Obliq [93] and Messengers [94].

The Chemical Abstract Machine [95] is an abstract machine designed to model a situation in which

components move about a system and communicate when they come into contact. A concept of enforced

locality using membranes to confine subsolutions allows themachines to implement classical process calculi

or concurrent generalizations of the lambda calculus.

Angluin et al. [96] explore the power of small resource-limited mobile agents. They define the concept

of stable computation of a function or predicate with a fairness condition on interactions. They show that all

stably computable predicates are inNL.

Baumann and Radouniklis [80] propose to group agents in mobile agent environment. Agent groups

consist of agents working together on a common task. Each agent works on a subtask. In order to perform

their subtasks, agents themselves may dynamically create subgroups of agents.

This framework for process over networks emphasizes on high-level programming approaches for net-

work applications. Mobile agent technology provides a method to migrate executable codes among comput-

ing devices in the network. Its essential idea is used by the network virtual machine, which is a part of the

framework, as the underlay implementation utilities.

118

5.3 Example Scenario

We use the helicopter rescue application described in Chapter 3 to illustrate how to depict the behavior of

the execution process using the process graph. When a peoplegets sick, he or she will find a helicopter to

pick up him or her. When a helicopter carrying a sick people finds that there is a hospital available, it will

send that sick people to that hospital and leave the hospital. When a sick people becomes healthy, he or she

will leave the hospital.

5.4 Process Graph

The system that we define consists a collection of objects, which are representation of physical entities in

a network. Objects are typed but addressless. Objects have their own (internal) states (drawn from a finite

state space) and change the states as the process proceeds. The critical part of our systems is the rules, which

specify how the system evolves. In particular, each rule describe how a process runs over a network, and

how objects change their states.

A process graph depicts the behavior of processes running onthe network. The basic composition blocks

are objects, which are shown by circles. There could be many objects of the same type; when a process visits

objects of the same type represented the same circle more than once, the objects visited before and after can

be either exactly the same instance or a different one. The object that the process is currently visits is called

theactiveobject. There is exactly one active object at any time.

To represent the state change of an object, we havestate circles inside each object to represent the

possible states of it. We assume that there can only be a finitenumber of states for each object. In the

process graph (of the helicopter rescue system) shown in Figure 5.1, there are three types of objects, which

are represented by three big circles labeled by people, helicopter, and hospital, respectively. Each object has

two states, UB and B, which mean unbonded and bonded, respectively.

In a process graph, rules are represented as arrows. Each rule triggers a state change of one or two

objects. A rule is either represented by aninternal state transitionor anexternal state transition.

An internal state transition connects from an internal state s of an object to another internal states′ of

the same object to represent an internal state change of the object. The internal state change can be non-

deterministic. The transition is firable if the object involved in the transition is active and is currently at the

119

states. After firing the transition, the object stays active and with s′ being the current state.

An external state transition connects from a state edge of anobject to a state edge of a possibly different

object. The transition means that the two internal state changes, that it connects, will be fired at the same

time. For example, in Figure 5.1, the external state transition represented by transition edge 1 will make a

people object change the state from “UB” to “B” and a helicopter object change the state from “UB” to “B”.

To fire the transition, the two involved objects should be at the starting states. The transition represented

by transition edge 1 can only be fired when the people object isthe active object, the people object is in

state “UB” and the helicopter object is in state “UB”. After the transition is fired, only the object that the

arrow points to will be active. That is, after the transitionrepresented by transition edge 1 is finished, the

helicopter object will become the current active object.

In Figure 5.1, edges labeled 1, 2, and 3 are external state transitions. If transition 2 is fired, the helicopter

will remain bonded and a hospital object will become bonded.After transition 2 is finished, the hospital

object will become active. Then the hospital object can fire transition 3, which makes the helicopter object

become unbonded.

5.5 Computability of Process Graphs

In this section, we will study the computing power of processgraphs. We start with definitions.

Let

Σ = {A1, ..., Ak}

(k ≥ 1) be an alphabet of symbols. An instance of a symbolAi, for somei, in Σ is called anobjectof type

Ai, or simply anAi-object. Without loss of generality, we callA1 to be theinitial type.

EachAi is associated with a (nondeterministic) finite automaton (we still useAi to denote it), which is

a 3-tuple

Ai = (Si, δi, qi0),

whereSi = {Si1, ..., Sil} (somel ≥ 1) is a finite set of internal states(one can assume that theSi’s are

disjoint), δi ⊆ Si × Si is the set of theinternal state transitions, andqi0 ∈ Si is the initial state of the

automatonAi. We useti : Siu → Siv to denote a transitionti = (Siu, Siv) ∈ δi. In this way, anAi-object

120

U
B

B

U
B

B

B

U
B

p
e
o
p
l
e
 h
e
l
i
c
o
p
t
e
r

h
o
s
p
i
t
a
l

s
t
a
r
t

1

2

3

Figure 5.1: A Process Graph for The Helicopter Rescue System

121

itself is simply an instance of the finite automatonAi.

Let S =
⋃

Si andδ =
⋃

δi. Inter-object communications are achieved byexternaltransitions in∆,

defined as

∆ ⊆ Σ × δ × Σ × δ.

We denote an external transitionr ∈ ∆ is in the following rule-form:

r : (Ai, ti) → (Aj , tj),

whereti ∈ δi andtj ∈ δj are internal state transitions.

In summary, aprocess graphis a tuple

G = 〈Σ,∆〉

where each component is defined in above.

We now define the semantics of theG. To specify an objectO, we need only know its (unique) type

A and its (unique) current states of the finite automaton that is associated with the type; i.e., theO is an

instance of(A, s), where for somei, A = Ai ∈ Σ ands ∈ Si.

A collection(C, O) is a multisetC of objects withO ∈ C being the onlyactiveobject.

Let (C, O) and(C′, O′) be two collections andr be a transition. We use

(C, O) →r (C′, O′)

to denote the fact that the collection(C, O) changes to the collection(C′, O′) by firing the transitionr, which

is defined formally as follows.

We first consider the case whenr is an internal transition, sayti : Siu → Siv in δi (i.e., the transition is

inside anAi-object specified by the automatonAi). In this case, we require that theti does not appear in the

left hand side of any external transition (i.e., there is no external transition in the form of(Ai, ti) → (Aj , tj),

for anyj). Hence, an internal transition can not fire alone when thereis an external transition connects from

the internal transition. We say thatO →ti O′ whenO is at stateSiu and is of typeAi, andO′ is the result of

122

changing the current state inO with Siv. Now,

(C, O) →r (C′, O′)

if the following conditions are satisfied:

• O →ti O′.

• C′ is the same asC except that the objectO is changed intoO′.

Therefore, when the internal transitionti is fired, the active object must be at stateSiu and, after firing the

transition, the current state of the object isSiv and it remains as the active object.

Then, we consider the case whenr is an external transition, sayr : (Ai, ti) → (Aj , tj), whereti ∈ δi

andtj ∈ δj are internal state transitions. In this case,

(C, O) →r (C′, O′)

if, for someO′′ ∈ C, and some objectO′′′,

• O →ti O′′′,

• O′′ →tj O′, and

• C′ is the result of, inC, replacingO with O′′′ and replacingO′′ with O′.

Therefore, when the external transitionr is fired, the active objectO must be anAi-object in stateSiu and

anAj-objectO′′ in stateSjp is nondeterministically chosen from the collection. TheAi-objectO will transit

from stateSiu to Siv (and evolve intoO′′′ defined in above), and theAj-objectO′′ will transit from state

Sjp to Sjq (and evolve intoO′ defined in above), in parallel. After the transition is fired,the active object is

changed fromO to O′.

The(C, O) is initial if all objects inC are in their initial states, theO is the designated initial object (i.e.,

the type ofO is the initial typeA1 andO is at the initial state of automatonA1), and a pre-definedinitial

constraintis satisfied. The initial constraint comes along with the definition of the process graph to restrict

123

the number of objects for certain types. In this chapter, we use the simplest form of initial constraints:

for each typeAi, the number of objects of typeAi is either constrained to be a constant (like 5) or is

unconstrained.

We write

(C, O) ;G (C′, O′) (5.1)

if there are collections(C0, O0), · · · , (Cm, Om), for somem, such that

(C0, O0)
r1→ (C1, O1) · · ·

rm→ (Cm, Om), (5.2)

for some transitionsr1, · · · , rm in G.

In fact, G defines a computing model that modifies a multiset(C, O) into another multiset(C′, O′)

through(C, O) ;G (C′, O′). To characterize the quantitative relationships that theG can compute, we need

more definitions.

Consider a setT ⊆ Σ × S. For each pairt = (A, s) ∈ T , we use#t(C, O) to denote the number of the

objects inC such that, each of which is of typeA and at states. Clearly, when a proper ordering is applied

on T , we may collect the numbers#t(C, O), t ∈ T , into a vector called#T (C, O). We useRG,T , called

the binary reachability ofG wrt T , to denote the set of all vector pairs(#T (C, O),#T (C′, O′)) for all initial

collections(C, O) and collections(C′, O′) satisfying(C, O) ;G (C′, O′). In particular, whenT = Σ × S,

we simply useRG to denote theRG,T .

Before we show a characterization of the binary reachability, we need more definitions. Ann-dimensional

vector addition system with states(VASS)M is a 5-tuple

〈V, p0, pf , S, δ〉

whereV is a finite set ofaddition vectorsin Zn, S is a finite set ofstates, δ ⊆ S × S × V is thetransition

relation, andp0, pf ∈ S are theinitial state and the final state, respectively. Elements(p, q, v) of δ are

called transitionsand are usually written asp → (q, v). A configurationof a VASS is a pair(p, u) where

124

p ∈ S andu ∈ Nn. The transitionp → (q, v) can be applied to the configuration(p, u) and yields the

configuration(q, u + v), provided thatu + v ≥ 0 (in this case, we write(p, u) → (q, u + v)). For vectorsx

andy in Nn, we say thatx canreachy, writtenx ;M y, if for somej,

(p0, x) → (p1, x + v1) → · · · → (pj , x + v1 + ... + vj)

wherep0 is the initial state,pj is the final state,y = x + v1 + ... + vj , and eachvi ∈ V . It is well-known

that Petri nets and VASS are equivalent. Consider a numberk ≤ n. We usex(k) to denote the result of

projecting then-ary vectorx on its firstk components, and useRM (k) to denote all the pairs(x(k), y(k))

with x ;M y. Whenk = n, we simply writeRM for RM (k). We say that a graph processG can be

simulated by a VASSM if for some numberk, RG = RM (k). We say that a VASSM can be simulated by

a graph processG if for someT , RG,T = RM . If both ways are true, we simply say that they are equivalent

(in terms of computing power).

Theorem 1. Process graphs are equivalent to VASS.

Proof. The proof consists of two parts. First, we prove that the process graph can simulaten dimension

VASSM .

It is well known that VASS with only one state (or essentiallyno state) are equivalent to VASS (with

many states), and therefore, we assume thatM is specified by a number of addition vectors

vi = (vi,1, vi,2, ..., vi,n),

with 1 ≤ i ≤ u, and the VASS is ofn dimensions.

Now we describe how to construct a process graph to simulate the VASSM . To make the description

more concrete we first give the process graph that simulates the addition vector(−3,+2) in Figure 5.2.

We have three kinds of objects in the process graph, namely,counter object, control object, andaddition

vector object. Each object is associated with internal states.

Since the VASSM is of n dimensions, we have totallyn types of counter objects, namely,i-th type

counter objects, for1 ≤ i ≤ n. For eachi-th type counter object,COi, its internal states areCSi,1, CSi,2,

125

C
o
u
n
t
e
r

O
b
j
e
c
t

(
T
y
p
e
1
)

C
o
u
n
t
e
r

O
b
j
e
c
t

(
T
y
p
e
2
)

9

1
0

8

1

2

3

4
 5

6

7

A
d
d
i
t
i
o
n

V
e
c
t
o
r

O
b
j
e
c
t

(
A
O
i
)

f
o
r

V
e
c
t
o
r

(
-
3
,
+
2
)

C
S
1
,
1

C
S
1
,
2

C
S
1
,
3

C
S
2
,
2

C
S
2
,
1

C
S
2
,
3

C
o
n
t
r
o
l
_
S
t
a
t
e
2

C
o
n
t
r
o
l
_
S
t
a
t
e
1

A
S
i
,
1
 A
S
i
,
2

A
S
i
,
3

A
S
i
,
4

A
S
i
,
5

A
S
i
,
6

C
o
n
t
r
o
l

O
b
j
e
c
t

Figure 5.2: Simulate VASS Using Process Graph

andCSi,3. Recall that when the VASSM runs, it changes the value of its configuration (which is simply

a vector, called the configuration vector). The number ofi-th type counter objects in stateCSi,2 represents

the current value of thei-th component of the configuration vector in the VASSM . In Figure 5.2, there are

two kinds of counter objects, namely Type1 and Type2.

We also have acontrol objectin the system. For the whole system, there is only onecontrol object

(Recall that, this constitutes part of the initial constraint of the process graph). This object has two states,

namelyControl State1 andControl State2. Thecontrol objectis also the starter of the process graph.

Its initial state isControl State1.

For each addition vector,vi = (vi,1, vi,2, ..., vi,n), we have a correspondingaddition vector objecttype.

For such type, there is exactly oneaddition vector objectin the whole system. We use|vi,j | to represent the

absolute value ofvi,j. The number of internal statesaddition vector objectAOi, which corresponds to the

126

addition vectorvi, is

l =





n
∑

j=1

|vi,j|



+ 1.

In Figure 5.2, we have six internal states for the addition vector object that represents the addition vector

(−3,+2).

Now, we describe the transitions.

Suppose now that we consider the moment whenM fires itsi-th addition vector, say,vi = (vi,1, vi,2, ..., vi,n).

At this time in the process graph, the active object is the control object. Thei-th addition vector is simu-

lated by a (rather long) sequence of transitions in the process graph. Such simulation is shown in 5.2 for an

examplevi = (−3,+2) (with n = 2). Initially, the control object fires an external transition, that changes

the control object’s state fromControl State1 to Control State2. This external transition, at the same

time, also triggers the state change of theaddition vector objectrepresentingvi, AOi. More precisely,AOi

issues a transition fromASi,1 to ASi,1. In Figure 5.2, this external transition is represented by the transition

edge labeled 1. Now the active object isAOi and at stateASi,1. ThenAOi will perform the first operation

specified in the vector,vi,1. AOi will issue an external transition. It will change its state fromASi,1 toASi,2.

At the same time, this external transition will make the counter object,COi, change the state. Depending

on whethervi,1 is positive or not, there are two cases.

If vi,1 is negative, this means we need to decrease the number ofCO1 type objects in stateCS1,2. Thus

theCO1 object will change the state fromCS1,2 to CS1,3. This accomplishes one subtraction. In Figure

5.2, this external transition is represented by the transition edge labeled 2. NowCO1 becomes the current

active object. For the process to continue, it needs to transfer the active role back to theaddition vector

object. Then,CO1 will issue an external transition. It will change its state to change fromCS1,3 to CS1,3.

Theaddition vector objectAOi will change the state fromASi,2 to ASi,2. Now theaddition vector object

will become the current active object. In Figure 5.2, this external transition is represented by the transition

edge labeled 4.

If vi,1 is positive, this means we need to increase the number ofCO1 type objects in stateCS1,2. Thus

theCO1 object will change the state fromCS1,1 to CS1,2. This accomplishes one addition. In Figure 5.2,

this external transition is represented by the transition edge labeled 5. NowCO1 becomes the current active

127

object. For the process to continue, it needs to transfer theactive role back to theaddition vector object.

Then,CO1 will issue an external transition. It will change its state from CS1,3 to CS1,3. The addition

vector objectAOi will change the state fromASi,2 to ASi,2. Now theaddition vector objectwill become

the current active object. In Figure 5.2, this external transition is represented by the transition edge labeled

6.

At this point, theaddition vector objectis at the stateASi,2 and it is the current active object.

To make this description general, let’s assume theaddition vector objectis at the stateASi,j, where

j =
(

∑k
h=1 |vi,h|

)

+ l with 1 ≤ l ≤ vi,k+1. To accomplish the operation ofvi,k+1, there are still|vi,k+1|− l

more steps to go.

AOi will issue an external transition. It will change its state from ASi,j to ASi,j+1. At the same time,

this external transition will make the counter object,COk+1, change the state. Depending on whethervi,k+1

is positive or not, there are two cases.

If vi,k+1 is negative, this means we need to decrease the number ofCOk+1 type objects in stateCSk+1,2.

Thus theCOk+1 object will change the state fromCSk+1,2 to CSk+1,3. This accomplishes one subtraction.

Now COk+1 becomes the current active object. For the process to continue, it needs to transfer the active

role back to theaddition vector object. Then,COk+1 will issue an external transition. It will change its state

to change fromCSk+1,3 to CSk+1,3. Theaddition vector objectAOi will change the state fromASi,j+1 to

ASi,j+1. Now theaddition vector objectwill become the current active object and its state is inASi,j+1.

If vi,k+1 is positive, this means we need to increase the number ofCOk+1 type objects in stateCSk+1,2.

Thus theCOk+1 object will change the state fromCSk+1,1 to CSk+1,2. This accomplishes one addition.

Now COk+1 becomes the current active object. For the process to continue, it needs to transfer the active

role back to theaddition vector object. Then,COk+1 will issue an external transition. It will change its state

to change fromCSk+1,2 to CSk+1,2. Theaddition vector objectAOi will change the state fromASi,j+1 to

ASi,j+1. Now theaddition vector objectwill become the current active object and its state is inASi,j+1.

As the above process continues, at the point thatAOi is active and at the stateASi,z, z =
(

∑n
j=1 |vi,j |

)

+

1, andAOi has performed the internal transition fromASi,z toASi,z, all the operations ofvi = (vi,1, vi,2, ..., vi,n)

have been finished. Now we need to make the control object to beactive to fire a next addition vector. Thus

AOi fires an external transition whereAOi changes its state fromASi,z to ASi,1. At the same time, the

128

control object changes its state fromControl State2 to Control State1. Thus the control object becomes

the active object again. In Figure 5.2, this external transition is represented by the transition edge labeled 7.

The addition vectorvi = (vi,1, vi,2, ..., vi,n)’s function is accomplished. The control object can continue to

simulate firing a next addition vector.

For each addition vector inV , we just repeat the previous process. Because of the internal states of each

object, the process graph will simulate the behavior of the VASSM exactly.

For the second part of the proof, we need show that a VASSM can simulate a process graphG. Suppose

that there arem types of objects inG, and without loss of generality, we assume that internal states in

different types of objects are all distinct. Therefore, an internal state of an object can uniquely tell the type

of the object (hence, we do not need to refer an object type in an internal transition and an external transition,

in below). Suppose that all the internal states,S, are properly ordered (we useposition(s) to indicate the

position of states in the ordering), and we use#s to indicate the current number of objects in states at

some moment when the process graph runs. We use# to indicate the array of all the#s. The VASSM

constructed in below is to update the vector# while transitions inG is executed.

In M , the states are exactly those inS, the internal states of objects inG.

For each internal transition, says → s′, we have an addition vector along with a state transition inM as

follows: 〈s, (0, · · · , 0,−1, 0 · · · , 0,+1, 0, · · · , 0), s′〉, where the−1 is at positionposition(s) and the+1

is at positionposition(s′). The vector corresponds to the fact that, after firing the internal transition, there is

one object in states evolving into an object in states′. The state transition (froms to s′) in M corresponds

to the fact that, after firing the internal transition, the active object is transferred from an object at states to

an object at states′.

For each external transition, say(s1, s2) → (s3, s4) (where(s1, s2) and(s3, s4) represent two internal

transitions), we have an addition vector along with a state transition inM as follows:

〈s1, (0, · · · , 0,−1, 0 · · · , 0,+1, 0, · · · , 0,−1, 0 · · · , 0,+1, 0, · · · , 0), s4〉,

where the two−1’s are at positionsposition(s1) andposition(s3), respectively, and the two+1’s are at

positionsposition(s2) andposition(s4), respectively. The vector corresponds to the fact that, after firing

129

the external transition, there is one object in states1 evolving into an object in states2, and at the same time,

there is one object in states3 evolving into an object in states4. The state transition (froms1 to s4) in M

corresponds to the fact that, after firing the external transition, the active object is transferred from an object

at states1 to an object at states4.

Clearly, M faithfully simulatesG.

The above theorem characterizes the computing power of process graphs, when the graphs are under-

stood as computation devices. In the following, we will treat process graphs as language acceptors and

therefore, we can characterize the processes that are defined by such graphs. We need more definitions.

Let

Π = {a1, · · · , an}

(n ≥ 1) be an alphabet of(activity) labels. Now, we are given a function that assigns each external transition

with eitherΛ (empty label) or an activity label inΠ. Recall that we write(C, O) ;G (C′, O′) if there are

collections(C0, O0), · · · , (Cm, Om), for somem, such that

(C0, O0)
r1→ (C1, O1) · · ·

rm→ (Cm, Om),

for some transitionsr1, · · · , rm in G. We useα to denote the sequence of such labels for external transitions

in ri1 , · · · , rim . To emphasize theα, we simply write(C, O) ;
α
G (C′, O′) for (C, O) ;G (C′, O′) in this

case. We say that a wordα ∈ Π∗ is aprocessdefined in the process graphG if there is an initial collection

(C, O) such that(C, O) ;
α
G (C′, O′) for some(C′, O′). We useL(G) to denote the set of all processes

defined byG.

A multicounter machineM is a nondeterministic finite automaton (with one-way input tape) augmented

with a number of counters. Each counter takes nonnegative integer values and can be incremented by 1,

decremented by 1, and tested for 0. It is well known that whenM has two counters, it is universal. A

counter is blind if it can not be tested for 0, however, when its value becomes negative, the machine crashes.

A blind counter machine is a multicounter machineM whose counters are blind. It is known that blind

130

counter machines are essentially VASS treated as a languageacceptor. Therefore,

Theorem 2. The class of processes defined by process graphs are exactly the class of languages accepted

by blind counter machines.

From the above theorem, it is clear that process graphs can define fairly complex processes, which are

not necessarily regular, context free, or semilinear.

Currently, it is a difficult problem to characterize a nontrivial class of process graphs that exactly define

regular processes. In the following, we will define a specialclass of process graphs, by looking at their graph

structures, such that their computing power is weaker (and hence they have nicer and stronger properties).

Recall that, in a process graph, the initial constraint comes implicitly. Such a constraint specifies, in an

initial collection, for each typeAi, the number of objects of typeAi is either constrained to be a constant

(like 5) or is unconstrained. When an object type is constrained, each object of the type is called aserver.

An all-serverprocess graph is one where each object in its initial collection is a server. Clearly, since there

are only finitely many objects in an initial collection of servers, we have:

Theorem 3. The class of processes defined by all-server process graphsare exactly the class of regular

languages.

A k-serverprocess graph is one where there arek-servers, along with some other unconstrained objects.

We further require that every external transition in the graph can only connect between a server and an

unconstrained object or between the servers (hence, unconstrained objects can not communicate between

each other directly). From the construction in a previous theorem, a VASS can be simulated by ak-server

process graph for somek. The interesting case is when thek is fixed. In below, we are going to show

that 1-server process graphs are strong enough to simulate process graphs and hence to simulate VASS.

The proof idea is to simulate direct communications betweentwo clients (unconstrained objects) by indirect

communications via the server.

Theorem 4. Each process graph can be simulated by a1-server process graph.

Proof. For a process graphG depicted in Figure 5.3, which hasn external transitions, we can construct

the 1-server process graph,G′ shown in Figure 5.4, in the following way, which can be generalized to any

process graph.

131

t
j

t
i

S
j
,
1
,
1

S
j
,
1
,
2

S
j
,
2
,
1

S
j
,
2
,
2

S
i
,
1
,
1

S
i
,
1
,
2

S
i
,
2
,
1

S
i
,
2
,
2

O
j
,
1
 O
j
,
2

O
i
,
1

O
i
,
2

Figure 5.3: Process Graph G

The server object,SO, has one initial state,Sstart. For each external transition,ti, in G, SO in G′ has a

corresponding internal state,CSi. All the client objects inG′ are exactly the same as those objects inG.

Without losing generality, for external transitionti in G, it involves the internal state transition of two

objects,Oi,1 andOi,2. Oi,1 changes the internal state fromSi,1,1 to Si,1,2. Oi,2 changes the internal state

from Si,2,1 to Si,2,2. In G′, this can be simulated in the following way. The corresponding client objects for

Oi,1 andOi,2 areO′

i,1 andO′

i,2. We have two external transitions, namelyt′i,1 andt′i,2 to representti. For

transitiont′i,1, the client objectO′

i,1 changes the internal state fromS′

i,1,1 to S′

i,1,2. At the same time, the

server object,SO, changes the internal state fromSstart to the corresponding state ofti, CSi. Now, SO is

the active object. Then for the second external transition,t′i,2 in G′, SO changes the internal state fromCSi

132

S
'
j
,
1
,
1

S
'
j
,
1
,
2

S
'
j
,
2
,
1

S
'
j
,
2
,
2

S
'
i
,
1
,
1

S
'
i
,
1
,
2

S
'
i
,
2
,
1

S
'
i
,
2
,
2

O
'
j
,
1
 O
'
j
,
2

O
'
i
,
1
 O
'
i
,
2

t
'
j
,
1

t
'
j

,
2

t
'
i
,

1

t
'
i
,
2

S
s
t
a
r
t

C
S
i

C
S
j

S
O

Figure 5.4: 1-server Process Graph G’

to Sstart. At the same time,O′

i,2 changes the internal state fromS′

i,2,1 to S′

i,2,2. O′

i,2 is the current active

object. Thus the transitionti is simulated by two transitions,t′i,1 andt′i,2.

It is left to the reader to check thatG′ indeed simulatesG.

5.6 Implementation of Functions Represented by Process Graph Using Underlay Networks

In this section, we describe how to implement the functions described by a given process graph by using

under layer network protocols.

133

5.6.1 Process ID and Token

In a large distributed system, without a central server, it is not feasible to designate some site to assign the

unique process ID to each process to uniquely differentiatethem. We adopt a randomized approach to this

problem. At the beginning of a process, the beginner object generates a random number as the process ID.

If the value space of the random number is big enough, the probability that two processes have the same

process ID is really small.

For each process, there is a token passed among the involved objects. In the token, the context of the

process, such as the previous execution results, is also recorded for the next active object to check whether

it can start the execution and obtain the desired execution results of the instructions preceding it. The

constraints can be checked by looking at the context information recorded in the token. If they are satisfied,

it will start the execution. After the execution, the current active object needs to pass the token and informs

the next active object to start the execution.

5.6.2 Locating and Locking Entities

To find the interactive objects, we need to provide an efficient method to locate objects of desired types.

There are two approaches. One is a completely distributed approach. Each object is responsible for finding

out the desired objects through cooperations among them by broadcasting or multicasting (to a limited

scope) the lookup request to other objects in the network. The other approach is a hierarchical approach,

which deploys some servers in the network to maintain objects information, which is similar to the naming

and discovery approach, such as Jini [56], Salutation [89],and Service Location Protocol [90]. All objects

need to register their properties with one of the servers. Anobject can submit the lookup request to the

server, which returns the handle of the desired object by looking up its local lookup table, or collaborating

with other servers in the system. In our system, we choose thedistributed approach to avoid the bottleneck

problem that may be brought by hierarchical approach.

In the single process system, only one process is active in the system to run from the beginning to the

end. Thus it is not necessary to lock involved objects to ensure correctness and consistency. While to ensure

the correctness of operations in a multiple process system,it is necessary for the process starter to lock all

the objects involved in the process at the beginning and unlock them at the end. Only operations among the

134

objects in the same process can interact with each other.

5.6.3 Message Mechanism

The external transition involves the communications, or message exchanges, among objects. Except the

start messages that starts the process execution in the network, all other messages in the process graph are

unicast messages. A unicast message is from a single source to a single destination.

When an active object is triggering an external transition,it informs the destination object to make the

corresponding changes. For example, in Figure 5.1, when theexternal transition labeled 1 is triggered, the

active people object also sends a message to the helicopter object to inform the helicopter object to change

the state from “UB” to “B”.

5.6.4 Synchronization Among Objects

In the process graph, when an external transition is fired, the two involved objects change the state at the

same time. In real networks, we can not always have two state changes on different sites happen at exactly

the same time. To implement this, we need to ensure that before the two state changes are finished, no other

state change can happen. To achieve this, each time, the external transition between two involved objects

should not be interrupted. In the multiple process system, this can be achieved by the lock mechanism to

ensure the operations among the involved objects to be correct and atomic. In the single process system we

discuss, if we have an transition edge connectinga andb with the arrowhead pointing atb, the two involved

objects area andb andb is the active object after the transition is fired. Thena should report tob when its

state change is finished.b will know whena and it both finish the state change. After botha andb finish, b

will continue to fire the next transition and the role of active object will be passed on.

5.7 Summary

In this chapter, we discuss the concept of network process. Anetwork process is a executing program

running over network objects. In a real network, a network process first grabs some network entities, and

consume their resources. When some entities finish their computation tasks, the process would release the

entities and then move on to others. In our model, we abstractthis phenomena as: the process walks through

objects, and objects change their states as the process passing by. We discuss only the single process model,

in which only one process is running in the network. Adoptingthe idea of graph representation tools usually

135

used by automata theory, we propose a class of process graphsto depict the behavior of a network process.

We also prove that the computing power of the process graphs is equivalent to VASS. Finally, we discuss

how to implement a process graph on a network.

136

CHAPTER 6

CONCLUSION

In this dissertation, we describe a framework for grouping through virtual machine over networks. Provided

the increasing number of devices involve in network applications, it is necessary to investigate approaches

to organize those devices based on application requirements and make them perform the given tasks. The

essential functionalities of computer network is to establish relations among them, or grouping. It is natural

to investigate how to group entities in the network efficiently according to application requirements, which

gives motivations to researches on clustering. We describethe clustering approaches we propose, Size-

bounded Multi-hop Clustering (SMC), Bandwidth-adaptive Clustering (BAC), Dual-clusterhead Clustering

(DCC), and Typed Clustering (TC).

The current approaches to programming for network applications are not proper, especially for large

scale networks. One challenge is that programmers have to focus on underlay details instead of functional-

ities of applications. Device heterogeneity is another challenge brought by large-scale networks. This can

lead to duplicated different versions of the same application for different computation devices due to the fact

that some existing applications are typically developed for specific devices or system platforms.

In this dissertation, we proposed a high-level solution to these issues, by defining a specification lan-

guage, NetSpec, for (functional) grouping over network andalso a script language of a generalized version

of a molecular computing model BCS. The specification language can be translated into under layer network

protocols running on a common virtual machine. In the dissertation we in detail described a compiler that

translates a NetSpec specification into instructions supported by the network virtual machine. We described

how to implement the compiler and a transition scheduler based on the essential functionalities of NetSpec.

The instruction set supported by the network virtual machine is powerful enough to encode complicated

applications, and yet simple enough to efficiently parse into network protocols. To support the instruc-

tion set, the network virtual machine further deals with synchronization, group communication control, and

concurrency control.

Essentially, NetSpec specifies how groups of network objects evolve. Looking from the angle of each

individual node, such an evolution can be characterize as a thread of atomic transitions, each of which is

137

local; e.g., involving two network nodes. Inspired by this view, we defined network process graphs and

studied, theoretically, their computability and realization on a physical network.

138

APPENDIX

APPENDIX A

SYNTAX OF NETSPEC

Rule format: symbol ::= symbols [| symbols |]

Nonterminals are surrounded by angle brackets.

Terminals are surrounded by single quotes.

Curly braces are used for symbol grouping.

* means zero or more of the previous symbol.

+ means one or more of the previous symbol.

? means zero or one ofthe previous symbol.

. means any character.

[XYZ] means the same thing as {’X’ | ’Y’ | ’Z’}.

[A-Z] means the same thing as {’A’ | ’B’ | ’C’ | | ’Z’}.

[ˆA] means any character except for ’A’.

<program> ::= <def>+ <def> ::= <const_def>

| <class_def>

| <bond_def>

140

| <transition_def>

<primitive_def> ::= <type> <id> ’;’

<const_def> ::= ’const’ <type> <id> { ’=’ <literal> } ? ’;’

<class_def> ::= ’Class’ <id> ’{’ {<primitive_def> | <const _def>} * ’}’

<bond_def> ::= ’Bond’ <id> ’(’ <set_type> <id> {’,’ <set_ty pe>

<id>} * ’)’ ’{’ <select_stmt> * <expr> ’;’ ’}’

<set_type> ::= <id> ’Set’

<select_stmt> ::= <select> ’(’ <type> <id> {’,’ <type> <id> } * ’)’

’From’ <location> {’Where’ <expr>}? ’;’

<bond_select_stmt> ::= <bondselect> ’(’ <type> <id> {’,’ < type>

<id>} * ’)’ ’From’ <location> {’Where’ <expr>}? ’;’

<select> ::= ’Select’

<bondselect> ::= ’BondSelect’ | ’BondSelectEach’

<transition_def> ::= ’Transition’ <id> ’(’ <transition_p aram> <id>

{’,’ <transition_param> <id>} * ’)’ ’{’

<select_stmt> * ’if’ ’(’ <expr> ’)’ ’{’

<transition_stmt> * ’}’ ’}’

141

<transition_param> ::= <set_type> | <id>

<transition_stmt> ::= <atom_stmt>

| ’doparallel’ ’{’ <atom_stmt> * ’}’

<atom_stmt> ::= ’new’ ’bond’ <id> <id> ’;’

| <id> ’join’ <id> ’;’

| <id> ’leave’ ’;’

| <id> ’switch’ <id> ’;’

| <location> <assign_op> <expr>

<expr> ::= <expr> <binary_op> <expr>

| <unary_op> <expr>

| <unit>

<assign_op> ::= ’=’

| ’+=’

| ’-=’

| ’ * =’

| ’/=’

| ’%=’

<binary_op> ::= ’||’

| ’&&’

| ’==’

| ’!=’

| ’<=’

| ’>=’

142

| ’<’

| ’>’

| ’ * ’

| ’/’

| ’%’

| ’+’

| ’-’

<unary_op> ::= ’!’

| ’+’

| ’-’

| ’#’

<location> ::= <id>

<unit> ::= <location>

| <literal>

<type> ::= ’Integer’

| ’Real’

| ’Boolean’

| ’String’

<id> ::= {<letter> | <digit>} {<letter> | <digit> | ’_’} *

<literal>::= <integer_literal>

| <real_literal>

| <boolean_literal>

143

| <string_literal>

<integer_literal> ::= <digit>+

<real_literal> ::= <digit> * ’.’<digit>+

<boolean_literal> ::= ’true’ | ’false’

<string_literal> ::= ’"’ {[ˆ"] | ’\’ .} * ’"’

<letter> ::= [a-zA-Z]

<digit> ::= [0-9]

144

APPENDIX B

SPECIFICATION FOR EXAMPLE SCENARIOS

B.1 Helicopter Rescue System Specifications

Class People {

Boolean healthy;

Integer age;

};

Class Helicopter {

Integer color;

const Integer capacity;

};

Class Hospital {

Integer ID;

const Integer capacity;

}

Bond People_Helicopter (People Set ps, Helicopter Set hes) {

BondSelectEach (People p) From ps Where p.healthy==false & & #(ps)>=1;

BondSelect (Helicopter h) From hes Where #(hes)==1 && #(ps) <=h.capacity;

};

Bond Hospital_People (Hospital Set hos, People Set ps) {

BondSelectEach (People p) From ps

Where p.healthy==false || p.healthy==true;

145

BondSelect (Hospital h) From hos

Where #(ps)<=h.capacity && #(hos)==1 && #(ps)>=1;

};

Transition T1 (People Set ps, People_Helicopter ph) {

Select (People p) From ps;

Select (Helicopter h) From ph;

if(p.healthy==false && #(ph.ps)<h.capacity)

{

p join ph;

}

};

Transition T2 (People Set ps, Helicopter Set hes) {

Select (People p) From ps;

Select (Helicopter h) From hes;

if(p.healthy==false)

{

new Bond People_Helicopter ph(p, h);

}

};

Transition T3 (People_Helicopter ph, Hospital_People hp) {

Select (People p) From ph;

Select (Hospital h) From hp;

if(#(hp.ps)<h.capacity)

{

p switch hp;

}

};

146

Transition T4 (People_Helicopter ph, Hospital Set hos){

Select (Hospital hospital) From hos;

Select (People p) From ph;

new Bond Hospital_People hp(p, hospital);

};

Transition T5 (Hospital_People hp) {

Select (People p) From hp;

if (p.healthy==true)

{

p leave;

}

};

B.2 Highway Information System Specifications

Class Vehicle {

Integer plate_number;

};

Class Infocenter {

Integer capability;

};

Bond Infocenter_Vehicle (Infocenter Set is, Vehicle Set vs) {

BondSelect From Where #(is)==1 && #(vs)>=1;

};

Transition T1 (Infocenter_Vehicle iv, VehicleSet vs) {

Select (Vehicle v) From vs;

v join iv;

};

147

Transition T2 (Infocenter Set is, Vehicle Set vs) {

Select (Vehicle v) From vs;

Select (Infocenter i) From is;

new Infocenter_Vehicle iv (i,v);

};

B.3 Pervasive Marketing System Specifications

const Integer initial_money=1000;

Class Bank {

Integer money;

};

Class Customer{

Integer money;

Boolean initialized;

};

Class Vender{

Integer money;

};

Class Goods{

Integer value;

};

Bond Vender_Goods(Vender Set vs, Goods Set gs) {

BondSelect From Where #(vs)==1 && #(gs)>=1;

148

};

Bond Customer_Goods(Customer Set cs, Goods Set gs){

BondSelect From Where #(cs)==1 && #(gs)>=1;

};

Transition T1(Customer Set cs, Vender_Goods vs){

Select (Customer c) From cs;

Select (Goods g) From vs;

select (Vender v) From vs;

if(c.money>=g.value)

{

c.money-=g.value;

v.money+=g.value;

new Bond Customer_Goods cg (c,g);

}

};

Transition T2(Customer_Goods gs, Vender_Goods vs){

Select (Customer c) From gs;

Select (Goods g) From vs;

select (Vender v) From vs;

if(c.money>=g.value)

{

c.money-=g.value;

v.money+=g.value;

g switch vs;

}

};

Transition T3 (Bank Set bs, Customer Set cs){

149

Select (Customer c) From cs;

Select (Bank b) From bs;

if(c.initialized==false)

{

b.money-=initial_money;

c.money=initial_money;

c.initialized=true;

}

};

150

APPENDIX C

HELICOPTER RESCUE SYSTEM INSTRUCTION SEQUENCE PROGRAM

Class People {

Boolean healthy;

Integer age;

};

Class Helicopter {

Integer color;

Integer capacity;

};

Class Hospital {

Integer ID;

Integer capacity;

};

program T1 {

test(this, [type==People]);

test(this, [type==People_Helicopter]);

b=findlockbond([type==People_Helicopter]]);

p=findlocknode([type==People]);

h=findinternalnode([type==Helicopter], b);

151

jump([NOT(p.healthy==false && numnode(b.ps)<h.capacit y)], end);

join(p, b);

end: checkbondintegrity(b);

unlock(p,b);

};

program T2

{

test(this, [type==People]);

test(this, [type=Helicopter]);

h=findlocknode([type==Helicopter]);

p=findlocknode([type==People]);

jump([NOT(p.heathy==false)], end);

ph=bond(p, h, [type==People_Helicopter]);

end: checkbondintegrity(ph);

unlock(p,h);

152

};

program T3

{

test(this, [type==People_Helicopter]);

test(this, [type==Hospital_People]);

ph=findlockbond([type==People_Helicopter]);

hp=findlockbond(type==Hospital_People);

p=findinternalnode(ph, [type==People]);

h=findinternalnode(hp, [type==Hospital]);

jump([NOT(numnode(hp.ps)<h.capacity)], end);

switch(p, hp);

end: checkbondintegrity(hp);

checkbondintegrity(ph);

unlock(hp, ph);

};

program T4

153

{

test(this, [type==People_Helicopter]);

test(this, [type==Hospital]);

ph=findlockbond([type==People_Helicopter]);

hospital=findlocknode([type==Hospital]);

p=findinternalnode(ph, [type==People]);

hp=bond(p, hospital, [type==People_Hospital]);

checkbondintegrity(ph);

checkbondintegrity(hp);

unlock(hospital, ph);

};

program T5

{

test(this, [type==Hospital_People]);

hp=findlockbond(type==Hospital_People);

p=findinternalnode(hp, [type==People]);

154

jump([NOT(p.healthy==true)],end);

leave(p);

end: checkbondintegrity(hp);

unlock(hp);

};

155

BIBLIOGRAPHY

[1] J. Macker and M. S. Corson, “Mobile ad hoc networking and the IETF,”ACM Mobile Computing and

Communications Review, vol. 2, no. 1, pp. 9–14, January 1998.

[2] C.-C. Chiang, H.-K. Wu, W. Liu, and M. Gerla, “Routing in clustered multihop, mobile wireless

networks with fading channel,” inIEEE Singapore International Conference on Networks, 1997, pp.

197–211.

[3] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communication protocol

for wireless microsensor networks,” inProcs. Hawaii International Conference on System Sciences,

vol. 2, 2000, p. 10.

[4] L. Zhou and Z. J. Haas, “Securing ad hoc networks,”IEEE Network, vol. 13, no. 6, pp. 24–30, 1999.

[5] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. MacBeth,S. Swanson, T. Anderson, B. Bershad,

G. Borriello, S. Gribble, and D. Wetherall, “Systems directions for pervasive computing,” inProceed-

ings of the Eighth Workshop on Hot Topics in Operating Systems, 2001, p. 147.

[6] Sun, “Java remote method invocation,”http://java.sun.com/j2se/1.4.2/docs/guide/rmi/, 2007.

[7] L. Yang, Z. Dang, and O. H. Ibarra, “Bond computing systems: a biologically inspired and high-level

dynamics model for pervasive computing,” inUnconventional Computation, 2007.

[8] G. Paun, “Computing with membranes,”Journal of Computer and System Sciences, vol. 61, no. 1, p.

108C143, 2000.

[9] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture

for wireless microsensor networks,”IEEE Trans. Wireless Comm., vol. 1, no. 4, pp. 660–667, Oct

2002.

[10] S. Basagni, “Distributed clustering for ad hoc networks,” in IEEE Fourth International Symposium on

Parallel Architectures, Algorithms, and Networks, 1999, pp. 310–315.

156

[11] M. Chatterjee, S. Das, and D. Turgut, “WCA: A weighted clustering algorithm for mobile ad hoc

networks,”Journal of Cluster Computing (Special Issue on Mobile Ad hocNetworks), vol. 5, no. 2, pp.

193–204, April 2002.

[12] S. K. Dhurandher and G. V. Singh, “Weight based adaptiveclustering in wireless ad hoc networks,” in

IEEE International Conference on Personal Wireless Communications, Jan 2005, pp. 95 – 100.

[13] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc

sensor networks,”IEEE Trans. on Mobile Computing, vol. 3, pp. 366–79, 2004.

[14] A. Ephremides, J. Wieselthier, and D. Baker, “A design concept for reliable mobile radio network with

frequency hopping signaling,”Procs. IEEE, vol. 75, pp. 56–73, 1987.

[15] I. I. Er and W. K. G. Seah, “Mobility-based d-hop clustering algorithm for mobile ad hoc networks,”

in IEEE WCNC, vol. 4, 2004, pp. 2359–2364.

[16] S. Sivavakeesar, G. Pavlou, and A. Liotta, “Stable clustering through mobility prediction for large-scale

multihop intelligent ad hoc networks,” inIEEE WCNC, vol. 3, 2004, pp. 1488–93.

[17] K. Xu and M. Gerla, “A heterogeneous routing protocol based on a new stable clustering scheme,” in

Proc. IEEE MILCOM, 2002, pp. 838–43.

[18] P. Basu, N. Khan, and T. D. C. Little, “Mobility based metric for clustering in mobile ad hoc networks,”

in Workshop on Distributed Computing Systems, 2001, pp. 413–418.

[19] S. B. Lee and A. T. Campbell, “HMP: Hotspot mitigation protocol for mobile ad hoc networks,” in

IEEE/IFIP International Workshop on Quality of Service, 2003.

[20] C. Liu, K. Wu, and J. Pei, “A dynamic clustering and scheduling approach to energy saving in data

collection from wireless sensor networks,” inIEEE SECON, 2005, pp. 374–385.

[21] C. F. Chiasserini, I. Chlamtac, P. Monti, and A. Nucci, “Energy efficient design of wireless ad hoc

networks,” inProceedings of European Wireless, 2002.

157

[22] M. Yang, J. Wang, Z. Gao, Y. Jiang, and Y. Kim, “Coordinated robust routing by dual cluster heads in

layered wireless sensor networks,” inInternational Symposium on Parallel Architectures,Algorithms

and Networks, 2005, pp. 454–459.

[23] C. T. Ee and R. Bajcsy, “Congestion control and fairnessfor many-to-one routing in sensor networks,”

in ACM SenSys, 2004, pp. 148–161.

[24] M. X. Gong, S. F. Midkiff, and R. M. Buehrer, “A self-organized clustering algorithm for uwb ad hoc

networks,” inIEEE Wireless Communications and Networking Conference, vol. 3, 2004, pp. 1806–11.

[25] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh., “Max-min d-cluster formation in wireless

ad hoc networks,” inProcs. IEEE INFOCOM, vol. 1, Mar 2000, pp. 32–41.

[26] R. Krishnan and D. Starobinski, “Efficient clustering algorithms for self-organizing wireless sensor

networks,” inJournal of Ad-Hoc Networks, vol. 4, no. 1, Jan 2006, pp. 36–59.

[27] S. Bandyopadhyay and E. J. Coyle, “An energy efficient hierarchical clustering algorithm for wireless

sensor networks,” inIEEE INFOCOM, vol. 3, 2003, pp. 1713 – 1723.

[28] T. Ohta, S. Inoue, Y. Kakuda, and K. Ishida, “An adaptivemaintenance of hierarchical structure in ad

hoc networks and its evaluation,” in22nd International Conference on Distributed Computing Systems

Workshops, 2002, pp. 7–13.

[29] A. Manjeshwar and D. P. Agrawal, “TEEN: a routing protocol for enhanced efficiency in wireless

sensor networks,” inIEEE IPDPS, 2001, pp. 2009 – 2015.

[30] R. Krishnan and D. Starobinski, “Efficient clustering algorithms for self-organizing wireless sensor

networks,” inJournal of Ad-Hoc Networks, vol. 4, no. 1, 2006, pp. 36–59.

[31] S. Karmakar and A. Gupta, “Bounded clustering with low node-clusterhead separation in wireless sen-

sor networks,” inIEEE International Symposium on Parallel Architectures, Algorithms and Networks,

2005, pp. 268 – 273.

[32] A. Durresi and V. Paruchuri, “Adaptive clustering protocol for sensor networks,” inIEEE Conference

on Aerospace, 2005, pp. 1–8.

158

[33] C. Li, M. Ye, G. Chen, and J. Wu, “An energy-efficient unequal clustering mechanism for wireless

sensor networks,” inIEEE International Conference on Mobile Ad Hoc and Sensor Systems, no. 7,

2005, pp. 597 – 604.

[34] G. Venkataraman, S. Emmanuel, and S. Thambipillai, “DASCA: A degree and size based clustering

approach for wireless sensor networks,” inIEEE International Symposium on Wireless Communication

Systems, 2005, pp. 508 – 512.

[35] R. Rajagopalan, “Topology control and routing in ad hocnetworks: a survey,”ACM SIGACT News,

vol. 33, no. 2, pp. 60–73, 2002.

[36] S. Kutten and D. Peleg, “Fast distributed constructionof small k-dominating sets and applications,”

Journal of Algorithms, no. 28, pp. 40–66, 1998.

[37] L. D. Penso and V. C. Barbosa, “A distributed algorithm to find k-dominating sets,”Discrete Applied

Mathematics, no. 141, pp. 243–253, 2004.

[38] Y. Fernandess and D. Malkhi, “K-clustering in wirelessad hoc networks,” inThe second ACM inter-

national workshop on Principles of mobile computing, October 2002, pp. 31–37.

[39] F. Dai and J. Wu, “On constructing k-connected k-dominating set in wireless networks,” inIEEE

IPDPS, April 2005, p. 81a.

[40] S. Dhar, M. Q. Rieck, and S. Pai, “On shortest path routing schemes for wireless ad hoc networks,” in

International Conference on High Performance Computing, 2003, pp. 130–141.

[41] D. P. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan,and A. Srinivasan, “Fast distributed algo-

rithms for (weakly) connected dominating sets and linear-size skeletons,”Journal of Computer and

System Sciences, vol. 71, pp. 467–479, 2005.

[42] J. Wu and H. Li, “On calculating connected dominating set for efficient routing in ad hoc wireless

networks,” in3rd ACM International Workshop on Discrete Algorithms and Methods for Mobile Com-

puting and Communications, 1999, pp. 7–14.

159

[43] http://www.isi.edu/nsnam/ns/: NS-2 Network Simulator.

[44] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc wireless networks,” inMobile Comput-

ing, T. Imielinski and H. Korth, Eds. Kluwer Academic Publishers, 1996, pp. 153–181.

[45] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in2nd IEEE Workshop

on Mobile Computing Systems and Applications, February 1999, pp. 90 – 100.

[46] R. de Renesse, M. Ghassemian, V. Friderikos, and A. H. Aghvami, “Adaptive admission control for

ad hoc and sensor networks providing quality of service,” Center for Telecommunications Research,

Kings College London, UK, Tech. Rep., 2005.

[47] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell, “CODA: congestion detection and avoidance in sensor

networks,” inACM SenSys, 2003.

[48] C. Bettstetter and J. Eberspacher, “Hop distances in homogeneous ad hoc networks,” inIEEE Vehicular

Technology Conference, vol. 4, 2003, pp. 2286–2290.

[49] D. West,Introduction to Graph Theory, 2nd ed. Prentice Hall, 2001, ch. 2, p. 72.

[50] F. Buckley and F. Harary,Distance in Graphs. Addison-Wesley, 1990.

[51] P. Zimmer, “A calculus for context-awareness,” BRICS Research Series, Tech. Rep., 2005.

[52] O. M. Group,The Common Object Request Broker: Architecture and Specification, revision 2.3.1,

1999.

[53] M. Weiser, “The computer for the 21st century,”Sci. American, September 1991.

[54] U. Saif, H. Pham, J. M. Paluska, J. Waterman, C. Terman, and S. Ward, “A case for goal-oriented

programming semantics,” inFifth Annual Conference on Ubiquitous Computing, Workshopon System

Support for Ubiquitous Computing (UbiSys), 2003.

[55] L. Kagal, T. Finin, and J. Anupam, “A policy language fora pervasive computing environment,” in

Proc. of IEEE 4th International Workshop on Policies for Distributed Systems and Networks, 2003,

pp. 63–74.

160

[56] J. Waldo, “The jini architecture for network-centric computing,”Communications of the ACM, vol. 42,

no. 7, pp. 76–82, 1999.

[57] T. Sivaharan, G. Blair, and G. Coulson, “Green: A configurable and re-configurable publish-subscribe

middleware for pervasive computing,” inProc. of DOA 2005, 2005.

[58] H. A. de O. Coelho, R. de O. Anido, and R. Drummond, “Quickframe-a fast development tool for

mobile applications,” inInnovations in Information Technology, 2006, pp. 1–5.

[59] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.Campbell, and K. Nahrstedt, “Gaia: A

middleware infrastructure to enable active spaces,”IEEE Pervasive Computing, pp. 74–83, October

2002.

[60] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, and M. D. Mickunas, “Olympus: A high-

level programming model for pervasive computing environments,” in IEEE International Conference

on Pervasive Computing and Communications (PerCom), 2005, pp. 7– 16.

[61] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, “Project aura: Towards distraction-free

pervasive computing,”IEEE Pervasive Computing, April-June 2002.

[62] G. Chen and D. Kotz, “Context-sensitive resource discovery,” in Proceedings of the First IEEE Inter-

national Conference on Pervasive Computing and Communications(PerCom), 2003, pp. 243 – 252.

[63] A. Nandan, S. Das, G. Pau, M. Gerla, and M. Sanadidi, “Co-operative downloading in vehicular ad-

hocwireless networks,” inProc. of Second Annual Wireless On-Demand Network Systems and Ser-

vices(WONS 2005), 2005.

[64] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communication specifications: a comprehensive

study,”ACM Computing Surveys (CSUR), vol. 33, no. 4, pp. 427 – 469, 2001.

[65] L. Lamport, “Time, clocks, and the ordering of events ina distributed system,”Communications of the

ACM, vol. 21, no. 7, 1978.

161

[66] G. Chockler, N. Huleihel, I. Keidar, and D. Dolev, “Multimedia multicast transport service for group-

ware,” inTINA conference on the convergence of telecommunications and distributed computing tech-

nologies, September 1996.

[67] F. Cristian, “Reading agreement on processor group membership in synchronous distributed systems,”

Distributed computing, vol. 4, no. 4, pp. 175–187, April 1991.

[68] F. Cristian and F. Schmuck, “Agreeing on processor group membership in asynchronous distributed

systems,” Department of Cmputing Science and Engineering,University of California at San Diego,

Tech. Rep. 95-428, 1995.

[69] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of distributed consensus with one faulty pro-

cess,”Journal of the ACM, vol. 32, no. 2, pp. 374–382, April 1985.

[70] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost, “On the impossibility of group member-

ship,” in Proc. of the fifteenth annual ACM symposium on Principles of distributed computing, 1996,

pp. 322–330.

[71] K. P. Birman and R. van Renesse, Eds.,Reliable Distributed Computing with the Isis Toolkit. Los

Alamitos: IEEE Computer Society Press, 1994.

[72] Y. Amir, D. Dolev, and S. K. ad Dalia Malki, “Transis: A communication subsystem for high avail-

ability,” in Proc. of the Twenty-Second International Sysmposium on Fault-Tolerant Computing, 1992,

pp. 76–84.

[73] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley, “Modeling peer-peer file sharing

systems,” inIEEE INFOCOM, vol. 3, 2003, pp. 2188 – 2198.

[74] “Napster protocol specification,” http://opennap.sourceforge.net/napster.txt, March 2001.

[75] Clip2, “The gnutella protocol specification v0.4,” http://www.clip2.com/GnutellaProtocol04.pdf, 2000.

[76] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-to-peer

lookup service for internet applications,” inProc. of ACM SIGCOMM, August 2001.

162

[77] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-addressable net-

work,” in Proc. of ACM SIGCOMM, August 2001.

[78] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing for

large-scale peer-to-peer systems,” inMiddleware, 2001, pp. 329–350.

[79] M. Straber, J. Baumann, and F. Hohl, “Mole-a java based mobile agent system,” inSpecial Issue

Object-Oriented Programming: Workshop Reader of the 10th European Conf. Object-Oriented Pro-

gramming, 1996, pp. 327–334.

[80] J. Baumann and N. Radouniklis, “Agent groups for mobileagent systems,” inDistributed Applications

and Interoperable Systems, K. G. H. Konig and T. Preus, Eds. London, UK: Chapman and Hall, 1997,

pp. 74–85.

[81] I. Satoh, “Reusable mobile agents for cluster computing,” in Proc. of IEEE International Conference

on Cluster Computing, 2003, pp. 270–279.

[82] J. Elson, L. Girod, and D. Estrin., “Fine-grained network time synchronization using reference broad-

casts,” inProc. Fifth Symposium on Operating Systems Design and Implementation (OSDI 2002),

vol. 36, 2002, p. 147C163.

[83] S. Palchaudhuri, A. K. Saha, and D. B. Johnson, “Adaptive clock synchronization in sensor networks,”

in 3rd International Symposium on Information Processing in Sensor Networks (IPSN ’04), 2004.

[84] Q. Li and D. Rus, “Global clock synchronization in sensor networks,” inIEEE INFOCOM, May 2004.

[85] I. standards department, “Wireless lan medium access control (mac) and physical layer (phy) speciti-

cations,”IEEE standard 802.11, 1997.

[86] S. Deering and R. Hinden,Internet Protocol, Versino 6 (IPv6), Request for Comments 2460. Reston,

VA: The Internet Society, December 1998.

[87] C. Perkins, Ed.,IP Mobility for IPv4 [memo], Requst for Comments 3344. Reston, VA: The Internet

Society, August 2002.

163

[88] B. Aboba, D. Thaler, and L. Esibov, “Linklocal multicast name resolution (LLMNR),”

http:/tools.ietf.org/wg/dnsext/draft-ietf-dnsext-mdns/draft-ietf-dnsext-mdns-39.txt, March 2005.

[89] “Salutation arhitecture,” http://www.salutation.org.

[90] E. Guttman, “Service location protocol: automatic discovery of ip network services,”IEEE Internet

Comput., vol. 3, no. 4, pp. 71–80, 1999.

[91] “Common object services specification,” Volume 1, OMG Document number 94-1-1, March 1994.

[92] G. D. M. Serugendo, M. Muhugusa, and C. F. Tschudin3, “A survey of theories for mobile agents,”

World Wide Web, vol. 1, no. 3, pp. 139–153, 1998.

[93] L. Cardelli, “A language with distributed scope,”Computing Systems, vol. 8, no. 1, pp. 27–59, 1995.

[94] C. Tschudin, “On the structuring of computer communications,” Ph.D. dissertation, University of

Geneva, 1993.

[95] G. Berry and G. Boudol, “The chemical abstract machine,” Theoretical Computer Science, vol. 96,

no. 1, pp. 217–248, 1992.

[96] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta, “Computation in networks of pas-

sively mobile finite-state sensors,” inProceedings of the twenty-third annual ACM symposium on Prin-

ciples of distributed computing, July 2006.

164

