POWERFUL RAY PATTERNS

By
JONG SAM JEON

A dissertation submitted in partial fulfillment of the REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy
(MATHEMATICS)
at

WASHINGTON STATE UNIVERSITY

DECEMBER
2007
© Copyright by JONG SAM JEON, 2007
All Rights Reserved
© Copyright by JONG SAM JEON, 2007
All Rights Reserved

I certify that I have read this thesis and certify that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Abstract

POWERFUL RAY PATTERNS
 by JONG SAM JEON, Ph.D.
 WASHINGTON STATE UNIVERSITY

December 2007
Chair: Judith Joanne McDonald

Since the concept of ray pattern was introduced, many authors have studied properties of ray pattern. At the first appearance of ray pattern, authors considered numerical properties of complex matrices by using the concept of ray pattern. In this sense, a ray pattern can be considered as a abstraction of complex matrices. On the other hand, there had been numerous studies on combinatorial properties of sign patterns. Hence extension from sign patterns to ray patterns was very natural to get more generalized results in combinatorial matrix theory. So a ray pattern has two aspects; an abstraction of a complex matrix and a generalization of a sign pattern.

In this thesis, we are going to think about a certain combinatorial property of ray patterns. Ray patterns which we are most interested in in this thesis behave well under powers, called powerful ray patterns, in the sense that any power of a given ray pattern does not have ambiguous entries. Also we are going to consider the set S. A ray pattern is in S if it is ray diagonally similar to a ray multiple of Boolean pattern of itself. We are going to address three questions and answer them partially or fully in this thesis. Those questions are characterizing powerful ray patterns, checking powerfulness of irreducible ray patterns by powering, and characterizing the set S. The first question is still open
in general case. We are going to answer this question for ray patterns whose diagonal blocks of Frobenius normal form are primitive. For the second question, we are going to see an answer which gives us an upper bound on the first power that a non-powerful ray pattern will encounter an ambiguous entry. This answer does not cover every possible cases but exceptional cases are very specialized. For the last question, we are going to see two complete answers by using products of chains and powers of a certain matrix. Furthermore, we are going to have an algorithm that checks if a given ray pattern is in S or not by combining those two answers.

At the end of this thesis, we are going to see examples of ray patterns which are not considered in this thesis. Those examples illustrate three possible cases of ray patterns that are reducible and non-powerful. We hope that studying those three cases would lead us to a complete answer for characterizing powerful ray patterns.

Acknowledgements

The most important reason I can be here is my father and mother. Without them, I couldn't have existed. Thanks to my parents, I have explored and enjoyed two wonderful worlds, a real world and a world of math. On my way to finish Ph.D program, I could feel their love and support from my heart even though we were half-a-world apart. Also my thanks goes to my two brothers and their wives. They wished my success as much as my parents did and gave me unconditional supports. When having hard times, words of comfort of my friends, Jungmin, Hongwon, Hwakyung, Ilyoung and Kwonbum, really helped me in mental stability. My friends are one of the most precious values to me.

I remember that the first time I stepped into Judi's office and talked to her face to face. At our first meeting, what I figured out was my good luck to have a nice advisor. She is like a kind advisor, a close friend or a generous mother who is always on my side. She helped me mentally, academically and even my campus life. I have a mother in Korea but I would like say she is my academical mother. What I learned from Judi is not only math knowledge but also relationship between human beings. Without her, I couldn't have done anything for the last three years. As a foreign student, living in U.S is not an easy going story, language, foods and life style, for examples. Friends I met here, Amy, DeAnne, Jay, Sherod and T.J, took me as I was and were like old friends I knew for ten years. I really appreciate their help, and value the memory of having fun together. Also I would like to thank all faculty members who taught me directly or indirectly and staffs of math department. Using math terminology, they were a basis for my study.

List of Figures

1 Connecting disjoint simple cycles 29
2 The Wielandt Graph 37

List of Tables

1 Addition and multiplication of 0 and rays

Contents

Abstract iii
Acknowledgements v
1 Introduction 1
2 Notation and Definitions 4
3 Irreducible Powerful Ray Patterns 12
3.1 Preliminary Work 12
3.1.1 A Characterization of Irreducible Periodic Ray Patterns 12
3.1.2 Cardinality of $\Omega(A)$ for an Irreducible Powerful Ray Pattern A 20
3.2 The Minimum Upper Bound on the First Ambiguous Power of an Irre- ducible, Nonpowerful Ray or Sign Pattern 25
3.2.1 A Useful Lemma on Powers of Cycle Products 25
3.2.2 The First Ambiguous Power 34
3.2.3 The Wielandt Graph 36
4 Reducible Powerful Matrices 40
4.1 Reducible Powerful Ray Patterns With Primitive Diagonal Blocks 41
4.2 Reducible Powerful Matrices 47
4.3 Powerful Ray Patterns and the Set S 51
4.3.1 Characterization of S in Terms of Products of Chains 52
4.3.2 Characterization of S in Terms of Powers 59

5 Concluding Remarks 65

Bibliography 67

Chapter 1

Introduction

Combinatorial matrix theory involves determining properties of matrices by looking at their underlying combinatorial structure. In particular, qualitative matrix theory seeks to determine interesting properties of a matrix that are independent of the magnitudes of the entries of the matrix. Until recently, most of this work focused on matrices over the boolean numbers, the integers, or the real numbers. In [10], McDonald, Olesky, Tsatsomeros and van den Driessche move the exploration into the complex numbers by looking at ray patterns of matrices. There are now several interesting papers on this topic (see for example $[4,5,6,12]$).

We define a ray pattern to be a matrix each of whose entries is either 0 or a ray in the complex plane of the form $r e^{\mathrm{i} \theta}$, where θ is a real number and r runs through all positive real numbers. For brevity, we denote a ray $r e^{\mathrm{i} \theta}$ by $e^{\mathrm{i} \theta}$. For two rays $e^{\mathrm{i} \theta_{1}}$ and $e^{\mathrm{i} \theta_{2}}$, if $\theta_{1}-\theta_{2}$ is an integer multiple of 2π, then $e^{\mathrm{i} \theta_{1}}=e^{\mathrm{i} \theta_{2}}$; otherwise, $e^{\mathrm{i} \theta_{1}} \neq e^{\mathrm{i} \theta_{2}}$. A sign pattern is a matrix each of whose entries is $0,-1$ or 1 and can be considered as the abstraction of real matrices. A Boolean matrix is a matrix whose entries are either 0 or 1 and arithmetic operations follow the rules of Boolean algebra. By simplifying $e^{\mathrm{i} 0}=1$ and $e^{\mathrm{i} \pi}=-1$, we can consider the set of Boolean matrices and the set of sign patterns as subclasses of the set of ray patterns.

Many modeling techniques examine the long run behavior of a system and this information is often contained in the powers of a matrix. Authors including Eschenbach, Hall, Li, and Stuart study the properties of powers of sign patterns (See [7, 13, 16]). It is natural to generalize sign patterns to complex ray patterns and these authors studied this topic in the recent papers $[8,14,9]$.

In this thesis we look at ray patterns for which all the powers of these ray patterns are also ray patterns. Such patterns are called powerful. Of particular interest is the subset of the ray patterns

$$
S=\{A \mid A \text { is diagonally similar to } \omega|A| \text { for some ray } \omega\}
$$

The main definitions and notational conventions are contained in Chapter 2.
In Chapter 3 we look at properties of irreducible ray patterns and their powers.
We begin with a review of material from my Masters of Science work with Cho and Kim. In Section 3.1 we characterize irreducible powerful ray patterns by showing that they must be in S, and we look at periodic ray patterns more closely. For an irreducible powerful ray pattern A, let

$$
\Omega(A)=\{\omega \mid A \text { is ray diagonally similar to } \omega|A|\}
$$

We show that if $\omega \in \Omega(A)$, then $e^{\frac{2 m \pi i}{k}} \omega \in \Omega(A)$ where $0 \leq m \leq k$ and k is the index of imprimitivity of A. From this we see that the cardinality of $\Omega(A)$ is, in fact, k. Much of the work included in Section 3.1 has been published in [3].

We continue with new work on irreducible ray patterns in Section 3.2 by looking for an upper bound on the first power that a non-powerful matrix will encounter an ambiguous entry. In Section 3.2 .2 we show that if an irreducible $n \times n$ matrix A is not
powerful, then A^{t} contains an ambiguous entry for some $t \leq n^{2}-2 n+2$, in all but one very specialized case, which remains open. In Section 3.2.3, we show that there is a ray pattern (and sign pattern) associated with the Wielandt graph for which $t=n^{2}-2 n+2$ and hence our bound is the minimum possible.

In Chapter 4, we look at properties of powerful reducible ray patterns.
In Section 4.1, we look at the case where the diagonal blocks of the reducible ray pattern are primitive. In Section 4.2, we show that as long as none the final classes of the reducible ray pattern are trivial, then A is powerful if and only if A^{k} is powerful for any $k \geq 1$.

In Section 4.3, we look at two characterizations of the reducible powerful ray patterns in S. For the first characterization, we define a product of a semiwalk which is an generalized concept of a product of a walk. And then we can get a system of equations which semicycles should satisfy. Second characterization makes use of a matrix defined by $A_{(\alpha)}=A+\alpha^{2} A^{*}$ for a ray α. For a ray pattern A of order n and a ray ω, if $\left(A_{(\alpha)}\right)^{2 n}$ or $\left(A_{(\alpha)}\right)^{4 n-6}$ is well-defined then $A \sim \alpha|A|$ or $A \sim-\alpha|A|$. The choice of powers from $2 n$ and $4 n-6$ depends on the existence of odd semicycle in the diagraph of a ray pattern. By combining two characterizations, we can get an algorithm which enables us to determine a given ray pattern is in S or not easily.

We conclude this thesis with a discussion of future work in Chapter 5 by considering three examples of reducible and non-powerful ray patterns. Those examples come from three classes of reducible and non-powerful ray patterns. If we can get characterizations of those classes in future, we can answer the question of characterizing powerful ray patterns in general.

Chapter 2

Notation and Definitions

We define a ray pattern to be a matrix each of whose entries is either 0 or a ray in the complex plane of the form $r e^{\mathrm{i} \theta}$, where θ is a real number and r runs through all positive real numbers. For brevity, we denote a ray $r e^{\mathrm{i} \theta}$ by $e^{\mathrm{i} \theta}$. For two rays $e^{\mathrm{i} \theta_{1}}$ and $e^{\mathrm{i} \theta_{2}}$, if $\theta_{1}-\theta_{2}$ is an integer multiple of 2π, then $e^{\mathrm{i} \theta_{1}}=e^{\mathrm{i} \theta_{2}}$; otherwise, $e^{\mathrm{i} \theta_{1}} \neq e^{\mathrm{i} \theta_{2}}$. By simplifying $e^{\mathrm{i} 0}=1$ and $e^{\mathrm{i} \pi}=-1$, we can consider the set of Boolean matrices and the set of sign patterns as subclasses of the set of ray patterns. Table 1 shows the addition and the multiplication of 0 and rays.

Table 1: Addition and multiplication of 0 and rays

+	$e^{\mathrm{i} \theta_{1}}$	0	$\#$
		$e^{\mathrm{i} \theta_{1}}$ if $e^{\mathrm{i} \theta_{1}}=e^{\mathrm{i} \theta_{2}}$	
$e^{\mathrm{i} \theta_{2}}$	$\#$ if $e^{\mathrm{i} \theta_{1}} \neq e^{\mathrm{i} \theta_{2}}$	$e^{\mathrm{i} \theta_{2}}$	$\#$
0	$e^{\mathrm{i} \theta_{1}}$	0	$\#$
$\#$	$\#$	$\#$	$\#$

\cdot	$e^{\mathrm{i} \theta_{1}}$	0	$\#$
$e^{\mathrm{i} \theta_{2}}$	$e^{\mathrm{i}\left(\theta_{1}+\theta_{2}\right)}$	0	$\#$
0	0	0	0
$\#$	$\#$	0	$\#$

In Table 1, we denote by \# any sum of rays where at least two of the rays are distinct, and we call \# the ambiguous entry. The product of the $m \times p$ ray pattern $A=\left[a_{s t}\right]$ and the $p \times n$ ray pattern $B=\left[b_{s t}\right]$ is defined as usual; the (s, t) entry of $A B$ is $\sum_{k=1}^{p} a_{s k} b_{k t}$. Note that the product of two ray patterns does not always yield a ray pattern, since some entries of the product can be \#.

We say that an $n \times n$ ray pattern A is powerful if for each positive integer k, the matrix A^{k} has no \#. For a powerful ray pattern A, consider the sequence $A=A^{1}, A^{2}, A^{3}, \cdots$. If this sequence has repetitions, we say the ray pattern A is periodic. Let A^{l} be the first one that is repeated. Write $A^{l}=A^{l+p}$ with the minimal $p>0$. Then l is called the base of A, and p the period of A. Denote the base of A by $l(A)$, and the period of A by $p(A)$. Note that if a powerful ray pattern A is periodic, then A^{k} is also periodic for each positive integer k.

The authors would like to point out that the definition of the periodicities of ray patterns in this paper is not general. Consider the following ray pattern

$$
A=\left[\begin{array}{llll}
0 & 1 & \mathrm{i} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It is easy to check that $A^{4}=A^{3}$ but A^{2} contains an ambiguous entry \#. This example shows that it is possible to define the periodicities of ray patterns which are not powerful. We will refer to such matrices as oscillatory and they are a topic of future research. In [7], there is a general definition of the periodicities of sign patterns which are possibly not powerful, however in this thesis we restrict our attention to powerful matrices.

For a ray pattern $A=\left[a_{s t}\right]$, we define the ray pattern $|A|=\left[a_{s t}^{\prime}\right]$ of A, where $a_{s t}^{\prime}=1$ if $a_{s t} \neq 0$ and $a_{s t}^{\prime}=0$ if $a_{s t}=0$. Note that the entry 1 of the ray pattern $|A|$ is regarded as a ray, that is, $1=e^{\mathrm{i} 0}$. A square ray pattern D is called a diagonal ray pattern, if each diagonal entry of $|D|$ is 1 and other entries are 0 . For ray patterns $A=\left[a_{s t}\right]$ and $B=\left[b_{s t}\right]$, we say that B is ray diagonally similar to A if there exists a diagonal ray pattern D satisfying $A=D B D^{*}$ and we write $A \tilde{B}$. We say that B is a subpattern of
A if $b_{s t}=\delta_{s t} a_{s t}$ where $\delta_{s t}$ is 1 or 0 for all s, t. If B is a ray subpattern of A, we write $B \preceq A$.

Note that each powerful sign pattern is periodic (See [7]). But for the ray pattern

$$
A=e^{\mathrm{i}}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

A is powerful but not periodic. In case of ray patterns, powerfulness does not guarantee periodicity. A ray ω is periodic if there exists a positive integer p satisfying the equation $\omega^{p}=1$. And if ω is periodic, the smallest positive integer p satisfying $\omega^{p}=1$ is called the period of ω, and is denoted by $p(\omega)$. In the previous example, we can see that A is not periodic since the ray e^{i} is not periodic.

The following is a basic proposition when we study powerful ray patterns.

Proposition 2.1 (See Lemma 1.2 in [87) The set of powerful ray patterns is closed under the following operations:
(i) multiplication by any ray;
(ii) transposition;
(iii) conjugate transposition (denoted by *);
(iv) diagonal similarity;
(v) permutational similarity;
(vi) direct sum;
(vii) taking subpatterns.

Of particular interest in this thesis is the set of ray patterns A for which there exists a ray ω such that $A \tilde{\omega}|A|$, and we denote this set by S. In Theorem 3.3 it is shown that
every irreducible powerful ray pattern is in S. We provide examples to show that this is not always the case for reducible powerful ray patterns.

Let $G=(V(G), E(G))$ be a digraph without multiple arcs. We define a weighted digraph \mathcal{G} to be an ordered pair (G, w) where w is a function from $E(G)$ into the set of rays. We call the function w a weight function and the function value of an $\operatorname{arc} e$ in G, denoted by $w(e)$, the weight of e.

A walk in a digraph G is a sequence of edges from $E(G)$ of the form

$$
\left(v_{k_{1}}, v_{k_{2}}\right),\left(v_{k_{2}}, v_{k_{3}}\right), \ldots,\left(v_{k_{l-1}}, v_{k_{l}}\right) .
$$

The number of edges in the walk is its length A path is a walk for which all of the vertices $v_{k_{1}}, v_{k_{2}}, \ldots, v_{k_{l}}$ are distinct. If $v_{k_{1}}=v_{k_{t}}$ we say that the walk is a cycle, and if all the vertices in a cycle (except the first and last) are distinct then we say the cycle is a simple cycle.

In Chapter 4.3, we consider semiwalks with forward and reversed edges and adopt the following more complicated notation in this case. We define a semiwalk W in a digraph to be a sequence of the form

$$
\begin{equation*}
W: v_{k_{1}}, e_{k_{1}}, v_{k_{2}}, e_{k_{2}}, \cdots, v_{k_{l}}, e_{k_{l}}, v_{k_{l+1}}(l \geq 1) \tag{2.1}
\end{equation*}
$$

where each $v_{k_{i}}$ is a vertex, each $e_{k_{i}}$ is an arc of the form either $\left(v_{k_{i}}, v_{k_{i+1}}\right)$ or $\left(v_{k_{i+1}}, v_{k_{i}}\right)$. If there is no ambiguity, we abbreviate (2.1) to

$$
\begin{equation*}
W: v_{k_{1}} e_{k_{1}} v_{k_{2}} e_{k_{2}} \cdots v_{k_{l}} e_{k_{l}} v_{k_{l+1}}(l \geq 1) \tag{2.2}
\end{equation*}
$$

Such l is called the length of the semiwalk and is denoted by $l(W)$. A semiwalk W is a semicycle if $v_{k_{1}}=v_{k_{l+1}}$. A semiwalk W is called a semipath if all the vertices in W
are different and is called a simple semicycle if all the vertices in W are different except $v_{k_{1}}=v_{k_{l+1}}$. If $e_{k_{i}}=\left(v_{k_{i+1}}, v_{k_{i}}\right)$ and $v_{k_{i}} \neq v_{k_{i+1}}$, we call $e_{k_{i}}$ a reversed arc; otherwise, we call $e_{k_{i}}$ an ordinary arc. We define $a_{+}(W)$ and $a_{-}(W)$ to be the number of ordinary and the number of reversed arcs in W, respectively. A semiwalk of the form

$$
v_{k_{l+1}} e_{k_{l}} v_{k_{t}} e_{k_{l-1}} \cdots v_{k_{2}} e_{k_{1}} v_{k_{1}}(l \geq 1)
$$

is called the reversed semiwalk of W and is denoted by \bar{W}.
Note that a loop is an ordinary arc by definition. So for a vertex v, a semiwalk $W: v(v, v) v$ is a semicycle of length 1 and $\bar{W}=W$.

Suppose that $\mathcal{G}=(G, w)$ is a weighted digraph and G has a semiwalk W of the form (2.2). We define the sequence $\gamma(W ; G, w)$ (or if there is no ambiguity, $\gamma(W ; \mathcal{G})$)

$$
\gamma(W ; G, w): \lambda_{1}, \lambda_{2}, \cdots, \lambda_{l} \text { where } \lambda_{i}=\left(v_{k_{i}}, v_{k_{i+1}} ; w\left(e_{k_{i}}\right)\right)
$$

for each i, and call it the chain of W with respect to w. The reversed chain $\bar{\gamma}(W ; G, w)$ of W is the chain

$$
\bar{\gamma}(W ; G, w): \bar{\lambda}_{l}, \bar{\lambda}_{l-1}, \cdots, \bar{\lambda}_{1} \text { where } \bar{\lambda}_{i}=\left(v_{k_{i+1}}, v_{k_{i}} ; w\left(e_{k_{i}}\right)\right)
$$

for each i. So, by definition, $\bar{\gamma}(W ; G, w)=\gamma(\bar{W} ; G, w)$. If W is a semicycle or a cycle, we call $\gamma(W ; G, w)$ a semicyclic chain or a cyclic chain, respectively. The product of $\gamma(W ; G, w)$, denoted by $\wp(\gamma(W ; G, w))$, is the ray defined by

$$
\wp(\gamma(W ; G, w))=\left(\prod_{\substack{1 \leq i \leq l, e_{k_{i}} \text { s ordinary }}} w\left(e_{k_{i}}\right)\right)\left(\prod_{\substack{1 \leq i \leq l, e_{k_{i}} \text { is reversed }}} \overline{w\left(e_{k_{i}}\right)}\right),
$$

where the first or the second part is defined to be 1 if $a_{+}(W)=0$ or $a_{-}(W)=0$, respectively. Note that if W is a cycle of length 1 , then $\wp(\bar{\gamma}(W ; G, w))=\wp(\gamma(W ; G, w))$;
otherwise, $\wp(\bar{\gamma}(W ; G, w))=\wp(\gamma(\bar{W} ; G, w))=\overline{\wp(\gamma(W ; G, w))}$. And if W is a cycle, then $\wp(\gamma(W ; G, w))$ is the product of all weights of arcs in W. Where no ambiguity arises we write $\wp(\gamma)$ for $\wp(\gamma(W ; G, w))$

Let $A=\left[a_{i j}\right]$ be an $n \times n$ ray pattern. Then it is well-known that there exists a unique (up to graph isomorphisms) digraph G with $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $E(G)=$ $\left\{\left(v_{i}, v_{j}\right) \mid a_{i j} \neq 0\right\}$. And we denote it by $G(A)$. Furthermore, if we consider not only the zero-nonzero pattern of A, but also the rays $a_{i j}$, we can determine a unique weight function w defined on $E(G)$ such that $w\left(\left(v_{i}, v_{j}\right)\right)=a_{i j}$. So for a given square ray pattern A, there exists a unique weighted digraph (G, w), and we denote it by $\mathcal{G}(A)$. Throughout this thesis we will move fluidly between A and $\mathcal{G}(A)$.

Conversely, for a weighted digraph $\mathcal{G}=(G, w)$ with a vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, there is a unique ray pattern $A=\left[a_{i j}\right]$ of order n, denoted by $A(\mathcal{G})$, such that

$$
a_{i j}= \begin{cases}w\left(\left(v_{i}, v_{j}\right)\right) & \text { if }\left(v_{i}, v_{j}\right) \in E(G), \\ 0 & \text { if }\left(v_{i}, v_{j}\right) \notin E(G) .\end{cases}
$$

Given an $n \times n$ matrix A, notice that the

$$
\left(A^{l}\right)_{j k}=\sum_{W \in L(j, k, l)} w p(W)
$$

where $L(j, k, l)$ is the set of all walks from v_{j} to v_{k} of length l in $\mathcal{G}(A)$
Let v_{l} and v_{j} be vertices in a graph G. If v_{l} has access to v_{j} and v_{j} has access to v_{l}, we say v_{j} and v_{l} communicate. The communication relation is an equivalence relation on the vertices of G, and thus we can partition V into equivalence classes which we will refer to as the classes of G.

A square matrix A is reducible if it is a 1×1 block of zeros or if there exists a
permutation matrix P so that

$$
P^{T} A P=\left[\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right] .
$$

where B and D are nonempty square matrices. The matrix A is irreducible if it is not reducible. Irreducibility is equivalent to the property that every two vertices v_{i} and v_{j} in $G(A)$ communicate. The classes of $G(A)$ correspond to the irreducible classes of A.

Let A be a reducible matrix. It is well know that A is permutationally similar to a matrix in Frobenius normal form, where each of the diagonal blocks is a square irreducible matrix or a 1×1 block of zeros:

$$
P A P^{T}=\left[\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 m} \tag{2.3}\\
0 & A_{22} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & A_{m m}
\end{array}\right]
$$

We define the reduced graph of A by $\mathcal{R}(A)=(V, E)$ where $V=\{K \mid K$ is an irreducible class of $A\}$, and $E=\{(K, L) \mid$ there is edge from a vertex $j \in K$ to a vertex $l \in L$ in $G(A)\}$. We will say that K is nontrivial if K is not the 1×1 block of zeros. We will say that a vertex K in $\mathcal{R}(A)$ is initial if it is not accessed by any other vertices in $\mathcal{R}(A)$ and we will say that it is final if it does not have access to any other vertex in $\mathcal{R}(A)$.

For an irreducible matrix A, the index of imprimitivity of A is the greatest common divisor of the lengths of the cycles in A, and is denoted by $k(A)$. If A is a zero matrix of order $1, k(A)$ is undefined. For an irreducible matrix A, A is $\operatorname{primitive}$ if $k(A)=1$ and A is imprimitive if $k(A)>1$. It is well-known that for an irreducible matrix A with
$k(A)=k, k$ is the greatest positive integer such that A is permutationally similar to matrix in block cyclic form

$$
A=\left[\begin{array}{ccccc}
0 & A_{1,2} & & & \tag{2.4}\\
& 0 & A_{2,3} & & \\
& & \ddots & \ddots & \\
& & & 0 & A_{k-1, k} \\
& & & & 0
\end{array}\right]
$$

where the zero diagonal blocks are square, and the nonzero blocks have no zero rows or zero columns (See [2]). When $k=1, A$ is in its own block cyclic form, and it will be understood that the block cyclic form (2.4) is $A_{1,1}$. For simplicity of notation, we may assume that A is already in block cyclic form (2.4).

Chapter 3

Irreducible Powerful Ray Patterns

3.1 Preliminary Work

In the paper [3], Cho, Kim, and I establish many interesting results which we will use later in this thesis and hence I have included it here as preliminary work. The work described in this section is also part of my MS Thesis under the supervision of Cho.

3.1.1 A Characterization of Irreducible Periodic Ray Patterns

In this section, we study irreducible ray patterns that are either powerful or periodic. Recall that by our definition, periodic ray patterns must be powerful. In the following, we denote by J the ray pattern each of whose entries is 1 . We first consider irreducible powerful ray patterns.

Proposition 3.1 (See Theorem 2.1 in [8]) Let A be an $n \times n$ ray pattern with no zero entries. Then A is powerful iff A is ray diagonally similar to $e^{\mathrm{i} \theta} J$ for some $\theta \in R$.

Proposition 3.2 (See Theorem 3.5 in [8]) Every irreducible powerful ray pattern is a subpattern of a powerful ray pattern with no zero entries.

From the above two propositions, we can obtain the following theorem which is rather simple but plays a major role throughout this thesis. Notice that this theorem implies
that every irreducible powerful ray pattern is in S. We will see in Chapter 4 that this is not the case for reducible powerful ray patterns.

Theorem 3.3 [3] Suppose that a ray pattern A is irreducible. Then A is powerful if and only if $A \in S$.

Proof. 'If' part is trivial since a ray pattern $\omega|A|$ is powerful. Suppose an irreducible ray pattern A is powerful. Then, by Proposition 3.1, there exists a powerful ray pattern \hat{A} with no zero entries such that A is a subpattern of \hat{A}. Moreover, by Proposition 3.2, there exists a diagonal ray pattern D such that $D \hat{A} D^{*}=\omega J$ for some ray ω. Since $D A D^{*}$ is a subpattern of $D \hat{A} D^{*}$, each nonzero entry of $D A D^{*}$ is ω. By noting that $\left|D A D^{*}\right|=|A|$, we have $D A D^{*}=\omega|A|$ and this completes the proof.

From Theorem 3.3, we can obtain an immediate corollary which is presented in [8].

Corollary 3.4 (See Theorem 3.6 in [8]) Suppose that a ray pattern A is irreducible. Then A is powerful iff there exists a ray α such that αA is periodic.

Proof. 'If' part is trivial. Suppose that an irreducible ray pattern A is powerful. By Theorem 3.3, A is ray diagonally similar to $\omega|A|$ for some ray ω. Let $\alpha=\omega^{-1}$. Then αA is ray diagonally similar to $|A|$, which is clearly an irreducible powerful sign pattern. Hence αA is periodic.

For an irreducible powerful ray pattern A, we define the set

$$
\Omega(A)=\{\omega \mid A \text { is ray diagonally similar to } \omega|A|\} .
$$

From Theorem 3.3, $\Omega(A)$ is not empty. In Section 3.1.2, we consider the cardinality of $\Omega(A)$ and the geometric properties of the elements of $\Omega(A)$.

In [8], periodic ray patterns are characterized in terms of the powers. The following theorem characterizes irreducible periodic ray patterns in terms of the actual products of cycles. Note that diagonal similarities preserve the actual products of cycles.

Theorem 3.5 [3] Suppose that an irreducible ray pattern A is powerful. Then A is periodic if and only if the actual product of each cycle in A is periodic.

Proof. Since A is powerful, there exists a diagonal ray pattern D satisfying $D A D^{*}=$ $\omega|A|$ for some ray ω.

Suppose A is periodic. Then ω is also periodic. Let γ be a cycle in A of length l. Since the actual products of cycles are invariant under diagonal similarities, the actual product $\wp(\gamma)$ of γ is ω^{l}. And ω^{l} is periodic because ω is periodic. We have just shown that the actual product of each cycle in A is periodic.

Next suppose that the actual product of each cycle in A is periodic. Let m_{1} be the least common multiple of lengths of cycles in A and m_{2} be the least common multiple of periodicities of actual products of cycles in A. Let $m=m_{1} m_{2}$. Note that $D A^{m} D^{*}=$ $\left(D A D^{*}\right)^{m}=\omega^{m}|A|^{m}=|A|^{m}$, since $\omega^{m}=1$. Since $|A|$ is irreducible and m is a multiple of m_{1}, each diagonal entry of $|A|^{m}$ is 1 . Hence each diagonal entry of $D A^{m} D^{*}$ is 1 . Note that diagonal similarities do not change the diagonal entries. Thus each diagonal entry of A^{m} is 1 . Since $A^{2 m}=A^{m} A^{m}$ and each diagonal entry of A^{m} is $1, A^{m}$ is a subpattern of $A^{2 m}$. Similarly, $A^{2 m}$ is a subpattern of $A^{3 m}$ and so on. Since the order of A is finite, there exists a positive integer s such that $A^{s m}=A^{(s+1) m}=A^{s m+m}$. Therefore we have A is periodic. This completes the proof.

In [7], the notion of cyclically nonnegative sign patterns was introduced. We extend this notion to ray patterns. A ray pattern A is cyclically nonnegative if the actual product
of each cycle in A is 1 . It is easy to see that an irreducible, cyclically nonnegative ray pattern is powerful.

Theorem 3.6 [3] Suppose that a ray pattern A is irreducible. Then A is cyclically nonnegative iff A is ray diagonally similar to $\omega|A|$ for some ray ω satisfying $\omega^{k(A)}=1$.

Proof. Let $k(A)=k$ and $L(A)=\left\{l_{1}, l_{2}, \cdots, l_{m}\right\}$ be the set of lengths of the cycles in A. First assume that A is ray diagonally similar to $\omega|A|$ satisfying $\omega^{k}=1$. Let γ be a cycle in A. Since the actual products of cycles are invariant under the diagonal similarities, the actual product $\wp(\gamma)$ of γ is $\omega^{l(\gamma)}$. Since $l(\gamma)$ is a multiple of $k, \omega^{l(\gamma)}=1$. Thus A is cyclically nonnegative.

Now assume that A is cyclically nonnegative. Since A is irreducible and powerful, A is ray diagonally similar to $\omega|A|$ for some ray ω. We show that $\omega^{k}=1$ as follows. Since k is the greatest common divisor of $L(A)$, we can take integers $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ such that $\sum_{s=1}^{m} \alpha_{s} l_{s}=k$. Then we have

$$
\omega^{k}=\left(\omega^{l_{1}}\right)^{\alpha_{1}}\left(\omega^{l_{2}}\right)^{\alpha_{2}} \cdots\left(\omega^{l_{m}}\right)^{\alpha_{m}} .
$$

For each $s,\left(\omega^{l_{s}}\right)^{\alpha_{s}}=\left(\wp\left(\gamma_{s}\right)\right)^{\alpha_{s}}$ where γ_{s} is a cycle of length l_{s}. So we have

$$
\omega^{k}=\left(\wp\left(\gamma_{1}\right)\right)^{\alpha_{1}}\left(\wp\left(\gamma_{2}\right)\right)^{\alpha_{2}} \cdots\left(\wp\left(\gamma_{m}\right)\right)^{\alpha_{m}} .
$$

By the assumption that A is cyclically nonnegative, we have $\wp\left(\gamma_{s}\right)=1$ for each s. Therefore $\omega^{k}=1$ and the theorem follows.

In the following, we obtain the base and the period of an irreducible periodic ray pattern. By slightly modifying the proof of the well-known Lemma 1.2 in [7], we obtain the following proposition:

Proposition 3.7 [3] Suppose that a ray pattern A is periodic. Then for positive integers m and $k, A^{m}=A^{m+k}$ iff $m \geq l(A)$ and $p(A) \mid k$.

The following result is a generalization of Theorem 4.3 in [7].

Theorem 3.8 [3] If an irreducible periodic ray pattern A is ray diagonally similar to $\omega|A|$, then $l(A)=l(|A|)$ and $p(A)=\operatorname{lcm}\{p(\omega), p(|A|)\}$. Furthermore, if $k(A)=k$, then $p(A)=p\left(\omega^{k}\right) k$.

Proof. By Theorem 3.3, without loss of generality, we may assume $A=\omega|A|$ since the base and the period are invariant under ray diagonal similarities. Let $p=$ $\operatorname{lcm}\{p(\omega), p(|A|)\}$. Then we have

$$
\begin{aligned}
A^{l(A)+p(A)} & =A^{l(A)}, \\
\omega^{l(A)+p(A)}|A|^{l(A)+p(A)} & =\omega^{l(A)}|A|^{l(A)}, \\
\omega^{p(A)}|A|^{l(A)+p(A)} & =|A|^{l(A)} .
\end{aligned}
$$

Since each nonzero entry of $|A|$ is 1 , $\omega^{p(A)}$ must be 1 and hence $p(\omega) \mid p(A)$. From the last equality, we have $|A|^{l(A)+p(A)}=|A|^{l(A)}$. Thus we have $l(A) \geq l(|A|)$ and $p(|A|) \mid p(A)$ by Proposition 3.7. So $l(A) \geq l(|A|)$ and $p \mid p(A)$. Also we have

$$
\begin{aligned}
|A|^{l(|A|)+p} & =|A|^{l(|A|)}, \\
\omega^{l(|A|)+p}|A|^{l(|A|)+p} & =\omega^{l(|A|)+p}|A|^{l(|A|)}, \\
\omega^{l(|A|)+p}|A|^{l(|A|)+p} & =\omega^{l(|A|)}|A|^{l(|A|)}, \\
A^{l(|A|)+p} & =A^{l(|A|)} .
\end{aligned}
$$

It follows that $l(|A|) \geq l(A)$ and $p(A) \mid p$. Therefore we have $l(A)=l(|A|)$ and $p(A)=$ $p=\operatorname{lcm}\{p(\omega), p(|A|)\}$.

Note $p=\operatorname{lcm}\{p(\omega), k\}$ since $p(|A|)=k$ (See [2]). Let $\alpha=p\left(\omega^{k}\right)$. We have $p(\omega) \mid \alpha k$ since $\left(\omega^{k}\right)^{\alpha}=\omega^{\alpha k}=1$. Thus we have $p \mid \alpha k$. On the other hand, $\alpha \left\lvert\, \frac{p}{k}\right.$ because $\left(\omega^{k}\right)^{\frac{p}{k}}=1$. Thus we have $\alpha k \mid p$. So $\alpha k=p$ and the theorem follows.

Let A be an irreducible powerful sign pattern. Suppose that A is ray diagonally similar to $\omega|A|$. In the proof of Theorem 3.6, we see that $\omega^{k(A)}$ can be expressed as a product of actual products of cycles. Each actual product of cycles in A is 1 or -1 because A is a sign pattern. Thus, by Theorem 3.6, if A is cyclically nonnegative, then $\omega^{k(A)}=1$ and if A has a negative cycle, then $\omega^{k(A)}=-1$. So, by Theorem 3.8, the following hold:

$$
p(A)= \begin{cases}k & \text { if } A \text { is cyclically nonnegative } \\ 2 k & \text { if } A \text { has a negative cycle }\end{cases}
$$

and

$$
l(A)=l(|A|)
$$

Hence we can consider Theorem 3.8 is a generalization of Theorem 4.3 in [7].
Let A be an irreducible periodic ray pattern with $k(A)=k$. Suppose that A is already in block cyclic form (2.4). Then the Boolean matrix $|A|$ is

$$
|A|=\left[\begin{array}{ccccc}
0 & \left|A_{1,2}\right| & & & \\
& 0 & \left|A_{2,3}\right| & & \\
& & \ddots & \ddots & \\
& & & 0 & \left|A_{k-1, k}\right| \\
& & & & 0
\end{array}\right]
$$

It is well-known that $l(|A|)$ is the smallest positive integer l such that for all $s(1 \leq$ $s \leq k$), each entry of $\left|A_{s, s+1}\right|\left|A_{s+1, s+2}\right| \cdots\left|A_{s+l-1, s+l}\right|$ is 1 , where the indices are modulo k (See [7]). Each entry of $\left|A_{s, s+1}\right|\left|A_{s+1, s+2}\right| \cdots\left|A_{s+l-1, s+l}\right|$ is 1 iff each entry of $A_{s, s+1} A_{s+1, s+2} \cdots A_{s+l-1, s+l}$ is not zero since A is powerful. From Theorem 3.8, we have $l(A)=l(|A|)$. Hence we can see that $l(A)$ is the smallest positive integer l such that for all $s(1 \leq s \leq k)$, each entry of $A_{s, s+1} A_{s+1, s+2} \cdots A_{s+l-1, s+l}$ is not zero, where the indices are modulo k. So we have shown the following:

Corollary 3.9 [3] Suppose that A is an irreducible periodic ray pattern in block cyclic form (2.4) with $k(A)=k$. Then $l(A)$ is the smallest positive integer l such that for all $s(1 \leq s \leq k)$, each entry of $A_{s, s+1} A_{s+1, s+2} \cdots A_{s+l-1, s+l}$ is not zero, where the indices are modulo k.

Now we characterize irreducible periodic ray patterns whose periods are p.

Theorem 3.10 [3] Suppose that A is an irreducible ray pattern with $k(A)=k$. Then the following are equivalent:
(i) A is periodic with period p;
(ii) k divides p and A is ray diagonally similar to $\omega|A|$ where $p\left(\omega^{k}\right)=p / k$.

Proof. Suppose that an irreducible ray pattern A is periodic with period p. Then A is ray diagonally similar to $\omega|A|$ for some ray ω by Theorem 3.3 and $p(A)=p\left(\omega^{k}\right) k$ by Theorem 3.8. Therefore k divides p and A is ray diagonally similar to $\omega|A|$ where $p\left(\omega^{k}\right)=p / k$.

Suppose that k divides p and A is ray diagonally similar to $\omega|A|$ where $p\left(\omega^{k}\right)=p / k$. Since ω is periodic, A is periodic. Since $k(|A|)=k, p=p(\omega|A|)=p\left(\omega^{k}\right) k=p$ by Theorem 3.8. Now the theorem follows.

Corollary 3.9 and Theorem 3.10 give an alternative proof for a result presented in [15].

Corollary 3.11 (See Theorem 10 in [15]) Suppose that A is an irreducible ray pattern in block cyclic form (2.4) with $k(A)=k$. Then the following are equivalnet:
(i) A is pattern p-potent for some positive integer p;
(ii) k divides p and A is ray diagonally similar to

$$
\omega\left[\begin{array}{ccccc}
0 & J_{1} & & & \\
& 0 & J_{2} & & \\
& & \ddots & \ddots & \\
& & & 0 & J_{k-1} \\
& & & & 0
\end{array}\right]
$$

where $p\left(\omega^{k}\right)=p / k$ and every J_{s} is a ray pattern each of whose entries is 1 , and is the same size as the corresponding block $A_{s, s+1}$.

Proof. Let A be an irreducible ray pattern in block cyclic form (2.4) with $k(A)=k$. If A is a pattern p-potent ray pattern, then each entry of $A_{s, s+1}$ is not zero for every $s(1 \leq s \leq k)$ by Corollary 3.9. Thus we have

$$
|A|=\left[\begin{array}{ccccc}
0 & J_{1} & & & \\
& 0 & J_{2} & & \\
& & \ddots & \ddots & \\
& & & 0 & J_{k-1} \\
& & & & 0
\end{array}\right]
$$

where J_{s} is a ray pattern each of whose entries is 1 , and is the same size as the corresponding block $A_{s, s+1}$. It follows that (i) implies (ii) by Theorem 3.10. It is easy to
check that (ii) implies (i). This completes the proof.

3.1.2 Cardinality of $\Omega(A)$ for an Irreducible Powerful Ray Pattern A

Let A be an irreducible powerful ray pattern. Recall that the set $\Omega(A)$ is

$$
\Omega(A)=\{\omega \mid A \text { is ray diagonally similar to } \omega|A|\} .
$$

By Theorem 3.3, $\Omega(A)$ is not empty. In this section, we study the cardinality of $\Omega(A)$ and the geometric property of the elements of $\Omega(A)$. We first consider a specific case.

Lemma 3.12 [3] Suppose that a ray pattern A is in cyclic form

$$
A=\left[\begin{array}{ccccc}
0 & \alpha_{1} & & & \\
& 0 & \alpha_{2} & & \\
& & \ddots & \ddots & \\
& & & 0 & \alpha_{k-1} \\
& & & & 0
\end{array}\right]
$$

such that $\alpha_{1} \alpha_{2} \cdots \alpha_{k}=\alpha \neq 0$ and all other entries are 0 . Then A is ray diagonally similar to

$$
\beta\left[\begin{array}{lllll}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
1 & & & & 0
\end{array}\right]
$$

for each β satisfying $\beta^{k}=\alpha$.

Proof. First suppose that $\alpha=1$. Let $\theta_{s}=\arg \left(\alpha_{s}\right)$ for each $s(1 \leq s \leq k)$ and take $\theta \in R$. Take d_{s} where $\arg \left(d_{1}\right)=\theta$ and $\arg \left(d_{s}\right)=\theta+\sum_{j=1}^{s-1} \theta_{j}$ for $2 \leq s \leq k$, and let $D=\operatorname{diag}\left\{d_{1}, d_{2}, \cdots, d_{k}\right\}$. Then, for $2 \leq s \leq k-1$, the argument $\arg \left(d_{s} \alpha_{s} d_{s+1}^{*}\right)$ of $(s, s+1)$ entry of $D A D^{*}$ is reduced to

$$
\left(\theta+\sum_{j=1}^{s-1} \theta_{j}\right)+\theta_{s}-\left(\theta+\sum_{j=1}^{s} \theta_{j}\right)=0(\bmod 2 \pi)
$$

. Also we have $\arg \left(d_{1} \alpha_{1} d_{2}^{*}\right)=0(\bmod 2 \pi)$ and $\arg \left(d_{k} \alpha_{k} d_{1}^{*}\right)=0(\bmod 2 \pi)$ since $\arg (\alpha)=$ $\sum_{j=1}^{k} \theta_{j}=0(\bmod 2 \pi)$. So each nonzero entry of $D A D^{*}$ is 1 . Therefore, if $\alpha=1, A$ is ray diagonally similar to $|A|$.

In the general case, suppose $\alpha \neq 0$. For each β satisfying $\beta^{k}=\alpha, \bar{\beta} A$ is ray diagonally similar to $|A|$. Thus, A is ray diagonally similar to $\beta|A|$ for each β satisfying $\beta^{k}=\alpha$ and this completes the proof.

For a matrix A in the form

$$
\left[\begin{array}{llll}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & \\
& & & A_{n}
\end{array}\right],
$$

where each A_{s} is a square matrix for $1 \leq s \leq n$ and each of off-diagonal blocks is a zero matrix, we denote it by $\bigoplus_{s=1}^{n} A_{s}$.

Lemma 3.13 [3] Suppose that an irreducible ray pattern A is ray diagonally similar to $\omega|A|$. Then A is ray diagonally similar to $\alpha|A|$ for each α satisfying $\alpha^{k(A)}=\omega^{k(A)}$.

Proof. Let $k(A)=k$. Without loss of generality, we may assume that A is in block cyclic form

$$
A=\omega\left[\begin{array}{ccccc}
0 & \left|A_{1,2}\right| & & & \\
& 0 & \left|A_{2,3}\right| & & \\
& & \ddots & \ddots & \\
& & & 0 & \left|A_{k-1, k}\right| \\
& & & & 0
\end{array}\right]
$$

and that its (s, s) diagonal block is of order n_{s}. By Lemma 3.12, for each α satisfying $\alpha^{k}=\omega^{k}$, there exists a diagonal ray pattern $D=\operatorname{diag}\left\{d_{1}, d_{2}, \cdots, d_{k}\right\}$ such that

$$
D\left[\begin{array}{ccccc}
0 & \omega & & & \\
& 0 & \omega & & \\
& & \ddots & \ddots & \\
& & & 0 & \omega \\
& & & & 0
\end{array}\right] D^{*}=\alpha\left[\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
1 & & & & 0
\end{array}\right] .
$$

Let $E=\bigoplus_{s=1}^{k} d_{s} I_{s}$, where I_{s} is a ray pattern of order n_{s} such that each of whose diagonal entries is 1 and each of whose off-diagonal entries is 0 . Then the $(s, s+1)$ block of $E A E^{*}$ is

$$
d_{s} I_{s}\left(\omega\left|A_{s, s+1}\right|\right) \bar{d}_{s+1} I_{s+1}=\alpha\left|A_{s, s+1}\right| .
$$

It follows that A is ray diagonally similar to $\alpha|A|$ for each α satisfying $\alpha^{k}=\omega^{k}$ and this completes the proof.

Suppose that an irreducible ray pattern A is powerful. Then Lemma 3.13 implies that if A is ray diagonally similar to $\omega|A|$, then the set $\left\{x \mid x^{k(A)}=\omega^{k(A)}\right\}$ is a subset of $\Omega(A)$, hence $|\Omega(A)| \geq k(A)$.

Lemma 3.14 [3] Suppose that an irreducible ray pattern A is powerful. If A is ray diagonally similar to both $\omega|A|$ and $\omega^{\prime}|A|$, then $\omega^{k(A)}=\left(\omega^{\prime}\right)^{k(A)}$.

Proof. Let $k(A)=k$ and $L(A)=\left\{l_{1}, l_{2}, \cdots, l_{m}\right\}$ be the set of lengths of the cycles in A. Assume that $\omega, \omega^{\prime} \in \Omega(A)$. For each $s(1 \leq s \leq m)$, we can choose a cycle γ_{s} of length l_{s}. Note that for each $s, \omega^{l_{s}}=\wp\left(\gamma_{s}\right)=\left(\omega^{\prime}\right)^{l_{s}}$ because the actual products of cycles in A are invariant under diagonal similarities. Since k is the greatest common divisor of $L(A)$, there exist integers $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ such that $\sum_{s=1}^{m} \alpha_{s} l_{s}=k$. We have

$$
\omega^{k}=\left(\omega^{l_{1}}\right)^{\alpha_{1}}\left(\omega^{l_{2}}\right)^{\alpha_{2}} \cdots\left(\omega^{l_{m}}\right)^{\alpha_{m}}=\left\{\left(\omega^{\prime}\right)^{l_{1}}\right\}^{\alpha_{1}}\left\{\left(\omega^{\prime}\right)^{l_{2}}\right\}^{\alpha_{2}} \cdots\left\{\left(\omega^{\prime}\right)^{l_{m}}\right\}^{\alpha_{m}}=\left(\omega^{\prime}\right)^{k} .
$$

This completes the proof.

It follows from Lemma 3.14 that $|\Omega(A)| \leq k(A)$. From Lemma 3.13 and Lemma 3.14, we can obtain the following theorem.

Theorem 3.15 [3] Suppose that an irreducible ray pattern A is powerful. Then $|\Omega(A)|=$ $k(A)$. Furthermore, we can label the elements of $\Omega(A)$ as $\omega_{1}, \omega_{2}, \cdots \omega_{k}$ such that $\omega_{s+1} / \omega_{s}=$ $e^{\frac{2 \pi}{k} \mathrm{i}}$ for $s=1,2, \cdots, k$, where $k(A)=k$ and $\omega_{k+1}=\omega_{1}$.

Now we consider complex matrices. Let $A=\left[a_{s t}\right]$ be a complex matrix. Each nonzero entry $a_{s t}$ of A can be decomposed into $\operatorname{amp}\left(a_{s t}\right) \cdot e^{\mathrm{i} \cdot \arg \left(a_{s t}\right)}$, where $\operatorname{amp}\left(a_{s t}\right)$ and $\arg \left(a_{s t}\right)$ are the amplitude and the argument of $a_{s t}$ respectively. We define the complex matrix $\arg (A)=\left[a_{s t}^{\prime}\right]$ to be

$$
a_{s t}^{\prime}= \begin{cases}e^{\mathrm{i} \cdot \arg \left(a_{s t}\right)} & \text { if } a_{s t} \neq 0 \\ 0 & \text { if } a_{s t}=0\end{cases}
$$

Then by letting $\operatorname{amp}(A)=\left[\operatorname{amp}\left(a_{s t}\right)\right], A$ can be decomposed into $\operatorname{amp}(A) \circ \arg (A)$, where \circ denotes the Hadamard product. Note that $\operatorname{amp}(A)$ is a nonnegative matrix and $\arg (A)$ can be regarded as a ray pattern. We denote the spectrum of A by $\sigma(A)$.

Theorem 3.16 [3] Supppose that a complex matrix A is irreducible. If $\arg (A)$ is cyclically nonnegative (that is, each actual product of cycles in $\arg (A)$ is 1), then $\sigma(A)=\sigma(a m p(A))$.

Proof. Suppose that $\arg (A)$ is cyclically nonnegative. By Theorem 3.6, there exists a unitary diagonal matrix D (in ray pattern sense, D can be considered as a diagonal ray pattern) such that $D(\arg (A)) D^{*}=\operatorname{amp}(\arg (A))$. Therefore, $D A D^{*}=D(\operatorname{amp}(A) \circ$ $\arg (A)) D^{*}=\operatorname{amp}(A) \circ\left\{D(\arg (A)) D^{*}\right\}=\operatorname{amp}(A) \circ \operatorname{amp}(\arg (A))=\operatorname{amp}(A)$. Thus we have $D A D^{*}=\operatorname{amp}(A)$. Since the spectrum is invariant under the similarities, we have $\sigma(A)=\sigma(\operatorname{amp}(A))$ and this completes the proof.

The Perron-Frobenius Theorem is a well-known theorem about the spectrum of a nonnegative irreducible matrix (See [1]). Theorem 3.16 shows that an irreducible complex matrix A satisfies the Perron-Frobenius Theorem if $\arg (A)$ is cyclically nonnegative. Based on this observation, we may regard Theorem 3.16 as a generalization of the PerronFrobenius Theorem. For another generalization of the Perron-Frobenius Theorem, refer to [17].

3.2 The Minimum Upper Bound on the First Ambiguous Power of an Irreducible, Nonpowerful Ray or
 Sign Pattern

In this section we move from looking at ray patterns that are powerful, to those that are not powerful. In particular, we are interested in finding the first exponent t such that A^{t} contains an ambiguous entry. We conjecture that if A is an $n \times n$ irreducible ray pattern that is not powerful, then A^{t} contains an ambiguous entry for some positive integer t with $t \leq n^{2}-2 n+2$, and show that in all but one very special instance, this is the case. We also show that there is an $n \times n$ sign (and hence ray) pattern associated with the Wielandt graph, for which the first power that contains an ambiguous entry is the $n^{2}-2 n+2-t h$, and hence that the upper bound we give is, in fact, the minimum upper bound possible.

3.2.1 A Useful Lemma on Powers of Cycle Products

In this section we show that if A is an irreducible ray pattern with two simple cycles whose product weights raised to certain powers differ, then A^{k} has an ambiguous entry for some $k \leq n^{2}-2 n+2$. We begin with a short lemma that we will be used repeatedly in the proof of the main lemma of this section that following it.

Lemma 3.17 Let A be an $n \times n$ irreducible ray pattern. If there exist cycles γ_{1} and γ_{2}, with lengths l_{1} and l_{2}, respectively, such that γ_{1} and γ_{2} share a common vertex, such that $l_{1}+l_{2} \leq 2 n-2$, and such that $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$, where $m=\operatorname{lcm}\left(l_{1}, l_{2}\right)$, then A^{m} has an ambiguous entry and $m<n^{2}-2 n+2$.

Proof. Since $l_{1}+l_{2} \leq 2 n-2$, we see that $m=\operatorname{lcm}\left(l_{1}, l_{2}\right) \leq l_{1} l_{2} \leq(n-1)^{2}<$ $n^{2}-2 n+2$. Let v_{p} be a common vertex between γ_{1} and γ_{2}. For $j=1,2$, let β_{j} be the circuit through v_{p} obtained by following γ_{j} exactly $\frac{m}{l_{j}}$ times. Then each β_{j} has length m and weight $\wp\left(\gamma_{j}\right)^{\frac{m}{l_{j}}}$. Since $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$, it follows that $\left(A^{m}\right)_{p p}=\#$.

Lemma 3.18 Let A be an $n \times n$ irreducible ray pattern. If there exist simple cycles γ_{1} and γ_{2} with lengths l_{1} and l_{2}, respectively, such that $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$, where $m=$ lcm $\left(l_{1}, l_{2}\right)$, then A^{k} has an ambiguous entry for some $k \leq n^{2}-2 n+2$.

Proof.

Case I: Suppose that γ_{1} and γ_{2} contain at least one common vertex; call it v_{p}.
By Lemma 3.17, we need only consider the case where $l_{1}+l_{2}>2 n-2$. Since γ_{1} and γ_{2} are simple cycles on at most n vertices we see that $l_{1}+l_{2} \leq 2 n$. We thus assume without loss of generality that $l_{1}=n$, and that l_{2} is either n or $n-1$. If $l_{2}=n$, then there are two simple cycles of length n through v_{p} with different product weights, and hence, $\left(A^{n}\right)_{p p}=\#$. Thus we assume for the remainder of Case I that $l_{2}=n-1$, and hence, $m=n(n-1)$. Let H be the subgraph of $G(A)$ whose edges are precisely the edges common to γ_{1} and γ_{2}.

Suppose first that H is a path α of length $n-2$. Let v_{q} be the first vertex in α and let v_{r} be the last vertex in α. Going around γ_{1} exactly $n-1=\frac{m}{l_{1}}$ times and around γ_{2} exactly $n=\frac{m}{l_{2}}$ times, we see that $\left(A^{n(n-1)}\right)_{r r}=\#$. By backtracking through the $n-2$ common vertices along α, we see that $\left(A^{n(n-1)-(n-2)}\right)_{r q}=\#$. Note that $n(n-1)-(n-2)=$ $n^{2}-2 n+2$.

Next we consider the case where H is not a path with length $n-2$. In this case, there are at least two disjoint edges in γ_{1} that are not in γ_{2}. We can assume without loss of
generality that the n-cycle γ_{1} has edges labelled $\left(v_{j}, v_{j+1}\right)$ for $j=1, \ldots, n-1$ and edge $\left(v_{n}, v_{1}\right)$. We also assume without loss of generality that that $\left(v_{1}, v_{2}\right)$ and $\left(v_{h}, v_{h+1}\right)$ are not edges in γ_{2} for some h with $2<h<n$ Since γ_{2} has $n-1$ vertices, at least three of the vertices $v_{1}, v_{2}, v_{h}, v_{h+1}$ are in γ_{2}; we can assume without loss of generality that v_{1} and v_{2} are vertices of γ_{2}. Let $\left(v_{1}, v_{k}\right)$ be an edge in γ_{2}. Notice $k \neq 2$. Then γ_{1} can be decomposed into three paths: $\alpha_{1}=\left(v_{1}, v_{2}\right), \alpha_{2}$ from v_{2} to v_{k}, and α_{3} from v_{k} to v_{1}. Similarly γ_{2} can be decomposed into three paths: $\beta_{1}=\left(v_{1}, v_{k}\right), \beta_{2}$ from v_{k} to v_{2}, and β_{3} from v_{2} to v_{1}. Then $\gamma_{1} \gamma_{2}=\alpha_{1} \alpha_{2} \alpha_{3} \beta_{1} \beta_{2} \beta_{3}$. By following the same edges in a different order, we get three simple cycles, $\gamma_{3}=\alpha_{1} \beta_{3}, \gamma_{4}=\alpha_{2} \beta_{2}$, and $\gamma_{5}=\alpha_{3} \beta_{1}$, with lengths l_{3}, l_{4}, and l_{5}, respectively.

Notice that $l_{3} \leq 1+n-3=n-2$ and $l_{5} \leq 1+n-2=n-1$. Let $m_{j}=\operatorname{lcm}\left(l_{2}, l_{j}\right)$ for $j=3,4,5$. Since γ_{2} has vertices in common with γ_{3} and γ_{5}, by Lemma 3.17 we need to consider only the case where

$$
\wp\left(\gamma_{3}\right)^{\frac{m_{3}}{l_{3}}}=\wp\left(\gamma_{2}\right)^{\frac{m_{3}}{l_{2}}} \text { and } \wp\left(\gamma_{5}\right)^{\frac{m_{4}}{l_{5}}}=\wp\left(\gamma_{2}\right)^{\frac{m_{5}}{l_{2}}}
$$

and hence

$$
\wp\left(\gamma_{3}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{3}} \text { and } \wp\left(\gamma_{5}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{5}}
$$

If in addition,

$$
\wp\left(\gamma_{4}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{4}},
$$

then

$$
\begin{aligned}
\wp\left(\gamma_{1}\right)^{l_{2}} \wp\left(\gamma_{2}\right)^{l_{2}} & =\wp\left(\gamma_{1} \gamma_{2}\right)^{l_{2}} \\
& =\wp\left(\gamma_{3} \gamma_{4} \gamma_{5}\right)^{l_{2}} \\
& =\wp\left(\gamma_{3}\right)^{l_{2}} \wp\left(\gamma_{4}\right)^{l_{2}} \wp\left(\gamma_{5}\right)^{l_{2}} \\
& =\wp\left(\gamma_{2}\right)^{l_{3}+l_{4}+l_{5}} \\
& =\wp\left(\gamma_{2}\right)^{l_{1}+l_{2}} .
\end{aligned}
$$

Hence, $\wp\left(\gamma_{1}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{1}}$. Since $\operatorname{gcd}\left(l_{1}, l_{2}\right)=\operatorname{gcd}(n, n-1)=1$, it follows that $m=$ $\operatorname{lcm}\left(l_{1}, l_{2}\right)=l_{1} l_{2}$, and hence

$$
\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}}=\wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}},
$$

which contradicts one of our main assumptions. Thus for the remainder of Case I, we assume that

$$
\wp\left(\gamma_{4}\right)^{l_{2}} \neq \wp\left(\gamma_{2}\right)^{l_{4}} .
$$

By Lemma 3.17, we need only consider the case where $l_{4} \geq n$. Since γ_{4} does not go through v_{1}, it has at least n edges on at most $n-1$ vertices and hence is not a simple cycle. Decompose γ_{4} into simple cycles $\gamma_{6} \ldots \gamma_{q}$. Since γ_{4} is made up of two paths α_{2} and β_{2}, each γ_{j} for $j=6, \ldots, q$ contains at least one vertex from β_{2}, and hence, from γ_{2}. Let $m_{j}=\operatorname{lcm}\left(l_{2}, l_{j}\right)$ for $j=6, \ldots, q$. If

$$
\wp\left(\gamma_{j}\right)^{\frac{m_{j}}{l_{j}}}=\wp\left(\gamma_{2}\right)^{\frac{m_{j}}{l_{2}}},
$$

for $j=6, \ldots, q$, then it is easy to see that

$$
\wp\left(\gamma_{4}\right)^{l_{2}}=\wp\left(\gamma_{2}\right)^{l_{4}}
$$

which is a contradiction. Thus there must exist $j \in\{6, \ldots, q\}$ such that $\wp\left(\gamma_{j}\right)^{\frac{m_{j}}{l_{j}}} \neq$ $\wp\left(\gamma_{2}\right)^{\frac{m_{j}}{l_{2}}}$. Since γ_{j} is a simple cycle on at most $n-1$ vertices, $l_{j} \leq n-1$, and hence,
$l_{2}+l_{j} \leq 2(n-1)$. By Lemma 3.17, there exists $k \leq n^{2}-2 n+2$ such that A^{k} contains an ambiguous entry.

Case II: Suppose that γ_{1} and γ_{2} have no vertices in common. Since A is irreducible, there is a path β_{1} from some vertex v_{p} in γ_{1} to some vertex v_{q} in γ_{2} such that v_{p} is the only common vertex for γ_{1} and β_{1} and such that v_{q} is the only common vertex for γ_{2} and β_{1}. Similarly there is a path β_{2} from some vertex v_{r} in γ_{2} to some vertex v_{s} in γ_{1} such that v_{r} is the only common vertex for γ_{2} and β_{2} and such that v_{s} is the only common vertex for γ_{1} and β_{2}. Note that β_{1} and β_{2} may have vertices and edges in common. Let β_{3} be the path along γ_{2} from v_{q} to v_{r}. Let β_{4} be the path along γ_{1} from v_{s} to v_{p}. (See Figure 1.) Then $\gamma_{3}=\beta_{1} \beta_{3} \beta_{2} \beta_{4}$ is a circuit that has at least one vertex in common with each of γ_{1} and γ_{2}.

Figure 1: Connecting disjoint simple cycles

Let l_{3} be the length of γ_{3}. Let $m_{1}=\operatorname{gcd}\left(l_{1}, l_{3}\right)$ and $m_{2}=\operatorname{gcd}\left(l_{2}, l_{3}\right)$.
We are now interested in the relationships between the three cycles γ_{1}, γ_{2} and γ_{3}. Notice that in traversing γ_{1}, γ_{2} and γ_{3}, we pass through each of the included vertices at
most twice. So

$$
l_{1}+l_{2}+l_{3} \leq 2 n
$$

and equality holds exactly when we pass through every vertex in G exactly twice while traversing $\gamma_{1} \gamma_{2} \gamma_{3}$.

Suppose first that

$$
\wp\left(\gamma_{2}\right)^{\frac{m_{2}}{l_{2}}} \neq \wp\left(\gamma_{3}\right)^{\frac{m_{2}}{l_{3}}} .
$$

Since $l_{1} \geq 1$ it follows that $l_{2}+l_{3} \leq 2 n-1$. By Lemma 3.17, we need only look at the case where $l_{2}+l_{3}>2 n-2$. Hence, we continue under the assumption that $l_{2}+l_{3}=2 n-1$ and $l_{1}=1$. Write $l_{2}=n-k$ where $k \geq 1$ and $l_{3}=2 n-1-(n-k)=n+k-1$. By our construction, the common edges between γ_{2} and γ_{3} form the path β_{3}. Since we must pass through every vertex in G exactly twice while traversing $\gamma_{1} \gamma_{2} \gamma_{3}$, it follows that β_{3} must pass through every vertex of γ_{2}. That is, β_{3} must cover all but one edge of γ_{2}, and hence it has length $n-k-1$. Begin at v_{r}. By traversing γ_{2} exactly $\frac{m_{2}}{l_{2}}$ times and by traversing γ_{3} exactly $\frac{m_{2}}{l_{3}}$ times we see that $\left(A^{m_{3}}\right)_{r r}=\#$. Backtracking along the path β_{3} we get that $\left(A^{w}\right)_{r q}=\#$ where

$$
\begin{aligned}
w & =m_{3}-(n-k-1) \\
& \leq l_{2} l_{3}-(n-k-1) \\
& =(n-k)(n+k-1)-(n-k-1) \\
& =n^{2}-2 n+2-(k-1)^{2} \\
& \leq n^{2}-2 n+2
\end{aligned}
$$

as desired.
Hence we assume that

$$
\wp\left(\gamma_{2}\right)^{\frac{m_{2}}{l_{2}}}=\wp\left(\gamma_{3}\right)^{\frac{m_{2}}{l_{3}}}
$$

and by an analogous argument, that

$$
\wp\left(\gamma_{1}\right)^{\frac{m_{1}}{l_{1}}}=\wp\left(\gamma_{3}\right)^{\frac{m_{1}}{l_{3}}}
$$

Since the simple cycles γ_{1} and γ_{2} are disjoint, $l_{1}+l_{2} \leq n$. Without loss of generality, $l_{2} \leq l_{1}$, and hence, when n is even, $l_{2} \leq \frac{n}{2}$, and when n is odd, $l_{2} \leq \frac{n-1}{2}$. By traversing γ_{1} $\frac{m}{l_{1}}$ times and traversing $\gamma_{3} \frac{m_{2}}{l_{3}}$ times, and by traversing $\gamma_{2} \frac{m}{l_{2}}$ times and then traversing $\gamma_{3} \frac{m_{2}}{l_{2}}$ times, we get two conflicting circuits of length $m+m_{2}$ through some vertex p common to the two circuits. Since $l_{1}+l_{2}+l_{3} \leq 2 n$, it follows that $l_{1}+l_{3} \leq 2 n-l_{2}$. Note that $m=\operatorname{lcm}\left(l_{1}, l_{2}\right) \leq l_{1} l_{2}$ and that $m_{2}=\operatorname{lcm}\left(l_{2}, l_{3}\right) \leq l_{2} l_{3}$. Then

$$
m+m_{2} \leq l_{1} l_{2}+l_{2} l_{3}=l_{2}\left(l_{1}+l_{3}\right) \leq l_{2}\left(2 n-l_{2}\right)
$$

Since $f(x)=x(2 n-x)$ is strictly increasing for $x \leq n, l_{2}\left(2 n-l_{2}\right)$ is maximized at $l_{2}=\frac{n}{2}$ when n is even, and at $l_{2}=\frac{n-1}{2}$ when n is odd. Thus when n is even, $m+m_{2} \leq \frac{3}{4} n^{2}$, and when n is odd, $m+m_{2} \leq \frac{(n-1)(3 n+1)}{4}$. Note that $\frac{3}{4} n^{2} \leq n^{2}-2 n+2$ when $n \geq 4+2 \sqrt{2} \approx 6.8$, so when n is even and $n \geq 8, A^{m+m_{2}}$ has an ambiguous entry and $m+m_{2} \leq n^{2}-2 n+2$. Since $\frac{(n-1)(3 n+1)}{4} \leq n^{2}-2 n+2$ when $n \geq 5$, it follows that when $n \geq 5$ and odd, $A^{m+m_{2}}$ has an ambiguous entry and $m+m_{2} \leq n^{2}-2 n+2$. The remaining cases are $n=2,3,4,6$.

Note that for $n \geq 2, n \leq n^{2}-2 n+2$, for $n \geq 3, n+2 \leq n^{2}-2 n+2$. We will construct conflicting walks in A^{k} for some $k \leq n$ when $n=2$, and for some $k \leq n+2$ when $n=3,4,6$.

Suppose that the two disjoint simple cycles γ_{1} and γ_{2} for which $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$ holds are 1-cycles. Applying permutation similarity to A, we may assume that $\gamma_{1}=$ $\left(v_{1}, v_{1}\right)$ and $\gamma_{2}=\left(v_{n}, v_{n}\right)$ with $\wp\left(\gamma_{1}\right)=a_{11}, \wp\left(\gamma_{2}\right)=a_{n n}$, and $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$ becomes
$a_{11} \neq a_{n n}$. Since A is irreducible, there is a path α of length ℓ with $\ell \leq n-1$ from v_{1} to v_{n}. Then $\gamma_{1} \alpha$ and $\alpha \gamma_{2}$ are conflicting walks of length $\ell+1 \leq n$ from v_{1} to v_{n}. (Note: this completes the $n=2$ case.)

Suppose that the two disjoint simple cycles γ_{1} and γ_{2} for which $\wp\left(\gamma_{1}\right)^{\frac{m}{1_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$ consist of a 1-cycle and a r-cycle for some $r \geq 2$. Applying permutation similarity to A, we may assume that $\gamma_{1}=\left(v_{1}, v_{1}\right)$ and $\gamma_{2}=\left(v_{n}, v_{n-r+1}\right)\left(v_{n-r+1}, v_{n-r+2}\right) \cdots\left(v_{n-1}, v_{n}\right)$ with $\wp\left(\gamma_{1}\right)=a_{11}$,

$$
\wp\left(\gamma_{2}\right)=a_{n, n-r+1} \prod_{j=2}^{r} a_{n-r+j-1, n-r+j},
$$

and $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$, which becomes $a_{11}^{r} \neq \wp\left(\gamma_{2}\right)$. Since A is irreducible, there is a path α of length ℓ with $\ell \leq n-r$ from v_{1} to one of the vertices on γ_{2} such that α only intersects γ_{2} at a single vertex. Without loss of generality, that vertex is v_{n}. Then the walk obtained by traversing $\gamma_{1} r$ times followed by the path and and the walk α followed by traversing γ_{2} are conflicting walks of length $\ell+r \leq n$ from v_{1} to v_{n}. Further, $\ell+2 \leq n \leq n^{2}-2 n+1$ for $n \geq 2$. (Note, with $r=2$, this completes the $n=3$ case.)

Suppose that the two disjoint simple cycles γ_{1} and γ_{2} for which $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$ comprises a pair of r-cycles for some $r \geq 2$. Applying permutation similarity to A, we may assume that $\gamma_{1}=\left(v_{1}, v_{2}\right) \cdots\left(v_{r-1}, v_{r}\right)\left(v_{r}, v_{1}\right)$ and $\gamma_{2}=\left(v_{n}, v_{n-r+1}\right) \cdots\left(v_{n-1}, v_{n}\right)$ with

$$
\begin{aligned}
\wp\left(\gamma_{1}\right) & =a_{r 1} \prod_{j=1}^{r-1} a_{j, j+1}, \\
\wp\left(\gamma_{2}\right) & =\prod_{j=1}^{r} a_{n-r+j-1, n-r+j}
\end{aligned}
$$

and $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$, which becomes $\wp\left(\gamma_{1}\right) \neq \wp\left(\gamma_{2}\right)$. Since A is irreducible, there is a path α of length ℓ with $\ell \leq n-2 r+1$ from γ_{1} to γ_{2} such that α only intersects each of the simple cycles at a single vertex. Without loss of generality, those vertices are v_{1} and v_{n}. Then $\gamma_{1} \alpha$ and $\alpha \gamma_{2}$ are conflicting walks of length $\ell+2 r \leq n+1$ from v_{1} to v_{n}.
(Note, with $r=2$,this completes the $n=4$ case.)
Suppose that the two disjoint simple cycles γ_{1} and γ_{2} for which $\wp\left(\gamma_{1}\right)^{\frac{m}{1_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$ comprises a 2 -cycle and a 3 -cycle. Applying permutation similarity to A, we may assume that $\gamma_{1}=\left(v_{1}, v_{2}\right)\left(v_{2}, v_{1}\right)$ and $\gamma_{2}=\left(v_{n}, v_{n-2}\right)\left(v_{n-2}, v_{n-1}\right)\left(v_{n-1}, v_{n}\right)$ with $\wp\left(\gamma_{1}\right)=a_{12} a_{21}$ and $\wp\left(\gamma_{1}\right)=a_{n, n-2} a_{n-2, n-1} a_{n-1, n}$, and $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$, which becomes $\wp\left(\gamma_{1}\right)^{3} \neq$ $\wp\left(\gamma_{2}\right)^{2}$. Since A is irreducible, there is a path α of length ℓ with $\ell \leq n-5+1=n-4$ from γ_{1} to γ_{2} such that α only intersects each of the simple cycles at a single vertex. Without loss of generality, those vertices are v_{1} and v_{n}. Then the walk obtained by traversing γ_{1} three times followed by α and the walk obtained by traversing α followed by traversing γ_{2} twice are conflicting walks of length $\ell+6 \leq n+2$ from v_{1} to v_{n}.

Finally, suppose that the two disjoint simple cycles γ_{1} and γ_{2} for which $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq$ $\wp\left(\gamma_{2}\right)^{\frac{m}{L_{2}}}$ comprises a 2-cycle and a 4-cycle. Applying permutation similarity to A, we may assume that $\gamma_{1}=\left(v_{1}, v_{2}\right)\left(v_{2}, v_{1}\right)$ and $\gamma_{2}=\left(v_{n}, v_{n-3}\right)\left(v_{n-3}, v_{n-2}\right)\left(v_{n-2}, v_{n-1}\right)\left(v_{n-1}, v_{n}\right)$ with $\wp\left(\gamma_{1}\right)=a_{12} a_{21}$ and $\wp\left(\gamma_{1}\right)=a_{n, n-3} a_{n-3, n-2} a_{n-2, n-1} a_{n-1, n}$ and $\wp\left(\gamma_{1}\right)^{\frac{m}{l_{1}}} \neq \wp\left(\gamma_{2}\right)^{\frac{m}{l_{2}}}$, which becomes $\wp\left(\gamma_{1}\right)^{2} \neq \wp\left(\gamma_{2}\right)$. Since A is irreducible, there is a path α of length ℓ with $\ell \leq n-6+1=n-5$ from γ_{1} to γ_{2} such that α only intersects each of the simple cycles at a single vertex. Without loss of generality, those vertices are v_{1} and v_{n}. Then the walk obtained by traversing γ_{1} twice followed by α and the walk obtained by traversing α followed by traversing γ_{2} are conflicting walks of length $\ell+4 \leq n-1$ from v_{1} to v_{n}. (Note that this completes the $n=6$ case.)

3.2.2 The First Ambiguous Power

Lemma 3.19 Let A be an irreducible ray pattern where the simple cycles $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ are all the simple cycles in $\mathcal{G}(A)$. Let l_{p} be the length of γ_{p}, and $m_{p q}=l c m\left(l_{p}, l_{q}\right)$. Suppose that

$$
\wp\left(\gamma_{p}\right)^{\frac{m_{p q}}{l_{q}}}=\wp\left(\gamma_{q}\right)^{\frac{m_{p q}}{l_{q}}},
$$

for all $1 \leq p, q \leq k$. Let $g=g c d\left(l_{1}, l_{2}, \ldots, l_{k}\right)$. If there exists $1 \leq j \leq k$ and $1 \leq p \leq k$, with $j \neq p$, such that $l_{p}=g\left(\frac{l_{j}}{g} s_{p}+u_{p}\right)$ where $\operatorname{gcd}\left(u_{p}, \frac{l_{j}}{g}\right)=1$, then A is powerful.

Proof. Without loss of generality assume $j=1$ and $p=2$. Choose ω such that $\wp\left(\gamma_{1}\right)=\omega^{l_{1}}$. Since A is powerful if and only if $\bar{\omega} A$ is powerful, we replace A by $\bar{\omega} A$, but continue to use the same notation. For each $1 \leq q \leq k$, write $\operatorname{gcd}\left(l_{1}, l_{q}\right)=g g_{q}$. Notice $m_{q 1} g g_{q}=l_{1} l_{q}$. Then

$$
\wp\left(\gamma_{q}\right)^{\frac{m_{q 1}}{l_{q}}}=\wp\left(\gamma_{1}\right)^{\frac{m_{q 1}}{l_{1}}}
$$

and thus

$$
\begin{gathered}
\wp\left(\gamma_{q}\right)^{\frac{l_{1}}{g g_{q 1}}}=1 \\
\wp\left(\gamma_{q}\right)^{\frac{l_{1}}{g}}=1^{g_{q 1}}=1 \\
\wp\left(\gamma_{q}\right)^{\frac{l_{1}}{g}}=1
\end{gathered}
$$

Let $r=\frac{l_{1}}{g}$ and $\eta=\exp ^{\frac{2 \pi i}{r}}$. Then there exists $1 \leq t_{q} \leq r$ such that $\wp\left(\gamma_{q}\right)=\eta^{t_{q}}$.
Write $l_{q}=g\left(r s_{q}+u_{q}\right)$. Then $m_{2 q}$ divides $g\left(r s_{q}+u_{q}\right)\left(r s_{2}+u_{2}\right)$ and hence

$$
\wp\left(\gamma_{q}\right)^{\frac{m_{2 q}}{l_{q}}}=\wp\left(\gamma_{2}\right)^{\frac{m_{2 q}}{l_{2}}}
$$

implies that

$$
\left(\eta^{t_{q}}\right)^{\frac{g\left(r s_{q}+u_{q}\right)\left(r s_{2}+u_{2}\right)}{l_{q}}}=\left(\eta^{t_{2}}\right)^{\frac{g\left(r s_{q}+u_{q}\right)\left(r s_{2}+u_{2}\right)}{l_{2}}}
$$

$$
\begin{aligned}
\left(\eta^{t_{q}}\right)^{r s_{2}+u_{2}} & =\left(\eta^{t_{2}}\right)^{r s_{q}+u_{q}} \\
\eta^{t_{q} u_{2}} & =\eta^{t_{2} u_{q}}
\end{aligned}
$$

Thus $t_{q} u_{2} \equiv t_{2} u_{q} \bmod r$. Since, by assumption $\operatorname{gcd}\left(u_{2}, r\right)=1$, we know that u_{2} is invertible mod r. Thus

$$
\begin{equation*}
t_{q} \equiv u_{q} t_{2} q_{2}^{-1} \bmod r \tag{3.1}
\end{equation*}
$$

Let α and β be any two cycles of the same length in $\mathcal{G}(\bar{\omega} A)$. Let m_{q} be the number of times the path α traverses γ_{q}, and n_{q} the number of times the path β traverses γ_{q}. Then

$$
\begin{aligned}
\sum_{q=1}^{k} m_{q} l_{q} & =\sum_{q=1}^{k} n_{q} l_{q} \\
\sum_{q=1}^{k} m_{q} g\left(r s_{q}+u_{q}\right) & =\sum_{q=1}^{k} n_{q} g\left(r s_{q}+u_{q}\right) .
\end{aligned}
$$

Dividing both sides by g, and collecting the terms with a factor of r on one side we get:

$$
r \sum_{q=1}^{k} s_{q}\left(m_{q}-n_{q}\right)=\sum_{q=1}^{k} u_{q}\left(m_{q}-n_{q}\right)
$$

and hence

$$
\sum_{q=1}^{k} u_{q}\left(m_{q}-n_{q}\right) \equiv 0 \bmod r
$$

so

$$
\eta^{\sum_{q=1}^{k} u_{q}\left(m_{q}-n_{q}\right)}=1 \text { which implies that } \eta^{\sum_{q=1}^{k} u_{q} m_{q}}=\eta^{\sum_{q=1}^{k} u_{q} n_{q}}
$$

Raising both side to the power $t_{2} u_{2}^{-1}$ and substituting in for u_{q} from formula 3.1 we see that

$$
\wp(\alpha)=\eta^{\sum_{q=1}^{k} t_{q} m_{q}}=\eta^{\sum_{q=1}^{k} t_{q} n_{q}}=\wp(\beta)
$$

Thus we have shown that any two paths of the same length must have the same product weight in $\mathcal{G}(\bar{\omega} A)$ and hence in $\mathcal{G}(A)$.

Suppose A is not powerful. Then there exists a positive integer l and $1 \leq p, q \leq n$ such that $\left(A^{l}\right)_{p q}=\#$. This means that there are two paths (μ and ν) from p to q in $\mathcal{G}(A)$, both of length l, such that $\wp(\mu) \neq \wp(\nu)$. Since A is irreducible, there is a path v from q to p. But then the cycles μv and νv from p to p have the same length but different product weights. This contradicts our claim that all cycles of the same length much have the same weight. Thus A must be powerful.

Theorem 3.20 Let A be an irreducible ray pattern that is not powerful. Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ be all the simple cycles in $\mathcal{G}(A)$. Let l_{p} be the length of γ_{p}. Let $g=\operatorname{gcd}\left(l_{1}, l_{2}, \ldots, l_{k}\right)$. If there exists $1 \leq j \leq k$ and $1 \leq p \leq k$, with $j \neq p$, such that $l_{p}=g\left(\frac{l_{j}}{g} s_{p}+u_{p}\right)$ where $\operatorname{gcd}\left(u_{p}, \frac{l_{j}}{g}\right)=1$, then A^{t} contains an ambiguous entry for $t \leq n^{2}-2 n+2$.

Proof. Follows from Lemma 3.18 and 3.19.

At this point in time we are still working to determine whether our not upper bound on the exponent of the first ambiguous power still holds in the instance where, for all $1 \leq j \leq k$ and $1 \leq p \leq k$ with $j \neq p$, we have that $l_{p}=g\left(\frac{l_{j}}{g} s_{p}+u_{p}\right)$ with $\operatorname{gcd}\left(u_{p}, \frac{l_{j}}{g}\right)>1$. This would happen if, for example, the simple cycles had lengths 6,10 and 15.

3.2.3 The Wielandt Graph

In this section we show that there is an $n \times n$ irreducible matrix A, for $n \geq 3$, that can be viewed as either a sign pattern or a ray pattern, such that the first power of A with an ambiguous entry is the $n^{2}-2 n+2-t h$ power. This establishes that $n^{2}-2 n+2$ cannot be replaced with a smaller power in our conjecture and Theorem 3.20.

The Wielandt Graph is the digraph $W=(V, E)$ where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and

$$
E=\left\{\left(v_{i}, v_{i+1}\right) \mid i=1, \ldots, n-1\right\} \cup\left\{\left(v_{n}, v_{1}\right)\right\} \cup\left\{\left(v_{n-1}, v_{1}\right)\right\} .
$$

Figure 2: The Wielandt Graph

We consider the matrix $A=\left[a_{j k}\right]$ where

Notice that $G(A)=W$, and A provides a weighting for for the edges of W. The graph W has exactly two simple cycles: an n-cycle γ_{1} and an $n-1$-cycle γ_{2}, where

Clearly, A is irreducible whether viewed as a sign pattern or as a ray pattern. If C is a cycle, then C must be obtained by traversing $\gamma_{1} r$ times for some $r \geq 0$ and traversing
$\gamma_{2} s$ times for some $s \geq 0$. Thus the length of C is $r n+s(n-1)$. If C_{1} and C_{2} are two distinct cycles of the same length, then $r_{1} n+s_{1}(n-1)=r_{2} n+s_{2}(n-1)$ with at least one of $r_{1} \neq r_{2}$ and $s_{1} \neq s_{2}$ holding. Further, if C_{1} and C_{2} are chosen so that there is no shorter pair of distinct cycles with a common length, then $\min \left(r_{1}, r_{2}\right)=0$ and $\min \left(s_{1}, s_{2}\right)=0$. Thus, without loss of generality, $r_{1} n=s_{1}(n-1)$ with $r_{1} s_{1} \neq 0$. Since $\operatorname{gcd}(n, n-1)=1$, the shortest pair occurs when $r_{1}=n-1$ and $s_{1}=n$. Thus for all $j,\left(A^{k}\right)_{j j}$ must be unambiguous for $k<n(n-1)$. Letting C_{1} be the cycle obtained by traversing $\gamma_{1} n-1$ times, $\wp\left(C_{1}\right)=\wp\left(\gamma_{1}\right)^{n-1}$. Letting C_{2} be the cycle obtained by traversing $\gamma_{2} n$ times, $\wp\left(C_{2}\right)=\wp\left(\gamma_{2}\right)^{n}$. Note that $\wp\left(\gamma_{1}\right)^{n-1}=\wp\left(\gamma_{1}\right)$, and that $\wp\left(\gamma_{2}\right)^{n}=\wp\left(\gamma_{2}\right)$, so C_{1} and C_{2} are conflicting cycles of length $n(n-1)$. Consequently, the first occurrence of sharp in a diagonal entry of a power of A occurs for $A^{n(n-1)}$. Specifically, $\left(A^{n(n-1)}\right)_{n-1, n-1}=\#$. Since the two cycles share a common path of length $n-2$ from v_{1} to v_{n-1}, it follows that $\left(A^{n(n-1)-n+2}\right)_{n-1,1}=\#$. Finally, observe that $n(n-1)-n+2=n^{2}-2 n+2$.

Suppose $\left(A^{\ell}\right)_{j k}=\#$. Then there are two walks β_{1} and β_{2} from v_{j} to v_{k} with length ℓ such that $\wp\left(\beta_{1}\right)=-\wp\left(\beta_{2}\right)$. Extend β_{1} and β_{2} to cycles C_{1} and C_{2} by adding the same shortest path γ from v_{k} to v_{j} of length h. Unless $j=1$ and $k=n, h \leq n-2$. Note that C_{1} and C_{2} are distinct cycles in W with a common length, and hence their length must be at least $n(n-1)$. Unless $j=1$ and $k=n$, the common length of β_{1} and β_{2} must be at least $n(n-1)-h \geq n(n-1)-(n-2)=n^{2}-2 n+2$. If $j=1$ and $k=n$, then $h=n-1$ and the cycles C_{1} and C_{2} must traverse γ_{1} because they contain v_{n}. Since both cycles are distinct but have the same length, it means that at least one must also traverse γ_{2}, without loss of generality, C_{1} does. Then $r_{1} n+s_{1}(n-1)=r_{2} n+s_{2}(n-1)$ with r_{1}, r_{2} and s_{1} positive. From the argument given above, r_{1} and s_{1} positive implies that the common length of these cycles must exceed $n(n-1)$. Then the common length
of β_{1} and β_{2} must exceed $n(n-1)-(n-1)=n^{2}-2 n+2$.

Chapter 4

Reducible Powerful Matrices

In this Chapter we will look at properties of reducible powerful matrices.
Let A be a reducible matrix. It is well know that A is permutationally similar to a matrix in Frobenius normal form, where each of the diagonal blocks is a square irreducible matrix or a 1×1 block of zeros:

$$
P A P^{T}=\left[\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 m} \tag{4.1}\\
0 & A_{22} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & A_{m m}
\end{array}\right]
$$

Corollary 4.1 Let A be a powerful ray pattern in Frobenius normal form as in (4.1). Then for $j=1 \ldots m$, there exists rays ω_{j} and diagonal ray patterns D_{j} such that

$$
D_{j} A_{j j} D_{j}^{*}=\omega_{j}\left|A_{j j}\right|
$$

Proof. Follows from Theorem 3.3 and the observation that each diagonal block in the Frobenius normal form of A must itself be powerful.

Let D be the diagonal ray pattern formed by taking the direct some of the diagonal ray patterns from Corollary 4.1. Let

$$
D A D^{*}=\left[\begin{array}{cccc}
\omega_{11}\left|A_{11}\right| & D_{1} A_{12} D_{2}^{*} & \ldots & D_{1} A_{1 m} D_{m}^{*} \tag{4.2}\\
0 & \omega_{22}\left|A_{22}\right| & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \omega_{m m}\left|A_{m m}\right|
\end{array}\right]
$$

We will refer to this as the omega form of A.
Throughout this chapter, let $\mathcal{G}=\mathcal{G}(A)$ and let \mathcal{G}_{i} be the induced subgraph of \mathcal{G} corresponding to the vertices and edges associated with the diagonal block $A_{i i}$.

4.1 Reducible Powerful Ray Patterns With Primitive Diagonal Blocks

We begin our study of reducible ray patterns by looking at the special case where A is a ray pattern such that all its irreducible classes are primitive.

Theorem 4.2 Let A be a powerful $n \times n$ ray pattern in omega form (4.2). If each diagonal block of A is primitive, and $\mathcal{G}(A)$ is weakly-connected, then there exists a ray ω such that

$$
A=\omega\left[\begin{array}{cccc}
\left|A_{11}\right| & \omega_{12}\left|A_{12}\right| & \ldots & \omega_{1 m}\left|A_{1 m}\right| \tag{4.3}\\
0 & \left|A_{22}\right| & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \left|A_{m m}\right|
\end{array}\right]
$$

Proof. Let A be a ray pattern in omega form (4.2) and assume that each diagonal block $A_{i i}$ is primitive. Let $\left(v_{i_{1}}, v_{j_{1}}\right)$ and $\left(v_{i_{2}}, v_{j_{2}}\right)$ be arcs (possibly the same) from \mathcal{G}_{i} to \mathcal{G}_{j} in \mathcal{G}. Since $A_{i i}$ and $A_{j j}$ are primitive, there is an integer $l_{i j}$ such that if $l \geq l_{i j}, \mathcal{G}_{i}$
and \mathcal{G}_{j} have walks W_{i} and W_{j} of length l from $v_{i_{1}}$ to $v_{i_{2}}$ and from $v_{j_{1}}$ to $v_{j_{2}}$, respectively. Let W_{1}^{\prime} and W_{2}^{\prime} be walks in \mathcal{G} such that

$$
W_{1}^{\prime}: W_{1},\left(v_{i_{2}}, v_{j_{2}}\right), v_{j_{2}} \text { and } W_{2}^{\prime}: v_{i_{1}},\left(v_{i_{1}}, v_{j_{1}}\right), W_{j}
$$

Notice that W_{1}^{\prime} and W_{2}^{\prime} are walks of the same length from $v_{i_{1}}$ to $v_{j_{2}}$. Since A is powerful we can conclude that

$$
\begin{equation*}
\wp\left(W_{1}^{\prime}\right)=\wp\left(W_{2}^{\prime}\right) \tag{4.4}
\end{equation*}
$$

Hence in the case where $v_{i_{1}}=v_{i_{2}}$ and $v_{j_{1}}=v_{j_{2}}$, the equation (4.4) shows that $\left(\omega_{i i}\right)^{l}=$ $\left(\omega_{j j}\right)^{l}$ for every l satisfying $l \geq l_{i j}$. So, in particular, we have $\left(\omega_{i i}\right)^{l+1}=\left(\omega_{j j}\right)^{l+1}$. Thus $\omega_{i i}=\omega_{j j}$. Since \mathcal{G} is weakly connected, this implies that all the rays $\omega_{i i}$ in (4.2) are the equal. Let $\omega=\omega_{11}=\ldots=\omega_{m m}$.

Substituting $\omega_{i i}=\omega_{j j}=\omega$ into equation (4.4) we obtain $w\left(\left(v_{i_{1}}, v_{j_{1}}\right)\right)=w\left(\left(v_{i_{2}}, v_{j_{2}}\right)\right)$, and hence the nonzero entries in $A_{i j}$ have the same value.

Let A be a powerful ray pattern with primitive irreducible classes in the form (4.3), whose digraph $\mathcal{G}(A)$ is weakly connected. We now consider $\mathcal{R}(A)$, the reduced graph of A, and the corresponding matrix $R=R(A)$ where

$$
r_{i j}= \begin{cases}\omega & \text { if } i=j \\ \omega \omega_{i j} & \text { if } i<j \\ 0 & \text { otherwise }\end{cases}
$$

Notice $\mathcal{R}(A)=\mathcal{G}(R(A))$. Moreover, since $r_{i j}=0$ if and only if $A_{i j}=0$, we see that $\mathcal{R}(A)$ is weakly connected.

Lemma 4.3 Let A be a powerful ray pattern such that each irreducible block is primitive,
$\mathcal{G}(A)$ is weakly connected, and A is in the form (4.3). If A is powerful, then $R(A)$ is powerful.

Proof. We proceed by establishing the contrapositive. Suppose that $R=R(A)$ is not powerful. Then there exist two walks, W_{1} and W_{2}, from irreducible class i to irreducible class j, in $\mathcal{R}(A)$, both of which have length k. Let p be any vertex associated with the irreducible class i in $\mathcal{G}(A)$. Let q be any vertex associated with the irreducible class j in $G(A)$. Suppose (p, q) is an edge in walk W_{1} or W_{2} with weight $\omega_{p q}$. Then $A_{p q} \neq 0$, and since $A_{p p}$ and $A_{q q}$ are primitive with every edge having weight ω, there is a walk in $\mathcal{G}(A)$ from any vertex associated with the irreducible class p to any vertex associated with the irreducible class q, such that the weight of the walk is $\omega^{l-1} \omega_{p q}$, where l is the length of the walk. Let r be any vertex associated with the irreducible class i and s be any vertex associated with the irreducible class j. Then there is a walk W_{3} from r to s such that $\wp\left(W_{3}\right)=\omega^{l_{3}-k} \wp\left(W_{1}\right)$, where l_{3} is the length of W_{3}, and a walk W_{4} from r to s such that $\wp\left(W_{4}\right)=\omega^{l_{4}-k} \wp\left(W_{2}\right)$. Since the irreducible class j is actually primitive, there exists a positive integer b such that there are cycles of length $b+t$, for all $t>0$, from s to s, having weight ω^{b+t}. By adding cycles of the appropriate length from s to s, to W_{3} and W_{4}, we end up with two walks from r to s in $\mathcal{G}(A)$, with the same length but different weights, and hence A is not powerful.

Recall that if A is a ray subpattern of B, we write $A \preceq B$.

In the next few lemmas, we study matrices of the form

$$
R=\left[\begin{array}{ccccc}
1 & \omega_{12} & \cdots & \cdots & \omega_{1 n} \tag{4.5}\\
0 & 1 & \omega_{23} & \cdots & \omega_{2 n} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & \omega_{n-1, n-1} \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right]
$$

Lemma 4.4 Let R be an upper triangular ray pattern in the form of (4.5). Then R is powerful if and only if $R^{m}=R^{m+1}$ for some $m \leq n-1$.

Proof. Note that in ray pattern multiplication and addition,

$$
\begin{equation*}
R^{k}=(I+R)^{k}=I+R+R^{2}+\cdots+R^{k} \tag{4.6}
\end{equation*}
$$

(Only if part) If R is powerful, then R^{k} is a ray pattern for every $k \geq 0$. If $r_{i j}^{k} \neq 0$, then $r_{i j}^{l}=r_{i j}^{k}$ for all $l \geq k$. Since all paths in $\mathcal{G}(R)$ have length at most $n-1$, it follows that $R^{n-1}=R^{n}$.
(If part) If $R^{m}=R^{m+1}$ then $R^{k}=R^{m}$ for all $k \geq m$. In order for R^{m} to be well-defined, by $(4.6) R^{k}$ is well-defined for $k \leq m$.

Note that Lemma 4.4 shows that if R is powerful, R is periodic(with period 1) and the smallest such m is the base $l(R)$ of R.

Lemma 4.5 Suppose that R is a powerful upper triangular matrix in the form (4.5). Then $R \in S$ if and only if $R^{l(R)} \in S$.

Proof.

(Only if part) This is clearly true for all ray patterns.
(If part) Suppose not, that is, suppose that $R^{l(R)} \in S$ but $R \notin S$. Then $\mathcal{G}(R)$ has a semicycle with actual product not equal to 1 , since R has all diagonal entries 1 . But this would imply that $\mathcal{G}\left(R^{l(R)}\right)$ has an alternating semicycle whose actual product is not equal to 1 , contradiction.

Example 4.6 For every $n \geq 4$, there is a ray pattern (and sign pattern) R in form (4.5) such that R is powerful but $R \notin S$.

Construction. If $n=2 k$, let A be the pattern with

$$
a_{i j}= \begin{cases}1 & \text { if } i=j \\ 1 & \text { if } i=1 \text { and } j=3 \\ -1 & \text { if } i=1 \text { and } j=n \\ 1 & \text { if } i=2 q \text { and } j=2 q+1 \text { for } q=1,2, \ldots, k-1 \\ 1 & \text { if } i=2 q \text { and } j=2 q+3 \text { for } q=1,2, \ldots, k-2 \\ 1 & \text { if } i=n-2 \text { and } j=n \\ 0 & \text { otherwise }\end{cases}
$$

If $n=2 k+1$, let A be the pattern with

$$
a_{i j}= \begin{cases}1 & \text { if } i=j \\ 1 & \text { if } i=1 \text { and } j=3 \\ -1 & \text { if } i=1 \text { and } j=n-1 \\ -1 & \text { if } i=1 \text { and } j=n \\ 1 & \text { if } i=2 q \text { and } j=2 q+1 \text { for } q=1,2, \ldots, k-1 \\ 1 & \text { if } i=2 q \text { and } j=2 q+3 \text { for } q=1,2, \ldots, k-1 \\ 1 & \text { if } i=n-1 \text { and } j=n \\ 0 & \text { otherwise }\end{cases}
$$

Notice in either case that $A^{2}=A$ and hence A is powerful. Notice also that $\mathcal{G}(A)$ has a negative semicycle of length $2 k+1$ with $k+1$ forward edges and k backward edges. We encourage the reader to come back to this example after having read Chapter 4.3, where Theorem 4.15 now shows that A is not in S.

These examples show that even simple reducible ray patterns can be powerful without being in S, and hence we devote Chapter 4.3 to establishing when a ray pattern is in S. In the next section, we look at reducible ray patterns whose irreducible blocks need not be primitive.

4.2 Reducible Powerful Matrices

We are now interested in looking at the more general case, where the diagonal blocks need not be primitive. We first look at an example to illustrate some of the differences in this case.

Example 4.7 Consider the following two matrices. Let $\omega_{1}=e^{\frac{2 \pi i}{6}}, \omega_{2}=e^{\frac{2 \pi i}{6}}$. and $\omega_{3}=e^{\frac{2 \pi i}{12}}$. Consider

$$
A=\left[\begin{array}{ccccccccc}
0 & \omega_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \omega_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
\omega_{1} & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \omega_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \omega_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \omega_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \omega_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \omega_{3} \\
0 & 0 & 0 & 0 & 0 & \omega_{3} & 0 & 0 & 0
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{ccccccccc}
0 & \omega_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \omega_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
\omega_{1} & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & \omega_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \omega_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \omega_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \omega_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \omega_{3} \\
0 & 0 & 0 & 0 & 0 & \omega_{3} & 0 & 0 & 0
\end{array}\right]
$$

Notice that A and B only differ in the (3,9)-position, and in particular they have the same reduced graph. It is easy to check that A is powerful, while B is not.

Moreover, the matrix A shows us that although every reducible powerful ray pattern is similar to a ray pattern in omega form (4.2), primitivity is essential for the additional specifications in Theorem 4.2. In particular, if there were a diagonal matrix D and a ray ω, so that $D A D^{*}$ was in the form of (4.3), then from the first diagonal block of A we would need $w^{3}=-1$, from the second block that $\omega^{2}=e^{\frac{4 \pi i}{6}}$ and from the third block that $\omega^{4}=e^{\frac{8 \pi i}{12}}$, since the products of simple cycles in the graph of A are not changed by diagonally scaling A. But this implies that $-1=\omega^{3}=\omega \omega^{2}=\omega e^{\frac{4 \pi i}{6}}$, and $e^{\frac{8 \pi i}{12}}=\omega^{4}=\omega \omega^{3}=-\omega$ and hence $e^{\frac{\pi i}{3}}=\omega=e^{\frac{5 \pi i}{3}}$, a contradiction.

However, it is the case that we case that we can use Theorem 4.2 on selected powers of A in order to get a relationship between the values in each block.

Corollary 4.8 Let A be a powerful ray pattern in omega form (4.2). If each $A_{i i}$ contains at least one nonzero entry, then there exists a positive integer q and a ray ω such that
A^{q} is permutationally diagonally similar to

$$
\left[\begin{array}{cccc}
\omega\left|A_{11}^{q}\right| & \omega_{12}\left|A_{12}^{q}\right| & \ldots & \omega_{1 k}\left|A_{1 k}^{q}\right| \tag{4.7}\\
0 & \omega\left|A_{22}^{q}\right| & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \omega\left|A_{k k}^{q}\right|
\end{array}\right]
$$

(Note that the partitioning in this Frobenius normal form may differ from that in (4.2).)

Proof. Let c_{i} be the index of imprimitivity of $A_{i i}$. Let $q=\operatorname{lcm}\left(c_{1}, c_{2}, \ldots, c_{m}\right)$. Then the diagonal blocks of A^{q} are primitive and hence our result follows from Theorem 4.2.

Theorem 4.9 Let A be an $n \times n$ ray pattern such that $\mathcal{G}(A)$ is weakly-connected. Suppose that every final vertex in $\mathcal{R}(A)$ is nontrivial. If A^{s} is well-defined for some positive integer s, then A^{t} is well-defined for each positive integer t such that $t<s$.

Proof. Suppose A^{s} is well defined but A^{t} contains an ambiguous entry for some $t<s$. Then there are two vertices, v and w, and two paths P_{1} and P_{2}, both of length t, from v to w, such that $\wp\left(P_{1}\right) \neq \wp\left(P_{2}\right)$. Since every final vertex in $\mathcal{R}(A)$ is nontrivial, we create a path of any length from w to some other vertex by following along a path until we have the desired length or we enter a final class in $\mathcal{R}(A)$. Since every final class is nontrivial it must contain a cycle and we can repeatedly transverse the cycle until the desired length is reached. Hence let P_{3} be a path from w to some vertex u of length $s-t$. Then $P_{1} P_{3}$ and $P_{2} P_{3}$ are both paths from v to u of length s. But $\wp\left(P_{1} P_{3}\right) \neq \wp\left(P_{2} P_{3}\right)$ and this contradicts that A^{s} does not contain an ambiguous entry.

Example 4.10 Consider the matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Notice that A^{2} is not well defined, however $A^{k}=0$ for $k \geq 4$, hence if some of the final classes of $\mathcal{R}(A)$ are trivial, then A^{s} may be well defined even if A^{t} contains ambiguous entries for some $t<s$. We are interested in studying these types of patterns and they are discussed briefly in our concluding remarks.

Corollary 4.11 Let A be an A be an $n \times n$ ray pattern such that $\mathcal{G}(A)$ is weaklyconnected and every final vertex in $\mathcal{R}(A)$ is nontrivial. Let c_{i} be the index of imprimitivity of each irreducible block $A_{i i}$ of A. Let $q=\operatorname{lcm}\left(c_{1}, c_{2}, \ldots, c_{m}\right)$. Then A is powerful if and only if A^{q} is powerful.

Notice that A^{q} has primitive blocks and hence we can use the results from Section 4.1 and work with A^{q} rather than A when working to determine whether or not A is powerful.

In the paper [9], Hall, Li and Stuart develop additional results for reducible powerful matrices and we encourage the interested reader to look at their article. We will now focus our attention on determining when a reducible powerful matrix is in S.

4.3 Powerful Ray Patterns and the Set S

In Section 3.1.1, we showed that a ray pattern A is irreducible, then A is powerful if and only if $A \in S$. In Example 4.6 we provide an example of a reducible powerful ray pattern that is not is S.

Suppose that $A=\left[a_{s t}\right]$ is in S. Then there exist a ray ω and a diagonal ray pattern $D=\operatorname{diag}\left\{d_{1}, d_{2}, \cdots d_{n}\right\}$ satisfying $D A D^{*}=\omega|A|$. Let $\hat{A}=\left[\hat{a}_{s t}\right]$ such that

$$
\hat{a}_{s t}= \begin{cases}a_{s t} & \text { if } a_{s t} \neq 0 \\ \bar{d}_{s} \omega d_{t} & \text { if } a_{s t}=0\end{cases}
$$

Clearly, \hat{A} is irreducible and A is a subpattern of \hat{A}. Moreover $d_{s} \hat{a}_{s t} \bar{d}_{t}=\omega$ for each s, t. So $D \hat{A} D^{*}$ is diagonally similar to ωJ. Hence A is a subpattern of an irreducible powerful ray pattern \hat{A}. Thus we have shown the following:

Proposition 4.12 A ray pattern A is in S iff there exists an irreducible powerful ray pattern B such that A is a subpattern of B.

Note that the "if part" of Proposition 4.12 is trivial.
In view of Proposition 4.12, a ray pattern A is in S iff we can extend A to an irreducible powerful ray pattern by replacing zero entries of A with some rays. The focus of the next two sections exploits this idea to study reducible ray patterns from the set S.

4.3.1 Characterization of S in Terms of Products of Chains

Lemma 4.13 Let A_{1} and A_{2} be ray patterns such that $\mathcal{G}\left(A_{1}\right)=\left(G, w_{1}\right)$ and $\mathcal{G}\left(A_{2}\right)=$ $\left(G, w_{2}\right)$. Suppose that W is a semicycle in G, and that γ_{1} and γ_{2} are the chains of W in \mathcal{G}_{1} and \mathcal{G}_{2}, respectively. If $A_{1} \sim A_{2}$, then $\wp\left(\gamma_{1}\right)=\wp\left(\gamma_{2}\right)$.

Proof. The product of the chain of a semicycle W is the product of products of the chains of simple semicycles in W. So we only need to consider the case that W is a simple semicycle. And without loss of generality, we may assume that W is a semicycle in the form of

$$
W: v_{1} e_{1} v_{2} e_{2} \cdots v_{l} e_{l} v_{l+1}(l \geq 1)
$$

where $v_{l+1}=v_{1}$. Clearly the result holds, if W or \bar{W} is a cycle. And note that ray diagonal similarities preserve the assignments of loops. Thus we may assume that W is a semicycle which contains reversed arcs.

Then W has a vertex v_{i} such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ and $e_{i-1}=\left(v_{i}, v_{i-1}\right)$ where the indices are modulo l. Let W^{\prime} be the semicycle of the form

$$
W^{\prime}: v_{i} e_{i} v_{i+1} e_{i+2} \cdots v_{i-1} e_{i-1} v_{i}
$$

that is, vertices and arcs of W^{\prime} are equal to those of W but the starting vertex is changed from v_{1} to v_{i}. It is clear that $\wp(W)=\wp\left(W^{\prime}\right)$. Thus, again, without loss of generality, we may assume that $e_{1}=\left(v_{1}, v_{2}\right)$ and $e_{l}=\left(v_{1}, v_{l}\right)$. Let P_{1} be the longest path of forward arcs starting from v_{1} in W. Since W has reversed arcs, the end vertex of P_{1} is not v_{1}. Let \bar{P}_{2} be the longest path which starts at the end vertex of P_{1} in W. If end vertex of \bar{P}_{2} is not v_{1}, similar to the case of P_{1}, we can take the longest path P_{3} which starts at the end vertex of \bar{P}_{2} in W. Note that the end vertex of P_{3} is not v_{1} since $e_{1}=\left(v_{1}, v_{2}\right)$
and $e_{l}=\left(v_{1}, v_{l}\right)$. Again we can take the longest path \bar{P}_{4} which starts at the end vertex of P_{3} in W similar to the case of \bar{P}_{2} and so on.

Then W is divided into an even number of semipaths $P_{1}, P_{2}, \cdots, P_{2 m}$, where the even subscripted paths have only forward arcs and the odd subscripted paths have only reversed arcs. Let $\gamma_{i}^{(1)}$ and $\gamma_{i}^{(2)}$ be the chains of P_{i} in G_{i} for $i=1,2$, respectively. Suppose that the length of P_{j} is l_{j} for $j=1,2, \cdots, 2 m$. Then

$$
P_{j}: v_{j, 1} e_{j, 1} v_{j, 2} v_{j, 2} e_{j, 2} v_{j, 3} \cdots v_{j, l_{j}} e_{l_{j}} v_{j, l_{j}+1}
$$

Since $A_{1} \sim A_{2}$, for $j=1,2, \cdots, 2 m$ and $k=1,2, \cdots, l_{j}+1$, there are rays $d_{j, k}$ such that if j is odd,

$$
\gamma_{j}^{(2)}:\left(e_{j, 1} ; d_{j, 1} w\left(e_{j, 1}\right) \bar{d}_{j, 2}\right),\left(e_{j, 2} ; d_{j, 2} w\left(e_{j, 2}\right) \bar{d}_{j, 3}\right), \cdots,\left(e_{j, l_{j}} ; d_{j, l_{j}} w\left(e_{j, l_{j}}\right) \bar{d}_{j, l_{j}+1}\right)
$$

and if j is even,

$$
\left.\gamma_{j}^{(2)}:\left(e_{j, 1} ; \bar{d}_{j, 1} w\left(e_{j, 1}\right) d_{j, 2}\right),\left(e_{j, 2} ; \bar{d}_{j, 2} w\left(e_{j, 2}\right) d_{j, 3}\right), \cdots,\left(e_{j, l_{j}}\right) ; \bar{d}_{j, l_{j}} w\left(e_{j, l_{j}}\right) d_{j, l_{j}+1}\right) .
$$

Hence we have

$$
\wp\left(\gamma_{j}^{(2)}\right)=d_{j, 1} \wp\left(\gamma_{j}^{(1)}\right) \bar{d}_{j, l_{j}+1}
$$

for each j. For $i=1,2$, the chain $\gamma_{i}: \gamma_{1}^{(i)}, \gamma_{2}^{(i)}, \cdots, \gamma_{2 m}^{(i)}$ is the chain of W in G_{i}. Then we have

$$
\wp\left(\gamma_{2}\right)=\prod_{j=1}^{2 m} \wp\left(\gamma_{j}^{(2)}\right)=\left(\prod_{j=1}^{2 m} \wp\left(\gamma_{j}^{(1)}\right)\right)\left(\prod_{j=1}^{2 m} d_{j, 1}\right)\left(\prod_{j=1}^{2 m} \bar{d}_{j, l_{j}+1}\right)=\wp\left(\gamma_{1}\right)
$$

since $d_{j+1,1}=d_{j, l_{j}+1}$ where the indices are modulo $2 m$. This completes the proof.

By using Lemma 4.13, we can easily obtain a necessary condition for a ray pattern A to be in S.

Proposition 4.14 Let A be a ray pattern of order $n(n \geq 2)$ and $\mathcal{G}=\mathcal{G}(A)$. If A is in S, then for each semicycle W in \mathcal{G} with $a_{+}(W)=a_{-}(W), \wp(\gamma(W ; \mathcal{G}))=1$.

Proof. By Lemma 4.13, products of semicycles are invariant under ray diagonal similarities. Hence we may assume that $A=\omega|A|$ for some ray ω. Let W be a semicycle of length l in $G(A)$ with $a_{+}(W)=a_{-}(W)$. Then l is even and W contains exactly $\frac{l}{2}$ reversed arcs. Hence the product of the chain of W is $\omega^{\frac{l}{2}}(\bar{\omega})^{\frac{l}{2}}=1$. This completes the proof.

Notice that Example 4.6 shows that this proposition is necessary but not sufficient.

Theorem 4.15 Let A be a ray pattern of order n and ω be a ray. Suppose that $G(A)$ is weakly connected. Then $A \sim \omega|A|$ iff

$$
\begin{equation*}
\wp(\gamma)=\omega^{a_{+}(\gamma)-a_{-}(\gamma)} \tag{4.8}
\end{equation*}
$$

for each semicyclic chain γ in $G(A)$.

Proof. (Only If Part) Trivial by Lemma 4.13.
(If Part) Let $G(A)=G_{0}=\left(V, E_{0}, w_{0}\right)$ where $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. By assumption, all loops in G_{0} must have the assignment ω. If G_{0} has vertices which are not on loops, we can attach a loop for each of such vertices and give assignment ω to each of new arcs. Let $G_{1}=\left(V, E_{1}, w_{1}\right)$ be the resulting digraph such that

$$
w_{1}(e)= \begin{cases}\omega_{0}(e) & \text { if } e \in E_{0} \\ \omega & \text { if } e \in E_{1} \backslash E_{0}\end{cases}
$$

Clearly, each semicycle W in G_{1} satisfies (4.8).

Suppose that there exist distinct vertices $v_{i_{1}}, v_{j_{1}}$ such that G_{1} does not have the $\operatorname{arc} e_{1}=\left(v_{i_{1}}, v_{j_{1}}\right)$. Since G_{1} is weakly connected, there exists a semipath from $v_{j_{1}}$ to $v_{i_{1}}$ in G_{1}. Fix such a semipath and denote it by P_{1}. Define a diagraph G_{2} to be $G_{2}=\left(V, E_{1} \cup\left\{e_{1}\right\}, w_{2}\right)$ such that

$$
w_{2}(e)= \begin{cases}\omega_{1}(e) & \text { if } e \neq e_{1} \\ \omega^{a_{+}\left(P_{1}\right)-a_{-}\left(P_{1}\right)+1} \wp\left(\bar{P}_{1}\right) & \text { if } e=e_{1}\end{cases}
$$

We show that each semicycle W in G_{2} satisfies (4.8) as follows. If a semiwalk W in G_{2} does not contain the arc e_{1}, W satisfies (4.8). Suppose that a semicycle W in G_{2} contains e_{1}. Without loss of generality, we may assume that W is of the form $W: v_{i_{1}}\left(v_{i_{1}}, v_{j_{1}}\right) P$ where P is a semipath from $v_{j_{1}}$ to $v_{i_{1}}$ in G_{1}. Note that the product of the chain of the semicycle $\bar{P}_{1} P$ is

$$
\wp\left(\bar{P}_{1} P\right)=\wp\left(\bar{P}_{1}\right) \wp(P)=\omega^{a_{-}\left(P_{1}\right)+a_{+}(P)-a_{+}\left(P_{1}\right)-a_{-}(P)} .
$$

By noting that $a_{+}(W)=a_{+}(P)+1$ and $a_{-}(W)=a_{-}(P)$, we have

$$
\begin{aligned}
\wp(W) & =w(e) \wp(P) \\
& =\omega^{a_{+}\left(P_{1}\right)-a_{-}\left(P_{1}\right)+1} \wp\left(\bar{P}_{1}\right) \wp(P) \\
& =\omega^{a_{+}(P)-a_{-}(P)+1} \\
& =\omega^{a_{+}(W)-a_{-}(W)} .
\end{aligned}
$$

If there are distinct vertices $v_{i_{2}}$ and $v_{j_{2}}$ such that G_{2} does not have the arc $e_{2}=$ $\left(v_{i_{2}}, v_{j_{2}}\right)$, we can apply the same arguments of G_{1} to G_{2} and obtain the digraph $G_{2}=$ ($\left.V, E_{1} \cup\left\{e_{1}, e_{2}\right\}, w_{2}\right)$ such that each semicycle W in G_{2} satisfies (4.8) and so on. Hence we can obtain a finite sequence of digraphs $G(A)=G_{0}, G_{1}, G_{2}, \cdots, G_{m}=G$ such that G has an arc for each pair of vertices and satisfies (4.8) for each semicycle.

Let $B=\left[b_{i j}\right]$ be the ray pattern which is associated with the digraph G. For each pair of $i, j(i<j)$, we can take two semicycles C_{1} of length $j-i+1$ and C_{2} of length 2 in G

$$
\begin{aligned}
& W_{1}: v_{i}\left(v_{i}, v_{i+1}\right) v_{i+1}\left(v_{i+1}, v_{i+2}\right) \cdots v_{j-1}\left(v_{j-1}, v_{j}\right) v_{j}\left(v_{i}, v_{j}\right) v_{i}, \\
& W_{2}: v_{i}\left(v_{i}, v_{j}\right) v_{j}\left(v_{j}, v_{i}\right) v_{i} .
\end{aligned}
$$

Since W_{1} and W_{2} satisfy (4.8), we have

$$
\wp\left(W_{1}\right)=b_{i, i+1} b_{i+1, i+2} \cdots b_{j-1, j} \bar{b}_{i j}=\omega^{j-i-1} \text { and } \wp\left(W_{2}\right)=b_{i j} b_{j i}=\omega^{2} .
$$

Hence for each $i, j(i<j)$, we have

$$
b_{i j}=\bar{\omega}^{j-i-1} b_{i, i+1} b_{i+1, i+2} \cdots b_{j-1, j} \text { and } b_{j i}=\omega^{2} \bar{b}_{i j} .
$$

Let $D=\left\{d_{1}, d_{2}, \cdots, d_{n}\right\}$ be a diagonal ray pattern such that $d_{1}=1, d_{i+1}=\bar{\omega} d_{i} a_{i, i+1}(1 \leq$ $i \leq n-1)$. Then for each $i, j(i<j)$, the (i, j) entry of $D B D^{*}$ is

$$
\begin{aligned}
d_{i} b_{i j} \bar{d}_{j} & =d_{i}\left(\bar{\omega}^{j-i-1} b_{i, i+1} b_{i+1, i+2} \cdots b_{j-1, j}\right) \bar{d}_{j} \\
& =\bar{\omega}^{j-i-1} \prod_{k=i}^{j-1}\left(d_{k} b_{k, k+1} \bar{d}_{k+1}\right) \\
& =\bar{\omega}^{j-i-1} \omega^{j-i} \\
& =\omega
\end{aligned}
$$

and the (j, i) entry of $D A D^{*}$ is

$$
d_{j} b_{j i} \bar{d}_{i}=d_{j}\left(\omega^{2} \bar{b}_{i j}\right) \bar{d}_{i}=\omega^{2} \bar{d}_{i} \bar{b}_{i j} d_{j}=\omega .
$$

Note that each diagonal entry of B is ω and ray diagonal similarities preserve diagonal entries. So we have $D B D^{*}=\omega|B|$. Since A is a subpattern of B, we can conclude that $D A D^{*}=\omega|A|$. This completes the proof.

If we consider irreducible ray patterns, we can obtain much simpler characterization of S than Theorem 4.15.

Theorem 4.16 Let A be an irreducible ray pattern. Then $A \sim \omega|A|$ iff

$$
\begin{equation*}
\wp(\gamma)=\omega^{\ell(\gamma)} \tag{4.9}
\end{equation*}
$$

for each cyclic chain γ in $G(A)$.

Proof. (If Part) Trivial by Theorem 4.15.
(Only If Part) Let W be a semicycle in G of the form

$$
W: P_{11} \bar{Q}_{12} P_{22} \bar{Q}_{23}, \cdots \bar{Q}_{q-1, q} P_{q q} \bar{Q}_{q 1}
$$

where $P_{i i}$ is a path from a vertex $v_{k_{i}}$ to a vertex $w_{k_{i}}$ and $Q_{i, i+1}$ is a path from a vertex $v_{k_{i+1}}$ to a vertex $w_{k_{i}}$ for $i=1,2, \cdots, q$. Since G is strongly connected, there is a path $R_{i, i+1}$ from $w_{k_{i}}$ to $v_{k_{i+1}}$ for each $i=1,2, \cdots, q$ with $R_{q, q+1}=R_{q 1}$. Let

$$
\begin{aligned}
& \ell_{i i}=\ell\left(P_{i i}\right), \quad \ell_{i, i+1}=\ell\left(Q_{i, i+1}\right), \quad \ell_{i, i+1}^{\prime}=\ell\left(R_{i, i+1}\right), \\
& \wp_{i i}=\wp\left(P_{i i}\right), \quad \wp_{i, i+1}=\wp\left(Q_{i, i+1}\right), \quad \wp_{i, i+1}^{\prime}=\wp\left(R_{i, i+1}\right),
\end{aligned}
$$

and W^{\prime} be the closed walk of the form

$$
W^{\prime}: P_{11} R_{12} P_{22} R_{23}, \cdots, P_{q q} R_{q 1}
$$

The length of the closed walk $Q_{i, i+1} R_{i, i+1}$ is $\ell_{i, i+1}+\ell_{i, i+1}^{\prime}$ and the length of the closed walk W^{\prime} is $\sum_{i=1}^{q}\left(\ell_{i i}+\ell_{i, i+1}^{\prime}\right)$. So we have

$$
\wp\left(Q_{i, i+1} R_{i, i+1}\right)=\wp_{i, i+1} \wp_{i, i+1}^{\prime}=\omega^{\ell_{i, i+1}+\ell_{i, i+1}^{\prime}}
$$

and

$$
\wp\left(W^{\prime}\right)=\prod_{i=1}^{q} \wp_{i i} \wp_{i, i+1}^{\prime}=\omega^{\sum_{i=1}^{q}\left(\ell_{i i}+\ell_{i, i+1}^{\prime}\right)}
$$

From these two equations, we can have

$$
\begin{aligned}
\wp(W) & =\left(\prod_{i=1}^{q} \wp_{i i}\right)\left(\prod_{i=1}^{q} \bar{\wp}_{i, i+1}\right) \\
& =\left(\prod_{i=1}^{q} \wp_{i i}\right)\left(\prod_{i=1}^{q} \wp_{i, i+1}^{\prime}\right)\left(\prod_{i=1}^{q} \bar{\omega}^{\ell_{i, i+1}+\ell_{i, i+1}^{\prime}}\right) \\
& =\omega^{\sum_{i=1}^{q}\left(\ell_{i i}+\ell_{i, i+1}^{\prime}\right)} \cdot \omega^{-\sum_{i=1}^{q}\left(\ell_{i, i+1}+\ell_{i, i+1}^{\prime}\right)} \\
& =\omega^{\sum_{i=1}^{q} \ell_{i i}-\sum_{i=1}^{q} \ell_{i, i+1}} \\
& =\omega^{a_{+}(W)-a_{-}(W)}
\end{aligned}
$$

Hence $A \sim \omega|A|$ from Theorem 4.15. This completes the proof.

In Theorem 4.15 and Theorem 4.16, if $\omega=1$, a ray pattern A is ray diagonally similar to a Boolean matrix $|A|$. Hence in this case, many nice results about Boolean matrices (or nonnegative matrices) can be carried over to ray patterns (or complex matrices). In this point of view, next corollary is worth mentioning.

Corollary 4.17 Let A be a ray pattern of order $n(n \geq 2)$. Consider the following statements;
(i) $A \sim|A|$;
(ii) $\wp(\gamma)=1$ for each semicyclic chain γ in $G(A)$;
(iii) $\wp(\gamma)=1$ for each cyclic chain γ in $G(A)$.
(i) and (ii) are always equivalent. If A is irreducible, (i), (ii) and (iii) are equivalent.

Let A be an irreducible ray pattern and $G(A)=G$. Denote the set of lengths of simple cycles in G by $L(G)$. For every $\ell \in L(G)=\left\{\ell_{1}, \ell_{2}, \cdots, \ell_{m}\right\}$, if A^{ℓ} is well-defined and all diagonal entries of A^{ℓ} are equal, we can define the multiset $\wp_{c y c}(G)=\left\{\wp_{1}, \wp_{2}, \cdots, \wp_{m}\right\}$
of products of cyclic chains G such that $\wp\left(C_{i}\right)=\wp_{i}$ for every simple cycle C_{i} with length ℓ.

Corollary 4.18 Let A be an irreducible ray pattern of order $n(n \geq 2)$ and $G(A)=G$. Suppose that $L(G)=\left\{\ell_{1}, \ell_{2}, \cdots, \ell_{m}\right\}$ and $\sum_{s=1}^{m} p_{s} \ell_{j}=k(A)$ where each p_{s} is an integer. If there exists a ray ω such that for $1 \leq j \leq m$ and every simple cyclic chain γ of length ℓ_{j} in $G(A)$,

$$
\wp(\gamma)=\omega^{l_{j}}
$$

then A is powerful and

$$
\Omega(A)=\left\{\left.e^{\frac{\theta+2 j \pi}{k(A)}} \right\rvert\, e^{\theta \mathrm{i}}=\prod_{s=1}^{m}\left\{\wp\left(\gamma_{s}\right)\right\}^{p_{s}} \text { and } 1 \leq j \leq k\right\} .
$$

Proof. Note that our condition implies that (4.9) holds for every cyclic chain γ in G. Hence by Theorem 4.16, A is powerful and we can find a ray ω such that $A \sim \omega|A|$. And

$$
\omega^{k(A)}=\omega^{\sum_{s=1}^{m} p_{s} \ell_{s}}=\prod_{s=1}^{m}\left\{\wp\left(\gamma_{s}\right)\right\}^{p_{s}}=e^{\theta \mathrm{i}}
$$

So for each $j(1 \leq j \leq k(A))$, $\omega=e^{\frac{\theta+2 j \pi}{k(A)} i}$ is in $\Omega(A)$. However, $|\Omega(A)|=k(A)$ (See Theorem 3.15). Thus

$$
\Omega(A)=\left\{\left.e^{\frac{\theta+2 j \pi}{k(A)}} \right\rvert\, e^{\theta \mathrm{i}}=\prod_{s=1}^{m}\left\{\wp\left(\gamma_{s}\right)\right\}^{p_{s}} \text { and } 1 \leq j \leq k(A)\right\} .
$$

This completes the proof.

4.3.2 Characterization of S in Terms of Powers

Now we consider the set S in terms of powers of ray patterns. To study this relation, we define a specific generalized ray pattern of a given ray pattern. For a ray pattern A and a ray α, we define a generalized ray pattern $A_{(\alpha)}=A+\alpha^{2} A^{*}$.

Lemma 4.19 Let A be a ray pattern and ω be a ray. Then
(i) if $A \sim \omega|A|$, then $A_{(\omega)}$ is powerful;
(ii) if $G(A)$ is weakly-connected and $\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)+2}$ is well-defined, then $A \sim \omega|A|$ or $-A \sim \omega|A|$.

Proof. (i) There exists a diagonal ray pattern D satisfying $D A D^{*}=\omega|A|$. We have

$$
D\left(\omega^{2} A^{*}\right) D^{*}=\omega^{2}\left(D A D^{*}\right)^{*}=\omega|A|^{T} .
$$

Hence $D A D^{*}+D\left(\omega^{2} A^{*}\right) D^{*}$ is well-defined. It follows that $A_{(\omega)}=A+\omega^{2} A^{*}$ is welldefined. And $|A|+|A|^{T}=\left|A+\omega^{2} A^{*}\right|$, thus we have $D\left(A+\omega^{2} A^{*}\right) D^{*}=\omega\left(|A|+|A|^{T}\right)=$ $\omega\left|A+\omega^{2} A^{*}\right|$. Hence $A_{(\omega)}=A+\omega^{2} A^{*}$ is powerful.
(ii) First note that $A_{(\omega)}$ is irreducible, so $\left(A_{(\omega)}\right)^{m}$ is well-defined for all m with $1 \leq m \leq l\left(\left|A_{(\omega)}\right|\right)+2$.

We show that $A_{(\omega)} \sim \omega\left|A_{(\omega)}\right|$ or $-A_{(\omega)} \sim \omega\left|A_{(\omega)}\right|$. Then we can have $A \sim \omega|A|$ or $-A \sim \omega|A|$, since A is a subpattern of $A_{(\omega)}$. Note that

$$
\left(A_{(\omega)}\right)^{*}=\left(A+\omega^{2} A^{*}\right)^{*}=A^{*}+\bar{\omega}^{2} A=\bar{\omega}^{2} A_{(\omega)} .
$$

Thus we have

$$
\left(A_{(\omega)}\right)^{2}=A_{(\omega)} \omega^{2}\left(A_{(\omega)}\right)^{*}=\omega^{2} A_{(\omega)}\left(A_{(\omega)}\right)^{*} .
$$

Since $A_{(\omega)}$ is irreducible, each diagonal entry of $A_{(\omega)}\left(A_{(\omega)}\right)^{*}$ must be 1. It follows that $\omega^{2} I$ is a subpattern of $\left(A_{(\omega)}\right)^{2}$. Hence $\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)+2}=\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)}\left(A_{(\omega)}\right)^{2}$ has $\omega^{2}\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)}$ as a subpattern. Since $\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)}$ and $\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)+2}$ have the same nonzero block pattern and each of nonzero blocks is entrywise nonzero, we have $\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)+2}=\omega^{2}\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)}$. Multiplying both sides by $\bar{\omega}^{l\left(\left|A_{(\omega)}\right|\right)+2}$, we have
$\left(\bar{\omega} A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)+2}=\left(\bar{\omega} A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)}$. It follows that $\bar{\omega} A_{(\omega)}$ is powerful, hence $A_{(\omega)}$ is powerful.

Now we can find a diagonal ray pattern D and a ray α such that

$$
D A_{(\omega)} D^{*}=\alpha\left|A_{(\omega)}\right|
$$

Since A is a subpattern of $A_{(\omega)}$, we have

$$
\begin{aligned}
D A_{(\omega)} D^{*} & =D\left(A+\omega^{2} A^{*}\right) D^{*} \\
& =\alpha|A|+\omega^{2} \bar{\alpha}\left|A^{*}\right|
\end{aligned}
$$

From these two equations, we have $\alpha=\omega^{2} \bar{\alpha}$ or $\alpha= \pm \omega$. So we have $A_{(\omega)} \sim \omega\left|A_{(\omega)}\right|$ or $-A_{(\omega)} \sim \omega\left|A_{(\omega)}\right|$. Now the result follows.

Theorem 4.20 Let A be a ray pattern of order $n(n \geq 3)$ and ω be a ray. Suppose that $G(A)$ is weakly connected. Consider the following statements;
(i) $A \sim \omega|A|$ or $-A \sim \omega|A|$;
(ii) $A_{(\omega)}$ is powerful;
(iii) $\left(A_{(\omega)}\right)^{2 n}$ is well-defined;
$(\text { iii) })^{\prime}\left(A_{(\omega)}\right)^{4 n-6}$ is well-defined;
(iv) $\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)+2}$ is well-defined.

If $G(A)$ has at least one odd semicycle, then (i), (ii), (iii) and (iv) are equivalent; otherwise, (i),(ii),(iii)' and (iv) are equivalent.

Proof. (i) \Rightarrow (ii): Note that $|-A|=|A|$ and $(-A)_{(\omega)}=-A_{(\omega)}$. So if $-A \sim \omega|A|$, then by Lemma 4.19, $-A_{(\omega)}$ is powerful, and hence $A_{(\omega)}$ is also powerful.
(ii) \Rightarrow (iii): Immediate from the definition of powerfulness.
(iv) \Rightarrow (i): It follows from Lemma 4.19.

Before we prove other implications, note that $A_{(\omega)}$ is irreducible with at least one cycle of length 2 since $G(A)$ is weakly-connected and $n \geq 3$. And note that $\left|A_{(\omega)}\right|$ is symmetric.
(iii) \Rightarrow (iv): Now assume that $G(A)$ has at least one odd semicycle and $\left(A_{(\omega)}\right)^{2 n}$ is well-defined. Since $A_{(\omega)}$ has at least one odd cycle, $\left|A_{(\omega)}\right|$ is a primitive Boolean matrix. Since $\left|A_{(\omega)}\right|$ is symmetric, we have

$$
l\left(\left|A_{(\omega)}\right|\right)+2 \leq 2(n-1)+2=2 n
$$

(See [2]). Since $A_{(\omega)}$ is irreducible, $\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)+2}$ is well-defined.
$(\text { iii })^{\prime} \Rightarrow$ (iv): Assume that $G(A)$ has no odd semicycles and $\left(A_{(\omega)}\right)^{4 n-6}$ is well-defined. Then $k\left(A_{(\omega)}\right)=k\left(\left|A_{(\omega)}\right|\right)=2$. So without loss of generality, we may assume that $\left|A_{(\omega)}\right|$ is in the cyclic form

$$
\left|A_{(\omega)}\right|=\left[\begin{array}{cc}
O & B \\
C & O
\end{array}\right]
$$

The diagonal blocks $B C$ and $C B$ of $\left|A_{(\omega)}\right|^{2}$ are primitive and both of them have order at least 1. Since $\left|A_{(\omega)}\right|^{2}$ is symmetric,

$$
l\left(\left|A_{(\omega)}\right|^{2}\right) \leq 2(n-1)-2=2 n-4
$$

And clearly we have

$$
l\left(\left|A_{(\omega)}\right|\right) \leq 2 l\left(\left|A_{(\omega)}\right|^{2}\right)
$$

From these two inequalities, we finally have

$$
l\left(\left|A_{(\omega)}\right|\right)+2 \leq 2 l\left(\left|A_{(\omega)}\right|^{2}\right)+2 \leq 2(2 n-4)+2=4 n-6 .
$$

Since $A_{(\omega)}$ is irreducible, $\left(A_{(\omega)}\right)^{l\left(\left|A_{(\omega)}\right|\right)+2}$ is well-defined.
This completes the proof.

We close this chapter by reconsidering Theorem 4.15 and Theorem 4.20. To apply Theorem 4.15, we need to check every semicycle and have to solve a system of equations. Theorem 4.15 may be more useful in showing that a ray pattern is not in S than showing that a ray pattern is in S. However, a real profit of Theorem 4.15 is that a semicyclic chain γ with $a_{+}(\gamma)-a_{-}(\gamma) \neq 0$ gives us possible ω such that $A \sim \omega|A|$. On the other hand, Theorem 4.20 tells us no informations on the ray ω in the statement. Theorem 4.20 is applied well to a ray pattern if we have informations on the ray ω. From these two observations, we can get the following algorithm for checking a ray pattern to be in S.
(Algorithm checking a ray pattern to be in S)
For a given ray pattern A of order $n \geq 3$ such that $G(A)$ is weakly-connected,
(i) Find a semicyclic chain γ in $G(A)$ with $a_{+}(\gamma)-a_{-}(\gamma) \neq 0$;
(ii) Solve $\wp(\gamma)=\omega^{a_{+}(\gamma)-a_{-}(\gamma)}$ for ω;
(iii) For rays ω obtained from (ii), check $\left(A_{(\omega)}\right)^{2 n}$ is well-defined if $G(A)$ has a odd semicycle; check $\left(A_{(\omega)}\right)^{4 n-6}$ is well-defined otherwise.

Step (i) and (ii) depend on Theorem 4.15, and step (iii) depends on Theorem 4.20. Note that $4 n-6 \geq 2 n$ if $n \geq 3$. Hence $\left(A_{(\omega)}\right)^{2 n}$ is well-defined if $\left(A_{(\omega)}\right)^{4 n-6}$ is welldefined since $A_{(\omega)}$ is irreducible. So instead of applying step (iii), we can simply compute $\left(A_{(\omega)}\right)^{4 n-6}$ without checking the existence of odd semicycles in $G(A)$. This alternative may be useful when n is a very large number. If n is very large $4 n-6 \approx 4 n$. So to
compute $\left(A_{(\omega)}\right)^{4 n-6}$ and $\left(A_{(\omega)}\right)^{2 n}$, we need approximately $\log _{2} 4 n$ and $\log _{2} 2 n$ multiplications, respectively. The difference is $\log _{2} 4 n-\log _{2} 2 n=1$. So unless we can find an odd semicycle easily, we can simply check $4 n-6$-th power.

If every semicyclic chain γ satisfies $a_{+}(\gamma)-a_{-}(\gamma)=0$, there are two possible cases. If there is a semicyclic chain whose product is not 1 , then A is not in S by Theorem 4.15. If all products of semicyclic chains are 1 , then $A \sim \omega|A|$ for an arbitrary ray ω again by Theorem 4.15.

Chapter 5

Concluding Remarks

We have several characterizations on irreducible powerful ray patterns. In general, however, characterizing powerful ray patterns is still open. In this paper, as a partial answer to this question, we have established several interesting results on the set S. In future work, we want to explore the properties of reducible ray patterns which are not powerful instead of studying powerful ray patterns characterization problem.

For a given irreducible ray pattern A, if A is not powerful then there exists an smallest integer m such that A^{n} is not well-defined for all n satisfying $n \geq m$. But this fact heavily depends on the irreducibility of a given ray pattern. Let's consider some examples.
$A=\left[\begin{array}{cccc}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1\end{array}\right], \quad B=\left[\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right], \quad C=\left[\begin{array}{cccccc}0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
A behaves exactly like irreducible non-powerful ray patterns, that is, A is not powerful
and A^{n} in not well-defined for all $n \geq 2$. However, we can check that B^{2} is not welldefined but B^{n} where $n \geq 3$ is well-defined. Also we can check that for all $n \geq 1$, $C^{2 n}$ is well-defined but $C^{2 n+1}$ is not. B shows that there is a ray pattern which is not powerful but "eventually" powerful and C is an example of ray pattern which "oscillates" between well-definedness and unwell-definedness. By classifying these three classes, we can approach the characterization of reducible powerful ray patterns.

In addition, for the class of ray patterns which contains B, it is interesting to find the smallest integer n such that the n-th or higher power is well-defined. And for a given increasing sequence $\left\{a_{n}\right\}$ of positive integers, considering if there is a ray pattern such that only a_{n}-th power is well-defined (or not well-defined) might be interesting.

Bibliography

[1] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994.
[2] R. A. Brualdi, H. J. Ryser, Combinatorial matrix theory, Cambridge University Press, 1991.
[3] H. H. Cho, J. S. Jeon, H. K. Kim, Periodic, irreducible, powerful ray patterns, Linear Algebra Appl. 404 (2005), 283-296.
[4] C. Eschenbach, F. Hall, Z. Li, From real to complex sign pattern matrices, Bull Aust. Math. Soc. 57 (1998)159-172.
[5] C. Eschenbach, F. Hall, Z. Li, Eigenvalue distributions of certain ray pattern matrices, Czech. Math. J. 50(125) (2000) no. 4, 749-762.
[6] G. Y. Lee, J. J. McDonald, B. L. Shader, and M. J. Tsatsomeros, Extremal properties of ray-nonsingular matrices, Discrete Mathematics 216 (2000) 221-233.
[7] Z. Li, F. Hall, C. Eschenbach, On the period and base of a sign pattern matrix, Linear Algebra Appl. 212/213 (1994) 101-120.
[8] Z. Li, F. Hall, J. L. Stuart, Irreducible powerful ray pattern matrices, Linear Algebra Appl. 342 (2002) 47-58.
[9] Z. Li, F. Hall, J. L. Stuart, Reducible powerful ray pattern matrices, Linear Algebra Appl. 339 (2005), 125-140.
[10] J. J. McDonald, D. D. Olesky, M. J. Tsatsomeros, and P. van den Driessche, Ray Patterns of Matrices and Nonsingularity, Linear Algebra Appl. 267 (1997) 359-373.
[11] F. S. Robert, Discrete Mathematical Models with Applications to Social, Biological, and Environmental Problems, Prentice-Hall, 1976.
[12] J-Y Shao and Y Liu, The inverse problems of the determinantal regions of a ray pattern and complex sign pattern matrices, Linear Algebra Appl. 416 (2006), no. 2-3, 835-843.
[13] J. Stuart, Reducible sign k-potent sign pattern matices, Linear Algebra Appl. 294 (1999) 197-211.
[14] J. Stuart, Reducible pattern k-potent ray pattern matrices, Linear Algebra Appl. 362 (2003) 87-99
[15] J. L. Stuart, L. Beasley, B. Shader, Irreducible, pattern k-potent ray pattern matices, Linear Algebra Appl. 346 (2002) 261-271.
[16] J. Stuart, C. Eschenbach, S. Kirkland, Irreducible sign k-potent sign pattern matices,Linear Algebra Appl. 294 (1999) 85-92.
[17] B. S. Tam, On matrices with cyclic structure,Linear Algebra Appl. 302/303 (1999) 377-410.

