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EQUALIZATION AND CODING FOR THE TWO-DIMENSIONAL

INTERSYMBOL INTERFERENCE CHANNEL

Abstract

by Taikun Cheng, Ph.D.
Washington State University

December 2007

Chair: Benjamin Belzer

This dissertation addresses the problems of detection and error correction for binary

data corrupted by two-dimensional (2D) intersymbol interference (ISI) and additive white

Gaussian noise (AWGN). The 2D-ISI channel occurs in proposednext-generation optical

disk systems and holographic storage systems, which store data in 2D pages, and are subject

to 2D-ISI at high data densities.

This dissertation presents a novel iterative row-column soft decision feedback algo-

rithm (IRCSDFA) which exchanges weighted soft information between row and column

maximum-a-posteriori (MAP) detectors. Each MAP detector exploits soft-decision feed-

back from previously processed rows or columns. The new algorithm gains about 0.3 dB

over the previously best published results for the2×2 averaging mask. For a non-separable

3 × 3 mask, the IRCSDFA gains 0.8 dB over a previous soft-input/soft-output iterative al-

gorithm which decomposes the 2D convolution into 1D row and column operations. This

dissertation also shows how to adapt the IRCSDFA for non-equiprobable binary sources.

And this dissertation proposes an approach to optimize the iteration schedule inside the
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IRCSDFA by using EXIT charts.

This dissertation addresses the error floor problem of low-density parity check (LDPC)

codes on the binary-input AWGN channel, by constructing a serially concatenated code

consisting of two systematic irregular repeat-accumulate(IRA) component codes con-

nected by an interleaver. The interleaver is designed to prevent stopping-set error events

in one of the IRA codes from propagating into those of the other code. Simulations with

two 128-bit rate 0.707 IRA component codes show that the proposed architecture achieves

a much lower error floor at higher SNRs, compared to a 16384-bit rate 1/2 IRA code, but

incurs an SNR penalty of about 2 dB at low to medium SNRs. Experiments indicate that

the SNR penalty can be reduced at larger blocklengths.

This dissertation also demonstrates an iterative joint detection/decoding scheme for the

2D ISI channel by employing IRCSDFA and LDPC codes. Simulation results show that

about1/3 of the gain achieved by IRCSDFA over the previous best equalization algorithm

is retained when the two equalizers are combined with LDPC codes.
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Chapter 1

Introduction

Fast growing information technologies such as high-speed internet, ultra wideband commu-

nication, and multi-media applications need to exchange and save huge amounts of digital

information. Traditional data storage systems read/writedata on a disk or tape along one

dimensional tracks spaced sufficiently far apart to avoid inter-track interference. Even third

generation optical disk storage systems (e.g., the BlueRaystandard) also are still based on

1D tracks. Some recently proposed systems, such as the "TwoDos" project sponsored by

Phillips [1], aim to achieve densities at least two times greater than BlueRay, and data rates

at least ten times greater than BlueRay, by decreasing the inter-track spacing and reading

the data from many (typically, 10 or more) tracks simultaneously. Decreased inter-track

spacing causes inter-track interference when reading the disk. The inter-track interference,

plus the intra-track interference between same-track bits, can be modeled as two dimen-

sional ISI.

The emerging technology of holographic storage (HS) aims toachieve densities more
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than thirty times that of BlueRay by encoding bits as laser interference patterns in light-

sensitive disks [2]. The disks store bits in layers of (approximately square) 2D pages, with

typically millions of bits on a page. Future HS systems may even suffer from inter-page

interference, leading to 3D-ISI.

Without effective equalization, 2D and 3D ISI will cause unacceptablely high bit error

rates (BERs) in proposed next-generation optical and magnetic storage systems. Multi-

dimensional ISI equalization is thus a key enabling technology for such systems.

To achieve a very low BER on the data storage systems (typically 10−12 − −10−15),

error correction coding (ECC) is always used together with theequalizer. The low density

parity check (LDPC) codes, with their near-capacity performance in the waterfall region of

the BER vs. SNR curve, have been the subject of much recent research, and are of interest

for next-generation data storage systems.

This dissertation proposes a 2D equalization approach and anovel serial concatenated

LDPC coding structure with low error floor. The performance of combined 2D-ISI equal-

ization and LDPC coding is also studied.
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1.1 System Model and Background of 2D ISI Equalization

An M ×N binary 2D data setf with elementsf(m,n) ∈ {−1, 1} corrupted by 2D ISI and

AWGN can be modeled as received data setr with elements

r(m,n) =
∑

k

∑

l

h(k, l)f(m − k, n − l) + w(m,n), (1.1)

whereh(k, l) is a finite-impulse-response 2D blurring mask, thew(m,n) are zero mean

independent and identically distributed (i. i. d.) Gaussian random variables (r. v. s) with

varianceσ2
w, and the double sum is computed over the mask support regionSh = {(k, l) :

h(k, l) 6= 0}. It is assumed that a boundary of−1 elements surrounds the data set. In the

following, we refer to 2D data set as “images,” and their elements as “pixels.”

Direct maximum likelihood (ML) detection off(m,n) from r(m,n) requires compar-

ison of r(m,n) with 2N2
candidate transmitted images, and is therefore impractical for

typical image dimensions ofN ≥ 128. The standard Wiener filtering solution is signifi-

cantly inferior to ML detection, especially at high SNR. Hence, it is desirable to develop

a low-complexity 2D detection algorithm that achieves or approximates the performance

of 2D ML detection. For one dimensional signals, the Viterbialgorithm provides an effi-

cient method for ML detection of ISI-corrupted data [7]. Unfortunately the VA does not

generalize to two or higher dimensions. For 2D ISI, issues ofscan-order, adjacency, and

causality must be considered in construction of the trellis, and the mapping between in-

put pixel sequences and trellis paths is not always one-to-one. However, union bounds on
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the performance of 2D ML detection have been developed in [10]; these ML bounds are

tight at high SNR, and are useful in assessing the performance of sub-optimal 2D detection

algorithms.

A number of 2D decision-feedback VA (DFVA) algorithms have been constructed,

based on a row-by-row raster scan ordering of the image pixels (e.g. [3, 4, 11]); the best

of these ([4],[11]) attain or approximate the performance of ML detection at high SNR by

using hard decisions in a fixed number of previously decoded rows. Performance tends

to be mask dependent. For example, the algorithm in [11], when applied to binary im-

ages corrupted by ISI from the3 × 3 averaging mask, achieves a bit error rate (BER) of

about3 × 10−4 at an SNR about 3 dB higher than the ML bound curve, yet attainsML

performance when the ISI is due to a length-five horizontal averaging mask.

To our knowledge, [11] employed the first iterative algorithm for 2D ISI reduction; the

DFVA was run on rows and columns, and bits which agreed in bothdirections were fixed

for subsequent iterations. This scheme effectively exchanged hard decisions between row

and column DFVAs. Subsequent work has employed the turbo principle (after turbo cod-

ing [33]); i.e., detection reliability can be greatly improved by exchanging soft estimates

of the detected bits between two or more estimators. In [15],the 2D convolution operation

is decomposed into two 1D computations, and an iterative decoding algorithm exchanges

soft information between SISO detectors corresponding to each 1D operation; decision

feedback is not necessary under this approach. In [9], mask separability is exploited to

construct an interactive row-column detector for LDPC coded binary images, in which ex-
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trinsic information is exchanged between a non-binary column SISO detector, a binary row

detector, and a LDPC decoder. In [16, 17], soft information is exchanged between MAP

detectors operating on multiple rows and multiple columns;this scheme avoids decision

feedback by making decisions on multiple rows/columns, rather then one row/column at a

time, and also handles non-separable masks.

Generalized belief propagation (GBP) is developed for 2D ISI equalization and related

problems in [5, 6]. GBP uses exact inference over the sub-region of the image covered by

the ISI mask, and then passes messages between adjacent sub-regions. GBP works well,

but (in [5]) has been demonstrated only on small (20 × 20 or smaller) images; such cases

are easy to handle for 2D equalizers because the nearby boundary conditions greatly aid

the estimation. Also, [5] only considers ISI masks where theamplitude ratio between the

bit being estimated and the ISI bit is greater than one, whereas other publications consider

more challenging masks (e.g., them × m averaging maskh(k, l) = 1/m2).

The computational complexities of the equalizers discussed in this dissertation are lin-

ear in the total number of image pixelsM × N , but exponential in the mask size. This

complexity is typical of the above-mentioned equalizers, except for GBP, which appears to

have somewhat higher complexity because messages are passed to and from all four sides

of a sub-region, instead of along a trellis defined by a singlescan direction. The other

exception is the separable algorithm of [9], which has computational complexity that is

exponential in the square root of the mask size. However, thealgorithm of [9] can be used

only with separable masks.
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1.2 Background on LDPC Coding

Low density parity check (LDPC) codes, introduced by Gallager in the early 1960s [27],

have received great interest since researchers in the late 1990s and early 2000s ([28, 30, 31])

showed that they can perform within less than 0.1dB of the Shannon limit for a number of

important communication channels, including the binary erasure channel and the binary-

input AWGN channel. However, for the above-cited codes, near-capacity performance

typically holds only above bit error rates (BERs) of10−5 or 10−6; at lower BERs, the

nearly vertical (and highly negative) slope of the BER vs. SNR curve levels off into an

“error floor” with a smaller magnitude slope.

As there are several important applications that require BERs of10−12 or lower (e.g.,

mass storage, broadband satellite communications), a number of recent publications have

proposed LDPCs specially designed to reduce the error floor. IRA codes, introduced in

[25] by Jin, Khandekar, and McEliece, feature a sectionH2 of the parity check matrixH

that contains only weight-two columns (except for one weight-1 column), and consists of

“1”s down the main diagonal and the diagonal just below it. A lemma proved in [32] shows

that if theH2 section contains all the weight two columns ofH, then it helps lower the error

floor becauseH2 contains the maximum number of degree-two variable nodes without a

cycle among them. Extended IRA (e-IRA) codes, introduced in[32], are a generalization

of systematic IRA codes wherein the remaining section (“H1”) of the H matrix assumes a

more general form; design rules for lowering the error floor of e-IRA codes by optimizing
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the degree distributions ofH1 are given in [32]. IRA codes and e-IRA codes have the

low decoding complexity characteristic of LDPC codes, and the low encoding complexity

characteristic of turbo codes [25, 32, 33].

LDPC error floors are caused by connected sets of cycles called “stopping sets” [34].

Codes with larger stopping sets generally have lower error floors. The design technique

in [35] attempts to maximize stopping set size by maximizingthe average number of con-

nections leading outside small cycles, referred to as the ACEdistancedACE; simulations

showed that LDPC codes with largerdACE had lower error floors. More recently, the au-

thors of [36] proposed a method of directly estimating the variable and check nodes in the

smallest stopping sets, along with a code design algorithm to directly maximize the size

of these sets. The design algorithm in [36] resulted in codeswith significantly lower error

floors than those designed according to [35].

1.3 Main Contributions

The primary contribution of this dissertation is a new iterative soft-decision feedback MAP

detection algorithm for reduction (or elimination) of 2D ISI. For the3× 3 averaging mask,

our algorithm achieves about 1.5 dB of SNR improvement over that of [11]. For a more

rapidly decaying3×3 mask, our algorithm achieves about 0.8 dB gain over that of [15]. For

the2×2 averaging mask, the IRCSDFA gains about 0.3 dB over the separable algorithm of

[9] (without coding), the previously best published resultfor that mask. A key innovation
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of our approach is the use ofsoft decision feedback(SDF) from previously processed rows

(or columns) of the image; we believe this is the first application of SDF to the 2D-ISI

problem. (We note, however, that an iterative algorithm with SDF was proposed earlier for

the 1D channel equalization problem [20].)

The EXIT chart, introduced in [21] is a good method to analyzethe convergence prop-

erties of iterative algorithms; EXIT charts have typicallybeen applied to analyze iterative

decoding of error correction codes. In this dissertation, the convergence properties of the

IRCSDFA are analyzed by using EXIT charts. To prevent the IRCSDFA system from con-

verging too fast, we apply a weight schedule to the exchangedsoft information between

the row and column detectors. The design of the weights schedules was mainly based on

repeated simulations in prior work (e.g., [44]), which is not efficient. In this dissertation,

we propose a method to optimize the weight schedules by usingEXIT charts.

Another main contribution of the dissertation is a method for design of serially concate-

nated IRA codes that achieve lower error floors than single IRA codes of equivalent rate

and block size. Two systematic component codes, with block length and rate equal to the

square roots of those of a comparable full-length IRA code, are connected in series, with an

interleaver between them. This architecture is similar to that of turbo product codes [37],

except that, rather than employing the row-column interleaver of product codes, we design

the interleaver to avoid the convergence problems that leadto error floors. We use the

method of [36] to estimate the stopping sets of the componentcodes. Then the stopping set

data is used to design the interleaver so that, as much as possible, stopping set error events
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of one of the component codes are not mapped into stopping setvariable nodes of the other

code. Since each component code has the ability to successfully decode the other code’s

non-convergent blocks, convergence problems are greatly reduced, resulting in a lowered

error floor at high SNR. Because of the IRA component codes, the concatenated system

has relatively low encoding complexity compared to a general irregular LDPC code. The

decoding complexity is about twice that of the comparable full-length IRA code, due to the

need for outer iterations between the component codes.

Based on the algorithms discussed above, we design a concatenated system including

the IRCSDFA and a LDPC code, similar to the turbo equalizationstructure in 1D ISI case

[23]. The simulation results show that the combined IRCSDFA and LDPC system is bet-

ter than the previous best joint equalization/decoding system [9] under the same channel

environment, when identical LDPC codes are used in both systems. In particular, about

one-third of the SNR gain of the IRCSDFA over the separable equalizer employed in [9] is

retained when these equalizers are combined with LDPC codes.

1.4 Dissertation Outline

Chapter 2 introduces the IRCSDF algorithm after a brief reviewof the BCJR algorithm,

and then extends the IRCSDFA from equiprobable source data tonon-equiprobable source

data. Simulation experiments under different conditions,and performance comparisons

with previous approaches are also discussed. Factor graphsof IRCSDFA are presented and
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discussed at the end of this chapter. The material of this chapter was partially presented at

the38th Conference on Information Science and Systems [40] on March 2004,39th Con-

ference on Information Science and Systems [41] on March 2005, 43rd Annual Allerton

Conference on Communication, Computing, and Control [42] on September 2005,44th

Annual Allerton Conference on Communication, Computing, and Control [43] on Septem-

ber 2006, and the journal articles of “IEEE Signal Processing Letters” [44] on July 2007,

“IEEE Transactions on Signal Processing” [46] on Nov. 2007.

Chapter 3 analyzes the convergence properties of IRCSDFA by using EXIT charts.

An iteration and weight schedule optimization method is also proposed. An example of

numerical optimization of the IRCSDFA is given in this chapter.

Chapter 4 describes the serially concatenated IRA code, which can achieve a lower

error floor compared with a single IRA code of the same rate andblock length. The main

steps of this code design are the stopping sets detection of the component codes, and the

interleaver design to separate these stopping sets. The content of this chapter was presented

at the 45th annual Allerton Conference on Communication, Computing, and Control [45],

in September 2007.

The construction and performance of combined IRCSDFA detection and LDPC decod-

ing is presented in chapter 5. The conclusions of this dissertation are given in chapter 6.
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Chapter 2

Iterative Row-Column Soft-Decision Feedback Algorithm (IRCSDFA)

In this chapter, we will introduce a novel Iterative Row-Column Soft-Decision Feedback

Algorithm (IRCSDFA) for the detection of binary 2D source data corrupted by two-dimensional

intersymbol interference (2D ISI) and additive white Gaussian noise (AWGN). The algo-

rithm described in this chapter exchanges soft informationbetween row and column max-

imum a-posterior (MAP) detectors, each detector exploitssoft-decision feedback (SDF)

from previously processed rows or columns. The exchanged soft information, extrinsic in-

formation, is weighted to slow down the iteration convergence and give some performance

improvement.

2.1 IRCSDFA Trellis Definition

We have shown the system model of 2D ISI on the first chapter, here just briefly re-

summarize it for convenience: anM × N binary 2D data setf with elementsf(m,n) ∈

{−1, 1} corrupted by 2D ISI and AWGN can be modeled as received data setr with ele-

11



ments

r(m,n) =
∑

k

∑

l

h(k, l)f(m − k, n − l) + w(m,n), (2.1)

whereh(k, l) is a finite-impulse-response 2D blurring mask, thew(m,n) are zero mean

independent and identically distributed (i. i. d.) Gaussian random variables (r. v. s) with

varianceσ2
w, and the double sum is computed over the mask support regionSh = {(k, l) :

h(k, l) 6= 0}.

The simplest 2D intersymbol interference channel,2×2 mask, is shown in Figure 2.1(a).

The 2D convolution can be viewed as the inner product of the original imagef(m,n) with

the inverted maskh(−k,−l) as shown in Figure 2.1(b), where mask coefficienth00 is at

pixel position(m,n). The binary image pixelsf(m,n) take values−1 or +1. The inverted

mask scans through the image pixelsf(m,n) in the row-by-row and column-by-column

pattern respectively.

�
K���
�

K���K���
�
K��� K���

�

K���K���
�
K���

������������D���������������������������������������������E��
�

Figure 2.1: (a)2 × 2 mask (b)2 × 2 mask inverted for 2D convolution.
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For the row-by row case, we use Miller et. al.’s method [11] todefine the IRCSDFA

trellis construction as shown in Figure 2.2: the 4-state trellis has 4 branches entering and

leaving each state resulting in a fully connected structure. At each position(m,n) the trellis

branch output is a vector consisting of two2× 2 inner products between the inverted mask

and the pixel values defined by the trellis; the upper inner product, namedx(m,n), uses

the feedback pixels and the lower one, namedx(m + 1, n), just uses received pixels. The

branch metric is the squared Euclidean distance between thebranch output and the real

received pixel vector [r(m,n), r(m + 1, n)]:

[r(m,n) − x(m,n)]2 + [r(m + 1, n) − x(m + 1, n)]2. (2.2)

The column-by-column case is similar to the row-by-row case.

Trellis generation for the3 × 3 mask on themth image row is initiated by placing the

input marked(m,n) in Fig. 2.3 at the left end of the row, where the initial valuesof the six

state pixels are−1 due to the boundary conditions, and the vector of three inputpixels can

take eight different values. The entire state/input block is then shifted right to pick up the

next three input pixels, and the previous three input pixelsbecome the middle three state

pixels. The trellises for each row are terminated at the right end of the row by extra shifts

into the boundary pixels. For the3 × 3 mask, the 64-state trellis has 8 branches entering

and leaving each state, with no parallel branches. It’s not afully connected trellis like2×2

case. At each position(m,n), the trellis branch output vector consists of three3 × 3 inner
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Figure 2.3:3 × 3 mask trellis structure

products between the inverted mask and the pixel values defined by the trellis; the upper

inner product uses two feedback rows, the middle uses one feedback row, and the lower

uses received pixels only. The branch outputs and metrics are computed similarly to the

2 × 2 mask, but with three3 × 3 inner products rather than 2 because of 2 feedback rows.

We can improve system performance by extending the state andinput blocks shown

in Fig. 2.2 by one or more rows. For the2 × 2 mask, adding one more row gives an 8

state trellis with 8 branches per state, and three (rather than two) inner products per branch

metric. The column-by-column case is similar to the row-by-row case.

As the image pixels are i.i.d., the above-described trellisconstructions impose the

Markov condition that, given the current trellis state, subsequent states and branch out-
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puts are independent of past states or outputs. This Markov condition allows the use of a

modified BCJR [18] algorithm for detection.

2.2 IRCSDF Algorithm Description

Fig. 2.4 shows a block diagram of the algorithm. The basic element is asoft decision

feedback, soft-input soft-output(SDF-SISO) detector. Each SDF-SISO processes received

imager, which is corrupted by 2D-ISI and by AWGN. The SDF-SISOs use a modified

BCJR [18] algorithm, in which soft estimates of branch outputs from earlier trellis stages

are used as SDF to aide computation of the current pixel’s log-likelihood ratio (LLR).

 

Row-by-Row 
SDF SISO 

Column-by-Column 
SDF SISO 

r  r  

2

~

L

1

~

L  

~

fw 

w 

Figure 2.4: IRCSDFA block diagram

The row and column SDF-SISOs exchange weighted soft information. The SDF-SISOs

assume that their decision feedback is correct, but in fact it contains errors. Decision feed-
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back errors cause error propagation; an example is shown in Fig. 2.5(d), which shows the

error map from a Monte-Carlo simulation of the IRCSDFA on the i.i.d. binary source im-

age shown in Fig. 2.5(a). When the information weightsw are set to one (the non-weighted

case), the algorithm converges in two to three iterations. By employing the weight schedule

w = 0.008 × (3 × k2 + 1), wherek, 1 ≤ k ≤ 6, is the iteration number, we slowed the

convergence of the algorithm to six iterations, at all SNRs tested. (SNR gains from two ad-

ditional iterations were limited to at most 0.01 dB, and theyoccurred at low SNR.) For the

2 × 2 averaging mask at high SNR, we observed that this weight schedule gave us an SNR

gain of about 0.5 dB over the non-weighted case, at a bit errorrate (BER) of2×10−5. (This

particular weight schedule was arrived at experimentally after a non-exhaustive search, and

must therefore be considered sub-optimal.)

A theoretical analysis of the weight schedule and its optimization by using EXIT chart

will be discussed in chapter3. Based on observations, we hypothesize that decision feed-

back errors make the output LLRs larger than their true values, and that the weights move

the LLRs closer to their true reliabilities, thereby preventing the algorithm from converging

too quickly.

2.2.1 BCJR Algorithm Review

The BCJR algorithm is an algorithm for maximum a posteriori (MAP) decoding of error

correcting codes defined on trellises. The algorithm is named after its inventors: Bahl,

Cocke, Jelinek and Raviv [18]. This algorithm is critical to modern iteratively-decoded
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error-correcting codes such as turbo codes.

Standard BCJR algorithm works as following: suppose we received a signal sequence

RN
1 from channel with lengthN , to decode thekth bit, dk, 1 ≤ k ≤ N , we can define the

log-likelihood ratio (LLR) ofdk as:

LLR(dk) = log

(
p(dk = +1|RN

1 )

p(dk = −1|RN
1 )

)
(2.3)

where

p(dk = i|RN
1 ) =

p(dk = i, RN
1 )

p(RN
1 )

, i ∈ {−1, +1}.

p(dk = i, RN
1 ) could be written as:

p(dk = i, RN
1 ) =

∑

s

∑

s′

p(dk = i, Sk = s, Sk−1 = s′, RN
1 ), (2.4)

s ands′ are the states of the trellis. SinceRN
1 are Markov, by using Bayes’ rule, we can
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have

p(dk = i, Sk = s, Sk−1 = s′, RN
1 )

= p(RN
k+1|Sk = s, Sk−1 = s′, Rk−1

1 , Rk, dk = i) · p(Sk = s, Sk−1 = s′, Rk−1
1 , Rk, dk = i)

= p(RN
k+1|Sk = s, Sk−1 = s′, Rk−1

1 , Rk, dk = i) · p(Sk = s,Rk, dk = i|Sk−1 = s′, Rk−1
1 )

· p(Sk−1 = s′, Rk−1
1 )

= p(RN
k+1|Sk = s) · p(Sk = s,Rk, dk = i|Sk−1 = s′) · p(Sk−1 = s′, Rk−1

1 ).

(2.5)

So, by defining

αk(s) = p(Sk = s,Rk
1)

βk(s) = p(RN
k+1|Sk = s)

γi
k(Rk, s

′, s) = p(dk = i, Sk = s,Rk|Sk−1 = s′),

(2.6)

and

λk
i (s) =

∑

s′

αk−1(s
′) · γi

k(Rk, s
′, s) · βk(s), (2.7)

we can calculate the LLR as

LLR(dk) = log

(∑
s λk

+1(s)∑
s λk

−1(s)

)
(2.8)
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The values ofαk(s) andβk(s) could be updated by following equations:

αk(s) =
∑

s′

∑

i

γi
k(Rk, s

′, s)αk−1(s
′)

βk(s) =
∑

s′

∑

i

γi
k(Rk+1, s, s

′)βk+1(s
′),

(2.9)

the initial values ofα andβ are

α0(0) = 1 α0(s) = 0 if s 6= 0;

and

βN(0) = 1 βN(s) = 0 if s 6= 0.

2.2.2 IRCSDF Algorithm

IRCSDFA is a modified BCJR algorithm, the key modification is theSDF branch output

calculation: computing LLRs for inner products between themask and candidate binary

estimateŝf(m,n) of the image pixels. To illustrate the SDF LLR calculation onrow scans,

without losing generality, assume the3 × 3 averaging maskhkl = 1/9 is used to compute

the convolution

c(m,n) =
2∑

k=0

2∑

l=0

f̂(m − k, n − l)/9.
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For pixel(m,n) at thekth trellis stage,k ∈ {0, 1, . . . , N}, the corresponding received pixel

vector is

r = [r(m,n), r(m + 1, n), r(m + 2, n)],

and the input vector is

f̂ = [f̂(m,n), f̂(m + 1, n), f̂(m + 2, n)],

as shown in Fig. 2.3. To simplify, let

yk = [yk0, yk1, yk2] = r,

and

u = [uk0, uk1, uk2] = f̂ .

The LLR is

Li(k) = log

(
P (uk0 = +1|yk, ũi)

P (uk0 = −1|yk, ũi)

)
, (2.10)

where ũi is the extrinsic estimate ofu passed to detectori, i ∈ {1, 2}, from the other

detector. Detectori’s extrinsic LLR input is

L̃i(k) = log

(
P (uk0 = +1|ũi)

P (uk0 = −1|ũi)

)
,
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and the extrinsic LLR output to the next detector is

L̃next(i)(k) = Li(k) − L̃i(k),

wherenext(1) = 2, next(2) = 1. By using the input extrinsic information, we can compute

the conditional probability of the input pixel:

P (uk0 = +1|ũi) =
eL̃i(k)

1 + eL̃i(k)

P (uk0 = −1|ũi) =
1

1 + eL̃i(k)
.

(2.11)

Given trellis stateSk, input vectoru, and received vectoryk, define

λi

k(s) = P (uk = i, Sk = s,yk),

wherei = [i0, . . . , inb
], im ∈ {−1, +1}, andnb is the number of input bits per trellis stage.

We can then compute thea posteriori

P (uk = i|yk) =
∑

s

λi
k(s)/P (yk). (2.12)
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as in [18], by setting

αk(s) = P (Sk = s, yk)

βk(s) = P (yk+1|Sk = s)

γi(yk, s′, s) = P (uk = i, Sk = s, yk, ũN
1 |Sk−1 = s′),

(2.13)

whereyk, uk, i, ũN
1 are vectors because there are more than one row in the trellis, The SDF

output LLRs can be incorporated into the pixel transition probabilitiesγi(yk, s
′, s). The

modifiedγ is the product of a modified conditional channel PDFp′(·), trellis transition

probabilities, and extrinsic information from the other detector:

γi(yk, s
′, s) = p′(yk|u = i, Sk = s, Sk−1 = s′)

× P (u = i|s, s′) × P (s|s′) × P (ũ|u = i).

(2.14)

For the given statess′, s and inputu, P (u = i|s, s′) is 0 or 1 andP (Sk = s|Sk−1 = s′) is

2−nb based on the trellis. The extrinsic information can be computed as:

P (ũ|u = i) =
P (u = i|ũ)P (ũ)

P (u = i)
, (2.15)

whereP (u = i|ũ) comes from (2.11), andP (ũ) = P (u) = 2−nb .

The modified channel PDF sums over the values of inner products csdf associated with
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state transitions′ → s that are affected by past decisions:

p′(yk|u = i, Sk = s, Sk−1 = s′) = P
(
yk2|uk0, uk1, uk2, s, s

′
)

×
[∑

Ω2

P (Ω2)P
(
yk1|uk0, uk1, s, s

′, csdf2(Ω2), Ω2

)

×
∑

Ω1

P (Ω1)P
(
yk0|uk0 , s, s

′, csdf1(Ω1, Ω2), Ω1, Ω2

)]
(2.16)

whereΩ denotes feedback rows, inner productcsdfj(Ω) depends on the feedback pixels,

and the row probabilities

P (Ωj = ωj0, ωj1, ωj2) =
2∏

l=0

P (ωjl),

whereP (ωjl) are feedback pixel probabilities. For the3 × 3 averaging-mask ISI channel,

inner productscsdf1(Ω1, Ω2) and csdf2(Ω2) are nine-pixel averages of the pixels labeled

“inner product 1” and “inner product 2” in the3 × 3 mask of Fig. 2.3. TheP (ωjl) are

computed by using feedback LLRs from previously processed rows (or columns) during

the current iteration. Since the original image is subject to AWGN, the

p′(yk|u = i, Sk = s, Sk−1 = s′, csdfj(Ω))

are normal PDFs with meanscsdfj(Ω) and variancesσ2
w.

Since we have vector inputs and received pixels, to estimatethe pixel located on(m,n),
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we sum theλs over(m + 1, n) and(m + 2, n):

λi0
k (s) =

∑

i1,i2

λi0,i1,i2
k (s). (2.17)

The pixel LLR is computed as:

L(k) = log




∑
s λi0=+1

k (s)
∑

s λi0=−1
k (s)


 . (2.18)

If L(k) > 0, we decide that pixel(m,n) is +1; otherwise, it is detected as−1.

2.3 IRCSDFA for Non-Equiprobable Sources

We can modify IRCSDF to estimate the non-equiprobable sourcedata blurred by 2D ISI.

If we define theλi
k(s) and LLRs as in equiprobable case, equations (2.13) and (2.14) still

hold. The difference is theγ calculating:P (Sk = s|Sk−1 = s′) in equation (2.14) will

have different values for different given states values, i.e., the transition probability froms

to s′ is different.

By finishing the non-equiprobable modification, IRCSDFA could be applied to any

source data such as the correlated image. On this case, the source image need to be inter-

leaved before being passed through the 2D ISI channel because we assume the source data

are i.i.d. in IRCSDFA. The corresponding work could be found on [43].
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2.4 IRCSDFA Simulation Results

In this section, we present Monte Carlo simulation results for the IRCSDFA on the random

binary imagef(m,n) with pixel alphabet{−1, +1}. The plots in this section show the bit

error rate (BER) of the estimated binary input image, versussignal noise ratio (SNR). The

SNR is defined as in [11]:

SNR= 10 log10

(
var[f ∗ h] /σ2

w

)
, (2.19)

where∗ denotes 2D convolution, ,σ2
w is the variance of the Gaussian r.v.sw(m,n) in (2.1).

To compute received imager(m,n), we assume a boundary of−1 pixels around the origi-

nal imagef(m,n); the receiver uses this known boundary condition to simplify the trellis

at image edge pixels.

Fig. 2.6 shows IRCSDFA simulation results on a random128 × 128 binary image

blurred by the2 × 2 averaging mask and AWGN. We plot results using two, three, and

four rows in the2 × 2 trellis state and input block of Fig. 2.3, which shows the basic two-

row case. The maximum likelihood estimator (MLE) union upper bound of [10] is also

plotted. In addition, we plot results for the row-by-row MAPwith SDF (but without col-

umn extrinsic information), and iterative row-column MAP with extrinsic LLR exchange

but with HDF (rather than SDF) on past rows (IRCHDF); these additional results are based

on the basic (2 row) trellis definition. Plots marked “Opt. Weights” use the six-iteration

weight schedule given in chapter 4; plots marked “Unit Weights” fix the weights at 1.0.
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at BER2 × 10−5

4 trellis rows IRCSDFA with opt. weights 0.6 dB
3 trellis rows IRCSDFA with opt. weights 0.6 dB
seperable algorithm of [9] 0.9 dB
2 trellis rows IRCSDFA with opt. weights 1.1 dB
3 trellis rows IRCSDFA with unit weights 1.2 dB
2 trellis rows IRCSDFA with unit weights 1.7 dB
2 trellis rows IRCHDFA with opt. weights 2.0 dB
2 trellis rows row-by-row SDF 2.5 dB

Table 2.1: SNR gap to the ML upper bound for2 × 2 averaging mask

At high SNR, row-column iteration (with the weight schedule) gives about 1.5 dB SNR

gain over the rows-only method. Row-column SDF gives high-SNR gains of about 1 dB

over row-column HDF. The three-row IRCSDFA gives about 0.5 dBgain over the two-row

algorithm at high SNR. The four-row IRCSDFA performs as well as the three-row at high

SNR, and offers gains of up to 0.3 dB at lower SNRs. Additionalstate/input rows allow the

algorithm to correct larger error patterns, which occur more frequently at low SNR. The

SNR gaps between the ML upper bound and different algorithmsat BER2×10−5 are listed

in Table 2.1.

For comparison, we plot simulation results for the separable algorithm of [9]. (Because

[9] reports results only for one iteration of the separable equalization algorithm without

LDPC coding, we implemented the equalization algorithm andtested its multi-iteration

performance. We found that two iterations of the separable algorithm achieve almost all

available performance gain, so two iterations are used in all separable-algorithm results pre-
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sented here.) At a BER of about1× 10−5, the 3-row IRCSDFA achieves about 0.3 dB gain

over the separable algorithm; at a BER of6 × 10−6, the 3-row IRCSDFA performs within

about 0.6 dB of the ML bound. Another advantage of the IRCSDFA is it works for general

2D masks, whereas the separable algorithm must use the closest separable approximation

to a non-separable mask, which leads to an error floor in many cases.

We also compare to recent results by Marrow and Wolf [16, 17].These results use

the2 × 2 mask with first row1, α and second rowα, 0, whereα varies between 0 and 1.

The Marrow-Wolf (M-W) algorithm reported in [16, 17] also employs row/column MAP

decoding with soft information exchange, and their trellis(like our two-row version in

Fig. 2.3) is fully connected with 4 states and 4 branches/state. Marrow-Wolf intentionally

avoid decision feedback by estimating two rows, rather thanone row at a time. Based

on a comparison of Fig. 2.7, which is the result of 2-row IRCSDFA with unit weight, to

a corresponding figure in [17] (the zoom-in graph forα = 0.7 is also presented in [17],

both results use5 × 5 binary input images cause [17] just presents the result for such a

simple experiment.),we believe the two-row version of our algorithm with unit weights is

essentially equivalent to the2×2 mask M-W algorithm. In Fig. 2.6, the two-row IRCSDFA

with unit weights is about 1 dB worse than the three-row curvewith optimized weights

at BER2 × 10−5; hence, we believe our optimized algorithm’s performance is about 1

dB better than the M-W algorithm, for the2 × 2 averaging mask. The IRCSDFA in this

dissertation, while similar to that of [16], was developed independently, and has several key

differences. First, we make decisions one row at a time and use SDF, rather than making
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decisions two or more rows at a time and using “feed-forward”[16]. Second, we weight the

extrinsic information passed between SISOs, and increase the weights with each iteration;

the weight schedule significantly improves the algorithm’sperformance. Third, we achieve

additional gains by adding rows (respectively, columns) tothe state and input pixel blocks

of the row (column) SISOs. And fourth, we demonstrate performance with both2 × 2 and

3 × 3 masks on128 × 128 and64 × 64 images, whereas the maximum source image size

considered in [16, 17] is5 × 5.

The improved performance of the three- and four-row IRCSDFAscomes at a complex-

ity cost relative to the two-row version, and relative to theseparable algorithm of [9]. The

number of operations per pixel for the two, three, and four row IRCSDFAs, and the separa-

ble algorithm, are as follows: add/subtract, 423, 1935, 8735, and 480; multiply/divide, 742,

3398, 15366, and 943; exp/log, 87, 391, 1543, and 75. We note that the two-row IRCSDFA

complexity is roughly equal to that of the separable algorithm.

Fig. 2.8 shows IRCSDFA simulation results on a random64× 64 binary image blurred

by the3 × 3 averaging mask (hij = 1/9, (i, j) ∈ {0, 1, 2}) and AWGN; here we use the

three-row trellis definition shown in Fig. 2.3. The MLE upperbound for this mask is also

plotted. We also plot simulation results of the iterative row-column hard-decision feedback

algorithm. The IRCHDF and IRCSDF results shown in Fig. 2.8 wererun with the weight

schedule described in chapter 4. At high SNR, the IRCSDFA requires about 1.2 dB more

SNR than the MLE. By comparison, an earlier iterative algorithm by Miller et. al. [11] is

about 3 dB away from the ML bound. Also, by comparing to the2 × 2 averaging mask
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case, we can say that more feedback rows result in a larger SNRgain due to SDF.

We also simulate a random128×128 image blurred by the3×3 mask (named Channel

B) defined by Chen and Chugg in [15]:h(0, 0) = h(0, 2) = h(2, 0) = h(2, 2) = 0.0993;

h(0, 1) = h(1, 0) = h(1, 2) = h(2, 1) = 0.352; h(1, 1) = 1. The results are shown in

Fig. 2.9. (Chen and Chugg’s original curve in [15] has been left-shifted by 3 dB, to account

for differing SNR definitions.) The IRCSDFA gives about 0.8 dBof gain compared to [15];

also, Chen-Chugg’s curve diverges from the ML bound, whereas the IRCSDFA is parallel

to it.

Fig. 2.10 shows the performance of the Non-equal-probal IRCSDFA for different source

pixel distribution,P (+1) = 0.7, P (+1) = 0.9 andP (+1) = 0.99, blurred by the2 × 2

mask. We also simulated the original equal-probal IRCSDF forthese 3 sources for com-

paring. We can see from the figure, the higher the difference between the probabilities

of the binary source, the bigger gain the modified IRCSDFA could give us. This is very

helpful to restore some non-uniform source such as correlated data cause most of them are

non-equal-probal.

2.5 Factor Graphs of IRCSDFA

As a modified BCJR algorithm, this proposed IRCSDFA could be analyzed by using factor

graphs. Following the steps in section IV of [19], we plottedthe factor graphs of the

IRCSDFA in Fig. 2.11. For comparison, we also plotted the factor graphs of the separable
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algorithm of [9] in Fig. 2.12. All these factor graphs are based on an example: restoring

the4 × 4 source data blurred by the2 × 2 mask.

In Fig. 2.11 we can see, there is no cycle inside the Row or Column SISO detector; the

shortest length of the cycle between these two detectors is4m + 6, wherem = N + 1 is

the number of stages of the detector trellis for aN ×N source data block. Therefore, even

for a very small size source block, there is no short cycle in IRCSDFA. For the separable

algorithm of [9] in Fig. 2.12, we can see there are some cyclesinside its sub-detectors,

and that the shortest cycle length is2m + 2. For a general source block size, we can still

say there are no short cycles in the separable algorithm. Theexample shortest cycles of

IRCSDFA and separable algorithm are marketed by red lines in Fig. 2.11 and Fig. 2.12

respectively.
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Figure 2.5: (a) Source image; (b) Source with 2D ISI and noise; (c) error image from hard
decoding of image (b) (white pixels are errors, black are correct); (d) error image from
IRCSDFA algorithm.
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Figure 2.6: Simulation results for128× 128 binary input image and2× 2 averaging mask.
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Figure 2.8: Simulation results for3 × 3 averaging mask.
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Figure 2.9: Simulation results for channel B.
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Figure 2.10: Simulation results for Non-equal-probal IRCSDFA.
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Chapter 3

Analyzing And Optimizing IRCSDFA by Using EXIT Chart

We can analyze the convergence properties of IRCSDFA by usingthe EXIT chart as in

[21], since IRCSDFA also has a similar iterative structure. The EXIT charts also help to

optimize the weights between row and column detectors during the iterations.

3.1 The Probability Distribution of The Extrinsic Information

The input information to the detectors of IRCSDFA are independent Gaussian random vari-

ables; as mentioned in [22], the output can be tightly approximated by a Gaussian random

variable. Also, when the iteration number increases, thepdf of the extrinsic information

should be more and more Gaussian (observed in [24]). We did the same experiment and

observed that thepdf of the extrinsic information output by the row/column detector is well

approximated by a Gaussianpdf , especially after several iterations.

Similar to [21], we derived the relationship between the mean and variance of the LLR

for the IRCSDFA system. To simplify, all the derivations are based on the2 × 2 ISI chan-
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nel. Suppose we want to estimate the pixel on{m,n}. The received signal from the 2D

ISI+AWGN channel on this position isy = z + n, wheren is the zero mean Gaussian ran-

dom variable with varianceσ2
n, andz is the 2-D convolution between the original pixels and

the 2D ISI channel, which can be expressed as the inner product of the pixelx0, x1, x2, x3

and maskf0, f1, f2, f3:

z = x0 · f0 + x1 · f1 + x2 · f2 + x3 · f3. (3.1)

The original pixel we want to estimate isx3. Givenx3 = x, x ∈ {+1,−1}, the conditional

probability density function (pdf) can be written as:

p(y|x3 = x) =
e
−

(y−z)2

2σ2
n

√
2πσn

. (3.2)

The correspondingL-values extrinsic information LLR are calculated as:

LLR = ln
p(y|x3 = +1)

p(y|x3 = −1)
, (3.3)
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which can be simplified to:

LLR = ln
(
e
−

(y−z(+1))2−(y−z(−1))2√
2πσn

)

=
2[z(+1) − z(−1)] · y + [z(+1)2 − z(−1)2]√

2πσn

=
2yf3 − 2f3 · (x0f0 + x1f1 + x2f2)

σ2
n

=
2f3 · (x3f3 + n)

σ2
n

(3.4)

wherez(+1), z(−1) represent the inner products given the conditions thatx3 is +1 or -1.

Therefore, we can write LLR as:LLR = µL ·x3 +nL, with µL =
2f2

3

σ2
n

, andnL being a zero

mean Gaussian r.v. with varianceσ2
L =

4f2
3

σ2
n

. Thus,µL =
σ2

L

2
.

Based on these conclusions, we derived the mutual information between extrinsic in-

formation and the source pixel, which has the same form as theequation (19) in [21].

What’s more, since we put some weight schedule on the LLR in each detector, we proved

the weights will not change the mutual information. Then, wecan plot the EXIT chart for

IRCSDFA and analyze its properties.

3.2 EXIT Charts of IRCSDFA With Different Trellis Rows

From the simulation results of the2 × 2 mask above, we found including some additional

rows in the trellis can improve the system performance. An EXIT chart analysis shows this

is reasonable.

Fig. 3.1 shows the mutual information between the SISO detector output extrinsic in-
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formation and the signal to be restored (Iout) v.s. the mutual information between the input

LLR and the source signal (Iin). We plotted 2 trellis-rows, 3 rows and 4 rows for channel

SNR from 0 dB to 10 dB with the step of 2 dB. The lower group of lines correspond to

the lower SNR. We can see, at very low SNR, the additional rowsgive very little gain; but

at higher SNRs, additional rows do give some gain, especially the first added row. At the

high SNR level, adding more than one row will not give too muchgain compared to adding

just one row because theIout is already on a high level. This figure is consistent with the

Monte Carlo simulation results we presented before, and it can help us to design the trellis

structure for different SNR range.

3.3 Using EXIT Chart to Design The Weights Schedule

In [21], a method is presented to use EXIT chart to analyze theconvergence properties

of an iterative system. However, we proved the weights will not change theIout for the

SISO detector in the section 3.1. In order to make use of this method, we modified the

EXIT chart: if we think of the connected row detector and column detector as a whole, the

weightw put on the LLR from the row-SISO to the column-SISO is an innerparameter of

this bigger detector. Based on simulation we found this weight w did make theIout from

the column-SISO detector lower by driving the LLR input to the column detector lower.

Therefore we can get different EXIT charts of this bigger detector for different weights,

then by analyzing the convergence behavior we can design a good weight schedule.
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We start from 2 weight schedules,w1 = 0.045(k + 1) andw2 = 0.008(3k2 + 1), where

k is the iteration time. From the Monte Carlo simulation we knoww2 has a better BER

performance thanw1 after 6 iterations at the same SNR level. The EXIT charts ofw1 and

w2 are shown in Fig. 3.2 and Fig. 3.3. Both figures are plotted based on the 3 trellis rows of

the2× 2 mask IRCSDFA at channel SNR 6 dB. As mentioned before, the inner parameter

w will change theIout, so there are 6 groups of the curves corresponding to 6 iterations;

the lower/left curves are for the earlier iterations. The trajectories connect thekth and

(k +1)th lines. Comparing these two figures, we can see at the end of the6th iteration, the

final Iout of w2 is bigger than the one ofw1; that’s whyw2 has a better performance than

w1. Also, during the BER simulation we foundw1 made the system almost converge after

4 iterations whilew2 didn’t converge until 6 iterations. By reading these two figures, we

can see the length of each trajectory in Fig. 3.3 is more uniform than that in Fig. 3.2. The

length of the trajectory represents the volume of the changed mutual information between

the input/output extrinsic information and the source data; the higher the change in mutual

information, the bigger the gain the detector gave during this iteration. Since the system of

w1 made the most change during the first 4 iterations while system w2 didn’t, thew1 system

of course converged faster.

By studying these results, we can propose some rules for weight schedule design:

1. Try to make the endIout as close to the upper limit as possible. This limit can be

found by finding the interception point of 2 symmetric weight1 systems ( such as

the interception point of the solid lines in Fig. 3.2 and Fig.3.3).
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2. Try to make the length of the trajectories as uniform as possible to avoid early con-

verge.

3. Select an appropriate iteration time based on the trade off between the performance

requirement and the detecting speed requirement.

We designed a set of weightsw3 = [0.0001, 0.005, 0.03, 0.06, 0.12, 0.25, 0.4, 0.6, 0.8, 1]

by following these rules. Fig. 3.4 is the EXIT chart on same condition as Fig. 3.2 and

Fig. 3.3. Simulation results show it has a3.45% lower BER thanw1 system and2.31%

lower BER thanw2 system at 6 dB channel SNR.
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Figure 3.1: EXIT chart for2 × 2 mask unit detector in IRCSDFA.
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Chapter 4

Serial Concatenated IRA Codes Design

4.1 Preliminaries of Irregular Repeat-Accumulate (IRA) Codes

IRA codes, introduced in [25] by Jin, Khandekar, and McEliece, are a generalization of

the repeat-accumulate code in [29] that combines many of thefavorable attributes of turbo

codes and LDPC codes. They can be encoded in linear time, liketurbo codes. They are

amenable to an exact Richardson-Urbanke style analysis. The simulation results show the

performance of IRA codes is slightly superior to turbo codesof comparable complexity,

and just as good as the best known irregular LDPC codes.

IRA codes could be described by Tanner graph as shown in Fig. 4.1, wherefi ≥ 0, is

the fraction of nodes with degreei,
∑

i fi = 1; a is a positive integer. The Tanner graph is

a bipartite graph with two kinds of nodes: variable nodes (open circles) and check nodes

(filled circles). There arek variable nodes on the left, called ‘information nodes’; there are

r check nodes andr variable nodes on the right, called parity nodes. The numberr will be
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Figure 4.1: Tanner graph for IRA code with parameters (f2, f3, · · · , fJ ; a).

determined by the following equation:

r =
k

∑
i ifi

a
.

Each information node is connected to a number of check nodes: the fraction of information

nodes connected to exactlyi check nodes isfi. Each check node is connected to exactly

a information nodes. These connections can made in arbitrarypermutation. The check
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nodes are connected to the parity nodes in the simple zigzag pattern shown in the figure.

After deciding the permutation pattern between information nodes and check nodes, the

codeword described by the Tanner graph is also determined: each of the information bits is

associated with one of the information nodes, and each of theparity bits is associated with

one of the parity nodes. On each check node, the mod-2 sum of all connected nodes should

be zero; therefore, the value of a parity bit is determined uniquely. If we mark thera edges

coming out of the permutation box as(v1, v2, · · · , vra), we can use the following recursive

formula to determine the parity bits values:

xj = xj−1 +
a∑

i=1

v(j−1)a+i, (4.1)

wherej = 1, 2, · · · , r andx0 = 0. Thus, the IRA codes can be encoded in linear time. For

the systematic IRA codes, the information bits will be transmitted as a part of the codeword,

and the code rate is

Rsys =
a

a +
∑

i ifi

. (4.2)

Like most LDPC codes, IRA codes can be decoded by using sum-product algorithm as

shown in [38].
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Figure 4.2: Block diagram of the concatenated encoder with systematic IRA component
codes connected by interleaver (denoted byπ).

4.2 Concatenated IRA Encoder and Decoder

A block diagram of the concatenated encoder is shown in Fig. 4.2. It consists of two sys-

tematic IRA component codes connected by an interleaver (denoted byπ). In the following

discussion, we visualize the concatenated system as a product code, with the two encoders

operating on rows and columns. The source data is arranged ina two-dimensional block

of sizeK × K. The rows of the source block are first encoded with the outer[N,K] sys-

tematic IRA code, yielding aK × N coded block in which the firstK elements of each

row are systematic bits. Then theK × N coded block is passed through the interleaver.

The purpose of the interleaver is to minimize the intersection between the stopping set error
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events of the row and column component codes. After the interleaver, eachK-bit column is

encoded with the inner[N,K] systematic IRA code, producing anN ×N codeword block.

The overall code rate isR = K2/N2. The identical variable-node degree distributions of

the two component codes are chosen to optimize their performances in the waterfall region

according to the design algorithm given in [25], subject to the constraint that all weight-2

columns appear in theH2 section of the parity check matrix; the constraint helps lower

the error floors of the component codes. All example codes designed in this paper used a

fixed check node degree of 10. The variable-to-check node connections in the component

codes are optimized using the ACE algorithm of [35], in order to further lower the error

floors. In our examples, the variable-to-check node connections in the component codes

are different, so that the codes have different stopping sets; however, the interleaver design

described in section 4.3 also works if the component codes are identical.

The decoder for the concatenated system employs iterative message passing between

the decoders for the two component codes. The decoder block diagram is shown in Fig. 4.3.

It consists of column and row decoders connected by the interleaver and de-interleaver. The

received channel data is decoded column by column by a standard [N,K] IRA decoder

employing the sum-product algorithm (SPA, [38]) on the code’s Tanner graph; the column

decoder uses the extrinsic information from the row decoderasa priori information. The

column decoder outputs aK × N block of extrinsic information LLRs. The column de-

coder’s output extrinsic information is then passed through the interleaver and used as prior

information by the row decoder. The row decoder makes use of the de-interleaved chan-
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nel information and the prior information to decode the datarow by row, and outputs a

K × N block of LLRs to be used for final decoding decisions, along with aK × N block

of extrinsic LLRs for the column decoder to use during the next iteration.

 

y For decision 

Column 

DEC 

Row 

 DEC 

�  � -1 

LLR 

LLR 

� -1 

Figure 4.3: Block diagram of the concatenated decoder.

4.3 Interleaver Design

The reasons to encode/decode using the structure describedabove rather than using a single

[N2, K2] IRA code are as follows. The performance of an LDPC code at high SNR (i.e.,

in the error floor region) is not determined by the code’s minimum distance, but rather

by sets of interconnected short cycles (called stopping sets) that prevent the decoder from

converging to a valid codeword. If we can design the interleaver to prevent the mapping

of stopping set error events from one of the component codes into stopping set nodes of
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the other code, then the concatenated structure will help improve the performance at high

SNR.

The definition of a stopping set used in this paper is as follows. A variable-node set

is called a stopping set if all its neighbors are connected tothis set at least twice [35].

In LDPC codes at high SNR, error events occur on the smallest stopping sets with higher

probability than on larger stopping sets or non-stopping sets. To simplify, if a variable node

is a part of a stopping set, we call it a sensitive node.

Here is an example of how an error event from one IRA componentcode could propa-

gate into the other one. Suppose variable nodes(6, 9, 25) are sensitive nodes of the column

component code and that errors occur on these positions. Since each column uses the same

component code, errors will occur on these positions on mostcolumns, i.e., at the end of

column decoding, most positions of rows(6, 9, 25) are errors. If we do nothing but directly

input these rows to the row decoder, the outputs will have a large number of errors (perhaps

even larger than the number of input errors) due of the bad prior information. If we pass

the output extrinsic information from the column decoder through an interleaver before it

is fed to the row decoder, the errors will not be concentratedon rows(6, 9, 25) and hence

can be corrected more easily. Therefore, we postulate two interleaver design rules for the

concatenated system:

1. Spread concentrated errors all over the data block.

2. Avoid mapping the sensitive nodes of the row (column) component code into the
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sensitive nodes of the column (row) component code.

The sensitive positions of a component code can be determined experimentally, or by

employing the stopping set detection algorithm of [36]. Fora short length block LDPC

code, sensitive positions can be determined experimentally by Monte Carlo simulation, as

in the following example. The row component code used for oneof the examples in section

4.4 is[181, 128] systematic IRA code. We let the row decoder receive its channel LLRs as

usual, but we artificially set its input extrinsic LLRs to have a fixed amplitude and correct

sign, except for a small number of error positions where the sign is incorrect. By changing

the position of the errors, running a AWGN-channel Monte Carlosimulation at a fixed SNR

for each error position, and then counting the number of decoder output error bits, we find

which positions are sensitive: the more output errors, the more sensitive the corresponding

positions. Fig. 4.4 shows the sensitivity of single positions chosen from all181 variable

nodes. Each artificially introduced single-position errorundergoes a 50-block Monte-Carlo

simulation, where each block is decoded with 10 SPA iterations. From the figure it is clear

that six of the positions are sensitive.

The sensitive positions of a component code can also be determined by employing the

stopping set detection algorithm of [36]. For a given starting variable node, the algorithm

in [36] finds a stopping set containing that node, but does notguarantee that the detected

set is minimal; thus, some relatively less-sensitive nodesmay be included in the set. To

find the most sensitive nodes, we repeatedly run the detection algorithm by starting from

every variable node in the code, and count the accumulated times each node appears in a
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Node Position
Monte Carlo Number of Times
Error Bits in Stopping Set
(max= 39) (max= 110)

18 39 66
52 20 75
97 23 78
109 37 76
113 29 78
132 27 76

Table 4.1: Comparison of sensitivity detection methods.

stopping set; the higher the count, the more sensitive the node. Fig. 4.5 shows the results of

running the algorithm of [36] over the[181, 128] row component IRA code by starting from

each variable node. In Fig. 4.5, the maximum sensitivity count is 181. It is clear from the

figure that some nodes are highly sensitive, and that most of the parity bits (bits 129-181)

have high sensitivity counts.

To compare these two methods for detecting sensitive nodes,we list the top 6 sensitive

nodes detected by the experimental method and the corresponding sensitivity determined

by the method of [36] in the table shown in Table. 4.1. In this table, the first column is the

node positions, the second column is the accumulated outputerrors shown in Fig. 4.4, and

the third column is the sensitivity counts shown in Fig. 4.5.It is evident that sensitive nodes

detected by the experimental method also have high sensitivity counts in the algorithm of

[36].

Based on the above design rules, we design the interleaver bystarting with a random
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interleaver and imposing additional constraints. First, arelatively goodK × N random

interleaver is found by simulation. Then the stopping sets of the row and column com-

ponent codes are detected using the method of [36]. For givensensitive nodesi andj of

the row/column component codesi ∈ {I0, I1, · · · , In} andj ∈ {J0, J1, · · · , Jm}, where

{I0, I1, · · · , In} and{J0, J1, · · · , Jm} are the sensitive nodes of the row and column com-

ponent codes respectively, we modify the random interleaver so that no element in thejth

row before passing through the interleaver is located in theith column after passing through

the interleaver. If the random interleaver maps any elementin row j to columni (the “bad

mapping” condition), then that element is re-mapped to a random position in the output

block, and the element formerly at that random position is mapped into the position of the

element in rowj; this re-mapping continues until either no bad mappings arefound or all

the possible positions in the interleaver have been checked, in which case no interleaver

solution is possible. Since the stopping set detection algorithm yields a large set, we select

only the most sensitive nodes (i.e., the nodes with highest sensitivity counts in a histogram

like that of Fig. 4.5) to design the interleaver at the beginning. Then we increase the number

of selected sensitive nodes step by step until we cannot find asolution for the interleaver.

4.4 Simulation Results

The Monte Carlo simulation results for the proposed concatenated IRA code structure on

the binary-input AWGN channel are shown in Fig. 4.6. In the figure, the right-most curve
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(marked by ’+’ symbols) is the performance of a single IRA component code with source

block lengthK = 128 bits and code rate0.707. The second rightmost curve (marked ’x’)

is the proposed concatenated code with block sizeK2 = 16384, rate0.5, and a random

interleaver; the random interleaver was found by (non-exhaustive) search over a large num-

ber of randomly generated interleavers. The solid line withcircle markers is the same code

structure as the second curve, but uses an interleaver basedon the design rules proposed

in section 4.3; this designed interleaver used the random interleaver of the ’x’ curve as the

design’s starting point. The dashed line with star markers is the BER of a rate 1/2, block

lengthK2 = 65536 concatenated IRA code with optimized interleaver. For comparison,

we also simulated single long block length IRA codes with rate 0.5; the solid line is with

source block length16384 and the dashed line is with source block length65536.

All the single IRA code simulations were run until either a valid codeword was decoded,

or 100 iterations were performed. For both the 16384-bit concatenated curves the decoder

was run for a total of 10 outer iterations between the component codes, and the component

codes were each iterated 10 times per outer iteration. Component decoding (on a given

row or column) was terminated before 10 iterations if a validcodeword was decoded. The

concatenated iteration schedule was determined experimentally, and therefore may not be

optimal. (Further optimization of the iteration schedule using, e.g., EXIT charts [39], will

be the focus of future work.) The complexity of the 16384-bitconcatenated decoder is

thus approximately twice that of the 16384-bit single IRA code, although at higher SNR

the complexity of the concatenated system is relatively higher because termination events

60



for the concatenated code eliminate only single rows or columns from the iteration, not

the entire codeword. The 65535-bit concatenated decoder was run for a total of 10 outer

iterations with 20 inner iterations per outer iteration, soits decoding complexity is about

four times that of the single 65535-bit IRA code.

From the figure it is clear that, although the concatenated 16384-bit IRA code has an

SNR penalty in the waterfall region (about 2.1 dB SNR at BER10−5) compared to the

single 16384-bit IRA code of equivalent rate, it has a much lower error floor. There is a

crossover point between these two codes’ BER curves at a BER of about10−7, and the

BER of the concatenated IRA code decreases much faster than that of the single IRA code

at high SNR. By comparing the 16384-bit concatenated codes’performance with different

interleavers, we see that the proposed interleaver design can achieve significant gains (about

0.7 dB at10−5 and0.3 dB at10−7) over the random interleaver used as the design starting

point, which means the idea of separating the component codes’ stopping sets works.

The K = 128 example component codes are quite short. We conjecture thatwhen

the block length is increased the penalty in the waterfall region will decrease, since the

component IRA codes will asymptotically approach capacityas the block length increases.

This conjecture is partly supported by the smaller SNR penalty (about 1.7 dB at BER

10−5) of the 65536-bit rate-1/2 concatenated code compared to the equivalent-rate 65536-

bit IRA code, although part of the improvement over the 16384-bit codes may be due to

the increased decoder iterations allocated to the 65536-bit concatenated system.
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Figure 4.4: Sensitive positions of a[181, 128] systematic IRA code, determined by Monte-
Carlo simulation of 50 blocks with artificially introduced single-bit extrinsic LLR sign
errors at each possible bit position.
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Chapter 5

Joint Iterative Detection and Decoding for 2D ISI channels

5.1 System Structure

To achieve improved SNR vs. BER performance on the 2D ISI channel, we propose to

investigate coding the source 2D data with a systematic error correction code (ECC) before

it passes through the 2D ISI plus AWGN channel, and estimate itwith an iterative joint

detection/decoding scheme. The whole system structure is shown in Figure 5.1.

For large source data block-sizes, it is well known that LDPCcodes outperform turbo

convolutional codes. Hence, the encoder uses IRA codes [25], a type of LDPC code which

offers low-complexity encoding and decoding, and performswell over a wide range of code

rates.

Pioneering work on systems similar to Fig. 5.1 has been reported in [8, 9], for the

special case of separable masks. These papers consider three different detection-decoding

schemes: (i) message-passing on the combined ISI-channel/LDPC factor-graph; (ii) Wiener

filtering, and (iii) iterative MAP detection by message passing between equalizer and LDPC
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Figure 5.1: System structure of joint iterative detection/decoding for 2D ISI.

SISOs as in Fig. 5.1. Method (i) does not perform as well as either (ii) and (iii), and has

relatively high computational complexity, while Weiner filtering has previously been shown

to be inferior to row-by-row DFVA [12]. System (iii) performs within 1 dB of the coded

system without ISI for a relatively simple2×2 mask, which is very impressive. The scheme

we proposed in this chapter performs better and is not limited to separable masks.

The joint decoding/detection structure shown in Fig. 5.1 actually just gives a general

idea for this kind of application. We have shown in chapter 2 that the IRCSDFA con-

sists of 2 SISO-SDF detectors, one each for rows and columns,and that each detector can

accept softa priori information from outside itself to improve the performance. As the

IRCSDF algorithm is based on decision feedback, the accuracyof the feedback informa-

tion is critical to the whole system; any errors in the feedback can propagate to the next
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set of rows/columns to be processed, and thereby degrade theperformance. Therefore,
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Row Detector 
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�-1 LDPC 
Decoder  � 
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Decoder 

� 

r LLR1 LLR’
1 

LLR2 
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4 

LLR4 

f̂  r 

Figure 5.2: Join iterative detector/decoder structure.

we construct the joint iterative detector/decoder as in Figure 5.2. Here there are still two

SISO-SDF equalizers (row/column), both of which directly process the received informa-

tion r from channel. Each equalizer passes its extrinsic information (represented byLLR)

to the de-interleaver (π−1) and then to the input to the LDPC decoders. There are two

identical LDPC decoders; both of them take soft-input extrinsic information from one of

the equalizers, and then feed their soft outputs back to the other equalizer asa priori in-

formation. After several iterations, the second LDPC decoder outputs the final detection

results.
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5.2 Simulation Results for the Joint Detection/Decoding System

The Monte Carlo simulation results for the iterative joint detection/decoding algorithm

on the random binary imagef(m,n) with pixel alphabet{−1, +1} are presented in this

section. The plots in this section show the bit error rate (BER) of the estimated binary

input image, versus signal noise ratio (SNR). The SNR is defined as in [9]:

SNR= 10 log10

var[f ∗ h]

2Rσ2
w

, (5.1)

where∗ denotes 2D convolution,σ2
w is the variance of the Gaussian r.v.sw(m,n) in (2.1)

andR is the rate of the LDPC code. Similar to the simulation of IRCSDFA, we assume a

boundary of−1 pixels around the original imagef(m,n) which is known by the receiver.

In order to ensure a fair comparison with the system in [9], weuse the exact same

code as [9]: the rate 0.5, original block length 10000 regular (3, 6) LDPC code pro-

posed by MacKay in [28]. The paper [9] only presented resultsfor the separable mask

[10.5; 0.50.25]. In chapter 2, we have mentioned that the IRCSDFA achieves thesame

equalizer performance as the separable algorithm of [9] on this relatively easy mask. After

adding the LDPC code, our joint system also has the same performance as [9] does, for the

mask[1 0.5; 0.5 0.25]. Since the IRCSDFA performs better than the separable equal-

ization algorithm on the2×2 averaging mask channel, we implemented the joint separable

algorithm and LDPC decoder ourselves and then compared its performance with combined

IRCSDFA and LDPC decoding, on the2×2 averaging mask channel. Our implementation

68



of the combined separable equalizer and LDPC decoder matches all the presented results of

[9] under same simulation conditions, so we believe that ourimplementation is equivalent

to that in [9].

Figure 5.3 shows the simulation results of IRCSDFA+LDPC and the separable algo-

rithm+LDPC on the2 × 2 averaging mask channel. The joint IRCSDFA+LDPC algorithm

uses the structure shown in Fig. 5.1; the total iteration times between the SISO-SDF equal-

izers and the LDPC decoders (we call this outer iteration) are 80; for each outer iteration,

there is only one time iteration inside the row/column detector and 10 times iteration in-

side the LDPC decoder for the sum-product algorithm; a scaling factor,w = 0.5 is put

on the extrinsic information from SISO-SDF detectors to LDPC decoders where no weight

is put on the extrinsic information from LDPC decoders to SISO-SDF detectors. For the

separable algorithm+LDPC code, we use the same iteration schedule as in [9]: 10 times

outer iteration, for each outer iteration there are 2 sub-iteration between the column and

row detectors and 50 iterations inside the LDPC decoder; since the output extrinsic infor-

mation of LDPC is 2-ary it will be fed to an additional row detector (just run one time

for each outer iteration) to generate the 4-ary extrinsic information to send to the column

detector. The performance of the LDPC code itself is also included, to provide a baseline

without 2D ISI. It is clear that the proposed approach is better than [9]’s over the entire

SNR range. In particular, at BER1 × 10−5, the gain is about 0.1 dB. Comparing to the 0.3

dB gain achieved by the equalizer only (see Table 2.1), we lose part of equalizer gain after

the equalizer is combined with the LDPC code. The most important difference between
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these two approaches is that the IRCSDFA+LDPC works well for any 2 × 2 ISI channel,

whereas the separable algorithm will introduce an error floor for non-separable channels as

a result of using the best separable approximation to the non-separable mask.
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Chapter 6

Conclusions

This dissertation has demonstrated a new iterative soft-decision feedback algorithm for

reduction or elimination of 2D ISI. The algorithm achieves substantial reductions in re-

quired SNR for a given BER, when compared to an earlier soft-input/soft-output iterative

algorithm without decision feedback and also when comparedto an earlier separable al-

gorithm. A key contribution of our work is that soft-decision feedback from previously

estimated rows/columns can substantially improve the performance of iterative 2D-ISI al-

gorithms. In particular, the fact that our algorithm essentially matches the performance of

the algorithm in [16], which was designed to avoid decision feedback, demonstrates that

decision feedback, if appropriately employed, need not degrade the performance of 2D-ISI

detection algorithms.

This dissertation also demonstrates a method, using EXIT charts, to optimize the it-

eration schedule between its sub-systems and the weights placed on the passed extrinsic

information. This optimization approach can give some theoretical guidance for the sys-
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tem iteration schedule design, and also can save simulationtime compared to optimization

done by simulation of the entire iterative equalizer.

A serially concatenated IRA coding structure has been proposed in this dissertation.

This dissertation demonstrated that serial concatenationof two IRA codes connected by

an appropriately designed interleaver can greatly lower the level and slope of the BER

curve in the high SNR region, compared to a single IRA code of equivalent length and

rate. We believe that the proposed approach will also work with more general LDPCs

as component codes, including, e.g., e-IRA codes or codes optimized with the error-floor

lowering algorithm of [36].

An iterative joint detection/decoding system for 2D ISI channel has also been proposed

in this dissertation. The simulation results show that the proposed joint detector/decoder

performs better than the best previously published joint equalization/decoding system.

Although this dissertation has achieved good 2D equalization performance compared

with previous methods, there are still some areas remainingopen and need to be investi-

gated in future: for the IRCSDFA, we want to answer the question why the weight schedule

works, and find a theoretical justification for it by derivinga relaxation algorithm from first

principles; for the serially concatenated IRA system, we need to improve the interleaver

design, and further investigate its performance with longer block lengths and other compo-

nent codes.
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