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EQUALIZATION AND CODING FOR THE TWO-DIMENSIONAL
INTERSYMBOL INTERFERENCE CHANNEL

Abstract

by Taikun Cheng, Ph.D.
Washington State University
December 2007

Chair: Benjamin Belzer

This dissertation addresses the problems of detection and @rrection for binary
data corrupted by two-dimensional (2D) intersymbol irdezhce (ISI) and additive white
Gaussian noise (AWGN). The 2D-ISI channel occurs in propossd-generation optical
disk systems and holographic storage systems, which sataerd2D pages, and are subject
to 2D-ISI at high data densities.

This dissertation presents a novel iterative row-columft decision feedback algo-
rithm (IRCSDFA) which exchanges weighted soft informatigtvieeen row and column
maximum-a-posteriori (MAP) detectors. Each MAP detectgl@its soft-decision feed-
back from previously processed rows or columns. The newrglgo gains about 0.3 dB
over the previously best published results for2he2 averaging mask. For a non-separable
3 x 3 mask, the IRCSDFA gains 0.8 dB over a previous soft-input/sofput iterative al-
gorithm which decomposes the 2D convolution into 1D row aoldmmn operations. This
dissertation also shows how to adapt the IRCSDFA for nonpegbable binary sources.
And this dissertation proposes an approach to optimizettration schedule inside the
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IRCSDFA by using EXIT charts.

This dissertation addresses the error floor problem of lewsity parity check (LDPC)
codes on the binary-input AWGN channel, by constructing @akgrconcatenated code
consisting of two systematic irregular repeat-accumu({@®?) component codes con-
nected by an interleaver. The interleaver is designed teegntestopping-set error events
in one of the IRA codes from propagating into those of the otoele. Simulations with
two 128-bit rate 0.707 IRA component codes show that theqeeg architecture achieves
a much lower error floor at higher SNRs, compared to a 16384date 1/2 IRA code, but
incurs an SNR penalty of about 2 dB at low to medium SNRs. Erparts indicate that
the SNR penalty can be reduced at larger blocklengths.

This dissertation also demonstrates an iterative joirgact&in/decoding scheme for the
2D ISl channel by employing IRCSDFA and LDPC codes. Simuhat&sults show that
aboutl/3 of the gain achieved by IRCSDFA over the previous best eqat#iz algorithm

is retained when the two equalizers are combined with LDPRd&s0
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Chapter 1

Introduction

Fast growing information technologies such as high-spetednet, ultra wideband commu-
nication, and multi-media applications need to exchangesane huge amounts of digital
information. Traditional data storage systems read/vdt#ta on a disk or tape along one
dimensional tracks spaced sufficiently far apart to avdieritrack interference. Even third
generation optical disk storage systems (e.g., the BluasiRadard) also are still based on
1D tracks. Some recently proposed systems, such as the "Tstqidoject sponsored by
Phillips [1], aim to achieve densities at least two timesatgethan BlueRay, and data rates
at least ten times greater than BlueRay, by decreasing teetmack spacing and reading
the data from many (typically, 10 or more) tracks simultausyp. Decreased inter-track
spacing causes inter-track interference when readingisike @he inter-track interference,
plus the intra-track interference between same-track bés be modeled as two dimen-
sional ISI.

The emerging technology of holographic storage (HS) ainmectoeve densities more



than thirty times that of BlueRay by encoding bits as las&erference patterns in light-
sensitive disks [2]. The disks store bits in layers of (apprately square) 2D pages, with
typically millions of bits on a page. Future HS systems magresuffer from inter-page
interference, leading to 3D-ISI.

Without effective equalization, 2D and 3D ISI will cause ooeptablely high bit error
rates (BERS) in proposed next-generation optical and niegs®rage systems. Multi-
dimensional ISI equalization is thus a key enabling teabgppfor such systems.

To achieve a very low BER on the data storage systems (typitat!2 — —1071%),
error correction coding (ECC) is always used together withettpgalizer. The low density
parity check (LDPC) codes, with their near-capacity perfance in the waterfall region of
the BER vs. SNR curve, have been the subject of much recezdneds and are of interest
for next-generation data storage systems.

This dissertation proposes a 2D equalization approach aadel serial concatenated
LDPC coding structure with low error floor. The performandeombined 2D-ISI equal-

ization and LDPC coding is also studied.



1.1 System Model and Background of 2D ISI Equalization

An M x N binary 2D data setwith elementsf (m,n) € {—1, 1} corrupted by 2D ISI and

AWGN can be modeled as received datarsetth elements

r(m,n) =3 h(k, 1) f(m—k,n—1) +w(m,n), (1.1)
k l

whereh(k, 1) is a finite-impulse-response 2D blurring mask, then,n) are zero mean
independent and identically distributed (i. i. d.) Gauss@ndom variables (r. v. s) with
varianceo?, and the double sum is computed over the mask support refjjona {(k,1) :
h(k,l) # 0}. Itis assumed that a boundary -efl elements surrounds the data set. In the
following, we refer to 2D data set as “images,” and their edais as “pixels.”

Direct maximum likelihood (ML) detection of (m, n) from r(m, n) requires compar-
ison of r(m, n) with 2¥* candidate transmitted images, and is therefore imprddiica
typical image dimensions aV > 128. The standard Wiener filtering solution is signifi-
cantly inferior to ML detection, especially at high SNR. Henit is desirable to develop
a low-complexity 2D detection algorithm that achieves opragimates the performance
of 2D ML detection. For one dimensional signals, the Vitalgorithm provides an effi-
cient method for ML detection of ISI-corrupted data [7]. Orttinately the VA does not
generalize to two or higher dimensions. For 2D ISI, issuescai-order, adjacency, and
causality must be considered in construction of the treflisd the mapping between in-

put pixel sequences and trellis paths is not always onex&-blowever, union bounds on
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the performance of 2D ML detection have been developed if fh@se ML bounds are
tight at high SNR, and are useful in assessing the perforenahsub-optimal 2D detection
algorithms.

A number of 2D decision-feedback VA (DFVA) algorithms haveeh constructed,
based on a row-by-row raster scan ordering of the image pifeel). [3, 4, 11]); the best
of these ([4],[11]) attain or approximate the performant®la detection at high SNR by
using hard decisions in a fixed number of previously decod@dsr Performance tends
to be mask dependent. For example, the algorithm in [11],nwdqeplied to binary im-
ages corrupted by ISI from the x 3 averaging mask, achieves a bit error rate (BER) of
about3 x 10~* at an SNR about 3 dB higher than the ML bound curve, yet attslins
performance when the ISl is due to a length-five horizontelaging mask.

To our knowledge, [11] employed the first iterative algamitfior 2D 1SI reduction; the
DFVA was run on rows and columns, and bits which agreed in do#ttions were fixed
for subsequent iterations. This scheme effectively exghdrhard decisions between row
and column DFVAs. Subsequent work has employed the turlmzipte (after turbo cod-
ing [33]); i.e., detection reliability can be greatly impex by exchanging soft estimates
of the detected bits between two or more estimators. In fh&]2D convolution operation
is decomposed into two 1D computations, and an iterativediag algorithm exchanges
soft information between SISO detectors correspondingatthe€lD operation; decision
feedback is not necessary under this approach. In [9], magéarability is exploited to

construct an interactive row-column detector for LDPC abtanary images, in which ex-
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trinsic information is exchanged between a non-binary mol&ISO detector, a binary row
detector, and a LDPC decoder. In [16, 17], soft informat®m®exchanged between MAP
detectors operating on multiple rows and multiple colunthgs scheme avoids decision
feedback by making decisions on multiple rows/column$iaathen one row/column at a
time, and also handles non-separable masks.

Generalized belief propagation (GBP) is developed for 2Detfialization and related
problems in [5, 6]. GBP uses exact inference over the suimmenf the image covered by
the ISI mask, and then passes messages between adjaceagsus. GBP works well,
but (in [5]) has been demonstrated only on sm2l ¥ 20 or smaller) images; such cases
are easy to handle for 2D equalizers because the nearby éuoanditions greatly aid
the estimation. Also, [5] only considers ISI masks whereaimplitude ratio between the
bit being estimated and the ISI bit is greater than one, vaseother publications consider
more challenging masks (e.g., thex m averaging mask(k,[) = 1/m?).

The computational complexities of the equalizers disaligs¢his dissertation are lin-
ear in the total number of image pixeld x N, but exponential in the mask size. This
complexity is typical of the above-mentioned equalizexsept for GBP, which appears to
have somewhat higher complexity because messages arel pass®l from all four sides
of a sub-region, instead of along a trellis defined by a sisgken direction. The other
exception is the separable algorithm of [9], which has camanal complexity that is
exponential in the square root of the mask size. Howevemldpaithm of [9] can be used

only with separable masks.



1.2 Background on LDPC Coding

Low density parity check (LDPC) codes, introduced by Galtagehe early 1960s [27],
have received great interest since researchers in thedatsand early 2000s ([28, 30, 31])
showed that they can perform within less than 0.1dB of thenB8ba limit for a number of
important communication channels, including the binasere channel and the binary-
input AWGN channel. However, for the above-cited codes, Hwapacity performance
typically holds only above bit error rates (BERs) tf~> or 10-%; at lower BERs, the
nearly vertical (and highly negative) slope of the BER vs. RSdurve levels off into an
“error floor” with a smaller magnitude slope.

As there are several important applications that requir8Bf 102 or lower (e.g.,
mass storage, broadband satellite communications), a @uofilbecent publications have
proposed LDPCs specially designed to reduce the error fld®A dodes, introduced in
[25] by Jin, Khandekar, and McEliece, feature a sectfibnof the parity check matrix?
that contains only weight-two columns (except for one weihleolumn), and consists of
“1”s down the main diagonal and the diagonal just below itefima proved in [32] shows
that if the H, section contains all the weight two columnsfof then it helps lower the error
floor becausdd, contains the maximum number of degree-two variable nodésowi a
cycle among them. Extended IRA (e-IRA) codes, introducel@®j, are a generalization
of systematic IRA codes wherein the remaining sectidi ) of the H matrix assumes a

more general form; design rules for lowering the error flobedRA codes by optimizing



the degree distributions aff; are given in [32]. IRA codes and e-IRA codes have the
low decoding complexity characteristic of LDPC codes, dmalow encoding complexity
characteristic of turbo codes [25, 32, 33].

LDPC error floors are caused by connected sets of cyclesdcatepping sets” [34].
Codes with larger stopping sets generally have lower errarglo The design technique
in [35] attempts to maximize stopping set size by maximizimg average number of con-
nections leading outside small cycles, referred to as the AiStanced s x; simulations
showed that LDPC codes with largéf- had lower error floors. More recently, the au-
thors of [36] proposed a method of directly estimating thealde and check nodes in the
smallest stopping sets, along with a code design algorithadirectly maximize the size
of these sets. The design algorithm in [36] resulted in cod#ssignificantly lower error

floors than those designed according to [35].

1.3 Main Contributions

The primary contribution of this dissertation is a new iterasoft-decision feedback MAP
detection algorithm for reduction (or elimination) of 2DI1&or the3 x 3 averaging mask,
our algorithm achieves about 1.5 dB of SNR improvement owat of [11]. For a more
rapidly decaying x 3 mask, our algorithm achieves about 0.8 dB gain over that%jf [Ror
the2 x 2 averaging mask, the IRCSDFA gains about 0.3 dB over the seleaabyorithm of

[9] (without coding), the previously best published redattthat mask. A key innovation



of our approach is the use sbft decision feedbagsDF) from previously processed rows
(or columns) of the image; we believe this is the first appiccaof SDF to the 2D-ISI
problem. (We note, however, that an iterative algorithmhv8DF was proposed earlier for
the 1D channel equalization problem [20].)

The EXIT chart, introduced in [21] is a good method to analymeconvergence prop-
erties of iterative algorithms; EXIT charts have typicatigen applied to analyze iterative
decoding of error correction codes. In this dissertatibe, convergence properties of the
IRCSDFA are analyzed by using EXIT charts. To prevent the IRESBystem from con-
verging too fast, we apply a weight schedule to the exchasgédnformation between
the row and column detectors. The design of the weights stegdvas mainly based on
repeated simulations in prior work (e.g., [44]), which ig edficient. In this dissertation,
we propose a method to optimize the weight schedules by &g charts.

Another main contribution of the dissertation is a methadisign of serially concate-
nated IRA codes that achieve lower error floors than singke tRdes of equivalent rate
and block size. Two systematic component codes, with blecgth and rate equal to the
square roots of those of a comparable full-length IRA codecannected in series, with an
interleaver between them. This architecture is similah@t bf turbo product codes [37],
except that, rather than employing the row-column intere®f product codes, we design
the interleaver to avoid the convergence problems that teagtror floors. We use the
method of [36] to estimate the stopping sets of the comparads. Then the stopping set

data is used to design the interleaver so that, as much ablegssopping set error events



of one of the component codes are not mapped into stoppingsable nodes of the other
code. Since each component code has the ability to suctigsi#eode the other code’s
non-convergent blocks, convergence problems are greadiyced, resulting in a lowered
error floor at high SNR. Because of the IRA component codesctimcatenated system
has relatively low encoding complexity compared to a gdnergular LDPC code. The
decoding complexity is about twice that of the comparablieléngth IRA code, due to the
need for outer iterations between the component codes.

Based on the algorithms discussed above, we design a coatadesystem including
the IRCSDFA and a LDPC code, similar to the turbo equalizastoncture in 1D ISI case
[23]. The simulation results show that the combined IRCSDRA BDPC system is bet-
ter than the previous best joint equalization/decodingespq9] under the same channel
environment, when identical LDPC codes are used in bottesyst In particular, about
one-third of the SNR gain of the IRCSDFA over the separablakzpr employed in [9] is

retained when these equalizers are combined with LDPC codes

1.4 Dissertation Outline

Chapter 2 introduces the IRCSDF algorithm after a brief reviévihe BCJR algorithm,
and then extends the IRCSDFA from equiprobable source datarteequiprobable source
data. Simulation experiments under different conditicarsg performance comparisons

with previous approaches are also discussed. Factor gedipRESDFA are presented and



discussed at the end of this chapter. The material of thiptehavas partially presented at
the 38th Conference on Information Science and Systems [40] on Mabo4 ,39th Con-
ference on Information Science and Systems [41] on March 200-d Annual Allerton
Conference on Communication, Computing, and Control [42] orte3elper 200544th
Annual Allerton Conference on Communication, Computing, andt@d[43] on Septem-
ber 2006, and the journal articles of “IEEE Signal Procegsiatters” [44] on July 2007,
“IEEE Transactions on Signal Processing” [46] on Nov. 2007.

Chapter 3 analyzes the convergence properties of IRCSDFA iog &XIT charts.
An iteration and weight schedule optimization method i® gileoposed. An example of
numerical optimization of the IRCSDFA is given in this chapte

Chapter 4 describes the serially concatenated IRA code,hwdao achieve a lower
error floor compared with a single IRA code of the same rateldacdk length. The main
steps of this code design are the stopping sets detectidreafdmponent codes, and the
interleaver design to separate these stopping sets. Thentar this chapter was presented
at the 45th annual Allerton Conference on Communication, Caimguand Control [45],
in September 2007.

The construction and performance of combined IRCSDFA deteeind LDPC decod-

ing is presented in chapter 5. The conclusions of this digsen are given in chapter 6.
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Chapter 2

Iterative Row-Column Soft-Decision Feedback Algorithm (IRCSDFA)

In this chapter, we will introduce a novel lterative Row-Qolu Soft-Decision Feedback
Algorithm (IRCSDFA) for the detection of binary 2D sourceaabrrupted by two-dimensional
intersymbol interference (2D ISI) and additive white Gaasshoise (AWGN). The algo-
rithm described in this chapter exchanges soft informalietween row and column max-
imum a-posterior (MAP) detectors, each detector explsith-decision feedback (SDF)
from previously processed rows or columns. The exchanggdgormation, extrinsic in-
formation, is weighted to slow down the iteration converggeeand give some performance

improvement.

2.1 |IRCSDFA Trellis Definition

We have shown the system model of 2D ISI on the first chapter just briefly re-
summarize it for convenience: a x N binary 2D data sett with elementsf(m,n) €

{—1,1} corrupted by 2D ISI and AWGN can be modeled as received datasith ele-

11



ments

r(m,n) :ZZh(k,l)f(m—k,n—l)—|—w(m,n), (2.1)
kool

whereh(k, 1) is a finite-impulse-response 2D blurring mask, then,n) are zero mean
independent and identically distributed (i. i. d.) Gauss@ndom variables (r. v. s) with
varianceo?, and the double sum is computed over the mask support regjon {(k, 1) :
h(k,1) # 0}.

The simplest 2D intersymbol interference changel2 mask, is shown in Figure 2.1(a).
The 2D convolution can be viewed as the inner product of tiggral imagef (m, n) with
the inverted mask(—k, —[) as shown in Figure 2.1(b), where mask coefficiest is at
pixel position(m, n). The binary image pixelg(m, n) take values-1 or +1. The inverted
mask scans through the image pix¢lsn, n) in the row-by-row and column-by-column

pattern respectively.

hOO h01 hll th
th hll hOl hOO
(a) (b)

Figure 2.1: (ap x 2 mask (b)2 x 2 mask inverted for 2D convolution.
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For the row-by row case, we use Miller et. al's method [11p#&dine the IRCSDFA
trellis construction as shown in Figure 2.2: the 4-stat#isrbas 4 branches entering and
leaving each state resulting in a fully connected structAteach positiorim, n) the trellis
branch output is a vector consisting of t&c 2 inner products between the inverted mask
and the pixel values defined by the trellis; the upper innedpct, named:(m, n), uses
the feedback pixels and the lower one, naméa + 1,n), just uses received pixels. The
branch metric is the squared Euclidean distance betweehrémeh output and the real

received pixel vector{(m, n),r(m + 1,n)]:

[r(m,n) —x(m,n)]* + [r(m + 1,n) — 2(m + 1,n)]. (2.2)

The column-by-column case is similar to the row-by-row case

Trellis generation for th8 x 3 mask on thenth image row is initiated by placing the
input marked'm, n) in Fig. 2.3 at the left end of the row, where the initial valwéshe six
state pixels are-1 due to the boundary conditions, and the vector of three ippws can
take eight different values. The entire state/input blacthien shifted right to pick up the
next three input pixels, and the previous three input pikelsome the middle three state
pixels. The trellises for each row are terminated at thetragid of the row by extra shifts
into the boundary pixels. For tiex 3 mask, the 64-state trellis has 8 branches entering
and leaving each state, with no parallel branches. It’s riollyaconnected trellis like x 2

case. At each positiofin, n), the trellis branch output vector consists of théee 3 inner

13
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O Current states
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Figure 2.2:2 x 2 mask trellis structure
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Figure 2.3:3 x 3 mask trellis structure

products between the inverted mask and the pixel valuesetkby the trellis; the upper
inner product uses two feedback rows, the middle uses ombdéek row, and the lower
uses received pixels only. The branch outputs and metres@mputed similarly to the
2 x 2 mask, but with thre@ x 3 inner products rather than 2 because of 2 feedback rows.
We can improve system performance by extending the statengod blocks shown
in Fig. 2.2 by one or more rows. For tlex 2 mask, adding one more row gives an 8
state trellis with 8 branches per state, and three (rattzar tivo) inner products per branch
metric. The column-by-column case is similar to the rowrbwcase.
As the image pixels are i.i.d., the above-described treiastructions impose the

Markov condition that, given the current trellis state, sedpuent states and branch out-

15



puts are independent of past states or outputs. This Marbwogitton allows the use of a

modified BCJR [18] algorithm for detection.

2.2 IRCSDF Algorithm Description

Fig. 2.4 shows a block diagram of the algorithm. The basimel# is asoft decision
feedback, soft-input soft-outp{8DF-SISO) detector. Each SDF-SISO processes received
imager, which is corrupted by 2D-ISI and by AWGN. The SDF-SISOs useadlifred
BCJR [18] algorithm, in which soft estimates of branch ouspudbm earlier trellis stages

are used as SDF to aide computation of the current pixeldikagjhood ratio (LLR).

Row-by-Row Column-by-®lumn
SDF SISO | [ SDF SISO L »

T o f

Figure 2.4: IRCSDFA block diagram

The row and column SDF-SISOs exchange weighted soft infoomalhe SDF-SISOs
assume that their decision feedback is correct, but in faciitains errors. Decision feed-

16



back errors cause error propagation; an example is showigir2F(d), which shows the
error map from a Monte-Carlo simulation of the IRCSDFA on theé.ibinary source im-
age shown in Fig. 2.5(a). When the information weightsre set to one (the non-weighted
case), the algorithm converges in two to three iteratioryseploying the weight schedule
w = 0.008 x (3 x k? + 1), wherek, 1 < k < 6, is the iteration number, we slowed the
convergence of the algorithm to six iterations, at all SNé&dd. (SNR gains from two ad-
ditional iterations were limited to at most 0.01 dB, and tbegurred at low SNR.) For the
2 x 2 averaging mask at high SNR, we observed that this weightstdgave us an SNR
gain of about 0.5 dB over the non-weighted case, at a bit eatefBER) of2 x 10~°. (This
particular weight schedule was arrived at experimentdtgra non-exhaustive search, and
must therefore be considered sub-optimal.)

A theoretical analysis of the weight schedule and its o@#ton by using EXIT chart
will be discussed in chaptér Based on observations, we hypothesize that decision feed-
back errors make the output LLRs larger than their true \glaed that the weights move
the LLRs closer to their true reliabilities, thereby pretreg the algorithm from converging

too quickly.

2.2.1 BCJR Algorithm Review

The BCJR algorithm is an algorithm for maximum a posterioriAlR) decoding of error
correcting codes defined on trellises. The algorithm is rdhadéer its inventors: Bahl,

Cocke, Jelinek and Raviv [18]. This algorithm is critical t@dern iteratively-decoded
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error-correcting codes such as turbo codes.
Standard BCJR algorithm works as following: suppose we vecea signal sequence
RY from channel with lengthV, to decode thé& bit, d;, 1 < k < N, we can define the

log-likelihood ratio (LLR) ofd,, as:

p(dy = +1|R{V))
LLR(dy) = lo 2.3
0 =too( S =S &3
where
p(d, =i|RN) =220 2 e 1 1),
p(dy, = i, RY) could be written as:
p(dy =i, R)) = Z Zp(dk =1i,S, =5,S,_1=5,RY), (2.4)

s ands’ are the states of the trellis. Siné&’ are Markov, by using Bayes’ rule, we can
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have

p(dy =i, = 5,51 =5, RY)

=p(Ry 1Sk = 8,51 =5, Ry Ry, dy =4) - p(S, = 8, Sy = 8/, Ri ™, Ry, dy, = 1)

= ( k+1|Sk =S, Sk 1= S Rk ! Rk7dk = Z) (Sk = S,Rk,dk = i|Sk_1 = S,,R’f_l)

p(Sk_1 =5, lefl)

= p(Ry1|Sk = 8) - p(Sk = 8, Ry, dy = | Sk—1 = &) - p(Sk—1 = s/, R} ).

So, by defining

ar(s) = p(Sk = s, RY)

Bi(s) = p(RR}a| Sk = 5)

Yi(Ry, s, s) = p(dy =i, Sy, = s, R|Sk_1 = &),

and

Zak 1(8") 7 (Ry, 8, 8) - Brl(s),

we can calculate the LLR as

LLR(dy) = 109<M)

> )‘131(3)
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The values ofy,(s) and gy (s) could be updated by following equations:

ag(s) = Z Z ViR, s, 8)a_1(8")
S (2.9)

Br(s) = Z Z WZ(RkH, $,8") Bes1(s),

the initial values otx and are
ap(0) =1 ap(s) =0 if s#0;

and

By(0) =1 PBu(s)=0 ifs#0.

2.2.2 IRCSDF Algorithm

IRCSDFA is a modified BCJR algorithm, the key modification is $12F branch output
calculation: computing LLRs for inner products between tiesk and candidate binary
estimate§(m, n) of the image pixels. To illustrate the SDF LLR calculationrow scans,
without losing generality, assume tBex 3 averaging mask,; = 1/9 is used to compute

the convolution
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For pixel(m, n) at thekth trellis stagek € {0,1,..., N}, the corresponding received pixel
vector is

r = [r(m,n),r(m+ 1,n),7(m+2,n))],

and the input vector is

~

f = [f(m,n), f(m+1,n), f(m+2,n)],

as shown in Fig. 2.3. To simplify, let

yi = [yko,ym,ym] =T,
and
u= [Uk;o, uklaqu] = f-

The LLR is

(2.10)

P(uyo = +1|Yk7ﬁi)>

L;(k) =1 —
(k) Og(P(Uko = —1lys, ;)

wherew; is the extrinsic estimate oi passed to detectar i € {1,2}, from the other

detector. Detectai's extrinsic LLR input is

- . P(Uk:O = +1|ﬁ2)
Lz<k) =1 g(P(uko = _1|ﬁi>)7
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and the extrinsic LLR output to the next detector is

Lnext(i)<k) = Ll(k) - j—”(k)?

wherenext(1) = 2, next(2) = 1. By using the input extrinsic information, we can compute

the conditional probability of the input pixel:

eli(k)
L;(k
L+ eb® 2.11)
1
P =—1lu) = ——.
(uro =110 = ——

Given trellis states5y, input vectoru, and received vectagy,, define

k(s) = P(ux =1, S, = s,y),

wherei = [ig, ..., i), im € {—1,+1}, andn, is the number of input bits per trellis stage.

We can then compute tteeposteriori

P(u, =ily,) = ZA' )/ P(Yy)- (2.12)
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as in [18], by setting

a(s) = P(Sk = s,¥;)
Bi(s) = P(Y*™[S, = s) (2.13)

W/i(ykasla 8) = P(uk = ia Sk: = Saykaai\qsk—l = S,)7

wherey* . uy, i,fj{V are vectors because there are more than one row in the tidiesSDF
output LLRs can be incorporated into the pixel transitioohabilities~;(yx, s, s). The
modified v is the product of a modified conditional channel PBE), trellis transition

probabilities, and extrinsic information from the othetelgor:

(Y, s, s) =0 (yelu=1,S, = 5,51 =)
(2.14)
X P(u=ils,s') x P(s|s") x P(uju=1).
For the given states, s and inputu, P(u = i|s, s’) is 0 or 1 andP(Sy = s|Sk_1 = &) IS

2-™ based on the trellis. The extrinsic information can be colegas:

~ ~ P(u=iu)P(u)
Pau=i)= . , (2.15)

whereP(u = iju) comes from (2.11), an®(t1) = P(u) = 27 ".

The modified channel PDF sums over the values of inner predygtassociated with

23



state transition’ — s that are affected by past decisions:

PI(Yk’u =1i,5 =5,51= 8’) = P(ykZ‘uk[)auklaukZ; 5:5/)

X [Z P(Qa) P (Y [uro, ura, 5, 8", Csara(Qa), Q) (2.16)
Qo

X ZP(Ql)P(yk0|uk’o7Svslvcsdfl(Qla92)791792)
951

where€2 denotes feedback rows, inner produgi;(€2) depends on the feedback pixels,

and the row probabilities

2

P(Q; = wjo, w1, wjo) = [ [ Plwyn),
=0

where P(w;;) are feedback pixel probabilities. For tBe< 3 averaging-mask ISI channel,
inner productsegae; (21, 22) and ciar2(£22) are nine-pixel averages of the pixels labeled
“inner product 1” and “inner product 2” in thg x 3 mask of Fig. 2.3. The”(w;;) are
computed by using feedback LLRs from previously processeg r{or columns) during

the current iteration. Since the original image is subje@WGN, the
p/(}’k|u - i7 Sk =S, Sk:—l == 8,7 Csdfj(Q))

are normal PDFs with meang;;;(2) and variances?.

Since we have vector inputs and received pixels, to estithatpixel located oftm, n),
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we sum the\s over(m + 1,n) and(m + 2, n):

A (s) =D N (s). (2.17)

i1,i2

The pixel LLR is computed as:

IPYEI®

B DRI

(2.18)

If L(k) > 0, we decide that pixelm, n) is +1; otherwise, it is detected asl.

2.3 |IRCSDFA for Non-Equiprobable Sources

We can modify IRCSDF to estimate the non-equiprobable sodeite blurred by 2D ISI.
If we define the)\.(s) and LLRs as in equiprobable case, equations (2.13) and )(&till4
hold. The difference is the calculating: P(Sy = s|Sx_1 = ') in equation (2.14) will
have different values for different given states values, the transition probability from
to s’ is different.

By finishing the non-equiprobable modification, IRCSDFA abbk applied to any
source data such as the correlated image. On this case,utreesmage need to be inter-
leaved before being passed through the 2D ISI channel beeaiassume the source data

are i.i.d. in IRCSDFA. The corresponding work could be found4s3].
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2.4 |IRCSDFA Simulation Results

In this section, we present Monte Carlo simulation resultstfe IRCSDFA on the random
binary imagef(m, n) with pixel alphabef —1,+1}. The plots in this section show the bit
error rate (BER) of the estimated binary input image, vessgsal noise ratio (SNR). The

SNR is defined as in [11]:

SNR= 10log,, (var|[f * k] /o) , (2.19)

wherex denotes 2D convolutiong? is the variance of the Gaussian raém, n) in (2.1).
To compute received imagém, n), we assume a boundary efl pixels around the origi-
nal imagef (m, n); the receiver uses this known boundary condition to simghe trellis
at image edge pixels.

Fig. 2.6 shows IRCSDFA simulation results on a randt2f x 128 binary image
blurred by the2 x 2 averaging mask and AWGN. We plot results using two, three, and
four rows in the2 x 2 trellis state and input block of Fig. 2.3, which shows theibaso-
row case. The maximum likelihood estimator (MLE) union uppeund of [10] is also
plotted. In addition, we plot results for the row-by-row MA#th SDF (but without col-
umn extrinsic information), and iterative row-column MARtlwvextrinsic LLR exchange
but with HDF (rather than SDF) on past rows (IRCHDF); thesatamthl results are based
on the basic (2 row) trellis definition. Plots marked “Opt. igf@s” use the six-iteration

weight schedule given in chapter 4; plots marked “Unit We&sgfix the weights at 1.0.
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at BER2 x 107°
4 trellis rows IRCSDFA with opt. weights 0.6 dB
3 trellis rows IRCSDFA with opt. weights 0.6 dB
seperable algorithm of [9] 0.9dB
2 trellis rows IRCSDFA with opt. weights 1.1 dB
3 trellis rows IRCSDFA with unit weights 1.2 dB
2 trellis rows IRCSDFA with unit weightg 1.7 dB
2 trellis rows IRCHDFA with opt. weights 2.0 dB
2 trellis rows row-by-row SDF 2.5dB

Table 2.1: SNR gap to the ML upper bound fox 2 averaging mask

At high SNR, row-column iteration (with the weight scheduléses about 1.5 dB SNR
gain over the rows-only method. Row-column SDF gives higdRSjains of about 1 dB
over row-column HDF. The three-row IRCSDFA gives about 0.5gdi over the two-row
algorithm at high SNR. The four-row IRCSDFA performs as walklae three-row at high
SNR, and offers gains of up to 0.3 dB at lower SNRs. Additi@tate/input rows allow the
algorithm to correct larger error patterns, which occur enbequently at low SNR. The
SNR gaps between the ML upper bound and different algoritirBER2 x 10~5 are listed
in Table 2.1.

For comparison, we plot simulation results for the sepa&raljorithm of [9]. (Because
[9] reports results only for one iteration of the separaljeadization algorithm without
LDPC coding, we implemented the equalization algorithm tesded its multi-iteration
performance. We found that two iterations of the separalglershm achieve almost all

available performance gain, so two iterations are used sephrable-algorithm results pre-
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sented here.) At a BER of abolit 1075, the 3-row IRCSDFA achieves about 0.3 dB gain
over the separable algorithm; at a BER6ok 1079, the 3-row IRCSDFA performs within
about 0.6 dB of the ML bound. Another advantage of the IRCSDBHAworks for general
2D masks, whereas the separable algorithm must use thestkeggarable approximation
to a non-separable mask, which leads to an error floor in masg<

We also compare to recent results by Marrow and Wolf [16, IlMese results use
the2 x 2 mask with first rowl, o and second rowt, 0, wherea varies between 0 and 1.
The Marrow-Wolf (M-W) algorithm reported in [16, 17] also etaps row/column MAP
decoding with soft information exchange, and their treflike our two-row version in
Fig. 2.3) is fully connected with 4 states and 4 brancheg/stdarrow-Wolf intentionally
avoid decision feedback by estimating two rows, rather tbae row at a time. Based
on a comparison of Fig. 2.7, which is the result of 2-row IRC8D#th unit weight, to
a corresponding figure in [17] (the zoom-in graph tor= 0.7 is also presented in [17],
both results usé x 5 binary input images cause [17] just presents the resultioh &
simple experiment.),we believe the two-row version of dgoathm with unit weights is
essentially equivalent to tteex 2 mask M-W algorithm. In Fig. 2.6, the two-row IRCSDFA
with unit weights is about 1 dB worse than the three-row cumil optimized weights
at BER2 x 10~°; hence, we believe our optimized algorithm’s performarsabout 1
dB better than the M-W algorithm, for thex 2 averaging mask. The IRCSDFA in this
dissertation, while similar to that of [16], was developedependently, and has several key

differences. First, we make decisions one row at a time apdSI3F, rather than making
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decisions two or more rows at a time and using “feed-forw§t@]. Second, we weight the
extrinsic information passed between SISOs, and incréese/¢ights with each iteration;
the weight schedule significantly improves the algorithpgsformance. Third, we achieve
additional gains by adding rows (respectively, columnghtostate and input pixel blocks
of the row (column) SISOs. And fourth, we demonstrate penfomce with botl2 x 2 and

3 x 3 masks onl28 x 128 and64 x 64 images, whereas the maximum source image size
considered in [16, 17]i8 x 5.

The improved performance of the three- and four-row IRCSDE#ses at a complex-
ity cost relative to the two-row version, and relative to geparable algorithm of [9]. The
number of operations per pixel for the two, three, and four RCSDFAs, and the separa-
ble algorithm, are as follows: add/subtract, 423, 193553@8d 480; multiply/divide, 742,
3398, 15366, and 943; exp/log, 87, 391, 1543, and 75. We hatéite two-row IRCSDFA
complexity is roughly equal to that of the separable al¢anit

Fig. 2.8 shows IRCSDFA simulation results on a randainx 64 binary image blurred
by the3 x 3 averaging maski;; = 1/9, (i,7) € {0,1,2}) and AWGN; here we use the
three-row trellis definition shown in Fig. 2.3. The MLE upg®und for this mask is also
plotted. We also plot simulation results of the iterativeryoolumn hard-decision feedback
algorithm. The IRCHDF and IRCSDF results shown in Fig. 2.8 warewith the weight
schedule described in chapter 4. At high SNR, the IRCSDFAIireg@about 1.2 dB more
SNR than the MLE. By comparison, an earlier iterative aldpon by Miller et. al. [11] is

about 3 dB away from the ML bound. Also, by comparing to the 2 averaging mask
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case, we can say that more feedback rows result in a largergaitRiue to SDF.

We also simulate a randoi28 x 128 image blurred by th8 x 3 mask (named Channel
B) defined by Chen and Chugg in [1h]0,0) = A(0,2) = h(2,0) = h(2,2) = 0.0993;
h(0,1) = h(1,0) = h(1,2) = h(2,1) = 0.352; h(1,1) = 1. The results are shown in
Fig. 2.9. (Chen and Chugg'’s original curve in [15] has beenrdkitted by 3 dB, to account
for differing SNR definitions.) The IRCSDFA gives about 0.8 d®yain compared to [15];
also, Chen-Chugg’s curve diverges from the ML bound, whele@a$RCSDFA is parallel
to it.

Fig. 2.10 shows the performance of the Non-equal-probal IBE¥Sor different source
pixel distribution, P(+1) = 0.7, P(+1) = 0.9 and P(+1) = 0.99, blurred by the2 x 2
mask. We also simulated the original equal-probal IRCSDRHese 3 sources for com-
paring. We can see from the figure, the higher the differeretevéen the probabilities
of the binary source, the bigger gain the modified IRCSDFA @¢@we us. This is very
helpful to restore some non-uniform source such as coegldata cause most of them are

non-equal-probal.

2.5 Factor Graphs of IRCSDFA

As a modified BCJR algorithm, this proposed IRCSDFA could béyaed by using factor
graphs. Following the steps in section IV of [19], we plotthe@ factor graphs of the

IRCSDFA in Fig. 2.11. For comparison, we also plotted thedagtaphs of the separable
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algorithm of [9] in Fig. 2.12. All these factor graphs are &éd®on an example: restoring
the4 x 4 source data blurred by tiex 2 mask.

In Fig. 2.11 we can see, there is no cycle inside the Row or Col880 detector; the
shortest length of the cycle between these two detectansis- 6, wherem = N + 1 is
the number of stages of the detector trellis fa¥ax N source data block. Therefore, even
for a very small size source block, there is no short cycleREEDFA. For the separable
algorithm of [9] in Fig. 2.12, we can see there are some cyiisisle its sub-detectors,
and that the shortest cycle lengthRis + 2. For a general source block size, we can still
say there are no short cycles in the separable algorithm. ekhmple shortest cycles of
IRCSDFA and separable algorithm are marketed by red linesgnZ11 and Fig. 2.12

respectively.
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Figure 2.5: (a) Source image; (b) Source with 2D ISI and ndieerror image from hard
decoding of image (b) (white pixels are errors, black areexdy; (d) error image from
IRCSDFA algorithm.
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Chapter 3

Analyzing And Optimizing IRCSDFA by Using EXIT Chart

We can analyze the convergence properties of IRCSDFA by ubedXIT chart as in
[21], since IRCSDFA also has a similar iterative structurde EXIT charts also help to

optimize the weights between row and column detectors duha iterations.

3.1 The Probability Distribution of The Extrinsic Information

The input information to the detectors of IRCSDFA are indefen Gaussian random vari-
ables; as mentioned in [22], the output can be tightly apprated by a Gaussian random
variable. Also, when the iteration number increases piffeof the extrinsic information
should be more and more Gaussian (observed in [24]). We diddme experiment and
observed that thedf of the extrinsic information output by the row/column detegs well
approximated by a Gaussiafif, especially after several iterations.

Similar to [21], we derived the relationship between the maad variance of the LLR

for the IRCSDFA system. To simplify, all the derivations aeséd on th@ x 2 ISI chan-
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nel. Suppose we want to estimate the pixe{em n}. The received signal from the 2D
ISI+AWGN channel on this position g = z + n, wheren is the zero mean Gaussian ran-
dom variable with variance?, and: is the 2-D convolution between the original pixels and

the 2D ISI channel, which can be expressed as the inner profitiee pixelxg, z1, z2, x5

and maskfy, fi, fo, f3:

z=x0 - fo+a1-fi+xa- fotaxs- [5. (3.1)

The original pixel we want to estimateis. Givenz; = =, x € {+1, —1}, the conditional

probability density functiongdf) can be written as:

_ (=22
e 20%

p(yles = x) = : (3.2)
2mo,
The corresponding-values extrinsic information LLR are calculated as:
=41
LLR:}HZM7 (3.3)
pyles = —1)
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which can be simplified to:

(—2(+1)2 - (y—2(=1))?

LLR = ln(e_ Varon )

_ 2[(+1) — 2(=D] -y + [2(+1)? — 2(=1)7]
\/%O-n
_ 2yfs —2fs - (ofo+ o1 fi + 22f5)

_2fs- (w3f3+n)

2
On

(3.4)

wherez(+1), z(—1) represent the inner products given the conditions thas +1 or -1.
Therefore, we can write LLR asiLR = py, - x3 +ny, With py, = % andn, being a zero
mean Gaussian r.v. with varianeg = % Thus,uy = %

Based on these conclusions, we derived the mutual infoomditetween extrinsic in-
formation and the source pixel, which has the same form asdguation (19) in [21].
What's more, since we put some weight schedule on the LLR ih datector, we proved
the weights will not change the mutual information. Then,csa plot the EXIT chart for

IRCSDFA and analyze its properties.

3.2 EXIT Charts of IRCSDFA With Different Trellis Rows

From the simulation results of tiiex 2 mask above, we found including some additional
rows in the trellis can improve the system performance. ATEehart analysis shows this
is reasonable.

Fig. 3.1 shows the mutual information between the SISO tlet@utput extrinsic in-
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formation and the signal to be restordg,() v.s. the mutual information between the input
LLR and the source signal,(,). We plotted 2 trellis-rows, 3 rows and 4 rows for channel
SNR from 0 dB to 10 dB with the step of 2 dB. The lower group oe8rcorrespond to
the lower SNR. We can see, at very low SNR, the additional igiwes very little gain; but

at higher SNRs, additional rows do give some gain, espgdiadl first added row. At the
high SNR level, adding more than one row will not give too mgeain compared to adding
just one row because thg,; is already on a high level. This figure is consistent with the
Monte Carlo simulation results we presented before, anchibhedp us to design the trellis

structure for different SNR range.

3.3 Using EXIT Chart to Design The Weights Schedule

In [21], a method is presented to use EXIT chart to analyzectvvergence properties
of an iterative system. However, we proved the weights woli change thd,,; for the
SISO detector in the section 3.1. In order to make use of tlathad, we modified the
EXIT chart: if we think of the connected row detector and cotudetector as a whole, the
weightw put on the LLR from the row-SISO to the column-SISO is an inmemameter of
this bigger detector. Based on simulation we found this ieigdid make thel,,, from
the column-SISO detector lower by driving the LLR input t@ ttolumn detector lower.
Therefore we can get different EXIT charts of this biggered&dr for different weights,

then by analyzing the convergence behavior we can designéweight schedule.
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We start from 2 weight schedules; = 0.045(k + 1) andw, = 0.008(3k? + 1), where
k is the iteration time. From the Monte Carlo simulation we knowhas a better BER
performance tham, after 6 iterations at the same SNR level. The EXIT chartgpénd
wq are shown in Fig. 3.2 and Fig. 3.3. Both figures are plotte@éthas the 3 trellis rows of
the2 x 2 mask IRCSDFA at channel SNR 6 dB. As mentioned before, the parameter
w will change thel,,;, so there are 6 groups of the curves corresponding to 6 itest
the lower/left curves are for the earlier iterations. Thaectories connect theth and
(k+1)th lines. Comparing these two figures, we can see at the end 6f/hiteration, the
final 1,,; of wy is bigger than the one af;; that's whyw, has a better performance than
wi. Also, during the BER simulation we found, made the system almost converge after
4 iterations whilew, didn’t converge until 6 iterations. By reading these two fe&g) we
can see the length of each trajectory in Fig. 3.3 is more umifinan that in Fig. 3.2. The
length of the trajectory represents the volume of the chdmgetual information between
the input/output extrinsic information and the source géte higher the change in mutual
information, the bigger the gain the detector gave duringjitbration. Since the system of
wy; made the most change during the first 4 iterations while aystedidn’t, thew; system
of course converged faster.

By studying these results, we can propose some rules fotveaiedule design:

1. Try to make the end,,; as close to the upper limit as possible. This limit can be
found by finding the interception point of 2 symmetric weighsystems ( such as
the interception point of the solid lines in Fig. 3.2 and Hg).
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2. Try to make the length of the trajectories as uniform asjds to avoid early con-

verge.

3. Select an appropriate iteration time based on the traddeetiieen the performance

requirement and the detecting speed requirement.

We designed a set of weights = [0.0001, 0.005, 0.03, 0.06,0.12,0.25, 0.4, 0.6, 0.8, 1]
by following these rules. Fig. 3.4 is the EXIT chart on samedition as Fig. 3.2 and
Fig. 3.3. Simulation results show it has3al5% lower BER thanw; system an®.31%

lower BER thanw, system at 6 dB channel SNR.
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Chapter 4

Serial Concatenated IRA Codes Design

4.1 Preliminaries of Irregular Repeat-Accumulate (IRA) Codes

IRA codes, introduced in [25] by Jin, Khandekar, and McHlieare a generalization of
the repeat-accumulate code in [29] that combines many dbtlerable attributes of turbo
codes and LDPC codes. They can be encoded in linear timefuirke codes. They are
amenable to an exact Richardson-Urbanke style analysis sihtulation results show the
performance of IRA codes is slightly superior to turbo codésomparable complexity,
and just as good as the best known irregular LDPC codes.

IRA codes could be described by Tanner graph as shown in Eiy. wheref; > 0, is
the fraction of nodes with degrée) _, f; = 1, a is a positive integer. The Tanner graph is
a bipartite graph with two kinds of nodes: variable nodes(opircles) and check nodes
(filled circles). There aré variable nodes on the left, called ‘information nodes’;réhare

r check nodes andvariable nodes on the right, called parity nodes. The numipéll be
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Figure 4.1: Tanner graph for IRA code with parametdts fs,- - - , f;; a).

determined by the following equation:

RN
a

Each information node is connected to a number of check ndke$raction of information
nodes connected to exactlycheck nodes ig;. Each check node is connected to exactly

a information nodes. These connections can made in arbipiargnutation. The check
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nodes are connected to the parity nodes in the simple zigatigrp shown in the figure.
After deciding the permutation pattern between informatimdes and check nodes, the
codeword described by the Tanner graph is also determirssth @ the information bits is
associated with one of the information nodes, and each gidhigy bits is associated with
one of the parity nodes. On each check node, the mod-2 surhaoiradected nodes should
be zero; therefore, the value of a parity bit is determineiduely. If we mark the-a edges
coming out of the permutation box &s,, vs, - - - , v,,), We can use the following recursive

formula to determine the parity bits values:

Tj=Tj—1+ Z V(j—1)a+is (4.1)
=1
wherej = 1,2,--- ,r andz, = 0. Thus, the IRA codes can be encoded in linear time. For

the systematic IRA codes, the information bits will be trartsed as a part of the codeword,
and the code rate is

Rsys = (4.2)

o a
Like most LDPC codes, IRA codes can be decoded by using sodupt algorithm as

shown in [38].
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Figure 4.2: Block diagram of the concatenated encoder wisliesnatic IRA component
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4.2 Concatenated IRA Encoder and Decoder

A block diagram of the concatenated encoder is shown in E&). i consists of two sys-
tematic IRA component codes connected by an interleavetdd byr). In the following
discussion, we visualize the concatenated system as aqtroalle, with the two encoders
operating on rows and columns. The source data is arrangadwo-dimensional block
of size K x K. The rows of the source block are first encoded with the dufers’| sys-
tematic IRA code, yielding & x N coded block in which the firsiki’ elements of each
row are systematic bits. Then thé x N coded block is passed through the interleaver.

The purpose of the interleaver is to minimize the intersechietween the stopping set error

53



events of the row and column component codes. After thela@aeer, eachi -bit column is
encoded with the innérV, K] systematic IRA code, producing & x N codeword block.
The overall code rate i® = K?/N?. The identical variable-node degree distributions of
the two component codes are chosen to optimize their pedioces in the waterfall region
according to the design algorithm given in [25], subjectite tonstraint that all weight-2
columns appear in thél, section of the parity check matrix; the constraint helpsdow
the error floors of the component codes. All example codegded in this paper used a
fixed check node degree of 10. The variable-to-check nodeemions in the component
codes are optimized using the ACE algorithm of [35], in ordefurther lower the error
floors. In our examples, the variable-to-check node conmestin the component codes
are different, so that the codes have different stopping; betvever, the interleaver design
described in section 4.3 also works if the component codeglantical.

The decoder for the concatenated system employs iterategsage passing between
the decoders for the two component codes. The decoder biagkaan is shown in Fig. 4.3.
It consists of column and row decoders connected by thd@atezr and de-interleaver. The
received channel data is decoded column by column by a sthiaKk] IRA decoder
employing the sum-product algorithm (SPA, [38]) on the ¢cedanner graph; the column
decoder uses the extrinsic information from the row deceder priori information. The
column decoder outputs & x N block of extrinsic information LLRs. The column de-
coder’s output extrinsic information is then passed thioting interleaver and used as prior

information by the row decoder. The row decoder makes ushetle-interleaved chan-
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nel information and the prior information to decode the data by row, and outputs a
K x N block of LLRs to be used for final decoding decisions, alonthwi/x x N block

of extrinsic LLRs for the column decoder to use during thetmigxation.

P LLR
7[ )l
™ Column Jd o - Row
»| DEC LLR L™ |  DpEC >
y For decision
= ]
» T

Figure 4.3: Block diagram of the concatenated decoder.

4.3 Interleaver Design

The reasons to encode/decode using the structure desabbgd rather than using a single
[N?2, K?] IRA code are as follows. The performance of an LDPC code dt BiyR (i.e.,
in the error floor region) is not determined by the code’s mimmn distance, but rather
by sets of interconnected short cycles (called stopping) skeat prevent the decoder from
converging to a valid codeword. If we can design the intededo prevent the mapping
of stopping set error events from one of the component cattesstopping set nodes of
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the other code, then the concatenated structure will hefpowe the performance at high
SNR.

The definition of a stopping set used in this paper is as falow variable-node set
is called a stopping set if all its neighbors are connectethito set at least twice [35].
In LDPC codes at high SNR, error events occur on the smallespsg sets with higher
probability than on larger stopping sets or non-stoppirtg. sk simplify, if a variable node
is a part of a stopping set, we call it a sensitive node.

Here is an example of how an error event from one IRA compooea¢ could propa-
gate into the other one. Suppose variable nddes, 25) are sensitive nodes of the column
component code and that errors occur on these positionse $ach column uses the same
component code, errors will occur on these positions on roalsimns, i.e., at the end of
column decoding, most positions of roi& 9, 25) are errors. If we do nothing but directly
input these rows to the row decoder, the outputs will havegelaumber of errors (perhaps
even larger than the number of input errors) due of the baar prformation. If we pass
the output extrinsic information from the column decodeotigh an interleaver before it
is fed to the row decoder, the errors will not be concentratedows(6, 9, 25) and hence
can be corrected more easily. Therefore, we postulate tteolé@aver design rules for the

concatenated system:

1. Spread concentrated errors all over the data block.

2. Avoid mapping the sensitive nodes of the row (column) congmt code into the
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sensitive nodes of the column (row) component code.

The sensitive positions of a component code can be detednexygerimentally, or by
employing the stopping set detection algorithm of [36]. Bashort length block LDPC
code, sensitive positions can be determined experimgriglMonte Carlo simulation, as
in the following example. The row component code used forafriee examples in section
4.4is[181, 128] systematic IRA code. We let the row decoder receive its cbHNNRS as
usual, but we artificially set its input extrinsic LLRs to lea& fixed amplitude and correct
sign, except for a small number of error positions where tge s incorrect. By changing
the position of the errors, running a AWGN-channel Monte Caihaulation at a fixed SNR
for each error position, and then counting the number of decoutput error bits, we find
which positions are sensitive: the more output errors, tbeersensitive the corresponding
positions. Fig. 4.4 shows the sensitivity of single posii@hosen from all81 variable
nodes. Each artificially introduced single-position exrndergoes a 50-block Monte-Carlo
simulation, where each block is decoded with 10 SPA itenatid-rom the figure it is clear
that six of the positions are sensitive.

The sensitive positions of a component code can also bendie&si by employing the
stopping set detection algorithm of [36]. For a given staytvariable node, the algorithm
in [36] finds a stopping set containing that node, but doegynatantee that the detected
set is minimal; thus, some relatively less-sensitive nadag be included in the set. To
find the most sensitive nodes, we repeatedly run the deteatgorithm by starting from
every variable node in the code, and count the accumulatezsteach node appears in a
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Monte Carlo| Number of Times
Node Position Error Bits in Stopping Set
(max= 39) (max= 110)
18 39 66
52 20 75
97 23 78
109 37 76
113 29 78
132 27 76

Table 4.1: Comparison of sensitivity detection methods.

stopping set; the higher the count, the more sensitive tde rneig. 4.5 shows the results of
running the algorithm of [36] over thig81, 128] row component IRA code by starting from
each variable node. In Fig. 4.5, the maximum sensitivityntasi181. It is clear from the
figure that some nodes are highly sensitive, and that mostegparity bits (bits 129-181)
have high sensitivity counts.

To compare these two methods for detecting sensitive nedehst the top 6 sensitive
nodes detected by the experimental method and the corréisygpsensitivity determined
by the method of [36] in the table shown in Table. 4.1. In thisl¢, the first column is the
node positions, the second column is the accumulated oetpus shown in Fig. 4.4, and
the third column is the sensitivity counts shown in Fig. 4t%s evident that sensitive nodes
detected by the experimental method also have high sahsitounts in the algorithm of
[36].

Based on the above design rules, we design the interleavstiabyng with a random
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interleaver and imposing additional constraints. Firstelatively goodK x N random
interleaver is found by simulation. Then the stopping séthe row and column com-
ponent codes are detected using the method of [36]. For ggasitive nodes and; of
the row/column component codés {/ly, 1, ---,1,} andj € {Jo, J1, -+, Jn}, Where
{Ip, I1,---,I,} and{Jy, J1,--- , J,,} are the sensitive nodes of the row and column com-
ponent codes respectively, we modify the random interlesoghat no element in thgh
row before passing through the interleaver is located inttiheolumn after passing through
the interleaver. If the random interleaver maps any elenmerdw ; to columni (the “bad
mapping” condition), then that element is re-mapped to @wan position in the output
block, and the element formerly at that random position ippeal into the position of the
element in rowj; this re-mapping continues until either no bad mappingd@uad or all
the possible positions in the interleaver have been chedkeshich case no interleaver
solution is possible. Since the stopping set detectionrétgo yields a large set, we select
only the most sensitive nodes (i.e., the nodes with highea®tigvity counts in a histogram
like that of Fig. 4.5) to design the interleaver at the begignThen we increase the number

of selected sensitive nodes step by step until we cannot fsadigion for the interleaver.

4.4 Simulation Results

The Monte Carlo simulation results for the proposed coned&zhIRA code structure on

the binary-input AWGN channel are shown in Fig. 4.6. In thergguhe right-most curve
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(marked by '+’ symbols) is the performance of a single IRA gament code with source
block lengthK' = 128 bits and code rate.707. The second rightmost curve (marked 'x’)
is the proposed concatenated code with block #iZe= 16384, rate(.5, and a random
interleaver; the random interleaver was found by (non-aghee) search over a large num-
ber of randomly generated interleavers. The solid line witble markers is the same code
structure as the second curve, but uses an interleaver baste: design rules proposed
in section 4.3; this designed interleaver used the randoeni@aver of the 'x’ curve as the
design’s starting point. The dashed line with star markeitheé BER of a rate 1/2, block
length K? = 65536 concatenated IRA code with optimized interleaver. For carigon,
we also simulated single long block length IRA codes witte ta5; the solid line is with
source block length6384 and the dashed line is with source block lengih36.

All the single IRA code simulations were run until either digd@odeword was decoded,
or 100 iterations were performed. For both the 16384-bitatenated curves the decoder
was run for a total of 10 outer iterations between the compbeoedes, and the component
codes were each iterated 10 times per outer iteration. Coemtatecoding (on a given
row or column) was terminated before 10 iterations if a vabdleword was decoded. The
concatenated iteration schedule was determined expetherand therefore may not be
optimal. (Further optimization of the iteration scheduseng, e.g., EXIT charts [39], will
be the focus of future work.) The complexity of the 16384-dwmncatenated decoder is
thus approximately twice that of the 16384-bit single IRAdepalthough at higher SNR

the complexity of the concatenated system is relativeljhéidecause termination events
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for the concatenated code eliminate only single rows orrooki from the iteration, not
the entire codeword. The 65535-bit concatenated decoderuvafor a total of 10 outer
iterations with 20 inner iterations per outer iteration,itsodecoding complexity is about
four times that of the single 65535-bit IRA code.

From the figure it is clear that, although the concatenat&846it IRA code has an
SNR penalty in the waterfall region (about 2.1 dB SNR at BER?®) compared to the
single 16384-bit IRA code of equivalent rate, it has a muateloerror floor. There is a
crossover point between these two codes’ BER curves at a BERaut 107, and the
BER of the concatenated IRA code decreases much fasterttaboftthe single IRA code
at high SNR. By comparing the 16384-bit concatenated cqukirsdbrmance with different
interleavers, we see that the proposed interleaver deaigachieve significant gains (about
0.7 dB at10~° and0.3 dB at10~") over the random interleaver used as the design starting
point, which means the idea of separating the componentstetigping sets works.

The K = 128 example component codes are quite short. We conjecturentne
the block length is increased the penalty in the waterfajlae will decrease, since the
component IRA codes will asymptotically approach capaastyhe block length increases.
This conjecture is partly supported by the smaller SNR ggn@bout 1.7 dB at BER
10~°) of the 65536-bit rate-1/2 concatenated code comparecetedhivalent-rate 65536-
bit IRA code, although part of the improvement over the 16BR4odes may be due to

the increased decoder iterations allocated to the 6553hcatenated system.
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Chapter 5

Joint Iterative Detection and Decoding for 2D ISI channels

5.1 System Structure

To achieve improved SNR vs. BER performance on the 2D ISl mdlanve propose to
investigate coding the source 2D data with a systematic eommection code (ECC) before
it passes through the 2D ISI plus AWGN channel, and estimatgtlit an iterative joint
detection/decoding scheme. The whole system structuleisrsin Figure 5.1.

For large source data block-sizes, it is well known that LD#@@es outperform turbo
convolutional codes. Hence, the encoder uses IRA codesd2gpe of LDPC code which
offers low-complexity encoding and decoding, and perfowal over a wide range of code
rates.

Pioneering work on systems similar to Fig. 5.1 has been tegan [8, 9], for the
special case of separable masks. These papers considedifieeent detection-decoding
schemes: (i) message-passing on the combined ISI-cheB#sl factor-graph; (ii) Wiener

filtering, and (iii) iterative MAP detection by message pagdetween equalizer and LDPC
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Figure 5.1: System structure of joint iterative detecti@rioding for 2D ISI.

SISOs as in Fig. 5.1. Method (i) does not perform as well dgeeitii) and (iii), and has
relatively high computational complexity, while Weinetditing has previously been shown
to be inferior to row-by-row DFVA [12]. System (iii) perforsnwithin 1 dB of the coded
system without ISI for a relatively simplzx 2 mask, which is very impressive. The scheme
we proposed in this chapter performs better and is not lohtibeseparable masks.

The joint decoding/detection structure shown in Fig. 5.tlalty just gives a general
idea for this kind of application. We have shown in chapteh&t the IRCSDFA con-
sists of 2 SISO-SDF detectors, one each for rows and coluamasthat each detector can
accept softa priori information from outside itself to improve the performancés the
IRCSDF algorithm is based on decision feedback, the accwhthe feedback informa-

tion is critical to the whole system; any errors in the feexkbean propagate to the next
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set of rows/columns to be processed, and thereby degradeetfmmance. Therefore,

r SISO SDF LLR, 1 LLR’l LDPC
»  Row Detector gL > Decoder
A
LLR, LLR,
T m
A
LLR, LLR,
f LDPC LLR, T LLRs SISO SDF ;
<4«— Decoder T < Column Detector [¢——

Figure 5.2: Join iterative detector/decoder structure.

we construct the joint iterative detector/decoder as iruféd.2. Here there are still two
SISO-SDF equalizers (row/column), both of which directipgess the received informa-
tionr from channel. Each equalizer passes its extrinsic infaondtepresented by, L R)

to the de-interleavers("!) and then to the input to the LDPC decoders. There are two
identical LDPC decoders; both of them take soft-input @sid information from one of
the equalizers, and then feed their soft outputs back to tifwer @qualizer aa priori in-
formation. After several iterations, the second LDPC decaxlitputs the final detection

results.
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5.2 Simulation Results for the Joint Detection/Decoding System

The Monte Carlo simulation results for the iterative jointettion/decoding algorithm
on the random binary imagg(m, n) with pixel alphabet{—1,+1} are presented in this
section. The plots in this section show the bit error rate RBBf the estimated binary

input image, versus signal noise ratio (SNR). The SNR is ddfas in [9]:

var(f x hj

SNR= 10 logm 2_R—2’
0w

(5.1)

wherex denotes 2D convolution;? is the variance of the Gaussian r.wgm, n) in (2.1)
and R is the rate of the LDPC code. Similar to the simulation of IREBDwe assume a
boundary of-1 pixels around the original imag#&m, n) which is known by the receiver.

In order to ensure a fair comparison with the system in [9],u8e the exact same
code as [9]: the rate 0.5, original block length 10000 reg(® 6) LDPC code pro-
posed by MacKay in [28]. The paper [9] only presented redoltshe separable mask
[10.5;0.50.25]. In chapter 2, we have mentioned that the IRCSDFA achievesahee
equalizer performance as the separable algorithm of [Ohmrelatively easy mask. After
adding the LDPC code, our joint system also has the samerp@fae as [9] does, for the
mask[l 0.5; 0.5 0.25]. Since the IRCSDFA performs better than the separable equal-
ization algorithm on the x 2 averaging mask channel, we implemented the joint separable
algorithm and LDPC decoder ourselves and then comparedritsrmance with combined

IRCSDFA and LDPC decoding, on tRex 2 averaging mask channel. Our implementation
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of the combined separable equalizer and LDPC decoder nwétltbe presented results of
[9] under same simulation conditions, so we believe thatimptementation is equivalent
to that in [9].

Figure 5.3 shows the simulation results of IRCSDFA+LDPC dreddeparable algo-
rithm+LDPC on the x 2 averaging mask channel. The joint IRCSDFA+LDPC algorithm
uses the structure shown in Fig. 5.1; the total iteratioresilnetween the SISO-SDF equal-
izers and the LDPC decoders (we call this outer iteratioa)34); for each outer iteration,
there is only one time iteration inside the row/column deteand 10 times iteration in-
side the LDPC decoder for the sum-product algorithm; a sgafctor,«w = 0.5 is put
on the extrinsic information from SISO-SDF detectors to [(Déecoders where no weight
is put on the extrinsic information from LDPC decoders to GISDF detectors. For the
separable algorithm+LDPC code, we use the same iterativedsde as in [9]: 10 times
outer iteration, for each outer iteration there are 2 samation between the column and
row detectors and 50 iterations inside the LDPC decodecgsine output extrinsic infor-
mation of LDPC is 2-ary it will be fed to an additional row deter (just run one time
for each outer iteration) to generate the 4-ary extrinsiorimation to send to the column
detector. The performance of the LDPC code itself is alstuged, to provide a baseline
without 2D ISI. It is clear that the proposed approach isdrdtian [9]'s over the entire
SNR range. In particular, at BERx 1075, the gain is about 0.1 dB. Comparing to the 0.3
dB gain achieved by the equalizer only (see Table 2.1), wepast of equalizer gain after

the equalizer is combined with the LDPC code. The most ingmbrtlifference between
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these two approaches is that the IRCSDFA+LDPC works well figr2ax 2 1SI channel,
whereas the separable algorithm will introduce an errorfloonon-separable channels as

a result of using the best separable approximation to theseparable mask.
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Figure 5.3: Simulation results of joint detection and decgan the2 x 2 averaging mask
channel.
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Chapter 6

Conclusions

This dissertation has demonstrated a new iterative saisib feedback algorithm for
reduction or elimination of 2D ISI. The algorithm achievegstantial reductions in re-
quired SNR for a given BER, when compared to an earlier sgfts/soft-output iterative
algorithm without decision feedback and also when comp&rezh earlier separable al-
gorithm. A key contribution of our work is that soft-decisideedback from previously
estimated rows/columns can substantially improve theoperdnce of iterative 2D-1SI al-
gorithms. In particular, the fact that our algorithm esgayt matches the performance of
the algorithm in [16], which was designed to avoid decisieadback, demonstrates that
decision feedback, if appropriately employed, need notatégthe performance of 2D-ISI
detection algorithms.

This dissertation also demonstrates a method, using EX&ftghto optimize the it-
eration schedule between its sub-systems and the weigitegbn the passed extrinsic

information. This optimization approach can give some tbgcal guidance for the sys-
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tem iteration schedule design, and also can save simul@t@compared to optimization
done by simulation of the entire iterative equalizer.

A serially concatenated IRA coding structure has been megon this dissertation.
This dissertation demonstrated that serial concatenatidwo IRA codes connected by
an appropriately designed interleaver can greatly lowerlével and slope of the BER
curve in the high SNR region, compared to a single IRA codeqivalent length and
rate. We believe that the proposed approach will also wottk wiore general LDPCs
as component codes, including, e.g., e-IRA codes or cod@®miapd with the error-floor
lowering algorithm of [36].

An iterative joint detection/decoding system for 2D ISl ohal has also been proposed
in this dissertation. The simulation results show that treppsed joint detector/decoder
performs better than the best previously published joiniadigation/decoding system.

Although this dissertation has achieved good 2D equatingberformance compared
with previous methods, there are still some areas remaiopg;n and need to be investi-
gated in future: for the IRCSDFA, we want to answer the quastiby the weight schedule
works, and find a theoretical justification for it by deriviagelaxation algorithm from first
principles; for the serially concatenated IRA system, wecdh® improve the interleaver
design, and further investigate its performance with lorgeck lengths and other compo-

nent codes.

73



Bibliography

[1] W. Coene, “Coding and signal processing for two-dimenaloroptical
storage (TwoDos).” Powerpoint presentation available at http://cm.bell-

labs.com/cm/ms/events/WGIR04/pres/coeng\gt 2004.

[2] G. T. Huang, “Holographic memoryMIT Technology Reviewol. 9, Sept. 2005.

[3] J. F. Heanue, K. Gurkan, and L. Hesselink, “Signal dédedor page-access optimal

memories with intersymbol interferencefpplied Optics vol. 35, pp. 2431-2438,

May 1996.

[4] R. Krishnamoorthi, “Two-dimensional Viterbi like algthms,” Master’s thesis, Univ.

lllinois at Urbana Champaign, 1998.

[5] O. Shental, A. Weiss, N. Shental, and Y. Weiss, “Geneeaglibelief propagation re-
ceiver for near-optimal detection of two-dimensional amial with memory,"IEEE

Information Theory Workshopp.225 - 229, 24 -29 Oct. 2004.

74



[6]

[7]

[8]

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructirmgfenergy approximation
and generalized belief propagation algorithiEEE Trans. on Inform. Theorypol.

51, pp. 2282 - 2312, July 2005.

G. D. Forney, “The Viterbi algorithm,Proceedings of the IEERoI. 61, pp. 268—-278,

1973.

N. Singla, J. A. O'Sullivan, R. S. Indect, and Y. Wu, “ lagive decoding and equal-
ization for 2-D recording channeldEEE Trans. magneti¢d/ol. 38, pp. 2328-2330,

Sept. 2002.

[9] Y. Wu, J. A. O’Sullivan, N. Singla, and R. R. Indeck, “ltgive Detection and Decod-

[10]

[11]

ing for Separable Two-Dimensional Intersymbol InterfereiIEEE Trans. Magnet-

ics, Vol. 39, No.4, pp2115-2120, July 2003

K. M. Chugg, “Performance of optimal digital page detewtin a two-dimensional
ISI/AWGN channel,"Proc. Asilomar Conf. on Signals, Systems and Copp.958—

962, Nov. 1996.

C. L. Miller, B. R. Hunt, M. W. Marcellin, and M. A. Neifeld“Image restoration
using the Viterbi algorithm, Journal of the Optical Society of America Xol. 16,

No. 2, pp. 265-274, Feb. 2000.

75



[12] C. L. Miller, B. R. Hunt, M. Neifeld, and M. W. Marcellin,Binary image reconstruc-
tion via 2-D Viterbi search,"EEE International Conference on Image Processing,

(ICIP97),vol. 1, pp.181-184, 1997.

[13] M. A. Neifeld, R. Xuan, and M. W. Marcellin, “Communicati theoretic image
restoration for binary-valued imagerypplied Optics Vol. 39, No. 2, pp. 269-276,

Jan. 2000

[14] C. Berrou and A. Glavieux, “Near optimum error corregtinoding and decoding:

turbo-codes,IEEE Trans. Communvol. 44, pp. 1261 — 1271, Oct. 1996.

[15] X. Chen and K. M. Chugg, “Near-optimal data detection faoidimensional
ISI/AWGN channels using concatenated modeling and itexadigorithms,”Proc.

ICC’98, pp. 952-956, 1998.

[16] M. Marrow and J. K. Wolf, “Iterative detection of 2-dimsional ISI channelsProc.

Info. Theory Workshgf{Paris, France), pp. 131-134, Mar./Apr. 2003.

[17] M. Marrow, “Equalization and detection of 2-d ISI chais),” available at http://cmrr-

wolf08.ucsd.edufmmarrow/, May 2003.

[18] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimataidging of linear codes for
minimizing symbol error rate,IEEE Trans. Inform. Theorwol. 20, pp. 284-287,

Mar. 1974.

76



[19] F. R. Kschischang, B. J. Frey, and H. Loeliger, “Fact@pips and the sum-product

algorithm,”IEEE Trans. Inform. Theorwol. 47, NO.2, Feb. 2001.

[20] W. H. Gerstacker, R. R. Miiller, and J. B. Huber, “Itevatequalization with adaptive

soft feedback,IEEE Trans. Communvol. 48, pp. 1462-1466, Sept. 2000.

[21] Stephan ten Brink, “Convergence behavior of iterativeéécoded parallel concate-

nated codes|EEE Trans. Communicationsol. 49, NO.10, Oct. 2001.

[22] H. E. Gamal, A. R. Hammons, “ Analyzing the turbo decodsing the Gaussian

Approximation,”IEEE Trans. Inform. Theoryol. 47, NO.2, pp. 671-686, Feb. 2001.

[23] R. Koetter, A. C. Singer, and M. Tuechler, “Turbo equatian,” IEEE Signal Pro-

cessing Magazinevol. 21, NO.1, pp. 67-80, Jan., 2004.

[24] N.Wiberg, “Codes and the decoding on general graphskdping Studies in Science

and Technology, Linkoping, Sweden, Ph.D. DissertationNd@, 1996.

[25] H, Jin, A. Khandekar, and R. McEliece, “Irregula repaatumulate codesProc.

2nd. Int. Symp. Turbo Codes and Related Togesst, France, Sept. 2000.

[26] M. Yang, W. E. Ryan, and Y. Li, “Design of efficiently endable moderate-length
high-rate irregular LDPC codedEEE Trans. Communicationsol. 52, NO. 4, April

2004.

[27] R. G. Gallagerl.ow-Density Parity-Check CodeSambridge, MA: MIT Press, 1963.

77



[28]

[29]

[30]

[31]

[32]

[33]

[34]

D. J. C. MacKay, “Good error correcting codes based oy 8parse matrices|EEE

Trans. Inform. Theoryol. 45, pp. 399-431, Mar. 1999.

D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorefos ‘turbo-like’ codes”,
Proc. 36th Allerton Conf. on Communication, Control, and Conmgyi{pp.201-210,

Allerton, Illinois, Sept. 1998.

T. J. Richardson and R. L. Urbanke, “The Capacity of loswnsity parity-check codes
under message-passing decodingEE Trans. Inform. Theoryol. 47, pp. 599-618,

Feb. 2001.

T. Richardson, A. Shokrollahi, and R. Urbanke, “Desajrcapacity-approaching ir-
regular low-density parity-check codedEEE Trans. Inform. Theorwol. 47, pp.

619-637, Feb. 2001.

M. Yang, W. E. Ryan, and Y. Li, “Design of efficiently endable moderate-length
high-rate irregular LDPC codeslEEE Trans. Communvol. 52, pp. 564-571, Apr.

2004.

C. Berrou and A. Glavieux, “Near optimum error corregtinoding and decoding:

turbo-codes,|IEEE Trans. Communvol. 44, pp. 1261-1271, Oct. 1996.

C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urke, “Finite length analysis of
low-density parity-check codes on the binary erasure chniEEE Trans. Inform.

Theory vol. 48, pp. 1570-1579, June 2002.

78



[35] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel|é&tve avoidance of cycles
inirregular LDPC code constructionEEE Trans. Communvol. 52, pp. 1242-1247,

Aug. 2004.

[36] S.H.Lee, K. S.Kim, J. K. Kwon, Y. H. Kim, and J. Y. Ahn, “Bign of an LDPC code
with low error floor,” in Proc. IEEE Int. Symp. Info. Theory (ISIT 200%)delaide,

Australia, Sept. 2005, pp. 990-994.

[37] R. M. Pyndiah, “Near-optimum decoding of product cadasck turbo codes,JEEE

Trans. Communyol. 46, pp. 1003-1010, Aug. 1998.

[38] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Fagraphs and the sum-product

algorithm,” IEEE Trans. Inform. Theoryol. 47, pp. 498-519, Feb. 2001.

[39] S. ten Brink, “Convergence behavior of iteratively dded parallel concatenated

codes,"IEEE Trans. Communvol. 49, pp. 1727-1737, Oct. 2001.

[40] P. M. Njeim, T.Cheng, B. J. Belzer, K. Sivakumar, and YuZHmage detection in
2D intersymbol interference with zig-zag decision-feedb¥iterbi algorithm,”Proc.
38th Conference on Information Sciences and Systems (C)IS$IA-ROM), pp.

195-200, Princeton University, March 2004.

[41] T. Cheng, B. J. Belzer, and K. Sivakumar, “Image debhgrwith iterative row-

column soft-decision feedback algorithn®foc. 39th Conf. on Info. Sci. and Systems

79



[42]

[43]

[44]

[45]

[46]

(CISS’05) (CD-ROM), paper 210, Johns-Hopkins University, Baltimdviaryland,

Mar. 2005

P. M. Njeim, T.Cheng, B. J. Belzer, and K. Sivakumar, “fyeadetection in 2D in-
tersymbol interference with iterative soft-decision feadk zig-zag algorithm Proc.
43rd Annual Allerton Conf. on Comm.,Computing, and Contdobf lllinois Urbana-

Champaign, September 2005.

Y. Zhu, T. Cheng, K. Sivakumar, and B. J. Belzer, “Detestof Markov Random
Fields on Two-Dimensional Intersymbol Interference Chash&roc. 44th Annual
Allerton Conf. on Comm., Computing, and Conttdl of Illinois Urbana-Champaign,

lllinois, Sept. 2006.

T. Cheng, B. J. Belzer, and K. Sivakumar, “An IterativewRGolumn Soft-Decision
Feedback Algorithm for Two-Dimensional Intersymbol Idegence,”|[EEE Signal

Processing Letters/ol. 14, NO. 7, pp 433-436, July 2007.

T. Cheng, K. Sivakumar,and B. J. Belzer, “Serially Coecatted IRA Codes,The
45th Annual Allerton Conf. on Comm., Computing, and Contdobf lllinois Urbana-

Champaign, lllinois, Sept. 2007.

Y. Zhu, T. Cheng, K. Sivakumar, and B. J. Belzer, “Mark@andom field detection
on two-dimensional intersymbol interference channelsgepted byyEEE Trans. on

Sig. Prog Nov. 2007.

80



