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INTERTEMPORAL RISK MANAGEMENT DECISIONS OF FARMERS UNDER 

PREFERENCE, MARKET, AND POLICY DYNAMICS  

 

Abstract 

 
by Wen Du, Ph.D. 

Washington State University 
May 2005 

 
 
 

Chair:  H. Holly Wang 
 

Three separate, but related chapters of this dissertation examine the risk management 

issues related to dynamic stochastic agricultural production, following the introduction of the 

whole dissertation in Chapter 1. 

Chapter 2 adapts a generalized expected utility (GEU) maximization model (Epstein 

and Zin, 1989 and 1991) to examine the intertemporal risk management of wheat producers in 

the Pacific Northwest. Optimization results based on simulated data indicate the feasibility of the 

GEU optimization as a modeling framework. A comparison between the GEU and other 

expected utility models further implies GEU has the advantage of specifying farmers’ 

intertemporal preferences separately and completely.  

Based on the GEU framework, Chapter 3 examines the impacts of farmers’ risk 

aversion, time preference, and intertemporal substitutability on their optimal risk management 

decisions. It further extends the GEU model by incorporating a welfare measure, the certainty 

equivalent, to investigate the impacts of U.S. government programs and market institutions on 

farmers’ risk management decisions and welfare.  
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Results imply that farmers’ optimal hedging is sensitive to changes in the preferences 

and the effects of these preference changes are intertwined. Target price and loan rate levels, 

offered by certain government payment programs, can lead to the substitution of government 

programs for hedging. The evaluation of current risk management tools shows both crop 

insurance and government payments can improve farmers’ welfare significantly. Government 

payment programs have a greater effect on farmers’ welfare than crop insurance and crop 

insurance outperforms hedging.  

Chapter 4 explores the market integration of Chinese wheat futures to the world. It 

compares the price behavior of China Zhengzhou Commodity Exchange (CZCE) with that of the 

Chicago Board of Trade (CBOT) in the US using ARCH/GARCH-based univariate and 

multivariate time series models and cointegration analysis. Results show both markets can be 

modeled by ARCH(1)/GARCH(1,1) and the models have a better fit when the conditional error 

variance is t distributed. The price series in CZCE and CBOT are interrelated but not 

cointegrated. The existing interrelations between the two markets are significant and asymmetric. 

CBOT holds a dominant position in the interactions while CZCE behaves like a follower. 
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CHAPTER 1 

INTRODUCTION 

 

I. Discussion of Primary Issues 

Risk and instability are inherent for farm income due to unpredictable weather, the 

biological nature of agricultural production, technology advancement, and price fluctuation in 

commodity markets. Risk management becomes critical for modern farms with larger acreage, 

more machinery, and more reliance on debt financing. In the meantime, the development of risk 

management instruments, especially in the past twenty years, has provided farmers with more 

options and flexibility to reduce risk and secure income.  

Among available risk management tools, commodity futures is a traditional tool in the 

market to manage price risks; government-sponsored crop insurance is currently the most 

popular risk management tool that helps reduce yield and revenue risks for farmers in the US; 

and government programs provide various payments that work as price insurance but with a zero 

premium. Despite that, the risk management effectiveness and farmers’ participation incentives 

have always been a concern (Brorsen, 1995; Ke and Wang, 2002).  

The risk management situation in the Pacific Northwest (PNW) provides us with an 

interesting case to explore farmers’ risk management decisions in this area. The PNW, covering 

Washington, Idaho, California, and Oregon, is one of the major wheat production areas in the US. 

There is a large acreage of non-irrigated farms in this region. Soft white winter wheat has been 

the dominant cash crop and is primarily exported to the Asian market. This region, however, has 
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historically been an area with low utilization rates of risk management instruments like futures 

(Makus, et al., 1990) and some acreage-based crop insurance (Vandeveer and Young, 2000).  

Current research progress in the modeling of farmers’ risk management strategies is 

centered on examining risk management instruments and primarily based on static models. 

However, agricultural production is a continuous dynamic process and the decisions on risk 

management strategies (government programs for example), have a multi-period impact. Thus, 

intertemporal dynamic models seem more appropriate for analyzing farmers risk management 

decisions. Among the aforementioned risk management instruments, most have been 

investigated separately with a vast amount of literature. Recently research has started to favor a 

portfolio approach to investigate farmers’ use of these instruments.   

For dynamic programming, time-separable expected utility (EU) maximization is a 

standard framework in past studies, especially agricultural risk analysis (Huffaker, 1998). 

Despite the fact that EU has shown feasibility as a dynamic modeling framework, its 

specification assumes utility is additively separable and therefore implies the decision maker is 

intertemporally risk-neutral. This could be a strong restriction for farmers who use the entire 

time span of farm management as a continuum to fulfill their long-run goal of maximizing utility 

and minimizing risk.   

A primary goal of the dynamic risk management part of this dissertation is to develop a 

dynamic modeling framework that is suitable to study farmers’ risk management decisions in a 

multiple-year production environment. Once an appropriate model is identified, the focus moves 

on to investigate and evaluate different risk management portfolios that are applicable to 

farmers’ intertemporal decisions.  
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The third part of this dissertation is dedicated to price analysis in wheat futures markets. 

Unlike crop insurance and government payments, futures price is totally determined by market 

forces and open to all farmers. When the futures market is efficient, it provides an effective 

channel for farmers to reduce potential loss due to future price fluctuations in the spot market. A 

well-established commodity futures market is influential not only to agricultural production but 

also to a country’s food security and price system.  

The Chicago Board of Trade (CBOT) in the US is by far the world largest and most 

developed agricultural commodity exchange. Wheat futures trading has been in CBOT for more 

than a hundred years. The CBOT wheat futures price is now the main price indicator in the world 

wheat market. As the world largest wheat producer and consumer, China had its wheat futures 

trading established in the China Zhengzhou Commodity Exchange (CZCE) in 1993. Since 

establishment, the CZCE has been following the organizational structure and management of 

CBOT. The CBOT wheat futures prices were perceived influential to the price behavior of wheat 

futures in CZCE as well. The CZCE has shown high correlation in the prices with the CBOT in 

recent years. 

China's wheat markets have entered the fast lane to international integration since 

November 2001, when China obtained full membership to the WTO. Integration into the world 

market can have a two-folded impact. The stronger linkage to the world helps bring the 

previously over-valued prices in China back to a reasonable level, and therefore encourages the 

formation of a competitive and efficient market. Meanwhile the enhanced integration introduces 

more unpredictable factors from the world economy into China and brings about extra instability. 

As the world’s largest wheat trading country, China has a strong influence on the world wheat 
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market. Integration of the Chinese wheat market can also affect other major partners in the world 

market in many ways.  

There is another reason for the expectation of international integration besides the 

structural similarity between CBOT and CZCE. It comes from the analogous fact that China’s 

major food markets have shown strong trend in domestic market integration, after most barriers 

to cross-region trading and information flows were removed in recent years. Huang and Rozelle 

(2004) studied the emergence of China’s agricultural commodity markets. Results showed that 

rural China now has some of the least distorted and most integrated agricultural markets in the 

world. Will similar trends also be detected or implied after the complete international integration 

of Chinese wheat futures market? Will this integration be a win-win situation for both China and 

the US? This dissertation includes an attempt to address these issues by an analysis of price 

behavior between the CZCE and CBOT.  

 

II. Dissertation Structure 

This dissertation examines various risk management issues related to wheat production 

in the Pacific Northwest and price analysis for China and US wheat futures markets. Apart from 

the introductory chapter, three separate, but related papers are presented in Chapter 2 through 

Chapter 4. The papers respectively focus on stochastic dynamic modeling of farmers’ optimal 

risk management in multiple year production, impact analysis of changing preferences, market 

institutions, and policies on farmers’ risk management behavior, and price analysis and market 

integration in international wheat futures markets.  

Chapter 2, Intertemporal Decisions of Farmers’ Risk Management: A Dynamic 

Optimization with Generalized Expected Utility, explores farmers’ intertemporal decisions of 
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risk management by adapting a generalized expected utility (GEU) maximization model (Epstein 

and Zin, 1989 and 1991) to dynamic risk analysis in Washington State wheat production. 

Compared with the traditional EU maximization model, this GEU model uses a recursive 

constant elasticity of substitution (CES) utility function. The recursive structure has a dynamic 

nature and the CES form makes it possible to disentangle the decision maker’s intertemporal 

substitution preference from temporal risk aversion. This specification allows him/her to have 

non-neutral time preference. Particularly, the GEU model incorporates some commonly used EU 

models including the recursive constant elasticity of substitution EU model (CES-EU) and the 

standard multi-period recursive EU model (MR-EU) as special cases. Results from GEU models 

are compared with those from other expected utility (EU) maximization models.   

Chapter 3, The Impacts of Intertemporal Preferences, Market Institutions, and 

Government Policies on Farmers’ Risk Management Behavior, aims to assess the impacts of 

changing intertemporal preferences, market institutions, and policies on farmers’ risk 

management behavior and welfare based on the GEU framework. A welfare measurement, the 

certainty equivalent (CE), is introduced to the GEU model. The CE is employed to evaluate 

alternative risk management portfolios relative to cash sales, in response to changes in market 

institutions and policy arrangements, and to various specifications of intertemporal preferences. 

The portfolios are constructed by different combinations of available risk management 

instruments including futures, farm-level yield-based multiple peril crop insurance, and the three 

primary government payments: direct payment (DP), loan deficiency payment (LDP), and 

counter-cyclical payment (CCP). 

Chapter 4, Price Behavior and International market integration: A Comparison of China 

and U.S. Wheat Futures, presents a quantitative assessment of the international market 



 

 6

integration of Chinese wheat futures market CZCE to the world in the background of WTO 

through relationships in price behaviors.  The CBOT is chosen to represent the world market in 

the analysis. Univariate analyses are used to first identify an appropriate process for the CZCE 

and CBOT price series. Then volatility transmission and interactions in price movements across 

the two markets are studied simultaneously using a bivariate model. Time series Autoregressive 

Conditional Heteroskedasticity (ARCH) and Generalized ARCH (GARCH) models, and Vector 

Autoregressive (VAR) and cointegration analysis are the major methods used in the paper. Based 

on relationships evident in the price behaviors, an evaluation of the extent and outlook for the 

Chinese wheat futures market integration into the world market under the influence of WTO is 

presented.  

 

III. Summary of Findings 

In Chapter 2, a representative farmer is selected from Whitman County, Washington, a 

dryland farming region in the Pacific Northwest where soft white winter wheat is grown. Under 

GEU, the farmer is assumed to make the portfolio decisions upon hedging in the futures markets, 

purchasing crop insurance, and participating in government programs based on information 

available at the beginning of a period of multiple years. His or her optimal selection of a risk 

management portfolio is reached according to certain risk preference, time preference, and 

intertemporal substitutability.  

A stochastic trend model, which accommodates a random walk at the mean level and a 

kurtotic distribution, is used to identify the long-term time series patterns of annual wheat yield, 

cash price, and futures price from Whitman County. Based on estimation results, cash and 

futures prices are simulated jointly following a stochastic trend process based on September 
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Portland cash price and Chicago Board of Trade futures price from 1972 to 2003. Yield data are 

simulated following a deterministic trend based on historical yield from 1939 to 2003.  

The stochastic dynamic optimization problem is solved numerically based on simulated 

data for 2004 to 2008. Results show that the optimal solutions vary with model specifications 

and have different paths under different preference sets. When comparing the optimal solutions 

from the GEU, the EU models which are special cases of GEU (CES-EU, MR-EU), and a multi-

period additive EU model (MA-EU)1, we find the GEU model has advantages over the EU 

models. The GEU model yields more reasonable hedge ratios and crop insurance coverage levels 

which are consistent with the specified time and intertemporal substitution preferences. It also 

possesses flexibility in specifying the intertemporal preferences separately and completely, 

which the EU models either ignore or cannot differentiate. A further examination of the EU 

models implies that there is possible interchangeability between the CES-EU and the MA-EU 

models, which could be useful for method implementation in empirical studies.  

Following the same risk management problem setting, data arrangement, and the base 

model as in Chapter 2, Chapter 3 presents empirical results of an impact analysis of 

intertemporal preferences, market institutions, and policy alternatives on optimal risk 

management decisions. 

Preference impact analysis implies that optimal hedging behavior of the representative 

farmer is sensitive to intertemporal preferences changes. Risk aversion appears to have a larger 

effect on hedge ratios than time preference and intertemporal substitution. Each of the 

preferences has its own pattern of impact. But even in the separate analysis, the effect is often 

intertwined with influences from other preferences due to relative value changes.  
                                                 
1 This multi-period additive EU model is an extension of the static single period EU maximization model, 
which is widely used in static single-period risk analysis. The model uses the standard constant relative 
risk aversion utility function. 
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The market institution impact analysis shows that hedging transaction costs negatively 

affect optimal hedge ratios and reduce the farmer’s welfare. When crop insurance is coupled 

with a premium subsidy, even an insurance premium loading of 30% is insufficient to reduce the 

farmer’s interest in purchasing the highest available level of insurance coverage. However, 

premium loading definitely reduces the farmer’s welfare.  

Impact analysis of the government price protection parameters, the target price 

specified in the LDP and the loan rate specified in the CCP, shows that both are influential in 

hedging decisions. The corresponding LDP and CCP programs have increasing substitution 

effect for hedging as the price protection level increases.  

The relative impact analysis of current risk management tools shows both crop 

insurance and government programs are influential to the farmer’s welfare improvement while 

hedging has a very limited contribution. In terms of the ranking of these tools, the government 

payment programs have a greater effect on the farmer’s welfare than crop insurance and crop 

insurance outperforms hedging.  

Chapter 4 finds that both CZCE and CBOT prices can be best modeled by an 

ARCH(1)/GARCH(1,1) process. These results are consistent with previous studies on 

agricultural commodity prices, and imply Chinese wheat futures prices behave in a similar way 

as that in the representative world market. Compared with the CBOT wheat futures price, the 

CZCE price has a longer memory and carries more volatility. It is also shown that the excess 

kurtosis problem can be lessened when the conditional distribution are t distributed. The 

goodness-of-fit for the models are obviously improved.  

Bivariate analysis of CZCE and CBOT prices up to the end of 2001 implies the 

interrelations between the two markets are generally not strong and asymmetric during the pre-
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WTO periods. CBOT plays a leading role in the interactions and CZCE behaves more like a 

follower. Price series after 2001 show, however, the two markets have gone through different 

trends, and the correlation between CZCE and CBOT are getting even weaker. Market 

integration of Chinese wheat futures relative to the world market seems diverging compared to 

previous expectations. 
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CHAPTER 2 

INTERTEMPORAL DECISIONS OF FARMERS’ RISK MANAGEMENT: A DYNAMIC 

OPTIMIZATION WITH GENERALIZED EXPECTED UTILITY 

 

 

Abstract: In this paper we attempt an intertemporal study of risk management decisions for 

wheat growers in the Pacific Northwest. We apply a generalized expected utility model (GEU) to 

examine a representative farmer’s optimal choices of hedging ratios and crop insurance coverage 

levels in the presence of government payment programs in a multi-period production 

environment. A stochastic trend model is used to identify the long-term time series patterns of 

annual wheat yields, cash prices, and futures prices from two counties in Washington. The fitted 

models are then used as the base for yield and price simulation over the next five years. The 

stochastic dynamic optimization problem is solved numerically based on simulated data. The 

optimal solutions indicate that the GEU model is feasible in modeling farmers’ intertemporal 

decisions regarding risk management. The comparison between the GEU model and some 

commonly used expected utility models further implies the advantage of the GEU model in being 

flexible to specify farmers’ intertemporal preferences separately and completely.   

 

 

Keywords: intertemporal decision, generalized expected utility, dynamic optimization, risk 

management   
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 I. Introduction  

Agricultural production is a stochastic process greatly affected by unpredictable weather, 

technology advancement, individual farming practices, and price fluctuations in commodity 

markets. The risk management situation confronted by farmers is complicated with intra- and 

inter-temporal uncertainties in continuous multi-period production. Modeling farmers’ risk 

management has been commonly based on a static approach, although a stochastic dynamic 

approach is more consistent with reality. The complexity involved in stochastic dynamic 

modeling is that it requires decision making to incorporate multi-dimensional uncertainties into 

one entirety.  

Expected utility maximization, commonly used as a standard framework in many 

studies including agricultural risk analysis, has been shown feasible in dynamic modeling. It 

allows a risk averse farmer to maximize a summarized discounted von Neumann-Morgenstern 

expected utility function of his or her stochastic income subject to a set of policy and resource 

constraints. Such a specification, however, assumes utility is additively separable and therefore 

implies the decision maker is intertemporally risk-neutral. A generalized expected utility (GEU) 

maximization model, developed by Epstein and Zin (1989, 1991), provides an alternative to 

study intertemporal decisions with further specification of the decision maker’s preferences. The 

model utilizes a recursive utility function of constant elasticity of substitution (CES) form as the 

objective function. This approach incorporates the decision maker’s non-neutral intertemporal 

substitution preference through different levels of elasticity of substitution. In this sense the 

recursive model disentangles intertemporal substitutability from temporal risk aversion.  
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Currently, U. S. farmers are able to use several risk management tools to manage risks, 

and make long term strategic plans accordingly. Futures contracts are a traditional tool for 

farmers to hedge price risk and has been available for a long time. By selling short futures at 

planting time, farmers can lock in a delivered price at harvesting time, therefore reducing market 

price risks. Crop insurance, currently facilitated and subsidized by the US federal government, is 

currently the most popular tool used by U.S. crop producers to manage yield and/or price risks. 

Government payment programs provide direct cash compensation to farmers in bad years as a 

revenue protection. With increased involvement, government allocates a significant amount of 

tax dollars to provide and subsidize all of these programs every year. Despite that, the risk 

management effectiveness and farmers’ participation incentives have always been a concern 

(Brorsen, 1995; Ke and Wang, 2002).            

The objective of this paper is to apply the GEU model to farmers’ intertemporal 

portfolio risk management decisions and compare it with the commonly used additive EU 

models as a framework in such decisions. The farmer’s optimal risk management portfolios are 

examined under the GEU framework, where he/she chooses from hedging instruments, insurance 

products, and government payment programs to maximize utility.  

Specifically, the paper proceeds as follows: 1) Section II reviews literature in 

agricultural risk management modeling; 2) Section III discusses the model structure; 3) Section 

IV introduces the data and the simulation of yields and prices; 4) Section V discusses the 

optimization results; and 5) Section VI summarizes and draws conclusion.  
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II. Existing Literature 

As a modeling framework, the expected utility (EU) maximization approach has been 

applied to producers’ risk analysis in both static and dynamic situations since the 1970s.  

However, unlike its counterparts in economics and finance, a large amount of the existing work 

only use EU under static scenarios in agricultural economics (Nyambane et al., 2002).   

In the standard specification of intertemporal EU maximization, it is common to assume 

an additive and homogeneous von Neumann-Morgenstern utility index. Such a specification, 

however, intertwines two distinct aspects of preference, intertemporal substitutability and 

relative risk aversion (Epstein and Zin, 1989).  Additionally, these models did not perform well 

in empirical examinations (Hansen and Singleton, 1983; Mehra and Prescott, 1985). As a more 

general framework, the GEU model uses a CES-form utility function and has a recursive 

structure. The CES form adds extra flexibility in identifying intertemporal substitution along the 

time span, and is able to disentangle the intertemporal substitution from the risk aversion.  

With the possible and testable separability for risk preference and intertemporal 

substitutability, it is possible to use the GEU model to estimate preference parameters separately 

and examine the form of the objective function. Continuing on from their theoretical paper, 

Epstein and Zin (1991) empirically investigated the parameter estimation and the testable 

restrictions. Although favorable and seemingly consistent with theory, they found those 

estimates and test results are sensitive to consumption measures and instrumental variables.  As 

one of the earliest agricultural economists to apply this GEU model in agricultural production, 

Lence (2000) used 1936-1994 U.S. farm data to study the fitness of a GEU framework and 

farmers’ time and risk preferences. He found the estimated farmers’ utility parameters satisfy the 
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theoretical restrictions of the GEU model.  Furthermore, the EU model is rejected in favor of the 

GEU model. Knapp and Olson (1996) used GEU to solve dynamic resource management 

problems.  They found intertemporal substitution has a substantial effect while risk aversion has 

a very small effect on optimal solutions. Howitt et al. (2002) applied a GEU framework to 

stochastic water supply management. The empirical results underscore the importance of using 

this more general specification of intertemporal preferences.  

On the other hand, studies on agricultural risk management strategies have been 

extended from the earlier one-element models to portfolio models. They analyzed the effects of 

different combinations of instruments and interactions between each instrument. Among them 

are portfolios of crop yield insurance and futures contracts (Myers, 1988), futures market and 

government farm programs (Crain and Lee, 1996), crop yield insurance, futures, options and 

government programs (Wang, et al., 1998), and crop revenue insurance, futures and government 

programs (Zuniga, Coble, and Heifner, 2001; Wang, Hanson, and Black, 2003; Wang, Makus, 

and Chen, 2004). Government programs have been studied either singularly (Miller, Barnett, and 

Coble, 2001) or in a portfolio setting together with other instruments as mentioned above. The 

newly-added counter cyclical payment program in the 2002 Farm Bill has also been investigated 

(Wang, Makus, and Chen, 2004). However, all of these studies are static in nature.  

 

III. Model  

Theoretical Framework 

The foundation of the GEU model for intertemporal analysis builds on the independent 

works of Epstein and Zin (1989, 1991), and Weil (1990). In this study we focus on Epstein and 

Zin’s approach.  
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The representation of the general preference for a decision maker under risk can be 

identified as: 

(2.1)                                         ( ) ( )
1

11t t t tMaxU C E U
ρ ρ

ρ α αβ β +

   = − +    
 

where )(⋅tU  is the von-Neumann Morgenstern utility function indexed by time t ; tE is the 

expectation operator at current period t; the “~” above U indicates the stochastic property of 

utility. β ( 10 << β ) is the discount factor per period and implicitly defines the decision maker’s 

time preference. By consuming at 1+t , he/she only consumes a fraction (β ) of the utility that 

would have been consumed at t . α ( 10 <≠ α ) denotes the risk aversion parameter, and is equal 

to one minus the Arrow-Pratt constant relative risk aversion (CRRA) coefficient. A smallerα  

indicates greater risk aversion. ρ ( 10 <≠ ρ ) denotes the intertemporal substitutability, equal 

to 1)1( −−σ withσ denoting the elasticity of substitution. Early (late) resolution of risk would be 

preferred if ρα )(>< . tC denotes the current consumption which is a function of the risky 

variables and the risk management choice variables. The decision maker’s objective function is 

to maximize current utility, which comprehensively incorporates all of the lifetime expected 

future utilities.  

The recursive GEU specification enables a separation of risk aversion from 

intertemporal substitution and the non-additive intertemporal preference relations. This feature is 

not usually shared by the EU specification. However, the GEU form nests the EU form as a 

special case. The recursive CES EU (CES-EU) preferences, widely used in finance, 

macroeconomics and intertemporal consumption analysis, are obtained when we impose the 

parametric restriction ρα = . 
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(2.2)                                            ( ) ( ){ }1

1

t t t tMax U = 1- β C + β E Uα α α
+

                (CES-EU) 

Moreover, the standard multi-period recursive EU (MR-EU) preference is obtained 

when we further impose 1α ρ= = . As indicated in equation (3), when the utility function is 

defined as a linear combination of current and future consumption levels, the optimization of 

MR-EU becomes a decision maker maximizing the summarized discounted expected 

consumption over a lifetime (finite or infinite time periods). 

 (2.3)                                            ( ) ( )i
t t t t i

i

MaxU 1- C E Cβ β +
 = +  

∑                  (MR-EU) 

Here t iC +  denotes consumption for the thi period in the future. With risk preference 1α = , the 

decision maker is risk neutral. The additive specification due to 1ρ =  implicitly assumes 

preferences are homogeneous (perfectly substitutable) over time; each one of them carries the 

same weight when discounted to the current period. Such additivity is now well known to be too 

restrictive (Weil, 1990). Decision makers may have a clear preference for early resolution of risk 

compared to late resolution of risk (Kreps and Porteus, 1978).  

Application of GEU to Farmers’ Intertemporal Decisions in the PNW 

When applying the GEU framework to our optimization problem, current consumption 

is further defined as net income from the farmer’s wheat production and risk management. The 

farmer uses futures contract, yield insurance, and government programs to construct risk 

management portfolios. Hedge ratios and insurance coverage ratios are endogenous choice 

variables to be determined at the optimum, based on information available at t-1: 

(2.4)            Ct = NCt + CIt + FIt + GIt  

               where NCt = PtYt –PCt, 

FIt = xt-1[Ft – Et-1(Ft)]-TCt, 
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CIt = Pb max[0, zt-1 E t-1 (Yt) - Yt] -  Pret  

GIt = DPt + LDPt + CCPt 

Where DPt = 0.85PD× 0.9Et-1(Yt), 

LDPt = Et-1(Yt) max(0, LR - Pt), 

               CCPt = 0.85× 0.935 Et-1(Yt) max[0, PT - PD - max(Pt ,LR)] 

where NCt is the net income from producing and selling the crops in the cash market; CIt is the 

net income from purchasing yield-based Multiple Peril Crop Insurance (MPCI); FIt is the net 

income from hedging in the futures market; and GIt is the net income from government programs.  

Pt and Yt represent cash prices2 and yields for winter wheat at harvest time respectively, 

with PCt as the production cost. Ft is the futures price at time t and the futures market is treated 

as unbiased.  xt-1 is the hedging amount determined at a previous time period which is positive 

for a long position and negative for a short position. xt-1 is in bold face to indicate its status as a 

choice variable. TCt is the transaction cost of trading futures. Pb is the base price used to 

calculate the indemnity from crop insurance with Pret as the premium3. zt-1 is the coverage 

selection of the insurance and is also in bold face to indicate a choice variable. DP is the direct 

payment program which gives a constant payment to farmers, LDP is the loan deficiency 

payment, and CCP is the counter cyclical payment. PD is the direct payment rate, LR is the loan 

rate, and PT is the target price.  The formulation of DP, LDP, and CCP is specified according to 

the 2002 Farm Bill and calibrated to PNW wheat growers, the chosen area for the empirical 

analysis.  

Due to the nonlinearity in the objective function and the random interrelationships 

among variables, closed-form optimal solutions are unavailable in the dynamic optimization. 

                                                 
2 Cash price is a farm gate price after transportation cost is deducted from the spot market cash price. 
3 The premium of the current year’s crop insurance is paid at harvest time. 
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Therefore empirical solutions are obtained by numerical methods. For the dynamic optimization, 

we simulate yields and prices for the next five years. Optimal levels of crop insurance coverage 

and hedge ratios are determined simultaneously and intertemporally in the presence of 

government programs.  

  

IV. Data, Simulation and Model Calibration 

Data Source 

We select a representative farmer from each of the two counties in Washington State, 

Whitman County and Grant County.   Although both represent dryland soft white wheat farming 

region in the Pacific Northwest (PNW), these two counties have different levels of precipitation. 

Whitman County sits on the east central border of Washington and is part of the highest yield 

area for soft white wheat in the state. Whitman County has an average annual precipitation of 

around 14 inches. In comparison, Grant County is located in the center of the state and does not 

border Whitman County. Grant County is much dryer with an average annual rainfall of 5 inches 

in 2002. Accordingly, wheat production is riskier in Grant County. However, since there is some 

irrigation in Grant County, the yield is not much lower than that in Whitman County (Figure 2.1).  

Historical data for soft white wheat yield, cash price and futures price for Whitman 

County and Grant County are collected and examined to identify time series patterns for 

simulation. The yield data for Whitman County and Grant County in Washington State are 

obtained from the U.S. Department of Agricultural National Agricultural Statistics Service 

(http://www.usda.gov/nass/) and Risk Management Agency (RMA) at annual basis for 1939-

2003 and 1972-2003, respectively.  
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Annual September wheat cash and futures prices from 1973 to 2003 are selected to 

represent harvest prices.  September is also the time when the farmer makes decisions on the 

following year’s hedging and insurance participation, and prepares for the planting of next year’s 

winter wheat crop. For cash price, we use the monthly average of daily September prices at the 

Portland spot market. The data are from the USDA-ERS Wheat Yearbook 

(http://www.ers.usda.gov/publications/so/view.asp?f=field/whs-bb/). Since the PNW region 

grows soft white wheat which has no actively traded futures contract, the Chicago Board of 

Trade (CBOT) September wheat futures contact is chosen by the farmer for hedging. We pick 

the mid-week price of the first week (Wednesday or Thursday) of September to develop our 

dataset.  

Deterministic Trend vs. Stochastic Trend 

Because of the multiple time dimensions involved in GEU specification and dynamic 

programming, simulation of yield data could affect the final optimization results to a large extent. 

Specifying a pattern that is consistent with real processes is critical in this study.  

From the time series plots of Whitman County and Grant County yield (Figure 2.1) for 

1972 to 2003, an upward trend is visible for the last 32 years. There are possibly two sources of 

randomness that influence the county yield time series. One is the stochastic technology changes 

that will determine the “mean” yield in any given year, and the other is the random weather that 

moves the yield around the “mean”. For multi-period analysis, we need to model the long-run 

inter-year randomness from technology changes as well as the short-run random effects brought 

by weather. A stochastic trend model would be more appropriate than any deterministic trend 

models in that it incorporates both types of randomness.  
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Moss and Shonkwiler (1993) developed a single time-dependent stochastic trend model.  

Their model transforms the error term rather than the dependent variable to incorporate the 

possibility of both non-stationary data and non-normal errors in corn yield variation. The model 

is also general enough to include both the standard deterministic time trend and normal errors as 

special cases. This model is adopted for our analysis.  

Similarly for wheat cash and futures prices (Figure 2.2), the long-run unpredictable 

balance of supply and demand determines the annual price trend, and short-run information at 

the market and other factors add more price variability around the trend. Therefore, this 

stochastic trend model is also fitted to price data. 

The model consists of one measurement equation and two transition equations: 

(2.5)                                                                 ttty εµ +=  

                                                                         tttt ηβµµ ++= −− 11  

                                                                         ttt ςββ += −1  

where ty is the independent variable indexed by time t ; 








t

t

β
µ

 is the state vector; tε is the random 

error describing the short run randomness with mean zero and variance 2
εσ ;4 

                                                 
4 The model also allows for a non-normal errors when tε  is assumed to be generated by an inverse 
hyperbolic sine transformation from normality: ( ) ~ (0,1)t te Nτ δ= − , and  

( ){ }
1

21 2ln 1t t tτ θ θε θε−
 

= + +  
 

 where δ  is the non-centrality parameter; )0(0 <>δ  denotes the 

distribution is skewed to the right (left) and if 0=δ  the distribution is symmetric. θ  is associated with 
the degree of kurtosis with 0≠θ  denoting a kurtotic distribution. Thus, the error term can be expressed 

as 
2

t t

t
e eθτ θτ

ε
θ

−−
= . 
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and 
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t  is the error vector describing the long run randomness in the 

transition equation that governs the evolution of the state vector. Both of the errors in the 

measurement equation follow normal distributions and are independent of each other.  

In the basic specification, tµ , the mean component of the dependent variable, is shown 

as a random walk with a drift. Therefore the final generalization shows that the mean of the 

dependent variable grows at a random rate.  

The stochastic trend model reduces to a deterministic time trend model if 0 0β ≠  

and 022 == ςη σσ . If 00 =β , then it reduces to a constant mean regression model.  

Estimation and Simulation for Yields and Prices 

Applying the stochastic trend model to our yield and price data using maximum 

likelihood estimation programmed in GAUSS, we find there is no stochastic trend in the yield for 

Whitman County but there is one for Grant County. The stochastic trend also exists in the 

Portland cash prices and CBOT futures prices (Table 2.1).  

For Grant County yield, cash price and futures price, the significance of estimated ησ  

confirms the existence of a random walk in the mean component. However, the insignificance of 

estimated ςσ  shows such stochastic variation doesn’t exist within the mean of the trend. For 

Whitman County yield, however, the trend is generally a deterministic time trend and there is no 

significant randomness in the slope of the time trend. The simple linear regression model with a 

deterministic time trend appears to be a good model for Whitman County yield5. 

The plots of predicted values versus actual values show that in general the stochastic 

trend models fit the data well by capturing the long-run variation in the trend for wheat yield in 
                                                 
5 We further test for autocorrelation within the series before applying the time trend and find no evidence.  
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Grant County (Figure 2.3) and cash prices (Figure 2.4)6. The 95 percent confidence intervals 

include nearly all of the realizations.     

For the distributions of yield and prices, we conduct normality tests first on the 

detrended data. Results fail to reject the null hypothesis of normality. We also estimate the 

stochastic trend model including non-normal errors. The estimates of the non-normal parameters 

are not statistically different from zero, confirming that the data follow a normal distribution.  

We use the fitted linear time trend model to simulate annual wheat yields in Whitman 

County for the next five years, and use the fitted stochastic trend models to simulate Grant 

County yield, Portland Cash price, and CBOT futures price. An empirical distribution with 2000 

samples is simulated for each of the next five years and for each series. All the series are first 

simulated independently without autocorrelations or contemporaneous correlations. For the cash 

and futures prices, we then impose a correlation of 0.871 based on historical data. Table 2.2 

gives the descriptive statistics of the simulated data.  

Parameter Calibration 

Identification of farmers’ risk preferences and time preferences has been attempted in 

previous studies using different models (Saha, Shumway and Talpaz, 1994; Chavaz and Holt, 

1996; Epstein and Zin, 1990; Lence, 2000).  Among them, Lence used a similar dynamic GEU 

model to estimate US farmers’ preference parameters based on aggregated consumption and 

asset return data from 1966-1994. We implement those estimates, 13.0−=α , 0.89β =  and 

0.9493ρ = , as the base for our representative farmers and assume they stay fixed over time. 

In the determination of current consumption (or net income) level, transportation cost 

between the Portland spot market and the two counties is set at $0.50 per bushel for Whitman 

                                                 
6 Similar pattern is also shown for wheat futures prices.  
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County and $0.47 for Grant County; production cost is determined as $203 per acre for Whitman 

County (Hinman and Baldree, 2004) and $195 for Grant County7; transaction cost associated 

with hedging is set at $0.017/bushel. The price used to indemnify crop loss in the insurance 

programs is the CBOT September wheat futures price plus a Portland basis of $0.45 per bushel. 

The insurance coverage levels are restricted to be either zero or from 50% to 85% with an 

increment of 5%. The insurance premium is computed as the product of the expected indemnity 

(actuarially fair premium level) and 1 minus the regressive subsidy rate specified in current 

policies8.   

For government programs, the direct payment rate PD is set at $0.52 per bushel. The 

base yield used to calculate a per acre payment is set at 90 percent of the expected yield. The 

loan rate (LR) for the LDP is $2.86 per bushel for soft white wheat in Whitman County and $2.91 

per bushel in Grant County. The target price (PT) for CCP is $3.92 per bushel. These parameters 

are based on current US farm policies. 

 

V. Results 

We implement the stochastic dynamic optimization programming using GAUSS and 

numerically solve for the optimal hedge ratios and crop insurance coverage ratios for our 

representative farmers in the two Washington State counties (Whitman and Grant). Results are 

shown in Table 2.3. Note that all the hedge ratios are reported without the negative sign, which 

indicates hedging is in short position in all cases. 

                                                 
7 Production cost for Grant County is derived based on budgeting report for Lincoln County, a similarly 
dry county in Washington State.  Reference: Esser, Hinman, and Platt (2003).  
8 The subsidy rate corresponding to the coverage levels of 50, 55, 60, 65, 70, 75, 80, and 85 percent are 
respectively, 67, 64, 64, 59, 59, 55, 48, and 38 percent.  
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As we can see, the specification of the GEU model gives us extra flexibility in the 

parameterization of the objective function. We are able to explore the feasibility of the GEU 

model as well as to compare the results from GEU optimization with those from other widely 

used expected utility optimization models. The base scenario ( 13.0−=α , 0.89β =  and 

0.9493ρ = ) represents the farmer who is risk averse ( 1α < ) and prefers an early resolution of 

the risk to a late resolution (α ρ< ). The farmer discounts future consumption by a factor of 89% 

and makes a decision for the next five years based on all available information as of today.  

Other scenarios of interest in our study include the two special cases of the GEU base 

model, CES-EU optimization with 1α ρ= = −  and 0.89β = , and MR-EU optimization with 

1α ρ= =  and 0.89β = . The former refers to the case where the farmer is more risk averse and 

has smaller intertemporal substitution preference in consumption, while the latter refers to the 

case when he/she is risk neutral and has perfect intertemporal substitution preference.  

Besides the CES-EU and MR-EU, a multi-period additive EU (MA-EU) optimization is 

also examined. The utility function in this case is the standard constant relative risk aversion 

utility function t
t

CU
α

α
=  where 1α = − , which implies a relative risk aversion coefficient equal 

to 2. This utility function has been widely used in static single-period risk analyses (Mahul, 2003; 

Wang, Hanson, and Black, 2003; Coble, Heifner, and Zuniga, 2000). It is also easy to extend the 

model from single-period to multi-period as in equation (2.6), but note that this multi-period 

version has a static nature. 

(2.6)                                                         i t i
t t

i

CMaxU E
α

β
α
+

  
=   

  
∑                    (MA-EU) 
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Table 2.3 lists results of the Whitman County farmer’s optimal choice on risk 

management portfolios using the four different models. In general, we see that model 

specification is very important in modeling farmer’s risk management behavior and finding the 

optimal portfolios for farmers’ intertemporal decision.  

For the optimal choice of crop insurance, the highest coverage of 85% is favored in all 

cases. This result is consistent with the model setting since the insurance is subsidized by the 

government and no premium loading is charged. The farmer purchases the highest available level 

so as to enjoy the most protection against yield risk and receive the highest subsidy. Also, the 

government commodity programs provide free price protection with a sizable expected income 

transfer.  The farmer will always participate, which reduces the need for futures hedging. 

From the hedge ratios, we can see the hedging levels are always below 32%. This is 

because first there is a transaction cost in hedging. Second, the government LDP and CCP 

programs also have price risk reduction features, which leads to a crowding out effect on hedging. 

Similar results are reported in Wang, Makus, and Chen (2004). The pattern of the hedging ratio 

is different in the GEU base model relative to the other models, and the level of hedging is 

slightly higher in the GEU full optimization. With risk aversion, time preference, and 

intertemporal substitution separately specified, the GEU full model shows the farmer’s optimal 

hedge ratios is increasing over the first four years. The generally higher level of hedging, 

compared with results from other alternative models, implies he/she prefers to resolve the risk 

earlier rather than later. Although the farmer prefers an early resolution of risk, his or her 

relatively high intertemporal substitutability of consumption may balance the preference in a way 

that hedging would be kept at a slightly increasing rate to meet the increasing price volatility. In 

the fifth and final year, the farmer would reduce spending on hedging and accept more risk.  
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In the CES-EU model, the farmer’s risk aversion and intertemporal substitution of 

consumption is integrated as one preference. The optimal hedge ratio is higher in the first year 

and then becomes lower in the second through the fifth years compared to the corresponding 

ratios in the GEU full model. The CES-EU model also displays a decreasing pattern over the five 

years. The higher level of hedging in the first year is consistent with the farmer’s higher risk 

aversion. The pattern switches for the second year, however. Since the risk aversion and 

substitution preference are mixed together in this case, the effects of the two preferences are hard 

to differentiate in a cross-year setting. They may be competing against or reconciling with each 

other, which, neither of which is observable.   

The CES-EU results are comparable to the MA-EU results in that they both share the 

same risk aversion. Interestingly, these two models yield nearly the same optimal hedge ratios. 

We have further checked with other risk aversion values including 2α = −  and 0.5α = , and get 

similar results. The comparison gives the impression that these two models work very similarly 

in modeling the optimization behavior for the decision maker’s risk management. This result 

indicates that although the GEU does not include the popular additive EU models for risk 

averters, its CES-EU component is equivalent. So, GEU is perhaps more general than it appears. 

As a very special case of the GEU model, the MR-EU model applies to a farmer who is 

risk neutral and has perfect intertemporal substitutability in consumption. Consistent with these 

preferences, the optimal hedging ratio is zero for each year, reinforcing that the decision maker 

does not care about risks and has no specific concerns regarding consumption across years.  

Optimal choices for the representative farmer in Grant County are very similar to 

Whitman County. The farmer prefers slightly less hedging than the Whitman farmer but still 

buys the same coverage of crop insurance. Although the production is riskier in Grant County 
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because yield is a bit more stochastic, there is no huge gap between the yield levels as shown in 

the historical data (Figure 2.1). Also we assume farmers in both counties face the same prices, so 

they are exposed to the same price risks. The hedge ratios are very close to those in Whitman 

County under the same preference set.  

In summary, the comparisons between the four models for Whitman County and Grant 

County in Washington State show that the GEU model is feasible by yielding reasonable results 

on optimal risk management portfolios. For a farm planning on multi-period management, GEU 

shows an optimal strategy that is more consistent with reality on hedging and crop insurance for 

the decision maker, who wants to maximize utility over the whole time span. The GEU model 

framework is also flexible enough to account for separate risk, time, and substitution preferences, 

and is able to incorporate other commonly used EU models that have either ignored 

intertemporal substitution preference or integrated such substitution with risk preference. 

 

VI. Summary and Conclusions 

In this study we extend the GEU maximization framework to analyze a risk 

management problem related to wheat production in the PNW. A representative soft white wheat 

grower in Whitman County and Grant County, Washington, maximizes his or her utility by 

selecting an optimal portfolio of risk management tools including hedging in the futures market, 

purchasing crop insurance, and participating in government commodity programs. The GEU 

model allows the decision maker to completely specify risk preference, time preference, and 

intertemporal substitution preference. It also incorporates other common expected utility 

maximization models like CES-EU and MR-EU models as special cases. A very popular but 

different type of static EU (MA-EU) model is also added for comparison purpose. 
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We solve the maximization problem numerically based on simulated yield and price 

data for the next five years. In simulating the data, we apply a stochastic trend model which is 

able to capture stochastic properties within the long-run trend in addition to those from the short-

run disturbances. It is also general enough to include the deterministic time trend model as a 

special case. Stochastic trends are found in the historical Grant County yield, Portland cash price, 

and CBOT futures price.  

We find optimal solutions for farmers in both Whitman County and Grant County vary 

with model specifications, indicating the importance of appropriate model selection and 

parameterization. The GEU model is feasible in modeling farmers’ risk management decisions in 

both counties by giving more reasonable results and the general form of GEU has advantages in 

incorporating more preference information about the decision maker.  The commonly used MA-

EU model gives almost the same results when the risk aversion is specified at the same level as 

in the CES-EU, indicating that these two types of models might be interchangeable.  However, 

these results are different than the GEU model when the preferences parameters are set at 

different levels.  This shows that (1) GEU is more general and can incorporate more flexible 

preference, (2) the commonly used additive EU models may yield biased results relative to the 

decisions based on the true preference. The results are completely different in the risk neutral and 

perfect substitution MR-GEU setting.  

The optimal choice of the hedging ratios is around 30% and that of the crop insurance 

purchase is always 85% in both counties. These levels are in line with the existing static one 

period studies. The subsidy in crop insurance overshadows its risk management feature so that 

the optimal insurance coverage is invariant with respect to the preference alternatives. 
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Although we have obtained favorable results concerning the feasibility and flexibility of 

the GEU model, further research on the GEU framework and its applicability in modeling and 

explaining dynamic agricultural risk management issues is still important and necessary. First, 

sensitivity analyses of the optimal solutions in response to the preference changes and to changes 

in risk management tools may provide information on farmers’ preference dynamics and policy 

impact issues. Such sensitivity analyses will help further explore the advantages of the GEU 

optimization model. Second, our results so far only focus on the two counties which are 

geographically close to each other. It will be interesting to extend the research to other locations 

where there is more heterogeneity in farmers’ price and yield risks.  Third, other instruments 

such as revenue insurance products should be investigated to make additional contributions in 

policy analysis.   
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Figure 2.1. Historical Soft White Wheat Yields in Whitman and Grant (1972-2003)        
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Figure 2.2.  Historical Wheat Cash and Futures Prices (1973-2003) 
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Figure 2.3. Stochastic Trend Model Fitting for Grant Wheat Yield (1972-2003) 

Predicted vs. Actual 
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Figure 2.4. Stochastic Trend Model Fitting for Wheat Cash Prices (1973 to 2003) 

Predicted vs. Actual  
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Table 2.1.  Stochastic Trend Estimation of Historical Yield and Price Data 

         (Normal distribution) 

 

Parameter 

 

Whitman Yield 

 

Grant Yield 

 

Cash Price 

 

Futures Price 

 

0µ  

 

27.29**(3.63) 

 

44.22**(6.29) 

 

5.24**(3.25) 

 

4.64 (3.24) 

0β  0.73 (1.00) 0.94 (1.16) -0.04 (1.02) -0.03 (1.11) 

εσ  7.13**(0.63) 6.92**(1.46) 0.00 (1.02) 0.00 (0.23) 

ησ  0.00 (0.15) 3.10*(2.04) 0.75*(0.10) 0.71*(0.09) 

ςσ  0.00 (0.03) 0.00 (0.25) 0.00 (0.07) 0.00 (0.07) 

 

Note: 1. Standard errors of the estimates are included in the parentheses. 

2. “*” denotes the estimate is statistically significant at 0.10 level, and “**” denotes 

significance at 0.05 level. 
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Table 2.2. Descriptive Statistics of the Simulated Yield and Price Data 

 

Statistics 

 

Year1 

 

Year2 

 

Year3

 

Year4 

 

Year5 

 

Year1 

 

Year2 

 

Year3 

 

Year4 

 

Year5 

 
 

Whitman Simulated Yield (bushel/acre) 

 

Grant Simulated Yield (bushel/acre) 

Mean 75.28 75.93 76.77 77.36 78.24 75.19 76.27 76.30 77.34 78.02 

Std Dev. 7.26 7.22 7.28 7.06 7.23 7.49 8.15 8.36 9.46 9.65 

Skewness -0.01 -0.03 0.02 0.07 -0.04 -0.08 -0.02 0.03 -0.05 0.02 

Kurtosis 0.24 0.14 -0.03 0.07 -0.005 0.08 0.26 -0.09 0.16 -0.4 

 

 

 

Portland Cash Price (dollar/bushel) 

 

CBOT Futures Price (dollar/bushel) 

Mean 3.93 3.86 3.82 3.79 3.77 3.56 3.51 3.49 3.46 3.44 

Std Dev. 0.66 0.91 1.07 1.21 1.34 0.68 0.96 1.15 1.29 1.44 

Skewness 0.02 0.02 0.06 0.10 0.06 -0.04 0.02 0.10 0.07 0.05 

Kurtosis -0.05 0.06 -0.06 0.20 -0.12 0.03 0.01 -0.20 -0.26 -0.31 
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Table 2.3. Optimal Hedge Ratio and Crop Insurance Coverage: Model Comparison  

 

 
Alternative Model  Hedge Ratio 

  

Crop Ins. 
Cov. Ratio

Specifications 
 

Year1 

 

Year2

 

Year3 

 

Year4 

 

Year5 
 

 

Year1-5 

 
Whitman County 

       

 
GEU full 
(α= -0.13, β = 0.89, ρ = 0.9493) 
 

0.25 0.31 0.32 0.32 0.26  0.85 

CES-EU 
(α = ρ = -1, β = 0.89) 
 

0.29 0.27 0.25 0.25 0.22  0.85 

MR-EU 
(α = ρ = 1, β = 0.89) 
 

0 0 0 0 0  0.85 

MA-EU 
(α = -1, U(C) = -1/C, β = 0.89) 
 

0.29 0.27 0.25 0.25 0.22  0.85 

Grant County        

 
GEU full 
(α= -0.13, β = 0.89, ρ = 0.9493) 
 

0.25 0.31 0.32 0.32 0.24  0.85 

CES-EU 
(α = ρ = -1, β = 0.89) 
 

0.31 0.28 0.26 0.25 0.21  0.85 

MR-EU 
(α = ρ = 1, β = 0.89) 
 

0 0 0 0 0  0.85 

MA-EU 
(α = -1, U(C) = -1/C, β = 0.89) 
 

0.31 0.28 0.26 0.25 0.21  0.85 

 

 



 

 42

 

CHAPTER 3 

THE IMPACTS OF INTERTEMPORAL PREFERENCES, MARKET INSTITUTIONS, 

AND GOVERNMENT POLICIES ON FARMERS’ RISK MANAGEMENT  

BEHAVIOR AND WELFARE 

 

Abstract: This paper applies the generalized expected utility (GEU) approach developed by 

Epstein and Zin (1989, 1991) to dynamic agricultural risk analysis. We explore the impacts of 

alternative preference parameters of farmers including risk aversion, time preference, and 

intertemporal substitutability on their optimal risk management portfolio selection. The portfolio 

includes hedging in the futures market and participating in crop insurance and government 

commodity programs. Furthermore, we introduce a welfare measure into the GEU model, the 

certainty equivalent, and investigate farmers’ welfare improvement provided by U.S. 

government programs and market institutions. We find farmers’ optimal hedge ratio is sensitive 

to changes in preferences, and the effects of these preferences changes are intertwined. The 

market institution impact analysis shows that transaction cost of hedging negatively affect 

optimal hedge ratios and reduce farmers’ welfare. Target price and loan rate level, which impact 

the loan deficiency payment and counter-cyclical payment programs, play an important role in 

hedging decisions and lead to substitution effects for hedging. The policy impact analysis shows 

both crop insurance and government payments are influential to farmers’ welfare improvement. 

Government payment programs have a greater effect on farmers’ welfare than crop insurance 

and crop insurance outperforms hedging.  

Keywords: intertemporal preferences, market institution, policy, GEU, risk management 
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I. Introduction 

Farmers’ intertemporal consumption preferences are heterogeneous in that they have 

different risk attitudes, different time values, and different substitution preferences. The risk 

management resources in the US also changes over time as new policies and market institutions 

are constantly developed to improve risk protection for farmers. The most commonly used risk 

management instruments are futures contracts, crop insurance programs, and government 

commodity payment programs. These programs are revisited and adjusted every few years. In 

order to effectively utilize these risk protection programs, farmers need to adjust their 

expectations as well as risk management strategies throughout the production process.  

Farmers have traditionally used hedging in the commodity futures markets to seek price 

risk management. Hedging has a long history of being one of the most available and direct risk 

management tools for farmers. Since the 1980s, farmers’ use of crop insurance products has 

increased largely as the Federal Crop Insurance Corporation expanded Multi-Peril Crop 

Insurance (MPCI), and later included other yield and revenue insurance products. Now crop 

insurance has become the most popular risk management tool for the U.S. crop producers.  

In recent years, the federal government increased its involvement in providing and 

facilitating risk protection instruments to farmers. The 2002 Farm Bill includes three major 

programs to farmers: a loan deficiency payment (LDP), a direct payment (DP), and a counter 

cyclical payment (CCP). The LDP and DP are inherited from the 1996 bill, and the CCP is a new 

program added to the 2002 bill as a revision and resumption of the deficiency payment program 

in the 1990 bill. These payment programs work as price insurance but without any premium 

charge. However, the programs are usually offered for a multi-year period. Provisions require 
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that farmers make the decision on weather or not to participate in the programs at the beginning 

of the period. 

Farmers’ decision making and welfare are based on individual preferences in a given 

risk and policy environment. In a generalized expected utility (GEU) maximization model 

proposed by Epstein and Zin (1989) and Weil (1990), a class of recursive preferences was 

developed over intertemporal consumption sets. The constant elasticity of substitution (CES) 

form of the objective utility function allows risk aversion to be disentangled from intertemporal 

substitutability of consumption. Generally a decision maker’s expected utility is subject to 

changes in three types of preferences: risk aversion, time discounting, and intertemporal 

substitutability. His or her intertemporal decisions are determined by the mutual effects of all 

these preferences. According to the model, uncertainty about consumption is resolved over time 

and preference orderings generally imply non-indifference to the way it resolves. An earlier 

(later) resolution of consumption is generally preferable when risk aversion is greater (less) than 

intertemporal substitutability. The GEU model provides a possibility to study farmers’ 

intertemporal risk management decisions while considering their preferences toward risk, time, 

and inter-year substitution of consumption. It also allows us to examine the impacts of changing 

U.S. agricultural policies on farmers’ behavior at the same time.  

The objective of this paper is to investigate the impacts of intertemporal preferences 

towards risk, substitution, and time, as well as market institutions and policy alternatives, on 

farmers’ risk management behavior in a dynamic GEU maximization setting. We are also 

interested in evaluating the different risk management tools and weighing their roles in risk 

management portfolios. The rest of the paper is organized as follows. Section II gives a general 

review of literature. Section III introduces the data source and method used for estimation, 
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simulation, and optimization. Section IV discusses the results and Section V summarizes the 

findings and draws conclusion.  

   

II. Previous Research 

Analyses of decision maker’s preferences have drawn attention in the literature and have 

been examined in many empirical economic studies (Hansen and Singleton, 1982, 1983; Hall, 

1988). Most of the research has focused on identifying or estimating preferences rather than 

studying the role of the preferences in making optimal decisions. Within the agricultural 

economics literature, the focuse has been on the estimation of risk and time preferences (Saha, 

Shumway, and Talpaz,1994; Chavas and Holt, 1996; Barry, Robinson, and Nartea,1996), or on 

risk management analyses under certain given preferences (Coble, Heifner, and Zuniga, 2000; 

Mahul, 2003).  

Instead of focusing on instruments like hedging or crop insurance separately, many 

recent studies on risk management strategies have been extended to portfolio analysis and focus 

more on the interactions and relative impacts of the instruments within a portfolio. For example, 

there are portfolios of crop yield insurance and futures contracts (Myers, 1998), futures market 

and government farm programs (Crain and Lee, 1996), and crop yield insurance, futures, options 

and government programs (Wang, et al., 1998). Dhuyvetter and Kastens (1999) concluded that 

hedging reduces the risk management advantage of revenue insurance over yield insurance. 

Zuniga, Coble, and Heifner (2001) found that crop revenue insurance works better than yield 

insurance when no market instrument is used. Yield insurance, however, becomes competitive 

when market-based pricing instruments are included in the portfolio. Wang, Makus, and Chen 

(2004) detected some crowding-out effects of government programs on hedging. 
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Studies on measuring farmers’ welfare change are found in literature, but very few 

concentrate on farmers’ welfare changes under different risk management portfolios. Wang, et al 

(1998) found Iowa corn farmers’ willingness to pay decreases as the trigger yield level of crop 

insurance increases at a decreasing rate. Mahul (2003) found futures and options would improve 

French wheat producers’ willingness to receive when hedging is used in the presence of crop 

insurance. Wang, Makus and Chen (2004) found U.S. farm program payments account for the 

primary value of all risk management portfolios for Pacific Northwest dryland grain producers. 

Most of the research discussed so far was based on a traditional expected utility (EU) 

maximization framework. When Epstein and Zin developed GEU, the decision maker’s risk 

aversion was able to be disentangled from intertemporal substitutability. In their empirical paper, 

Epstein and Zin (1991) found the elasticity of substitution is typically small (always less than 

one). Additionally, risk preference defined as one minus constant relative risk aversion (CRRA) 

does not significantly differ from zero (CRRA close to one). As the only one who has used the 

GEU approach to study agricultural risk management, Lence (2000) estimated U.S. farmers’ 

time preferences and risk attitudes based on historical data from 1936 to 1994. The estimates are 

consistent with theory. Farmers have time preference around 0.95, substitution parameter for 

consumption around 0.9, and CRRA greater or close to one. In particular, farmers have become 

less risk averse over time.  

Other possible applications of GEU, like sensitivity analyses of dynamic optimization 

solutions with respect to a decision maker’s preferences and other exogenous variables, have not 

been explored. No one has attempted developing a welfare measure in GEU models. Adaptation 

of this framework specifically to agricultural risk management portfolio studies has not been 
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available in the literature9. This chapter will make an effort to contribute to the literature from 

this perspective.  

 

III. Model 

We use the base GEU model, model (1) developed in Chapter 2, for the impact analysis 

in this paper. This base model allows complete parameterization of preferences and allows a 

flexible structure of the risk management portfolio. Again, the model is specified as follows: a 

decision maker attempts to maximize his or her CES expected utility of consumption, under a set 

of preferences in risk, time, and intertemporal substitution of consumptions;  

(3.1)                                       ρα
ρ

αρ ββ
1

1 ]})~([)1{( ++−= ttttx
UECUMax  

where the current consumption, Ct, is defined as a net income from production and risk 

management using crop insurance, futures hedging, and government programs;  

(3.2)                                       Ct = NCt + CIt(zt-1) + FIt(xt-1) + GIt  

where NCt is the net income from producing and selling the crops in the cash market; CIt is the 

net income from crop insurance; FIt is the net income from hedging in the futures market; and 

GIt is the net income from government programs. Hedge ratios xt-1 contained in FIt and insurance 

coverage ratios zt-1 contained CIt are endogenous choice variables to be determined at the 

optimum, based on information available at t-1.10  

Government programs include three major payment programs; the direct payment (DP), 

the loan deficiency payment (LDP), and the counter-cyclical payment (CCP). They are specified 

as:  

                                                 
9 Chapter 2 of this dissertation, however, has shown an application of the GEU model. 
10 Detailed specifications of each component can be found in the previous chapter. 
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(3.3)                                  DPt = 0.85PD× 0.9Et-1(Yt), 

LDPt = Et-1(Yt) max(0, LR - Pt), 

                   CCPt = 0.85× 0.935 Et-1(Yt) max[0, PT - PD - max(Pt ,LR)] 

where PD is the direct payment rate, LR is the loan rate, and PT is the target price. The formulation 

of DPt , LDPt , and CCPt is specified according to the 2002 Farm Bill and calibrated to the 

Pacific Northwest (PNW) wheat growers, the chosen area for the empirical analysis in this paper.  

 To further measure the risk management value and the income transfer value of 

alternative risk management instruments to the farmer, we extend the base GEU model by 

introducing a certainty equivalent (CE) variable. We choose CE to evaluate alternative risk 

management portfolios relative to cash sales, under certain specified preference sets. Here CE is 

the certain amount of money that would be offered to the farmer in every period to keep him or 

her as well off as providing the farmer with the specified risk management portfolio. CE can be 

calculated by solving: 

(3.4)          * * * 0 0 0 0
1 2 1 2( , ( , ,..., )) ( , ( , ,..., ))t t t t t t i t t t t t t iU C E C C C U C E C CE C CE C CE+ + + + + += + + +  

where * , 1,2,...,t iC i+ =  is the optimal consumption (net income) under a specific portfolio in the 

next ith period, and 0 , 1,2,...,t iC i+ =  is the net income from selling in the cash market which is 

defined as the NCt for that period. 

 

IV. Data, Simulation, and Model Calibration 

Data Source and Simulation 

The impact analyses in this paper are based on the risk management practices of a 

representative farmer from Whitman County in Washington State. Historical annual data for soft 

white wheat yield (1939-2003), cash prices and futures prices (1979-2003) are collected and 
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examined to identify time series patterns. After a stochastic trend model fitting, the yield and 

prices are simulated for the next five years based on the fitted models. A deterministic time trend 

model is used to simulate future yields, while a stochastic trend model is used to simulate future 

cash prices and futures prices.   

The source and process of data collection, time series model fitting, and data 

simulation are discussed in detail in Chapter 2. Therefore, we directly import the simulated 

Whitman County data series to the base model in this chapter without adjustment or 

manipulation.  

Parameter Calibration 

Again, the full discussion of the parameter calibration is included in Chapter 2. Here we 

briefly repeat the results.  In the base model, the preferences are set at 13.0−=α , 0.89β =  and 

0.9493ρ =  for the representative farmer, as estimated by Lence (2000) based on US farmers’ 

consumption data from 1966 to 1994. For the impact analysis, we will allow the values to vary, 

one at a time, within the theoretical ranges, i.e. 0 1α≠ < , 0 1β< < , and 0 1ρ≠ < .  

In the determination of a current consumption (or net income) level, transportation cost 

between the Portland spot market and Whitman County is set at $0.50 per bushel; production 

cost is determined as $203 per acre; and transaction cost associated with hedging is set at 

$0.017/bushel. The price used to indemnify crop loss in the insurance programs is the CBOT 

September wheat futures price plus a Portland basis of $0.45 per bushel. The insurance coverage 

levels are restricted to be either zero or from 50% to 85% with an increment of 5%. The 

insurance premium is computed as the product of the expected indemnity (actuarially fair 

premium level), and 1 minus the regressive subsidy rate specified by current policies. 
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For government programs, the direct payment rate PD is set at $0.52 per bushel. The 

base yield used to calculate a per acre payment is set at 90 percent of the expected yield. The 

loan rate (LR) for the LDP is $2.86 per bushel for soft white wheat in Whitman County. The 

target price (PT) for CCP is $3.92 per bushel. These parameters are based on current US farm 

policy provisions. 

 

V. Results 

Based on GEU maximization, we examine the impacts of risk aversion, time preference, 

and intertemporal substitutability on farmers’ optimal choice of hedging and crop insurance 

participation through parameterization of the preferences. By setting the price instruments with 

futures contracts, insurance policies, and government payments at different levels, we examine 

the impacts of market institutions. In addition, we investigate the relative impacts of each of the 

major risk management tools through various ways of constructing a risk management portfolio. 

These impacts are not only reflected in the optimal level of hedge ratios, but also in the cash 

value associated with the choice.  

In order to differentiate the impacts of intertemporal preferences from those of market 

and policy alternatives, we consider three cases. First, assume the set of policy and market risk 

management tools stays the same while farmer’s preferences vary, with the preferences changing 

one at a time. Second, only allow crop insurance to change parameters while keep hedging and 

government program parameters invariant. Last, we change government programs parameters 

and leave futures and crop insurance unchanged.   
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Impacts of Preferences: Risk Aversion, Time Preference, and Intertemporal Substitutability  

We solve the GEU optimization problem by dynamic programming using GAUSS for 

risk aversion parameter ranging from -5 to 1 (Arrow-Pratt CRRA coefficient from 0 to 6), time 

discount factor from 0.1 to 0.9, and substitution preference from -5 to 1. The examinations are 

conducted separately for each of the preferences. We change only one preference parameter at a 

time, while holding the other two preferences at the same level as in the base scenario. 

Theoretical restrictions on the parameters have been considered so that only feasible values were 

assigned within each range.  

At this time, the farmer can choose from hedging in the commodity futures market and a 

no-load MPCI yield insurance. He or she is also able to receive government payments through 

DP, LDP, and CCP. The parameterization for these risk management instruments is at the base 

level. Results show that differences in the optimal portfolio are only in hedge ratios, the crop 

insurance purchase ratios are always at 85% level. Therefore, we focus on the variation in hedge 

ratios in the following discussion. 

Risk Aversion 

Figure 3.1 displays how hedge ratios in the next five years respond to risk aversion (α ) 

changes11. In general, the farmer’s optimal hedge ratios12 are sensitive to variations inα . In the 

first year, which is the most responsive, a 1% increase in α  (from around -3 to close to 1) results 

in a 0.74% decrease in the hedge ratio (from 35% to close to 0). Regarding the evolution of 

hedge ratios for each year, it shows a similar pattern throughout the five years. All ratios first 

increase very slowly when the farmer’s risk aversion varies at higher levels (α from -3 to -1 or 
                                                 
11 We only select some “typical” values of risk aversion to display in the graph for space consideration. 
We did the same in the graphs of time preference and intertemporal substitutability. Complete results are 
in Appendix A.1-A.3. 
12 Here all hedge ratios are in short positions. When referring to hedge ratios, we usually mean the 
magnitude rather than the sign unless specifically stated.  
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CRRA from 4 to 2). Then the ratios switch one by one to decrease as risk aversion gets smaller. 

Specifically, the turning points are atα equal to -3, -0.8, -0.6, 0.1, and 0.6 for the first until fifth 

year, respectively. After the turning point, hedge ratios generally decrease at a faster rate. This 

decreasing pattern seems more consistent with the intuition that less risk averse people would 

tend to hedge less. However, the increasing pattern before the turning point is still possible to 

happen. Similar patterns have been seen in empirical dynamic hedging research (Martinez and 

Zering, 1992).  

At a specific risk aversion level, the optimal hedging level appears to decrease over the 

five years if the farmer is highly risk averse (α less than -2). The pattern is almost reversed if the 

farmer is not very risk averse (α greater than 0.2). For farmers who have mild risk aversion, the 

pattern is mixed. Depending on the specific point he or she is at, the farmer may hedge more 

either in the early stages or in the later stages. Theoretically, ρα )(>< indicates the decision 

maker prefers early (late) resolution. Therefore when the farmer is very risk averse, he or she 

would want to resolve risk as early as possible by hedging more in early years, and vice versa. 

However, hedging reduces risks but also costs the farmers some certain income because of the 

futures transaction cost. Asα and ρ get close, althoughα ρ< holds for the entire range in Figure 

3.1, the preference of early resolution gets weak and the time discount of fixed transaction cost 

makes the farmer want to hedge less earlier and more later. Similar observations also exist in the 

sensitivities of time preference and intertemporal substitution. 

Time Preference 

From Figure 3.2 we notice that the hedge ratios are responsive to time preference 

changes but not as much as to risk aversion. The most responsive ratio is for the first year, but it 

only varies between 32% and 25%. Ratios for the second to fourth year only change from 30% to 
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32%, and ratio for the fifth year has only minor changes. Second, hedge ratios have a convex 

pattern but only the turning points for the first two years (β = 0.3 and 0.5, respectively) are 

observable within the range ofβ . Third, for the last year when farming is about to end, the hedge 

ratio is always around 25.5% for allβ levels, quite different from the other years, especially 

those for the second to fourth year.  

Sinceβ is defined as the time discount factor, by postponing consumption to next period 

the farmer only gets a fraction (β ) of the utility that he or she would get by consuming an equal 

amount during the current period. Therefore with a higherβ , the farmer will have a greater 

propensity to consume in the future instead of the current time period. In our case, asβ becomes 

bigger or the future consumption is less discounted, the farmer values the future income and 

income risk more than today’s, and hedging decreases in the early years. The hedge ratios are 

increasing during the third until fifth year over all β values, and increasing for the first two years 

beforeβ gets to the turning point.  

At a specific time preference level, the farmer tends to hedge more in earlier years due 

to a preference for an early resolution of consumption risk. This pattern is more obvious in hedge 

ratios whenβ is low, but it then slowly changes as hedge ratios move to the turning point.  

Intertemporal Substitutability 

Optimal hedge ratios are generally sensitive to changes in intertemporal substitutability 

as shown in figure 3.3. Hedging percentages are primarily increasing as ρ  gets larger. The 

pattern switches when ρ reaches the turning point in the first and second year.    

A larger ρ represents a more substitution of consumption across years. Therefore, 

optimal hedge ratios differ for large versus small ρ  values across the first four years, most 
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noticeably in the third and fourth year. For a range between -5 to 0.8, the increase inρ for a 

given ( 0.13)α α = − also affects attitudes towards risk and timing. The farmer’s preference 

toward resolution of risk will change from late to early. Combined with the increasing 

substitution effect of late consumption for early consumption, it can be seen that hedge ratios for 

the first four years change relative to each other.    

In summary, sensitivity analysis of intertemporal preferences shows that optimal 

hedging behavior of the representative farmer is sensitive to intertemporal preferences change. 

Risk aversion appears to have a larger effect on hedge ratios than time preference and 

intertemporal substitutability. Each of the preferences seems to have a different pattern of impact. 

But even in the separate analysis, the effect is often intertwined with influences from the other 

preferences due to relative value changes among them.  

Impacts of Market Institutions: Transaction Cost and Insurance Premium Loading 

Transaction costs related to futures contracts and insurance premiums are the major 

costs farmers pay for using hedging to reduce price risk and crop insurance to manage yield or 

revenue risks. To examine how these institutions affect farmers’ risk management decisions, we 

set up different levels for transaction cost and premium loading, while other parameters in the 

model remain fixed. The impacts of transaction costs and insurance premium loading are studied 

in detail based on the base model. We also briefly discuss the impacts of these two factors based 

on results from other EU-type models in a later section. 

Transaction costs are what farmers must sacrifice from current income to receive future 

market price protection if they choose hedging to reduce price risk. When transaction costs are 

charged, hedging has offsetting impacts. More hedging improves farmers’ expected utility 

through price risk protection, but it also reduces utility by directly lowering current consumption. 
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Using the base model where all tools are included, we first let transaction cost vary from 

$0/bushel to $0.017/bushel, the current market level, at an increment of $0.001. Because the 

CCP in government programs also has a market price protection function, we remove the CCP 

from the risk management pool and make hedging the only tool to reduce price risk. The 

summarized optimal hedge ratio changes are reported in Figure 3.4 and Table 3.1.  

Figure 3.4 displays how the hedge ratios react to variations in transaction cost for the 

first year. A similar pattern is also exhibited in the second through fifth year, but the ratios are at 

decreasing levels as implied by Table 3.113. The optimal hedge ratios generally display a 

decreasing trend as transaction costs increase, and the amount of the change is relatively small. 

From the upper panel in Table 3.1, we can see that 1% change in transaction costs result in about 

0.3% change in the hedge ratio during the first year when the government CCP is included. The 

implication is that for our representative farmer, hedging is responsive but not very sensitive, to 

changes in transaction costs when government price protection is available.  

Comparing the lower panel with the upper panel in Table 3.1 shows that after the CCP 

is removed, the hedge ratio increases by 45%, from 0.42 to 0.61, given the same transaction cost 

variation. Without the CCP, the ratios also appear to decrease faster from the first year to the 

fifth year. That is a steeper slope of the trend line. This suggests a smaller tolerance to a 

transaction cost increase without assistance from the CCP.  

To find out the impact of premium loading charged for crop insurance purchases, we 

examined the optimal insurance coverage in response to changes in loading from 0% to 30%, 

with an increment of 5%. Our results based on the base model and various other portfolios show 

(Table 3.2), however, that farmers would always choose to buy the highest available coverage of 

85%. One possible explanation for this could be that the crop insurance is heavily subsidized by 
                                                 
13 Complete results are in Appendix A.4. 
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the government. Therefore, although our representative farmer needs to pay more on premiums, 

the expected return from participating in the insurance program is still higher than the cost. 

Accordingly, it is beneficial to buy insurance at 85% rather than any lower coverage level.       

In summary, the impact analysis of market institutions shows that farmers are more 

responsive to the changes in transaction cost than in insurance premium. But the responsiveness 

in hedge ratios to transaction cost is relatively inelastic, indicating hedging might not be a major 

consideration in farmers’ risk management decisions. Our representative farmer would always 

choose to purchase insurance at the highest level 85%. Apparently the expected return due to 

crop insurance premium subsidies covers the expenses due to premium loading. 

Impacts of Government Price Protection: Target Price and Loan Rate 

Apart from hedging, government programs also contain elements of market price 

protection. Base on values of the parameters for the target price (PT) and loan rate (LR) relative to 

the expected market price, farmers receive price protection. Here we study the impacts of these 

two parameters by changing their values hypothetically, while keeping the expected cash price 

based on simulated distribution fixed for the next five years.  

The impacts of these two parameters based on base model optimization are combined in 

one graph as shown in Figure 3.5. The graph shows how optimal hedge ratios change as the 

government protection level varies over the next five years. The process of combining the 

impacts works as follows. First, when the target price changes from the current level of 

$3.92/bushel down to $2.86/bushel, the loan rate remains at $2.86/bushel. Therefore, the price 

range from $3.92 to $2.86 on the horizontal axis represents impacts from reducing the CCP’s 

target price. When the target price drops below $2.86, the CCP actually has a zero value and no 

longer plays a role in hedging decision. Thereafter, the loan rate varies from $2.86 to $0, 
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reflecting a decreasing level of protection from the LDP. When the loan rate finally reaches $0, 

the LDP drops out of the hedging decision. No more direct price protection is available in 

government programs at this point.  

From Figure 3.5, the pattern for target price variation is different than for the loan rate. 

From $0 to $2.86, hedge ratios decrease at an increasing rate as more price protection from 

government programs becomes available, implying an increasing substitution effect of LDP for 

hedging. When the loan rate is $0, hedging is the only way to reduce price risk and the optimal 

hedge ratio for each year reaches the highest possible level of around 0.78. This maximum level 

is determined by the correlation between the cash and futures prices as well as the transaction 

cost level. Also as the loan rate increases, hedge ratios for the later years drop faster than those 

for the earlier years. Again, this is because early resolution of risk is preferred to late resolution.  

From $2.86 to $3.92, the impact of the CCP’s target price enters the hedging decisions 

but takes effect step by step. From a target price level of $2.86 to almost $3.52, the CCP does not 

impact hedging. The hedge ratios essentially remain at the same level. This is from the impact of  

the $0.52 direct payment (PD)14. Starting from $3.52, the target price begins to exceed the 

threshold. Hedge ratios drop rapidly until finally reaching 0.30~0.42, indicating an increasing 

influence from CCP on the risk management decisions and a greater substitution of CCP for 

hedging.  

In summary, optimal hedging is sensitive to variations in the LDP loan rate and the CCP 

target price. Results indicate a strong substitution effect from the government LDP and CCP for 

                                                 
14 As defined early, CCP takes effect after a “trigger price” is reached, i.e. CCPt = 0.85× 0.935×Et-1(Yt) 
×max[0, PT - PD - max(Pt ,LR)] therefore CCP > 0 only if PT – (PD + max(Pt ,LR)) > 0. When PT is greater 
than LR but (PT – max(Pt ,LR)) less than PD of $0.52, CCP always yields a zero value. So there is no 
income improvement to the farmer. 
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hedging in terms of price risk protection. The impacts appear somewhat stronger in the later 

years than in the early years.  

Relative Impacts of Hedging, Crop Insurance, and Government Programs  

We consider four major cases, $0.017 vs. $0 hedging transaction cost, paired with 0% 

and 30% insurance premium loadings respectively, as shown in Table 3.2 and 3.3. Under each 

case, we set the base portfolio scenario as a full set of futures contract, crop insurance, and all 

three government programs (DP, LDP, CCP). Then from the base scenario, we reduce one 

instrument at a time to study the marginal effect of that instrument.  

We design five risk management portfolios for the farmer. In addition to the optimal 

hedge ratios and crop insurance ratios, we also compute a CE using equation (3.4). CE serves not 

only as a measurement of welfare improvement, but also as a criterion to assess the relative 

effectiveness of the tools to the farmer.   

We start with the most complete set of risk management tools. In the base scenario with 

a $0.017/bushel transaction cost (Table 3.2, upper panel), optimal hedge ratios range from 25% 

to 32% over years. The CE of this full portfolio is $62.28, the highest among all portfolios. As 

we decrease the availability of government programs by taking away CCP first and then LDP, 

hedge ratios generally increase from around 30% to 40% to around 60% to 75%, to cover the 

extra risk. Correspondingly, without the support of CCP and LDP, the CE of the portfolios also 

decreases a lot by more than 50% from $62.28 to $34.58. When the DP is also eliminated, hedge 

ratios increase very slightly instead, which is due to the farmer’s tightened budget on transaction 

costs. Without any government payments, the farmer has less wealth and is not willing to pay the 

futures transaction cost. There is a different result for the scenario when there is no transaction 

cost (Table 3.2, lower panel). The hedge ratios are about the same with or without the DP.  
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Although the insurance premium loading doesn’t seem to affect the optimal coverage 

level, it affects the farmer’s evaluation of the welfare improvement due to insurance. Higher 

premium loading yields a smaller value of the insurance product in all portfolios.. 

As we take away the payment programs one by one, the change in CE discloses 

information about the specific values of each program. For example, the difference between the 

first two portfolios indicates a CCP value of $13.46 (62.28-48.82) to the farmer. We compute all 

these values and report them in Table 3.3. Among the three government programs, the DP has a 

highest value, while the CCP has a value close to the LDP. In total government programs 

account for $57.47, which is more than 90% of the total value of the base portfolio ($62.68). 

When we take away all government programs, the farmer relies on hedging and 

insurance. He or she can still find a hedging path and rely on the highest 85% insurance coverage 

to manage risks but achieves a much lower welfare level (CE=$4.81). The value of hedging can 

be calculated when we consider another portfolio of only crop insurance and government 

programs (CE=62.20). The difference between the CE of this last portfolio and that of the 

comprehensive base portfolio ($62.28) yields $0.08. The low value of hedging is not too 

surprising considering farmers’ low participation rates. However, the value is quite low even 

though they hedge at a significant percentage. Compared to insurance and government programs, 

futures is the only tool that does not receive any subsidy while paying a transaction cost. 

Considering that insurance is limited to yield insurance, the value of hedging may go even lower 

when revenue insurance is included. Correspondingly, when the value of CI is computed by 

subtracting the total government programs’ value from this last value, it turns out to be $4.73 

($62.20-$57.47) under 0% premium loading and $4.60 ($62.07-$57.47) under 30% premium 

loading. These values are a lot less than the individual government programs but still 
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significantly larger than hedging in the value of the full portfolio. This indicates that to the 

farmer, an income transfer in terms of subsidy is more valuable than risk reduction of a non-

subsidized instrument like hedging. 

Next we take off the transaction cost so hedging has no cost to the farmer. We see from 

Table 3.2 lower panel that optimal hedge ratios generally increase significantly. The rate of the 

increase slows down when hedge ratios get close to 79%. The values of the portfolios also 

increase slightly when the farmer saves money on hedging. The optimal insurance coverage ratio 

still stays at 85% with both 0% and 30% premium loadings, implying that the gain from saving 

on hedging still cannot replace the possible loss from lower insurance coverage.  

The CE values of each risk management tool change slightly too (Table 3.3). The value 

of hedging goes up by about 35%. The insurance and government programs have slight changes 

in CE values. Despite that, the ranking of the values for these tools stays the same, that is, 

government programs (DP + LDP + CCP) > CI > hedging.  

 

VI. Concluding Remarks 

We investigate the impacts of intertemporal preferences, hedging and crop insurance 

costs, and U.S. government payment programs on a PNW wheat producer’s dynamic risk 

management behavior. By using the GEU model, we solve the dynamic optimization problem 

numerically based on simulated yield and price data for 2004 through 2008. 

The GEU framework has flexibility in the parameterization of the farmer’s preferences 

towards risk, timing, and intertemporal substitutability of consumption. We employ this feature 

to examine the impacts of changes in these preferences on farmers’ optimal hedging and crop 

insurance participation. Preference impact analysis implies that optimal hedging behavior of the 
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representative farmer is sensitive to intertemporal preferences changes. Risk aversion appears to 

have a larger effect on hedge ratios than time preference and intertemporal substitution. Each of 

the preferences has its own impact pattern. But even in the separate analyses, the effect is often 

intertwined with influences from the other preferences due to relative value changes.  

The market institution impact analysis shows that hedging transaction costs negatively 

affect optimal hedge ratios and reduces the farmer’s welfare level. When crop insurance is 

coupled with a premium subsidy, even an insurance premium loading of 30% is not enough to 

keep the farmer from purchasing the highest available level of insurance coverage. However, the 

premium loading definitely reduces welfare. The impact analysis of government price protection 

parameters, the target price and loan rate, indicates that both of them are influential in hedging 

decisions. The corresponding government LDP and CCP have increasing substitution impact on 

hedging as the price protection level increases. The relative impact analysis of current risk 

management tools shows both crop insurance and government programs are influential to the 

farmer’s welfare improvement. Hedging has very limited contribution. In terms of the ranking of 

the value of these tools, the government programs (DP + LDP + CCP) have a greater effect on 

farmers’ welfare than crop insurance, and crop insurance outperforms hedging. Yield insurance 

has a greater value than DP, LDP, or CCP separately, but less than the three combined. Among 

the three government programs, the DP has higher a value than the respective values of the LDP 

and the CCP for the representative farmer.  
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Figure 3.1. Sensitivity of Optimal Hedge Ratios in Response to Risk Aversion 
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Figure 3.2. Sensitivity of Optimal Hedge Ratios in Response to Time Preference 
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Figure 3.3. Sensitivity of Optimal Hedge Ratios in Response to Intertemporal 

Substitutability 
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   Figure 3.4. Sensitivity of Optimal Hedge Ratios in Response to Transaction Cost 
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Figure 3.5. Sensitivity of Optimal Hedge Ratios in Response to Target Price / Loan Rate  

 

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0
0.
32

0.
64

0.
96

1.
28 1.

6
1.
92

2.
24

2.
56

2.
88

3.
20

3.
52

3.
84

3.
98

Yr1 Yr2 Yr3 Yr4 Yr5

 

Target Price / Loan Rate ($) 

 

O
pt

im
al

 H
ed

ge
 R

at
io

 



 

 71

 
 

Table 3.1.  Summarized Optimal Hedge Ratio in Response to Transaction Cost 

   

   
   Note: The hedging transaction cost varies from $0/bushel to $0.02/bushel. 

 

Optimal Hedge Ratios (With CCP) 

  

 

 

Year1 

 

Year2 

 

Year3 

 

Year4 

 

Year5 

 

Mean 

 

0.4207 

 

0.3856 

 

0.3651 

 

0.3520 

 

0.2677 

Max 0.4221 0.3862 0.3655 0.3523 0.2679 

Min 0.4195 0.3849 0.3648 0.3517 0.2676 

Range 0.0026 0.0013 0.0008 0.0005 0.0002 

 

Optimal Hedge Ratios (No CCP) 

 

 

 

Year1 

 

Year2 

 

Year3 

 

Year4 

 

Year5 

 

Mean 

 

0.6100 

 

0.5398 

 

0.4972 

 

0.4780 

 

0.3933 

Max 0.6119 0.5405 0.4976 0.4784 0.3935 

Min 0.6083 0.5389 0.4967 0.4776 0.3932 

Range 0.0036 0.0016 0.0009 0.0008 0.0003 
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Table 3.2. Impacts of Market Institutions and Government Policies on  

Farmers’ Optimal Risk Management Portfolio 

 

Hedge Ratio 

 

Crop Ins.

Coverage

 

0% Premium 

Loading 

 

30% Premium 

Loading 
Alternative Portfolios 

 

Year1 
 

Year2
 

Year3
 

Year4
 

Year5
 

Year1-5
 

CE($) 
 

CE($) 

 

With Transaction Cost ($0.017/Bushel) 

 

H & CI & G(DP, LDP, CCP)  
 

0.25 
 

0.31 
 

0.32 
 

0.32 
 

0.26 
 

0.85 

H & CI & G(DP, LDP) 0.39 0.44 0.44 0.44 0.38 0.85 

H & CI & G(DP) 0.28 0.57 0.65 0.72 0.74 0.85 

H & CI 0.32 0.59 0.66 0.72 0.74 0.85 

CI & G(DP, LDP, CCP) -- -- -- -- -- 0.85 

 

62.28 

48.82  

34.58  

4.81  

62.20  

 

62.15  

48.69  

34.45  

4.68  

62.07  

 

Without Transaction Cost ($0/bushel) 

 

H & CI & G(DP, LDP, CCP) 

 

0.42 

 

0.39 

 

0.37 

 

0.35 

 

0.27 

 

0.85 

H & CI & G(DP, LDP) 0.61 0.54 0.50 0.48 0.39 0.85 

H & CI & G(DP) 0.78 0.79 0.77 0.79 0.77 0.85 

H & CI 0.78 0.79 0.77 0.79 0.77 0.85 

CI & G(DP, LDP, CCP) -- -- -- -- -- 0.85 

 

62.68  

49.39  

35.44  

5.67  

62.20  

 

62.54  

49.26  

35.31  

5.54  

62.07  

 

Note:  The base portfolio is the portfolio that includes all risk management tools, i.e. H & CI & G(DP, LDP, CCP). 
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Table 3.3. Evaluation of Risk Management Instruments 

 

 

$0.017/bushel Futures Transaction Cost 

  

$0/bushel Futures Transaction Cost 
Alternative Instruments 

 

$ 0% premium loading 30% premium loading  

 

$ 0% premium loading 30% premium loading 

 

Gov’t programs (total, $) 

 

57.47 57.47   57.00 57.00  

CCP  13.46 13.46   13.29  13.29 

LDP  14.24  14.24   13.94 13.94  

DP 29.78  29.78  29.77 29.77 

Crop Insurance (MPCI, $) 4.73  4.60   5.20 5.07  

Hedging ($) 0.08  0.08  0.48 0.48 
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CHAPTER 4 

PRICE BEHAVIOR AND INTERNATIONAL MARKET INTEGRATION: A 

COMPARISON OF CHINA AND US WHEAT FUTURES 

 

Abstract: China’s 10-year-old wheat futures market, the China Zhengzhou Commodity 

Exchange (CZCE) has been in stable development since establishment and is expected to be 

integrated into the world market after China joined the WTO. This paper compares the price 

behavior of CZCE with that of the Chicago Board of Trade (CBOT) in the US using 

ARCH/GARCH based univariate and multivariate time series models. Results show both 

markets can be modeled by an ARCH(1) or a GARCH(1,1) and the models have a better fit when 

conditional error variance is t distributed. The price series in CZCE and CBOT are interrelated 

but not cointegrated. The existing interrelationships between the two markets are significant and 

asymmetric. CBOT holds a dominant position in the interactions, while CZCE behaves more like 

a follower. 

 

 

Key words: futures price, GARCH, integration, China, wheat 
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I. Introduction 

The emergence of agricultural commodity markets in China resulted from the market-

oriented economic reform launched in the late 1970s. After about twenty five years, the reform 

not only turned China into the world largest wheat production and consumption country (USDA, 

2004), but also lead to the formation of a market mechanism in China. Based on this market 

mechanism, more efficient institutions of exchange for agricultural products were created and 

developed. As a result, China’s domestic market integration for major commodities across 

regions has been progressing steadily. This progress has been enhanced in recent years, after 

most barriers to cross-region trading and information flows were removed (Huang and Rozelle, 

2004). 

Agricultural commodity futures markets emerged in China in the early 1990’s, when 

China was moving into an advanced phase of market-oriented economic reform. China’s first 

exchange market, the China Zhengzhou Commodity Exchange (CZCE) was founded in 1990. 

Wheat futures trading started in May 1993. CZCE is the only exchange trading wheat futures 

contracts in the country today. In 1999, CZCE accounted for 50% in total trading value and 49% 

in total trading volume of all commodity exchanges in China. Since 1997, trading of wheat 

futures has experienced stable growth except for 1999 (Figure 4.1)15. In 2002, the total trading 

value amounted to 225.25 billion Yuan16 and total trading volume was 18.27 million contracts. 

After about 10 years of development, the wheat futures price in CZCE is on the way to 

                                                 
15 The low trading in 1999 was mostly affected by the regulatory change in CZCE, which was designed to 
discourage mung bean trading. As a result, mung bean trading declined sharply and disappeared in the 
following years. 
16 One US dollar equals about 8.3 Yuan. 
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becoming an important indicator of China’s wheat price. The correlation between the spot price 

and futures price is as high as 0.96. A strong association exists between the wheat futures price of 

CZCE and that of Chicago Board of Trade (CBOT) in the United States (CZCE Report, 2001). 

China’s wheat futures price became more important to the world after November 2001 when 

China obtained full membership in the WTO. Given the enhanced relationship between China’s 

markets and the world market, China’s integration to the world is on a fast track and has shown 

two-folded impacts. Facing challenges from major wheat exporters such as the US and Canada, 

China’s previously over-valued domestic wheat price is expected to undergo a downward shift. 

The futures price in CZCE may increase in volatility due to a stronger linkage to the world 

commodity markets and the unpredictable factors in the world economy. Conversely less 

volatility may exist because irrational behavior of domestic traders that had a fairly strong 

influence on prices in the past (Durham and Si, 1999) will not be able to affect an integrated 

world market price.  

Founded in 1848 and by far the largest and most developed agricultural commodity 

market in the world, the CBOT in the US has been playing a leading role in the world 

commodity market. The wheat futures price on the CBOT is highly volatile, and directly reflects 

supply and demand in both the US and world markets. The CBOT has been one of the most 

important wheat price indicators in the world market. In this paper, the CBOT wheat futures 

market is chosen to represent the world market. The integration of CZCE to the CBOT will be 

analyzed as an approximation of CZCE’s integration into the world market.   

This research is a quantitative assessment of China’s wheat futures price performance 

and the integration of China’s wheat futures market into the world market. The objective is to 

identify the best time series models to characterize the price behavior in both CZCE and CBOT, 
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and the interrelationship between them. We then use the identified models to compare price 

patterns in both markets and investigate the outlook of China’s market integration to the world 

market. Specifically, this analysis will: 1) estimate and identify an appropriate ARCH/GARCH 

model for China’s and US’ wheat futures prices; 2) investigate the interrelationships between the 

two price series, including cointegration in the first moment and autoregressive 

heteroskedasticity in the second moment, in a multivariate framework; and 3) compare the price 

patterns between the two markets and assess the role of China’s wheat futures market in the 

world market.   

 

II. Previous Studies 

China’s successful economic reform has drawn the world’s attention for more than two 

decades. China’s 2001 membership into the World Trade Organization (WTO) brought such 

attention to a new level. However, studies on China’s agricultural commodity futures markets are 

quite limited, particularly with regard to wheat futures. Moreover, most of the existing studies 

are more descriptive and focus on regulatory and market development issues rather than 

quantitative investigations of futures prices. Such studies include Tao and Lei (1998); Fan, Ding 

and Wang (1999); and Zhu and Zhu (2000). A historical perspective on the development of 

China’s futures market is shown in Yao (1998), which includes a detailed structural analysis of 

the commodity futures markets and the government’s legislative and regulatory attempts.  

Some quantitative analyses have been attempted in recent years. Williams, et al. (1998) 

investigated mung bean trading in CZCE to test for market efficiency. Durham and Si (1999) 

examined the relationship between the China Dalian Commodity Exchange (CDCE), another 

commodity futures market in China, and the CBOT soybean futures prices through a regression 
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model. Wang and Ke (2003) investigated information efficiency for the CZCE wheat and CDCE 

soybeans futures in a framework of cointegration between cash and futures markets. Despite that, 

quantitative studies dealing with the time series properties of price on China’s wheat futures 

market, especially on the issue of world market integration, have not been found. 

Modeling time series data usually starts from the moving average (MA) model, 

autoregressive (AR) model, or more generally, autoregressive integrated moving average 

(ARIMA) model for the first moment of the data. However, stochastic trend or unit root is 

discovered as a common property of many high frequency commodity price series (Ardeni 1989; 

Baillie and Myers, 1991). More complete but complicated price models focusing on the second- 

or higher-order moment variability were introduced in early 1980s. The autoregressive 

conditional heteroskedasticity (ARCH) model, developed by Engle (1982), allows the shocks in 

nearby earlier periods to affect the current volatility. The generalized ARCH, (GARCH) model 

(Bollerslev, 1986) allows, in addition, previous volatilities to affect current volatility, so that the 

volatility behaves like an AR process. ARCH and GARCH models have been widely applied in 

financial time series analysis (Bollerslev, Cho, and Kroner, 1992) as well as in agricultural 

commodity prices (Bailie and Myers, 1991; Yang and Brorsen, 1992; Tomek and Myers, 1993; 

Myers, 1994). Excess kurtosis, namely heavier tails compared to the normal distribution, is also 

found in commodity prices (Gordon, 1985; Deaton and Laroque, 1992; Myers, 1994).  

Although ARCH and GARCH models can partially alleviate the excess kurtosis 

problem (Engle, 1982; Myers, 1994), empirical studies have shown that these models cannot 

capture all kurtosis impact if a normal distribution is assumed for the price innovations 

(Bollerslev, 1987; Baillie and Myers, 1992; Yang and Broersen, 1992). One possible solution to 

this problem is to use the t-distribution instead of normal distribution to describe the price 
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innovations in the ARCH/GARCH models (Myers, 1994).  

Based on the theoretical framework derived by Engle and Granger (1987), and the 

empirical test methods by Johansen and Juselius (1990, 1992), studies on international futures 

markets have started to focus on using cointegration as an indication of market integration. 

Cointegration is a phenomenon where multiple nonstationary variables are driven by some 

common stochastic trends. Yang, Zhang, and Leatham (2003) examined the price and volatility 

transmission in a three-variable system for the US, Canadian, and EU markets. They found no 

cointegration in the system. Bessler, Yang, and Wongcharupan (2003) examined the wheat 

futures markets in the US, Canada, Australia, EU, and Argentina, and found cointegration.  

The present paper contributes to the existing literature on China’s wheat futures prices 

in three ways. First, it incorporates both China’s and US’s wheat futures markets into a 

multivariate time series model so that the price interactions in the two markets can be studied 

simultaneously. Second, besides the interaction at the mean level as investigated in the 

cointegration studies, the interaction at the variance level is also carefully examined. Third, the 

assumed conditional error distribution of price changes is extended from normal distribution to t-

distribution in a multivariate situation; therefore improvement of excess kurtosis can be 

examined and compared.  

 

III. Models 

1. Univariate Conditional Heteroskedastistic Models 

We start with the univariate ARCH and GARCH models, which allow the volatility of 

error terms to change over time. An ARCH(q) model is commonly defined to include a mean 
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equation: 

(4.1)                                         ttt XY εβ +′= , where ),0(~| 1 ttt h−Ωε  

and a variance equation: 
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where tY denotes the dependent variable; tX denotes the vector of explanatory variables which 

can include a constant, a time trend, lagged dependent variables, and/or any (lagged) exogenous 

variables; t denotes the time period; tε is the error component in the ARCH model whose 

conditional distribution has a zero mean and time-varying variance th ; 1−Ω t is the information set 

available at t -1; β is the parameter vector for the exogenous variables; ω ( 0>ω ) is the 

parameter for intercept in the variance equation; and iα ( 0≥iα and 1
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the parameter for ARCH effect. tε ’s are serially uncorrelated, however, their dependency lies on 

the second moment evolution.  

A GARCH (p, q) model is defined in the same way except that:  
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The basic ARCH(q) model is a short memory process in that only the most recent q 



 

 81

shocks have an impact on the current volatility. The GARCH(p, q) model is a long memory 

process, in which all the past shocks can affect the current volatility indirectly through 

the p lagged variance terms.  

2. Multivariate Conditional Heteroskedastic Models 

Multivariate ARCH and GARCH models allow more than one series to be modeled 

together so that interrelation lies between different series can be examined and tested through 

cross equation parameter constraints.  

An m-variate GARCH(P, Q) model can be defined as: 

(4.3)                                        ttt XY ε+Β= , where ),0(~| 1 ttt H−Ωε  
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where tY  is now an 1×m  dependent variable vector; Β  is the coefficient matrix corresponding 

to the explanatory variable vector tX ; tε , the error vector, is conditionally distributed with a 

mean of an 1×m  null vector and an mm×  variance-covariance matrix tH ; W is an mm×  

parameter matrix for the constant terms, and iΑ  and jΓ  are mm×  parameter matrices for 

GARCH coefficients. By definition, the ARCH(Q) model is a special case of the GARCH(P,Q), 

when the coefficient matrices for the past variance-covariance matrices, jΓ ’s, are set at zeroes. 

Alternative definitions of the variance equations and restrictions on matrices iΑ  and 

jΓ  exist, which lead to different versions of multivariate ARCH/GARCH models. The above 

defined model allows each element of the current variance-covariance matrix tH  to be affected 

by all elements of the past variance-covariance matrices and/or the squared error matrices. This 
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is called the BEKK model (Engle and Kroner, 1995). Other commonly used models, like the 

constant conditional correlation (CCC) model (Bollerslev, 1990) and the diagonal-vec (DVEC) 

model (Bollerslev, Engel, and Wooldridge, 1988), have simpler forms with different assumptions 

on parameters.  

The variance equation in a CCC model has the following form: 

(4.4’)                                      2
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                                               , , , ,mn t mn mm t nn th h h m nρ= ≠  

where ,mn th  is the mnth element in Ht, and mnρ  is the constant correlation between ,mm th  and ,nn th . 

With an imposed constant correlation coefficient on the independent univariate ARCH/GARCH 

models, the CCC model reduces the number of parameters to be estimated. However, this model 

only allows the conditional variances to evolve based on their own past levels and past shocks, 

and the relationship between one another is constrained to null and cannot be revealed.  

The DVEC model defines the variance equation as: 
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where is the Hadamard product operator. iΑ  and jΓ  are restricted to be symmetric matrices. 

This model allows each element of the current variance-covariance matrix tH  to be affected only 

by its own past values and/or corresponding element in the past squared error matrices. Similar 

to the CCC model, information about the relationships between variances of different series is 

not available in the DVEC form. Furthermore, when the parameter matrices are set to be 

diagonal, the model will degenerate into separate univariate models.  
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IV. Data Description  

The CZCE price data in the study are collected from CZCE’s online database at 

http://www.czce.com.cn. The CBOT data are collected from http://www.turtletrader.com. The 

daily settlement price series for the September wheat contracts from January 4, 2000 to 

September 13, 2002 are used for both CZCE and CBOT series17. Prices are taken as continuous 

for each trading day. A switching-contract dummy variable, tSD , is introduced in the explanatory 

variable vector X in addition to the constant term for both series to indicate when the price series 

switches from an old contract to a new one. The switching points are set at the last trading day of 

the old contract following the method as in Myers and Hanson (1993)18. tSD  equals 1 at the 

switching points and 0 otherwise.  

The time-series plots of CZCE and CBOT prices are given in Figure 4.2. Both series 

show strong nonstationarity and stochastic trend, while CZCE prices look more chaotic than 

CBOT prices. For both price series, the sample autocorrelation functions show very slow 

exponential decay, and the sample partial autocorrelation functions show a large spike in the first 

lag. The augmented Dickey-Fuller (ADF) unit root test yields a P value of 0.60 for CZCE prices 

and 0.90 for CBOT prices, confirming the existence of a unit root. Therefore, the first difference 

is taken. 

                                                 
17 The original data are in Yuan per metric ton for CZCE prices and in US dollar per bushel for CBOT 
prices. To make the two data series directly comparable in our study, we converted CBOT data into Yuan 
per metric ton using constant factors, one metric ton equaling 36.74 bushels of wheat, and the exchange 
rate held constant at 8.2775. 
18 For CBOT data, trading of the September 2000 contract started in July 2000. These early prices were 
not included until September 2001 when the September 2000 contract expired. CZCE data are arranged 
similarly. The old contract trading prices are chosen for this overlapping period because the old contracts 
are traded more actively than the new one during the period. 
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From the time series plots (Figure 4.3) of the squared first difference data, evidence of a 

time-varying volatility pattern is visible in the CBOT series. That is, big changes are often 

followed by other big ones and small changes followed by small ones. This pattern is consistent 

with the ARCH/GARCH processes. Furthermore, the P values of Portmanteau Q statistic and the 

LaGrange Multiplier statistic, for testing H0: no ARCH effect, are all less than or equal to 0.0001 

for the first twelve lags on CBOT prices, indicating a strong ARCH effect. For our selected 

CZCE prices, however, the two statistics are not significant.  

A normality check of CZCE and CBOT price changes provides strong evidence against 

normality. For CBOT price changes, the kurtosis coefficient is 1.8019, indicating the distribution 

has fatter tails than the normal distribution. The skewness coefficient is 0.24, close to zero, 

meaning it is quite symmetric. The distribution of CZCE price changes is also quite symmetric 

with the skewness coefficient of -0.57 but even fatter tails. The kurtosis coefficient is 6.67. These 

coefficients indicate the non-normality is mostly caused by excess kurtosis rather than the 

skewness.    

 

V. Results 

1. Univariate Analysis 

In this section, we study the price performances of CZCE and CBOT separately. Due to 

the existing unit root, first differences of the data are fit into alternative time series models. The 

mean equation of the model is defined as price change dependent on the constant term and the 

contract switching dummy, SD. A univariate framework is applied to find the best specifications 

of the ARCH/GARCH processes. The GARCH procedure in the GARCH module of S-PLUS is 
                                                 
19 A normal distribution has both skewness and kurtosis at 0 as a benchmark. 
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used to estimate these models. For the visible heavy tails of the price distributions, we estimate 

price models under both normality and t distributions. Results based on the two distributions are 

examined and compared.      

Selection of Model Specification 

Alternative specifications in terms of the lags of the ARCH/GARCH models are 

assumed.  Two goodness-of-fit criteria, Akaike Information Criterion (AIC) and Schwarz’s 

Bayesian Information Criterion (BIC), along with significance criterion, are used to select the 

best model. Model fitting results show that ARCH(1) has the best fit for both CZCE and CBOT 

price changes under the normality assumption.  

When estimating the above models, however, the Shapiro-Wilk and Jarque-Bera 

statistics for normality test reject the normality assumption in all cases. It confirms what we 

observed in the earlier normality check in the data section, and suggests a change of distribution 

is necessary. Following the existing empirical literature, we assume the error terms in the mean 

equation are t distributed with mean 0 and variance th , i.e. )(~| 1 vttt −Ωε , where v denotes the 

degrees of freedom. With an obvious gain in the goodness-of-fit, the best models under the t-

distribution are ARCH(1) for CBOT and GARCH(1,1) for CZCE.20 

Estimation 

Table 4.1 gives the estimation results of the choice models for CZCE and CBOT under 

both normal and t distributions. In general, the significance and sign of each parameter are 

consistent between the two sets of results. The main difference lies in the magnitude, or weight, 

of the estimated coefficients in the mean and variance equations. The models capture more 

contract switching and ARCH/GARCH effects when the conditional distribution is t.  

                                                 
20 Complete model fitting results are in Appendix B.1. 
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From the results, we see both CZCE and CBOT price changes contain no drift. The 

contract switching has insignificant and negative effects on CBOT price changes. But a 

significant and positive contribution is observed for CZCE price changes, indicating a jump-up 

of the price from the mean at the switching point in the CZCE21. In all the ARCH(1) models for 

CBOT and CZCE, the ARCH coefficient has a significant but relatively weak impact on the 

variance when compared with the intercept term. In the GARCH(1,1) for CZCE under t, 

however, the influence from the intercept drops enormously. Both GARCH and ARCH 

coefficients are significant, and the GARCH coefficient is a lot more influential, implying a large 

part of the current volatility in CZCE is due to the last period volatility.  

2. Multivariate Analysis 

Multivariate analysis allows both price series to be estimated simultaneously. As a 

result, cross market relations that cannot be detected in the univariate analysis can now be 

captured. In our multivariate version of the models, the mean equation still follows the same 

structure as in the univariate case, but the variance equation becomes a system of equations.  

Nonsynchronous trading 

The wheat futures trading in the CZCE is not synchronous to the trading in the CBOT 

because CZCE and CBOT are in different time zones. There is no overlap in trading hours 

between the CZCE and CBOT. However the multivariate model setting implies synchronicity of 

the price movements in the markets. Therefore it is necessary for us to check for any 

nonsynchronous effect before applying the multivariate models.  

When CZCE trading closes at 3:00pm Beijing time, CBOT trading on the same day 

won’t start until ten (nine under daylight saving time) and a half hours later. Although the price 

                                                 
21 At the switching points, the estimated mean equation becomes ttP εδα ˆˆˆ ++=∆ , where the right-hand-
side of the equation represents the level of price changes when the contract switches. 
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for the same day trading is indexed by the same t for both CZCE and CBOT in our multivariate 

model, there are actually referring to two different time slots with about ten hours in between. 

Information about trading in CZCE on the same is completely available before CBOT trading 

opens. Given this timeframe, wheat futures trading in CBOT could possibly be affected by the 

information in CZCE and such impact may be reflected in the price movements. Similarly, when 

the CBOT closes trading at 1:15pm, it is only about three hours before the CZCE trading starts 

on the following day. Therefore CBOT price at time t-1 can affect the CZCE price at time t. 

On the other hand, however, although the CZCE same-day price and trading are known 

information to CBOT traders, the information itself may not be influential enough to affect the 

CBOT price. The CBOT is a much larger market than the CZCE with participants from 

worldwide and way higher trading volume. It is also possible that the impact, if any, of CZCE is 

relatively insignificant therefore it cannot really affect CBOT price behavior. Moreover, 

depending on the degree of CZCE market integration to CBOT, the information may or may not 

be applicable to CBOT trading. However, this situation may not be the case for the impact of the 

CBOT on the CZCE.  

The examination of the nonsynchronous trading effect in the prices not only provides 

information necessary for further multivariate model fitting, but can also show evidence about 

the degree of integration of the CZCE to the CBOT. The estimation results are summarized and 

reported in Table 4.2. In general, no significant nonsynchronous trading effect is detected in the 

price changes between the two markets.  

In Table 4.2, we list the estimation results using two separate autoregressive regression 

models, one for each market. We incorporate prices at two time lags, t and t-1, for both CBOT 

and CZCE. For CBOT price at t, the nonsynchronous trading effect from CZCE is reflected in 
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the coefficient in front of the last trading CZCE price indexed by t. For CZCE, the effect is 

mainly reflected in the coefficient associated with the last trading CBOT price indexed by t-1. As 

the results show, both coefficients are not significant, and it appears that the impact from CBOT 

on CZCE is generally stronger than that from CZCE on CBOT.  

Cointegration test 

In order to identify the possible interrelationships that exist in the co-movement of the 

price levels, we first conduct the cointegration test on the original prices of CZCE and CBOT 

wheat futures. We then go on to examine the second moment (or volatility) relation. According 

to the ADF unit root test, both price series are integrated to order one, satisfying conditions for 

the cointegration test. Proceeding with the Johansen’s cointegration test, however, we fail to 

reject the null hypothesis of no cointegration. Results indicate our data on CZCE and CBOT 

wheat futures prices have no cointegrating relation on the first moment, and a vector regression 

model is appropriate for the following time series analysis. Here the dependent variable vector is 

the first difference of prices, and the independent variable vector includes constant and two 

contract switching dummy variables.  

Selection of Model Specification 

To fully disclose the interrelations between CZCE and CBOT wheat prices, we apply 

three types of multivariate GARCH models, BEKK, CCC, and DVEC, to estimate the CBOT-

CZCE bivariate series under both normal and t distributions22. By definition, the BEKK model 

contains information about the cross-market ARCH/GARCH effects. The CCC and DVEC 

models are simplified multivariate GARCH models with different model structures. Since these 

                                                 
22 Although usually the joint t distribution is not well-defined, unlike its normal counterpart, it is defined 
in a certain way in S-Plus GARCH module (S+ GARCH User’s Manual, pp107-108, Mathsoft, inc., 
March 2000). This definition is followed in our analysis. 
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two models have different ranks in restrictiveness and robustness, we include both in the 

estimation for comparison purposes. The MGARCH procedure in the GARCH module of S-

PLUS is used for analysis in this section. The results show that GARCH(1,1) in the DVEC and 

CCC forms has a better fit under both normal and t distributions, while in BEKK form ARCH(1) 

performs better (Table 4.3).  

Estimation 

Information about the interactions between elements in the conditional variance matrix 

and relationships between the price changes of China and US wheat futures are now reflected in 

the estimates (Table 4.3).  

When the BEKK model is fitted with a normal distribution, CZCE price changes appear 

to have a small drift which is not evident for the CBOT data. The coefficient matrixΛ for the 

switching dummy vector provides full information about within and cross equation relationships 

of contract switching in the two markets. For the within market effect, the CZCE switching 

dummy has a significant positive impact on the mean of price changes, similar to the univariate 

case. The CBOT dummy has a significant positive impact on its price changes, quite different 

from the univariate case. The cross effects, however, are both statistically insignificant, implying 

the interactions of contract switching between the two markets are weak.  

The variance equation estimates do not directly reflect within- and cross- market effects 

on volatilities. These effects can only be shown by certain combinations of these estimates. In 

the Appendix B.2 we provide a detailed derivation of such combinations. The calculated 

estimated effects are reported in Table 4.4. When a normal distribution is assumed, current 

volatility of CBOT price changes is positively correlated with the last period shock in its own 

market and that in the CZCE. The own market effect of 0.1132 dominates the cross market effect 
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by a ratio of 15:1. Therefore the volatility in the CBOT is mostly affected by the previous shock 

in its own market. The previous shock in CZCE has very limited influence on the volatility in 

CBOT. The volatility in CZCE is even more dominated by the own market effect rather than a 

cross market effect. The ratio increases to 28:1. 

The insignificance of both Auv and Avu indicates that the cross impact in the variance 

equation may not exist, and the BEKK is not superior to DVEC or CCC. The smaller AIC’s and 

BIC’s of DVEC and CCC also indicate they actually have a better fit.  

From Table 4.3, in the bivariate DVEC form of GARCH(1,1), when the underlying 

conditional distribution is normal, the intercepts in the mean equation are consistent with the 

univariate cases. This suggests neither of the series shows a significant drift in prices. The own 

market contract switching dummies have a similar pattern as in the BEKK model. The cross 

equation terms show that contract switching in the CBOT has a significant negative influence on 

price changes in the CZCE, while switching in the CZCE does not affect the CBOT price 

significantly. The contract switching dates are different for the CBOT and CZCE. Switching 

occurs around September 15 for the CBOT, and one week later for the CZCE. This implies when 

the old contract expires at CBOT, switching to a new contract in the CBOT enhances the 

decreasing trend of old contract prices in the CZCE. But contract switching in the CZCE doesn’t 

have a comparable effect on CBOT new contract prices when it occurs one week later. 

In the variance equation, only CZCE volatility has a significant drift. For CBOT price 

changes, the last period volatility has much more influence on current volatility than the last 

period shock, which indicates the CBOT price has a long memory. Volatility has an estimated 

coefficient of 0.96 while shock has an estimate of 0.03. The own market effect of volatility for 

CZCE price changes shows a similar pattern. The gap between the influences of last period 



 

 91

volatility and last period shock seems smaller in the CZCE. This indicates that the CZCE price 

has a shorter memory than the CBOT price, so that a shock tends to have a larger relative impact 

on price for the next period. This result indicates prices in CZCE are apt to be more volatile, 

even chaotic.  

Estimation results from the CCC model are generally very close to those from the 

DVEC. In terms of model fit, the DVEC under a normal distribution outperforms both CCC and 

BEKK with a smaller AIC and BIC.  

When the underlying distribution is t, results are different. Particularly, all the 

parameters for interaction terms between the two markets, including the switching dummy and 

covariance, are insignificant. This may indicate the two markets do not demonstrate significant 

interactions. 

Market Integration of CZCE  

The integration of the CZCE into the world market, especially the CBOT, has been an 

interesting issue to many researchers as well as government officials since the CZCE’s 

establishment. Actually, there is a general belief that CZCE prices have developed or are 

developing a close relationship with CBOT prices based on: 1) the fact that CZCE was 

established a decade ago with the help from CBOT so that many institutional features of the two 

markets are the same, and 2) some preliminary statistical calculations reveal the prices from the 

two markets have a strong association (CZCE Report, 2001). 

Although China is becoming more integrated into the world economy and its trade 

policies are more liberalized after its WTO accession, the relationship between CZCE and CBOT 

has not yet shown a clear pattern. Although there are reasons to expect wheat futures prices in 

the two markets to move together closer, there are also reasons to expect otherwise. Such reasons 
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include the fact that physical wheat trading volume between the two countries is still a small 

proportion compared to the domestic production and consumption levels, regulatory and 

institutional barriers still interfere with China’s market development, and futures traders involved 

in both markets are not many yet. Based on our data on wheat futures prices around the WTO 

accession, the cross-market effects are not yet evident in terms of cointegration in the mean level. 

This implies the long-run equilibrium relationship that binds the price movements in the CZCE 

and CBOT do not exist. However, we still find transmission in the contract switching effect and 

volatility, depending on model specification, between the two markets. Although the linkage is 

not strong, it implies an asymmetric pattern. That is, the CBOT has a stronger influence on the 

CZCE than the CZCE has on the CBOT. This implies the CBOT plays a leading role in market 

interaction, while CZCE is more like a follower. Such an interaction discloses the existence of a 

weak connection between China’s and the US’s wheat futures market on one hand, but on the 

other hand. On the other hand, the asymmetric property of the relationship indicates China’s 

wheat futures market is not strong enough to influence the world market but may be influenced 

by the world market.  

 

V. Conclusion 

After more than ten years of development, the CZCE has become the biggest 

commodity futures market in China. The CZCE wheat futures trading has important effects on 

wheat prices in China’s agricultural price system. This paper makes an effort to investigate the 

wheat futures price behavior in the CZCE, and more importantly to assess the integration of the 

CZCE into the world market. The CBOT is used to represent the world market. Previous studies 

on the market integration of China’s wheat futures market, such as the CZCE report (2001), 
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focused on a pairwise correlation analysis of prices and assumed constant price volatility. In this 

paper, we consider the cointegration relationship and model price behavior of two wheat futures 

markets simultaneously based on time variant conditional variances, using an ARCH/GARCH 

procedure.  

Model fitting shows that both CZCE and CBOT price can be best modeled by 

ARCH(1)/GARCH(1,1) processes. These results are consistent with the empirical studies of high 

frequency commodity prices (Myers, 1994; Poon and Granger, 2003). Bivariate analysis of 

CZCE and CBOT prices shows the two series are not cointegrated. The existing cross-equation 

effects, or the interrelationships, between the two markets are significant but weak, and 

asymmetric assuming a normal distribution. The CBOT plays a leading role in the interactions 

and the CZCE is more like a follower. This result reveals that the two prices evolve in a similar 

way and coincide to one another through the season, but there is not strong evidence of 

information flow from one market to the other. However, under the t-distribution, no significant 

evidence can be found of any interaction between the two markets. This means the relationship 

between the two markets has not shown a clear pattern. 

Results indicate that the price in China’s wheat futures behaves in the similar way as 

the price in the representative world market. This is a good sign suggesting that the Chinese 

agricultural commodity market is performing in line with world markets. On the other hand, the 

short memory feature of the CZCE compared to the CBOT indicates that the CZCE is more 

volatile and chaotic. This suggests that either the Chinese traders are less mature or the Chinese 

food market environment is less stable. The one-way impact from CBOT to CZCE and the weak 

relation between the two markets indicate that China’s wheat market is not fully integrated with 

the world market at this point. 
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Figure 4.1.  Annual Wheat Futures Trading for CZCE 1993-2002 
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Data source: CZCE 2002 Annals (http://www.czce.com.cn/home/annals.asp) 
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Figure 4.2.  CZCE and CBOT Wheat Futures Price for September Contract 
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Figure 4.3. Squared First Difference of CZCE and CBOT Wheat Futures Prices  
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Note: Since some squared first difference prices are very high compared to the rest, especially those at 
switching points, we cut off some of the spikes to fit them into the plot.
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Table 4.1. Estimates of Selected Univariate ARCH/GARCH models 

 
normaltt ~| 1−Ωε  tstudenttt ~| 1−Ωε   

Model CZCE - ARCH(1)  CBOT - ARCH(1) CZCE - GARCH(1,1) CBOT - ARCH(1)

0β  -0.77 (0.60) 0.54 (0.62) -0.22(0.20) -0.13 (0.40)

δ  298.6* (0.76) -18.26 (70.27) 322.43* (18.08) -19.11 (37.80)

ω  110.96* (0.89) 168.45* (2.41) 2.54* (1.11) 130.33* (12.93)

1α  0.05* (0.02) 0.10* (0.02) 0.04* (0.02) 0.12* (0.06)

     1γ  -- --      0.94*(0.02) --

  

    AIC 4974.8 5449.5 4332.9 4359.7

    BIC 4992.7 5467.6 5215.0 5237.6

 
Note: 1. “*” denotes significance at the 5% level. 
          2. Standard errors are listed in parentheses.  

3. The estimated GARCH(1,1) model is defined as: 
ttt SDP εδβ ++=∆ 0 ,   ),0(~| 1 ttt hN−Ωε , 

where 11
2

11 −− ++= ttt hh γεαω  with tP  denoting price at time t.  
The ARCH(1) is obtained when 1γ  is set to zero in the above specification
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Table 4.2. Nonsychronous Trading Effect Estimation 
 
 

 
Coefficient 
Estimates CBOT 

 
CZCE 

α  0.04 (0.16)  -1.01 (0.46) 

0β  0.0044 (0.01)  0.05 (0.10) 

1β  0.01 (0.01)  0.05 (0.10) 

δ  44.69* (2.81)  302.91* (8.06) 

 
Note:1. “*” denotes significance at the 5% level, and standard errors are listed in 

parentheses. 

2. The regression models to be estimated are defined as:  

For CBOT: 0 1 1
B Z Z B

t t t t tP P P SDα β β δ ε∆ ∆ −∆ = + + + +  

For CZCE: 0 1 1
Z B B Z

t t t t tP P P SDα β β δ ε∆ ∆ −∆ = + + + +  
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Table 4.3. Estimates of Selected Multivariate ARCH/GARCH models 
 

BEKK Modeling CCC Modeling DVEC Modeling Model ARCH(1) - N ARCH(1) - t GARCH(1,1) - N GARCH(1,1) - t GARCH(1,1) - N GARCH(1,1) - t 
Bµ  0.009 (0.49) -0.002 (0.48) -0.16 (0.48) -0.21 (0.47) -0.26 (0.48) -0.20 (0.47) 
Zµ  -0.97* (0.63) -0.48* (0.31) -0.15 (0.43) -0.15 (0.26) -0.13 (0.40) -0.16 (0.27) 

BBΛ  141.80* (11.49) 138.20* (6.76) 135.30* (4.69) 133.98* (3.44) 129.60* (6.92) 133.77* (3.49) 

ZBΛ  6.05 (56.13) 3.48 (13.75) 48.28* (1.96) -1.09 (10.50) -39.21* (2.10) -0.81 (10.65) 

BZΛ  3.21 (150.47) 1.74 (548.57) 3.98 (169.18) 7.28 (119.49) 3.58 (4.37) 8.53 (63.28) 

ZZΛ  280.89* (5.66) 303.09* (22.73) 321.02* (20.25) 437.80* (7.95) 360.83* (2.97) 437.92* (3.65) 

uω  11.34* (0.28) 11.40* (0.33) 2.13* (1.64) 1.99 (1.81) 1.98 (1.59) 1.95 (1.83) 

uvω  0.07 (0.64) -0.17 (0.35) -- -- 0.02 (0.08) -2.29 (6.88) 

vω  10.83* (0.08) 6.72* (0.20) 5.64* (1.34) 5.13* (0.90) 5.08* (1.19) 5.15* (0.91) 

uuΑ  0.34* (0.05) 0.21* (0.06) 0.03* (0.009) 0.03* (0.010) 0.03* (0.009) 0.03* (0.010) 

vuΑ  -0.04 (0.14) -0.01 (0.05) -- -- -0.02* (0.01) -0.007 (0.03) 

uvΑ  0.09 (0.10) 0.002 (0.08) -- -- -- -- 

vvΑ  0.20* (0.05) 0.46* (0.05) 0.22* (0.04) 0.24* (0.04) 0.24* (0.04) 0.24* (0.04) 

uuΓ  -- -- 0.96* (0.02) 0.96* (0.02) 0.96* (0.02) 0.96* (0.02) 

vuΓ  -- -- -- -- 0.99* (0.009) -0.92 (0.25) 

vvΓ  -- -- 0.79* (0.04) 0.69* (0.03) 0.78* (0.03) 0.69* (0.03) 

uvρ  -- -- -0.04 (0.05) -0.02 (0.05) -- -- 

AIC 9687.1 9398.4 9438.0 9293.4 9406.1 9299.2 
BIC 9744.8 9460.5 9491.2 9351.0 9472.6 9370.2 

 

Note: 1. “*” denotes significant at 5% level, and .standard errors are listed in the parentheses.  
2. The estimated ARCH(1) model in BEKK form is defined as: 

              B BB
tt t

Z ZZ
tt t

uP SD
vP SD

µ
µ

    ∆  
= + Λ +      ∆      

,  where 2
,

1 2
, ,

0
~ ,

0
u tt

t
uv t v tt

u
v

σ
σ σ−

     
Ω              

,   2 2
, 1

2 2
, , 1 1 1

u t u t

uv t v t uv v t t t

u
u v v

σ ω
σ σ ω ω

−

− − −

     ′= + Α Α          

, 

the GARCH(1,1) model in CCC form has the variance equation of the form: 
vuii tiiitiiiti ,,2

1,
2

1
2
, =Γ+Α+= −− σωσ ; jiandvujitjtiijtij ≠== ,,,,2

,
2
,, σσρσ , 

and the GARCH(1,1) model in DVEC form has a different variance equation: 
2 22
, , 11

2 22
, , , 1 , 11 1 1

u t u tu t

uv t v t uv t v tuv v t t t

u
u v v

σ σω
σ σ σ σω ω

−−

− −− − −

     
= + Α + Γ              

. 

The superscript B denotes CBOT and the superscript Z denotes CZCE.  



 

 104

 

Table 4.4. Within and Cross Market Effects of Bivariate BEKK-ARCH(1) 

 

 
 
2
,u tσ  

 
,uv tσ  

 
2
,v tσ  

 
normalH tt ~| 1−Ω     

 
2

1−tu  0.1132 -0.0126 0.0014 

 
11 −− tt vu  0.0579 0.0639 -0.0149 

 
2

1−tv  0.0074 0.0172 0.0398 

 
tstudentH tt ~| 1−Ω     

 
2

1−tu  0.0453 -0.0022 0.0001 

 
11 −− tt vu  0.0007 0.0973 -0.0096 

 
2

1−tv  0.29E-5 0.0008 0.2091 

 
 
Note:  1. The reported values are calculated as in Appendix B.2. 

2. The estimated ARCH(1) model in BEKK form is defined as: 
B BB

tt t
Z ZZ

tt t

uP SD
vP SD

µ
µ

    ∆  
= + Λ +      ∆      

,  where 
2
,

1 2
, ,

0
~ ,

0
u tt

t
uv t v tt

u
v

σ
σ σ−

     
Ω              

, 

  
2 2
, 1

2 2
, , 1 1 1

u t u t

uv t v t uv v t t t

u
u v v

σ ω
σ σ ω ω

−

− − −

     ′= + Α Α          
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APPENDIX A: DETAILED IMPACT ANALYSIS RESULTS FOR CHAPTER 3 
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A.1. Detailed Results for the Sensitivity of Optimal Hedge Ratios in Response to 

Risk Aversion (α)  

 
 

α 

 

Year1 
 

Year2 
 

Year3 
 

Year4 
 

Year5 

 

-5 
 

-0.3371 
 

-0.3096 
 

-0.2683 
 

-0.2149 
 

-0.1062 

-4 -0.3414 -0.3198 -0.2849 -0.2374 -0.1236 

-3 0.3420 0.3282 0.3008 0.2619 0.1465 

-2 0.3357 0.3332 0.3148 0.2872 0.1770 

-1 0.3132 0.3301 0.3238 0.3107 0.2162 

-0.8 0.3045 0.3276 0.3242 0.3148 0.2250 

-0.6 0.2934 0.3236 0.3240 0.3182 0.2339 

-0.4 0.2789 0.3183 0.3227 0.3212 0.2430 

-0.2 0.2598 0.3103 0.3199 0.3231 0.2521 

0.2 0.1958 0.2814 0.3056 0.3213 0.2684 

0.4 0.1368 0.2533 0.2895 0.3140 0.2739 

0.6 0.0365 0.2019 0.2573 0.2952 0.2737 
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Appendix A.2. Detailed Results for the Sensitivity of Optimal Hedge Ratios in Response to 

Time Preference (β)  

 

 

 

β 

 

Year1 
 

Year2 
 

Year3 
 

Year4 
 

Year5 

 

0.05 

 

-0.3157 
 

-0.3098 
 

-0.1399 
 

-0.0017 
 

-0.0083 

0.1 -0.3170 -0.3075 -0.2846 -0.1994 0.0130 

0.15 0.3190 0.3110 0.2996 0.2983 0.2547 

0.2 0.3204 0.3142 0.3033 0.3017 0.2551 

0.3 0.3213 0.3188 0.3094 0.3072 0.2551 

0.4 0.3194 0.3216 0.3138 0.3117 0.2551 

0.5 0.3141 0.3223 0.3168 0.3151 0.2551 

0.6 0.3048 0.3210 0.3185 0.3179 0.2551 

0.7 0.2910 0.3179 0.3193 0.3202 0.2551 

0.8 0.2725 0.3129 0.3191 0.3220 0.2551 

0.9 0.2491 0.3061 0.3183 0.3235 0.2551 
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Appendix A.3. Detailed Results for the Sensitivity of Optimal Hedge Ratios in Response to 

Intertemporal Substitutability (ρ) 

 

 

 

 

ρ 

 

Year1 
 

Year2 
 

Year3 
 

Year4 
 

Year5 

 

-5 
 

0.2905 
 

0.2754 
 

0.2630 
 

0.2778 
 

0.2567 

-4 0.2912 0.2754 0.2632 0.2766 0.2555 

-3 0.2925 0.2756 0.2639 0.2750 0.2551 

-2 0.2960 0.2779 0.2657 0.2739 0.2552 

-1 0.3038 0.2851 0.2720 0.2756 0.2551 

-0.8 0.3059 0.2875 0.2742 0.2767 0.2551 

-0.6 0.3079 0.2904 0.2769 0.2784 0.2551 

-0.4 0.3098 0.2936 0.2801 0.2805 0.2551 

-0.2 0.3115 0.2971 0.2838 0.2834 0.2551 

0.2 0.3115 0.3043 0.2930 0.2917 0.2551 

0.4 0.3084 0.3074 0.2985 0.2976 0.2551 

0.6 0.3011 0.3097 0.3047 0.3050 0.2551 

0.8 0.2818 0.3098 0.3118 0.3145 0.2551 
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Appendix A.4. Detailed Results for the Sensitivity of Optimal Hedge Ratios in Response to Transaction Cost Level (TC) 

 

TC 

 

Year1 

 

Year2 

 

Year3 

 

Year4 

 

Year5 

 

Year1 

 

Year2 

 

Year3 

 

Year4 

 

Year5 

 

With CCP 

 

Without CCP 

0 0.4221 0.3862 0.3654 0.3522 0.2678 0.6119 0.5405 0.4976 0.4784 0.3935 

0.001 0.4219 0.3860 0.3654 0.3523 0.2679 0.6118 0.5405 0.4974 0.4784 0.3935 

0.002 0.4215 0.3862 0.3654 0.3522 0.2678 0.6113 0.5405 0.4975 0.4780 0.3933 

0.003 0.4214 0.3861 0.3652 0.3522 0.2678 0.6113 0.5403 0.4976 0.4781 0.3934 

0.004 0.4216 0.3858 0.3655 0.3521 0.2678 0.6111 0.5402 0.4975 0.4781 0.3934 

0.005 0.4214 0.3861 0.3652 0.3521 0.2678 0.6111 0.5401 0.4972 0.4782 0.3935 

0.006 0.4211 0.3859 0.3652 0.3521 0.2677 0.6105 0.5401 0.4973 0.4781 0.3934 

0.007 0.4213 0.3859 0.3652 0.3521 0.2677 0.6104 0.5399 0.4974 0.4782 0.3934 

0.008 0.4209 0.3858 0.3651 0.3520 0.2677 0.6105 0.5400 0.4973 0.4780 0.3933 

0.009 0.4210 0.3857 0.3650 0.3521 0.2677 0.6104 0.5399 0.4972 0.4780 0.3934 

0.01 0.4206 0.3857 0.3649 0.3520 0.2677 0.6098 0.5396 0.4971 0.4779 0.3933 

0.011 0.4203 0.3856 0.3651 0.3520 0.2677 0.6094 0.5397 0.4971 0.4779 0.3933 

0.012 0.4205 0.3855 0.3649 0.3519 0.2677 0.6097 0.5398 0.4971 0.4781 0.3934 

0.013 0.4202 0.3854 0.3649 0.3519 0.2677 0.6095 0.5396 0.4969 0.4781 0.3934 

0.014 0.4201 0.3855 0.3650 0.3519 0.2677 0.6092 0.5396 0.4971 0.4779 0.3933 

0.015 0.4199 0.3856 0.3648 0.3519 0.2677 0.6090 0.5397 0.4970 0.4778 0.3932 

0.016 0.4201 0.3851 0.3649 0.3518 0.2676 0.6086 0.5395 0.4969 0.4778 0.3933 

0.017 0.4200 0.3850 0.3648 0.3517 0.2676 0.6090 0.5391 0.4968 0.4778 0.3933 

0.018 0.4200 0.3850 0.3649 0.3518 0.2676 0.6084 0.5392 0.4968 0.4777 0.3932 

0.019 0.4195 0.3851 0.3648 0.3518 0.2676 0.6086 0.5389 0.4967 0.4776 0.3932 

0.02 0.4196 0.3849 0.3648 0.3518 0.2676 0.6083 0.5391 0.4967 0.4778 0.3932 
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APPENDIX B: DETAILED MODEL FITTING RESULTS FOR CHAPTER 4 
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Appendix B.1. Univariate ARCH/GARCH Model Fitting Results  

 

 
Model 

 
AIC 

 
BIC 

 
Insignificant 
Coefficients

 
normaltt ~| 1−Ωε     

CZCE:  ARCH(1) 4974.8 4992.7 0β  

CBOT:  ARCH(1) 5449.5 5467.6 δβ ,0  

ARCH(2) 5451.5 5474.1 20 ,, αδβ  

GARCH(1,1) 5452.9 5475.5 10 ,, γδβ  

tstudenttt ~| 1−Ωε     

CZCE:  GARCH(1,1) 4332.9 4359.7 0β  

GARCH(1,2) 4331.8 4363.1 10 ,γβ  

CBOT:  ARCH(1) 5215.0 5237.6 δβ ,0  

ARCH(2) 5214.8 5241.9 20 ,, αδβ  

GARCH(1,1) 5215.4 5242.5 10 ,, γδβ  

 
Note: 1. Significance is at 5%. 

2. Models of other lower orders are not convergent. 
3. The estimated GARCH(1,1) model is defined as: 

ttt SDP εδβ ++=∆ 0 ,   ),0(~| 1 ttt hN−Ωε , 

where 11
2

11 −− ++= ttt hh γεαω  with tP  denoting price at time t.  
The ARCH(1) is obtained when 1γ  is set to zero in the above specification. 
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Appendix B.2. Derivation of Own and Cross Market Effects of Conditional Variances in a 

multivariate ARCH model (BEKK form) 

By the definition of BEKK-ARCH(1), the conditional error variance equation can be 

specified as: 
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To obtain the own and cross market effects from this specification, we take partial 

derivative of each dependent variable with respect to the respective explanatory variables to get 

the needed effects.  
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APPENDIX C: COMPUTER PROGRAMS FOR CHAPTER 2 
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Appendix C.1. Stochastic Trend Model Estimation (in GAUSS) 

new; 
cls;  
 
print; 
print "    stochastic trend model (normal): Kalman filter Model  
           -- Whitman County Wheat All Crop Total 
 
    Y(t) = U(t) + eps(t) 
    U(t) = U(t-1) + Beta(t-1) + eta(t) 
    Beta(t) = Beta(t-1) + zeta(t)              
 
    alpha(t) = {U(t), Beta(t)} 
 
                                   ©2005 Wen Du.  All rights reserved. 
 
"; 
  
  
/************************************************************ 
    Part I: estimation                                      
************************************************************/ 
 
 
print; 
print "Optimization of stochastic trend for the simulation of wheat production"; 
print; 
 
load yield[65,1] = D:\arec\whitman_wyld39to03.txt;  
 
/*initialize the parameters required for the optimization*/ 
 
/*case 1: assume normal distribution of epsilon*/ 
x0 = {30,1,11,0.5,0.5};    /*x0 = {u0, b0, sig_eps, sig_eta, sig_zeta}*/ 
 
/*case 2: relax normality assumption - inverse hyperbolic transformation*//* 
x0 = {30,1,30,3,0.5,0.1,0.5};   *//*x0 = {u0, b0, sig_eps^2, sig_eta, sig_zeta, theta, delta}*/ 
 
/*initialize the alpha_t and p_t used for simulation later*/ 
a_t1 = {0,0}; 
a_t2 = {0,0}; 
P_t1 = zeros(2,2); 
P_t2 = zeros(2,2);      
 
/*optimization using both sqpSolve and Qnewton algorithms*/ 
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sqpsolveset; 
{bsqp, L1, lagr, ret} = sqpsolve( &fct, x0); 
 
{bqnew, L2,gradient, ret} = qnewton( &fct, x0);  
 
 
/*calculate covariance matrix of estimated parameters*/ 
hsqp = hessp(&fct, bsqp); 
hqnew = hessp(&fct, bqnew); 
 
/*calculate standard error of estimated parameters*/ 
stdsqp = sqrt(diag(invpd(hsqp))); 
stdqnew = sqrt(diag(invpd(hqnew))); 
 
/*calculate t-value and p-value of estimated parameters*/ 
tsqp = bsqp./stdsqp; 
tqnew = bqnew./stdqnew; 
 
psqp = 2 * cdfnc(abs(tsqp)); 
pqnew  = 2 * cdfnc(abs(tqnew)); 
 
/**ouput**/ 
 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values      estimates     standard error       t-value          p-value"; 
print x0~bsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "             Optimization Results by Qnewton"; 
print; 
print "    initial values      estimates     standard error       t-value          p-value"; 
print x0~bqnew~stdqnew~tqnew~pqnew; 
print; 
print; 
 
 
/************************************************************ 
   Part II: computation of simulation starting points                                     
************************************************************/ 
 
 
/*simulate the yield data for the next X years using the esimated values*/ 
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print; 
print " Length of the historical yield, N = " rows(yield) "years"; 
print; 
print "starting point alpha_N = (" a_t1[1] "," a_t1[2] ")"; 
print; 
print "starting point alpha_N+1|N = (" a_t2[1] "," a_t2[2] ")"; 
print; 
print "starting point     p_N+1|N =  " P_t2[1,1]  P_t2[1,2]; 
print "                              " P_t2[2,1]  P_t2[2,2]; 
print; 
 
 
end; 
 
proc fct(x);               /*define and calculate the log likelihood function*/ 
     local z, T, Q, N, i, eps, at, Pt, at1, Pt1, at2, Pt2,  
           f, L,w,e,theta, delta, col1, col2; 
      
     /*initialize variables for the iteration*/ 
     z = {1 0}; 
     T[2,2] = {1 1, 0 1}; 
     Q = (x[4]^2~0)|(0~x[5]^2); 
 
     N = rows(yield);   /*number of observations*/ 
 
     at = x[1:2];        
     Pt = {10 0, 0 1};   
 
     L = 0;              
 
      /*recursive iteration for calculating the log likelihood*/ 
 
      /* case 1: normally distributed error terms*/ 
       
       for i (1, N, 1); 
           at1 = at;     
           pt1 = pt;      
           at2 = T * at1;             
           Pt2 = T * Pt1 * T' + Q;    
           eps = yield[i] - z * at2;   
           f = z * Pt2 * z' + x[3]^2; 
           at = at2 + Pt2 * z' * eps / f;    
           Pt = Pt2 - Pt2 * z'z * Pt2 / f;    
           L = L - .5 * (ln(abs(f)) + (eps ^ 2) / f); 
       endfor; 
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      /*case 2: inverse hyperbolic sine transformation on the error terms*/ 
      /* 
      theta = x[6]; 
      delta = x[7]; 
 
      for i (1, N, 1); 
           at1 = at; 
           Pt1 = Pt;     
           at2 = T * at1; 
           Pt2 = T * Pt1 * T' + Q; 
           eps = yield[i] - z * at2;        
           w = (ln(theta * eps + sqrt((theta * eps) ^ 2 + 1))) / theta; 
           e = w - delta; 
           f = z * Pt2 * z' + x[3]; 
           at = at2 + Pt2 * z' * e / f;      
           Pt = Pt2 - Pt2 * z'z * Pt2 / f;    
           L = L - .5 * (ln(abs(f)) + (e ^ 2) / f + ln((theta * eps) ^ 2 + 1)); 
       endfor; 
     */       
     a_t1 = at;    /*at=alpha(65) at the end of the iteration*/   
     P_t1 = pt;    /*Pt=P(65) at the end of the iteration*/ 
     a_t2 = T * a_t1;               /*a_t2=alpha(66|65)*/ 
     P_t2 = T * P_t1 * T' + Q;      /*P_t2=P(66|65)*/ 
      
     retp(-L);      
endp; 
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Appendix C.2. Stochastic Trend Model Simulation (in GAUSS) 

new; 
cls; 
 
print; 
print; 
print  
"Simulation of Price data for GEU model -- Portland Wheat Cash Prices Annual and  
               CBOT Sept Wheat Futures Prices Annual (correlation adjusted) 
 

---- ©2005 Wen Du. All rights reserved." 
 
 
Based on Stochastic trend model estimation under Normality, 1973-2003  
        
Initial values are obtained from the estimation, where 
 
 for Portland Cash Prices:      alpha(31)={393.64974, -3.9161528} 
                                               sigsqr_eps = 732.14732 or sig_eps = 27.05822093 
                                               sig_eta = 62.242636 
                                               sig_zeta = 0.00041566489 
 
 for CBOT futures Prices:                          alpha(31)={358.5, -3.3998929} 
                                               sig_eps = 0.012782108 
                                               sig_eta = 68.904407 
                                               sig_zeta = 0.00052417892 
                           
Correlation coefficients: 0.871 for eps, eta, and zeta; 0.913 for original prices 
 
                                               rho= 0.871 
                                                        
"; 
print; 
print 
"****************************************************************************"; 
print "*           Based on the basic model, simulate wheat cash price data for next N years        *"; 
print 
"****************************************************************************"; 
print; 
 
N = 5;      /*number of simulated years ahead*/ 
M = 2050;     /*number of sampling for each year*/ 
 
ro = 0.871;    /*correlation coefficient*/ 
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r_zeta = 0.00052417892 / 0.00041566489;   /*ratio of sig_zeta: (wf/wc)*/  
r_eta = 68.904407 / 62.242636;            /*ratio of sig_eta: (wf/wc)*/  
r_eps = 0.012782108 / 27.05822093;        /*ratio of sig_epsilon: (wf/wc)*/  
 
/* wheat Cash prices */ 
 
beta_wc = zeros(M,N); 
miu_wc = zeros(M,N); 
zeta_wc = zeros(M,N); 
eta_wc = zeros(M,N); 
 
eps_wc = zeros(M,N); 
wcpri = zeros(M,N); 
 
/* wheat Futures prices */ 
 
beta_wf = zeros(M,N); 
miu_wf = zeros(M,N); 
zeta_wf = zeros(M,N); 
eta_wf = zeros(M,N); 
 
eps_wf = zeros(M,N); 
wfpri = zeros(M,N); 
 
/** wheat futures prices, correlation adjusted **/ 
beta_wf_adj = zeros(M,N); 
miu_wf_adj = zeros(M,N); 
zeta_wf_adj = zeros(M,N); 
eta_wf_adj = zeros(M,N); 
 
eps_wf_adj = zeros(M,N); 
wfpri_adj = zeros(M,N); 
 
 
/*assign estimated values of {u, b} at t=31 for the recursive simulation starting at t=32*/ 
 
miu0_wc = 393.6497;    /*from Cash price estimation, alpha(31)[,1])*/ 
beta0_wc = -3.9162;    /*from Cash price estimation, alpha(31)[,2])*/ 
 
miu0_wf = 358.5;    /*from Futures price estimation, alpha(31)[,1])*/ 
beta0_wf = -3.3999;    /*from Futures price estimation, alpha(31)[,2])*/ 
 
 
/*calculate first year's Cash price simulation, based on historical estimated {miu(t),beta(t)} at 
t=32*/ 
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    zeta_wc[.,1] = 0 * rndn(M,1);    
    beta_wc[.,1] = beta0_wc + zeta_wc[.,1]; 
 
    eta_wc[.,1] = 62.2426 * rndn(M,1);     
    miu_wc[.,1] = miu0_wc + beta0_wc + eta_wc[.,1];  
 
    eps_wc[.,1] = 27.0582 * rndn(M,1);        
    wcpri[.,1] = miu_wc[.,1] + eps_wc[.,1]; 
 
print "var(simu_eps_wc)=" stdc(eps_wc)^2; 
print "sample mean of var(simu_eps_wc)=" meanc(stdc(eps_wc)^2); 
 
/*simulate 2nd till 5th year's of yield, based on first year's simulation*/ 
for t (2, N, 1); 
 
    zeta_wc[.,t] = 0 * rndn(M,1); 
    beta_wc[.,t] = beta_wc[.,t-1] + zeta_wc[.,t]; 
    eta_wc[.,t] = 62.2426 * rndn(M,1); 
    miu_wc[.,t] = miu_wc[.,t-1] + beta_wc[.,t-1] + eta_wc[.,t];  
 
    eps_wc[.,t]  = 27.0582 * rndn(M,1);     
    wcpri[.,t] = miu_wc[.,t] + eps_wc[.,t]; 
 
/* 
 print "var(simu_eps_wc)=" stdc(eps_wc)^2;*/ 
 
endfor; 
 
/* 
output file = D:\arec\output\wtsimu5year_wcpri_normalST.txt reset; 
print; 
print "                          Simulated   parameters"; 
print; 
print "                                   miu" miu_wc; 
print; 
print "                                  beta" beta_wc; 
print; 
print "                                   eta" eta_wc; 
print; 
print "                                  zeta" zeta_wc;*/ 
print; 
print "                          Simulated Yield for next 5 years"; 
print wcpri; 
print; 
print "        minPrice        meanPrice       StdDevPrice"; 
print minc(wcpri)~meanc(wcpri)~stdc(wcpri); 
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print; 
 
bound_wc = minc(wcpri)./ meanc(wcpri); 
print; 
print "optimization bound_wc=" bound_wc; 
print; 
/* 
output off; 
 
library pgraph; 
 
pqgwin "many"; 
graphset; 
 
_pltype = {1 6 5}; 
 
_pmcolor = 7; 
_pcolor = {3,2,13}; 
 
year = seqa(2002,1,N);     
 
title("        Simulated Portland Sept Cash Prices Annual for next 5 years  
          stochastic trend under normality" ); 
xy(year,meanc(wcpri)); 
 
title("        Simulated yield for next N years  
          stochastic trend (5% and 95% quantiles)" ); 
quanlevel = {0.05,0.95}; 
quan = quantile(yield, quanlevel)'; 
xy(year,meanc(wcpri)~quan);*/ 
/* 
for j (1, N, 1); 
    title("        Histogram of the Simulated yield for each year" ); 
    hist(wcpri[.,j],30); 
endfor;*/ 
 
 
print; 
print 
"****************************************************************************"; 
print "*           Based on the basic model, simulate wheat futures price data for next N years      *"; 
print 
"****************************************************************************"; 
print; 
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/*calculate first year's Futures price simulation, based on historical estimated {miu(t),beta(t)} at 
t=33*/ 
  
    zeta_wf[.,1] = 0.0005 * rndn(M,1);   
    beta_wf[.,1] = beta0_wf + zeta_wf[.,1]; 
 
    eta_wf[.,1] = 68.9044 * rndn(M,1);  
    miu_wf[.,1] = miu0_wf + beta0_wf + eta_wf[.,1];  
 
    eps_wf[.,1] = 0.0128 * rndn(M,1);        
    wfpri[.,1] = miu_wf[.,1] + eps_wf[.,1]; 
 
print "var(simu_eps_wf)=" stdc(eps_wf)^2; 
print "sample mean of var(simu_eps_wf)=" meanc(stdc(eps_wf)^2); 
 
/**correlation adjustments to simulated Futures prices**/ 
    zeta_wf_adj[.,1] = rho* (r_zeta) * zeta_wc[.,1] + sqrt(1 - ro^2) * zeta_wf[.,1]; 
    beta_wf_adj[.,1] = beta0_wf + zeta_wf_adj[.,1]; 
     
    eta_wf_adj[.,1] = rho* (r_eta) * eta_wc[.,1] + sqrt(1 - ro^2) * eta_wf[.,1]; 
    miu_wf_adj[.,1] = miu0_wf + beta0_wf + eta_wf_adj[.,1];  
    
    eps_wf_adj[.,1] = rho* (r_eps) * eps_wc[.,1] + sqrt(1 - ro^2) * eps_wf[.,1];        
    wfpri_adj[.,1] = miu_wf_adj[.,1] + eps_wf_adj[.,1]; 
 
print "var(simu_eps_wf_adj)=" stdc(eps_wf_adj)^2; 
print "sample mean of var(simu_eps_wf_adj)=" meanc(stdc(eps_wf_adj)^2); 
 
 
/*simulate 2nd till 5th year's of yield, based on first year's simulation*/ 
for t (2, N, 1); 
 
    /*unadjusted simulated Futures prices*/ 
    zeta_wf[.,t] = 0.0005 * rndn(M,1); 
    beta_wf[.,t] = beta_wf[.,t-1] + zeta_wf[.,t]; 
 
    eta_wf[.,t] = 68.9044 * rndn(M,1); 
    miu_wf[.,t] = miu_wf[.,t-1] + beta_wf[.,t-1] + eta_wf[.,t];  
 
    eps_wf[.,t]  = 0.0128 * rndn(M,1);     
    wfpri[.,t] = miu_wf[.,t] + eps_wf[.,t]; 
/* 
 print "var(simu_eps_wf)=" stdc(eps_wf)^2;*/ 
 
    /*correlation adjusted simulated Futures price*/ 
    zeta_wf_adj[.,t] = rho* (r_zeta) * zeta_wc[.,t] + sqrt(1 - ro^2) * zeta_wf[.,t]; 
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    beta_wf_adj[.,t] = beta_wf_adj[.,t-1] + zeta_wf_adj[.,t]; 
 
    eta_wf_adj[.,t] = rho* (r_eta) * eta_wc[.,t] + sqrt(1 - ro^2) * eta_wf[.,t]; 
    miu_wf_adj[.,t] = miu_wf_adj[.,t-1] + beta_wf_adj[.,t-1] + eta_wf_adj[.,t];  
 
    eps_wf_adj[.,t] = rho* (r_eps) * eps_wc[.,t] + sqrt(1 - ro^2) * eps_wf[.,t];        
    wfpri_adj[.,t] = miu_wf_adj[.,t] + eps_wf_adj[.,t]; 
/* 
 print "var(simu_eps_wf_adj)=" stdc(eps_wf_adj)^2;*/ 
 
endfor; 
/* 
output file = D:\arec\output\wtsimu5year_wfpri_normalST.txt reset; 
print; 
print "                          Simulated   parameters"; 
print; 
print "                                   miu_wf" miu_wf; 
print; 
print "                                  beta_wf" beta_wf; 
print; 
print "                                   eta_wf" eta_wf; 
print; 
print "                                  zeta_wf" zeta_wf; 
print; 
print "                          Simulated Yield for next 5 years"; 
print wfpri; 
print; 
 
print; 
print "        minPrice        meanPrice       StdDevPrice"; 
print minc(wfpri)~meanc(wfpri)~stdc(wfpri); 
print; 
 
bound_wf = minc(wfpri)./ meanc(wfpri); 
print; 
print "optimization bound_wf = " bound_wf; 
print; 
*/ 
 
/* 
print; 
print "                                   miu_wf_adj" miu_wf_adj; 
print; 
print "                                  beta_wf_adj" beta_wf_adj; 
print; 
print "                                   eta_wf_adj" eta_wf_adj; 
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print; 
print "                                  zeta_wf_adj" zeta_wf_adj;*/ 
print; 
print "                          Simulated Futures Price (correlation adjusted) for next 5 years"; 
print wfpri_adj; 
print; 
 
print; 
print "        minPrice        meanPrice       StdDevPrice"; 
print minc(wfpri_adj)~meanc(wfpri_adj)~stdc(wfpri_adj); 
print; 
 
bound_wf_adj = minc(wfpri_adj)./ meanc(wfpri_adj); 
print; 
print "optimization bound_wf_adj = " bound_wf_adj; 
print; 
 
/* 
library pgraph; 
 
pqgwin "many"; 
graphset; 
 
_pltype = {1 6 5}; 
 
_pmcolor = 7; 
_pcolor = {3,2,13}; 
 
year = seqa(2002,1,N);      
 
title("        Simulated Portland Sept Cash Prices Annual for next 5 years  
          stochastic trend under normality" ); 
xy(year,meanc(wfpri)); 
 
title("        Simulated yield for next N years  
          stochastic trend (5% and 95% quantiles)" ); 
quanlevel = {0.05,0.95}; 
quan = quantile(wfpri, quanlevel)'; 
xy(year,meanc(wfpri)~quan);*/ 
/* 
for j (1, N, 1); 
    title("        Histogram of the Simulated yield for each year" ); 
    hist(wfpri[.,j],30); 
endfor;*/ 
end; 



 

125 
 

Appendix C.3. Generalized expected utility (GEU) optimization for Whitman County 
(in GAUSS) 

 
new; 
cls; 
 
print; 
print; 
print 
"Generalized expected utility (GEU) optimization for Whitman County Wheat producer 
 
max Ut = {(1-b)*Ct^r + b*[Et((Ut+1)^a)]^(r/a)}^(1/r) 
 
 
Based on simulated yield (deterministic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[65,1] = D:\arec\whitman_wyld39to03.txt;  
load yield[2000,5] = D:\arec\whitman_wyldsimuDTreg_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
 
/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
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load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = -0.13;  /*alpha*/ 
b = 0.89;   /*beta*/ 
r = 0.9493;   /*rho*/ 
 
a = 0.5; 
r = 0.5;/**/ 
 
/**transportation cost**/ 
transport = 0.5; 
 
/**production cost**/ 
pc = 203; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;   /*target price*/ 
LR = 2.86;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
LDP = zeros(M,T); 
CCP = zeros(M,T); 
CI = zeros(M,T); 



 

127 
 

IP = zeros(M,T); 
MIP = zeros(T,1); 
FI = zeros(M,T); 
C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - transport)* yld[65] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {-0.1, -0.2, -0.1, -0.1, -0.1}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
X0 = X0_f/*|X0_i*/;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
 
     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   
     endfor; 
 
     /*net income from crop insurance*/     
     for i (1, T, 1); 
         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
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sqpSolveSet; 
 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0); 
/* 
QnewtonSet; 
{Xqnew, EUqnew, lagrqnew, retqnew} = Qnewton(&EU, X0);*/ 
 
 
/**ouput**/ 
print;  
print "        alpha             beta              rho       transaction cost     production cost"; 
print a~b~r~trans~pc; 
print; 
print "Government Payment Programs include: " "DP" "&LDP" "&CCP"; 
print; 
print " insurance coverage      loading"; 
print CIcov~CIload; 
print "          X0              Xsqp ";  
print X0~/*Xqnew*/Xsqp; 
print; 
print "Opt U0 = " /*-EUqnew*/-EUsqp; 
print; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "Value of objective function   " -EUqnew; 
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print;*/ 
 
end; 
 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, U0; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                          
     endfor; 
 
     C = NC + GI + CI + FI;  /*print;  print "mincC=" minc(C)*/; 
 
d = d+1; print "d=" d; 
 
   /**compute the expected uitlity function recursively, starting from year T**/ 
     U[.,T] = ( (1-b)*C[.,T]^r )^(1/r);  /*U(T+1) = 0*/ 
     for i (T-1, 1, -1);  
         U[.,i] = ( (1-b)*C[.,i]^r + b*(meanc(U[.,i+1]^a))^(r/a) )^(1/r); 
     endfor; 
     U0 = ( (1-b)*C0^r + b*(meanc(U[.,1]^a))^(r/a) )^(1/r);   print; print "U0 = " U0; 
 
     retp(-U0); 
endp; 
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Appendix C.4. Multi-period Additive Expected Utility (MA-EU) optimization for Whitman 
County (in GAUSS) 

 
 
new; 
cls; 
 
print; 
print; 
print  
"Multi-period expected utility (static) optimization for Whitman County Wheat producer 
 
max Ut = sum (b^i*E(Ut+i)), i = 1,...,5 
 
    where Ut = - (1/Ct)  s.t. CRR is set at 2 (ie, a = -1) 
 
Based on simulated yield (deterministic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[65,1] = D:\arec\whitman_wyld39to03.txt;  
load yield[2000,5] = D:\arec\whitman_wyldsimuDTreg_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
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/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = 0.5; 
b = 0.89;   /*beta*/ 
 
/**transportation cost**/ 
transport = 0.5; 
 
/**production cost**/ 
pc = 203; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;   /*target price*/ 
LR = 2.86;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
LDP = zeros(M,T); 
CCP = zeros(M,T); 
CI = zeros(M,T); 
IP = zeros(M,T); 
MIP = zeros(T,1); 
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FI = zeros(M,T); 
C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - transport)* (yld[65]) - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
 
S0 = 550;    /*the initial saving from before*/; 
S0 = 0; 
 
S = zeros(M,T); 
interest = 0.08;   /*annual interest rate 8% for loans*/ 
interest = (1/b) - 1;      
 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {-0.3, -0.2, -0.2, -0.3, -0.2}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
X0 = X0_f/*|X0_i */;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
 
     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   
     endfor; 
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     /*net income from crop insurance*/     
     for i (1, T, 1); 
         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
 
sqpSolveSet; 
 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0); 
 
/**ouput**/ 
print; 
print "        alpha         beta      transaction cost      production cost"; 
print a~b~trans~pc; 
print; 
print "Government Payment Programs include: " "DP" "&LDP" "&CCP"; 
print; 
print " insurance coverage      loading"; 
print CIcov~CIload; 
print; 
print "          X0              Xsqp ";  
print X0~Xsqp; 
print; 
print "Opt U0 = " -EUsqp; 
print; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
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print; 
print; 
print "Value of objective function   " -EUqnew; 
print;*/ 
 
end; 
 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, Unext, U0/*, sum_pre, loan_T*/; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                          
     endfor; 
 
     C = NC + GI + CI + FI;  print;  print "mincC=" minc(C); 
 
         
d = d+1; print "d=" d; 
 
   /**compute the expected uitlity function recursively, starting from year T**/ 
     Unext= 0; 
     for i (1, T, 1);  
         Unext = Unext + b^i * meanc((C[.,i])^a/a);    
     endfor; 
     U0 = ( - (1/C0) + Unext);   print; print "U0=" U0; 
 
     retp(-U0); 
endp; 
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Appendix C.5. Generalized expected utility (GEU) optimization for Grant County 
(in GAUSS) 

 
new; 
cls; 
 
print; 
print; 
print 
"Generalized expected utility (GEU) optimization for Grant County Wheat producer 
 
max Ut = {(1-b)*Ct^r + b*[Et((Ut+1)^a)]^(r/a)}^(1/r) 
 
 
Based on simulated yield (stochastic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
                   /*include terminal (T+1) value of generalized expected utility*/ 
 
load yld[32,1] = D:\arec\grant_wyld72to03.txt;  
load yield[2000,5] = D:\arec\grant_wyldsimuST_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
 
/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
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load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = -0.13;  /*alpha*/ 
b = 0.89;   /*beta*/ 
r = 0.9493;   /*rho*/ 
 
/**transportation cost**/ 
transport = 0.47; 
 
/**production cost**/ 
pc = 195;   
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;   /*target price*/ 
LR = 2.91;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
LDP = zeros(M,T); 
CCP = zeros(M,T); 
CI = zeros(M,T); 
IP = zeros(M,T); 
MIP = zeros(T,1); 
FI = zeros(M,T); 
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C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - transport)* yld[32] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {0.1, 0.1, 0.1, 0.1, 0.1}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
X0 = X0_f/*|X0_i*/;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
 
     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   
     endfor; 
 
     /*net income from crop insurance*/     
     for i (1, T, 1); 
         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
 
sqpSolveSet; 
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/* 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0);*/ 
 
QnewtonSet; 
{Xqnew, EUqnew, lagrqnew, retqnew} = Qnewton(&EU, X0); 
 
/**ouput**/ 
print;  
print "        alpha             beta              rho       transaction cost     production cost    transportation"; 
print a~b~r~trans~pc~transport; 
print; 
print "Government Payment Programs include: " "DP" "&LDP" "&CCP"; 
print; 
print " insurance coverage     loading"; 
print CIcov~CIload; 
print; 
print "          X0              Xsqp ";  
print X0~Xqnew/*Xsqp*/; 
print; 
print "Opt U0 = " -EUqnew/*-EUsqp*/; 
print; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "Value of objective function   " -EUqnew; 
print;*/ 
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end; 
 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, U0/*, sum_pre, loan_T*/; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                          
     endfor; 
 
     C = NC + GI + CI + FI;  /*print;  print "mincC=" minc(C);*/ 
         
d = d+1; print "d=" d; 
  
   /**compute the expected uitlity function recursively, starting from year T**/ 
     U[.,T] = ( (1-b)*C[.,T]^r )^(1/r);  /*U(T+1) = 0*/ 
     for i (T-1, 1, -1);  
         U[.,i] = ( (1-b)*C[.,i]^r + b*(meanc(U[.,i+1]^a))^(r/a) )^(1/r); 
     endfor; 
     U0 = ( (1-b)*C0^r + b*(meanc(U[.,1]^a))^(r/a) )^(1/r);   print; print "U0=" U0; 
 
     retp(-U0); 
endp; 
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Appendix C.6. Multi-period Additive Expected Utility (MA-EU) optimization for Grant 
County (in GAUSS) 

 
 
new; 
cls; 
 
print; 
print; 
print  
"Multi-period expected utility (static) optimization for Grant County Wheat producer 
 
max Ut = sum (b^i*E(Ut+i)), i = 1,...,5 
 
    where Ut = - (1/Ct)  s.t. CRR is set at 2 (ie, a = -1) 
 
Based on simulated yield (stochastic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[32,1] = D:\arec\grant_wyld72to03.txt;  
load yield[2000,5] = D:\arec\grant_wyldsimuST_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
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/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
b = 0.89;   /*beta*/ 
 
/**transportation cost**/ 
transport = 0.47; 
 
/**production cost**/ 
pc = 195; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;   /*target price*/ 
LR = 2.91;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
LDP = zeros(M,T); 
CCP = zeros(M,T); 
CI = zeros(M,T); 
IP = zeros(M,T); 
MIP = zeros(T,1); 
FI = zeros(M,T); 
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C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - transport)* yld[32] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {-0.3, -0.2, -0.2, -0.3, -0.2}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
 
X0 = X0_f/*|X0_i*/;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
 
     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   
     endfor; 
 
     /*net income from crop insurance*/     
     for i (1, T, 1); 
         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
 
sqpSolveSet; 
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/* 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0);*/ 
 
QnewtonSet; 
{Xqnew, EUqnew, lagrqnew, retqnew} = Qnewton(&EU, X0); 
 
/**ouput**/ 
print; 
print "        beta       transaction cost   production cost  transportation"; 
print b~trans~pc~transport; 
print; 
print "Government Payment Programs include: " "DP" "&LDP" "&CCP"; 
print; 
print " insurance coverage      loading"; 
print CIcov~CIload; 
print; 
print "          X0              Xsqp ";  
print X0~Xqnew/*Xsqp*/; 
print; 
print "Opt U0 = " -EUqnew/*-EUsqp*/; 
print; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "Value of objective function   " -EUqnew; 
print;*//* 
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end; 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, Unext, U0/*, sum_pre, loan_T*/; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                          
     endfor; 
 
     C = NC + GI + CI + FI;  print;  print "mincC=" minc(C); 
 
d = d+1; print "d=" d; 
 
   /**compute the expected uitlity function recursively, starting from year T**/ 
     Unext= 0; 
     for i (1, T, 1);  
         Unext = Unext + b^i * meanc(-1/(C[.,i]));   /*alpha = -1 implicitly*/ 
     endfor; 
     U0 = ( - (1/C0) + Unext);   print; print "U0=" U0; 
 
     retp(-U0); 
endp; 
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Appendix D.1. The Impact of Risk Aversion on Optimal Risk Management Portfolios, 
based on Generalized expected utility (GEU) optimization for Whitman County (in GAUSS) 
 
 
new; 
cls; 
 
print; 
print; 
print 
"Generalized expected utility (GEU) optimization for Whitman County Wheat producer 
 
max Ut = {(1-b)*Ct^r + b*[Et((Ut+1)^a)]^(r/a)}^(1/r) 
 
 
Based on simulated yield (deterministic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[65,1] = D:\arec\whitman_wyld39to03.txt;  
load yield[2000,5] = D:\arec\whitman_wyldsimuDTreg_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
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/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = -0.13;   /*alpha*/ 
b = 0.89;   /*beta*/ 
r = 0.9493;   /*rho*/ 
 
for alpha (-6, 0.6, 0.1);   
    a = alpha;  
 
/**transportation cost**/ 
transport = 0.5; 
 
/**production cost**/ 
pc = 203; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;   /*target price*/ 
LR = 2.86;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
LDP = zeros(M,T); 
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CCP = zeros(M,T); 
CI = zeros(M,T); 
IP = zeros(M,T); 
MIP = zeros(T,1); 
FI = zeros(M,T); 
C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - 0.5)* yld[65] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
interest = 0.08;     /*annual interest rate 8% for loans*/ 
interest = (1/b) - 1; 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {-0.3, -0.2, -0.2, -0.3, -0.2}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
/* starting values of loan/saving level*/  
X0_s = {247.6176, 108.4933, 44.2531, 14.2805}; 
 
X0 = X0_f/*|X0_i */;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
 
     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   
     endfor; 
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     /*net income from crop insurance*/     
     for i (1, T, 1); 
         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
 
 
sqpSolveSet; 
/* 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0);*/ 
 
 
Qnewtonset; 
{Xqnew, EUqnew, lagrqnew, retqnew} = Qnewton(&EU, X0); 
 
 
/**ouput**/ 
print;  
print "Given    beta = " b "      rho = " r; 
print "        alpha = " a; 
print; 
print " transaction cost    production cost    insurance coverage      loading"; 
print trans~pc~CIcov~CIload; 
print; 
print "          X0              Xsqp ";  
print X0~Xqnew/*Xsqp*/; 
print; 
print "Opt U0 = " -EUqnew/*-EUsqp*/; 
print; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
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print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "Value of objective function   " -EUqnew; 
print;*/ 
 
endfor; 
 
end; 
 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, U0; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                         
     endfor; 
 
     C = NC + GI + CI + FI;   
     print;   
     print "         meanC            stdC"; 
     print meanc(C)~stdc(C); 
 
     /*saving/loan is the deducted term in the consumption*//* 
     C[.,1] =  (1 + interest) * S0 + (NC[.,1] + GI[.,1] + FI[.,1] + CI[.,1]) - X[2*T+1]; 
     for i (2, T-1, 1); 
         j = i + 2 * T; 
         C[.,i] = (1 + interest) * X[j-1] + (NC[.,i] + GI[.,i] + FI[.,i] + CI[.,i])- X[j]; 
     endfor; 
     C[.,T] = (1 + interest) * X[3*T-1] + (NC[.,T] + GI[.,T] + FI[.,T] + CI[.,T]) - (1 + interest)^T * 
550; 
     */ 
         
d = d+1; print "d=" d; 
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   /**compute the expected uitlity function recursively, starting from year T**/ 
     U[.,T] = ( (1-b)*C[.,T]^r )^(1/r);  /*U(T+1) = 0*/ 
     for i (T-1, 1, -1);  
         U[.,i] = ( (1-b)*C[.,i]^r + b*(meanc(U[.,i+1]^a))^(r/a) )^(1/r); 
     endfor; 
     U0 = ( (1-b)*C0^r + b*(meanc(U[.,1]^a))^(r/a) )^(1/r);   print; print "U0 = " U0; 
 
     retp(-U0); 
endp; 
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Appendix D.2. The Impact of Time Preference on Optimal Risk Management Portfolios, 
based on Generalized expected utility (GEU) optimization for Whitman County (in GAUSS) 
 
 
new; 
cls; 
 
print; 
print; 
print 
"Generalized expected utility (GEU) optimization for Whitman County Wheat producer 
 
max Ut = {(1-b)*Ct^r + b*[Et((Ut+1)^a)]^(r/a)}^(1/r) 
 
 
Based on simulated yield (deterministic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[65,1] = D:\arec\whitman_wyld39to03.txt;  
load yield[2000,5] = D:\arec\whitman_wyldsimuDTreg_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
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/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = -0.13;   /*alpha*/ 
b = 0.89;   /*beta*/ 
r = 0.9493;   /*rho*/ 
 
for beta (0.1, 0.9, 0.1);   
    b = beta;   
 
/**transportation cost**/ 
transport = 0.5; 
 
/**production cost**/ 
pc = 203; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;   /*target price*/ 
LR = 2.86;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
LDP = zeros(M,T); 
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CCP = zeros(M,T); 
CI = zeros(M,T); 
IP = zeros(M,T); 
MIP = zeros(T,1); 
FI = zeros(M,T); 
C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - 0.5)* yld[65] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
interest = 0.08;     /*annual interest rate 8% for loans*/ 
interest = (1/b) - 1; 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {-0.3, -0.2, -0.2, -0.3, -0.2}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
/* starting values of loan/saving level*/  
X0_s = {247.6176, 108.4933, 44.2531, 14.2805}; 
 
X0 = X0_f/*|X0_i */;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
 
     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   
     endfor; 
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     /*net income from crop insurance*/     
     for i (1, T, 1); 
         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
 
 
sqpSolveSet; 
/* 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0);*/ 
 
 
Qnewtonset; 
{Xqnew, EUqnew, lagrqnew, retqnew} = Qnewton(&EU, X0); 
 
 
/**ouput**/ 
print;  
print "Given    beta = " b "      rho = " r; 
print "        alpha = " a; 
print; 
print " transaction cost    production cost    insurance coverage      loading"; 
print trans~pc~CIcov~CIload; 
print; 
print "          X0              Xsqp ";  
print X0~Xqnew/*Xsqp*/; 
print; 
print "Opt U0 = " -EUqnew/*-EUsqp*/; 
print; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
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print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "Value of objective function   " -EUqnew; 
print;*/ 
 
endfor; 
 
end; 
 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, U0; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                         
     endfor; 
 
     C = NC + GI + CI + FI;   
     print;   
     print "         meanC            stdC"; 
     print meanc(C)~stdc(C); 
 
     /*saving/loan is the deducted term in the consumption*//* 
     C[.,1] =  (1 + interest) * S0 + (NC[.,1] + GI[.,1] + FI[.,1] + CI[.,1]) - X[2*T+1]; 
     for i (2, T-1, 1); 
         j = i + 2 * T; 
         C[.,i] = (1 + interest) * X[j-1] + (NC[.,i] + GI[.,i] + FI[.,i] + CI[.,i])- X[j]; 
     endfor; 
     C[.,T] = (1 + interest) * X[3*T-1] + (NC[.,T] + GI[.,T] + FI[.,T] + CI[.,T]) - (1 + interest)^T * 
550; 
     */ 
         
d = d+1; print "d=" d; 
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   /**compute the expected uitlity function recursively, starting from year T**/ 
     U[.,T] = ( (1-b)*C[.,T]^r )^(1/r);  /*U(T+1) = 0*/ 
     for i (T-1, 1, -1);  
         U[.,i] = ( (1-b)*C[.,i]^r + b*(meanc(U[.,i+1]^a))^(r/a) )^(1/r); 
     endfor; 
     U0 = ( (1-b)*C0^r + b*(meanc(U[.,1]^a))^(r/a) )^(1/r);   print; print "U0 = " U0; 
 
     retp(-U0); 
endp; 
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Appendix D.3. The Impact of Intertemporal Substitutability on Optimal Risk Management 
Portfolios, based on Generalized expected utility (GEU) optimization for Whitman County 

(in GAUSS) 
 
 
new; 
cls; 
 
print; 
print; 
print 
"Generalized expected utility (GEU) optimization for Whitman County Wheat producer 
 
max Ut = {(1-b)*Ct^r + b*[Et((Ut+1)^a)]^(r/a)}^(1/r) 
 
 
Based on simulated yield (deterministic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[65,1] = D:\arec\whitman_wyld39to03.txt;  
load yield[2000,5] = D:\arec\whitman_wyldsimuDTreg_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
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/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = -0.13;   /*alpha*/ 
b = 0.89;   /*beta*/ 
r = 0.9493;   /*rho*/ 
 
for rho (-6, 0.9, 0.1);   
    r = rho; 
 
/**transportation cost**/ 
transport = 0.5; 
 
/**production cost**/ 
pc = 203; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;   /*target price*/ 
LR = 2.86;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
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LDP = zeros(M,T); 
CCP = zeros(M,T); 
CI = zeros(M,T); 
IP = zeros(M,T); 
MIP = zeros(T,1); 
FI = zeros(M,T); 
C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - 0.5)* yld[65] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
interest = 0.08;     /*annual interest rate 8% for loans*/ 
interest = (1/b) - 1; 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {-0.3, -0.2, -0.2, -0.3, -0.2}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
/* starting values of loan/saving level*/  
X0_s = {247.6176, 108.4933, 44.2531, 14.2805}; 
 
X0 = X0_f/*|X0_i */;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
 
     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   



 

161 
 

     endfor; 
 
     /*net income from crop insurance*/     
     for i (1, T, 1); 
         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
 
 
sqpSolveSet; 
/* 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0);*/ 
 
 
Qnewtonset; 
{Xqnew, EUqnew, lagrqnew, retqnew} = Qnewton(&EU, X0); 
 
 
/**ouput**/ 
print;  
print "Given    beta = " b "      rho = " r; 
print "        alpha = " a; 
print; 
print " transaction cost    production cost    insurance coverage      loading"; 
print trans~pc~CIcov~CIload; 
print; 
print "          X0              Xsqp";  
print X0~Xqnew/*Xsqp*/ 
print; 
print "Opt U0 = " -EUqnew/*-EUsqp*/; 
print; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
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print; 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "Value of objective function   " -EUqnew; 
print;*/ 
 
endfor; 
 
end; 
 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, U0; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                          
     endfor; 
 
     C = NC + GI + CI + FI;   
     print;   
     print "         meanC            stdC"; 
     print meanc(C)~stdc(C); 
 
     /*saving/loan is the deducted term in the consumption*//* 
     C[.,1] =  (1 + interest) * S0 + (NC[.,1] + GI[.,1] + FI[.,1] + CI[.,1]) - X[2*T+1]; 
     for i (2, T-1, 1); 
         j = i + 2 * T; 
         C[.,i] = (1 + interest) * X[j-1] + (NC[.,i] + GI[.,i] + FI[.,i] + CI[.,i])- X[j]; 
     endfor; 
     C[.,T] = (1 + interest) * X[3*T-1] + (NC[.,T] + GI[.,T] + FI[.,T] + CI[.,T]) - (1 + interest)^T * 
550; 
     */ 
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d = d+1; print "d=" d; 
 
   /**compute the expected uitlity function recursively, starting from year T**/ 
     U[.,T] = ( (1-b)*C[.,T]^r )^(1/r);  /*U(T+1) = 0*/ 
     for i (T-1, 1, -1);  
         U[.,i] = ( (1-b)*C[.,i]^r + b*(meanc(U[.,i+1]^a))^(r/a) )^(1/r); 
     endfor; 
     U0 = ( (1-b)*C0^r + b*(meanc(U[.,1]^a))^(r/a) )^(1/r);   print; print "U0 = " U0; 
 
     retp(-U0); 
endp; 
 
 



 

164 
 

Appendix D.4. The Impact of Transaction Cost on Optimal Risk Management Portfolios, 
based on Generalized expected utility (GEU) optimization for Whitman County (in GAUSS) 
 
 
new; 
cls; 
 
print; 
print; 
print 
"Generalized expected utility (GEU) optimization for Whitman County Wheat producer 
 
max Ut = {(1-b)*Ct^r + b*[Et((Ut+1)^a)]^(r/a)}^(1/r) 
 
 
Based on simulated yield (deterministic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[65,1] = D:\arec\whitman_wyld39to03.txt;  
load yield[2000,5] = D:\arec\whitman_wyldsimuDTreg_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
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/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = -0.13;   /*alpha*/ 
b = 0.89;   /*beta*/ 
r = 0.9493;   /*rho*/ 
 
/**transportation cost**/ 
transport = 0.5; 
 
/**production cost**/ 
pc = 203; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;   /*target price*/ 
LR = 2.86;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
LDP = zeros(M,T); 
CCP = zeros(M,T); 
CI = zeros(M,T); 
IP = zeros(M,T); 
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MIP = zeros(T,1); 
FI = zeros(M,T); 
C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - 0.5)* yld[65] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
interest = 0.08;     /*annual interest rate 8% for loans*/ 
interest = (1/b) - 1; 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {-0.3, -0.2, -0.2, -0.3, -0.2}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
/* starting values of loan/saving level*/  
X0_s = {247.6176, 108.4933, 44.2531, 14.2805}; 
 
X0 = X0_f/*|X0_i */;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
 
     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   
     endfor; 
 
     /*net income from crop insurance*/     
     for i (1, T, 1); 
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         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
 
/**transcation cost of futures constract*/ 
mm = 21;     /*number of intervals in Transaction Cost within the range*/ 
 
trans = zeros(mm,1); 
Xtrans = zeros(T,mm); 
EUtrans = zeros(mm,1); 
 
for kk (1,mm,1); 
 
trans[kk] = 0 + (kk - 1) * 0.001 ; 
TC = trans[kk]; 
 
sqpSolveSet; 
/* 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0);*/ 
 
 
Qnewtonset; 
{Xqnew, EUqnew, lagrqnew, retqnew} = Qnewton(&EU, X0); 
 
Xtrans[.,kk] = Xsqp; 
EUtrans[kk] = -EUsqp;  
 
endfor; 
 
/**ouput**/ 
print;  
print "        alpha             beta              rho       " /*transaction cost*/; 
print a~b~r/*~trans*/; 
print; 
print " insurance coverage      loading"; 
print CIcov~CIload; 
print; 
print "Government Payment Programs include: " "DP" "&LDP" /*"&CCP"*/; 
print; 
print "          X0              Xsqp ";  
print X0~Xsqp; 
print; 
print "Opt U0 = " -EUsqp; 
print;*/ 
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print "   Transaction Cost                       Optimal Hedging Ratios (Short Positions)                                          
";  
print trans~-Xtrans'; 
print; 
print        "Opt U0"; 
print EUtrans; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "   Transaction Cost                       Optimal Hedging Ratios (Short Positions)                                          
";  
print trans~-Xtrans'; 
print; 
print        "Opt U0"; 
print EUtrans; 
print; 
 
end; 
 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, U0; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
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print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                          
     endfor; 
 
     C = NC + GI + CI + FI;   
     print;   
     print "         meanC            stdC"; 
     print meanc(C)~stdc(C); 
 
     /*saving/loan is the deducted term in the consumption*//* 
     C[.,1] =  (1 + interest) * S0 + (NC[.,1] + GI[.,1] + FI[.,1] + CI[.,1]) - X[2*T+1]; 
     for i (2, T-1, 1); 
         j = i + 2 * T; 
         C[.,i] = (1 + interest) * X[j-1] + (NC[.,i] + GI[.,i] + FI[.,i] + CI[.,i])- X[j]; 
     endfor; 
     C[.,T] = (1 + interest) * X[3*T-1] + (NC[.,T] + GI[.,T] + FI[.,T] + CI[.,T]) - (1 + interest)^T * 
550; 
     */ 
         
d = d+1; print "d=" d; 
 
   /**compute the expected uitlity function recursively, starting from year T**/ 
     U[.,T] = ( (1-b)*C[.,T]^r )^(1/r);  /*U(T+1) = 0*/ 
     for i (T-1, 1, -1);  
         U[.,i] = ( (1-b)*C[.,i]^r + b*(meanc(U[.,i+1]^a))^(r/a) )^(1/r); 
     endfor; 
     U0 = ( (1-b)*C0^r + b*(meanc(U[.,1]^a))^(r/a) )^(1/r);   print; print "U0 = " U0; 
 
     retp(-U0); 
endp; 
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Appendix D.5. The Impact of Target Price on Optimal Risk Management Portfolios, based 
on Generalized expected utility (GEU) optimization for Whitman County (in GAUSS) 

 
 
new; 
cls; 
 
print; 
print; 
print 
"Generalized expected utility (GEU) optimization for Whitman County Wheat producer 
 
max Ut = {(1-b)*Ct^r + b*[Et((Ut+1)^a)]^(r/a)}^(1/r) 
 
 
Based on simulated yield (deterministic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[65,1] = D:\arec\whitman_wyld39to03.txt;  
load yield[2000,5] = D:\arec\whitman_wyldsimuDTreg_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
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/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = -0.13;   /*alpha*/ 
b = 0.89;   /*beta*/ 
r = 0.9493;   /*rho*/ 
 
/**transportation cost**/ 
transport = 0.5; 
 
/**production cost**/ 
pc = 203; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
LR = 2.86;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
 /**target price variation from 2.86 to 3.92 in CCP*/ 
mm = 57;     /*number of intervals in Transaction Cost within the range*/ 
 
target = zeros(mm,1); 
Xpt = zeros(T,mm); 
EUpt = zeros(mm,1); 
 
for kk (1,m,1); 
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 target[kk] = 2.86 + (kk - 1) * 0.02 ; 
 PT = target[kk]; 
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
LDP = zeros(M,T); 
CCP = zeros(M,T); 
CI = zeros(M,T); 
IP = zeros(M,T); 
MIP = zeros(T,1); 
FI = zeros(M,T); 
C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - 0.5)* yld[65] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
interest = 0.08;     /*annual interest rate 8% for loans*/ 
interest = (1/b) - 1; 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {-0.3, -0.2, -0.2, -0.3, -0.2}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
/* starting values of loan/saving level*/  
X0_s = {247.6176, 108.4933, 44.2531, 14.2805}; 
 
X0 = X0_f/*|X0_i */;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
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     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   
     endfor; 
 
     /*net income from crop insurance*/     
     for i (1, T, 1); 
         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
 
/**transcation cost of futures constract*/ 
mm = 21;     /*number of intervals in Transaction Cost within the range*/ 
 
trans = zeros(mm,1); 
Xtrans = zeros(T,mm); 
EUtrans = zeros(mm,1); 
 
for kk (1,mm,1); 
 
trans[kk] = 0 + (kk - 1) * 0.001 ; 
TC = trans[kk]; 
 
sqpSolveSet; 
 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0); 
 
Xpt[.,kk] = Xsqp; 
EUpt[kk] = -EUsqp;  
 
 print "kk=" kk; 
/* 
Qnewtonset; 
{Xqnew, EUqnew, lagrqnew, retqnew} = Qnewton(&EU, X0); */ 
 
endfor; 
 
/**ouput**/ 
print;  
print "        alpha             beta              rho       " /*transaction cost*/; 
print a~b~r/*~trans*/; 
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print; 
print " insurance coverage      loading"; 
print CIcov~CIload; 
print; 
print "Government Payment Programs include: " "DP" "&LDP" /*"&CCP"*/; 
print; 
print "          X0              Xsqp ";  
print X0~Xsqp; 
print; 
print "Opt U0 = " -EUsqp; 
print;*/ 
print "     Target Price                       Optimal Hedging Ratios (Short Positions)                                          
";  
print target~-Xpt'; 
print; 
print        "Opt U0"; 
print EUpt; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "Value of objective function   " -EUsqp; 
print;*/ 
 
end; 
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/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, U0; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                          
     endfor; 
 
     C = NC + GI + CI + FI;   
     print;   
     print "         meanC            stdC"; 
     print meanc(C)~stdc(C); 
 
     /*saving/loan is the deducted term in the consumption*//* 
     C[.,1] =  (1 + interest) * S0 + (NC[.,1] + GI[.,1] + FI[.,1] + CI[.,1]) - X[2*T+1]; 
     for i (2, T-1, 1); 
         j = i + 2 * T; 
         C[.,i] = (1 + interest) * X[j-1] + (NC[.,i] + GI[.,i] + FI[.,i] + CI[.,i])- X[j]; 
     endfor; 
     C[.,T] = (1 + interest) * X[3*T-1] + (NC[.,T] + GI[.,T] + FI[.,T] + CI[.,T]) - (1 + interest)^T * 
550; 
     */ 
         
d = d+1; print "d=" d; 
 
   /**compute the expected uitlity function recursively, starting from year T**/ 
     U[.,T] = ( (1-b)*C[.,T]^r )^(1/r);  /*U(T+1) = 0*/ 
     for i (T-1, 1, -1);  
         U[.,i] = ( (1-b)*C[.,i]^r + b*(meanc(U[.,i+1]^a))^(r/a) )^(1/r); 
     endfor; 
     U0 = ( (1-b)*C0^r + b*(meanc(U[.,1]^a))^(r/a) )^(1/r);   print; print "U0 = " U0; 
 
     retp(-U0); 
endp; 
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Appendix D.6. The Impact of Loan Rate on Optimal Risk Management Portfolios, based 
on Generalized expected utility (GEU) optimization for Whitman County (in GAUSS) 

 
 
new; 
cls; 
 
print; 
print; 
print 
"Generalized expected utility (GEU) optimization for Whitman County Wheat producer 
 
max Ut = {(1-b)*Ct^r + b*[Et((Ut+1)^a)]^(r/a)}^(1/r) 
 
 
Based on simulated yield (deterministic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[65,1] = D:\arec\whitman_wyld39to03.txt;  
load yield[2000,5] = D:\arec\whitman_wyldsimuDTreg_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
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/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = -0.13;   /*alpha*/ 
b = 0.89;   /*beta*/ 
r = 0.9493;   /*rho*/ 
 
/**transportation cost**/ 
transport = 0.5; 
 
/**production cost**/ 
pc = 203; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;    /* target price*/ 
LR = 0;    /*loan rate variate from 0 to 2.86*/   
 
mm = 25;     /*number of intervals in Transaction Cost within the range*/ 
 
loan = zeros(mm,1); 
Xlr = zeros(T,mm); 
EUlr = zeros(mm,1); 
 
for kk (1,m,1); 
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 loan[kk] = 0 + (kk - 1) * 0.04 ; 
 LR = loan[kk]; 
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
GI = zeros(M,T); 
DP = zeros(1,T); 
LDP = zeros(M,T); 
CCP = zeros(M,T); 
CI = zeros(M,T); 
IP = zeros(M,T); 
MIP = zeros(T,1); 
FI = zeros(M,T); 
C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - 0.5)* yld[65] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
interest = 0.08;     /*annual interest rate 8% for loans*/ 
interest = (1/b) - 1; 
 
/**starting values of percentage of hedging for estimation**/ 
/**note: although indexed as x1-x5 and z1-z5, what to be estimated are decisions made at t=0-4 
         therefore the index of X0 is not consistent with that of yield and price data**/ 
 
/*starting values of (hedging ratio), ie x(t-1), from grid search, given X2 = -0.3 and rest = -0.1*/ 
X0_f = {-0.3, -0.2, -0.2, -0.3, -0.2}; 
 
/*starting values of crop insurance coverage, ie z(t-1)*/ 
X0_i = {0.8, 0.8, 0.8, 0.8, 0.8}; 
X0_i = {0.85, 0.85, 0.85, 0.85, 0.85}; 
 
/* starting values of loan/saving level*/  
X0_s = {247.6176, 108.4933, 44.2531, 14.2805}; 
 
X0 = X0_f/*|X0_i */;   
 
d = 0; 
 
 
    /*net income from production*/    
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
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     /*net income from government program*/ 
     for i (1, T, 1); 
         DP[1,i] = PD * 0.85 * 0.9 * my[i]; 
         LDP[.,i] = maxc( ((LR-(wcpri[.,i]-transport)) ~ zeros(M,1))' ) .* yield[.,i]; 
         CCP[.,i] = maxc( zeros(1,M)|(PT-PD - maxc((wcpri[.,i]- transport)'|(LR*ones(1,M))))' ) * 
0.85 * 0.935 * my[i]; 
         GI[.,i] = DP[1,i] + LDP[.,i] + CCP[.,i];   
     endfor; 
 
     /*net income from crop insurance*/     
     for i (1, T, 1); 
         IP[.,i] = (mwf[i] + 0.45) * maxc(( (CIcov * my[i] - yield[.,i]) ~ zeros(M,1) )'); 
         MIP[i] = ((300 - 790 * CIcov + 600 * CIcov^2) / 100) * meanc(IP[.,i]); 
         CI[.,i] =  IP[.,i] - CIload * MIP[i];    
     endfor; 
 
sqpSolveSet; 
 
{Xsqp, EUsqp, lagr, retsqp} = sqpSolve(&EU, X0); 
 
Xlr[.,kk] = Xsqp; 
EUlr[kk] = -EUsqp;  
 
 print "kk=" kk; 
 
/* 
Qnewtonset; 
{Xqnew, EUqnew, lagrqnew, retqnew} = Qnewton(&EU, X0); */ 
 
endfor; 
 
/**ouput**/ 
print;  
print "        alpha             beta              rho       " /*transaction cost*/; 
print a~b~r/*~trans*/; 
print; 
print " insurance coverage      loading"; 
print CIcov~CIload; 
print; 
print "Government Payment Programs include: " "DP" "&LDP" /*"&CCP"*/; 
print; 
print "          X0              Xsqp ";  
print X0~Xsqp; 
print; 
print "Opt U0 = " -EUsqp; 
print;*/ 
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print "      Loan Rate                       Optimal Hedging Ratios (Short Positions)                                          
";  
print loan~-Xlr'; 
print; 
print        "Opt U0"; 
print EUlr; 
print; 
print; 
 
/*      
hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "Value of objective function   " -EUsqp; 
print;*/ 
 
end; 
 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, U0; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     /*net income from hedging in the futures market*/  
     for i (1, T, 1); 
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         /*assuming transaction costs paid at contract clearing*/ 
         FI[.,i] =  X[i] * my[i] * (wfpri[.,i] - meanc(wfpri[.,i])) - trans * abs(X[i]) * my[i];                                          
     endfor; 
 
     C = NC + GI + CI + FI;   
     print;   
     print "         meanC            stdC"; 
     print meanc(C)~stdc(C); 
 
     /*saving/loan is the deducted term in the consumption*//* 
     C[.,1] =  (1 + interest) * S0 + (NC[.,1] + GI[.,1] + FI[.,1] + CI[.,1]) - X[2*T+1]; 
     for i (2, T-1, 1); 
         j = i + 2 * T; 
         C[.,i] = (1 + interest) * X[j-1] + (NC[.,i] + GI[.,i] + FI[.,i] + CI[.,i])- X[j]; 
     endfor; 
     C[.,T] = (1 + interest) * X[3*T-1] + (NC[.,T] + GI[.,T] + FI[.,T] + CI[.,T]) - (1 + interest)^T * 
550; 
     */ 
         
d = d+1; print "d=" d; 
 
   /**compute the expected uitlity function recursively, starting from year T**/ 
     U[.,T] = ( (1-b)*C[.,T]^r )^(1/r);  /*U(T+1) = 0*/ 
     for i (T-1, 1, -1);  
         U[.,i] = ( (1-b)*C[.,i]^r + b*(meanc(U[.,i+1]^a))^(r/a) )^(1/r); 
     endfor; 
     U0 = ( (1-b)*C0^r + b*(meanc(U[.,1]^a))^(r/a) )^(1/r);   print; print "U0 = " U0; 
 
     retp(-U0); 
endp; 
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Appendix D.7. Computation of CE for Risk Management Portfolios (in GAUSS) 
 
 
new; 
cls; 
 
print; 
print; 
print 
"Generalized expected utility (GEU) optimization for Whitman County Wheat producer 
 
max Ut = {(1-b)*Ct^r + b*[Et((Ut+1)^a)]^(r/a)}^(1/r) 
 
 
Based on simulated yield (deterministic trend) and price (stochastic trend) data 
        
 
                                       ---- ©2005 Wen Du. All rights reserved.   "; 
 
 
library pgraph; 
graphset; 
 
pqgwin "many"; 
 
/**set up parameters**/ 
M = 2000; 
N = 6;     /*number of years included in the optimization*/ 
T = N-1;    /*number of recursion in the optimization*/ 
U = zeros(M,T);    /*initialize utility matrix, where M = number of samples*/ 
/**note: the terminal value (T+1) of generalized expected utility = 0*/ 
 
load yld[65,1] = D:\arec\whitman_wyld39to03.txt;  
load yield[2000,5] = D:\arec\whitman_wyldsimuDTreg_normal_5year.txt;  
 
/* 
for q (1, T, 1); 
    hist(yield[.,q],50); 
endfor;*/ 
 
boundval_z = minc(yield)./meanc(yield);  
print "boundval_z =" boundval_z; 
print; 
print meanc(yield)~minc(yield)~stdc(yield); 
 
/*load yield[2000,5] = D:\arec\yield_simulation_5year.txt;*/ 
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load wcpri[M,T] = D:\arec\wcpri_simuST_normal_5year.txt; /*print "wcpri=" wcpri;*/ 
load wfpri[M,T] = D:\arec\wfpri_adj_simuST_normal_5year.txt; /*print "wfpri=" wfpri*/;  
/*print meanc(wfpri-meanc(wfpri)');*/ 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**optimal level of U0**/ 
MaxU0 =  116.86911; 
 
/**change the price units from cents into dollars**/ 
wfpri = wfpri / 100; /*print "wfpri - meanc(wfpri)" wfpri - meanc(wfpri);*/ 
wcpri = wcpri / 100;  
 
mwf = meanc(wfpri); 
mwc = meanc(wcpri); 
my = meanc(yield); /*print "my=" my;*/ 
 
/**initialization of the parameters, given by previous studies**/ 
a = -0.13;  /*alpha*/ 
b = 0.89;   /*beta*/ 
r = 0.9493;   /*rho*/ 
 
/**transportation cost**/ 
transport = 0.5; 
 
/**production cost**/ 
pc = 203; 
 
/**transcation cost of futures constract*/ 
trans = 0.017; 
 
/**crop insurance coverage level, choose from {0.85, 0.8, 0.75, 0.7}**/ 
CIcov =  0.85; 
 
/**corp insurance contract loading, choose from {1(0%), 1.3(30%)}**/ 
CIload = 1; 
 
/**government programs set prices**/ 
PD = 0.52;   /*directly payment rate*/ 
PT = 3.92;   /*target price*/ 
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LR = 2.86;    /*loan rate = 2.86 for Whitman; 2.91 for Grant*/   
 
/**initialize the variables of different risk manage tools for estimation**/ 
NC = zeros(M,T); 
C = zeros(M,T); 
 
wcpri0 = 3.87;      /*the latest (2003) wheat cash price, from historical data*/ 
C0 = (wcpri0 - transport)* yld[65] - pc;     /*the latest consumption level, from historical data*/ 
 
wfpri0 = 3.585;     /*the latest (2003) wheat futures price, from historical data*/ 
 
/*Compute the income from Cash market only for next five years*/ 
     for i (1, T, 1); 
         NC[.,i] = (wcpri[.,i] - transport) .* yield[.,i] - pc; 
     endfor;  
 
d = 0; 
 
CE =800; 
 
sqpSolveSet; 
 
_sqp_Bounds = { 0 1e256 }; 
 
{CEsqp, CEsqp, lagr, retsqp} = /*Qnewton*/sqpSolve(&EU, CE); 
 
/**ouput**/ 
print; /* 
print "    transaction cost     production cost"; 
print trans~pc; 
print; 
print "Government Payment Programs include: " "DP" "&LDP" "&CCP"; 
print; 
print " insurance coverage      loading"; 
print CIcov~CIload; 
print; 
print "          X0              Xsqp ";  
print X0~Xsqp 
print;  
print; 
print "          MaxU0             CEsqp "; 
print MaxU0~CEsqp; 
print; 
print; 
 
/*      
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hsqp = hessp(&EU, Xsqp); 
print "det(hsqp=)" det(hsqp); 
stdsqp = sqrt(diag(invpd(hsqp))); 
tsqp = Xsqp./stdsqp; 
psqp = 2 * cdfnc(abs(tsqp)); 
 
print; 
print "            Preference parameters"; 
print; 
print "    Risk aversion    Time preference    intertemporal substitutability"; 
print a~b~r; 
print; 
print; 
print "             Optimization Results by sqpSolve"; 
print; 
print "    initial values (hedging ratio)      estimates     standard error       t-value          p-value"; 
print X0~Xsqp~stdsqp~tsqp~psqp; 
print; 
print; 
print "Value of objective function   " -EUsqp; 
print;*/ 
 
end; 
 
 
/**objective function to be maximized**/ 
proc EU(X); 
     local i,j, k, U0, distance; 
 
/**compute the simulated net consumption, a function of 
 revenue, hedging, crop insurance, government program and loan**/ 
 
print "X=" X; 
 
     C = NC + X /**/;  print;  print "mincC=" minc(C); 
 
        
d = d+1; print "d=" d; 
 
   /**compute the expected uitlity function recursively, starting from year T**/ 
     U[.,T] = ( (1-b)*C[.,T]^r )^(1/r);  /*U(T+1) = 0*/ 
     for i (T-1, 1, -1);  
         U[.,i] = ( (1-b)*C[.,i]^r + b*(meanc(U[.,i+1]^a))^(r/a) )^(1/r); 
     endfor; 
     U0 = ( (1-b)*(C0)^r + b*(meanc(U[.,1]^a))^(r/a) )^(1/r);   print; print "U0 = " U0; 
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     retp((U0 - MaxU0)^2); 
endp; 
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APPENDIX E: COMPUTER PROGRAMS FOR CHAPTER 4 
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Appendix E.1. Augmented Dickey-Full Test of the CZCE and CBOT Wheat Futrues Prices 

(in SAS) 

 
 

options linesize=79 pageno=1 nodate; 
options formdlim=' '; 
 
TITLE  "ADF test of wheat futures prices: CZCE vs. CBOT 
 

--- © 2005 Wen Du. All rights Reserved "; 
 
Latest update: 2/4/2004                                     */ 
 
data wADF; 
input CBOT CZCE; 
cards; 
843.9557  1193 
853.0795  1174 
849.2779  1173 
860.6827  1158 
866.7653  1153 
881.9717  1161 
897.1781  1147 
901.7400  1145 
898.6987  1133 
904.0210  1114 
902.5003  1133 
897.1781  1138 
904.7813  1150 
900.2194  1152 
886.5336  1108 
898.6987  1084 
888.0542  1088 
876.6494  1076 
882.7320  1064 
879.6907  1059 
918.4671  1038 
907.0622  1050 
906.3019  1053 
897.1781  1065 
906.3019  1057 
897.1781  1060 
874.3685  1057 
878.9304  1057 



 

189 
 

851.5589  1061 
843.9557  1073 
853.0795  1058 
854.6001  1057 
851.5589  1056 
851.5589  1055 
856.8811  1055 
856.8811  1075 
862.2033  1070 
867.5256  1060 
858.4017  1060 
866.7653  1062 
890.3352  1060 
884.2526  1062 
876.6494  1069 
894.8971  1069 
877.4097  1066 
861.4430  1064 
866.0049  1064 
849.2779  1061 
838.6334  1060 
842.4350  1062 
827.2286  1061 
834.0715  1058 
846.2366  1055 
866.7653  1072 
853.8398  1057 
848.5176  1059 
849.2779  1058 
841.6747  1057 
856.1208  1056 
838.6334  1056 
839.3937  1058 
848.5176  1059 
855.3605  1057 
847.7573  1063 
842.4350  1063 
837.1128  1061 
841.6747  1058 
836.3524  1058 
836.3524  1063 
841.6747  1062 
829.5096  1061 
809.7412  1061 
810.5016  1064 
851.5589  1060 
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850.0382  1065 
869.8065  1070 
891.0955  1075 
897.9384  1076 
892.6162  1088 
887.2939  1090 
878.1701  1088 
861.4430  1091 
874.3685  1090 
887.2939  1092 
890.3352  1088 
885.7733  1090 
885.7733  1100 
889.5749  1100 
869.8065  1099 
872.0875  1094 
859.1621  1097 
862.2033  1103 
846.2366  1097 
850.0382  1100 
840.1540  1098 
847.7573  1094 
859.1621  1097 
843.9557  1090 
841.6747  1090 
831.0302  1097 
837.1128  1098 
837.1128  1096 
852.3192  1092 
868.2859  1091 
878.1701  1100 
881.2114  1090 
865.2446  1089 
871.3272  1087 
867.5256  1087 
864.4843  1093 
866.0049  1094 
824.9476  1090 
783.1300  1091 
786.9316  1089 
775.5268  1137 
774.7665  1090 
781.6094  1096 
779.3284  1099 
767.9236  1095 
774.0062  1104 
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756.5188  1100 
742.8330  1107 
733.7092  1100 
743.5934  1100 
750.4362  1100 
751.9569  1099 
746.6346  1099 
746.6346  1099 
742.8330  1099 
747.3950  1099 
754.2378  1099 
748.9156  1092 
745.1140  110 
748.9156  1107 
736.7505  1108 
720.7837  1108 
710.1393  1108 
719.2631  1100 
716.2218  1105 
716.9821  1097 
720.0234  1095 
725.3457  1100 
731.4282  1097 
740.5521  1100 
728.3869  1097 
726.1060  1098 
718.5028  1101 
713.9409  1101 
710.8996  1095 
729.9076  1095 
734.4695  1095 
737.5108  1108 
761.0807  1092 
748.9156  1099 
762.6014  1096 
761.0807  1096 
769.4443  1096 
752.7172  1096 
758.7998  1096 
761.8410  1096 
758.0394  1096 
745.1140  1096 
735.9902  1096 
735.9902  1096 
903.2606  1096 
914.6654  1096 
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893.3765  1096 
896.4178  1096 
889.5749  1096 
899.4590  1539 
908.5829  1531 
910.8638  1527 
921.5083  1535 
923.0290  1536 
936.7147  1533 
945.8386  1549 
970.1688  1550 
971.6895  1535 
968.6482  1497 
945.8386  1472 
958.0037  1467 
948.8799  1464 
936.7147  1452 
927.5909  1454 
929.1115  1453 
916.9464  1447 
918.4671  1427 
912.3845  1424 
916.9464  1426 
924.5496  1421 
913.9051  1421 
914.6654  1423 
913.1448  1427 
924.5496  1428 
941.2767  1427 
939.7560  1429 
937.4751  1424 
945.8386  1413 
927.5909  1418 
924.5496  1402 
929.8719  1403 
923.0290  1408 
916.9464  1406 
921.5083  1415 
925.3099  1418 
924.5496  1419 
921.5083  1420 
929.1115  1417 
938.2354  1412 
929.1115  1432 
923.0290  1430 
913.9051  1440 
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923.7893  1433 
933.6735  1431 
938.9957  1437 
933.6735  1426 
935.1941  1434 
916.9464  1440 
922.2687  1442 
918.4671  1450 
916.1861  1452 
916.1861  1449 
909.3432  1449 
902.5003  1450 
910.8638  1446 
923.0290  1444 
916.9464  1442 
923.0290  1446 
931.3925  1443 
928.3512  1443 
920.7480  1432 
919.9877  1424 
943.5576  1425 
934.4338  1428 
954.9624  1422 
959.5244  1423 
958.0037  1421 
954.9624  1409 
961.8053  1414 
973.9704  1414 
973.9704  1410 
975.4911  1408 
963.3260  1410 
957.2434  1410 
963.3260  1396 
964.8466  1405 
919.9877  1400 
912.3845  1390 
916.1861  1365 
913.9051  1361 
912.3845  1357 
899.4590  1339 
903.2606  1341 
914.6654  1349 
913.9051  1351 
909.3432  1353 
909.3432  1361 
898.6987  1352 
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888.8146  1348 
888.0542  1342 
886.5336  1318 
883.4923  1318 
904.7813  1335 
904.0210  1333 
912.3845  1339 
924.5496  1343 
921.5083  1349 
913.9051  1350 
915.4258  1349 
914.6654  1345 
932.1528  1338 
931.3925  1340 
924.5496  1330 
897.1781  1328 
884.2526  1343 
879.6907  1348 
888.0542  1349 
876.6494  1359 
856.1208  1373 
862.2033  1366 
877.4097  1366 
875.8891  1366 
868.2859  1364 
870.5669  1361 
843.1953  1363 
853.0795  1353 
863.7240  1327 
870.5669  1319 
869.8065  1310 
863.7240  1310 
856.1208  1296 
848.5176  1297 
859.1621  1300 
878.1701  1302 
887.2939  1298 
872.0875  1298 
881.2114  1286 
877.4097  1285 
875.8891  1289 
867.5256  1299 
866.7653  1296 
881.9717  1291 
887.2939  1309 
872.0875  1305 
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892.6162  1303 
846.2366  1302 
840.9144  1297 
849.2779  1286 
855.3605  1272 
878.1701  1268 
873.6081  1271 
868.2859  1275 
869.8065  1264 
857.6414  1264 
831.7905  1238 
821.9064  1227 
821.9064  1230 
826.4683  1228 
820.3857  1230 
835.5921  1206 
833.3112  1199 
842.4350  1197 
853.8398  1202 
834.0715  1215 
824.1873  1212 
825.7080  1205 
837.1128  1233 
835.5921  1230 
830.2699  1233 
834.0715  1227 
831.0302  1234 
823.4270  1233 
812.0222  1234 
833.3112  1239 
829.5096  1247 
810.5016  1243 
810.5016  1231 
798.3364  1215 
780.0887  1208 
788.4523  1204 
785.4110  1206 
774.0062  1212 
784.6507  1209 
793.7745  1228 
801.3777  1215 
811.2619  1219 
816.5841  1211 
815.0635  1216 
824.1873  1216 
829.5096  1217 
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879.6907  1213 
871.3272  1213 
857.6414  1210 
881.9717  1211 
878.1701  1205 
878.9304  1204 
861.4430  1199 
862.2033  1196 
859.1621  1198 
859.1621  1193 
854.6001  1185 
852.3192  1181 
842.4350  1173 
846.9969  1154 
834.8318  1150 
819.6254  1153 
805.1793  1154 
805.9396  1156 
812.0222  1153 
816.5841  1155 
824.1873  1153 
821.9064  1155 
825.7080  1164 
817.3444  1161 
810.5016  1161 
812.0222  1162 
812.7825  1164 
809.7412  1159 
815.0635  1160 
821.9064  1163 
843.1953  1159 
834.0715  1158 
831.7905  1145 
819.6254  1130 
836.3524  1126 
825.7080  1122 
845.4763  1105 
840.9144  1093 
835.5921  1093 
822.6667  1095 
818.8651  1116 
824.1873  1096 
834.8318  1074 
812.0222  1074 
916.9464  1084 
901.7400  1063 
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892.6162  1083 
901.7400  1079 
901.7400  1240 
907.8226  1233 
909.3432  1238 
901.7400  1236 
898.6987  1237 
890.3352  1237 
878.9304  1232 
875.8891  1229 
881.9717  1229 
883.4923  1228 
881.9717  1228 
878.9304  1225 
885.0130  1232 
891.0955  1210 
895.6574  1208 
907.8226  1211 
901.7400  1216 
907.8226  1231 
906.3019  1234 
919.9877  1233 
938.2354  1241 
926.0703  1259 
932.1528  1261 
929.1115  1253 
921.5083  1246 
916.9464  1250 
919.9877  1236 
923.0290  1226 
930.6322  1201 
921.5083  1191 
921.5083  1209 
913.9051  1220 
901.7400  1217 
910.8638  1217 
910.8638  1218 
919.9877  1193 
923.0290  1200 
918.4671  1192 
921.5083  1185 
919.9877  1171 
894.1368  1153 
892.6162  1157 
883.4923  1152 
881.9717  1162 
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903.2606  1166 
894.1368  1177 
891.0955  1166 
891.0955  1167 
885.0130  1174 
883.4923  1159 
886.5336  1147 
885.0130  1148 
874.3685  1151 
885.0130  1153 
883.4923  1163 
883.4923  1163 
889.5749  1164 
875.8891  1159 
875.8891  1153 
866.7653  1156 
878.1701  1151 
876.6494  1155 
910.8638  1179 
907.8226  1188 
905.5416  1177 
906.3019  1184 
924.5496  1184 
930.6322  1185 
923.7893  1176 
924.5496  1179 
923.7893  1177 
918.4671  1166 
912.3845  1153 
917.7067  1148 
921.5083  1152 
929.1115  1150 
907.8226  1151 
906.3019  1151 
902.5003  1145 
904.0210  1151 
909.3432  1155 
897.1781  1153 
898.6987  1152 
891.0955  1151 
894.1368  1152 
895.6574  1147 
883.4923  1143 
889.5749  1145 
885.0130  1150 
888.0542  1151 
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878.9304  1155 
874.3685  1154 
873.6081  1153 
868.2859  1152 
879.6907  1146 
877.4097  1146 
890.3352  1146 
890.3352  1148 
882.7320  1156 
878.1701  1154 
868.2859  1159 
875.8891  1157 
870.5669  1157 
877.4097  1156 
883.4923  1160 
875.8891  1163 
880.4510  1161 
871.3272  1158 
882.7320  1157 
881.2114  1159 
883.4923  1158 
894.8971  1160 
912.3845  1163 
894.8971  1164 
896.4178  1165 
894.8971  1169 
895.6574  1168 
886.5336  1168 
878.9304  1166 
867.5256  1164 
859.1621  1167 
866.7653  1165 
861.4430  1158 
866.0049  1152 
866.0049  1152 
877.4097  1152 
878.1701  1153 
859.1621  1155 
855.3605  1155 
850.7985  1156 
850.0382  1155 
843.9557  1154 
837.1128  1155 
829.5096  1145 
827.2286  1137 
837.8731  1131 
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846.2366  1131 
846.9969  1133 
843.9557  1133 
863.7240  1137 
862.9637  1140 
875.1288  1136 
855.3605  1136 
847.7573  1132 
856.8811  1134 
846.9969  1141 
836.3524  1146 
842.4350  1149 
835.5921  1148 
844.7160  1146 
859.9224  1150 
859.9224  1149 
877.4097  1155 
891.8558  1153 
878.9304  1159 
881.9717  1160 
875.1288  1166 
862.2033  1171 
871.3272  1177 
872.8478  1179 
886.5336  1183 
919.9877  1179 
914.6654  1177 
900.9797  1179 
899.4590  1183 
906.3019  1184 
907.8226  1179 
897.9384  1189 
911.6242  1189 
911.6242  1195 
915.4258  1197 
954.9624  1192 
951.9211  1193 
980.8133  1196 
974.7308  1195 
979.2927  1194 
981.5736  1186 
964.0863  1189 
974.7308  1189 
987.6562  1181 
983.0943  1178 
967.8879  1177 



 

201 
 

984.6149  1179 
1015.7881  1179 
1018.8293  1177 
1013.5071  1179 
1005.9039  1181 
1033.2754  1185 
1011.9865  1187 
1021.8706  1181 
1018.8293  1182 
1018.8293  1185 
992.9784  1184 
991.4578  1175 
1015.7881  1169 
1018.0690  1171 
1024.9119  1167 
1027.9532  1168 
1039.3580  1171 
1053.0438  1169 
1029.4738  1169 
1047.7215  1169 
1069.7708  1170 
1084.9772  1169 
1085.7375  1171 
1065.9692  1174 
1057.6057  1178 
1062.1676  1175 
1030.2341  1175 
1028.7135  1176 
1034.7961  1177 
1057.6057  1170 
1075.0931  1165 
1072.0518  1162 
1080.4153  1160 
1080.4153  1159 
1101.7043  1165 
1116.1504  1155 
1152.6457  1155 
1175.4553  1165 
1227.1571  1166 
1262.1319  1166 
1259.0906  1168 
1265.1732  1168 
1243.8842  1168 
1201.3062  1162 
; 
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title2 "unit root test of CZCE prices"; 
%DFTEST(WADF, CZCE, AR=1, OUT=R1, OUTSTAT=OUTS1, TREND=0); 
PROC PRINT DATA=OUTS1; 
RUN; 
PROC ARIMA DATA=R1; 
     IDENTIFY VAR=R; 
RUN; 
 
title2 "unit root test of CBOT prices"; 
%DFTEST(WADF, CBOT, AR=1, OUT=R2, OUTSTAT=OUTS2, TREND=2); 
PROC PRINT DATA=OUTS2; 
RUN; 
PROC ARIMA DATA=R2; 
     IDENTIFY VAR=R; 
RUN;
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Appendix E.2. Normality Check of the CBOT and CZCE Wheat Futures Prices (in SAS) 

 
options linesize=79 pageno=1 nodate; 
options formdlim=' '; 
 
TITLE " Normality check of CBOT and CZCE price changes --- WEN DU  

 --- © 2005 Wen Du. All rights Reserved "; 
"; 
 
title1 " CBOT normality check"; 
 
DATA cbot;  INFILE 'd:\arec\CBOTWX_noSD.txt';                                          
     input cbot_nor; 
RUN; 
 
/*normality checking of CBOT first difference prices*/ 
proc univariate normal plot; 
var cbot_nor; 
run; 
 
/* creating a normal probability plot*/ 
proc rank normal=blom; 
ranks cbotr_nor; 
var cbot_nor; 
run; 
 
proc plot; 
plot cbot_nor*cbotr_nor; 
proc corr ; 
var cbot_nor cbotr_nor; 
run; 
 
title1 " CZCE normality check"; 
 
DATA czce;  INFILE 'd:\arec\CZCEWX_noSD.txt';                                          
     input czce_nor; 
RUN; 
 
/*normality checking of CZCE first difference prices*/ 
proc univariate normal plot; 
var czce_nor; 
run; 
 
/* creating a normal probability plot*/ 
proc rank normal=blom; 
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ranks czcer_nor; 
var czce_nor; 
run; 
 
proc plot; 
plot czce_nor*czcer_nor; 
proc corr ; 
var czce_nor czcer_nor; 
run; 
QUIT;
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Appendix E.3. Univariate time series estimation of CZCE Prices (in SAS) 

 

options linesize=79 pageno=1 nodate; 
options formdlim=' '; 
 
TITLE "Time Series Analysis of Chinese Wheat Futures Prices 

 --- © 2005 Wen Du. All rights Reserved "; 
 
DATA WHEAT;  INFILE 'U:\WT205.DAT';                                          
     INPUT  X;  
     T+1; 
RUN; 
 
PROC ARIMA ; 
      IDENTIFY VAR=X; 
      IDENTIFY VAR=X(1); 
RUN; 
/* 
TITLE2 "Find an appropriate power transformation for the data"; 
%BOXCOXAR(WHEAT, X, AR=6, LAMBDAHI=1.5, LAMBDALO=-0.5, NLAMBDA=21); 
RUN;*/ 
 
DATA TRANS; SET WHEAT; 
     Z=log(X); 
     LZ1=LAG(Z); LZ2=LAG(LZ1); LZ3=LAG(LZ2);  
     LZ4=LAG(LZ3); LZ5=LAG(Lz4);LZ6=LAG(LZ5);LZ7=LAG(LZ6); 
     W=DIF(Z); LW1=LAG(W); LW2=LAG(LW1); LW3=LAG(LW2); 
  LW4=LAG(LW3);LW5=LAG(LW4);LW6=LAG(LW5); 
RUN; 
/* 
PROC REG; 
     MODEL Z = LZ1 LZ2 LZ3 LZ4 LZ5 LZ6 LZ7; 
     OUTPUT OUT=OUT1 R=R; 
RUN; 
PROC ARIMA; 
     IDENTIFY VAR=R; 
RUN;*/ 
/* 
PROC REG; 
     MODEL W = LZ1 LW1 LW2 LW3 LW4 LW5 LW6; 
RUN; 
PROC REG; 
     MODEL W = T LZ1 LW1 LW2 LW3 LW4 LW5 LW6; 
RUN;*/ 
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TITLE2 "AUGMENTED DICKEY-FULLER TEST FOR UNIT ROOT"; 
%DFTEST(TRANS, Z, AR=6,OUTSTAT=OUT2, TREND=1) 
PROC PRINT DATA=OUT2; 
RUN; 
 
%DFTEST(TRANS, Z, AR=6,OUTSTAT=OUT3, TREND=2) 
PROC PRINT DATA=OUT3; 
RUN; 
 
TITLE2 "Identify an appropriate ARMA model for the transformed data"; 
 
PROC ARIMA DATA=TRANS; 
     IDENTIFY VAR=Z(1); 
     *ESTIMATE P=5 METHOD=ML PLOT; 
  *ESTIMATE Q=5 METHOD=ML PLOT; 
  ESTIMATE P=0 Q=0 METHOD=ML PLOT NOCONSTANT; 
  *ESTIMATE P=6 METHOD=ML PLOT; 
  *ESTIMATE Q=6 METHOD=ML PLOT; 
  ESTIMATE P=1 METHOD=ML PLOT NOCONSTANT; 
  ESTIMATE Q=1 METHOD=ML PLOT NOCONSTANT; 
  ESTIMATE P=(5) METHOD=ML PLOT NOCONSTANT; 
  FORECAST LEAD=7 OUT=OUTAR5; 
  ESTIMATE P=(1,5) METHOD=ML PLOT NOCONSTANT;  
  ESTIMATE Q=(5)METHOD=ML PLOT NOCONSTANT; 
  FORECAST LEAD=7 OUT=OUTMA5; 
  ESTIMATE Q=(1,5) METHOD=ML PLOT NOCONSTANT; 
  *ESTIMATE P=5 Q=5 METHOD=ML PLOT; 
  ESTIMATE P=1 Q=1 METHOD=ML PLOT NOCONSTANT; 
  ESTIMATE P=(5) Q=(5) METHOD=ML PLOT NOCONSTANT; 
  ESTIMATE P=(1,5) Q=(1,5) METHOD=ML PLOT NOCONSTANT; 
RUN; 
 
TITLE2 "FORECASTING USING MA((5))"; 
DATA FAR5;SET OUTAR5; 
     IF _N_ LE 287 THEN DELETE; 
  FPREDAR5=EXP(FORECAST+STD**2/2); 
  KEEP FPREDAR5; 
PROC PRINT; 
 
DATA FMA5;SET OUTMA5; 
     IF _N_ LE 287 THEN DELETE; 
  FPREDMA5=EXP(FORECAST+STD**2/2); 
  KEEP FPREDMA5; 
PROC PRINT; 
RUN; 
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PROC AUTOREG DATA=TRANS; 
MODEL z= / NLAG=5 METHOD=ML BACKSTEP; 
RUN; 
 
TITLE2 "MODEL FITTING BASED ON CONDITIONAL HETEROSKEDASTICITY"; 
 
TITLE3 "ARCH MODEL FITTING"; 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=1 GARCH=(Q=1) archtest; 
output out=outarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=1 GARCH=(Q=2); 
output out=outarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=3 GARCH=(Q=3); 
output out=outarch lcl=low predicted=pred; 
RUN; 
 
TITLE3 "GARCH MODEL FITTING"; 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=1 GARCH=(Q=1,P=1); 
output out=outgarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=1 GARCH=(P=1,Q=2); 
output out=outgarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL W = / noint GARCH=(P=2,Q=1); 
output out=outgarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL W = / noint GARCH=(Q=2,P=2); 
output out=outgarch lcl=low predicted=pred; 
RUN; 
 
quit; 
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Appendix E.4. Univariate time series estimation of CBOT Prices (in SAS) 
 
 
options linesize=79 pageno=1 nodate; 
options formdlim=' '; 
 
TITLE "Time Series Analysis of US Wheat Futures Prices 

 --- © 2005 Wen Du. All rights Reserved "; 
 
DATA WHEAT;  INFILE 'D:\AREC\CBOT.DAT';                                          
     INPUT  X;  
     T+1; 
RUN; 
 
PROC ARIMA ; 
      IDENTIFY VAR=X; 
      IDENTIFY VAR=X(1); 
RUN; 
/* 
TITLE2 "Find an appropriate power transformation for the data"; 
%BOXCOXAR(WHEAT, X, AR=6, LAMBDAHI=1.5, LAMBDALO=-0.5, NLAMBDA=21); 
RUN;*/ 
 
DATA TRANS; SET WHEAT; 
     Z=log(X); 
     LZ1=LAG(Z); LZ2=LAG(LZ1); LZ3=LAG(LZ2);  
     LZ4=LAG(LZ3); LZ5=LAG(Lz4);LZ6=LAG(LZ5);LZ7=LAG(LZ6); 
     W=DIF(Z); LW1=LAG(W); LW2=LAG(LW1); LW3=LAG(LW2); 
  LW4=LAG(LW3);LW5=LAG(LW4);LW6=LAG(LW5); 
RUN; 
/* 
PROC REG; 
     MODEL Z = LZ1 LZ2 LZ3 LZ4 LZ5 LZ6 LZ7; 
     OUTPUT OUT=OUT1 R=R; 
RUN; 
PROC ARIMA; 
     IDENTIFY VAR=R; 
RUN;*/ 
/* 
PROC REG; 
     MODEL W = LZ1 LW1 LW2 LW3 LW4 LW5 LW6; 
RUN; 
PROC REG; 
     MODEL W = T LZ1 LW1 LW2 LW3 LW4 LW5 LW6; 
RUN;*/ 
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TITLE2 "AUGMENTED DICKEY-FULLER TEST FOR UNIT ROOT"; 
%DFTEST(TRANS, Z, AR=6,OUTSTAT=OUT2, TREND=1) 
PROC PRINT DATA=OUT2; 
RUN; 
 
%DFTEST(TRANS, Z, AR=6,OUTSTAT=OUT3, TREND=2) 
PROC PRINT DATA=OUT3; 
RUN; 
 
TITLE2 "Identify an appropriate ARMA model for the transformed data"; 
 
PROC ARIMA DATA=TRANS; 
     IDENTIFY VAR=Z(1); 
     *ESTIMATE P=5 METHOD=ML PLOT; 
  *ESTIMATE Q=5 METHOD=ML PLOT; 
  ESTIMATE P=0 Q=0 METHOD=ML PLOT NOCONSTANT; 
  *ESTIMATE P=6 METHOD=ML PLOT; 
  *ESTIMATE Q=6 METHOD=ML PLOT; 
  ESTIMATE P=1 METHOD=ML PLOT NOCONSTANT; 
  ESTIMATE Q=1 METHOD=ML PLOT NOCONSTANT; 
  ESTIMATE P=(5) METHOD=ML PLOT NOCONSTANT; 
  FORECAST LEAD=7 OUT=OUTAR5; 
  ESTIMATE P=(1,5) METHOD=ML PLOT NOCONSTANT;  
  ESTIMATE Q=(5)METHOD=ML PLOT NOCONSTANT; 
  FORECAST LEAD=7 OUT=OUTMA5; 
  ESTIMATE Q=(1,5) METHOD=ML PLOT NOCONSTANT; 
  *ESTIMATE P=5 Q=5 METHOD=ML PLOT; 
  ESTIMATE P=1 Q=1 METHOD=ML PLOT NOCONSTANT; 
  ESTIMATE P=(5) Q=(5) METHOD=ML PLOT NOCONSTANT; 
  ESTIMATE P=(1,5) Q=(1,5) METHOD=ML PLOT NOCONSTANT; 
RUN; 
 
TITLE2 "FORECASTING USING MA((5))"; 
DATA FAR5;SET OUTAR5; 
     IF _N_ LE 287 THEN DELETE; 
  FPREDAR5=EXP(FORECAST+STD**2/2); 
  KEEP FPREDAR5; 
PROC PRINT; 
 
DATA FMA5;SET OUTMA5; 
     IF _N_ LE 287 THEN DELETE; 
  FPREDMA5=EXP(FORECAST+STD**2/2); 
  KEEP FPREDMA5; 
PROC PRINT; 
RUN; 
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PROC AUTOREG DATA=TRANS; 
MODEL z= / NLAG=5 METHOD=ML BACKSTEP; 
RUN; 
 
TITLE2 "MODEL FITTING BASED ON CONDITIONAL HETEROSKEDASTICITY"; 
 
 
TITLE3 "ARCH MODEL FITTING"; 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=1 GARCH=(Q=1) archtest; 
output out=outarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=1 GARCH=(Q=2); 
output out=outarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=3 GARCH=(Q=3); 
output out=outarch lcl=low predicted=pred; 
RUN; 
 
TITLE3 "GARCH MODEL FITTING"; 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=1 GARCH=(Q=1,P=1); 
output out=outgarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL X = / NLAG=1 GARCH=(P=1,Q=2); 
output out=outgarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL W = / noint GARCH=(P=2,Q=1); 
output out=outgarch lcl=low predicted=pred; 
RUN; 
 
PROC AUTOREG DATA=TRANS; 
MODEL W = / noint GARCH=(Q=2,P=2); 
output out=outgarch lcl=low predicted=pred; 
RUN; 
 
quit; 
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Appendix E.5. Cointegration test (in SAS) 

options linesize=79 pageno=1 nodate; 
options formdlim=' '; 
 
TITLE “Time-series analysis: Cointegration test of wheat futures prices: CZCE vs. CBOT 
                     --- © 2005 Wen Du. All rights Reserved.”;  
 
data wcoint; 
input CBOT CZCE; 
cards; 
843.9557  1193 
853.0795  1174 
849.2779  1173 
860.6827  1158 
866.7653  1153 
881.9717  1161 
897.1781  1147 
901.7400  1145 
898.6987  1133 
904.0210  1114 
902.5003  1133 
897.1781  1138 
904.7813  1150 
900.2194  1152 
886.5336  1108 
898.6987  1084 
888.0542  1088 
876.6494  1076 
882.7320  1064 
879.6907  1059 
918.4671  1038 
907.0622  1050 
906.3019  1053 
897.1781  1065 
906.3019  1057 
897.1781  1060 
874.3685  1057 
878.9304  1057 
851.5589  1061 
843.9557  1073 
853.0795  1058 
854.6001  1057 
851.5589  1056 
851.5589  1055 
856.8811  1055 
856.8811  1075 
862.2033  1070 
867.5256  1060 
858.4017  1060 
866.7653  1062 
890.3352  1060 
884.2526  1062 
876.6494  1069 
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894.8971  1069 
877.4097  1066 
861.4430  1064 
866.0049  1064 
849.2779  1061 
838.6334  1060 
842.4350  1062 
827.2286  1061 
834.0715  1058 
846.2366  1055 
866.7653  1072 
853.8398  1057 
848.5176  1059 
849.2779  1058 
841.6747  1057 
856.1208  1056 
838.6334  1056 
839.3937  1058 
848.5176  1059 
855.3605  1057 
847.7573  1063 
842.4350  1063 
837.1128  1061 
841.6747  1058 
836.3524  1058 
836.3524  1063 
841.6747  1062 
829.5096  1061 
809.7412  1061 
810.5016  1064 
851.5589  1060 
850.0382  1065 
869.8065  1070 
891.0955  1075 
897.9384  1076 
892.6162  1088 
887.2939  1090 
878.1701  1088 
861.4430  1091 
874.3685  1090 
887.2939  1092 
890.3352  1088 
885.7733  1090 
885.7733  1100 
889.5749  1100 
869.8065  1099 
872.0875  1094 
859.1621  1097 
862.2033  1103 
846.2366  1097 
850.0382  1100 
840.1540  1098 
847.7573  1094 
859.1621  1097 
843.9557  1090 
841.6747  1090 
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831.0302  1097 
837.1128  1098 
837.1128  1096 
852.3192  1092 
868.2859  1091 
878.1701  1100 
881.2114  1090 
865.2446  1089 
871.3272  1087 
867.5256  1087 
864.4843  1093 
866.0049  1094 
824.9476  1090 
783.1300  1091 
786.9316  1089 
775.5268  1137 
774.7665  1090 
781.6094  1096 
779.3284  1099 
767.9236  1095 
774.0062  1104 
756.5188  1100 
742.8330  1107 
733.7092  1100 
743.5934  1100 
750.4362  1100 
751.9569  1099 
746.6346  1099 
746.6346  1099 
742.8330  1099 
747.3950  1099 
754.2378  1099 
748.9156  1092 
745.1140  1101 
748.9156  1107 
736.7505  1108 
720.7837  1108 
710.1393  1108 
719.2631  1100 
716.2218  1105 
716.9821  1097 
720.0234  1095 
725.3457  1100 
731.4282  1097 
740.5521  1100 
728.3869  1097 
726.1060  1098 
718.5028  1101 
713.9409  1101 
710.8996  1095 
729.9076  1095 
734.4695  1095 
737.5108  1108 
761.0807  1092 
748.9156  1099 
762.6014  1096 
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761.0807  1096 
769.4443  1096 
752.7172  1096 
758.7998  1096 
761.8410  1096 
758.0394  1096 
745.1140  1096 
735.9902  1096 
735.9902  1096 
903.2606  1096 
914.6654  1096 
893.3765  1096 
896.4178  1096 
889.5749  1096 
899.4590  1539 
908.5829  1531 
910.8638  1527 
921.5083  1535 
923.0290  1536 
936.7147  1533 
945.8386  1549 
970.1688  1550 
971.6895  1535 
968.6482  1497 
945.8386  1472 
958.0037  1467 
948.8799  1464 
936.7147  1452 
927.5909  1454 
929.1115  1453 
916.9464  1447 
918.4671  1427 
912.3845  1424 
916.9464  1426 
924.5496  1421 
913.9051  1421 
914.6654  1423 
913.1448  1427 
924.5496  1428 
941.2767  1427 
939.7560  1429 
937.4751  1424 
945.8386  1413 
927.5909  1418 
924.5496  1402 
929.8719  1403 
923.0290  1408 
916.9464  1406 
921.5083  1415 
925.3099  1418 
924.5496  1419 
921.5083  1420 
929.1115  1417 
938.2354  1412 
929.1115  1432 
923.0290  1430 
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913.9051  1440 
923.7893  1433 
933.6735  1431 
938.9957  1437 
933.6735  1426 
935.1941  1434 
916.9464  1440 
922.2687  1442 
918.4671  1450 
916.1861  1452 
916.1861  1449 
909.3432  1449 
902.5003  1450 
910.8638  1446 
923.0290  1444 
916.9464  1442 
923.0290  1446 
931.3925  1443 
928.3512  1443 
920.7480  1432 
919.9877  1424 
943.5576  1425 
934.4338  1428 
954.9624  1422 
959.5244  1423 
958.0037  1421 
954.9624  1409 
961.8053  1414 
973.9704  1414 
973.9704  1410 
975.4911  1408 
963.3260  1410 
957.2434  1410 
963.3260  1396 
964.8466  1405 
919.9877  1400 
912.3845  1390 
916.1861  1365 
913.9051  1361 
912.3845  1357 
899.4590  1339 
903.2606  1341 
914.6654  1349 
913.9051  1351 
909.3432  1353 
909.3432  1361 
898.6987  1352 
888.8146  1348 
888.0542  1342 
886.5336  1318 
883.4923  1318 
904.7813  1335 
904.0210  1333 
912.3845  1339 
924.5496  1343 
921.5083  1349 
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913.9051  1350 
915.4258  1349 
914.6654  1345 
932.1528  1338 
931.3925  1340 
924.5496  1330 
897.1781  1328 
884.2526  1343 
879.6907  1348 
888.0542  1349 
876.6494  1359 
856.1208  1373 
862.2033  1366 
877.4097  1366 
875.8891  1366 
868.2859  1364 
870.5669  1361 
843.1953  1363 
853.0795  1353 
863.7240  1327 
870.5669  1319 
869.8065  1310 
863.7240  1310 
856.1208  1296 
848.5176  1297 
859.1621  1300 
878.1701  1302 
887.2939  1298 
872.0875  1298 
881.2114  1286 
877.4097  1285 
875.8891  1289 
867.5256  1299 
866.7653  1296 
881.9717  1291 
887.2939  1309 
872.0875  1305 
892.6162  1303 
846.2366  1302 
840.9144  1297 
849.2779  1286 
855.3605  1272 
878.1701  1268 
873.6081  1271 
868.2859  1275 
869.8065  1264 
857.6414  1264 
831.7905  1238 
821.9064  1227 
821.9064  1230 
826.4683  1228 
820.3857  1230 
835.5921  1206 
833.3112  1199 
842.4350  1197 
853.8398  1202 
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834.0715  1215 
824.1873  1212 
825.7080  1205 
837.1128  1233 
835.5921  1230 
830.2699  1233 
834.0715  1227 
831.0302  1234 
823.4270  1233 
812.0222  1234 
833.3112  1239 
829.5096  1247 
810.5016  1243 
810.5016  1231 
798.3364  1215 
780.0887  1208 
788.4523  1204 
785.4110  1206 
774.0062  1212 
784.6507  1209 
793.7745  1228 
801.3777  1215 
811.2619  1219 
816.5841  1211 
815.0635  1216 
824.1873  1216 
829.5096  1217 
879.6907  1213 
871.3272  1213 
857.6414  1210 
881.9717  1211 
878.1701  1205 
878.9304  1204 
861.4430  1199 
862.2033  1196 
859.1621  1198 
859.1621  1193 
854.6001  1185 
852.3192  1181 
842.4350  1173 
846.9969  1154 
834.8318  1150 
819.6254  1153 
805.1793  1154 
805.9396  1156 
812.0222  1153 
816.5841  1155 
824.1873  1153 
821.9064  1155 
825.7080  1164 
817.3444  1161 
810.5016  1161 
812.0222  1162 
812.7825  1164 
809.7412  1159 
815.0635  1160 
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821.9064  1163 
843.1953  1159 
834.0715  1158 
831.7905  1145 
819.6254  1130 
836.3524  1126 
825.7080  1122 
845.4763  1105 
840.9144  1093 
835.5921  1093 
822.6667  1095 
818.8651  1116 
824.1873  1096 
834.8318  1074 
812.0222  1074 
916.9464  1084 
901.7400  1063 
892.6162  1083 
901.7400  1079 
901.7400  1240 
907.8226  1233 
909.3432  1238 
901.7400  1236 
898.6987  1237 
890.3352  1237 
878.9304  1232 
875.8891  1229 
881.9717  1229 
883.4923  1228 
881.9717  1228 
878.9304  1225 
885.0130  1232 
891.0955  1210 
895.6574  1208 
907.8226  1211 
901.7400  1216 
907.8226  1231 
906.3019  1234 
919.9877  1233 
938.2354  1241 
926.0703  1259 
932.1528  1261 
929.1115  1253 
921.5083  1246 
916.9464  1250 
919.9877  1236 
923.0290  1226 
930.6322  1201 
921.5083  1191 
921.5083  1209 
913.9051  1220 
901.7400  1217 
910.8638  1217 
910.8638  1218 
919.9877  1193 
923.0290  1200 
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918.4671  1192 
921.5083  1185 
919.9877  1171 
894.1368  1153 
892.6162  1157 
883.4923  1152 
881.9717  1162 
903.2606  1166 
894.1368  1177 
891.0955  1166 
891.0955  1167 
885.0130  1174 
883.4923  1159 
886.5336  1147 
885.0130  1148 
874.3685  1151 
885.0130  1153 
883.4923  1163 
883.4923  1163 
889.5749  1164 
875.8891  1159 
875.8891  1153 
866.7653  1156 
878.1701  1151 
876.6494  1155 
910.8638  1179 
907.8226  1188 
905.5416  1177 
906.3019  1184 
924.5496  1184 
930.6322  1185 
923.7893  1176 
924.5496  1179 
923.7893  1177 
918.4671  1166 
912.3845  1153 
917.7067  1148 
921.5083  1152 
929.1115  1150 
907.8226  1151 
906.3019  1151 
902.5003  1145 
904.0210  1151 
909.3432  1155 
897.1781  1153 
898.6987  1152 
891.0955  1151 
894.1368  1152 
895.6574  1147 
883.4923  1143 
889.5749  1145 
885.0130  1150 
888.0542  1151 
878.9304  1155 
874.3685  1154 
873.6081  1153 
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868.2859  1152 
879.6907  1146 
877.4097  1146 
890.3352  1146 
890.3352  1148 
882.7320  1156 
878.1701  1154 
868.2859  1159 
875.8891  1157 
870.5669  1157 
877.4097  1156 
883.4923  1160 
875.8891  1163 
880.4510  1161 
871.3272  1158 
882.7320  1157 
881.2114  1159 
883.4923  1158 
894.8971  1160 
912.3845  1163 
894.8971  1164 
896.4178  1165 
894.8971  1169 
895.6574  1168 
886.5336  1168 
878.9304  1166 
867.5256  1164 
859.1621  1167 
866.7653  1165 
861.4430  1158 
866.0049  1152 
866.0049  1152 
877.4097  1152 
878.1701  1153 
859.1621  1155 
855.3605  1155 
850.7985  1156 
850.0382  1155 
843.9557  1154 
837.1128  1155 
829.5096  1145 
827.2286  1137 
837.8731  1131 
846.2366  1131 
846.9969  1133 
843.9557  1133 
863.7240  1137 
862.9637  1140 
875.1288  1136 
855.3605  1136 
847.7573  1132 
856.8811  1134 
846.9969  1141 
836.3524  1146 
842.4350  1149 
835.5921  1148 
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844.7160  1146 
859.9224  1150 
859.9224  1149 
877.4097  1155 
891.8558  1153 
878.9304  1159 
881.9717  1160 
875.1288  1166 
862.2033  1171 
871.3272  1177 
872.8478  1179 
886.5336  1183 
919.9877  1179 
914.6654  1177 
900.9797  1179 
899.4590  1183 
906.3019  1184 
907.8226  1179 
897.9384  1189 
911.6242  1189 
911.6242  1195 
915.4258  1197 
954.9624  1192 
951.9211  1193 
980.8133  1196 
974.7308  1195 
979.2927  1194 
981.5736  1186 
964.0863  1189 
974.7308  1189 
987.6562  1181 
983.0943  1178 
967.8879  1177 
984.6149  1179 
1015.7881  1179 
1018.8293  1177 
1013.5071  1179 
1005.9039  1181 
1033.2754  1185 
1011.9865  1187 
1021.8706  1181 
1018.8293  1182 
1018.8293  1185 
992.9784  1184 
991.4578  1175 
1015.7881  1169 
1018.0690  1171 
1024.9119  1167 
1027.9532  1168 
1039.3580  1171 
1053.0438  1169 
1029.4738  1169 
1047.7215  1169 
1069.7708  1170 
1084.9772  1169 
1085.7375  1171 
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1065.9692  1174 
1057.6057  1178 
1062.1676  1175 
1030.2341  1175 
1028.7135  1176 
1034.7961  1177 
1057.6057  1170 
1075.0931  1165 
1072.0518  1162 
1080.4153  1160 
1080.4153  1159 
1101.7043  1165 
1116.1504  1155 
1152.6457  1155 
1175.4553  1165 
1227.1571  1166 
1262.1319  1166 
1259.0906  1168 
1265.1732  1168 
1243.8842  1168 
1201.3062  1162; 
/* 
proc print; 
run;*/ 
 
proc statespace; 
var czce cbot; 
run; 
 
DATA ALL; SET WCOINT; 
     LZ=LAG(CZCE); LB=LAG(CBOT); 
  WZ=CZCE-LZ; WB=CBOT-LB; 
  L2Z=LAG(WZ); L2B=LAG(WB); 
  L3Z=LAG(L2Z); L3B=LAG(L2B); 
  L4Z=LAG(L3Z); L4B=LAG(L3B); 
  L5Z=LAG(L4Z); L5B=LAG(L4B); 
  L6Z=LAG(L5Z); L6B=LAG(L5B); 
  L7Z=LAG(L6Z); L7B=LAG(L6B); 
  L8Z=LAG(L7Z); L8B=LAG(L7B); 
  L9Z=LAG(L8Z); L9B=LAG(L8B); 
  L10Z=LAG(L9Z); L10B=LAG(L9B); 
RUN; 
 
TITLE2 "AR ORDER P=1"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH LZ LB; 
RUN; 
 
/*Canonical corrrelations for the AR order*/ 
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TITLE2 "AR ORDER P=2"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH L2Z L2B; 
  PARTIAL LZ LB; 
RUN; 
 
TITLE2 "AR ORDER P=3"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH L3Z L3B; 
  PARTIAL LZ LB L2Z L2B; 
RUN; 
 
TITLE2 "AR ORDER P=4"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH L4Z L4B; 
  PARTIAL LZ LB L2Z L2B L3Z L3B; 
RUN; 
 
TITLE2 "AR ORDER P=5"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH L5Z L5B; 
  PARTIAL LZ LB L2Z L2B L3Z L3B L4Z L4B; 
RUN; 
 
TITLE2 "AR ORDER P=6"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH L6Z L6B; 
  PARTIAL LZ LB L2Z L2B L3Z L3B L4Z L4B L5Z L5B; 
RUN; 
 
TITLE2 "AR ORDER P=7"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH L7Z L7B; 
  PARTIAL LZ LB L2Z L2B L3Z L3B L4Z L4B L5Z L5B L6Z L6B; 
RUN; 
 
TITLE2 "AR ORDER P=8"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH L8Z L8B; 
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  PARTIAL LZ LB L2Z L2B L3Z L3B L4Z L4B L5Z L5B L6Z L6B L7Z L7B; 
RUN; 
 
TITLE2 "AR ORDER P=9"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH L9Z L9B; 
  PARTIAL LZ LB L2Z L2B L3Z L3B L4Z L4B L5Z L5B L6Z L6B L7Z L7B L8Z L8B; 
RUN; 
 
TITLE2 "AR ORDER P=10"; 
PROC CANCORR SHORT; 
     VAR WZ WB; 
  WITH L10Z L10B; 
  PARTIAL LZ LB L2Z L2B L3Z L3B L4Z L4B L5Z L5B L6Z L6B L7Z L7B L8Z L8B 
L9Z L9B; 
RUN; 
 
TITLE2 "COINTEGRATION TEST"; 
proc varmax data=wcoint; 
     model czce cbot / p=6 dftest cointtest=(johansen=(normalize=czce)); 
run; 
 
TITLE2 "Augmented Dickey-Fuller Unit Root Test for CZCE Sept. Prices"; 
%DFTEST(WCOINT,CZCE, AR=6, OUTSTAT=OUTZ0, TREND=0); 
%DFTEST(WCOINT,CZCE, AR=6, OUTSTAT=OUTZ1, TREND=1); 
%DFTEST(WCOINT,CZCE, AR=6, OUTSTAT=OUTZ2, TREND=2); 
PROC PRINT DATA=OUTZ0; 
PROC PRINT DATA=OUTZ1; 
PROC PRINT DATA=OUTZ2; 
RUN; 
 
TITLE2 "Augmented Dickey-Fuller Unit Root Test for CBOT Sept. Prices"; 
%DFTEST(WCOINT,CBOT, AR=6, OUTSTAT=OUTB0, TREND=0); 
%DFTEST(WCOINT,CBOT, AR=6, OUTSTAT=OUTB1, TREND=1); 
%DFTEST(WCOINT,CBOT, AR=6, OUTSTAT=OUTB2, TREND=2); 
PROC PRINT DATA=OUTB0; 
PROC PRINT DATA=OUTB1; 
PROC PRINT DATA=OUTB2; 
RUN; 
 
 
quit; 
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Appendix E.6. Nonsynchronicity Test (in SAS) 

 

options linesize=79 pageno=1 nodate; 
options formdlim=' '; 
 
TITLE “Time-series analysis: nonsynchronicity test of wheat futures prices: CZCE vs. CBOT 
                     --- © 2005 Wen Du. All rights Reserved.”;  
 
DATA FIRSTDIF;  
  INPUT CBWX CZWX; 
     T=_n_;  
CARDS; 
3 -19 
-1.25 -1 
3.75 -15 
2 -5 
5 8 
5 -14 
1.5 -2 
-1 -12 
1.75 -19 
-0.5 19 
-1.75 5 
2.5 12 
-1.5 2 
-4.5 -44 
4 -24 
-3.5 4 
-3.75 -12 
2 -12 
-1 -5 
12.75 -21 
-3.75 12 
-0.25 3 
-3 12 
3 -8 
-3 3 
-7.5 -3 
1.5 0 
-9 4 
-2.5 12 
3 -15 
0.5 -1 
-1 -1 
0 -1 
1.75 0 
0 20 
1.75 -5 
1.75 -10 
-3 0 
2.75 2 
7.75 -2 
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-2 2 
-2.5 7 
6 0 
-5.75 -3 
-5.25 -2 
1.5 0 
-5.5 -3 
-3.5 -1 
1.25 2 
-5 -1 
2.25 -3 
4 -3 
6.75 17 
-4.25 -15 
-1.75 2 
0.25 -1 
-2.5 -1 
4.75 -1 
-5.75 0 
0.25 2 
3 1 
2.25 -2 
-2.5 6 
-1.75 0 
-1.75 -2 
1.5 -3 
-1.75 0 
0 5 
1.75 -1 
-4 -1 
-6.5 0 
0.25 3 
13.5 -4 
-0.5 5 
6.5 5 
7 5 
2.25 1 
-1.75 12 
-1.75 2 
-3 -2 
-5.5 3 
4.25 -1 
4.25 2 
1 -4 
-1.5 2 
0 10 
1.25 0 
-6.5 -1 
0.75 -5 
-4.25 3 
1 6 
-5.25 -6 
1.25 3 
-3.25 -2 
2.5 -4 
3.75 3 
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-5 -7 
-0.75 0 
-3.5 7 
2 1 
0 -2 
5 -4 
5.25 -1 
3.25 9 
1 -10 
-5.25 -1 
2 -2 
-1.25 0 
-1 6 
0.5 1 
-13.5 -4 
-13.75 1 
1.25 -2 
-3.75 48 
-0.25 -47 
2.25 6 
-0.75 3 
-3.75 -4 
2 9 
-5.75 -4 
-4.5 7 
-3 -7 
3.25 0 
2.25 0 
0.5 -1 
-1.75 0 
0 0 
-1.25 0 
1.5 0 
2.25 0 
-1.75 -7 
-1.25 9 
1.25 6 
-4 1 
-5.25 0 
-3.5 0 
3 -8 
-1 5 
0.25 -8 
1 -2 
1.75 5 
2 -3 
3 3 
-4 -3 
-0.75 1 
-2.5 3 
-1.5 0 
-1 -6 
6.25 0 
1.5 0 
1 13 
7.75 -16 
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-4 7 
4.5 -3 
-0.5 0 
2.75 0 
-5.5 0 
2 0 
1 0 
-1.25 0 
-4.25 0 
-3 0 
0 0 
55 0 
3.75 0 
-7 0 
1 0 
-2.25 0 
3.25 443 
3 -8 
0.75 -4 
3.5 8 
0.5 1 
4.5 -3 
3 16 
8 1 
0.5 -15 
-1 -38 
-7.5 -25 
4 -5 
-3 -3 
-4 -12 
-3 2 
0.5 -1 
-4 -6 
0.5 -20 
-2 -3 
1.5 2 
2.5 -5 
-3.5 0 
0.25 2 
-0.5 4 
3.75 1 
5.5 -1 
-0.5 2 
-0.75 -5 
2.75 -11 
-6 5 
-1 -16 
1.75 1 
-2.25 5 
-2 -2 
1.5 9 
1.25 3 
-0.25 1 
-1 1 
2.5 -3 
3 -5 
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-3 20 
-2 -2 
-3 10 
3.25 -7 
3.25 -2 
1.75 6 
-1.75 -11 
0.5 8 
-6 6 
1.75 2 
-1.25 8 
-0.75 2 
0 -3 
-2.25 0 
-2.25 1 
2.75 -4 
4 -2 
-2 -2 
2 4 
2.75 -3 
-1 0 
-2.5 -11 
-0.25 -8 
7.75 1 
-3 3 
6.75 -6 
1.5 1 
-0.5 -2 
-1 -12 
2.25 5 
4 0 
0 -4 
0.5 -2 
-4 2 
-2 0 
2 -14 
0.5 9 
-14.75 -5 
-2.5 -10 
1.25 -25 
-0.75 -4 
-0.5 -4 
-4.25 -18 
1.25 2 
3.75 8 
-0.25 2 
-1.5 2 
0 8 
-3.5 -9 
-3.25 -4 
-0.25 -6 
-0.5 -24 
-1 0 
7 17 
-0.25 -2 
2.75 6 
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4 4 
-1 6 
-2.5 1 
0.5 -1 
-0.25 -4 
5.75 -7 
-0.25 2 
-2.25 -10 
-9 -2 
-4.25 15 
-1.5 5 
2.75 1 
-3.75 10 
-6.75 14 
2 -7 
5 0 
-0.5 0 
-2.5 -2 
0.75 -3 
-9 2 
3.25 -10 
3.5 -26 
2.25 -8 
-0.25 -9 
-2 0 
-2.5 -14 
-2.5 1 
3.5 3 
6.25 2 
3 -4 
-5 0 
3 -12 
-1.25 -1 
-0.5 4 
-2.75 10 
-0.25 -3 
5 -5 
1.75 18 
-5 -4 
6.75 -2 
-15.25 -1 
-1.75 -5 
2.75 -11 
2 -14 
7.5 -4 
-1.5 3 
-1.75 4 
0.5 -11 
-4 0 
-8.5 -26 
-3.25 -11 
0 3 
1.5 -2 
-2 2 
5 -24 
-0.75 -7 
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3 -2 
3.75 5 
-6.5 13 
-3.25 -3 
0.5 -7 
3.75 28 
-0.5 -3 
-1.75 3 
1.25 -6 
-1 7 
-2.5 -1 
-3.75 1 
7 5 
-1.25 8 
-6.25 -4 
0 -12 
-4 -16 
-6 -7 
2.75 -4 
-1 2 
-3.75 6 
3.5 -3 
3 19 
2.5 -13 
3.25 4 
1.75 -8 
-0.5 5 
3 0 
1.75 1 
16.5 -4 
-2.75 0 
-4.5 -3 
8 1 
-1.25 -6 
0.25 -1 
-5.75 -5 
0.25 -3 
-1 2 
0 -5 
-1.5 -8 
-0.75 -4 
-3.25 -8 
1.5 -19 
-4 -4 
-5 3 
-4.75 1 
0.25 2 
2 -3 
1.5 2 
2.5 -2 
-0.75 2 
1.25 9 
-2.75 -3 
-2.25 0 
0.5 1 
0.25 2 
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-1 -5 
1.75 1 
2.25 3 
7 -4 
-3 -1 
-0.75 -13 
-4 -15 
5.5 -4 
-3.5 -4 
6.5 -17 
-1.5 -12 
-1.75 0 
-4.25 2 
-1.25 21 
1.75 -20 
3.5 -22 
-7.5 0 
34.5 10 
-5 -21 
-3 20 
3 -4 
0 161 
2 -7 
0.5 5 
-2.5 -2 
-1 1 
-2.75 0 
-3.75 -5 
-1 -3 
2 0 
0.5 -1 
-0.5 0 
-1 -3 
2 7 
2 -22 
1.5 -2 
4 3 
-2 5 
2 15 
-0.5 3 
4.5 -1 
6 8 
-4 18 
2 2 
-1 -8 
-2.5 -7 
-1.5 4 
1 -14 
1 -10 
2.5 -25 
-3 -10 
0 18 
-2.5 11 
-4 -3 
3 0 
0 1 
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3 -25 
1 7 
-1.5 -8 
1 -7 
-0.5 -14 
-8.5 -18 
-0.5 4 
-3 -5 
-0.5 10 
7 4 
-3 11 
-1 -11 
0 1 
-2 7 
-0.5 -15 
1 -12 
-0.5 1 
-3.5 3 
3.5 2 
-0.5 10 
0 0 
2 1 
-4.5 -5 
0 -6 
-3 3 
3.75 -5 
-0.5 4 
11.25 24 
-1 9 
-0.75 -11 
0.25 7 
6 0 
2 1 
-2.25 -9 
0.25 3 
-0.25 -2 
-1.75 -11 
-2 -13 
1.75 -5 
1.25 4 
2.5 -2 
-7 1 
-0.5 0 
-1.25 -6 
0.5 6 
1.75 4 
-4 -2 
0.5 -1 
-2.5 -1 
1 1 
0.5 -5 
-4 -4 
2 2 
-1.5 5 
1 1 
-3 4 
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-1.5 -1 
-0.25 -1 
-1.75 -1 
3.75 -6 
-0.75 0 
4.25 0 
0 2 
-2.5 8 
-1.5 -2 
-3.25 5 
2.5 -2 
-1.75 0 
2.25 -1 
2 4 
-2.5 3 
1.5 -2 
-3 -3 
3.75 -1 
-0.5 2 
0.75 -1 
3.75 2 
5.75 3 
-5.75 1 
0.5 1 
-0.5 4 
0.25 -1 
-3 0 
-2.5 -2 
-3.75 -2 
-2.75 3 
2.5 -2 
-1.75 -7 
1.5 -6 
0 0 
3.75 0 
0.25 1 
-6.25 2 
-1.25 0 
-1.5 1 
-0.25 -1 
-2 -1 
-2.25 1 
-2.5 -10 
-0.75 -8 
3.5 -6 
2.75 0 
0.25 2 
-1 0 
6.5 4 
-0.25 3 
4 -4 
-6.5 0 
-2.5 -4 
3 2 
-3.25 7 
-3.5 5 
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2 3 
-2.25 -1 
3 -2 
5 4 
0 -1 
5.75 6 
4.75 -2 
-4.25 6 
1 1 
-2.25 6 
-4.25 5 
3 6 
0.5 2 
4.5 4 
11 -4 
-1.75 -2 
-4.5 2 
-0.5 4 
2.25 1 
0.5 -5 
-3.25 10 
4.5 0 
0 6 
1.25 2 
13 -5 
-1 1 
9.5 3 
-2 -1 
1.5 -1 
0.75 -8 
-5.75 3 
3.5 0 
4.25 -8 
-1.5 -3 
-5 -1 
5.5 2 
10.25 0 
1 -2 
-1.75 2 
-2.5 2 
9 4 
-7 2 
3.25 -6 
-1 1 
0 3 
-8.5 -1 
-0.5 -9 
8 -6 
0.75 2 
2.25 -4 
1 1 
3.75 3 
4.5 -2 
-7.75 0 
6 0 
7.25 1 
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5 -1 
0.25 2 
-6.5 3 
-2.75 4 
1.5 -3 
-10.5 0 
-0.5 1 
2 1 
7.5 -7 
5.75 -5 
-1 -3 
2.75 -2 
0 -1 
7 6 
4.75 -10 
12 0 
7.5 10 
17 1 
11.5 0 
-1 2 
2 0 
-7 0 
-14 -6 
; 
RUN; 
/* 
PROC PRINT;*/ 
 
DATA SWITCH;  
     INPUT CBSD CZSD; 
     T=_n_;  
CARDS; 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 0 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
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0 0 
0 0 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
; 
RUN; 
 
DATA COMBINE; 
MERGE FIRSTDIF SWITCH; BY T; 
      czwxlag1=lag(czwx);cbwxlag1=lag(cbwx);cbwxlag2=lag(cbwxlag1); 
keep cbwx cbwxlag1 cbwxlag2 czwx czwxlag1 cbsd czsd; 
run; /* 
PROC PRINT DATA=COMBINE;  
RUN; 
proc corr data=combine; 
var cbwx czwx; 
run;*/ 
 
title2 "CBOT of CZCE MA(1)-xlag=1";  
proc varmax data=combine; 
model cbwx  = czwx czwxlag1 cbsd  / method = ml q=1; 



 

248 
 

output out=r; 
run; 
 
title2 "CZCE of CBOT MA(1)-xlag=1";  
proc varmax data=combine; 
model czwx  = cbwxlag1 czsd  / method = ml; 
output out=r; 
run; 
 
title2 "CZCE of CBOT MA(1)-xlag=2";  
proc varmax data=combine; 
model czwx  = cbwx cbwxlag1 czsd  / method = ml; 
output out=r; 
run; 
 
title2 "CZCE of CBOT AR(1)-xlag=0";  
proc varmax data=combine; 
model czwx cbwx = czsd cbsd / method = ml p=0; 
output out=r; 
run; 
 
title2 "CZCE of CBOT AR(1)-xlag=1";  
proc varmax data=combine; 
model czwx cbwx = czsd cbsd / method = ml p=1; 
output out=r; 
run; 
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Appendix E.7. Multivariate ARCH/GARCH Estimation (in S-PLUS) 

# Multivariate GARCH analysis of CBOT and CZCE wheat futures prices, both in Yuan/Ton 
 
# import cbot_czce first difference price data (623*2)  
#  and switching dummy variables (623*2), first 1 for CBOT and rest 1 for CZCE, 
# using "scan" command 
 
bi.dif.con <- matrix(scan(file="d:\\arec\\date_adjusted_converted_dif.txt"), ncol=2, byrow=623) 
bi.sd.2nd <- matrix(scan(file="d:\\arec\\date_adjusted_sd_2nd.txt"), ncol=2, byrow=623) 
 
 
# bivariate garch analysis, using "mgarch" command and diagonal-vec model (~dvec()) 
#  for the possible correlation between the two variances  
 
# ARCH model fitting 
 
bi.arch1.con <- mgarch(bi.dif.con~bi.sd.2nd, ~dvec(1,0), control=bhhh.control(n.iter=50000)) 
# convergence reached at n=15068  
 
 
# GARCH model fitting, using diagonal-vec model 
 
bi.garch11.con <- mgarch(bi.dif.con~bi.sd.2nd, ~dvec(1,1), control=bhhh.control(n.iter=10000)) 
bi.garch21.con <- mgarch(bi.dif.con~bi.sd.2nd, ~dvec(2,1), control=bhhh.control(n.iter=10000)) 
bi.garch22.con <- mgarch(bi.dif.con~bi.sd.2nd, ~dvec(2,2), control=bhhh.control(n.iter=10000)) 
 
# although garch(2,1), garch(2,2) convergent, estimation yields "NA" for estimated 
#  parameters 
 
summary(bi.arch1.con) 
summary(bi.garch11.con) 
 
compare(bi.arch1.con,bi.garch11.con) 
 
# higher order ARCH/GARCH models are not convergent 
 
 
 
# ARCH model fitting, assuming "t" distribution, using ~dvec() 
 
bi.arch1.con.t <- mgarch(bi.dif.con~bi.sd.2nd, ~dvec(1,0), cond.dist="t", 

control=bhhh.control(n.iter=10000)) 
bi.arch2.con.t <- mgarch(bi.dif.con~bi.sd.2nd, ~dvec(2,0), cond.dist="t", 

control=bhhh.control(n.iter=10000)) 
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# GARCH model fitting, assuming "t" distribution, using ~dvec() 
 
bi.garch11.con.t <- mgarch(bi.dif.con~bi.sd.2nd, ~dvec(1,1), cond.dist="t", 

control=bhhh.control(n.iter=10000)) 
bi.garch21.con.t <- mgarch(bi.dif~bi.sd.2nd, ~dvec(2,1), cond.dist="t", 

control=bhhh.control(n.iter=10000)) 
 
# higher order ARCH/GARCH models not convergent under "t" distribution 
 
 
summary(bi.arch1.con.t) 
summary(bi.garch11.con.t) 
 
compare(bi.arch1.con.t, bi.garch11.con.t) 
 
 
############################################################################## 
# In DVEC form, GARCH(1,1) has the best fit under both normal and t distributions                  # 
############################################################################## 
 
 
 
# bivariate garch analysis, using "mgarch" command and CCC model (~ccc()) 
# for the possible correlation between the two variances  
 
# ARCH model fitting 
 
bi.arch1.ccc.con <- mgarch(bi.dif.con~bi.sd.2nd, ~bekk(1,0), control=bhhh.control(n.iter=10000)) 
summary(bi.arch1.ccc.con) 
 
 
# GARCH model fitting 
 
bi.garch11.ccc.con <- mgarch(bi.dif.con~bi.sd.2nd, ~ccc(1,1), cccor.choice=1, 

control=bhhh.control(n.iter=5000)) 
summary(bi.garch11.ccc.con) 
 
 
# higher order ARCH/GARCH models not convergent 
 
 
# assuming "t" distribution, bivariate garch anlaysis 
 
# ARCH model fitting 
bi.arch1.ccc.con.t <- mgarch(bi.dif.con~bi.sd.2nd, ~ccc(1,0), cccor.choice=1, cond.dist="t", 
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control=bhhh.control(n.iter=5000)) 
summary(bi.arch1.ccc.con.t) 
 
# higher order ARCH/GARCH models not convergent under "t" distribution 
 
compare(bi.arch1.ccc.con, bi.garch11.ccc.con) 
 
# GARCH model fitting 
bi.garch11.ccc.con.t <- mgarch(bi.dif.con~bi.sd.2nd, ~ccc(1,1), cccor.choice=1, cond.dist="t", 

control=bhhh.control(n.iter=5000)) 
bi.arch2.full.con.t <- mgarch(bi.dif.con~bi.sd.2nd, ~bekk(2,0), cond.dist="t", 

control=bhhh.control(n.iter=5000))    
summary(bi.garch11.ccc.con.t) 
 
compare(bi.arch1.ccc.con.t, bi.garch11.ccc.con.t) 
 
# higher order models not convergent 
 
summary(bi.arch1.ccc.con) 
summary(bi.garch11.ccc.con) 
compare(bi.arch1.ccc.con, bi.garch11.ccc.con) 
 
summary(bi.arch1.ccc.con.t) 
summary(bi.garch11.ccc.con.t) 
compare(bi.arch1.ccc.con.t, bi.garch11.ccc.con.t) 
 
 
############################################################################## 
# In CCC form, GARCH(1,1) has the best fit under both normal and t distributions                     # 
############################################################################## 
 
 
 
# bivariate garch analysis, using "mgarch" command and FULL model (~bekk()) 
# for the possible correlation between the two variances  
 
# ARCH model fitting 
 
bi.arch1.full.con <- mgarch(bi.dif.con~bi.sd.2nd, ~bekk(1,0), control=bhhh.control(n.iter=5000)) 
bi.arch2.full.con <- mgarch(bi.dif.con~bi.sd.2nd, ~bekk(2,0), control=bhhh.control(n.iter=5000)) 
bi.arch3.full.con <- mgarch(bi.dif.con~bi.sd.2nd, ~bekk(3,0), control=bhhh.control(n.iter=5000)) 
 
 
# GARCH model fitting 
# no workable garch models under the full model 
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# assuming "t" distribution, bivariate garch anlaysis 
 
# ARCH model fitting 
 
bi.arch1.full.con.t <- mgarch(bi.dif.con~bi.sd.2nd, ~bekk(1,0), cond.dist="t", 

control=bhhh.control(n.iter=5000))    
bi.arch2.full.con.t <- mgarch(bi.dif.con~bi.sd.2nd, ~bekk(2,0), cond.dist="t", 

control=bhhh.control(n.iter=5000))    
 
summary(bi.arch1.full.con) 
summary(bi.arch1.full.con.t) 
 
compare(bi.arch1.full.con, bi.arch1.full.con.t) 
 
 
 
# GARCH model fitting 
# no workable garch models under the full model 
 
 
############################################################################## 
# In BEKK form, ARCH(1) has the best fit under both normal and t distributions                        # 
############################################################################## 
 


