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The understanding of protein functions and there-by characterization is essential to modeling 

complex biological systems; for example, developing drugs against a pathogen requires understanding 

the proteins whose function is relevant to virulent activity. To a degree, protein annotation is helped by 

the fact that protein sequences are evolutionarily related or homologous. Knowing that a protein 

sequence is homologous to an already characterized sequence, the properties of the latter can be 

propagated to the former. The task of detection of protein sequences that are similar (homologous) to a 

given query protein is termed homology detection. Computational homology detection is one of the 

oldest tasks in bioinformatics. Conventional methods of homology detection rely on the basic principle 

of sequence similarity. However these methods fail to identify distantly-related homologs that have 

highly diverged protein sequences.  

This thesis aims at developing machine learning based models of groups of protein sequences 

to improve the sensitivity of remote homolog detection. This research makes two significant 

contributions to the field of remote homology detection by the development of additional algorithms. 

The first contribution is the algorithm SVM-SimLOC, which utilizes sub-cellular localization 

information of protein sequences. The second algorithm, SVM-HUSTLE, is the first of its kind semi-

supervised method using support vector machines for remote homology detection. Lastly, we propose a 

systems biology-based solution to practical homology detection using a publicly available tool called 

the Bioinformatics Resource Manager.   
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CHAPTER ONE 

1 INTRODUCTION 

High-throughput genome sequencing methods are advancing on a daily basis, 

producing overwhelming amounts of sequence data. Although sequence data lead to 

knowledge of proteins in the cell they provide little information about the biological processes 

involving these proteins. Species differences arise not because of the actual components 

themselves but because of how these individual components interact with each other to 

perform a common cellular function. This realization has led to rapid growth in the field of 

proteomics, which aims at elucidating the structure, interactions, and functions of all the 

proteins within a cell of an organism. The interaction and similarity between proteins is 

fundamental to a broad spectrum of biological functions, including regulation of biological 

functions, metabolic pathways, progression through the cell cycle, and protein synthesis [1]. 

Although a complete understanding of protein functionality will require information on many 

levels such as knowledge of transcription, translational regulation, post-translational 

regulation, binding constants, and structures, answering basic questions, such as what proteins 

have similar functions? How they interact with each other? provides a foundation on which 

more complex regulatory information can be built [2]. The understanding of protein functions 

and there-by characterization is essential to modeling complex biological systems; for 

example, developing drugs against a pathogen requires understanding the proteins whose 

function is relevant to virulent activity.  

Annotation of sequence data with functional and structural characterizations is one of 

the major challenges in bioinformatics. Experimental annotation methods are not only 

expensive but also have failed to keep pace with the ever-growing sequence information. One 
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common solution to functional annotation of novel sequences is via structural classification. 

The traditional methods of determining the 3-dimensional structure of protein sequences are 

through NMR [3] and X-ray crystallography [4]. These methods are time-consuming, costly 

and currently infeasible for some protein families. As a result more and more computational 

methods are being developed to reduce the time to annotate these sequences; practically, on a 

regular basis.  

To a degree, protein annotation is helped by the fact that protein sequences are 

evolutionarily related or homologous. Homology is defined as the relationship of any two 

characters that have descended, usually with divergence, from a common ancestral character 

[5]. Additionally if two sequences are deemed homologous, it is highly likely for them to 

preserve a common function. Inferring this common ancestry between similar sequences, 

termed homology detection, provides a kind of boot-strapping method by which newly 

sequences genomes can be characterized based on existing annotations. Knowing that a 

protein sequence is homologous to an already characterized sequence, the properties of the 

latter can be propagated to the former. The task of detection of protein sequences that are 

similar (homologous) to a given query protein is termed homology detection.  

1.1 Motivation 

Computational homology detection is one of the oldest tasks in bioinformatics. 

Conventional methods of homology detection rely on the basic principle of sequence 

similarity. If two sequences have a high degree of sequence similarity, it can be determined 

with high statistical confidence that the two sequences share a common ancestor, and therefore 

may be related in function. Homolog identification can be conducted through computationally 

matching a query sequence to similar sequences in a database, using any of the pairwise 
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sequence similarity algorithms, such as Needleman-Wunsh [6], Smith-Waterman [7], FASTA 

(a fast approximation to Smith-Waterman) [8] or BLAST (A basic local alignment search tool) 

[9]. These tools are popularly used to produce a ranked list of protein sequences accompanied 

by a statistically calculated P-value or E-value that match a given query sequence that tests the 

hypothesis that the sequences are similar to each other. These algorithms are highly successful 

when the sequences have high sequence identity. However, the sensitivity of these algorithms 

deteriorates in cases of evolutionarily related sequences that diverge a fair-bit; and have 

sequence identity of less than 20% [10]. Also the residue matching process is not trivial as 

these proteins could have separated a long time ago in the evolutionary history. Thus 

homology detection purely based on sequence similarity may not result in the detection of 

distantly related proteins. The detection of distantly-related homologs with highly diverged 

protein sequences is termed as remote homology detection.  

Discriminative machine-learning and support vector machines (SVM) based 

approaches have demonstrated increased sensitivity while detecting remote homologs [11-24]. 

Though limited in their application, these methods provide a foundation for further research in 

the field of remote homology detection. There is a need to develop novel methods for remote 

homology that enable the accurate detection of distantly related sequences and maintain a 

balance between required computation, the sensitivity of the approach and the time to solution. 

The discriminative approaches to homology detection offer the capability to integrate 

additional information. For example, the inclusion of additional knowledge of biological 

properties such as hydrophobicity, molecular weight, structural orientations, sub-cellular 

localizations etc, may assist in the detection of remote homologs. However, there are few 

proteins with computed structural orientations and annotated localizations. Additionally, the 
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computation of these properties may require large amounts of CPU cycles (in cases of 

structural calculations, etc) and may not be worth the additional effort. Apart from 

computational cost for calculations of additional properties, each of the discriminative 

methods has an inherent drawback as they rely heavily on a family-based training and 

classification of protein sequences. Proteins that do not fall into one of the selected families 

cannot be classified accurately. More importantly, new families of proteins can never be 

discovered with these approaches. This short-coming has limited the use of these approaches 

when detecting protein homologs. 

1.2 Objectives and Contributions 

The primary objective of this research is the development of new biosequence analysis 

methodologies that overcome the limitations of existing approaches and provide a more 

sensitive detection method that is computationally feasible and provides results in a 

competitive time-to-solution. This research aims to make two major contributions to the field 

of remote homology detection. The first is the development of family-based machine learning 

approach SVM-SimLoc that incorporates additional sub-cellular localization knowledge for 

individual protein sequences to reduce the number of false positives while improving the 

accuracy of detection. The second is the development of a new algorithm based on the 

principles of supervised and semi-supervised machine learning, SVM-HUSTLE.  

In addition to the development of these algorithms, we discuss the design of an 

integrated system based on a systems biology based software solution called the 

Bioinformatics Resource Manager (BRM) [25] that presents the user with a highly intuitive 

interface to launch homology searches on custom databases.  
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1.2.1 SVM-SimLoc 

SVM-SimLoc is the first algorithm developed that utilizes the predicted sub-cellular 

localization of a protein sequence in a SVM framework. The name for the algorithm signifies 

the integration of sequence similarity with sub-cellular localization feature vectors. The 

premise behind the use of sub-cellular localization is the elimination of a large number of 

false-positive relationships between protein functions that cannot arise due to location 

characteristics. The SVM-SimLoc algorithm uses data integration at the feature level to 

integrate a measure of sequence similarity with localization vectors. The sequence similarity is 

represented by Smith-Waterman E-scores between sequences while the location vectors are 

derived from the CELLO [26] localization prediction tool. This algorithm follows many other 

discriminative machine learning based algorithms in terms of a family-based setting. We 

report a statistically significant improvement of prediction accuracies using SVM-SimLOC on 

a previously published benchmarking dataset. We discuss the details of the SVM-SimLoc 

algorithm and compare its performance to other state of the art algorithms in Chapter 4. It is 

needless to say that a universal approach that can be easily applied across all sequences is 

required for remote homology detection. 

1.2.2 SVM-HUSTLE 

The SVM-based tool for Homology detection Using iTerative LEarning (SVM-

HUSTLE) is the first of its kind SVM-based algorithm for “pairwise” homology detection. 

SVM-HUSTLE combines the principles of supervised and semi-supervised machine learning 

to determine if two sequences are homologous to each other. Traditional SVM-based 

methodologies for remote homology detection implicitly rely on a family-based classification 

of protein sequences. Classifiers are built for a distinct set of families and sequences are 
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classified as either a “member of” or “not a member of” a particular family. SVM-HUSTLE 

on the other hand deviates from the family-based SVM-based methods. Classifiers are built 

on-the-fly for a given query sequence using semi-supervised learning. SVM-HUSTLE outputs 

a list of protein sequences that are deemed homologous to the given query sequence based on 

a pairwise comparison. Our benchmarking results indicate that SVM-HUSTLE is comparable 

in performance and sensitivity to profile-profile based methods such as COMPASS [27], 

PROF_SIM [28] and HHSearch [29]. This is a very significant result, especially since profile-

based methods require the computationally expensive generation of profiles built using 

multiple alignments. SVM-HUSTLE also significantly outperforms most existing state of the 

art remote homology detection methods on a stringent benchmarking dataset. SVM-HUSTLE 

is applicable in real world scenarios where there is no preconceived notion of families for a 

novel set of proteins. We discuss the algorithm in detail along with the configuration 

parameters in Chapter 5. An evaluation of the algorithm as compared to other existing 

methods is also provided.  

1.2.3 Implementing a homology workflow for practical use 

Using the BRM software and the high-performance data management capabilities of 

ScalaBLAST [30], we present the design of a workflow that allows researchers to search for 

homologous proteins within a database of their choice. Traditional homology-based websites 

provide a fixed set of databases that can be searched. This is largely because each database 

requires huge amounts of processing for e.g. computing of multiple alignments in cases of 

profile-profile based comparison algorithms. We present a practical user interface based 

solution on the front-end, coupled with high-performance clusters at the back-end, which can 

be asynchronously implemented as an additional workflow within the BRM toolkit. 
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CHAPTER TWO 

2 BACKGROUND: MACHINE LEARNING METHODS 
 

2.1 Introduction 

Machine Learning originates from the field of Artificial Intelligence. The focus of 

machine learning research is “How to make machines capable of learning what humans can?” 

This could be learning a set of rules for classification, or identification of a set of patterns for 

character recognition or the categorization of a set of data points into distinct clusters. In other 

words, machine learning can be broadly considered as the programming of computers to either 

gain knowledge from data or the derivation of statistical models to make predictions in the 

future. Machine learning uses the theory of statistics and computer science at its core. The 

statistics help in building the models, as the core task is the inference from sample data and the 

computer sciences are used to solve optimization problems as well as process and store the 

massive amounts of data that are operated on. Additionally, the efficiency of learning 

algorithms, namely, their space and time complexity, is an important measure to assess the 

performance of these algorithms and/or models. Machine learning has demonstrated 

application in different fields such as medicine, telecommunications, networking, physics 

biology etc. The field of machine learning research can be broadly classified into three distinct 

disciplines, unsupervised learning, supervised learning and semi-supervised learning.  

2.2 Unsupervised Learning 

Unsupervised learning is a class of machine learning where the goal is to have the 

computer learn how to do something without us being told how to do it. Such a technique is 
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commonly applied to a collection of samples that do not have any categorization associated 

with it. There are a number of reasons for interest in unsupervised learning. In the early stages 

of investigation, it may be a valuable exercise to reduce the amount of data to manageable 

chunks by using some sort of a clustering approach. The discovery of distinct subclasses or 

groups within a dataset may suggest interesting possibilities. In other cases, collecting and 

labelling a large set of sample patterns can be surprisingly expensive. However, if a classifier 

can be crudely designed based on the alphabet space of the problem, the labelling can be 

achieved in a significantly short time span. Unsupervised learning is also used to extract a “set 

of features” or pre-process data in certain cases.  

There are a couple of approaches to unsupervised learning. The first is to teach the 

computer not by giving explicit classifications, but by using some sort of a reward system to 

indicate success. The other form is reinforcement learning, where the agent bases its actions 

on the previous rewards and punishments without necessarily learning any information about 

the exact ways its actions affect the world. This can essentially be equated to learning by trial 

and error and can be very time consuming. Unsupervised learning is based on the similarities 

and differences among the input patterns. It does not result directly in differences in overall 

behaviour because its outputs are almost internal representations. This type of learning plays a 

role in perceptual systems. Visual input is an example of such learning. Another form of 

unsupervised learning is the clustering of data into distinct categories. The term “clustering” 

and “unsupervised learning” are almost used synonymously in a number of settings. In the 

following sections we discuss some forms of unsupervised learning that are prevalent in 

literature and more popular than others. 
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2.2.1 Exploratory Data Analysis 

When faced with data of high-dimensionality, researchers are generally looking for 

subsets of data that might be “interesting”, i.e. looking for anomalies or deviations from the 

normal behaviour within the group. The traditional approach to examine these high-

dimensional data sets in an exploratory fashion is to reduce their dimensionality in the first 

place. This is achieved by either linear or non-linear mappings or projection strategies [31].  

The idea of projection pursuit is to locate the projection or projections from high-to 

low dimensional space that reveal the most details about the structure of the data. Once a set of 

interesting projections has been found, the researcher can further investigate the data 

analyzing the interesting projections separately. The simplest form of a projection pursuit 

technique is a scatterplot: a two-dimensional display to indicate data characteristics across two 

selected dimensions. The data is displayed as a collection of points, each having the value of 

one variable determining the position on the horizontal axis and the value of the other variable 

determining the position on the vertical axis [32]. The main limitation of such a technique is 

the amount of time it takes to exhaustively explore a given data set. The higher the 

dimensions, a large number of scatterplots are to be generated.  

Another common technique for finding patterns in high-dimensional data is the 

Principal Component Analysis (PCA) [33]. It has wide-ranging applications from compression 

[34], face recognition [35] to detection of epithelial cells in ovarian cancer patients [36]. Since 

patterns can be hard to find in high-dimensional data, PCA, an unsupervised learning 

technique, serves as a powerful tool for analysis. PCA is a mathematical procedure that 

transforms a number of possibly correlated variables into a smaller number of uncorrelated 

orthogonal (mutually perpendicular) variables, which are called the principal components for 
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that dataset. These components account for the maximum variability in the data in decreasing 

order, i.e. the first component accounts for as much of the variability in the data as possible 

and each following component accounts for the remaining. The PCA is a technique that seeks 

a projection that best represents the data with minimal loss of information. The PCA is most 

often used as an exploratory first step to identify if there are any distinct patterns in the dataset 

of interest. 

2.2.2 Clustering 

One of the other most commonly applied techniques on a large dataset is that of data 

clustering. Data clustering is a technique by which we make groups of objects that are 

somehow related or similar in characteristics. Clustering is often confused with classification. 

In clustering we are not pre-defining the classes and the number of classes is generally 

determined on-the-fly based on the patterns or characteristics of the data, while a classification 

technique relies more on the knowledge of a particular class and its properties before 

classification. In a classification technique, one decides whether a particular entity is a 

member of a particular class, while in a clustering technique, one determines what group of 

entities belong together based on their properties. A number of clustering techniques have 

been published in literature [37] . The most popular are the K-means clustering [38] and the 

hierarchical clustering [39].  

The k-means algorithm is an algorithm that is used to cluster n  items/objects into k  

clusters. The objective of this algorithm is to minimize the intra-cluster variance. In terms of 

performance, the algorithm is not guaranteed to return an optimal solution. As a result, a 

common practice is to run the algorithm multiple times and return the best clustering found. 
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Another drawback of this algorithm is that the number of clusters, k , is an input to the 

algorithm. An inappropriate choice of the number of clusters may yield poor results.  

In contrast, the hierarchical clustering algorithm, tries to find an optimal clustering 

solution based on an NN * distance matrix for a set of N  items. A critical component of the 

hierarchical clustering algorithm is the distance measure. Common distance functions include 

the Euclidean distance, the Hamming distance, the dot product, etc. Based on the distance 

function, the hierarchical clustering algorithm either builds or breaks up a hierarchy of 

clusters. The traditional representation of such a clustering is a tree, with individual elements 

at one end and a cluster containing every other element at the other end. The algorithm 

progresses slower than heuristic k-means algorithms and is generally applied in cases where 

there is an expected hierarchy among the objects, for e.g. in categorical data. 

2.3 Supervised Learning 
 

Supervised learning is one extreme in the spectrum of machine learning algorithms. 

For every input in a supervised learning algorithm, there is an output. The output or target 

associated with each input is the desired response of the system. The learning algorithm 

adjusts its internal memory in such a way that it is more likely to produce the desired response 

given a defined set of inputs. Supervised learning is fairly common in classification problems 

because the goal is often to get the computer to learn a system that is already created. 

Examples of such systems include character and digit recognition systems. In such systems, 

the output is a binary yes/no answer. Another variant of supervised learning is called 

reinforcement learning. In reinforcement learning, there is no binary desired category but the 

only feedback is that the tentative category is right or wrong. To further illustrate the point, 

consider a game of chess, where the initial rules are very easy. However it is the combination 
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of certain moves or strategies that make an effective game strategy. So the individual steps are 

of little importance, however when combined in a series or a strategy make either a winning or 

losing proposition. Reinforcement learning is generally applied in such game playing cases. In 

the following sections, we provide a brief introduction to some of the most popular techniques 

mentioned under supervised learning. 

2.3.1 Artificial Neural Networks 

An artificial neural network (ANN), more commonly referred to as a neural network, is 

a mathematical or computational model that is inspired by the way biological nervous systems, 

such as the human brain, process information. The key element of this system is the large 

number of interconnected nodes that represent the neurons in the brain. These neurons work 

together, learning by example, to solve a problem. ANNs can be used both in an unsupervised 

and a supervised setting. They have a remarkable ability to derive meaning from complicated 

or imprecise data and can be used to extract patterns and detect trends that are too complex for 

the human brain to process.  
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Figure 1 - Artificial Neural Network 
 

The above figure, Figure 1, shows a type of neural network called a feed-forward 

neural network. In this type of network the processing units, or artificial neurons, or nodes are 

arranged in a layered configuration, containing one input layer, one or more hidden layers and 

one output layer. The input layer and the output layer can each have a number of nodes. Each 

node or neuron within the hidden layer processes all the inputs to that particular node in a 

weighted manner. This weighted sum is compared to a threshold and the activation signal is 

passed on to the next node within the layers. Optimization routines can be used to determine 

the ideal number of hidden layers as well as the number of nodes at each layer for an ANN. 

ANN’s has been applied to a broad spectrum of data-intensive applications ranging from 

computational biology and bioinformatics [40, 41] to finance [42, 43], and pattern recognition 

[44].  
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2.3.2 Genetic Algorithms 

Genetic Algorithms (GA) is a class of machine learning algorithms that can be used as 

a search technique to find the best-estimate solutions in optimization problems. GA’s model 

the principles of evolutionary biology such as inheritance, mutation, recombination and 

natural selection. GA’s are typically implemented as computer simulations in which a starting 

population of abstract representations evolves over time towards a better solution. The abstract 

representations, also referred to as chromosomes, are either string of 0/1 or can have more 

intricate encodings. The evolution starts from a random population and changes occur through 

a selection process over generations. In each generation, the fitness of the whole population is 

evaluated, and the most successful individuals are kept for the next generation. This selected 

group of individuals is supplemented with offspring that are obtained by processes of random 

mutation, recombination and/or crossovers. The fittest set from these parents and offspring 

becomes the starting population for the next generation or iteration of the algorithm.  
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Figure 2 - Genetic Algorithm Flowchart 

GA’s are mainly applied to search and optimization problems [45]. However, there 

have been instances of their use in classification problems [46, 47]. In protein homology 

detection, genetic algorithms have been used mostly to either identify the most suitable 

parameters for an existing model [48] or refine existing models of protein homology [49]. 

Figure 2 shows the flowchart for a general Genetic Algorithm implementation. 

2.3.3 Support Vector Machines 

Vapnik and Chervonenkis developed the theory behind the SVM in the late nineties 

[50, 51]. Since then there’s been a surge in its practical use. SVMs are machine learning 

algorithms designed with the intention of “generalizing better”. The problem SVM algorithms 

address relates to the efficient learning of a classification rule from a set of exemplars. The 

goal is the classification of each candidate as being either ‘a member’ or ‘not a member’ of a 
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given class. The fundamental difference between a GA and the other techniques is that a GA is 

more of an optimization approach for a pre-defined function, whereas for an SVM and ANN 

the function is defined based on the kernel (or topology of the network). 

 

Figure 3 - Separating hyperplane example 

To explain the operation of a support vector machine, consider Figure 3 where we 

represent two-class data, the circles and the squares. The objective of the classification task is 

to divide the two classes such that there is maximum separation between the two-class, 

implying that the distance of any element from the classifying plane is the most. There are 

many classification planes that can achieve this, however only one plane will ensure maximum 

separation (margin). By this we mean that we pick the hyperplane so that the distance from the 

hyperplane to the nearest data point is maximized. The goal of the SVM framework is to find 
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this hyperplane in n-dimensional feature space, where n represents the length of the feature 

vector for the element.  

A linear SVM has a decision function of the form 

bwxxf +=)(                                    (1) 

where w  - the weight vector  

and b  is a constant bias.  

A data point is classified according to the sign of f. The choice of w and b is such that 

the separation between the positive and negative examples is the maximum for linearly 

separable data points.  

To extend this description to n-dimensions, the SVM requires that the input data be 

represented as a collection of fixed-length vectors. These vectors are then transformed into a 

feature space of higher dimension. The objective of the algorithm is then to find an optimal 

hyper-plane ),( bw  that separates the data points of the two classes as far as possible within 

this feature space (maximize margin γ). Such a hyper-plane is called the maximum margin 

hyper-plane. Statistical learning theory suggests that, for some classes of well-behaved data, 

the choice of the maximum margin hyper-plane will lead to maximal generalization when 

predicting the classification of previously unseen examples [51]. The internal transformation 

of the input fixed-length data vectors into a non-linear high-dimensional feature space can be 

accomplished by means of a kernel function. Any symmetric, positive semi-definite function 

is a valid kernel function, corresponding to an inner product in some feature space. The base 
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kernel in an SVM is generally normalized forcing each vector to have a length of 1 in the 

feature space i.e. 

( ) ( )YYXX

YX
YXK

⋅⋅

⋅
=),(

                       (2) 

 Some of the most common kernel functions existing in literature are the linear, 

polynomial and radial basis function.  

 

Figure 4 - SVM Workflow 

In the parlance of SVM literature, a predictor variable is called an attribute, and a 

transformed attribute that is used to define the hyperplane is called a feature. The task of 
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choosing the most suitable representation is known as feature selection. A set of features that 

describes one case (i.e., a row of predictor values) is called a vector. So the goal of SVM 

modeling is to find the optimal hyperplane that separates clusters of vector in such a way that 

cases with one category of the target variable are on one side of the plane and cases with the 

other category are on the other size of the plane. The vectors near the hyperplane are the 

support vectors. Figure 4 presents an overview of the SVM process. The input space contains 

two-class data with an n-dimensional vector representing each element. The SVM transforms 

this vector into a feature space using a kernel function and finds a hyperplane in this high-

dimensional space. The hyperplane and support vectors are now used in the output space to 

determine the correct classification for incoming data. 

2.4 Semi-Supervised Learning 

In supervised learning, the SVM ‘learns’ classification rules from both positive and 

negative exemplars. In unsupervised learning, patterns are formed based on clustering 

techniques. Semi-supervised learning is a training strategy that combines information from 

labeled data (i.e. data that is known to fall into one category or the other) and the unlabeled 

data which often clusters around labeled data. It is often expensive, time-consuming or 

difficult to collect labeled data, while unlabeled data maybe easier to collect in most cases. 

However using this unlabeled data in meaningful ways is often difficult. Semi-supervised 

learning is the class of algorithms that address this issue and help build better classifiers. It is 

important to note that using large amounts of unlabeled data is not a trivial task and a number 

of assumptions need to be made about the unlabeled data points. The assumptions help 

constrain the unlabeled data to the model being developed, resulting in a better classification 

model.  
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Semi-supervised functions are based on so-called “cluster” assumption: classification 

rules remain unchanged in areas of dense exemplars. Using clustering to associate unlabeled 

data with the labeled training data often improves coverage of the vector space improving the 

accuracy of classification. Figure 5 illustrates the potential difference between learning using a 

semi-supervised technique as opposed to a supervised technique.  

 

 

Figure 5 - Semi-Supervised Learning 

The supervised algorithm may develop a classification rule that could cause incorrect 

classification of incoming exemplars when labeled data sparsely covers the vector space. 
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Adding unlabeled data refines the detail of the separating hyperplane placing the decision 

boundary in areas of low density generating a more accurate classifier.  

Figure 5 illustrates the typical behavior expected of a semi-supervised learning 

methodology, however like with every rule there is an exception in these cases as well. The 

Baum-Welch algorithm is used in bioinformatics to find the optimal parameters for a hidden 

Markov model chain [52]. This algorithm classifies as a semi-supervised technique. It is noted 

that when a hidden Markov model is trained with unlabeled data, under certain initial 

conditions, the accuracy is reduced [53]. Similar arguments are made in [54]. Thus one needs 

to be cautious while employing a semi-supervised technique on large amounts of unlabeled 

data. 

One of the most popular semi-supervised techniques is the Expectation Maximization 

algorithm, more commonly known as the EM algorithm [55]. An EM algorithm is used for 

finding the maximum likelihood estimates of parameters in probabilistic models. The model here 

depends on unobserved latent variables. An EM algorithm constitutes two steps, the first is an 

expectation (E) step, which computes an expectation of the likelihood by including the latent variables 

as if they were observed, and the second is a maximization (M) step, which computes the maximum 

likelihood estimates of the parameters by maximizing the expected likelihood found on the first step. 

These parameters are now used in the calculation of the next E step and the process continues until a 

terminating criterion is achieved.  

Semi-supervised learning is generally applied when unlabeled data is abundant while labeled 

data is small e.g. web page classification. For a detailed literature survey of semi-supervised 

learning interested readers can refer to [56].  
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CHAPTER THREE 

3 BACKGROUND: COMPUTATIONAL HOMOLOGY 

DETECTION 

Computational homology detection is the cornerstone of bioinformatics. During the 

past 30 years, numerous efforts have been focused on computationally predicting the functions 

of novel proteins. A well-established practice is to compare a query sequence of unknown 

function with a well-characterized database of sequences. If two similar sequences are derived 

from a common ancestor, they often preserve a related function. Inferring this common 

ancestry between similar sequences, termed homology detection, provides a kind of boot-

strapping method by which newly sequenced genomes can be characterized based on existing 

annotations.  

The field of computational homology detection can be easily divided into four distinct 

phases: first, there were pairwise sequence similarity based algorithms; second, the sequence 

to profile comparison algorithms; the next phase saw the introduction of profile-profile 

comparison methods while alongside this phase was the development of discriminative 

machine learning based homology detection methods. Each phase presents novel findings and 

sets the stage for the next phase of detection algorithms. The following sections discuss the 

details of some of the most prominent algorithms and methods in the field of homology 

detection. 
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3.1 Pairwise Sequence Similarity 

One method of quantifying the degree of homology is finding an optimal alignment 

between two sequences. The Needleman-Wunsch algorithm [6] was the first sequence 

similarity based algorithm to grace the field of bioinformatics. This is a dynamic programming 

based algorithm that finds the optimal global alignment of two sequences by maximizing the 

number of amino acid matches and minimizing the number of gaps necessary to align the two 

sequences. One of the major shortcomings of this algorithm is the time complexity 

( )( NMO ⊗ ) where M and N are the lengths of the two protein sequences. Also in practice, 

many proteins can be thought of as comprising a series of functional regions joined by 

natively disordered links [57]. Mutations in the functional regions would tend to degrade the 

behavior of a protein, whereas mutations in disordered regions may not impact the function at 

all. As a result, one would expect that homologous proteins can be more rapidly detected by 

aligning these smaller pieces or “local” regions.  

Alignment methods such as the Smith-Waterman algorithm [7], the fast approximation 

to Smith-Waterman (FASTA) [8] and Basic Local Alignment Search Tool (BLAST) [9] take 

advantage of local sequence similarity in proteins. The Smith-Waterman is very similar to the 

Needleman-Wunsch algorithm, the only difference being that it’s a local alignment as opposed 

to the global alignment of Needleman-Wunsch. Instead of aligning the entire length of two 

proteins, this algorithm finds the region of highest similarity between the two sequences. The 

time complexity of this algorithm is )( NMO ⊗ . In order to improve the time complexity of 

the Smith-Waterman algorithm, Lipman et al [58] devised the Fast Approximation to Smith-

Waterman (FASTA) algorithm. Unlike the Needleman-Wunsch and Smith-Waterman 

algorithms, FASTA approximates the optimal alignment by searching and matching k -tuples, 
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or subsequences of length k . The algorithm assumes that related proteins will have regions of 

identity, and by searching with k -tuples, the FASTA algorithm allows small regions of local 

identity to be found quickly. The FASTA algorithm is substantially faster than the Needleman-

Wunsch or Smith-Waterman alignments and thus can be more easily used in database queries. 

The time complexity of the FASTA algorithm depends on the size of the k -tuple and is given 

as ( ) )20( kNMO ÷⊗ . Although the FASTA algorithm is faster than any of the previous 

algorithms discussed, it is not guaranteed to find the optimal alignment between two proteins. 

Because it uses k -tuples to speed up searches, it can miss smaller areas of similarity and thus 

there is a possibility of misaligning two sub sequences. Thus, it is clear that there is a tradeoff 

between speed and sensitivity. 

To overcome the shortcomings of the above approaches in terms of speed of operation, 

Altschul et al [9] devised the Basic Local Alignment Search Tool, more popularly known as 

BLAST. Similar to FASTA, BLAST is a heuristic pairwise sequence similarity algorithm, 

however the basis of the BLAST algorithm is the use of words and high-scoring segment pairs 

instead of tuples. The BLAST algorithm begins by finding all words, or subsequences of 

length w (typically 3), which are present in the sequence. Using this list of subsequences it 

performs a database search for words in this neighborhood. The time complexity of BLAST is 

essentially the same as any of the similarity based algorithm, )( NMO ⊗ , however the speed 

up is achieved due to the use of a hash table to store the high scoring segments and the smaller 

size of these segments. Also BLAST significantly lowers the number of segments which need 

to be extended using the statistically significant elimination of words. To date, BLAST is the 

most popular algorithm used for searching for a list of homologs against a large database. 
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One of the major shortcomings of a sequence similarity based algorithm is that these 

methods often fail to detect common ancestry when proteins share low residue similarity, i.e. 

when proteins are remote homologs, which occurs commonly [10]. This shortcoming of 

sequence similarity based methods gave rise of the next phase of algorithms for remote 

homology detection. 

3.2 Sequence - Profile comparison algorithms 

The operation of a pairwise sequence alignment algorithm is essentially a one-step 

process. It takes as input two protein sequences and computes a score representing how 

closely related the two sequences are. The concept of protein families was introduced into the 

problem of remote homology detection as an approach to overcome the lack of sensitivity that 

arises with algorithms comparing sequences based on residue similarity. A protein family is a 

group of sequences that share a common evolutionary origin. A protein sequence profile 

(statistical/computational model) can be built for each of these families or super-families. A 

sequence profile is generated by aligning a group of closely related protein sequences, 

illustrating the probability of occurrence for each amino acid at each position of the multiple 

sequence alignments. A sequence profile better reflects a collection or family of proteins than 

a single sequence. A protein of unknown function can then be compared to each of the protein 

families producing a measure of likelihood of the sequence originating from this family. These 

family-based methods help computational biologists identify nearly three times the number of 

homology relationships as identified by simple pairwise alignments [59]. PSI-BLAST [60] and 

hidden Markov models (HMM) [61] are two most popular examples of such generative 

approaches.  
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PSI-BLAST builds an alignment-based statistical model from a set of proteins by 

defining a position specific scoring matrix (PSSM). It then adopts a semi-supervised algorithm 

to use this query-specific PSSM model to search the space to identify additional homologous 

sequences iteratively from the database, refining the model at each step. One important aspect 

of a PSSM is that it looks for ungapped alignments to a consensus. The challenge for 

sequence-profile based alignment resides in the selection of “closely” related protein 

sequences in the database for profile construction.  

 

Figure 6 - Hidden Markov model example. In the above figure x — states, y — possible 

observations, a — state transition probabilities, b — output probabilities. 

Hidden Markov Model (HMM) is a technique based on the probability distribution for 

a finite set of states. Each state has an associated transition or emission probability. The output 

is the joint probability for each state. Figure 6 gives an example of the states and the transition 

probabilities. The HMMs come in a number of varieties, or orders. HMM can be first order, 

second order and so on. The order defines the number of previous states that influence the 

current state, hence in a third order HMM, a state depends on the previous three states. Unlike 

multiple sequence alignments, an HMM based technique constructs a profile based on HMM, 
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that contain a probability matrix for transitions and an emission matrix for amino acid 

changes. HMMs also allow an insert and delete state and so account for gapped alignments. 

Since HMM’s construct an HMM based profile, the construction process is at least 10 times 

slower than PSI-BLAST [28]. However, the HMM based approaches offer a more sensitive 

remote homology detection method. Examples of such an approach are HMMER [62], The 

Sequence Alignment and Modeling (SAM) system [63], PFTools [64] and meta-MEME [65].  

In the benchmarking experiments, the computational performance of SAM was 

observed as being slower than the HMMER however it performed better on measures of 

accuracy and sensitivity [63].  

3.3 Profile-profile comparison 

The comparison of profiles of a family of proteins against a database still fails to detect 

a large number of distant/weak homologs. Methods such as PROF_SIM [66], COMPASS [27] 

and HHSearch [29] take the approach of PSI-BLAST one step further. Instead of comparing a 

profile against individual sequences within a database, these methods compare two profiles in 

a pairwise setting, yielding significantly more homologs than PSI-BLAST, HMM or profile-

based methods [29]. Both PROF_SIM and COMPASS allow for gaps and use the Smith-

Waterman local alignment algorithm. PROF_SIM employs a column score based on Jensen-

Shannon entropy. The statistical significance of the alignment is reported as a P-value that is 

calculated directly from the raw score. COMPASS, on the other hand, uses a column score 

based on the relative entropy between two amino acid distributions. It estimates the E-value 

analytically by generalizing the approach of PSI-BLAST to the profile-profile case. These 

methods are amongst the most sensitive remote homology detection methods.  
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To give a comparative scale of sensitivity performance, on a benchmark dataset with 

less than 20% sequence identity between any two pair of sequences, BLAST correctly 

identifies 2.2% of the total number of homologs. The corresponding numbers for PSI-BLAST 

and HMMER are 17.7% and 18.7% respectively while PROF_SIM and COMPASS find 

24.9% and 34% of the total homologs respectively [29]. The most recently conceived method 

of HMM-HMM comparison by Soeding [29] is shown to outperform each of the above 

methods. Their method, HHSearch, is based on the generalization of log odd scores 

maximized in HMM-sequence alignment to the case of HMM-HMM alignment. The 

alignment of HMMs instead of simple sequence profiles improves both the sensitivity and the 

alignment quality significantly. However one major short-coming of these profile-profile 

comparison methods is the computationally expensive multiple alignments that needs to be 

calculated in order to generate profiles for a set of sequences. As the size of the target/search 

database grows it becomes increasingly difficult to generate multiple alignments for all the 

sequences. Alternative methods need to be developed that eliminate the need to align the 

database sequences.   

3.4 Machine learning based discriminative methods 

Along side the development of profile-based methods originated the application of 

machine learning methods to the problem of remote homology detection. The detection of 

homologs was now modeled as a binary classification problem, distinguishing the homologs 

from the non-homologs. The first successful application of a discriminative approach using 

support vector machines was demonstrated by Jaakkola et al [13]. Their technique, called 

SVM-Fisher, combines a profile HMM with the SVM for remote homology detection. In 

SVM-Fisher, sequences are represented as a fixed-length vector of Fisher scores extracted 
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from profile HMM for a protein family. The SVM-Fisher approach is a combination of a 

generative HMM profile and a discriminative SVM. In empirical tests, SVM-Fisher 

significantly outperformed the other non-discriminative approaches [67]. To date, the most 

popular discriminative method for remote homology detection has been SVMs, spurring a 

series of efforts focused on devising more robust and biologically relevant representations of 

protein sequences as feature vectors. Building on the SVM-Fisher technique, Liao et al [19] 

used pairwise sequence similarity scores obtained from the Smith-Waterman local alignment 

algorithm, in a support vector machine framework. Their method, SVM-Pairwise [19] is one 

of the most sensitive discriminative methods. SVM-BALSA [21] advances the SVM-Pairwise 

methodology one step further by using similarity scores from a Bayesian Algorithm for Local 

Sequence Alignment (BALSA). The formulation of the problem as a Bayesian inference 

problem allows the data to be treated as random variables. By incorporating a series of scoring 

matrices, gap parameters, and all possible alignments in their forward algorithms, inferences 

can be made on these variables. SVM-BALSA is shown to be more sensitive than SVM-

Pairwise [21]. Leslie et al devised the spectrum kernel [68] and the mismatch kernel [17]. The 

spectrum kernel is a very simple kernel, efficient to compute and does not depend on any 

generative model. A k-spectrum of an input sequence is defined as the set of all k-length 

subsequences that it contains. A kernel is calculated for this representation of a protein 

sequence. The efficiency in the calculation of subsequences is derived from the use of suffix 

trees. Suffix trees have been extensively used in string matching algorithms in the field of 

computer science. In benchmarking experiments, the spectrum kernel is observed to perform 

as well as the SVM-Fisher and SVM-Pairwise methodologies [68]. A number of other similar 

k-subsequence string matching kernels are devised by Leslie et al [16, 17] that have subtle 
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variances. The mismatch kernels [16] are based on a trie data structure as opposed to a suffix 

tree structure for the spectrum kernel [68].  

Each of the above described SVM-based methods is sequence based. They represent 

the nature of protein similarity, based on the amino acid composition in a machine learning 

framework. An alternative way of detecting protein similarity is via protein motifs. Motifs are 

usually constructed from multiple sequence alignments of related proteins. As a preliminary 

step, one extracts from an alignment ‘blocks’ which are ungapped regions of high sequence 

similarity. The premise behind a motif based detection of sequence similarity is that motifs for 

most catalytic sites and binding sites are conserved over much wider taxonomic distances and 

evolutionary time points than the sequences themselves. A number of protein motif databases 

exist today that represent the motif content of a given sequence. PROSITE was the first 

protein motif database. Others include BLOCKS, PRINTS, PFAM, ProDom, DOMO and 

InterPro. Ben-Hur devised the first of its kind sequence similarity measure based on the motif 

content of a protein sequence [11]. The motif-based kernel was shown to outperform kernels 

based on sequence similarity algorithms such as BLAST and Smith-Waterman. Also the 

performance of the kernel is significantly improved when coupled to an SVM-classifier rather 

than a nearest neighbor classifier [11]. Another aspect of the motif kernel method was the use 

of a sparse vector representing the occurrence of eMOTIF [69] patterns in a sequence. Another 

method that uses the motif content of a protein sequence was developed by Hou et. al [23]. 

The motif content in this case is based on local structural properties of a protein sequence. One 

of the most successful local structure prediction methods is by Bystroff [70]. The prediction 

method relies on a short sequence pattern library that correlates with protein three-dimensional 

structure. In this library, called I-sites, there are a total of 263 sequence-structure profiles each 
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of which corresponds to a unique structure motif which is more specific than the three-state 

secondary structure. Using this structural content in a support vector machine, Hou et al [23] 

achieve performance comparable to the SVM-Pairwise and better than the SVM-Fisher and 

SAM methods. One of the advantages of SVM-I-Sites is the efficient computation of the 

structural content of a query sequence. 

Zaki et al [67] and Saigo et al [71] have performed a comparative study of the 

prominent SVM-based remote homology detection methods. The study by Saigo et al is a 

more in depth analysis of the SVM-based as well as HMM based methods. On a single 

benchmarking dataset, extracted from the SCOP version 1.3 database, the results are titled in 

favor of SVM-Fisher. Their findings indicate that a combination of generative methods and a 

discriminative model are more efficient and reliable when it comes to homology detection. 

However since their study in 2003, there have been new methods that demonstrate better 

performance than SVM-Fisher or SVM-Pairwise [16-18, 23, 24, 68]. It would be an 

interesting exercise to do a follow up comparative study. 

The above machine learning based studies all follow a similar pattern. The basic 

premise of these approaches remains the same: 

1. Transform the protein sequences into a fixed length numeric vector representation 

2. train a set of protein family specific classifier 

3. Evaluate the approach using statistical validation. 

The second phase essentially differs only in the software used for the SVM implementation 

and the selection of parameters used to generate the classifiers. The primary difference is in 

the first phase – the approach taken for vectorization of the sequences.  
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Despite improved sensitivity for the task of remote homology detection, there are 

caveats to a discriminative family-based approach: since the protein families used in family-

based discriminative models are predetermined, only proteins that belong to a known and 

trained family can be classified. Most discriminative methods answer the question “Whether 

the given protein belongs to an existing family?” Thus new protein families or homologous 

sequence pairs outside these defined families, i.e. families for which models are pre-built, 

cannot be discovered. However, these approaches illustrate the power of applying machine 

learning methods to the problem of homology detection. The goal of this work is to investigate 

the possibility of improving upon existing family-based methods and develop the first non 

family-based SVM method for sensitive homology detection. 

3.5 Protein ranking by network propagation 
 
The searching of homologs for a protein sequence from a large database can be 

equated to a web search for a query string. In the context of a web-search a string is searched 

against a large network of pages that contains part of that string. The highly popular search 

engine GOOGLE is based on the PageRank algorithm [72] that takes advantage of the global 

network structure by exploiting the number of outgoing and incoming links into each indexed 

page. The output of the web query is a ranked list of web pages that are either similar to the 

given query or contain parts of the query. A protein homolog search is very similar in 

operation where a protein sequence is searched against a large database and a ranked list of 

proteins is produced with a score depicting either the probability of the match or its strength. 

Algorithms such as RankProp [73] and MotifProp [15] work on a similar principle. A protein 

database is represented as a weighted network where the links are weighted by a sequence 

similarity score between two protein nodes. Both algorithms exploit the global structure of this 
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protein similarity network. The RankProp algorithm demonstrates that an advantage can be 

gained by including information about the global network structure in a protein sequence 

database search algorithm. In contrast to PSI-BLAST, which computes the local structure or a 

profile on the fly, RankProp begins from a pre-computed similarity network. The similarity 

network can be computed using any of the pairwise similarity algorithms such as Smith-

Waterman, BLAST, etc. A ranked list of protein sequences is produced as output for a given 

query. The query is added to the database on the fly, and propagating the link information 

starting from the query sequence. The network propagation in RankProp is achieved by means 

of diffusion techniques [74], one similar to the field of machine learning. The RankProp 

algorithm achieves better rankings than the initial PSI-BLAST or BLAST rankings produced 

on the network (database) [73].  

In a related effort, Kuang et. al [15] outline a graph-based algorithm called MotifProp, 

where the relationship between a protein and its motif content is represented in a protein-motif 

network. The MotifProp algorithm tries to exploit the structural aspect of a protein sequence 

by representing the local conserved regions (motifs) within the protein sequence in a network. 

Using a similar network propagation mechanism like RankProp, MotifProp represents the 

protein-motif relationships as a bipartite graph. A bipartite graph has two sets of nodes, one set 

representing the proteins and the other set representing the motifs within that protein list. A set 

of activation values are associated with each of the nodes and an alternating mechanism is 

used to propagate the activation in either directions. Similar to RankProp, MotifProp achieves 

good results on a benchmark dataset when compared against PSI-BLAST and RankProp.  

Weston et. al [75] take the efforts of RankProp and MotifProp one step further and 

incorporate principles of semi-supervised learning. An adaptive RankProp algorithm is shown 
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to outperform the original algorithm [75]. The semi-supervised learning is incorporated in this 

algorithm for the selection of model parameters. Both RankProp and MotifProp illustrate the 

application of network propagation to the problem of database searching. Incorporating semi-

supervised learning improves the performance of these algorithms. 
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CHAPTER FOUR 

4 SVM-SimLoc: Supervised Family-based Homology 

Detection 

The integration of one or more features can provide valuable information and improve 

prediction accuracy in the case of homology detection. SVM-HMMSTR [24] is one such 

example that integrates sequence order dependent and independent features. Feature 

integration or Genomic Data Fusion has gained sufficient momentum in the fields of protein-

protein interaction networks prediction and function prediction [76] among others. This data 

fusion can be done at two levels, the data level, or by fusing the transformed datasets (i.e. 

kernels) from two independent datasets- a method known as kernel fusion [77]. These methods 

however have only focused on one aspect of the sequence at a time, e.g., sequence similarity. 

Ben-Hur et al showed that using a motif-based representation of a protein sequence in a 

machine learning framework can provide results comparable to current discriminative 

approaches [11]. Apart from sequence-based homology information or motif content 

information, the sub-cellular localization of a protein sequence can provide valuable 

information for function prediction.  

4.1 Introduction 

As organelles and compartments within a cell are dependent on the type of organism, 

eukaryotic or prokaryotic, location prediction tools are developed catering to specific types. 

PSORT [78] is one of the first computer programs for predicting sub-cellular localization for 

plant sequences. Later versions of PSORT, such as PSORT II [79] and PSORTB [80], support 
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eukaryotic and bacterial sequences. However, most location prediction tools are specific to a 

particular organism or species, for example, Target [81] can only be used for animal sequences 

while HSLPred [82] and PSLT [83] apply only to human proteins. Other tools such as 

LOCSVMPSI [84], ESLPred [85], PA-Sub [86], and LOCTree [87] are based on sequence 

homology to an extent. Still others such as SubLoc [88], P2SL [89], and pSLIP [90] do not 

classify sequences with ambiguous amino acids. The subCELlular LOcalization tool [91] 

popularly known as CELLO, on the other hand, is independent of species and characterizes 

sequences with ambiguous amino acid codes. The prediction accuracy of such computational 

tools has increased considerably over the last few years.  

Feature integration or genomic data fusion has gained sufficient momentum in recent 

years; specific examples can be found in the fields of protein-protein interaction networks and 

prediction and function prediction [92, 93], among others. In the field of remote homology 

detection, SVM-HMMSTR [24] is one of the few examples that integrate sequence order-

dependent and independent features. The basic premise is that combining multiple sources of 

low-resolution information will yield a higher-resolution solution. We hypothesize that 

integrating predicted sub-cellular localization of a protein sequence with a sequence similarity 

measure increases the ability of an SVM to accurately predict the correct family membership 

of proteins. The reasoning is that a homolog of a protein sequence in a particular organelle 

within a cell is likely to be present in the vicinity of that organelle. For example, a homolog 

for a membrane protein is likely to be located in the vicinity of the cell membrane across 

organisms. 
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4.2 Feature Representation 

Due to SVMs robustness on large and noisy datasets, recent years have seen a surge in 

their use in computational biology [94]. However, SVMs require a multivariate representation 

of the data, which protein sequence data does not meet. Thus, protein sequences are 

transformed into numeric vector representation. SVM-SimLoc uses two transformations of the 

data, (1) sequence similarity scores and (2) subcellular localization predictions. 

4.2.1 Sequence Similarity feature vectors 

As discussed in Chapter 2, an SVM transforms a set of fixed-length feature vectors 

into kernels in high-dimensional feature space. However protein sequences by their very 

nature are variable length compositions of amino acids. The conversion to a fixed-length 

feature vector is achieved as follows. The training set of n proteins is used to transform a 

protein sequence into a sequence similarity vector representation. Specifically, each element in 

the vector is the sequence similarity score, or E-value, from the Smith-Waterman algorithm 

[7] of a query protein, X , against all n  proteins. Thus, the feature vector corresponding to 

protein X  is  

{ }xnxxX fffF ,,, 21 L=  

where  

-
ixf is the E-value between the query sequence and the thi  sequence in the database 

- n is the length of the training set.   

Although we use Smith-Waterman E-values, any sequence similarity measure could be 

used in this manner.  
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4.2.2 Sub-cellular localization feature vectors 

We hypothesize that using the predicted sub-cellular localization of a protein sequence 

increases the ability of an SVM to accurately predict the correct family membership of 

proteins. The reasoning is that a homolog of a protein sequence in a particular organelle within 

a cell is likely to be present in the vicinity of that organelle. For example a homolog for a 

membrane protein is expected to be located in the vicinity of the cell membrane across 

organisms. Once again we are faced with the problem of converting a set of variable length 

protein sequences to a set of fixed-length feature vectors representing their sub-cellular 

localization. For this task we use the CELLO prediction tool [91]. The generalized n-peptide 

composition of amino acids is used to predict protein folds with amino acids divided into four 

groups (charged, polar, aromatic and non-polar). CELLO lends itself to use in an SVM as it 

represents the localization of an eukaryotic protein sequence [26] as scores across the 

following 12 categories: (1) extra-cellular (2) plasma membrane (3) cytoplasmic (4) 

cytoskeleton (5) endoplasmic reticulum (6) Golgi apparatus (7) lysosome (8) mitochondria (9) 

chloroplast (10) peroxisome (11) vacuole and (12) nucleus. If we represent the above 12 

locations with indices 1 to 12, then the location vector for a protein is given by  

{ }xnxxX gggG ,,, 21 L=  

where   

-
ixg score given by CELLO for location i  and  

- n  = 12. 
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4.2.3 Feature Integration 

Each protein sequence is now represented as two feature vectors, one based on its 

sequence similarity (Smith-Waterman scores) with other sequences within and outside the 

family membership (as described in section 4.2.1) and the second is based on their sub-cellular 

localization (described in section 4.2.2). SVM-SimLoc fuses these features by appending each 

location vector XG to the sequence vector XF  for all protein sequences. Using both sequence 

similarity and cellular localization prediction required sequences to be represented as 

XXX GFH += . To account for the heterogeneous scale of the new feature vectors, the feature 

vectors are row-wise normalized to have a mean of zero and unity variance. 

 

4.3 Performance and Results 

4.3.1 Comparison of SVM v/s non-SVM sequence similarity based methods 

In our experiments we use a benchmark dataset that is a subset of the original dataset 

published by Liao et al [19]. The original benchmark dataset is derived from the Structural 

Classification Of Proteins (SCOP) [95] 1.53 database. The SCOP database is purged using the 

Astral website (http://astral.stanford.edu), removing similar sequences with an E-value 

threshold of 10-25. This procedure results in a set of 4352 protein sequences classified into 

super-families and families based on the presence-absence of structural domains. The 

benchmark dataset consists of sequences across multiple organisms, bacteria and viruses. As 

the length of location prediction vectors is dependent on whether the sequence is Eukaryotic or 

Prokaryotic, we remove all the prokaryotes from this list of 4352 sequences. As a result, we 

have a subset of 2630 protein sequences classified into super-families and families. In our first 
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experiment we revisit the comparison of the most commonly used sequence similarity 

methods, namely Smith-Waterman and PSI-BLAST.  

Researchers in the past [13, 16, 18, 19, 23] have compared their methods against PSI-

BLAST scores. However, their experimental setup did not allow PSI-BLAST to run for more 

than a single iteration to build the model or use a large protein database to include distant 

homologs. To make a fair comparison, we repeated the PSI-BLAST/Smith-Waterman 

comparison while allowing PSI-BLAST to iterate for the full 20 iterations to ensure 

convergence to a query-specific scoring model. This position-specific sequence model 

(PSSM) is then used to score against the sequences in our benchmark data set. The primary 

statistic used for the statistical comparison of homology detection methods is a Receiver 

Operating Characteristic (ROC) [96, 97] curve. A ROC curve yields a measure of the rate of 

false positives versus the true positives i.e. it is a plot of the true positive rate against the false 

positive rate for the different possible cut-offs of a diagnostic test. The y co-ordinates are 

calculated as  

NTTPY /=                         (1) 

and the x-coordinates are calculated as  

NFFPX /=                           (2) 

where TP = True Positive, FP = False Positive, NT = Total Number of trues, and NF = 

Total Number of Falses. The area under a ROC plot is 1 for an ideal classifier, indicating that 

one can infer all of the correct protein homologies (identified from the SCOP classification) 

without having to tolerate any false positives. 
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The ROCn score computes this score up to the nth false positive [96]. For ROC1, the 

area under the curve is calculated using the trapezoidal rule as  

 

( )[ ]( )nnnn YYXXROC +÷+= =+∫ 111 2         (3) 

where values of X and Y are calculated using the above equations (1) and (2) at 

varying cut-offs. 

 

Figure 7 - Pseudo code for ROC score calculation 

Figure 7 outlines the pseudo code to calculate the ROC score for a given set of test 

sequences from their true class labels and SVM classification scores. It is known that the 

kernel function used in training can have a significant affect on the results on the final 

classifier and thus two of the most popular kernels are evaluated, (1) quadratic and (2) radial 

basis function (rbf). 
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Figure 8 - Use of Support Vector Machines improves prediction accuracy for remote 

homology detection 

Figure 8 plots the number of families on the Y-axis above a given threshold ROC score 

on the X-axis. The higher number of families present in the high ROC scores area, the better 

the classifier. Smith-Waterman scores, when used for remote homology detection, yield 

random results. PSI-BLAST scores, on the other hand, provide an accurate measure and yield 

an average ROC score of 0.829 per family. However, the introduction of SVMs drastically 

improves remote homology detection. There is no significant difference between SVM-

Pairwise and SVM-PSI-BLAST. 

We compare PSI-BLAST and Smith-Waterman scores using two methods. The first 

method involves computation of the ROC curves based solely on Smith-Waterman scores and 

PSI-BLAST scores, using family membership as a measure of homology. This gives 

maximum credit for the respective sequence similarity method in detecting homologs. The 

second method uses the very same sequence similarity scores in conjunction with a SVM. The 

methodology of using SVM in conjunction with Smith-Waterman scores was first published 
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by Liao et al. [19] and is referred to as SVM-Pairwise. SVM-PSI-BLAST has never been 

reported to the best of our knowledge. Different SVM classifiers are built for each of the 27 

families, resulting in 27 ROC curves (and ROC scores).  

Statistical Method Smith-Waterman PSI-BLAST SVM-Pairwise1 SVM-PSI-BLAST2

ROC Score  0.507 0.829 0.910 0.916 

Table 1 - Average ROC area for each sequence similarity-based method with and 

without an SVM 

1 - Methods using SVM outperform sequence similarity methods with a statistically 
significant p-value of < 1e-03 

2 - There is no statistically significant difference between SVM-Pairwise and SVM-PSI-
BLAST 

 
Table 1 displays the average ROC score values for each of these methods, and Figure 8 

plots the number of families for which a given method exceeds a ROC score threshold. A two-

tailed signed rank test of the areas under the ROC curves is used to compare the methods. 

Figure 8 clearly shows that the SVM methods significantly outperform pair-wise similarity 

algorithms in the task of remote homology detection (p-value 5e-06 for Smith-Waterman and 

SVM-Pairwise; p-value 9e-04 for PSI-BLAST and SVM-PSI-BLAST). PSI-BLAST scores 

have not been utilized previously in conjunction with an SVM. It is demonstrated here that 

there is no significant different between SVM-Pairwise and SVM-PSI-BLAST when both 

methods are performing in optimal conditions.  

4.3.2 Comparison of SVM-SimLOC  

We report the results of combining location prediction and sequence similarity using 

SVM-SimLoc as compared to pairwise similarity based SVM-Pairwise and only location 



 

- 45 - 

 

prediction based vectors. The above benchmark dataset is further profiled using true SCOP 

classifications to determine the number of sequences within each family. For each family, the 

protein domains within the family are considered positive test examples, and the protein 

domains outside the family but within the same super-family are taken as positive training 

examples. The data after sub-setting yields 27 families with at least 10 family members 

(positive test) and 5 superfamily members (positive train). Negative samples are taken from 

outside of the positive sequences’ fold, and are randomly split into train and test sets in the 

same ration as the positive examples. Table 2 outlines the details about individual families and 

super-families as well as the total number of sequences within the positive train and test sets 

for each family. 

  Positive Negative 

Family 

number 

Class Family Test Train Test Train 

1.27.1.1 All alpha proteins Long chain cytokines 6 12 858 1754 

1.27.1.2 All alpha proteins Short chain cytokines 8 10 1183 1429 

1.4.1.1 All alpha proteins Homeodomain 23 16 1218 1347 

1.4.1.3 All alpha proteins Myb 9 30 447 2118 

1.41.1.2 All alpha proteins S100 proteins 6 36 379 2206 

1.41.1.5 All alpha proteins Calmodulin-like 25 17 1556 1029 

2.1.1.1 All beta proteins V set domains (antibody 

variable domain-like) 

31 77 652 1825 

2.1.1.2 All beta proteins C1 set domains 

(antibody constant 

22 86 445 2032 
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domain-like) 

2.1.1.3 All beta proteins V set domains (antibody 

variable domain-like) 

8 100 158 2318 

2.1.1.4 All beta proteins I set domains 33 75 682 1795 

2.1.1.5 All beta proteins E set domains 14 94 546 1931 

2.28.1.1 All beta proteins Legume Lectins 44 11 1826 749 

2.28.1.3 All beta proteins Galectin (animal S-

lectin) 

6 49 247 2328 

2.5.1.3 All beta proteins Multidomain 

cupredoxins 

8 5 1090 1527 

2.52.1.2 All beta proteins Phosphotyrosine-binding 

domain 

5 12 778 1835 

2.56.1.2 All beta proteins Fatty acid binding 

protein-like 

8 11 1112 1499 

3.2.1.2 Alpha & beta 

proteins 

Tyrosine-dependent 

oxidoreductases 

8 13 780 1829 

3.32.1.8 Alpha & beta 

proteins 

G proteins 8 14 544 2064 

3.42.1.5 Alpha & beta 

proteins 

Glutathione S-

transferases, N-terminal 

domain 

10 16 889 1715 

3.42.1.8 Alpha & beta Glutathione peroxidase- 5 21 321 2283 
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proteins like 

7.3.10.1 Small proteins EGF-type module 95 11 2125 229 

7.3.5.2 Small proteins Spider toxins 9 12 1007 1347 

7.3.6.1  Long chain scorpion 

toxins 

9 33 500 1854 

7.3.6.2 Small proteins Short-chain scorpion 

toxins 

26 16 1481 873 

7.3.6.4 Small proteins Plant defensins 5 37 296 2058 

7.39.1.2 Small proteins Nuclear receptor 7 20 692 1911 

7.39.1.3  LIM domain 14 13 1385 1218 

Table 2 - SCOP families for Eukaryotic sequences. 

Starting with datasets of vectors for each of the 2630 protein sequences, they were then 

separated in three vectorized sets. The first set contained only the sequence similarity feature 

vectors; the second contained only the location feature vectors while the third set was our 

integrated feature vectors generated by SVM-SimLoc. Since the integrated approach uses 

sequence similarity based on the Smith-Waterman algorithm, results for SVM-SimLoc are 

only compared to SVM-Pairwise. 

SVM classifiers were built from the training sets for each of the 27 families. The area 

under the ROC curve is calculated for each of the 27 families for which the SVM classifier is 

constructed (Table 3) for both kernels. The resulting average ROC score over all 27 families is 

observed in Table 3.  

Kernel SVM-Pairwise Location SVM-SimLoc 
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RBF 0.912 0.78 0.935 

Quadratic 0.910 0.779 0.927 

Table 3 -Average ROC area for each method with different kernels 

Kernel SVM-Pairwise v/s SVM-

SimLoc 

Location v/s SVM-SimLoc 

RBF 0.0057 2.4e-004 

Quadratic 0.08 5.43e-005 

Table 4 - Comparison of statistical significance (p-values) between methods using 

different kernel functions. 

A two-tailed signed rank test [98] of the areas under the ROC curves is used to 

compare SVM-SimLoc with each of the independent datasets; SVM-Pairwise and Location. 

The p-values associated with these comparisons are given in Table 4. Overall, the rbf kernel 

returned higher average ROC curves for all methods and thus was selected for the overall 

analysis. 
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Figure 9 - Relative performance of SVM-SimLoc (a) SVM-SimLoc yields a better 

performance based on the ROC score across 27 families against SVM-Pairwise (p-value of 

0.0057) and Location (p-value of 2.4e-004) in a two-tailed signed rank test. The Y-axis plots 

the number of families for which a given method exceeds a ROC score threshold (X-axis). (b) 

The graph plots the number of families on the Y-axis that achieve a ROC score of 0.8 or better 

on SVM-Pairwise and SVM-SimLoc. It can be observed that SVM-SimLoc results in a 

significantly higher number of families with high ROC scores than SVM-Pairwise. Location 

vectors are ignored in this figure for easy viewing.  

A complimentary statistic used for comparison of remote homology methods is the 

mean rate of false positives (RFP). The median RFP is the proportion of non-homologous 

pairs that have a score higher than the median score of the homologous pairs.  In the case of 

the median RFP, a score of 0 represents the best classifier.  For comparative purposes with the 

ROC score this metrics is represented as one minus the median RFP, and thus similar to the 

ROC score, the closer to 1 the better the classifier. Figure 10 provides the average ROC and 
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average complement median RFP scores across all 27 families considered in the experiment. 

In both cases higher ROC scores and complement median RFP are achieved by SVM-SimLoc. 

 

Figure 10 - Average ROC score and average median RFP complement. The average ROC 

scores are displayed in Table 3 and the median RFP values are 0.142, 0.043, and 0.034 for 

Location, SVM-Pairwise and SVM-SimLoc, respectively.  

 

 

Figure 11 - Family wise comparison of average ROC scores 
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Number Id Class Family 

1 1.27.1.2 All alpha proteins Long chain cytokines 

2 1.4.1.1 All alpha proteins Homeodomain 

3 1.4.1.3 All alpha proteins Myb 

4 1.41.1.5 All alpha proteins Calmodulin-like 

5 2.1.1.1 All beta proteins V set domains (antibody 

variable domain-like) 

6 2.1.1.2 All beta proteins C1 set domains (antibody 

constant domain-like) 

7 2.1.1.5 All beta proteins E set domains 

8 2.28.1.1 All beta proteins Legume Lectins 

9 2.28.1.3 All beta proteins Galectin (animal S-lectin) 

10 2.5.1.3 All beta proteins Multidomain cupredoxins 

11 2.52.1.2 

All beta proteins Phosphotyrosine-binding 

domain 

12 2.56.1.2 

All beta proteins Fatty acid binding protein-

like 

13 3.2.1.2 

Alpha and beta proteins Tyrosine-dependent 

oxireductases 

14 3.42.1.5 

Alpha and beta proteins Glutathione S-transferases, 

N-terminal domain 

15 3.42.1.8 Alpha and beta proteins Glutathione peroxidase-like 
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16 7.3.10.1 Small proteins EGF-type module 

17 7.3.5.2 Small proteins Spider toxins 

18 7.3.6.2 Small proteins Short-chain scorpion toxins 

19 7.39.1.2 Small proteins Nuclear receptor 

Table 5 - Names of families with improved performance 

SVM-SimLoc achieved higher ROC areas for 19 of the 27 families. Figure 11 provides 

a family by family comparison based on the ROC score between SVM-Pairwise and SVM-

SimLoc. It can be observed that the scores are vastly improved on certain families using SVM-

SimLoc e.g. 1, 2, 8, 9, 11 and 19. Table 5 captures the names of the families associated with 

Figure 11 for reference purposes.  

4.4 Discussion 

The accurate annotation of newly sequenced proteins precedes much of the meaningful 

work that can be done in understanding molecular systems. For example, the analysis of 

microarray data and co-regulation in general, is much more meaningful when the genes are 

observed in a functional context. Yet this relies heavily on one’s ability to accurately and 

sensitively identify homologous proteins which are of distant evolutionary origin and hence, 

have a low degree of sequence similarity. It only makes sense to incorporate as much 

information as possible to determine the family membership of a protein. The role of structure 

in remote homology detection has been well demonstrated, but the importance of sub-cellular 

localization has been largely ignored. 

We demonstrate on a Eukaryotic based benchmark dataset that the use of 

computationally predicted localization information about a protein sequence can significantly 

improve remote homology detection when integrated with sequence similarity. This is 
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achieved by basic feature integration, although integration at the kernel level could have been 

performed as well.  It is observed that the improved sensitivity from the feature integration is 

robust to the kernel, significant improves are observed with SVM-SimLoc with the linear, 

quadratic and rbf kernel. Overall, the rbf kernel was discovered to yield the most accurate 

classifiers for both the integrated and independent datasets. In direct comparison to the 

independent dataset with the rbf kernel the sensitivity improvement was statistically 

significant at p-values of 0.0057 and 0.0002 for SVM-Pairwise and Location, respectively.   

Our results support the ideas that modeling positive and negative examples in a 

machine learning framework and integration of information beyond sequence similarity adds 

significant value to the problem of remote homology detection. This work adds a novel 

dimension to the problem via the integration of predicted sub-cellular location allowing the 

problem to be further constrained by the biology of the protein. As systems biology continues 

to grow, the ability to accurately annotate all proteins in a genome will become vital, and thus 

improved methods of remote homology detection will become a necessity. 

4.5 Computational Cost for SVM-SimLOC 

The computational cost of SVM-SimLOC is a combination of the computational cost 

of calculating the sequence similarity vectors, the sub-cellular localization vectors and the 

hyperplane optimization calculation during the training phase. The sequence similarity vectors 

are calculated using ssearch34 program from the FASTA tools [99]. The complexity of the 

sequence similarity algorithm is )( mnO × , where n  and m are the lengths of the two 

sequences for which the score is computed. The sub-cellular localization scores are generated 

from the predictive CELLO tool. CELLO uses the one-against-one method for multiclass 
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classification [100]. For 10 classes of localization, CELLO constructs 10(10-1)/2 = 45 SVMs. 

These SVM’s are trained in parallel and the training cost of one SVM is a polynomial time 

complexity algorithm [101]. CELLO breaks down the protein sequence representation into 

four groups (charged, polar, aromatic and non-polar). This can be achieved in )(nO time. As a 

result the time complexity of the SVM-SimLOC algorithm reduces to the time-complexity of 

the SVM optimization phase which is polynomial in nature. More importantly, since we do not 

have access to the CELLO prediction mechanism and server code, this process cannot be done 

programmatically. Manual intervention is required where the protein sequences are fed to the 

CELLO web server (http://cello.life.nctu.edu.tw/). Once the localization vectors are obtained, 

Python scripts are utilized to combine them with sub-cellular localization vectors.  

4.6 Need for further research 

Integrating sub-cellular localization feature vectors along with sequence similarity 

feature vectors significantly improve remote homology detection. However, generation of the 

sub-cellular localization vectors is not a trivial process. Additionally human intervention is 

required in the process of classification of protein sequences into respective families. One of 

the major shortcomings of SVM-SimLOC is its reliance on a family-based categorization of 

protein sequences. Like most other discriminative methods, SVM-SimLOC defines protein 

homology based on family membership of sequences.  

In order to assist researchers perform homology searches against large databases, a 

paradigm shift is required. A classification model that deviates from the current family-based 

classification scheme needs to be developed and made accessible via intuitive user interfaces. 

More over the resources required to run high-throughput database searches may not be 

available to individual users and a mechanism needs to be created to avoid this obstacle.  
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CHAPTER FIVE 

5 SVM-HUSTLE: Semi-Supervised Pairwise Homology 

Detection 

As the amount of biological sequence data continues to grow exponentially we face the 

increasing challenge of assigning function to this enormous molecular ‘parts list’. The most 

popular approaches to this challenge make use of the simplifying assumption that similar 

functional molecules, or proteins, sometimes have similar composition, or sequence. However, 

these algorithms often fail to identify remote homologs (proteins with similar function but 

dissimilar sequence) which often are a significant fraction of the total homolog collection for a 

given sequence. To allow detection of such remote homologs it is necessary to devise an 

approach that deviates from the family-based discriminative methods and at the same time 

provides sensitive remote homology detection in a competitive time-to-solution.  

This chapter discusses a SVM-based tool to detect Homology Using Semi-supervised 

iTerative LEarning (SVM-HUSTLE) that identifies significantly more remote homologs than 

current state-of-the-art sequence or cluster-based methods. As opposed to building profiles or 

position specific scoring matrices, SVM-HUSTLE builds an SVM classifier for a query 

sequence by training on a collection of representative high confidence training sets, recruits 

additional sequences and assigns a statistical measure of homology between a pair of 

sequences. SVM-HUSTLE combines principles of semi-supervised learning theory with 

statistical sampling to create many concurrent classifiers to iteratively detect and refine, on-

the-fly, patterns indicating homology. 
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5.1 Introduction 

Most biologists and informaticists to date use the BLAST and the PSI-BLAST 

algorithms as their preferred method of homology detection. The primary reason for their 

allegiance to these algorithms is the speed at which the results are returned even while 

searching against large databases. Both these algorithms use sequence similarity to identify 

sequences from a database which are similar to a query sequence. The input query is searched 

against a large gene/protein database to determine closest matches and a ranked list of 

sequences is produced as output with a statistical score representing the strength of similarity. 

However one thing that most users of these algorithms neglect is the sensitivity of the results. 

It has been shown that the BLAST and PSI-BLAST algorithms produce the least sensitive 

results when looking for remote homologs against a database with low residue level similarity 

[29]. Novel algorithms and methods are needed that present the results in a competitive time-

to-solution for the users and are more sensitive than the BLAST and PSI-BLAST algorithms 

on large datasets. Recent algorithms such as MotifProp [15] and RankProp [73] come close to 

reproducing a ranked list of protein sequences, more sensitive than BLAST.  

5.2 SVM-HUSTLE: Combining semi-supervised learning and SVM 

Methodology 

SVM-HUSTLE (A Support Vector Machine-based tool to detect Homology Using 

Semi-supervised Iterative Learning) is a new algorithm that employs a semi-supervised SVM 

model to iteratively identify homologs to a query sequence from a database of protein 

sequences. The methodology can be described by six steps details in the flow chart of the 

algorithm in the following figure.  
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Figure 12 - SVM-HUSTLE algorithm 
 

A novel component of this algorithm is the selection of the negative class (i.e. non-

homologs) by sampling, to better cover the vector space of proteins sequences. In a general 

database query setting, the number of non-homologs is much larger than the homologous class 
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and SVM-HUSTLE employs a random sampling algorithm to attain a representative negative 

class of proportionate size to the positive class.  

The steps in SVM-HUSTLE can be explained as follows: 

1. Identify Seed Positive Training Set. An initial set of n homologous proteins are 

identified using an auxiliary method (BLAST) against the database D. This 

produces a basis set of protein sequences that are similar to the original sequence 

with a high statistical confidence (E-value < 0.1). These n proteins form the initial 

positive training set (Pos) for SVM-HUSTLE. This is the only stage in the 

algorithm where sequence alignment scores are used.  

2. Randomly sample k Negative Training Sets.  Select k (number of concurrent SVM 

classifiers) random sets of proteins from D of size that is an integral multiple of n 

for k SVM constructions. These negative training examples are represented as an 

array Neg[k]. Proteins in the negative training sets must be 1) not in the high- or 

medium-confidence BLAST output, and 2) only in one negative training set. 

3. Train SVM Classifiers. Train a set of SVM[k] classifiers where each training set 

has the same positive training examples (Pos) and a different set of negative 

training examples as defined by Neg[k]. The train and test set protein sequences are 

vectorized using the approach discussed in Section 5.4.  

4. Vectorize the database. The database D is vectorized k times, once for each trained 

SVM. For each classifier, the proteins in D are converted to vector form using the 

positive train set and one of the negative train sets (Neg[k]). There will be k 
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different vectorized databases—one for each of the classifiers. Each instance of the 

vectorized database is different since they all have different negative sequences.  

5. Classify protein pairs. Classify each protein in D and use the SVM discriminant 

score as a measure of classification confidence, select the top (best average score) 

a*n homologs for the given query protein q. The parameter ‘a’ corresponds to the 

ratio of protein sequences selected as positive training examples per iteration.  

6. Iterate. Repeat steps 2-5 until no new samples are classified as positive or for a 

maximum number of iterations (m). 

SVM-HUSTLE uses semi-supervised learning to build multiple query-specific models 

of homology for the incoming query sequence. These models are then subjected to supervised 

learning using SVMs. The database is re-created using these query-specific models and re-

classified using each distinct SVM. Finally an averaging mechanism is used that helps select 

the best possible matches for a protein sequence at each step. This combination of semi-

supervised learning and supervised learning gives SVM-HUSTLE much of its classification 

power.  
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Figure 13 - Internal operation of SVM-HUSTLE. The triangles represent the 

homologs of a query sequence while the dots are the unlabeled data samples. 

Depending on the initial set of positive examples (dark green) and randomly 

selected negative examples (dots underlined in red) a hyperplane can be drawn 

in any of the three positions as illustrated in the figure. Figure (a) represents the 

data that is considered linearly separable in space after kernel transformations. 

Figures (b), (c) and (d) are examples of a hyperplane in two-dimensional space 

that separates the data based on separate random selection of the negative class. 

In each of these figures, the black triangles represent incorrectly classified data 

while the lime green triangles are correctly classified based on the hyperplane 
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selection. Figure (e) shows the final classification (hyperplane in dark blue) 

after taking the average of the other three hyperplanes illustrating the necessity 

of averaging the classifiers. 

 

The above figure represents a schematic of the internal operation of SVM-HUSTLE 

after kernel transformations. The labeled and unlabeled examples can be laid out in two 

dimensions as shown. Constructing a single hyperplane based on the initial set of positive 

examples and randomly selected negative examples may not lead to correct classification in all 

cases. However constructing multiple hyperplanes k , would lead to an aggregate 

classification plane; one that will yield more accurate and sensitive results.   

As its final output, SVM-HUSTLE produces a ranked listing of protein sequences that 

are homologous to a given query sequence with statistical scores signifying the similarity. 

SVM-HUSTLE does not require prior knowledge of protein family memberships for 

classification, so it can accurately and sensitively detect homologs which do not fall into any 

known protein family. 

5.3 Feature Representation 

In SVM-HUSTLE we use the traditional sequence similarity based representation for 

protein sequences. As discussed before in Chapter 4, the feature vector corresponding to a 

protein X is given by  

],.....,,[ 321 nfxfxfxfxFx =  

where n  is total number of proteins in the training set and 
ixf = E-value of the Smith-

Waterman score between the sequence X and the thi  training set sequence [7, 19]. We use the 
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E-values as they are a statistical measure of similarity as opposed to raw Smith-Waterman 

scores between sequences which may introduce a bias based on the lengths of the individual 

proteins. The Smith-Waterman scores are attained using a scoring matrix of BLOSUM62, gap 

opening penalty of 11 and gap extension penalty of 1. 

5.4 Performance and Results 

5.4.1 Performance comparison with supervised and semi-supervised 

homology detection methods 

 
We compare SVM-HUSTLE with PSI-BLAST, MotifProp, RankProp and their 

variants (k-mer MotifProp, E-Motif MotifProp etc). Comparisons between the pairwise 

approach of SVM-HUSTLE and family-based classification methods such as SVM-pairwise 

and its descendents cannot be performed as these methods rely on a family-based 

classification that identifies homologies within a set of pre-defined families. The comparison 

is made on a set of 7329 sequences, which were extracted from version 1.59 of the SCOP 

database, purged by using the website http://astral.berkeley.edu so that no pair of sequences 

shares more than 95% identity. This benchmark dataset has been used in a number of previous 

studies [15, 22, 73]. This SCOP dataset is divided into two portions: 379 super-families (4246 

proteins) for training and 332 (3083 proteins) for testing. It is important to note that the 

training and testing sequences never belong to the same superfamily. The SCOP database is 

organized hierarchically into classes, folds, superfamilies and families. For the purpose of this 

experiment, two proteins that come from the same superfamily are assumed to be homologous 

while two proteins from different folds are treated as unrelated. For protein pairs that come 

from the same fold but different superfamilies are treated as unknown and not used in 
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evaluating the algorithm. The dataset is divided into 4246 training sequences and 3083 test 

sequences. SVM-HUSTLE identifies remote homologs on-the-fly and as such does not require 

a pre-defined training set. The SCOP 1.59 training set of 4246 sequences has no overlap in 

superfamily membership with the 3083 test sequences and as such inclusion in the database D 

does not provide more positive examples, only negative examples. Similar to PSI-BLAST, the 

training data is included in the database used to build the model, but homology metrics are 

only generated for the test data to allow comparison with the current state-of-the-art. No prior 

knowledge of family or superfamily is used in the training of SVM-HUSTLE. Initially all data 

is considered unlabeled and the initial positive training set is constructed using BLAST results.  

The performance of RANKPROP, MOTIFPROP and their variants were assessed by 

their ROC scores which were directly obtained from the authors of the algorithms. PSI-

BLAST was allowed to run for a maximum of six iterations, using a default E-value threshold 

of 0.005 and the BLOSUM62 scoring matrix. As suggested by [102] this results in the most 

optimal performance of PSI-BLAST. Too few iterations results in an incomplete position-

specific scoring matrix. Too many iterations result in the recruitment of large numbers of false 

positives, skewing the scoring matrix in favor of false positives.  

In order to compare the performance of SVM-HUSTLE against the above methods, 

SVM-HUSTLE was run on each of the 3083 test set protein sequences on a LINUX cluster 

using 4 nodes with 2 processors per node with different values of parameters defined in 

Section 5.3 namely:  

k  - number of concurrent SVM classifiers,  
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a  – ratio of protein sequences selected as positive training examples at each iteration 

and 

m - maximum number of iterations. 

SVM-HUSTLE could not be run on 3 sequences out of the total 3083 sequences in the 

test set as BLAST failed to produce homolog hits with E-VALUES better than 0.10. These 

three sequences were eliminated from all methods for comparison with SVM-HUSTLE. The 

network propagation methods overcome this issue by building a network despite the discovery 

of only a self-homolog.  However, a single positive example of a sequence being homologous 

to itself is not adequate to train a SVM. 
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Figure 14 - SVM-HUSTLE Performance Comparison 

Above figure shows the comparison of SVM-HUSTLE with the other approaches 

using the ROCn curves (n = 1, 10 and 50). The graph plots the total number of queries for 

which a given method exceeds a ROC score threshold. As shown by Figure 14, our results 

suggest that SVM-HUSTLE outperforms each of the algorithms with p-values less than 1e-20 

in a two-tailed signed rank test [98].  

Method  SVM-HUSTLE MotifProp RankProp PSI-BLAST 

ROC 1 0.7445 0.6405 0.5927 0.5978 

ROC 10 0.7818 0.6629 0.6674 0.6172 

ROC 50 0.8122 0.6876 0.7249 0.6411 

Table 6 - ROCn (n = 1, 10, 50) scores averaged over all queries 
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Table 6 reports the corresponding average ROCn scores across all test set queries for a 

given method. All results of SVM-HUSTLE are reported for k  = 100, a  = 1, m  = 10 and a 

BLAST cut-off of 0.10 for initial homolog set. The rationale behind selection of a generous 

cut-off for the BLAST search is to allow more diverse sequences to be recruited in the initial 

positive train set.  

5.4.2 Performance comparison with profile-profile comparison methods 

In this experiment we compare SVM-HUSTLE against profile-profile based remote 

homology detection methods such as COMPASS [27] , PROF_SIM [66] and HHSearch [29]. 

These programs are shown to be significantly more sensitive than PSI-BLAST and have been 

applied to identify novel homologies.  

To compare the results sequences were extracted from the SCOP 1.63 database using 

the website http://astral.berkeley.edu so that no pair of sequences shares more than 20% 

identity (SCOP-20). This results in a total of 3691 sequences, the homologies for which are 

obtained from their SCOP classifications. This benchmark dataset, previously used in [29], has 

only 41505 true positive homolog pairs while there are 1.08 x 107 false positives. The results 

for the above profile-profile comparison algorithms are extracted from [29] while SVM-

HUSTLE was set up to run each of the 3691 sequences with varying parameters. We report 

the results of SVM-HUSTLE for k = 60, a  = 1 and m = 10 for this experiment. To include 

sufficient number of homologs in the initial training set, the BLAST cut-off was increased to 

1.0 since this dataset has hardly any sequence similarity. In order to recruit sequences in a 

semi-supervised technique, we augment the 3691 protein sequences with sequences from the 

previous 7329 benchmark dataset. This results in a total of 8272 unique sequences. However, 

the test statistics are calculated only on the original 3691 SCOP-20 dataset. 
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As previously report in [29] at a 10% error rate ( FP /(TP + FP) = 10%) BLAST 

detects only 908 homologous pairs which is 2.2% of the total number of homologs. PSI-

BLAST performs slightly better and results in a correct identification of 17.7% while 

HMMER finds 18.7%. PROF_SIM and COMPASS find 24.9% and 34% respectively. 

HHSearch algorithms perform much better than any of the existing methods identifying 40% 

to 50% of the homologs, based on usage of additional knowledge such as the correlation score 

and predicted secondary structure. SVM-HUSTLE achieves an identification rate of 48.5%, 

correctly identifying 20,153 of the 41,505 homologs. Modification of the configuration 

parameters may result in higher percentage of homologs being found, for e.g. increasing the 

BLAST cut-off from 1 to 10 and increasing the number of concurrent SVM’s results in an 

additional 5% increase in homolog detection. These results are comparable to HHSearch while 

they outperform both PROF_SIM and COMPASS yielding almost twice the number of 

homolog detection.  

Our results indicate the importance of using semi-supervised learning in combination 

with a supervised approach. Using the SCOP 7329 dataset as a source of unlabeled data (in a 

semi-supervised setting) increases the homology detection capability of SVM-HUSTLE. 

Secondly, SVM-HUSTLE can be easily reproduced and does not require the complicated 

profile-profile alignments or the alignments of a large number of variable length sequences in 

order to generate HMM profiles.  

5.5 SVM-HUSTLE Implementation 

SVM-HUSTLE is implemented using MPI libraries for parallel programming and 

ANSI C. A version of SVM-HUSTLE is compiled for both 32 bit and 64 bit Red Hat Linux 

systems and is available for download. The source code cannot be released due to intellectual 
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property concerns. Much of the framework to set up and parallelize the problem is developed 

here at the Pacific Northwest National Laboratory while the support vector machine 

implementation is using the source code from SVMLight [103]. Our preliminary experiments 

were conducted by using a file-based communication with SVMLight, where training and 

testing files were written to storage media and SVMLight was invoked on these files. The 

results file is later parsed by SVM-HUSTLE into memory for further processing. One of the 

major disadvantages of such a communication model was the latency in file writing and the 

increased kernel-based calls. Improving on the initial implementation, SVM-HUSTLE directly 

hooks into SVM-Light creating data structures and objects in memory. These data structures 

directly communicate with the SVMLight API (Application Programming Interface) to avoid 

the file writing and kernel calls.  

5.6 Computational cost for SVM-HUSTLE and Scalability 

Our results clearly demonstrate the improved performance characteristics of SVM-

HUSTLE when detecting remote homologs. This increased sensitivity in homology detection 

does however come with increase in computational cost with respect to PSI-BLAST. A query 

specific training set is generated with similar positive exemplars and randomly sampled 

multiple negative exemplars. Since a query specific model is built for each incoming query, 

the target database D has to be reconstructed (re-vectorized) using this model, for each 

concurrent SVM classifier. The reconstruction cost of the database is the biggest bottleneck 

for SVM-HUSTLE.  

The database reconstruction cost is directly impacted by the parameter k; the number 

of concurrent SVM classifiers, which linearly increases the time-to-solution for a given query. 

Increasing the number of concurrent classifiers introduces greater variability in the negative 
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set that is randomly selected. As a result, we can better represent the space of negative 

exemplars in the training space while a smaller value of k only covers part of the database. We 

experimented with multiple values of this parameter and report results for k  = 60. Our 

evaluation indicates a statistically significant increase in accuracy values when moving from 

k =4 to k =100. The transition from k =40 to k =80 is significant and as a result we settle for 

the average case where k =60. A formal estimation of the best value of k  would be part of 

future work on SVM-HUSTLE.  

Depending on configuration parameters for SVM-HUSTLE, the database would be 

reconstructed in the worst case (complete 10 iterations, 60 samples) for m  (number of 

iterations) x k  (concurrent SVM classifiers) times, 600 in our case. The best case scenario for 

SVM-HUSTLE would be when m  = 1 which would amount to k  reconstructions. If a 

computing facility is chosen such that there are multiple processors and the processor to 

classifier ratio is unity, the computation can be effectively expected to complete in time 

proportional to the size of the database. As the database grows in size (number of sequences), 

the database reconstruction cost can be prohibitive in nature and can slow down classification. 

Currently, SVM-Hustle requires specialized hardware to scale to large databases, such as nr. 

An additional challenge with large datasets is that in the case where a query has a large 

number of homologs, e.g., over 10,000, the size of the SVM training set would be prohibitive. 

However this is easily circumvented by setting a maximum limit on the initial positive train 

set as well as the BLAST cut-off for selection of training examples. We are currently 

developing a web service that would allow searches against various large sequence databases, 

public or user-defined. This would offer access to the specialized hardware required to run the 
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algorithm on larger datasets. Additionally, an executable that can be used on datasets of less 

than 10,000 proteins is available at www.sysbio.org/sysbio/networkbio/svm_hustle.stm. 

The average time to solution for a single query in both experiments using SVM-

HUSTLE is in seconds once the initial setup is completed. A large number of the queries from 

the test set (85%) complete well within the average time however queries that have a large 

number of training examples require more SVM optimization cycles and take around 1-2 

minutes or more for convergence. Depending on the size of the database, users looking for a 

small set of homologs may be able to retrieve their results in a very short time. 

As mentioned, the primary computational bottleneck is in creating the protein vectors 

on the fly using the Smith-Waterman algorithm to reconstruct the database. An alternative and 

efficient way of building the SVM classifier would be to use a protein representation that is 

independent of the training set sequences. We are currently investigating the potential of using 

fixed-length motif representation of protein sequences based on motif content [11, 23]. These 

motif-based representations would allow SVM-HUSTLE to produce rank-lists of proteins 

within seconds without requiring the reconstruction phase. 

5.7 Conclusions 

The accurate annotation of newly sequenced proteins precedes much of the meaningful 

work that can be done in understanding molecular systems. For example, the analysis of 

microarray data and co-regulation in general, is much more meaningful when the genes are 

observed in a functional context. This relies heavily on one’s ability to accurately and 

sensitively identify homologous proteins which are of distant evolutionary origin and hence, 

have a low degree of sequence similarity. Our approach to incorporate semi-supervised 
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learning coupled with concurrent training of SVM classifiers, though computationally 

expensive compared to PSI-BLAST, improves the sensitivity of remote homology detection 

by a significant margin using stricter thresholds of the ROC measure. More importantly SVM-

HUSTLE does not rely on knowing the superfamily classifications of query sequences making 

it possible to find homologs of proteins which do not fit into any known family. SVM-

HUSTLE is a pairwise sequence homology detection algorithm that builds models from 

representative high-confidence training sequences on the fly in a semi-supervised fashion. A 

typical setting for the use of SVM-HUSTLE would be to search for homologous proteins from 

a database for a given query. SVM-HUSTLE yields significantly better results than network 

propagation algorithms such as the RANKPROP and MOTIFPROP on our benchmark 

datasets. The performance is also comparable to HHSearch which requires the computation of 

multiple alignments and/or structural models of the database. 
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CHAPTER SIX 

6 Conclusions and Future Work 

6.1 Summary 

Annotation of sequence data with functional and structural characterizations is one of 

the major challenges in bioinformatics. High-throughput sequencing experiments and methods 

have made the use of experimental annotation methods prohibitive due to the cost and time 

requirements. As a result more and more computational methods are being developed to 

reduce the time to annotate these sequences; practically, on a regular basis.  

Protein annotation is helped to an extent by the fact that protein sequences are 

evolutionarily related or homologous. Homology is defined as the relationship of any two 

characters that have descended, usually with divergence, from a common ancestral character 

[5]. Additionally if two sequences are deemed homologous, it is highly likely for them to 

preserve a common function. Inferring this common ancestry between similar sequences, 

termed homology detection, provides a kind of boot-strapping method by which newly 

sequences genomes can be characterized based on existing annotations. Knowing that a 

protein sequence is homologous to an already characterized sequence, the properties of the 

latter can be propagated to the former. The task of detection of protein sequences that are 

similar (homologous) to a given query protein is termed homology detection. Pairs of protein 

sequences that share a high percentage of identical residues are deemed homologous due to 

their sequences being highly similar. However there are a number of proteins which have 

highly divergent sequences but are functionally homologous. The detection of such protein 

sequences with very low residue level similarity is termed as remote homology detection. It is 
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obvious that pairwise sequence comparison methods are highly suitable for detection of 

homologs with high levels of sequence similarity. However, the sensitivity and accuracy of 

sequence similarity based methods decreases when detecting distant homologs.  

Computational methods of remote homology detection have been a subject of study for 

the past several years. The machine learning based methods use a discriminative supervised 

framework to identify remote homologs. The premise of family-based models of homology is 

prevalent in these approaches. Classification models are devised for individual families of 

protein sequences. An incoming query sequence is tested for membership within individual 

families and sequences belonging to individual families are identified as being homologous to 

all other family members. To date, the most sensitive methods for remote homology detection 

are methods that rely on a profile-profile comparison rather than a sequence-based 

comparison. A distinct signature/profile is developed for a set of protein sequences based on 

the frequency of amino acids and their positions. A profile is also built for an input query 

sequence and algorithms are employed that compare the two profiles to determine the nature 

of relationship.  

Current computational methods have their limitations and short comings that make 

them difficult to deploy in real-world scenarios. While the discriminative methods are 

inherently family-based and practically infeasible, the profile-profile comparison based 

methods rely on the generation of a multiple alignment amongst all the sequences in the target 

database. In this thesis, we have outlined the development of two new algorithms; SVM-

SimLOC and SVM-HUSTLE that aim at improving the sensitivity of remote homology 

detection and at the same time overcome the practical limitations of current approaches.  
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SVM-SimLOC follows the family-based discriminative machine learning based 

approach and statistically significantly outperforms other discriminative methods [104]. 

However the approach has only been validated on Eukaryotics organisms and still does not 

lend itself to being implemented as a real time application. The SVM-Hustle algorithm, on the 

other hand, not only deviates from the family-based modeling but also succeeds at providing 

the results in a competitive time to solution. Additionally, SVM-HUSTLE outperforms each of 

the sequence similarity based and the network propagation based algorithms and achieves the 

same performance results as the profile-profile comparison based methods and does not 

require multiple alignments to be calculated.  

6.2 Future Work 

Life science researchers often require an exhaustive list of protein sequences similar to 

their query protein. Ever since the BLAST [9] algorithm came into existence, homology 

search has become one of the most executed bioinformatics tasks. The speed at which results 

are retrieved against a large database of millions of proteins is one of the motivating factors 

for its use, not to mention the simplicity with which the results can be obtained. Additional 

tools such as PatternHunter [105] and websites like CATMA 

(http://www.catma.org/index.html) are examples of software that provide fast homology 

searches for researchers against processed databases. However, there is a shortage of software 

tools that allow researchers to search for homologs against user-created databases. Often while 

looking for homologs, users wish to search against their custom databases. It is increasingly 

difficult to find software tools that allow usage of custom databases and in certain cases like 

HHSearch [29], the process is not trivial. As future work to this thesis, we discuss the design 
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of an integrated system which will not only facilitate public access to homology searches but 

also provide the ability to upload and process custom databases with minimal effort.  

The proposed system uses existing freely available systems and components that have 

been developed at the Pacific Northwest National Laboratory (PNNL). This system uses the 

Bioinformatics Resource Manager (BRM) [25], the MeDICi workflow specification 

framework [106] and the ScalaBLAST high performance BLAST software [30]. The BRM 

environment serves as the client interface in this workflow scenario while the MeDICi and 

ScalaBLAST software operate behind the scenes and without the users’ knowledge. A brief 

background on the three public systems is provided in the following sections. We then discuss 

the design of the integrated system followed by an envisaged description of its usage.  

6.3 Background 

6.3.1 Bioinformatics Resource Manager 

The Bioinformatics Resource Manager (BRM) [25] is a systems biology toolkit that 

provides users with data management, data retrieval and data maintenance capabilities directly 

at the users desktop. BRM is designed in collaboration with biologists and caters to their 

mundane analysis and data integration task. It serves as a one-stop shop for annotation and 

integration of biological data and connects to a number of public databases and sources to 

retrieve annotation as well as cross reference information. BRM is implemented using a multi-

tier architecture where the client software is installed on the users’ desktop system. The client, 

on startup, connects to a remote server which hosts a series of database tables to provide cross 

linkage information and data integration capabilities. Amongst its other functions, BRM also 

provides the capability to use regular expression-based processing on datasets, launch 
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additional analysis tools using the GAGGLE software [107] and launch analysis workflows in 

the background.  

6.3.2 ScalaBLAST 

One of the major challenges associated with the practical implementation of SVM-

HUSTLE is the calculation of the initial nn× BLAST score matrix for a database with 

n sequences. Traditional BLAST searches are extremely effective when generating scores for 

a small number of sequences against a large database, however when n is in the order of 

thousands, a serial BLAST run may require months or even longer to compute. Another most 

common approach would be to write scripts that run in parallel on multiple copies of the 

database. While this can speed up the matrix generation, it places additional load on the 

resources required in terms of storage space. To avoid these and other related problems, we 

utilize the services of ScalaBLAST [30], a high-performance scalable implementation of 

BLAST that presents an entirely software-based solution. ScalaBLAST is implemented using 

the MPI parallel programming libraries and the Global Array software for shared memory 

management. Amongst its’ other techniques, ScalaBLAST employs distributed memory 

management, latency hiding through pre-fetching database sequences, parallel I/O and multi-

level parallelism to achieve higher performance and scalability. ScalaBLAST has been shown 

to scale linearly with respect to the number of processors.  
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6.3.3 MEDICI 

 

Figure 15 – MEDICI Architecture – Image courtesy Ian Gorton 

The MEDICI integration framework [106] provides a component-based messaging and 

integration architecture for creating analytical pipelines for real-time high-throughput data 

analysis tasks. Engineering such real-time systems is a challenging task for a number of 

reasons: 

• High throughput experimentation generates large amounts of data in matter of 

seconds. The processing of such high data arrival rates require a scalable 

infrastructure to support low latency inter-component communications 

• Metadata and provenance information should be captured during these processes to 

enable reproducibility as well as tracking information 
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• The integration of analysis components must be relatively low cost. 

The MeDICi architecture, leverages open source middleware technologies and imposes 

a platform agnostic programming model. Components are wrapped in a common structure to 

communicate with the pipeline and provide the necessary data processing or transfer 

functions. The MeDICi architecture has been used in a variety of applications that support 

high-throughput processing. 

6.4 System Design 

BRM is implemented in JavaTM and is based on 3-tier client server architecture. Users 

install a client implemented using Java SwingTM on their desktop computer that provides 

interfaces to create and manage projects along with datasets, retrieve external data from public 

sources and launch analysis tools. Figure 16 displays the architecture of the BRM software 

along with the technologies used at each tier. The middle tier consists of the BRM server 

developed using the Enterprise Java Beans 2.0 (EJB) technology and residing in a JBOSS 

application server. Connections to external data sources are pre-configured within the BRM 

Server via the Java DataBase Connectivity Application Programming Interface (API). The 

BRM server is responsible for user authentication, data retrieval from external data sources, 

and management of user sessions while the client is used only as a front-end for all such 

requests. The third tier of the BRM architecture is a PostgreSQL (www.postgresql.org) 

database system.  
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Figure 16 – BRM System Architecture 

Tables representing users, projects, data sets and data-sources are accessed via the 

middle tier. All externally retrieved data is also stored along with metadata information in this 

persistent storage. Data transfer between the client-server and the individual server 

components is kept to a minimum to counter Internet bandwidth limitations and 

communication overhead common to integrative environments. Communication is achieved 

via short messages (Java Messaging API) containing metadata. Each server component can 

then retrieve data based on its metadata for further processing. A distributed caching data 
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model is implemented where clients receive data in chunks of 2000 rows. Client-server 

systems require the client to be in-sync with the server for optimal operation. BRM provides 

an automated version checking mechanism at startup. A pop-up message informs the user of 

version mismatches and directs them to BRM’s web page for updates.  

6.4.1 User Interface Design 
 

One of the major advantages of using the BRM client for homology searches is the 

ability to upload a set of custom databases that can be used as the target of a search query. 

These databases or datasets can be stored on the BRM server for future access. BRM serves as 

the data management application for future reuse of databases and retrieval of query results.  

Figure 17 shows the main BRM application window, called the BRM Project Browser. 

The Project Browser shows the “projects” (working collections of data) and the datasets that 

you create and organize while working with the BRM. The first time you log in and until you 

create your own projects and datasets, the Project Browser will be “empty,” displaying only an 

empty Projects folder in the top left pane of the window. 
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Figure 17 – Project browser and welcome dialog box  

The Tools menu item on the Project Browser window will be used to launch the SVM-

based homology workflow interface. The user interface for the workflow launching capability 

will be organized into into three sections as shown in Figure 18. In the first part of the user 

interface, the user specifies the location of the query FASTA file and the FASTA file that is to 

be used as the database/target for the search. The BRM button on the interface allows the user 

to select an existing dataset file from the BRM environment, while the Browse buttons enable 

a user to select a file from the local file system.  
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Figure 18 - SVM Homology workflow interface 

The second section allows the user to specify the parameters for the SVM-HUSTLE 

algorithm that will be run behind the scenes to complete the homology searches. The user 

interface allows the user to specify in particular the number of parallel SVM’s that will be run. 

Our results, as outlined in the previous chapter, indicate that running 60 SVM’s in parallel 

provides reasonable performance in terms of accuracy and speed. The number of processors 

that will be used to execute the software is not provided as a user configurable option. This is 

determined behind the scenes based on the availability of nodes on the cluster. Users can also 
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specify the ratio of negative to positive examples for each individual SVM. A ratio of 2, where 

the number of negative training examples is double the number of positive training examples 

is optimal in most respects. It is to be noted that having a large number of negative samples 

and a small number of positive samples may hamper the ability of the SVM to identify true 

positives.  

Finally the bottom section of the interface allows the user to specify how the results 

should be delivered. Currently, there are two options for the user; to receive the results via 

email or have a new dataset created with the results within the user environment in BRM. 

Depending on user selection, the user receives an email containing a link where they can 

download their results from.  

The final step in launching the homology workflow would be to click the “Run” button 

at the bottom of the interface. A series of steps are followed behind the scenes in order to 

execute this workflow in an asynchronous manner. It is a challenge to present the user with the 

results in real-time and as a result, the results are presented at a later stage using an 

asynchronous mechanism.  

6.4.2 Server Components Design 
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Figure 19 - Schematic of server components 

 
 

Figure 19 provides a schematic of the design for the server side components that 

enable the homology workflow. A workflow EJB residing within the BRM server will be 

responsible for intercepting the client request. The MEDICI architecture is used for the 

resource management underlying the workflow. The FASTA database and query files are 

transported to the respective compute servers for use within the ScalaBLAST and SVM-

HUSTLE software codes. The ScalaBLAST module is responsible for generating an N x N 

matrix (N number for sequences in database) which is later transported to the compute clusters 

running SVM-Hustle. This transfer of high-throughput data along with other data 

managements issues are tackled by the MEDICI architecture behind the scenes. The SVM-

Hustle module can then run on the input files and the results forwarded to the BRM database. 

If the user requests that the results be presented as a new dataset, then the results can be stored 
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within the user’s environment in the database. If an email is requested then the files can be 

stored on the file system on the BRM server machine and a link sent to the user via email. The 

users can then retrieve those files at their own convenience.  

6.5 Conclusion 

Today’s homology based searches require the support of high-end computing 

infrastructure as well as a performance guarantee in terms of time-to-solution. Most websites 

and software tools allow users to search for homologs against pre-existing databases and the 

process to search for homologs against custom databases is not trivial. Using the BRM 

software toolkit in conjunction with MEDICI and the high-performance BLAST 

implementation, ScalaBLAST, we strive to fill in this gap. Biologists and researchers are now 

successfully able to launch homology searches against their own databases and obtain the 

results at their convenience.  
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