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SPECTRALLY ARBITRARY ZERO-NONZERO PATTERNS

Abstract

by AMY ANN YIELDING, Ph.D.
Washington State University
Department of Mathematics

MAY 2009

Chair: Judith J. McDonald

This thesis establishes a complete list of all 3 × 3 and 4 × 4 complex spectrally

arbitrary zero-nonzero patterns. Highlighted in this list are important examples of ir-

reducible complex spectrally arbitrary zero-nonzero patterns which fail to satisfy the

Nilpotent-Jacobian condition. Examples of complex spectrally arbitrary zero-nonzero

patterns whose corresponding directed graph does not contain a two-cycle are illus-

trated in Chapter 3. In Chapter 4 the minimum number of nonzero entries contained in

an irreducible zero-nonzero pattern that guarantees the pattern is spectrally arbitrary is

determined. Illustrated in Chapter 5 is the reduction of this number of nonzero entries

contained in a irreducible zero-nonzero pattern A, when exactly one transversal is con-

tained in an irreducible subpattern of A. Lastly, future work in the area of spectrally

arbitrary patterns is described in Chapter 6.
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Chapter 1

Introduction

In this thesis we study the spectra of zero-nonzero patterns. Spectra of matrices with

free entries were studied by Friedland in [8] and Farahat and Ledermann in [7]. In these

papers free entries could be zero or nonzero, while in this thesis we require nonzero free

entries. These papers along with others motivated many mathematicians to study the

spectra of matrices with free nonzero entries.

Over the past decade, many results have been published concerning spectrally ar-

bitrary patterns. Classification of families of spectrally arbitrary patterns were stud-

ied by Drew, Johnson, Olesky, and van den Driessche in [6]. Spectra of sign patterns

[1, 2, 6, 10, 11, 12, 13, 17] and real zero-nonzero patterns [3, 4, 5, 9] have received consid-

erable attention. Some study [14] has been accomplished for spectra of ray patterns. In

this thesis we provide interesting examples illustrating fundamental differences between

complex zero-nonzero patterns and real zero-nonzero patterns.

In [6] sufficient criterion for proving a pattern is spectrally arbitrary was discovered.

Satisfying the Nilpotent-Jacobian condition is currently the most accessible method

of proof for irreducible spectrally arbitrary zero-nonzero patterns. It is unknown if

satisfying the Nilpotent-Jacobian condition is a necessary criterion. In Section 3.1 we

discover complex spectrally arbitrary zero-nonzero patterns which do not satisfy the
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Nilpotent-Jacobian condition. These patterns may be found in Appendix A: second

pattern in the first row, and Appendix B: first pattern in the first row.

In [2] the authors show that there must exist at least one two-cycle in the directed

graph of a real spectrally arbitrary pattern. In Section 3.2 we provide examples of com-

plex spectrally arbitrary zero-nonzero patterns whose directed graph does not contain a

two-cycle. These patterns may be found in Appendix A: third, fourth, and fifth pattern

in the first row and first pattern in the second row.

We provide a complete list of all 3× 3 (Section 3.4) and 4× 4 (Section 3.5) complex

spectrally arbitrary patterns in Chapter 3. It should be noted that up to equivalence,

we found one 3× 3 and seven 4× 4 irreducible complex minimally spectrally arbitrary

zero-nonzero patterns.

In Chapter 4 we prove that the minimum number of nonzero entries which guarantees

an irreducible zero-nonzero pattern is spectrally arbitrary is n2 − 2n + 3. We consider

two main cases: the directed graph corresponding to the pattern contains an n-cycle

and the directed graph corresponding to the pattern contains no n-cycle.

Lastly we display the reduction of this number of nonzero entries to n(n+1)
2

+ 1 for

an irreducible zero-nonzero pattern A, when exactly one transversal is contained in an

irreducible subpattern of A. It should be noted that the results in Chapters 4 and 5

hold for both real and complex zero-nonzero patterns.



3

Chapter 2

Definitions, notation and conventions

2.1 Patterns

A zero-nonzero pattern is a square matrix, A, with entries in {0, ∗}, where ∗ represents

a nonzero entry. We use the notation ai,j (resp. bi,j), to distinguish between nonzero

entries inA (resp. B). A complex zero-nonzero pattern is a zero-nonzero pattern with ∗ ∈

C\{0}. Similarly, a real zero-nonzero pattern is a zero-nonzero pattern with ∗ ∈ R\{0}.

A zero-nonzero pattern B is a superpattern of a zero-nonzero pattern A if bi,j = ai,j

whenever ai,j 6= 0. A zero-nonzero pattern B is a subpattern of a zero-nonzero pattern

A if bi,j = ai,j whenever bi,j 6= 0.

Example 2.1.1 B =


∗ ∗ 0

∗ 0 ∗

∗ ∗ ∗

 is a superpattern of A =


∗ 0 0

∗ 0 ∗

∗ ∗ 0

.

C =


0 0 0

∗ 0 0

0 ∗ 0

 is a subpattern of A =


∗ 0 0

∗ 0 ∗

∗ ∗ 0

.

A zero-nonzero pattern B is a proper subpattern (resp. superpattern) of A, if B is a

subpattern (resp. superpattern) of A and B 6= A. We use A− to denote a subpattern of
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A where exactly one nonzero entry in A is a zero entry in A−. We use A+ to denote

a subpattern of A where exactly one zero entry in A is a nonzero entry in A+. A

realization of a complex (resp. real) zero-nonzero pattern A is a complex (resp. real)

matrix R such that ri,j = 0 if and only if ai,j = 0; we write R ∈ A.

Example 2.1.2 R =


1 0 0

2 0 −1

.65 π 0

 is a realization of A =


∗ 0 0

∗ 0 ∗

∗ ∗ 0

.

An n × n complex (resp. real) zero-nonzero pattern A is spectrally arbitrary if for

each complex (resp. real) monic polynomial r(t) of degree n, there exists an R ∈ A

where the characteristic polynomial of R is pR(t) = r(t). A zero-nonzero pattern A is

minimally spectrally arbitrary if it is spectrally arbitrary and every proper subpattern of

A is not spectrally arbitrary.

In this thesis, two zero-nonzero patterns, A and B, are equivalent if there exists a

permutation matrix P so that A = PBP T or A = PBTP T ; we write A ∼ B. Notice that

the spectrum of a matrix is invariant under permutation similarity and transposition.

Thus all zero-nonzero patterns that are equivalent to a spectrally arbitrary pattern are

spectrally arbitrary.

An n×n zero-nonzero pattern A allows nilpotency if there exists a realization N ∈ A

such that pN(t) = tn. We say that N is a nilpotent realization ofA. Let {f1, f2, ..., fn} de-

note the coefficient functions of the characteristic polynomial for a zero-nonzero pattern

A, so that

pA(t) = tn + f1t
n−1 + . . .+ fn−1t+ fn.
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Observe that each fi is a function of the nonzero entries in A. Given a subset

{x1, x2, . . . , xn} ⊂ {ai,j ∈ A|ai,j 6= 0}, a Jacobi, J , is an n × n matrix with entries

∂fj

∂xi
. In this thesis a Jacobian of a zero-nonzero pattern A is the determinant of a Jacobi

matrix formed from the coefficient functions of pA(t). Notice that a zero-nonzero pattern

may have many Jacobians depending on the choice of variables xi.

2.2 The Nilpotent-Jacobian Condition

In [6] the authors develop the Nilpotent-Jacobian condition using the implicit function

theorem. The condition works as follows: Let A be an irreducible zero-nonzero pattern.

If possible, find a nilpotent realization N ∈ A. Treating n of the nonzero elements of

A as variables, find the Jacobian of the coefficient functions of pA(t). If the Jacobian

evaluated at N is nonzero, then A and all of its superpatterns are spectrally arbitrary.

If this can be done for at least one nilpotent realization N ∈ A and for at least one set

of n nonzero entries in A, we say A satisfies the Nilpotent-Jacobian condition.

Example 2.2.1 Let A =


∗ ∗ 0

∗ 0 ∗

∗ 0 ∗

, then N =


−1 1 0

−1 0 1

−1 0 1

 is a nilpotent realiza-

tion of A. The coefficient functions of A are:

f1 = −a1,1 − a3,3

f2 = −a2,1a1,2 + a3,3a1,1

f3 = −a1,2a2,3a3,1 + a3,3a1,2a2,1

Forming a Jacobi of A with respect to the entries a1,1, a2,1, a3,1, we have:
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J =


−1 a3,3 0

0 −a1,2 a3,3a1,2

0 0 −a1,2a2,3

 .
The corresponding Jacobian is det(J) = −a2

1,2a2,3. This Jacobian evaluated at N , is −1.

Thus A satisfies the Nilpotent-Jacobian condition. Hence A and all of its superpatterns

are spectrally arbitrary.

The implicit function theorem can be applied to complex analytic functions, thus the

Nilpotent-Jacobian condition also applies to irreducible complex zero-nonzero patterns.

2.3 Graphs

The directed graph of an n × n zero-nonzero pattern A = {ai,j|1 ≤ i ≤ n and 1 ≤

j ≤ n}, denoted G(A), is defined by G(A) = (V,E(A)), where V = {1, 2, ..., n} and

E(A) = {(i, j)|ai,j 6= 0}.
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Example 2.3.1 G(A) for A =



∗ ∗ 0 0

∗ 0 ∗ 0

∗ 0 0 ∗

∗ 0 0 ∗


is:

Figure 1: Directed Graph

A path in G(A) is a sequence of vertices (v1, v2, ..., vk) so that (vj, vj+1) ∈ E(A) for

j = 1, 2, ..., k − 1. A cycle is a path such that v1 = vk. A simple cycle (resp. path), is

a cycle (resp. path) where all but the first and last vertices are distinct. The number

of edges in a simple cycle (resp. path) is the length of the cycle (resp. path). We

define a k-cycle, as a simple cycle of length k. A pair of cycles, c1 = (v1, v2, . . . , vk) and

c2 = (w1, w2, . . . , wj), are disjoint if vj 6= wl for all j = 1, 2, . . . , k and l = 1, 2, . . . , j.

Given a collection of disjoint cycles γ, whose total length is k, we denote by τk the union

of edges in γ. A transversal is a τn.
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Example 2.3.2 Let G(A) be the following:

Figure 2: Directed Graph

Observe that (1, 2) is a simple path of length one, (1, 2, 1) is a 2-cycle, and (1, 2, 3, 1)(4, 4)

is a transversal in G(A).
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Chapter 3

Complex Spectrally Arbitrary Patterns

3.1 Irreducible complex spectrally arbitrary patterns

which do not satisfy the Nilpotent-Jacobian con-

dition

Let A be an irreducible real zero-nonzero pattern which satisfies the Nilpotent-Jacobian

condition. Let N be a nilpotent realization of A which corresponds to a nonzero Ja-

cobian. If we consider the nonzero entries of A over C, N will still remain a nilpotent

realization ofA. ThusA, viewed as an irreducible complex zero-nonzero pattern, will sat-

isfy the Nilpotent-Jacobian condition. Hence, if an irreducible real zero-nonzero pattern

satisfies the Nilpotent-Jacobian condition, then the corresponding irreducible complex

zero-nonzero pattern also satisfies the Nilpotent-Jacobian condition.

In [4], a complete list of all irreducible 4 × 4 real spectrally arbitrary patterns is

provided. In this thesis we amend this list to include additional zero-nonzero patterns

that are spectrally arbitrary over C, but not over R. Of these patterns two are of

particular interest and are discussed in the next lemma.
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Lemma 3.1.1 The following zero-nonzero patterns are irreducible complex spectrally

arbitrary patterns whose Jacobians are zero at every nilpotent realization.

(i) N4 =



∗ ∗ 0 0

0 0 ∗ ∗

0 0 ∗ ∗

∗ ∗ 0 0



(ii) M4 =



∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 ∗

∗ ∗ 0 0


Proof:

(i) Observe that the coefficient functions for the characteristic polynomial of N4 are:

f1 = −a3,3 − a1,1

f2 = a1,1a3,3 − a4,2a2,4

f3 = a4,2a2,4a3,3 − a4,2a2,3a3,4 − a4,1a1,2a2,4 + a1,1a4,2a2,4

f4 = a4,1a1,2a2,4a3,3 − a1,1a4,2a2,4a3,3 − a4,1a1,2a2,3a3,4 + a1,1a4,2a2,3a3,4

By setting f1 = 0, f2 = 0, f3 = 0, and f4 = 0, we see that every nilpotent realization of

N4 has the general form,



−a3,3
−a4,2a3,3

a4,1
0 0

0 0
−a3

3,3

a4,2a3,4

−a2
3,3

a4,2

0 0 a3,3 a3,4

a4,1 a4,2 0 0


.
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We create an 8×4 matrix K with entries
∂fj

∂xi
, where the fj are the coefficient functions

described above and

x1 = a1,1; x2 = a1,2; x3 = a2,3; x4 = a2,4; x5 = a3,3; x6 = a3,4; x7 = a4,1; x8 = a4,2:

K =



−1 a3,3 a4,2a2,4 a4,2a2,3a3,4 − a4,2a2,4a3,3

0 0 −a4,1a2,4 a4,1a2,4a3,3 − a4,1a2,3a3,4

0 0 −a4,2a3,4 −a4,1a1,2a3,4 + a1,1a4,2a3,4

0 −a4,2 a4,2a3,3 − a4,1a1,2 + a1,1a4,2 a4,1a1,2a3,3 − a1,1a4,2a3,3

−1 a1,1 a4,2a2,4 a4,1a1,2a2,4 − a1,1a4,2a2,4

0 0 −a4,2a2,3 −a4,1a1,2a2,3 + a1,1a4,2a2,3

0 0 −a1,2a2,4 a1,2a2,4a3,3 − a1,2a2,3a3,4

0 −a2,4 a2,4a3,3 − a2,3a3,4 + a1,1a2,4 −a1,1a2,4a3,3 + a1,1a2,3a3,4


Observe that K has rank three at the general form of a nilpotent realization for N4.

Thus treating any four nonzero entries of N4 as variables will result in a Jacobian that

is zero at every nilpotent realization. Thus, N4 does not satisfy the Nilpotent-Jacobian

condition. To show that N4 is a complex spectrally arbitrary pattern, we must prove it

directly, which we do next.

Let c1, c2, c3, c4 be any elements in C. Let a1,2 = a2,4 = a3,4 = 1, then the following

values for a1,1, a4,2, a4,1, a2,3 will give a realization N4 ∈ N4 with

pN4(t) = t4 + c1t
3 + c2t

2 + c3t+ c4:

a1,1 = −a3,3 − c1;

a4,2 = −a2
3,3 − c1a3,3 − c2;

a4,1 =
(
c2 + a2

3,3 + c1a3,3

)(
a3,3 + c1 +

√
c23−4a2

3,3c4−4c1a3,3c4−4c2c4

2(a2
3,3+c1a3,3+c2)

)
− c3

2
;
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a2,3 = a3,3 +
c3+
√

c23−4a2
3,3c4−4c1a3,3c4−4c2c4

2(a2
3,3+c1a3,3+c2)

;

Notice that we may choose a3,3 ∈ R large enough so that a1,1, a4,2, a4,1, a2,3 are all

nonzero. Thus N4 is a complex spectrally arbitrary pattern.

(ii)Every nilpotent realization of M4 has the general form,

−a2,2
−a2,2a4,2

a4,1
a1,3 0

a4,1a2,2

a4,2
a2,2

−a4,1a1,3

a4,2
0

0 0 0 a3,4

a4,1 a4,2 0 0


.

As with N4, this form is derived from setting pM4(t) = t4. We create a 9× 4 matrix K

with entries
∂fj

∂xi
, where

f1 = −a1,1 − a2,2

f2 = a1,1a2,2 − a2,1a1,2

f3 = −a4,1a1,3a3,4 − a4,2a2,3a3,4

f4 = −a4,1a1,2a2,3a3,4 + a1,1a4,2a2,3a3,4 + a4,1a1,3a3,4a2,2 − a2,1a4,2a1,3a3,4

and

x1 = a1,1; x2 = a1,2; x3 = a1,3; x4 = a2,1; x5 = a2,2; x6 = a2,3; x7 = a3,4; x8 = a4,1;

x9 = a4,2,

Observe that K has rank three at the general form of a nilpotent realization for

M4. Thus, as with N4, treating any four nonzero entries of M4 as variables will result

in a Jacobian that is zero at every nilpotent realization. Thus, M4 does not satisfy

the Nilpotent-Jacobian condition. To show that M4 is a complex spectrally arbitrary

pattern, we must prove it directly, which we do next.
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Let c1, c2, c3, c4 be any elements in C. Let a1,2 = a2,3 = a3,4 = a4,1 = 1, then the

following values for a1,1, a2,1, a4,2, a1,3 will give a realization M4 ∈M4 with

pM4(t) = t4 + c1t
3 + c2t

2 + c3t+ c4:

a1,1 = −a2,2 − c1;

a2,1 = −c1a2,2 − a2
2,2 − c2;

a4,2 = −c3
2

+ −2a2,2−c1
2c1a2,2+2a2

2,2+2c2
−

√
a4
2,2c23+2c1a3

2,2c23+(−4c4+2c2c23+2c1c3+c21c23)a2
2,2+(2c21c3+2c1c23c2−4c1c4)a2,2+c21−4c2c4+c22c23−4c2+2c1c2c3

2c1a2,2+2a2
2,2+2c2

;

a1,3 = −c3
2

+ 2a2,2+c1
2c1a2,2+2a2

2,2+2c2
+

√
a4
2,2c23+2c1a3

2,2c23+(−4c4+2c2c23+2c1c3+c21c23)a2
2,2+(2c21c3+2c1c23c2−4c1c4)a2,2+c21−4c2c4+c22c23−4c2+2c1c2c3

2c1a2,2+2a2
2,2+2c2

;

Notice that we may choose a2,2 ∈ R large enough so that a1,1, a2,1, a4,2, a1,3 are all

nonzero. Thus M4 is a complex spectrally arbitrary pattern.�

Lemma 3.1.1 immediately leads to the following observation for irreducible complex

zero-nonzero patterns.

Observation 3.1.2 Satisfying the Nilpotent-Jacobian condition is not necessary for an

irreducible complex spectrally arbitrary zero-nonzero pattern.

It should be noted that among all 4× 4 complex zero-nonzero patterns, up to equiv-

alence, N4 andM4 are the only irreducible complex spectrally arbitrary patterns which

do not satisfy the Nilpotent-Jacobian condition. Another interesting consequence is that

among all 4×4 complex spectrally arbitrary patterns, up to equivalence, N4 andM4 are

the only complex spectrally arbitrary patterns which are not real spectrally arbitrary,

yet have a real nilpotent realization.
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Open Question 3.1.3 Must every irreducible real spectrally arbitrary zero-nonzero pat-

tern satisfy the Nilpotent-Jacobian condition?

As shown in [[16], Theorem 6], this question is directly related to the 2n-conjecture,

stated next:

Conjecture 3.1.4 Let A be an n× n irreducible spectrally arbitrary pattern. For each

integer n ≥ 2, A contains at least 2n nonzero entries.

In [1] the authors prove that the minimum number of nonzero entries contained in

an irreducible n × n real zero-nonzero pattern is at least 2n − 1. The same proof is

applicable to complex zero-nonzero patterns.

If the 2n-conjecture is false, Theorem 6 in [16] implies that satisfying the Nilpotent-

Jacobian is not a property of an irreducible spectrally arbitrary pattern with 2n − 1

nonzero entries. All irreducible real spectrally arbitrary patterns classified thus far do

indeed satisfy the Nilpotent-Jacobian condition and have no fewer than 2n nonzero

entries. All complex spectrally arbitrary patterns classified thus far contain at least 2n

nonzero entries.

The Nilpotent-Jacobian condition is a convenient method of proof for irreducible

spectrally arbitrary patterns because it implies that any superpattern is also spectrally

arbitrary. It is still unknown in general if every superpattern of a spectrally arbitrary

pattern is also spectrally arbitrary. Therefore, a natural question for the reader to ask

is if N4’s andM4’s superpatterns are also complex spectrally arbitrary. Indeed they are

and proof is provided in Section 3.5.
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3.2 Graphs of complex spectrally arbitrary patterns

that do not contain a two-cycle

In [2], the authors prove that the graph of a real spectrally arbitrary must contain a

two-cycle. The following displays that such a property is not required for a graph of

a complex spectrally arbitrary pattern. We begin with the only (up to equivalency)

3× 3 complex spectrally arbitrary zero-nonzero pattern whose graph does not contain a

two-cycle.

Lemma 3.2.1 D3 =


∗ ∗ 0

0 ∗ ∗

∗ 0 ∗

 is a complex spectrally arbitrary pattern.

Proof: The following is a nilpotent realization of D3, which corresponds to a nonzero

Jacobian when the boxed entries are the xi used to form the Jacobi.

D3 =



−1−
√

3i

2
1 0

0
−1 +

√
3i

2
1

−1 0 1


.

Thus this pattern satisfies the Nilpotent-Jacobian condition. Hence D3, as well as all of

its superpatterns, are complex spectrally arbitrary patterns.�

We continue with the classification of all 4× 4 complex spectrally arbitrary patterns

whose graphs do not contain a two-cycle. First we establish the following lemma.
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Lemma 3.2.2 Let A be an n×n complex spectrally arbitrary zero-nonzero pattern, with

n ≥ 3. If G(A) does not contain a two-cycle, then G(A) contains at least three loops.

Proof: Let A be a complex spectrally arbitrary zero-nonzero pattern where G(A) does

not contain a two-cycle. If G(A) does not contain a loop, then there exist no diagonal

entries in A. Hence, the coefficient function f1 is always zero. If G(A) contains exactly

one loop, then there exist one diagonal entry in A. Hence, the coefficient function f1

is always nonzero. Thus G(A) must have at least two loops. If G(A) has exactly two

loops, then A has exactly two diagonal entries and the coefficient function f2 is always

nonzero. Hence G(A) must contain at least three loops.�

Theorem 3.2.3 Let A be an 4× 4 irreducible complex spectrally arbitrary zero-nonzero

pattern. If G(A) does not contain a two-cycle, then A is equivalent to a superpattern of

one of the following patterns:

∗ ∗ 0 0

0 ∗ ∗ 0

0 0 ∗ ∗

∗ 0 0 ∗


,



∗ ∗ 0 0

0 ∗ ∗ ∗

0 0 ∗ ∗

∗ 0 0 0


,



∗ ∗ ∗ 0

0 ∗ ∗ 0

0 0 ∗ ∗

∗ 0 0 0


,



∗ ∗ 0 ∗

0 ∗ ∗ 0

∗ 0 0 0

0 0 ∗ ∗


.

Proof: We consider two main cases when classifying all irreducible 4× 4 complex spec-

trally arbitrary patterns whose graphs contain at least three loops and no two-cycle;

(i) The graph contains a four-cycle.

(ii) The graph does not contain a four-cycle, but contains at least one three-cycle.

Suppose that A is an irreducible 4× 4 complex zero-nonzero pattern whose graph
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contains exactly three loops and exactly one four-cycle, but no two-cycle. If no other

edges are contained in G(A), then without loss of generality,

A =



∗ ∗ 0 0

0 ∗ ∗ 0

0 0 ∗ ∗

∗ 0 0 0


Notice that A has seven nonzero entries and the determinant is −a1,2a2,3a3,4a4,1, which

is always nonzero. Therefore A is not a complex spectrally arbitrary pattern. Up to

equivalence, there are four superpatterns of A with exactly one additional nonzero entry

and no two cycle:

A1 =



∗ ∗ 0 0

0 ∗ ∗ 0

0 0 ∗ ∗

∗ 0 0 ∗


,A2 =



∗ ∗ 0 0

0 ∗ ∗ ∗

0 0 ∗ ∗

∗ 0 0 0


,A3 =



∗ ∗ ∗ 0

0 ∗ ∗ 0

0 0 ∗ ∗

∗ 0 0 0


,

A4 =



∗ ∗ 0 0

0 ∗ ∗ 0

∗ 0 ∗ ∗

∗ 0 0 0


.

The following is a nilpotent realization of A1, which corresponds to a nonzero Jaco-

bian when the boxed entries are the xi used to form the Jacobi.
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A1 =



−i 1 0 0

0 i 1 0

0 0 −1 1

−1 0 0 1


.

Thus this pattern satisfies the Nilpotent-Jacobian condition. Hence A1, as well as

all of its superpatterns, are complex spectrally arbitrary patterns.

The following is a nilpotent realization of A2, which corresponds to a nonzero Jaco-

bian when the boxed entries are the xi used to form the Jacobi.

A2 =



−1−
√

3i

2
1 0 0

0
−1 +

√
3i

2
1 1

0 0 1 1

−1 0 0 0


.

Thus this pattern satisfies the Nilpotent-Jacobian condition. Hence A2, as well as

all of its superpatterns, are complex spectrally arbitrary patterns.

The following is a nilpotent realization of A3, which corresponds to a nonzero Jaco-

bian when the boxed entries are the xi used to form the Jacobi.

A3 =



−1−
√

3i

2

−1 +
√

3i

2
1 0

0
−1 +

√
3i

2
1 0

0 0 1 1

−1 0 0 0


.
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Thus this pattern satisfies the Nilpotent-Jacobian condition. Hence A3, as well as

all of its superpatterns, are complex spectrally arbitrary patterns.

The determinant of A4 is −a1,2a2,3a3,4a4,1, which is always nonzero. Hence A4 is

not a spectrally arbitrary pattern. Observe that any superpattern of A4 will either be

equivalent to a superpattern of A1,A2,A3, or its graph will contain a two-cycle.

This concludes our classification of all 4 × 4 complex spectrally arbitrary patterns

whose graph does not contain has no two-cycle, one four-cycle, and at least three loops.

We now consider 4×4 patterns whose graph does not contain a four-cycle or a two-cycle,

but contains at least one three-cycle and at least three loops.

Suppose A is an irreducible 4 × 4 complex zero-nonzero pattern whose graph does

not contain a four-cycle or two-cycle, but contains exactly one three-cycle and exactly

three loops. There are two possible patterns for A (all others are equivalent):

∗ ∗ 0 0

0 ∗ ∗ 0

∗ 0 ∗ 0

0 0 0 0


, whose determinant is zero.



∗ ∗ 0 0

0 ∗ ∗ 0

∗ 0 0 0

0 0 0 ∗


, whose determinant is a4,4a1,2a2,3a3,1, which is nonzero.

Since neither of these patterns are spectrally arbitrary, we consider their
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superpatterns. Observe, at least two new nonzero entries are required for any super-

pattern, of either of these patterns, to be irreducible. There are two superpatterns to

consider with eight nonzero entries (all others are equivalent or contain a four-cycle or

a two-cycle);

A5 =



∗ ∗ 0 ∗

0 ∗ ∗ 0

∗ 0 0 0

0 0 ∗ ∗


,A6 =



∗ ∗ 0 ∗

0 ∗ ∗ 0

∗ 0 ∗ 0

0 0 ∗ 0


The following is a nilpotent realization of A5, which corresponds to a nonzero Jaco-

bian when the boxed entries are the xi used to form the Jacobi.

A5 =



−1−
√

3i

2
1 0

−2

−1 +
√

3i

0
−1 +

√
3i

2
1 0

1−
√

3i

−3 +
√

3i
0 0 0

0 0 1 1


Thus this pattern satisfies the Nilpotent-Jacobian condition. Hence A5, as well as all of

its superpatterns, are complex spectrally arbitrary patterns.

Observe the determinant of A6 is a4,4a1,2a2,3a3,1, which is always nonzero. Thus this

pattern is not spectrally arbitrary. Observe that any superpattern of A6 will either be

a superpattern of A5 or its graph will either contain a four-cycle or a two-cycle.�

This concludes our classification of all 4×4 irreducible complex minimally spectrally

arbitrary patterns whose graphs do not contain a two-cycle.
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3.3 Reducible complex spectrally arbitrary patterns

Let A be an n× n reducible real zero-nonzero pattern, with an irreducible k × k block

and an irreducible m×m block, where k and m are both odd. Notice each of these blocks

contribute at least one linear factor to pA(t). Yet there exists many monic polynomials of

degree n, over R, that contain at most one linear factor. Hence A is not a real spectrally

arbitrary pattern. Therefore, a direct sum of real spectrally arbitrary patterns is not

necessarily spectrally arbitrary. In contrast, we have the following observation in the

complex case.

Observation 3.3.1 If A1,A2, . . . ,Ak are irreducible complex spectrally arbitrary pat-

terns then B = A1

⊕
A2

⊕
· · ·
⊕
Ak is a complex spectrally arbitrary pattern.

This is a direct result of the fact that every polynomial over C factors into linear com-

ponents. It should be noted that Observation 3.3.1 and its converse are not true for

real spectrally arbitrary patterns, as shown in [5]. The counterexample for the converse

found in [5] does not provide a counterexample over C. Indeed, both of the irreducible

blocks used in this counterexample are complex spectrally arbitrary patterns.

Open Question 3.3.2 If B = A1

⊕
A2

⊕
· · ·
⊕
Ak is a complex spectrally arbitrary

pattern, are A1,A2, . . . ,Ak all required to be complex spectrally arbitrary patterns?

As shown in [4] Lemma 3.1, the only 4 × 4 reducible real spectrally arbitrary zero-

nonzero patterns are equivalent to superpatterns of
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F =



∗ ∗ 0 0

∗ ∗ 0 0

0 0 ∗ ∗

0 0 ∗ ∗


.

This result holds for reducible complex spectrally arbitrary patterns as well.

3.4 A complete list of all 3 × 3 irreducible complex

spectrally arbitrary patterns

The following theorem characterizes all irreducible 3 × 3 complex spectrally arbitrary

patterns.

Theorem 3.4.1 Let A be an irreducible 3× 3 complex zero-nonzero pattern.

(i) If A has five or fewer nonzero entries, then A is not spectrally arbitrary.

(ii) If A has six nonzero entries and is spectrally arbitrary, then A is minimally spec-

trally arbitrary and is equivalent to one of:

D1 =


∗ ∗ 0

∗ 0 ∗

0 ∗ ∗

, D2 =


∗ ∗ 0

∗ 0 ∗

∗ 0 ∗

, D3 =


∗ ∗ 0

0 ∗ ∗

∗ 0 ∗


(iii) If A has at least seven nonzero entries, at least two of which lie on the diagonal,

then A is spectrally arbitrary, but not minimally spectrally arbitrary.
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Theorem 3.4.1 is identical to Theorem 1.1 in [4], except for complex spectrally arbi-

trary patterns, D3 is added. Note that D3 appears in Lemma 3.2.1 in Section 3.2 of this

thesis. The reader is encouraged to review [1, 4] for proof of the remaining parts.

It should be noted that there does not exist a 3 × 3 reducible complex spectrally

arbitrary pattern. A nonzero 1 × 1 block requires a nonzero eigenvalue. A zero 1 × 1

block requires singularity. Hence all reducible 3 × 3 complex zero-nonzero patterns are

not spectrally arbitrary.

3.5 A complete list of all 4 × 4 irreducible complex

spectrally arbitrary patterns

The following theorem classifies all 4 × 4 irreducible complex spectrally arbitrary pat-

terns. It should be noted that the majority of work needed to prove the next theorem

was developed by Luisette Corpuz and Judith McDonald in [4].

Theorem 3.5.1 Let A be an irreducible 4× 4 complex zero-nonzero pattern.

(i) If A has seven or fewer nonzero entries, then A is not spectrally arbitrary.

(ii) If A has eight nonzero entries and is spectrally arbitrary , then A is a minimal

spectrally arbitrary pattern and is equivalent to one of the patterns presented in

Appendix A.

(iii) If A has nine nonzero entries and is a minimal spectrally arbitrary, then it is
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equivalent to one of the patterns presented in Appendix B. Patterns with nine

nonzero entries that are superpatterns of the patterns in Appendix A are also spec-

trally arbitrary. If A is not spectrally arbitrary and has at least two nonzero entries

along the diagonal then it is equivalent to one of the patterns listed in Appendix C.

(iv) If A has ten nonzero entries, with at least two on the diagonal, which is not

spectrally arbitrary, then A is equivalent to one of the patterns listed in Appendix

D. Otherwise, A is a spectrally arbitrary pattern, but is not minimal.

(v) If A has at least two nonzero diagonal entries and at least eleven nonzero entries,

then A is a spectrally arbitrary pattern that is not minimal.

We only provide proof for patterns that are not spectrally arbitrary over R. Patterns

that are not listed, fail to be complex spectrally arbitrary patterns for the same reasons

they fail to be real spectrally arbitrary patterns in [4].

Proof:

Part i) Follows from our analysis of directed graphs with no two-cycle in Section 3.2

and Lemma 3.4 in [4]. Notice the proof in [4] does not change if we allow the nonzero

entries to be complex numbers.

Part ii) We have established the irreducible complex spectrally arbitrary patterns with

eight nonzero entries, whose graph contains no two-cycle in Section 3.2. Reviewing the

proof of Theorem 3.5 in [4] we note that up to equivalence, only two patterns are not

real spectrally arbitrary, but are complex spectrally arbitrary. One of these patterns is

N4, the other is
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B1 =



∗ ∗ 0 0

∗ 0 ∗ 0

0 0 ∗ ∗

∗ 0 0 ∗


.

The following is a nilpotent realization of B1, which corresponds to a nonzero Jacobian

when the boxed entries are the xi used to form the Jacobi.

B1 =



−1− i 1 0 0

−i 0 1 0

0 0 i 1

−1 0 0 1


.

Thus this pattern satisfies the Nilpotent-Jacobian condition. Hence B1, as well as all of

its superpatterns, are complex spectrally arbitrary patterns.

This concludes our classification of all irreducible 4× 4 complex spectrally arbitrary

patterns for Part ii). All irreducible 4×4 complex minimally spectrally arbitrary patterns

with eight nonzero entries may be found in Appendix A. Notice these patterns are indeed

minimal, otherwise we would contradict Part i).

Part iii) Recall all superpatterns of irreducible patterns that satisfy the Nilpotent-

Jacobian condition are spectrally arbitrary. Thus it has already been shown that any

pattern with nine nonzero entries that is a superpattern of all but one (N4) of the

complex spectrally arbitrary patterns with eight nonzero entries is a complex spectrally

arbitrary pattern.

We will now consider the superpatterns of N4. As stated in [3] Proposition 2.4, any
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proper superpattern of N4 is a real spectrally arbitrary pattern. Hence every superpat-

tern of N4 is complex spectrally arbitrary as well.

This concludes our classification of all irreducible 4× 4 complex spectrally arbitrary

patterns for Part iii). All irreducible 4 × 4 complex minimally spectrally arbitrary

patterns with nine nonzero entries may be found in Appendix B. All irreducible 4 × 4

that are both minimal spectrally arbitrary patterns over C and R with nine nonzero

entries may be found in Appendix B. It should be noted that patterns in [4] that were

minimal over R, which are not listed in Appendix B, were indeed superpatterns of one

of the minimal complex spectrally arbitrary patterns with eight nonzero entries listed

in Appendix A. All patterns that are irreducible with nine nonzero entries, at least two

of which lie on the diagonal, that are not complex spectrally arbitrary are listed in

Appendix C.

Part iv) It has been shown that any irreducible pattern with ten nonzero entries that

is a superpattern of all but one (M4) of the complex spectrally arbitrary patterns with

nine nonzero entries are complex spectrally arbitrary patterns. Indeed as shown in [3],

Proposition 2.4, any proper superpattern of M4 is a spectrally arbitrary pattern.

This concludes our classification of all 4× 4 irreducible complex spectrally arbitrary

patterns for Part iv). Notice, none of these patterns can be minimal. All 4×4 irreducible

patterns with ten nonzero entries, at least two of which lie on the diagonal, that are not

complex spectrally arbitrary can be found in Appendix D.�
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Chapter 4

The minimum number of nonzero entries that

guarantee a pattern is spectrally arbitrary

The goal of this chapter is to establish the following result.

Theorem 4.0.2 If A is an irreducible n × n zero-nonzero pattern with n > 6 and at

least n2 − 2n + 3 nonzero entries at least two of which lie on the diagonal, then A is a

spectrally arbitrary pattern.

In this section we prove the following theorems, which establish Theorem 4.0.2.

Theorem 4.0.3 Let A be an irreducible n× n zero-nonzero pattern with n > 6 and at

least n2 − 2n + 3 nonzero entries, at least two of which lie on the diagonal. If G(A)

does not contain an n-cycle, then A and all of its superpatterns are spectrally arbitrary

patterns.

Theorem 4.0.4 Let A be an irreducible n× n zero-nonzero pattern with n > 6 and at

least n2 − 2n + 3 nonzero entries with two or more nonzero entries on the diagonal. If

G(A) contains an n-cycle, then A and all of its superpatterns are spectrally arbitrary

patterns.
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This bound on the number of nonzero entries is strict, as the following example

illustrates.

Example 4.0.5 The following is an irreducible pattern with n2 − 2n+ 2 zeros which is

not a spectrally arbitrary pattern:

∗ ∗ ∗ · · · ∗ ∗ ∗

∗ ∗ ∗ · · · ∗ ∗ ∗

∗ ∗ ∗ · · · ∗ ∗ ∗
...

...
...

. . .
...

...
...

∗ ∗ ∗ · · · ∗ ∗ ∗

∗ 0 0 · · · 0 0 0

∗ 0 0 · · · 0 0 0


The determinant of this pattern is always zero. Thus this pattern is not spectrally arbi-

trary.

4.1 The case where G(A) does not contain an n-cycle

In this section we show if A is an irreducible zero-nonzero pattern (over R or C) with

exactly n2 − 2n+ 3 nonzero entries, at least two of which lie on the diagonal and G(A)

does not contain a n-cycle, then G(A) must contain an (n − 1)-cycle. We use this

result to discover that all irreducible zero-nonzero patterns (over R or C) with at least

n2 − 2n + 3 nonzero entries, at least two of which lie on the diagonal, are spectrally

arbitrary patterns. We begin by establishing an upper bound for the length of the
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longest simple cycle contained in G(A).

Theorem 4.1.1 Let A be an irreducible n×n zero-nonzero pattern (over R or C) with

n > 6. Suppose A has at least n2 − 2n+ 3 nonzero entries, at least two of which lie on

the diagonal. Then G(A) contains a simple cycle of length greater than n− 2.

Proof: Let A be an irreducible n × n zero-nonzero pattern with n > 6. Suppose A

has n2 − 2n+ 3 nonzero entries, at least two of which lie on the diagonal. Let k be the

length of the longest simple cycle contained in G(A). Without loss of generality, suppose

(1, 2, 3, . . . , k, 1) is this simple cycle. Let I = {1, 2, . . . , k} and J = {k+ 1, k+ 2, . . . , n}.

Then for each i ∈ I and each j ∈ J, if (i, j) ∈ E(A) and (j, (i + 1)mod(k)) ∈ E(A), we

can create a longer simple cycle. Hence, at least one these edges is missing from each

such pair of indices. We have identified k(n− k) zeros in our pattern. Since our pattern

has at most 2n− 3 zeros, f(k) = k2 − kn+ 2n− 3 must be nonnegative. Since this is a

quadratic in k with f(n− 3) < 0 and f(3) < 0, we see that either k ≤ 2 or k ≥ n− 2.

Notice there are n!
(n−3)!3

total 3-cycles in a complete graph on n vertices. Fix an edge

(p, q) in a complete graph on n vertices. There are at most n− 2 vertices which can be

paired with this edge to form a 3-cycle. Thus, removal of (p, q) from a complete graph

removes at most n − 2 of the 3-cycles. Hence, in a complete graph the removal of at

least n!
(n−3)!3(n−2)

= n(n−1)
3

edges are required to ensure no 3-cycle remains. Since A has

at most 2n − 3 zero entries and n > 6, G(A) must contain at least one 3-cycle. Thus,

the longest simple cycle contained in G(A) has length at least n− 2.

We finish the proof by showing the longest simple cycle in G(A) has length at least
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n − 1, via contradiction. Suppose the longest simple cycle in G(A) has length n − 2.

Without loss of generality, suppose (1, 2, 3, . . . , n−2, 1) is the longest simple cycle. Notice

I = {1, 2, . . . , n − 2} and J = {n − 1, n} and at least 2(n − 2) = 2n − 4 zero entries

have been identified in A. Hence, there is only one remaining zero yet to be identified.

Notice that the subgraph of G(A), induced by the vertices in I, is either the complete

graph on n− 2 vertices or the complete graph with the deletion of one edge. Similarly,

the subgraph of G(A), induced by the vertices in J, is either the complete graph on 2

vertices or the complete graph with the deletion of one edge. Since G(A) is irreducible,

we observe that there exist i, l ∈ I and {j,m} = {n, n − 1} such that either (i, j, l) or

(i, j,m, l) is a path contained in G(A). Clearly there is a simple path of length n − 3,

from l to i contained in the subgraph induced by I. This creates a simple cycle of length

at least n − 1, contradicting that the length of the longest simple cycle contained in

G(A) is n− 2. Hence, G(A) contains a simple cycle of length at least n− 1.�

We utilize this property to classify all irreducible zero-nonzero patterns, A, with

exactly n2 − 2n + 4 nonzero entries, where G(A) does not contain an n-cycle. In the

following Lemma, we establish two patterns for which all such A are equivalent.

Lemma 4.1.2 Let A be an n × n irreducible zero-nonzero pattern (over R or C) with

n2 − 2n+ 4 nonzero entries, at least two of which lie on the diagonal. If G(A) does not

contain an n-cycle, then A is equivalent to one of the following patterns:
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Y1 =



∗ ∗ · · · ∗ ∗ ∗

∗ ∗ · · · ∗ ∗ 0

...
...

. . .
...

...
...

∗ ∗ · · · ∗ ∗ 0

∗ ∗ · · · ∗ ∗ 0

∗ 0 · · · 0 0 ∗


, Y2 =



∗ ∗ ∗ · · · ∗ ∗ ∗

∗ ∗ ∗ · · · ∗ ∗ 0

∗ 0 ∗ · · · ∗ ∗ 0

...
...

...
. . .

...
...

...

∗ 0 ∗ · · · ∗ ∗ 0

∗ 0 ∗ · · · ∗ ∗ 0

∗ 0 ∗ · · · ∗ ∗ ∗


Proof: LetA be an n×n irreducible zero-nonzero pattern with n2−2n+4 nonzero entries,

at least two of which lie on the diagonal. Suppose G(A) does not contain an n-cycle. By

Lemma 4.1.1, G(A) contains at least one (n − 1)-cycle. Without loss of generality let

(1, 2, 3, . . . , n−2, n−1, 1) be an (n−1)-cycle contained in G(A). Let I = {1, 2, ..., n−1}.

Notice that for i ∈ I either (i, n) /∈ G(A) or (n, (i + 1)mod(n − 1)) /∈ G(A), identifying

n − 1 zeros in A. A is irreducible, so there exists at least one k ∈ I and at least one

m ∈ I, such that (k, n) ∈ E(A) and (n,m) ∈ E(A). We will consider the two cases:

k = m and k 6= m.

Case 1: Suppose that the only choice for k and m forces k = m. Without loss of generality

k = m = 1, (i, n) /∈ G(A), and (n, i) /∈ G(A), for 1 < i < n. This identifies 2(n − 2) =

2n− 4 zeros in A. Observe A is equivalent to Y1.

Case 2: Suppose k and m can be chosen so that k 6= m. Without loss of generality k = 1

and m can be chosen such that if 1 < i < m, then (n, i) /∈ E(A) and (i, n) /∈ E(A).

Notice this identifies an additional m− 3 zeros in A.

If m = 2, then there exists an n-cycle: (1, n, 2, 3, 4, . . . , n− 1, 1). Thus m 6= 2.
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For each p ∈ {m,m + 1,m + 2, ..., n − 1} either (p, 2) /∈ E(A) or (m − 1, (p +

1)mod(n − 1)) /∈ E(A), otherwise G(A) contains the n-cycle: (p, 2, 3, 4, . . . ,m − 1, p +

1, p + 2, . . . , n − 1, 1, n,m,m + 1,m + 2, . . . , p − 1, p). This identifies an additional

n−1−m+1 = n−m zeros in A. Thus A has (n−1)+(m−3)+(n−m) = 2n−4 zeros

identified, leaving all other entries nonzero. If m 6= 3, then G(A) contains the n-cycle

(1, n,m,m− 1,m− 2, . . . , 3, 2,m+ 1,m+ 2, . . . , n− 1, 1). Thus, m = 3.

We have established that edges not contained in E(A) have the following forms:

(2, n), (n, 2), exactly one of (i, n) or (n, (i+1)mod(n−1)) for 3 ≤ i ≤ n−1, and exactly

one of (i, 2) or (2, (i+1)mod(n−1)), for 3 ≤ i ≤ n−1. This identifies 2n−4 zero entries

in A. Thus, all other edges are contained in E(A). In particular, every vertex has a

loop and the subgraph induced by vertices in H = {1, 3, 4, · · · , n− 1} forms a complete

graph on those n− 2 vertices.

Let p ∈ {2, n} and q ∈ {2, n}\{p}. Suppose there exists l, j ∈ {4, 5, . . . , n − 1}

with (l, p) ∈ E(A) and (p, j) ∈ E(A). If l = j then either there exists r 6= j with

(p, r) ∈ E(A) or s 6= i with (s, p) ∈ E(A). Thus, we may choose vertices l and j such

that l 6= j and {(l, p), (p, j)} ⊂ E(A). Without loss of generality, l < j. Notice there

exists a simple path (1, q, 3, 4, . . . , l−1, l, p, j) ∈ G(A). Since the subgraph induced by H

forms a complete graph, clearly there exists a simple path from vertex j to vertex n− 1,

through the remaining vertices in G(A). Thus there exists the n-cycle (1, q, 3, 4, . . . , l −

1, l, p, j, . . . , n− 1, 1) ∈ G(A). Hence, either (i, p) ∈ E(A) and (p, (i + 1)mod(n− 1)) /∈

E(A) for i ∈ {3, . . . , n − 1} or (i, p) /∈ E(A) and (p, (i + 1)mod(n − 1)) ∈ E(A) for

i ∈ {3, . . . , n− 1}.
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Let p ∈ {2, n} and q ∈ {2, n}\{p}. Suppose there exists i ∈ {3, . . . , n − 1} such

that (q, i + 1) ∈ E(A) and (i, p) ∈ E(A). Then (4, p) ∈ E(A) and (q, 5) ∈ E(A).

Again since the subgraph induced by H is a complete graph, there exists an n-cycle

(4, p, 3, 1, q, 5, 6, . . . , n−1, 4) ∈ G(A). Thus, (2, i+1), (n, i+1) ∈ G(A) for i ∈ {3, . . . , n−

1}, or (i, 2), (i, n) ∈ G(A) for i ∈ {3, . . . , n− 1}.

Hence A is equivalent to Y2. Thus, A is either equivalent to Y1 or Y2.�

We proceed by proving that all irreducible Y−1 and Y−2 are spectrally arbitrary pat-

terns. We begin with Y−1 . We frequently refer to the star pattern:

S =



∗ ∗ ∗ . . . ∗

∗ ∗ 0 . . . 0

∗ 0 ∗ . . . 0

...
...

. . .
...

∗ 0 0 . . . ∗


Theorem 4.1.3 Let Y1 be defined as in Lemma 4.1.2. If Y−1 is irreducible, then Y−1

and all of its superpatterns are spectrally arbitrary.

Proof: Let ap,q be the nonzero entry in Y1 is zero in Y−1 . Let S be the star pattern

with the loop missing from the center vertex. Notice that Y1 is a superpattern of a star

pattern where the center of the star is vertex 1. In [12] they prove that a signing of

S and all of its superpatterns are spectrally arbitrary patterns. This proves that the

zero-nonzero pattern S and all of its superpatterns are spectrally arbitrary. If ap,p = 0

with p = 1 or ap,q = 0 with p 6= 1 and q 6= 1, then Y−1 a superpattern of S, where the
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center of the star is vertex 1. Also, if edge (1, n) /∈ E(Y−1 ) or (n, 1) /∈ E(Y−1 ), then Y−1

is reducible. Thus we only consider the following cases for ap,q ∈ Y−1 :

1. The entry ap,q = 0 with p = 1, q 6= 1, and q 6= n. Without loss of generality q 6= 2.

2. The entry ap,q = 0 with p 6= 1, q = 1, and p 6= n. Without loss of generality q 6= 2.

3. The entry ap,q = 0 with p = q and p 6= 1.

In each case the following is a directed graph corresponding to B, a pattern similar to a

subpattern of Y−1 :

Figure 3: Subpattern of Y−1
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Setting ak,k+1 = 1 for k = 1, 2, 3, 4, ..., n − 2 and an,1 = 1, the coefficient functions

for B are as follows:

fn = a1,n(an−1,2 − an−1,n−1an−2,2);

fn−1 = a1,n(an−2,2 − an−1,n−1an−3,2) + a1,1(an−1,2 − an−1,n−1an−2,2);

fn−2 = a1,n(an−3,2 − an−1,n−1an−4,2) + a1,1(an−2,2 − an−1,n−1an−3,2)

+ an−1,n−1an−2,2 − an−1,2;

fn−k = a1,n(an−k−1,2 − an−1,n−1an−k−2,2) + a1,1(an−k,2 − an−1,n−1an−k−1,2)

+ an−1,n−1an−k,2 − an−k+1,2 for n ≥ k ≥ 3;

f4 = a1,n(a3,2 − an−1,n−1a2,2) + a1,1(a4,2 − an−1,n−1a3,2)

+ an−1,n−1a4,2 − a5,2;

f3 = a1,n(an−1,n−1 + a2,2) + an−1,n−1(a3,2

+ a2,1 − a2,2a1,1)− a4,2 + a3,2a1,1;

f2 = −a1,n + an−1,n−1(a2,2 + a1,1)− a3,2 + a2,2a1,1 − a2,1;

f1 = −a1,1 − an−1,n−1 − a2,2;

Solving for ak in each of the equations fk = 0 and applying back substitution, the

following are nonzero values for ak:

a1,1 = −an−1,n−1 − a2,2;

a1,n =
an−1,n−1(an−1,n−1 + a2,2)

2

a2,2

;

a2,1 =
−(an−1,n−1 + a2,2)

3

a2,2

;

ak,2 = ak−2
n−1,n−1a2,2 for 3 ≤ k ≤ n− 1;

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a2,2, an−1,n−1, a2,1, a3,2,

a4,2, a5,2, ..., an−1,2 evaluated at the nilpotent realization stated above and substituting
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an−1,n−1 = 1, a2,2 = 1, a1,1 = 1, a1,n = 4, and a2,1 = −8, is −(4)n−3(−8). Thus B

satisfies the Nilpotent-Jacobian condition. Hence B, as well as all of its superpatterns,

are complex spectrally arbitrary patterns.

Hence, all irreducible Y−1 and their superpatterns are spectrally arbitrary patterns.�

We now proceed by proving that all irreducible Y−2 in Lemma 4.1.2 are spectrally

arbitrary patterns.

Theorem 4.1.4 Let Y2 be defined as is Lemma 4.1.2. If Y−2 is irreducible, then Y−2 and

all of its superpatterns are spectrally arbitrary.

Proof: Let ap,q be the nonzero entry in Y2 which is zero in Y−2 . As in Theorem 4.1.3,

Y2 is a superpattern of S. If ap,p = 0 with p = 1 or ap,q = 0 with p 6= 1 and q 6= 1,

then Y−2 a superpattern of S. If edge (1, n) /∈ E(Y−2 ) or edge (1, 2) /∈ E(Y−2 ), then Y−2

is reducible. Since Y−2 is symmetric in 2 and n, we can assume that there is a loop at

n. Without loss of generality we assume that (3, 1) ∈ E(A) and (n− 1, 1) ∈ E(A). We

consider the following cases for ap,q ∈ Y−2 :

1. The entry ap,q = 0 with p = 1, q /∈ {1, 2, n}.

2. The entry ap,q = 0 with p 6= 1 and q = 1.

3. The entry ap,q = 0 with p = q and p 6= 1.

In each case the following is a directed graph corresponding to a pattern B, similar to a

subpattern of Y−2 :
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Figure 4: Subpattern of Y−2

Setting ak,k+1 = 1 for k = 1, 2, 3, 4, ..., n − 2 and a1,n = 1, the coefficient functions

for B are as follows:

fn = an,nan−1,1(1− a3,5a4,4);

fn−1 = an−1,1((−1 + a3,5a4,4)(1 + an,3) + an,n(a3,5 − a3,6a4,4));

fn−2 = an−1,1((an,3 + 1)(a3,6a4,4 − a3,5) + an,n(a3,6 − a3,7a4,4));

fn−3 = an−1,1((an,3 + 1)(a3,7a4,4 − a3,6) + an,n(a3,7 − a3,8a4,4));

fn−k = an−1,1((an,3 + 1)(a3,k+4a4,4− a3,k+3) + an,n(a3,k+4− a3,k+5a4,4)) for n− 4 ≥ k ≥ 5;

f6 = an−1,1((an,3 + 1)(a3,n−2a4,4 − a3,n−3) + an,n(a3,n−2 − a3,n−1a4,4));

f5 = an−1,1((an,3 + 1)(a3,n−1a4,4 − a3,n−2) + an,na3,n−1)− an,na4,4a3,1;

f4 = (an−1,1a3,n−1 − a4,4a3,1)(−an,3 − 1) + an,n(a3,1 − a2,1a4,4);

f3 = (−1− an,3)a3,1 + an,n(a2,1 − a4,4a1,1) + a4,4a2,1;

f2 = an,n(a4,4 + a1,1) + a4,4a1,1 − a2,1;
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f1 = −a1,1 − an,n − a4,4;

Solving for ak in each of the equations fk = 0 and applying back substitution, the

following are the nonzero values for ak:

a3,k =
1

ak−4
4,4

for 5 ≤ k ≤ n− 1;

an−1,1 = −an−3
4,4 (an,na4,4 + a2

n,n + a2
4,4);

a3,1 = −a4,4(an,na4,4 + a2
n,n + a2

4,4);

an,3 =
a3

n,n

a4,4(an,na4,4 + a2
n,n + a2

4,4)
;

a2,1 = −an,na4,4 − a2
n,n − a2

4,4;

a1,1 = −an,n − a4,4;

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a1,1, a4,4, a2,1, a3,1, a3,5,

a3,6, ..., a3,n−1, an−1,1 evaluated at the nilpotent realization stated above and substituting

in an,n = 1, and a4,4 = 1, is −2(−3)n−6. Thus B satisfies the Nilpotent-Jacobian condi-

tion. Hence B, and all of its superpatterns, are complex spectrally arbitrary patterns.

Hence, all irreducible Y−2 and their superpatterns are spectrally arbitrary.�

With Theorems 4.1.3, 4.1.4, and Lemma 4.1.2 we may now state the following theo-

rem.

Theorem 4.1.5 Let A be an irreducible n× n zero-nonzero pattern with n > 6 and at

least n2 − 2n + 3 nonzero entries, at least two of which lie on the diagonal. If G(A)

does not contain an n-cycle, then A and all of its superpatterns are spectrally arbitrary

patterns.
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4.2 The case where G(A) contains an n-cycle

In this thesis, the k × k matrix Wk =



0 1 0 · · · 0 0

a2 0 1 · · · 0 0

...
...

. . . . . .
...

an−2 0 0
. . . 1 0

an−1 0 0 · · · 0 1

an 0 0 · · · 0 0


, where k indicates

the size of Wk. The weighted directed graph corresponding to Wk is illustrated below:

Figure 5: Fishbone Graph

We establish superpatterns of Wn, which will assist in proving Theorem 4.2.11. The

proofs for the following Lemmas may be found in Appendix E.

Lemma 4.2.1 Choose c and h such that n+1
2
≤ c ≤ n and c ≤ h ≤ n. Let B be the

superpattern of Wn created by making the following entries nonzero:

• The entry b1,1 = a1.

• The entry bn,c = bn−c+1.
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• The entry bh,h = x.

Then B and all of its superpatterns are spectrally arbitrary.

Lemma 4.2.2 Choose c, g and h such that n+1
2
≤ c ≤ n− 2 and 1 ≤ g < h ≤ n. Let B

be the superpattern of Wn created by making the following entries nonzero:

• Entry bn,c = bn−c+1.

• Entry bc+1,c = b2.

• Entry bc+2,c = b3.

• Entry bg,g = a1.

• Entry bh,h = x.

Then B and all of its superpatterns are spectrally arbitrary.

Lemma 4.2.3 Choose g, h and l such that 1 ≤ g < h ≤ n and 3 ≤ l ≤ n. Let B be the

superpattern of Wn created by making the following entries nonzero:

• For all k ≥ 3, bk,2 = bk−1.

• Entry bg,g = a1.

• Entry bh,h = x.

• Entry bn,l = y.



41

Then B and all of its superpatterns are spectrally arbitrary.

Lemma 4.2.4 Choose g and h such that 1 ≤ g < h ≤ n. Let B be the superpattern of

Wn created by making the following entries nonzero:

• For all k ≥ 4, bk,3 = bk−2.

• Entry bg,g = a1.

• Entry bh,h = x.

Then B and all of its superpatterns are spectrally arbitrary.

Lemma 4.2.5 Choose l such that l /∈ {1, n − 1}. Let C be a subpattern of Wn where

entry c2,1 = 0. Let B be the superpattern of C created by making the following entries

nonzero:

• Entry b1,1 = a1.

• Entry bn−1,n−1 = b1.

• Entry bn,l = x.

• Entry b1,n−1 = a2.

Then B and all of its superpatterns are spectrally arbitrary.

Lemma 4.2.6 Choose c, r, and l such that n+1
2
≤ c ≤ n, n − c + 2 ≤ r ≤ n − 1, and

l /∈ {1, c}. We require that if c = n, then r 6= 2. Let C be a subpattern of Wn where
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entry cr,1 = 0. Let B be the superpattern of C created by making the following entries

nonzero:

• Entry bn,c = bn−c+1.

• Entry b1,1 = a1.

• Entry bc,c = b1.

• Entry bn,l = x.

Then B and all of its superpatterns are spectrally arbitrary.

Lemma 4.2.7 Choose c, r, and l such that n+1
2
≤ c ≤ n − 1, 2 ≤ r ≤ n − c + 1, and

l /∈ {1, c}. Let C be a subpattern of Wn where entry cr,1 = 0. Let B be the superpattern

of C created by making the following entries nonzero:

• Entry bn,c = bn−c+1.

• Entry b1,1 = a1.

• Entry bc,c = b1.

• Entry bn,l = y.

• Entry bc+r−1,c = ar.

Then B and all of its superpatterns are spectrally arbitrary.

Lemma 4.2.8 Choose l and r such that l /∈ {1, 3} and r > 4. Let C be a subpattern of
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Wn where entry c2,1 = 0. Let B be the superpattern of C created by making the following

entries nonzero:

• For all k /∈ {1, 2, 3, 4, r} bk,2 = bk−1.

• Entry b4,3 = a2.

• Entry b1,1 = a1.

• Entry b3,3 = b1.

• Entry bn,l = y.

Then B and all of its superpatterns are spectrally arbitrary.

We have classified all patterns needed to prove for Theorem 4.2.11. After the estab-

lishment of the following lemmas, we prove Theorem 4.2.11.

Lemma 4.2.9 Let A be a superpattern ofWn with n2−2n+3 nonzero entries and n > 6.

If A has at least two strictly nonzero columns, then A and all of its superpatterns are

spectrally arbitrary.

Proof: LetA be a superpattern ofWn with n2−2n+3 nonzero entries and n > 6. Suppose

A has at least two strictly nonzero columns, c1 and c2. Create G(B) by relabeling the

vertices of G(A) such that vertex i is vertex (i− c1 + 1)mod(n). If this relabeling causes

(c2− c1 + 1)mod(n) ≤ n+1
2

, then relabel the vertices of G(A) such that vertex i is vertex

(i− c2 + 1)mod(n). In either case, B has the property that, column one in is strictly
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nonzero and there exists a column c ≥ n+1
2

which is strictly nonzero. Thus B is a

superpattern of the pattern in Lemma 4.2.1. Hence, B and all of its superpatterns are

spectrally arbitrary.�

Lemma 4.2.10 Let A be a superpattern of Wn with n2 − 2n + 3 nonzero entries with

n > 6. Suppose that A has at least two nonzero entries along the diagonal. If row n of

A contains at least n− 2 zero entries, then A and all of its superpatterns are spectrally

arbitrary.

Proof: Let A be a superpattern of Wn with n2 − 2n + 3 nonzero entries with n > 6.

Suppose that A has at least two nonzero entries along the diagonal and row n contains

at least n−2 zero entries. There are 2n−3 zeros contained in A, at least n−2 of which

lie in row n. Thus there are at most n − 1 zeros of A which are contained in rows 1

through n− 1.

If there exist at least two strictly nonzero rows in A, then AT is equivalent to the

pattern in Lemma 4.2.9.

Suppose there exists exactly one strictly nonzero row, d, in A. Create G(B) by

permuting the vertices of G(AT ), such that vertex i is vertex (i−d+1)mod(n). Observe,

B has n− 3 columns with exactly one zero entry, one column with two zero entries, one

column with no zero entries, and one column with n − 2 zero entries. Since n > 6, at

least n+1
2
− 2 columns with exactly one zero entry are greater than n+1

2
.

If one of these columns with exactly one zero entry that are greater than n+1
2

has a

zero diagonal, then B is equivalent to the transpose of the pattern in Lemma 4.2.2.
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Suppose each of the columns with exactly one zero entry that are greater than n+1
2

has a nonzero diagonal. If the column with n − 2 zero entries and the column with 2

zero entries are both larger than n+1
2

, then all columns less than n+1
2

have exactly one

zero entry.

If column three of B has a zero diagonal, then B is equivalent to the transpose of the

pattern in Lemma 4.2.4.

Suppose column two of B has a zero diagonal. If there does not exists an (n, l) ∈ E(B)

with l /∈ {1, 2}, then column n of B has n − 2 zero entries. Thus, there exist a column

in A with n − 2 zero entries and a row with n − 2 zero entries. We have identified at

least 2n− 5 zero entries of A. Therefore there are at least n− 3 columns with at most

one zero entry. Indeed the zero entry of these columns must be in row n. Since n > 6,

we know there are at least two nonconsecutive columns (c1, c2) in A with a zero entry

in row n. Create G(C) by permuting the vertices of G(A), such that vertex i is vertex

(i−ck +1)mod(n). We choose k ∈ {1, 2}, such that vertex cj ≥ n+1
2

with j ∈ {1, 2}\{k}.

Since there exists an n-cycle, vertex (n− ck + 1)mod(n) 6= n in G(C). Thus row n in C

contains at most 2 zero entries. Column cj in C has exactly one zero entry, which is not

n. Thus, (n, cj), (cj, cj) ∈ E(C), there exists an l /∈ {1, cj} with (n, l) ∈ E(C) and for

exactly one vertex r /∈ {1, n}, (r, 1) /∈ E(C). Hence, C is equivalent to either the pattern

in Lemma 4.2.6, or the pattern in Lemma 4.2.7.

Suppose both columns two and three have nonzero diagonals. Create G(C) by per-

muting the vertices of B such that vertex i is vertex (i− 2)mod(n). Then column n− 1

in C is strictly nonzero and column one has exactly one zero entry off the diagonal. If
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there exists an l /∈ {1, n−1} such that (n, l) ∈ E(C), then C is equivalent to the transpose

of the pattern in either Lemma 4.2.6 or the pattern in Lemma 4.2.7.

If there does not exist an l /∈ {1, n − 1} such that (n, l) ∈ E(C), then C contains

n − 2 entries in row n. Thus, there exist a column in A with n − 2 zero entries and

a row with n − 2 zero entries. We have identified at least 2n − 5 zero entries of A.

Therefore there are at least n − 3 columns with at most one zero entry. Indeed the

zero entry of these columns must be in row n. Since n > 6, we know there are at least

two nonconsecutive columns (c1, c2) in A with a zero entry in row n. Create G(D) by

permuting the vertices of G(A), such that vertex i is vertex (i − ck + 1)mod(n). We

choose k ∈ {1, 2}, such that vertex cj ≥ n+1
2

with j ∈ {1, 2}\{k}. Since there exists

an n-cycle, vertex (n − ck + 1)mod(n) 6= n in G(D). Thus row n in D contains at

most 2 zero entries. Column cj in D has exactly one zero entry, which is not n. Thus,

(n, cj), (cj, cj) ∈ E(D), there exists an l /∈ {1, cj} with (n, l) ∈ E(D) and for exactly one

vertex r /∈ {1, n}, (r, 1) /∈ E(D). Hence, D is equivalent to either the pattern in Lemma

4.2.6, or the pattern in Lemma 4.2.7.

If the column with n− 2 zero entries and the column with 2 zero entries in B are not

both larger than n+1
2

, then there exist an l ≥ n+1
2

such that (n, l) ∈ E(B). We assumed

each column in B with exactly one zero entry that is greater than n+1
2

has a nonzero

diagonal. Thus, B is equivalent to the transpose of the pattern in Lemma 4.2.1.

Suppose there does not exists a strictly nonzero row of A. Then there exists n − 1

rows which contain exactly one zero entry.

Suppose there exists at least three rows whose one zero entry is on the diagonal.
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Thus there exists two nonconsecutive rows (c1, c2) whose one zero entry is along the

diagonal. Create G(B) by permuting the vertices of G(AT ), such that vertex i is vertex

(i−ck +1)mod(n). We choose k ∈ {1, 2}, such that vertex cj ≥ n+1
2

with j ∈ {1, 2}\{k}.

Thus B is equivalent to the transpose of the pattern in Lemma 4.2.2.

Suppose there exists at least n− 3 rows whose one zero entry lies off the diagonal. If

there exists an l ≥ n+1
2

such that (n, l) ∈ E(AT ), then AT is equivalent to the transpose

of either the pattern in Lemma 4.2.6 or the pattern in Lemma 4.2.7.

If there does not exists an l ≥ n+1
2

such that (n, l) ∈ E(AT ), then column n of A

contains n+1
2

zero entries. Thus we have identified at least n − 3 + n+1
2

zero entries in

A. We assume n > 6, so there exists at least three columns which contain at most one

zero entry and that zero entry must be in row n. Thus we can find two nonconsecutive

columns (c1, c2) whose one zero entry is in row n. Create G(B) by permuting the vertices

of G(A), such that vertex i is vertex (i − ck + 1)mod(n). We choose k ∈ {1, 2}, such

that vertex cj ≥ n+1
2

with j ∈ {1, 2}\{k}. Since there exists an n-cycle, vertex (n− ck +

1)mod(n) 6= n in G(B). Thus row n in B contains at most 2 zero entries. Column cj in

B has exactly one zero entry, which is not n. Thus, (n, cj), (cj, cj) ∈ E(B), there exists

an l /∈ {1, cj} with (n, l) ∈ E(B) and for exactly one vertex r /∈ {1, n}, (r, 1) /∈ E(B).

Hence, B is equivalent to either the pattern in Lemma 4.2.6, or the pattern in Lemma

4.2.7.

Hence A and all of its superpatterns are spectrally arbitrary.�

Theorem 4.2.11 Let A be an irreducible n×n zero-nonzero pattern with n > 6 and at

least n2 − 2n+ 3 nonzero entries with two or more nonzero entries on the diagonal.
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If G(A) contains an n-cycle, then A and all of its superpatterns are spectrally arbitrary

patterns.

Proof: Let A be an irreducible n × n zero-nonzero pattern with n > 6 and at least

n2− 2n+ 3 nonzero entries with two or more nonzero entries on the diagonal. Let G(A)

contain an n-cycle, without loss of generality, (1, 2, . . . , n, 1) is this n-cycle. Notice A is

a superpattern of Wn. We will consider the following cases to assist our proof:

1. There exists at least two strictly nonzero columns in A.

2. There does not exists a strictly nonzero column in A.

3. There exists exactly one strictly nonzero column in A.

Case 1 If there exists at least two strictly nonzero columns in A, then A is equivalent

to the pattern in Lemma 4.2.1. Hence, A and all of its superpatterns are spectrally

arbitrary.

Case 2 Suppose there does not exists a strictly nonzero column in A. If n− 2 columns

contain at least two zero entries and we require no column is strictly nonzero, then we

have identified 2(n− 2) + 2 = 2n− 2 zero entries in A. Thus, there exists at least three

columns that contain exactly one zero entry. We consider the following subcases:

i) There exists at least two columns of A that contain exactly one zero entry and have

a zero diagonal.



49

ii) There exists at least two columns of A that contain exactly one zero entry and have

a nonzero diagonal.

Subcase i) Suppose there exists at least two columns of A that contain exactly one

zero entry and have a zero diagonal. If these two columns are not consecutive, then

A is equivalent to the pattern in Lemma 4.2.2. If these two columns, (c1, c1 + 1) are

consecutive, then create G(B) by permuting the vertices of G(A) such that vertex i is

vertex (i − c1 + 1)mod(n). If there exists a vertex l /∈ {1, 2} such that (n, l) ∈ E(B),

then B is equivalent to the pattern in Lemma 4.2.3. Since A is equivalent to B, A and

all of its superpatterns are spectrally arbitrary.

If there does not exist a vertex l /∈ {1, 2} such that (n, l) ∈ E(B), then row n has

n− 2 zero entries. Thus, by Lemma 4.2.10, A and all of its superpatterns are spectrally

arbitrary

Subcase ii) Suppose there exists at least two columns of A that contain exactly one

zero entry and have a nonzero diagonal. Without loss of generality, these two columns

are column one and column c, where c ≥ n+1
2

. Choose r and s such that (r, 1) /∈ E(A)

and (s, c) /∈ E(A).

Suppose r > n− c+ 1.

Suppose s 6= n.

If c ≤ n− 1, then A is equivalent to a superpattern of the pattern in Lemma 4.2.6.

Hence A and all of its superpatterns are spectrally arbitrary.

Suppose s = n. Since we assume column c has a nonzero diagonal, we need not

consider c = n.



50

If c ≤ n − 2, we create a subpattern, B of A, with the same form as the pattern in

Lemma 4.2.6 except the entry bn,c = 0 and the entry bn−1,c = bn−c. Employing a similar

proof as that presented in Lemma 4.2.6, B and all of its superpatterns are spectrally

arbitrary. Hence, A and all of its superpatterns are spectrally arbitrary.

Suppose c = n− 1.

Suppose r = 2.

Suppose there exists an l /∈ {1, n− 1}, such that (n, l) ∈ E(A). Since column n− 1

has exactly one zero entry we know (1, n − 1) ∈ E(A). Thus A is equivalent to a

superpattern of the pattern in Lemma 4.2.5.

Suppose there does not exist an l /∈ {1, n − 1}, such that (n, l) ∈ E(A). Then row

n contains n − 2 zero entries. By Lemma 4.2.10, A and all of its superpatterns are

spectrally arbitrary.

If r 6= 2, create G(B) by permuting the vertices of G(A) such that vertex i is vertex

(i + 2)mod(n). If there exists an l /∈ {1, 3}, such that (n, l) ∈ E(B), then B is a

superpattern of the pattern in Lemma 4.2.8. Since A is equivalent to B, A and all of its

superpatterns are spectrally arbitrary.

Suppose there does not exist an l /∈ {1, 3}, such that (n, l) ∈ E(B). Then row

n contains n − 2 zero entries. By Lemma 4.2.10, B and all of its superpatterns are

spectrally arbitrary. Since A is equivalent to B, A and all of its superpatterns are

spectrally arbitrary.

Suppose r ≤ n − c + 1. Since we assume that column one has a nonzero diagonal,

this implies that c ≤ n− 1.
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Suppose s 6= n.

Suppose s 6= c+ r − 1.

If there exists an l /∈ {1, c} such that (n, l) ∈ E(A), then A is equivalent to a

superpattern of the pattern in Lemma 4.2.7. Hence A and all of its superpatterns are

spectrally arbitrary.

Suppose there does not exist an l /∈ {1, c}, such that (n, l) ∈ E(A). Then row

n contains n − 2 zero entries. By Lemma 4.2.10, A and all of its superpatterns are

spectrally arbitrary.

Suppose s = c+ r − 1.

If there exists an l /∈ {1, c} such that (n, l) ∈ E(A), we create a subpattern, B of

A, with the same form as the pattern in Lemma 4.2.7 except the entry bc+r−1,c = 0

and the entry bc+r−1,c = br−1. Employing a similar proof as that presented in Lemma

4.2.7, B and all of its superpatterns are spectrally arbitrary. Hence, A and all of its

superpatterns are spectrally arbitrary.

Suppose there does not exist an l /∈ {1, c}, such that (n, l) ∈ E(A). Then row

n contains n − 2 zero entries. By Lemma 4.2.10, A and all of its superpatterns are

spectrally arbitrary.

Suppose s = n.

Suppose c ≤ n− 2

If there exists an l /∈ {1, c} such that (n, l) ∈ E(A), we create a subpattern, B of A,

with the same form as the pattern in Lemma 4.2.7 except the entry bn,c = 0 and the

entry bn−1,c = bn−c. Employing a similar proof as that presented in Lemma 4.2.7, B and
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all of its superpatterns are spectrally arbitrary. Hence, A and all of its superpatterns

are spectrally arbitrary.

Suppose there does not exist an l /∈ {1, c}, such that (n, l) ∈ E(A). Then row

n contains n − 2 zero entries. By Lemma 4.2.10, A and all of its superpatterns are

spectrally arbitrary.

If c = n − 1, then r = 2. Since we assume that column n − 1 has exactly one zero

entry which we have identified as the last entry, (1, n − 1) ∈ E(A). If there exists an

l /∈ {1, c} such that (n, l) ∈ E(A), then A is equivalent to a superpattern of the pattern

in Lemma 4.2.5. Hence, A and all of its superpatterns are spectrally arbitrary.

Suppose there does not exist an l /∈ {1, c}, such that (n, l) ∈ E(A). Then row

n contains n − 2 zero entries. By Lemma 4.2.10, A and all of its superpatterns are

spectrally arbitrary.

Case 3 There exists exactly one strictly nonzero column in A.

Without loss of generality let column 1 be the strictly nonzero column. If each of

the remaining columns contain two or more zero entries, then there would be at least

2(n− 1) = 2n− 2 > 2n− 3 zero entries, a contradiction. Hence there exists a column c

with at most one zero entry. Choose vertex j such that (j, c) /∈ E(A). We consider the

following subcases:

i) Vertex j = c.

ii) Vertex j 6= c.

Subcase i) Suppose j = c.
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Suppose c = 2. If there exists an l ≥ 3 such that (n, l) ∈ E(A), then A is equivalent

to a superpattern of the pattern in Lemma 4.2.3. Thus, A and all of its superpatterns

are spectrally arbitrary.

Suppose there does not exist an l ≥ 3, such that (n, l) ∈ E(A). Then row n contains

n − 2 zero entries. By Lemma 4.2.10, A and all of its superpatterns are spectrally

arbitrary.

If c = 3, then A is equivalent to a superpattern of the pattern in Lemma 4.2.4.

Hence, A and all of its superpatterns are spectrally arbitrary.

If 4 ≤ c < n+1
2

, create G(B) by permuting the vertices of G(A) such that vertex i

is vertex (i − c + 1)mod(n). Then B is equivalent to a superpattern of the pattern in

Lemma 4.2.2. Thus, B and all of its superpatterns are spectrally arbitrary. Since B is

equivalent to A, A and all of its superpatterns are spectrally arbitrary.

If n+1
2
≤ c ≤ n− 2, A is equivalent to a superpattern of the pattern in Lemma 4.2.2.

Thus, A and all of its superpatterns are spectrally arbitrary.

If c = n − 1, create G(B) by permuting the vertices of G(A) such that vertex i is

vertex (i+ 2)mod(n). Then B is equivalent to a superpattern of the pattern in Lemma

4.2.4. Thus, B and all of its superpatterns are spectrally arbitrary. Since B is equivalent

to A, A and all of its superpatterns are spectrally arbitrary.

If c = n, create G(B) by permuting the vertices of G(A) such that vertex i is vertex

(i+ 1)mod(n).

Suppose there exist an l ≥ 3 such that (n, l) ∈ E(B). Then B is equivalent to a

superpattern of the pattern in Lemma 4.2.3. Thus, B and all of its superpatterns
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are spectrally arbitrary. Since B is equivalent to A, A and all of its superpatterns are

spectrally arbitrary.

Suppose there does not exist an l ≥ 3, such that (n, l) ∈ E(B). Then row n contains

n − 2 zero entries. By Lemma 4.2.10, B and all of its superpatterns are spectrally

arbitrary. Since B is equivalent to A, A and all of its superpatterns are spectrally

arbitrary.

Subcase ii) Vertex j 6= c.

We considered c = n, in Subcase i), thus we will not consider c = n.

If 2 ≤ c < n+1
2

, create G(B) by permuting the vertices of G(A) such that vertex i is

vertex (i− c+ 1)mod(n). Label 1− c− 1 = −c with ĉ and observe that n+1
2
≤ ĉ ≤ n− 1

and column ĉ is strictly nonzero. Thus, B is equivalent to a superpattern of a pattern

in Case 2, subcase ii). Since B is equivalent to A, A and all of its superpatterns are

spectrally arbitrary.

If n+1
2
≤ c ≤ n − 1, then A is a superpattern of a pattern in Case 2, subcase ii).

Hence, A and all of its superpatterns are spectrally arbitrary.

Hence A and all of its superpatterns are spectrally arbitrary.�
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Chapter 5

Properties of patterns that contain exactly one

transversal

The bound of n2−2n+3 nonzero entries needed to guarantee an irreducible pattern, A,

is spectrally arbitrary may be refined to n(n+1)
2

+ 1 nonzero entries, if we require there

exist a A− which contains exactly one transversal. In this chapter we frequently refer

to the pattern L =



∗ 0 · · · 0 0

∗ ∗ · · · 0 0

...
...

. . .
...

...

∗ ∗ · · · ∗ 0

∗ ∗ · · · ∗ ∗


Conjecture 5.0.12 Let A be an n×n irreducible zero-nonzero pattern with exactly one

transversal and n(n+1)
2

nonzero entries, at least two of which lie on the diagonal, then

A+ and its superpatterns are spectrally arbitrary.

The current proof of this result is quite lengthy, it is omitted from this thesis in hopes

of refining it to a much shorter length in the near future. We include the necessary

lemmas required to prove the theorem.

To begin, we show that if A has only one transversal and n(n+1)
2

nonzero entries, then
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A is similar to LQ, for some permutation matrix Q. There are several nice properties

in the associated weighted digraph of L. For example if li,j = 0, then lj,i 6= 0. In G(L),

if vertex i has access to vertex j, then i ≥ j. Thus for G(LQ), if vertex i has access to

vertex j, then i ≥ s−1(j), where s is the permutation which formed Q. We exploit this

property frequently in the following work. First we establish which permutations create

the appropriate number of nonzero entries on the diagonal.

Lemma 5.0.13 LQ will have at least two nonzero entries along the diagonal whenever

Q is not formed from the permutation s = (123...(n− 2)(n− 1)n).

Proof: Let s ∈ Sn. Recall that (lq)i,j = li,s(j). So, LQ will have a zero diagonal

entry whenever s(i) > i. Suppose LQ has fewer than 2 nonzero diagonal entries. We

claim that s(n − k) = n − k + 1 for k = 1, ..., n − 1. For k = 1, we must have that

s(n−1) > n−1, which requires s(n−1) = n. Suppose that up to k s(n−k) = n−k+1.

We must have that s(n − (k + 1)) = s(n − k − 1) > n − k − 1. The only number

which is larger than n − k − 1, which has not been previously assigned is n − k, hence

s(n − k − 1) = n − k. Thus, for all k = 1, ...n − 1, s(n − k) = n − k + 1. Lastly, this

requires s(n) = 1, producing our permutation s.

Conversely, if s = (123...(n− 2)(n− 1)n) then LQ =



0 0 · · · 0 ∗

∗ 0 · · · 0 ∗

∗ ∗ · · · 0 ∗

∗ ∗ · · · ∗ ∗


which has

only one nonzero diagonal entry.�
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We have now established which permutations satisfy the two nonzero entries along

the diagonal requirement of Theorem 5.0.12. Next we establish which permutations

satisfy the irreducible requirement of Theorem 5.0.12.

Lemma 5.0.14 LQ is reducible if and only if there exist k < n such that {s(1), s(2), ...

. . . , s(k)} = {1, 2, ..., k}, where s is the permutation which forms Q.

Proof: Suppose that there exist k < n such that {s(1), s(2), ..., s(k)} = {1, 2, ..., k},

where s is the permutation which forms Q. Then G(LQ) has no edges from vertices

{1, 2, ..., k} to vertices {k+1, k+2, ..., n}. So G(LQ) is reducible. Hence LQ is reducible

as well.

Conversely, suppose LQ is reducible. Notice that {s(1), s(2), ..., s(k)} = {1, 2, ..., k}

if and only if {s−1(1), s−1(2), ..., s−1(k)} = {1, 2, ..., k}. Since LQ is reducible, G(LQ) is

reducible. So we may partition G(LQ) into two disjoint nonempty digraphs I and J

such that there is no edge from I to J . Every vertex in G(LQ) has an edge to s−1(1),

so s−1(1) ∈ I. Let p be the size of I.

Suppose vertex 1 ∈ J . So s−1(1) 6= 1. We claim that s−1(k) ∈ I for all k = 1, 2, ..., n.

Since s−1(1) 6= 1 and all vertices except vertex 1 have access to s−1(2), s−1(1) has access

to s−1(2). So, s−1(2) ∈ I. Suppose that s−1(k) has access to every vertex from s−1(1) up

to s−1(k). So s−1(i) ∈ I for i = 1, 2, ..., k. Now all vertices except 1,2,...,k have access to

s−1(k + 1). So there exist a vertex in I with access to s−1(k + 1). Thus s−1(k + 1) ∈ I.

Hence, s−1(k) ∈ I for k = 1, 2, ..., n. A contradiction, since J and I are disjoint and

nonempty.
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Thus 1 ∈ I. Suppose that there is no k < n such that {s−1(1), s−1(2), ..., s−1(k)} =

{1, 2, ..., k}. Recall s−1(1) ∈ I. We claim that s−1(i) ∈ I for all i = 1, 2, ..., n. If

{s−1(1)} 6= {1}, then s−1(1) has access to vertex s−1(2). This implies that s−1(2) ∈ I.

Suppose that s−1(i) ∈ I for all i = 1, 2, ..., k. Now if {s−1(1), s−1(2), ..., s−1(k)} 6=

{1, 2, ..., k} then at least one of {s−1(1), s−1(2), ..., s−1(k)} must have an edge to s−1(k+

1). Hence, s−1(k + 1) ∈ I. Thus, {s−1(1), s−1(2), ..., s−1(i)} ∈ I for all i = 1, 2, ..., n.

Contradiction, J and I are disjoint and nonempty. Thus, there must exist a k < n such

that {s−1(1), s−1(2), ..., s−1(k)} = {1, 2, ..., k}.�

We have established which permutations do not allow LQ to satisfy the two nonzero

diagonal entries and irreducible requirements of Theorem 5.0.12. We use these results

to prove that all such A which satisfy the conditions in Theorem 5.0.12 will be similar

to LQ were Q is one of our allowed permutations.

Lemma 5.0.15 For every n × n zero-nonzero pattern A with exactly one transversal,

n(n+1)
2

nonzero entries, two of which lie on the diagonal, there exists a permutation

matrix Q such that A ∼ LQ.

Proof: If A has a transversal, then there exist a permutation matrix P that is a

subpattern of A. Letting Q = P−1, AQ places this transversal in A, onto the diagonal

of AQ. Suppose A is a 2× 2. So AQ is either upper or lower triangular. If AQ is upper

triangular let P =

 0 1

1 0

. Notice that PAQP T = L, or AQ ∼ L.

Suppose AQ ∼ L for any A that is k×k with k = 1, 2, ..., n. Let A be (n+1)×(n+1).

Notice that (aq)i,j = 0 if and only if (aq)j,i 6= 0. Otherwise, AQ would
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have an extra transversal or too few nonzero entries. Partition A as follows; AQ = b c

d A1

, where b ∈ R, cT ∈ Rn−1, d ∈ Rn−1, and A1 ∈ R(n−1)×(n−1). A1 satisfies

the inductive hypothesis, so there exist a P1 ∈ R(n−1)×(n−1) such that if P =

 1 0

0 P1

,

then PAQP−1 ∼

 b c

d L

. Suppose that there exist i < j such that ci = 0 and cj 6= 0.

This forces di 6= 0 and dj = 0. This gives the 3-cycle, (1(j + 1)(i + 1)), which we may

pair with n− 3 loops to get a transversal. Contradiction, of the number of transversals

contained in A.

Thus, if cj 6= 0, then ck 6= 0 for all 1 ≤ k ≤ j − 1. Choose largest such j. Let

Dj+1 =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

1 0 0 · · · 0


be in R(j+1)×(j+1) and D =

 Dj+1 0

0 In−j−1

. Then

DPAQ(DP )T = L, or AQ ∼ L.�

It is well known that a necessary condition for a pattern to be spectrally arbitrary

is that the corresponding graph contain at least two transversals. We show that G(A+)

will indeed have at least two transversals.

Lemma 5.0.16 If A is an irreducible n× n zero-nonzero pattern with n(n+1)
2

nonzero
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entries at least two along the diagonal and A ∼ LQ for some permutation matrix Q,

then adding a nonzero entry to LQ, adds a transversal to G(A).

Proof: Let (lq)i,j = li,s(j) be the entry which is now nonzero. Since this entry must lie

in the upper triangular portion of L, we see that s(j) > i. So we have a new transversal

in L+, namely {(is(j)), (s(j)i), (1, 1), (2, 2), .., (i−1, i−1)(i+1, i+1), ..., (s(j)−1, s(j)−

1), (s(j) + 1, s(j) + 1), ..., (n− 1, n− 1), (n, n)}. Thus, we have at least two transversals

in L+. So, there are at least two permutation matrices P1 and P2 that are subpatterns

of L+. Then P1Q and P2Q are subpatterns of (LQ)+. If A = SLQST , then SP1QS
T

and SP2QS
T are subpatterns of A+. Hence G(A+) has at least two transversals. Thus,

adding a nonzero entry to LQ adds at least one transversal to any G(A) where, A ∼

LQ.�
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Chapter 6

Conclusions and Future Work

Further study of complex zero-nonzero patterns is encouraged. As shown in this thesis,

complex patterns have many interesting properties not found in real patterns. Dif-

ferences in studying spectrally arbitrary patterns between the real and complex cases

appear to arise from the fact that all polynomials factor linearly over C. The study

of complex zero-nonzero patterns will lead to a more complete understanding of real

zero-nonzero patterns. Of particular interest is to study the Nilpotent-Jacobian method

and Implicit Function Theorem in more depth. Perhaps revealing whether or not it is a

necessary condition for real spectrally arbitrary patterns.

As stated in the introduction, Theorem 4.2.3 holds for complex zero-nonzero patterns.

Future study will be investigation into the relationship between the bound on the number

of nonzero entries and the cycle structure of the underlining coefficient functions of pA(t).

Lastly establishing how this bound is effected by viewing the nonzero entries of A over

C.

Lastly refinement of the proof of Theorem 5.0.5 is a future goal. Future work will

be investigation into how the number of transversals contained in a pattern effects the

bound on the number of nonzero entries needed to guarantee that A is a spectrally

arbitrary pattern.
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APPENDIX A

Irreducible minimally spectrally arbitrary patterns with eight nonzero entries

Complex minimally spectrally arbitrary patterns that are not real

spectrally arbitrary patterns

∗ ∗ 0 0

∗ 0 ∗ 0

0 0 ∗ ∗

∗ 0 0 ∗





∗ ∗ 0 0

0 0 ∗ ∗

0 0 ∗ ∗

∗ ∗ 0 0





∗ ∗ 0 0

0 ∗ ∗ 0

0 0 ∗ ∗

∗ 0 0 ∗





∗ ∗ ∗ 0

0 ∗ ∗ 0

0 0 ∗ ∗

∗ 0 0 0





∗ ∗ 0 0

0 ∗ ∗ ∗

0 0 ∗ ∗

∗ 0 0 0




∗ ∗ 0 ∗

0 ∗ ∗ 0

∗ 0 0 0

0 0 ∗ ∗


Patterns that are both complex minimally spectrally arbitrary

and real minimally spectrally arbitrary

∗ ∗ 0 0

∗ 0 ∗ ∗

0 0 ∗ ∗

∗ 0 0 0





∗ ∗ 0 0

∗ 0 ∗ 0

0 0 ∗ ∗

∗ ∗ 0 0





∗ ∗ 0 0

∗ 0 ∗ 0

0 0 ∗ ∗

∗ 0 ∗ 0





∗ ∗ 0 0

∗ 0 ∗ 0

∗ 0 0 ∗

∗ 0 0 ∗





∗ ∗ 0 0

∗ 0 ∗ 0

0 0 0 ∗

∗ ∗ 0 ∗


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

∗ ∗ 0 0

∗ 0 ∗ 0

0 0 0 ∗

∗ 0 ∗ ∗





∗ ∗ 0 ∗

∗ 0 ∗ 0

0 0 ∗ ∗

0 ∗ 0 0





∗ ∗ 0 0

∗ 0 ∗ ∗

0 0 ∗ ∗

0 ∗ 0 0





∗ ∗ 0 0

∗ 0 ∗ 0

0 0 ∗ ∗

0 ∗ ∗ 0





∗ ∗ 0 0

∗ 0 ∗ 0

0 0 ∗ ∗

0 ∗ 0 ∗




0 ∗ 0 ∗

∗ 0 ∗ 0

0 0 ∗ ∗

0 ∗ 0 ∗





∗ 0 0 ∗

∗ 0 ∗ ∗

0 0 ∗ ∗

0 ∗ 0 0





∗ ∗ 0 0

∗ 0 ∗ 0

0 ∗ 0 ∗

0 0 ∗ ∗


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APPENDIX B

Irreducible minimally spectrally arbitrary patterns with nine nonzero entries

Complex minimally spectrally arbitrary patterns that are not

real spectrally arbitrary patterns

∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 ∗

∗ ∗ 0 0


Patterns that are both complex minimally spectrally arbitrary

and real minimally spectrally arbitrary

∗ ∗ 0 ∗

∗ ∗ ∗ 0

0 0 ∗ ∗

∗ 0 0 0





∗ ∗ ∗ 0

∗ ∗ ∗ ∗

0 0 0 ∗

∗ 0 0 0





∗ ∗ 0 0

∗ 0 ∗ ∗

0 ∗ 0 ∗

∗ 0 0 ∗





0 ∗ ∗ 0

∗ 0 ∗ 0

∗ 0 ∗ ∗

∗ 0 0 ∗





0 ∗ ∗ 0

∗ 0 ∗ 0

0 0 ∗ ∗

∗ ∗ 0 ∗




0 ∗ 0 0

∗ 0 ∗ ∗

∗ 0 ∗ ∗

∗ 0 0 ∗





∗ ∗ 0 0

0 ∗ ∗ ∗

∗ 0 0 ∗

∗ ∗ 0 0





0 ∗ 0 0

0 ∗ ∗ ∗

∗ 0 0 ∗

∗ ∗ 0 ∗





∗ ∗ 0 0

∗ ∗ ∗ ∗

0 0 0 ∗

0 ∗ ∗ 0





0 ∗ 0 0

∗ ∗ ∗ 0

0 0 ∗ ∗

0 ∗ ∗ ∗


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

0 ∗ 0 0

∗ 0 ∗ ∗

0 0 ∗ ∗

0 ∗ ∗ ∗





∗ ∗ 0 0

∗ ∗ ∗ 0

0 ∗ ∗ ∗

0 0 ∗ 0





0 ∗ ∗ ∗

∗ ∗ 0 0

∗ 0 ∗ 0

∗ 0 0 ∗


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APPENDIX C

Irreducible patterns with nine nonzero entries that are

NOT complex (real) spectrally arbitrary.

In addition to this list, any patterns with nine nonzero entries that have a pattern from

Appendix D as a superpattern, are NOT complex spectrally arbitrary.

∗ ∗ 0 0

∗ ∗ ∗ ∗

∗ 0 0 ∗

∗ 0 0 0





∗ ∗ ∗ 0

∗ 0 ∗ ∗

0 0 0 ∗

∗ 0 0 ∗





∗ ∗ 0 0

∗ 0 ∗ 0

∗ ∗ ∗ ∗

0 ∗ 0 0





0 ∗ 0 0

∗ 0 ∗ ∗

0 ∗ ∗ ∗

0 ∗ 0 ∗





∗ 0 0 ∗

∗ ∗ ∗ ∗

0 0 0 ∗

0 ∗ 0 ∗




∗ ∗ ∗ ∗

∗ ∗ 0 0

∗ 0 ∗ 0

∗ 0 0 0





∗ ∗ 0 ∗

∗ ∗ ∗ 0

0 0 0 ∗

∗ 0 ∗ 0





∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ 0 0 ∗

∗ 0 0 0





∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 ∗

∗ 0 ∗ 0





∗ ∗ 0 0

∗ ∗ ∗ 0

∗ 0 0 ∗

∗ 0 ∗ 0


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APPENDIX D

Irreducible patterns with ten nonzero entries that are

NOT complex (real) spectrally arbitrary.

∗ ∗ 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

∗ 0 0 0





∗ ∗ 0 ∗

∗ ∗ ∗ ∗

∗ 0 0 ∗

∗ 0 0 0





∗ ∗ ∗ ∗

∗ 0 ∗ 0

∗ 0 ∗ ∗

∗ 0 0 0





∗ ∗ ∗ 0

∗ 0 ∗ 0

∗ ∗ ∗ ∗

∗ 0 0 0





∗ ∗ 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

0 ∗ 0 0




∗ ∗ 0 ∗

∗ ∗ ∗ ∗

0 ∗ 0 ∗

0 ∗ 0 0





0 ∗ 0 0

∗ ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ 0 ∗





0 ∗ 0 0

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 ∗ 0 0





0 ∗ 0 0

∗ ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ 0





0 ∗ 0 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

0 ∗ ∗ 0


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APPENDIX E

Proofs for Lemmas 4.2.1-4.2.8

Lemma 4.2.1

Proof Choose c and h such that n+1
2
≤ c ≤ n and c ≤ h ≤ n. Let B be the superpattern

of Wn created by making the following entries nonzero:

• The entry b1,1 = a1.

• The entry bn,c = bn−c+1.

• The entry bh,h = x.

The following are the coefficient functions for the characteristic polynomial of B:

f1 = −a1 − x;

fk = −ak + qk for 2 ≤ k ≤ n− c;

fn−c+1 = −an−c+1 − bn−c+1 + qn−c+1;

fk = −ak + bn−c+1ak−n+c−1 + qk for n− c+ 2 ≤ k ≤ n;

For each of the coefficient functions fk, qk is the sum of the following terms when

defined:

xak−1 for 2 ≤ k ≤ h;

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a1, a2, a3, . . . , an−1, an

evaluated at any nilpotent realization is (−1)n. If we can guarantee a nilpotent realiza-

tion for B exists, then this pattern and all of its superpatterns are spectrally arbitrary.

Solving for each ak in fk = 0 and applying back substitution, ak = −xk for 1 ≤ k ≤ h.

For h+ 1 ≤ k ≤ n, ak is a polynomial in x of degree k − n+ c− 1. Thus, there exists a
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nilpotent realization of B. Therefore B satisfies the Nilpotent-Jacobian method. Hence,

B and all of its superpatterns are spectrally arbitrary.�

Lemma 4.2.2

Proof Choose c, g and h such that n+1
2
≤ c ≤ n − 2 and 1 ≤ g < h ≤ n. Let B be the

superpattern of Wn created by making the following entries nonzero:

• Entry bn,c = bn−c+1.

• Entry bc+1,c = b2.

• Entry bc+2,c = b3.

• Entry bg,g = a1.

• Entry bh,h = x.

The following are the coefficient functions for the characteristic polynomial of B:

f1 = −a1 − x;

f2 = −a2 − b2 + q2;

f3 = −a3 − b3 + q3;

f4 = −a4 + b2a2 + q4;

fk = −ak + b2ak−2 + b3ak−3 + qk for 5 ≤ k ≤ n− c;

fn−c+1 = −an−c+1 − bn−c+1 + b2an−c−1 + b3an−c−2 + qn−c+1;

fn−c+2 = −an−c+2 + b2an−c + b3an−c−1 + qn−c;

fk = −ak + b2ak−2 + b3ak−3 + bn−c+1ak−n+c−1 + qk for 5 ≤ k ≤ c+ 1;

fc+2 = −ac+2 + b3ac−1 + bn−c+1a2c−n+1 + qc+2;



70

fk = −ak + bn−c+1ak−n+c−1 + qk for c+ 3 ≤ k ≤ n;

For each of the coefficient functions fk, qk is the sum of the following terms when

defined:

xy for k = 2;

xak−1 for 3 ≤ k ≤ g if g ≥ 3;

−xyak−2 for 4 ≤ k ≤ g + 1 if g ≥ 3;

xb2 for k = 3 if g < c;

xb3 for k = 4 if g < c;

xbn−c+1 for k = n− c+ 2 if g < c;

−xb2ak−3 for 5 ≤ k ≤ g + 2 if 3 ≤ g < c;

−xb3ak−4 for 6 ≤ k ≤ g + 3 if 3 ≤ g < c;

−xbn−c+1ak−n+c−1 for n− c+ 3 ≤ k ≤ g + n− c if 3 ≤ g < c;

−xyb2 for k = 4 if h < c;

−xyb3 for k = 5 if h < c;

−xybn−c+1 for k = n− c+ 3 if h < c;

xyb2ak−3 for 5 ≤ k ≤ g + 2 if 3 ≤ g < h < c;

xyb3ak−4 for 6 ≤ k ≤ g + 3 if 3 ≤ g < h < c;

xybn−c+1ak−n+c−1 for n− c+ 3 ≤ k ≤ g + n− c if 3 ≤ g < h < c;

yak−1 for 3 ≤ k ≤ h if h ≥ 3;

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a1, a2, a3, . . . , an−1, an

evaluated at any nilpotent realization is (−1)n. If we can guarantee a nilpotent realiza-

tion for B exists, then this pattern and all of its superpatterns are spectrally arbitrary.
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Solving for each ak in fk = 0 and applying back substitution we achieve the following

expressions for ak:

Suppose c ≤ h.

For n− c+ 1 ≤ k ≤ n, let m = b c
n−c+1

c. Then ak is a polynomial in bn−c+1 of degree

i for k = i(n− c+ 1) + p, 1 ≤ i ≤ m, and 0 ≤ p ≤ n− c and degree m+ 1 otherwise.

If g ∈ {1, 2}, then ak = −xk for 1 ≤ k ≤ n− c.

If g /∈ {1, 2}, the following are nonzero expressions for ak:

a1 = −x;

a2 = −x2;

a3 = −b3;

For 4 ≤ k ≤ n− c ak is a polynomial in x of degree k if k is even and of degree k− 3

if k is odd.

Suppose c > h.

If g ∈ {1, 2}, then ak = −xk for 1 ≤ k ≤ min{h, n− c}.

If h = min{h, n − c}, then for h < k ≤ n − c, ak is a polynomial in x of degree

h− (i)mod(2) where k = h+ i.

For n− c+ 1 ≤ k ≤ n, let m = b c
n−c+1

c. Then ak is a polynomial in bn−c+1 of degree

i for k = i(n− c+ 1) + p, 1 ≤ i ≤ m, and 0 ≤ p ≤ n− c and degree m+ 1 otherwise.

If n − c = min{h, n − c}, for n − c + 1 ≤ k ≤ n, let m = b c
n−c+1

c. Then ak is a

polynomial in bn−c+1 of degree i for k = i(n− c+ 1) + p, 1 ≤ i ≤ m, and 0 ≤ p ≤ n− c

and degree m+ 1 otherwise.

If g /∈ {1, 2}, the following are nonzero expressions for ak:
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a1 = −x;

a2 = −x2;

a3 = −b3;

For 4 ≤ k ≤ min{h, n− c}, ak = −xk for k even and ak = −xk−3 for k odd.

If h = min{h, n− c}, for 1 ≤ i ≤ n− c− h and k = h+ i, ak is a polynomial in x of

degree h− (i)mod(2) where if k is even and of degree h− (i)mod(2)− 3 if k is odd.

For n− c+ 1 ≤ k ≤ n, let m = b c
n−c+1

c. Then ak is a polynomial in bn−c+1 of degree

i for k = i(n− c+ 1) + p, 1 ≤ i ≤ m, and 0 ≤ p ≤ n− c and degree m+ 1 otherwise.

If n − c = min{h, n − c}, for n − c + 1 ≤ k ≤ n, let m = b c
n−c+1

c. Then ak is a

polynomial in bn−c+1 of degree i for k = i(n− c+ 1) + p, 1 ≤ i ≤ m, and 0 ≤ p ≤ n− c

and degree m+ 1 otherwise.

Therefore, we can choose x and bn−c+1 such that a nilpotent realization of B exists.

Thus B satisfies the Nilpotent-Jacobian condition. Hence B, and all of its superpatterns,

are spectrally arbitrary.�

Lemma 4.2.3

Proof Choose g, h and l such that 1 ≤ g < h ≤ n and 3 ≤ l ≤ n. Let B be the

superpattern of Wn created by making the following entries nonzero:

• For all k ≥ 3, bk,2 = bk−1.

• Entry bg,g = a1.

• Entry bh,h = x.

• Entry bn,l = y.
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Then the following are the coefficient functions for the characteristic polynomial of B:

f1 = −a1 − x;

fk = −ak − bk + qk for 2 ≤ k ≤ n− 1;

fn = −an + qn;

For each of the coefficient functions fk, qk is the sum of the following terms when

defined:

a1x for k = 2;

a1ak−1 for 3 ≤ k ≤ g and g ≥ 3;

xak−1 for 3 ≤ k ≤ h and h ≥ 3;

−xa1ak−2 for 4 ≤ k ≤ g + 1 and g ≥ 3;

a1bk−1 for 3 ≤ k ≤ g − 1 and g ≥ 4;

xbk−1 for 3 ≤ k ≤ h− 1 and h ≥ 4;

−xa1bk−2 for 4 ≤ k ≤ g and g ≥ 4;

−y for k = n− l + 1;

a1y for k = n− l + 2 and g < l;

xy for k = n− l + 2 and h < l;

−xa1y for k = n− l + 3 and h < l;

yak−n+l−1 for n− l + 3 ≤ k ≤ n;

ybk−n+l for n− l + 2 ≤ k ≤ n− 2 if l ≥ 4;

−a1yak−n+l−2 for n− l + 4 ≤ k ≤ n− l + g + 1 if l ≥ g + 1;

−xyak−n+l−2 for n− l + 4 ≤ k ≤ n− l + h+ 1 if l ≥ h+ 1;

−a1ybk−n+l−2 for n− l + 4 ≤ k ≤ n− l + g if g ≥ 4 and l ≥ g + 1;
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−xybk−n+l−2 for n− l + 4 ≤ k ≤ n− l + h if h ≥ 4 and l ≥ h+ 1;

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a1, a2, a3, . . . , an−1, an

evaluated at any nilpotent realization is (−1)n. If we can guarantee a nilpotent realiza-

tion for B exists, then this pattern and all of its superpatterns are spectrally arbitrary.

Solving for each ak in fk = 0 and applying back substitution the following are nonzero

expressions for ak:

a1 = −x;

For 2 ≤ k ≤ n− 1 each ak is a linear function in bk and an is a linear function in y.

Therefore, we can choose y and bk for 2 ≤ k ≤ n − 1 such that a nilpotent realization

of B exists. Thus, B satisfies the Nilpotent-Jacobian condition. Hence, B, and all of its

superpatterns are spectrally arbitrary.�

Lemma 4.2.4

Proof Choose g and h such that 1 ≤ g < h ≤ n. Let B be the superpattern of Wn

created by making the following entries nonzero:

• For all k ≥ 4, bk,3 = bk−2.

• Entry bg,g = a1.

• Entry bh,h = x.

The following are the coefficient functions for the characteristic polynomial of B:

f1 = −a1 − x;

f2 = −a2 − b2 + q2;

fk = −ak − bk + a2bk−2 + qk for 3 ≤ k ≤ n− 2;
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fn−1 = −an−1 + a2bn−3 + qn−1;

fn = −an + a2bn−2 + qn;

For each of the coefficient functions fk, qk is the sum of the following terms when

defined:

a1ak−1 for 3 ≤ k ≤ g if g ≥ 3;

xak−1 for 3 ≤ k ≤ h if h ≥ 3;

−a1xak−2 for 4 ≤ k ≤ g + 1 if g ≥ 3;

a1bk−1 for 3 ≤ k ≤ g − 2 if g ≥ 5;

xbk−1 for 3 ≤ k ≤ h− 2 if h ≥ 5;

−a1xbk−2 for 4 ≤ k ≤ g − 1 if g ≥ 5;

−a1a2bk−3 for 5 ≤ k ≤ g, if g ≥ 5;

−xa2bk−3 for 5 ≤ k ≤ h if h ≥ 5;

a1xa2bk−4 for 6 ≤ k ≤ g + 1 if g ≥ 5;

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a1, a2, . . . , an−1, an

evaluated at any nilpotent realization is (−1)n. If we can guarantee a nilpotent realiza-

tion for B exists, this pattern and all of its superpatterns are spectrally arbitrary.

Solving for ak in each of the equations fk = 0 and applying back substitution, the

following are nonzero expressions for ak:

a1 = −x;

Observe that for 2 ≤ k ≤ n, ak is a linear function in bk. Thus, we can choose x, and

bk for 2 ≤ k ≤ n− 2, such that a nilpotent realization of B exists. Thus B satisfies the

Nilpotent-Jacobian condition. Hence B, and all of its superpatterns, are
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spectrally arbitrary.�

Lemma 4.2.5

Proof Choose l such that l /∈ {1, n−1}. Let C be a subpattern ofWn where entry c2,1 = 0.

Let B be the superpattern of C created by making the following entries nonzero:

• Entry b1,1 = a1.

• Entry bn−1,n−1 = b1.

• Entry bn,l = x.

• Entry b1,n−1 = a2.

The following are the coefficient functions for the characteristic polynomial of B:

f1 = −a1 − b1;

f2 = a1b1 + q2;

f3 = −a3 + q3;

fk = −ak + b1ak−1 + qk for 4 ≤ k ≤ n− 1;

fn = −an + qn;

For each of the coefficient functions fk, qk is the sum of the following terms when

defined:

−a2an−1 for k = 2;

−a2an for k = 3;

−a2ak+l−4 for 4 ≤ k ≤ n− l + 2;

−x for k = n− l + 1;
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xak−n+l−1 for n− l + 2 ≤ k ≤ n

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a1, a2, a3 . . . , an−1, an

evaluated at any nilpotent realization is (−1)nan − g, where g is a function of x, a2 and

b1. If we can guarantee a nilpotent realization for B exists, this pattern and all of its

superpatterns are spectrally arbitrary.

Solving for ak in each of the equations fk = 0 and applying back substitution, the

following are nonzero expressions for ak:

a1 = −b1;

y =
−b21
an−1

;

a3 =
anb21
an−1

;

Notice ak is a polynomial in b1 of degree k−1 for 4 ≤ k ≤ n−1. Thus, we can choose

b1 and x such that a nilpotent realization of B exists. Thus B satisfies the Nilpotent-

Jacobian condition. Hence B, and all of its superpatterns, are spectrally arbitrary.�

Lemma 4.2.6

Proof Choose c, r, and l such that n+1
2
≤ c ≤ n, n− c + 2 ≤ r ≤ n− 1, and l /∈ {1, c}.

We require that c = n if and only if r 6= 2. Let C be a subpattern of Wn where entry

cr,1 = 0. Let B be the superpattern of C created by making the following entries nonzero:

• Entry bn,c = bn−c+1.

• Entry b1,1 = a1.

• Entry bc,c = b1.

• Entry bn,l = x.
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The following are the coefficient functions for the characteristic polynomial of B:

f1 = −a1 − b1;

fk = −ak + b1ak−1 + qk for 2 ≤ k ≤ n− c;

fn−c+1 = −an−c+1 + b1an−c − bn−c+1 + qn−c+1;

fk = −ak + b1ak−1 + bn−c+1ak−n+c−1 + qk for n− c+ 2 ≤ k ≤ r − 1;

fr = b1ar−1 + bn−c+1ar−n+c−1 + qr;

fk = −ak + b1ak−1 + bn−c+1ak−n+c−1 + qk for r ≤ k ≤ c− 1;

fk = −ak + bn−c+1ak−n+c−1 + qk for c ≤ k ≤ n;

In each fk, the qk are the sum of the following terms where defined:

−x for k = n− l + 1;

xak−n+l−1 for n− l + 2 ≤ k ≤ n;

xb1 for k = n− l + 2 if l > c;

−xb1ak−n+l−2 for n− l + 3 ≤ k ≤ n− l + c+ 1 if l > c;

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a1, b1, a2, a3, . . . , ar−1,

ar+1, ar+2, . . . , an evaluated at any nilpotent realization is (−1)n2bc−2
1 + g, where g is a

function of x, bn−c+1 and b1. If we can guarantee a nilpotent realization for B exists, this

pattern and all of its superpatterns are spectrally arbitrary.

Solving for ak in each of the equations fk = 0 and applying back substitution, for

1 ≤ k ≤ r − 1, ak is a polynomial in b1 of degree k. We choose to solve for bn−c+1 in

fr = 0, setting bn−c+1 = bn−c+1
1 . For r + 1 ≤ k ≤ n, ak is a polynomial in b1 of degree k.

Thus, we can choose x, b1 such that a nilpotent realization of B exists. Thus B satisfies

the Nilpotent-Jacobian condition. Hence B, and all of its superpatterns, are
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spectrally arbitrary.�

Lemma 4.2.7

Proof Choose c, r, and l such that n+1
2
≤ c ≤ n−1, 2 ≤ r ≤ n−c+1, and l /∈ {1, c}. Let

C be a subpattern of Wn where entry cr,1 = 0. Let B be the superpattern of C created

by making the following entries nonzero:

• Entry bn,c = bn−c+1.

• Entry b1,1 = a1.

• Entry bc,c = b1.

• Entry bn,l = y.

• Entry bc+r−1,c = ar.

The following are the coefficient functions for the characteristic polynomial of B:

f1 = −a1 − b1;

fk = −ak + b1ak−1 + qk for 2 ≤ k ≤ r − 1;

fr = −br + b1ar−1 + qr;

fr+1 = −ar+1 + ara1 + qr+1;

fk = −ak + b1ak−1 + arak−r + qk for r + 2 ≤ k ≤ 2r − 1;

f2r = −a2r + b1a2r−2 + q2r;

fk = −ak + b1ak−1 + arak−r + qk for 2r + 1 ≤ k ≤ n− c;

fn−c+1 = −an−c+1 − bn−c+1 + b1an−c + aran−c−r+1 + qn−c+1;

fk = −ak + b1ak−1 + arak−r + bn−c+1ak−n+c−1 + qk for n− c+ 2 ≤ k ≤ c;
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fk = −ak + arak−r + bn−c+1ak−n+c−1 + qk for c+ 1 ≤ k ≤ c+ r − 1;

fk = −ak + bn−c+1ak−n+c−1 + qk for c+ r ≤ k ≤ n;

In each fk, the qk are the sum of the following terms where defined:

−y for k = n− l + 1;

yak−n+l−1 for n− l + 2 ≤ k ≤ n with k 6= r if l ≥ 2;

yb1 for k = n− l + 2 if l ≥ c+ 1;

yar for k = n− l + r + 1 if l ≥ c+ r;

yb1ak−n+l−2 for n− l + 3 ≤ k ≤ n− l + c+ 1 with k 6= r if l ≥ c+ 1;

yarak−n+l−r−1 for n− l + r + 3 ≤ k ≤ n− l + r + c with k 6= r if l ≥ c+ r;

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a1, a2, . . . , an evalu-

ated at any nilpotent realization is (−1)n. If we can guarantee a nilpotent realization

for B exists, this pattern and all of its superpatterns are spectrally arbitrary.

Solving for ak in each of the equations fk = 0 and applying back substitution, for

1 ≤ k ≤ n − c and k 6= r, ak is a polynomial in b1 of degree k and ar is a polynomial

in b1 of degree r. Let m = b c
n−c+1

c, then ak is a polynomial in bn−c+1 of degree i for

k = i(n− c+1)+p, 1 ≤ i ≤ m, and 0 ≤ p ≤ n− c, and of degree m+1 otherwise. Thus,

we can choose b1, bn−c+1 such that a nilpotent realization of B exists. Thus, B satisfies

the Nilpotent-Jacobian condition. Hence, B and all of its superpatterns are spectrally

arbitrary.�

Lemma 4.2.8

Proof Choose l and r such that l /∈ {1, 3} and r > 4. Let C be a subpattern ofWn where
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entry c2,1 = 0. Let B be the superpattern of C created by making the following entries

nonzero:

• For all k /∈ {1, 2, 3, 4, r} bk,2 = bk−1.

• Entry b4,3 = a2.

• Entry b1,1 = a1.

• Entry b3,3 = b1.

• Entry bn,l = y.

The following are the coefficient functions for the characteristic polynomial of B:

f1 = −a1 − b1;

f2 = −a2 + a1b1 + q2;

fk = −ak − bk + a1bk−1 + qk for 3 ≤ k ≤ r − 1;

fr = −ar + a1br−1 + qr;

fr+1 = −ar+1 − br+1 + qr+1;

fk = −ak − bk + a1bk−1 + qk for r + 2 ≤ k ≤ n− 1;

fn = −an + qn;

In each fk, the qk are the sum of the following terms where defined:

−y for k = n− l + 1;

a1y for k = n− l + 2;

ak−n+l−1y for n− l + 4 ≤ k ≤ n if l ≥ 4;

bk−n+l−1y for n− l + 3 ≤ k ≤ n− 2 if l ≥ 5 and for k 6= n− l + r + 1;
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−a1bk−n+l−2y for n− l + 4 ≤ k ≤ n− 1 if ≥ 5 and for k 6= n− l + r + 2;

The Jacobian of f1, f2, ..., fn−1, fn with respect to the variables a1, a2, a3, . . . , an eval-

uated at any nilpotent realization is (−1)n. If we can guarantee a nilpotent realization

for B exists, this pattern and all of its superpatterns are spectrally arbitrary.

Solving for ak in each of the equations fk = 0 and applying back substitution,

a1 = −b1, a2 = −b21, and for 3 ≤ k ≤ n−2, ak is a linear function in bk. Observe, an−1 and

an are both nonzero multiples of y. Thus, we can choose b1, y, and bk for 2 ≤ k ≤ n− 1

such that a nilpotent realization of B exists. Thus, B satisfies the Nilpotent-Jacobian

condition. Hence, B and all of its superpatterns are spectrally arbitrary.�
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