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Abstract 

 

The automatic-controlled distinction provides one way to explore movement disorders 

such as apraxia. For such a population it would be useful to have a simple task and measure to 

distinguish automatic from controlled movements.  The Simon task, which compares 

performance on congruent versus noncongruent tasks, is thought to have both automatic and 

controlled components. As a measure, Segalowitz and colleagues (Gilbert & Shallice, 2002; 

Norman, 1968, 1981; Norman & Shallice, 1986; Shallice, 1994) suggested the coefficient of 

variation (CV); responses resulting from controlled processing are thought to have more 

variability than those resulting from automatic processes. Two experiments evaluated the use of 

the CV as an indicator of automatic versus controlled processing in right-handed WSU 

kinesiology students, using a one-handed Simon task.  It was predicted that noncongruent Simon 

trials would require more controlled processing than congruent trials, and thus would be more 

variable as measured by CVs.  Experiment 1 (N=42) revealed the expected Simon effect of faster 

reaction time for congruent trials as opposed to noncongruent trials occurred.  However, 

congruent trials were more variable than noncongruent trials when evaluated with distributional 

analysis, and were more positively skewed, indicating that the congruent trials require more 
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processes than noncongruent trials.  Experiment 2 (N = 58) used a dual task procedure to validate 

conclusions based on CVs in Experiment 1.  When a resource demanding counting task was 

added to the Simon task, congruent trials slowed more than noncongruent trials, although 

congruent trials remained faster than noncongruent trials.  This result confirmed the CV results 

and indicated that congruent trials require more resources and thus more controlled processing 

than noncongruent trials. 
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CHAPTER ONE: INTRODUCTION 

Human performance is characterized by actions that result primarily from deliberate, 

conscious processing of stimulus information, as well as actions that seem to be primarily 

reflexive, automatic responses.  Posner (1978) defined automatic processes as those which occur 

without conscious awareness, apart from deliberate intention, and which do not interfere with 

simultaneous processes or tasks.  By contrast, controlled processing is that which is under 

conscious control, is intentional, and requires attentional resources and thus may detract from the 

performance of concurrent tasks.  Recent research has demonstrated the importance of the 

distinction between automatic and controlled processing in highlighting the processing 

characteristics of persons with Attention Deficit Disorder (ADD), schizophrenia, Parkinson’s and 

Huntington’s Diseases and people with disorders resulting from head injury or vascular trauma, 

as compared with unaffected individuals  (Cooper, 2002; Cooper & Shallice, 2000; Rumiati, 

Zanini, Vorano, & Shallice, 2001; Saling & Phillips, 2007; Southwood & Dagenais, 2001; Vakil 

& Tweedy, 1994)  For example, persons with ADD, or who are otherwise characterized as 

impulsive, are more inclined than normal individuals to produce reflexive responses even in 

situations where these responses are inappropriate: they fail to inhibit word reading in the Stroop 

task even when asked to ignore the word and name text color (Kirkeby & Robinson, 2005). 

Persons with apraxia often exhibit what is termed an automatic-voluntary dissociation 

(Gravenhorst & Walter, 2007):  while they cannot produce movements on command during 

testing, they are able to generate the same movements within a real-life context, in the presence 

of appropriate environmental cues.  Also, certain laboratory tasks can elicit an apparent 
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automatic-voluntary dissociation in normal participants. For example, when instructed to respond 

to color or other stimulus attribute which is not related to stimulus location, people respond faster 

when stimulus and response locations correspond (see Lu & Proctor, 1995, for a review).  The 

explanation is that the spatial stimulus-response correspondence may automatically trigger the 

spatially compatible response and thus decrease response time.  Clearly, the distinction between 

automatic and controlled processing is practically significant and can potentially help to 

understand disorders and/or provide rehabilitation options for various patient populations, as well 

as contribute to our understanding of normal performance.  The purpose of this research was to 

explore and quantify performance variability as a potential measure of the degree of automatic 

versus controlled processing in a task with a spatial compatibility component.   

Automatic Versus Controlled Processing 

    Shiffrin and Schneider (Schneider & Shiffrin, 1977; 1977) provided seminal research 

on automatic versus controlled methods of processing.  Their work was based on studies of 

consistent and varied mapping between stimulus and response sets in visual search tasks.  In 

Shiffrin and Schneider’s prototypical task, participants learned a memory set of targets, e.g. 

consonants.  Then, they viewed a series of stimuli that could include elements from the target set 

or from a set of distracters (e.g., numbers), or both, and were asked to determine as quickly as 

possible whether a stimulus included a target element.  Consistent mapping involved direct and 

exclusive mapping between stimuli and responses: targets were always from one set while 

distracters were always from another set.  By contrast, in varied mapping target and distracter 

stimuli could be from the same set, i.e., a target in one trial could be a distracter in another trial.. 
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Size of the target set was also varied; early in practice of both consistent and varied mapping 

conditions, participants were slower to respond as set size increased.  However, after extensive 

practice in the consistent mapping condition, performance no longer depended on the size of the 

memory set. Participants could respond as quickly when the set was large as when it contained 

only a few elements, mapping conditions.  Further, under consistent mapping conditions, 

participants became faster and more accurate and reported less conscious control of their 

processing.  Response time decreased after thousands of practice trials until reaching asymptotic 

performance levels, and this was interpreted as indicative of automaticity.  By contrast, in varied 

mapping situations, even after extended practice, participants never became automatic in their 

processing.  The set size effect did not diminish nor did performance reach asymptotes.  As 

originally conceived by Shiffrin and Schneider (Posner & Snyder, 1975; Schneider & Chein, 

2003) these pattern differences relate to the diminished role of attention after sufficient practice 

in the consistent mapping condition.  Based on their results, Shiffrin and Schneider described 

automatic processing as behavior that occurs “without the necessity of active control or attention 

by the subject” (p. 155-156), while controlled processes demand a share of limited processing 

capacity, and are intentional and modifiable.   

Until recently, most views of the automatic versus controlled distinction were that tasks 

are either automatic or controlled in nature.  Compared with controlled processing, automatic 

processing is considered to require few if any processing resources, and to be unintentional, 

ballistic (in the sense that once started, it is difficult to stop), and even unconditional so that a 

stimulus invariably produces some sort of automatic response (Saling & Phillips, 2007).   
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Another proposed characteristic of automaticity is that automatic performance is less variable 

than controlled performance (Povel & Collard, 1982; Wascher, Schatz, Kuder, & Verleger, 2001; 

Zhang & Kornblum, 1998). Also different types of automaticity may be possible (Saling & 

Phillips, 2007).  For example, Logan associates automaticity only with changes that occur as a 

task is learned (2005); however, there is a possibility that there are natural stimulus-response 

associations that may result in automatic processing, such as spatial stimulus response 

compatibility (Hommel, 2000).  Current, more nuanced views are that tasks are generally a 

combination of processes which are more or less automatic versus controlled (Bargh, 1992; 

Bargh & Chartrand, 2000; Bargh & Ferguson, 2000; Hommel, 2000).  Task processing may be 

comprised of a mixture of automatic and controlled processes or a variety of different controlled 

processes.  

While it is often inferred that speedier performance under automatic processing 

conditions is due to more efficient processing, research suggests that automatic processing may 

be qualitatively different than controlled processing (Saling & Phillips, 2007).  For example, 

Nakahara, Doya and Hikosaka (1977)  reported neurological evidence that with practice, parallel 

processing can replace serial processing.  In Logan’s conceptualization (2001), early in learning 

(i.e., during the “controlled” stage), performance is governed by rule systems, while later in 

learning it switches to a more automatic memory search to match stimulus with response. Use of 

the rule system is a slower, more effortful process than using memory search.  Rogers and 

Monsell (1985) differentiate behavior triggered automatically (e.g., by stimulus characteristics 

such as spatial location) from behavior triggered internally, by intention.  Automatically 
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triggered behavior requires few resources, while internally triggered behavior involves the 

function of the resource demanding Supervisory Attentional System, according to Rogers and 

Monsell.  In spite of differences in the various explanations, accounts concur that controlled 

processing operates more slowly and requires more cognitive resources than automatic 

processing.  

Research using brain scan and electroencephalography (EEG) techniques that monitor 

brain activation during laboratory testing also supports the notion of qualitative differences 

between controlled and automatic processing.  Toni, Krams, Turner, and Passsingham (2005) 

showed that automatic performances are correlated with activity primarily in posterior cortex, 

while performances characterized as controlled use prefrontal brain areas.  In evaluating changes 

that occur with task learning, Jansma, Ramsey, Slagter, and Kahn (1998) found no shift of 

activity with automatization but rather a reduction of prefrontal brain activity, which is 

associated with reduced working memory task involvement. Other researchers report that brain 

activity shifts from prefrontal cortical to mid level and subcortical regions as behavior becomes 

more automatic.  For example, the basal ganglia become particularly active in automatic 

behavior (see Saling & Phillips, 2007 for a review).  Further evidence confirming the importance 

of prefrontal cortex in controlled processing comes from research on various disorders such as 

schizophrenia and attention deficit disorder, which are known to affect prefrontal areas and result 

in controlled processing deficits (Holroyd, Nieuwenhuis, Mars, & Coles, 2004; Ridderinkhof, 

Scheres, Oosterlaan, & Sergeant, 2005; Ridderinkhof, van den Wildenberg, Wijnen, & Burle, 

2004). Apraxia results from damage to a wide range of cortical and subcortical areas, but there is 
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agreement that most of these areas are components of the fronto-parietal loops that are involved 

in controlled processing (Gravenhorst & Walter, 2007).  Thus, there is evidence that both 

behavioral and neurological changes signal a qualitative difference between controlled and 

automatic processing.   

Measurement of Automaticity 

Several different task paradigms have been used to evaluate whether controlled or 

automatic processing underlies performance (Saling & Phillips, 2007).  One is Shiffrin and 

Schneider’s method (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977), as described 

previously.  Automatization of behavior is assumed, if performance reaches a plateau with 

practice, and does not change in spite of increases in set size.  If increasing set size does degrade 

performance, then the task is considered to rely on controlled processing.  Another method is to 

analyze reaction times (RTs) for well learned versus novel keypress sequences.  For example, 

Sternberg, Monsell, Knoll & Wright (1978) compared production of well learned sequences, 

such as the days of the week repeated in order, with novel sequences of the same length, such as 

days of the week in random order.  The well learned sequences were produced with a shorter RT 

than novel sequences, suggesting that the familiar sequences have become a unit and can be 

produced more automatically.  If familiar sequences are not readily available this method would 

require extensive practice, similar to the Shiffrin and Schneider paradigm.   For a quick measure 

of potential deficits in automatic versus controlled processing in a patient population, extensive 

practice would be a drawback.    Further, both of these methods analyze how response speed 

changes in with practice, rather than evaluating already existing automatic versus controlled 
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processing.   Also, asymptotic performance, which has been interpreted as a signal of automatic 

performance, can also be interpreted as a floor or ceiling effect.  Finally, the focus on speed of 

response alone does not necessarily signal a qualitatively different type of processing and 

therefore might not represent a change in processing style (Saling & Phillips, 2007; N. 

Segalowitz, Poulsen, & Segalowitz, 1999; N. Segalowitz & Segalowitz, 1993). 

A more complex, dual task methodology for assessment of automaticity involves 

comparing a single task versus the same task paired with a resource demanding task. This dual 

task methodology requires the assumption of an attention resource system with fixed limits 

(Kahneman, 1973) and the assumption that controlled processing demands more resources than 

automatic processing.  An automatic task will deteriorate little when combined with a second, 

resource demanding task or will not affect performance of the second task when compared with 

performance of the second task alone. On the other hand, tasks which require controlled 

processing will be slowed and/or more prone to error in the dual task condition or will similarly 

disrupt the second task.  A primary drawback of dual task methodology is the time-demanding 

and complex design and difficulty for patients of performing the primary and secondary tasks at 

the same time. 

A less frequently used, but potentially simpler, method for determining whether 

performance is characterized by automatic or controlled processing involves analysis of 

variability.  This methodology requires the assumption that automaticity is characterized by more 

consistent performance, i.e., reduced variability.  Typically the standard deviation of a system 

parameter, for example, RT, is taken as the representation of variability for a sample of data.  For 
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example, Jansma et al. (2001) evaluated the mean RTs and standard deviations of participants 

performing a Sternberg task, and compared a practiced task with a novel task.  Analysis showed 

that the practiced task had both faster mean RTs and lower standard deviations than the novel 

task, and the authors concluded that learning results in lower response variability.  Povel and 

Collard (1982) studied interresponse variability in keypress sequences, and found that variability 

between keypresses within a subset, or chunk, of a sequence was smaller than that between 

chunks.  They concluded that subsets of movement sequences can become automatic and will be 

produced as if they were one response, or motor program, with increased consistency between 

sequence components. Kirkeby and Robinson (2005) used standard deviations to compare 

performance of more impulsive versus less impulsive people on Stroop test responses.  

Participants who scored higher on impulsivity performed the Stroop test with less variability 

overall, although there was no effect of impulsivity on overall speed or errors.  The researchers 

attributed their results to the possibility that impulsive people are more reliant on automatic 

routines rather than on effortful, and thus more variable, controlled stimulus-response mapping.   

However, there are difficulties with the use of standard deviations in behavioral analysis 

of RTs.  Newell and Corcos (1993) remind us that the standard deviation is only a reasonable 

descriptor of data with a normal distribution.  Also, if there are trial to trial relationships that are 

of interest, they can be masked by the standard deviation.  For example, a sine wave and white 

noise may have the same standard deviation, but the sine wave involves trial to trial 

dependencies yielding complete predictability, while the white noise is random from trial to trial 

(Slifkin & Newell, 1998).  Further, for RT experiments, variability (as measured by standard 
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deviations) is correlated with mean RT, such that as the mean RT increases, standard deviations 

increase (this is Weber's Law: see for reviews Gibbon, Malapani, Dale, & Gallistel, 1997; 

Ratikin, 2005).  As an alternative, the coefficient of variation (CV), computed as standard 

deviation of the RTs divided by the mean of the RTs, has often been used to correct for the 

correlation between mean and standard deviation, so that variability can be evaluated as a 

separate dependent variable.   

Segalowitz and colleagues (Poulsen & Segalowitz, 2000; N. Segalowitz, O'Brien, & 

Poulsen, 1998; N. Segalowitz et al., 1999; N. Segalowitz & Segalowitz, 1993; N. Segalowitz, 

Segalowitz, & Wood, 1998; S. J. Segalowitz, 2000) explored CV analysis as a way to identify 

changes in variability that occur with increased automaticity.  Basic to their approach is that 

there are two ways to account for an increase in performance speed.  One way is for the type of 

processing to remain the same but simply to speed up, resulting in a decreased mean RT and a 

proportional decrease in the standard deviation.  Thus the decreased mean RT would not be 

accompanied by a change in CV.  For example, people simply get better at the controlled 

processing required for a task, rather than changing to a new strategy (i.e. reducing the number 

of controlled processes or changing completely to automatic processing).   A second way to 

improve performance speed is for a reorganization to occur, resulting in faster mean RTs.  The 

reorganization is presumed by Segalowitz and colleagues to be a reduction in the number of 

controlled processes or a switch to automatic processing, yielding an increase in performance 

stability.   In such a situation the standard deviation would decrease more than proportionately 

with the mean RT, resulting in reduced CV for the less controlled, or automatic, relative to the 
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more controlled processing task.   Mathematically, since a reduction in mean RT with a 

disproportionate reduction in standard deviation results in decreased CV, a positive correlation 

between CVs and mean RTs would result.  Thus, the general approach involves the following 

predictions:  the magnitude of the CV decreases when a task is speeded due to reorganization 

(decreased number of controlled processes) but not when a decrease of mean RT is due to simply 

“general speed-up” of existing processes. The correlation between CV and RT will be at or near 

zero when performance remains controlled by qualitatively similar processes, while the 

correlation between CV and the mean will be positive when task performance switches to a 

qualitatively different process.   

There is some evidence for the ability of CV to distinguish between performance changes 

due to speed-up versus due to reorganization of the task.  Segalowitz and colleagues (N. 

Segalowitz & Segalowitz, 1993; N. Segalowitz, Segalowitz et al., 1998) compared RT variability 

in first versus second language stimuli, presuming that the second language tasks would be less 

automatic. As expected, CVs were smaller for first language tasks.  Continuing in this vein, 

Segalowitz, Segalowitz and Wood (1998) explored changes that occur with learning a second 

language.  Experienced language students had smaller CVs with a positive correlation between 

RT and CV.  In contrast, beginners started with higher CVs and with no correlation between RT 

and CV; but after practice, CVs decreased and the positive RT-CV correlation became evident 

(see also Rickard, 1997, for pseudoarithmetic task).  

Extending this work from language acquisition to an attention switching task, Segalowitz, 

Poulsen, and Segalowitz (1999) replicated Rogers and Monsell’s (1995) task set switching 
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paradigm, but analyzed CVs in addition to mean RTs. For this type of task, CV magnitude 

predictions are relevant, but unlike in learning designs, the prediction of correlation is 

inappropriate.  Participants had to switch attention from digit to letter decisions on every second 

trial of a reaction time task.  Segalowitz et al. claimed that the repetition, or nonswitch, trials 

could be performed in an automatic or less controlled basis, while the switch trials required a 

controlled process for task reconfiguration. The processing mode manipulation thus contrasted 

qualitatively different processes.  A task difficulty manipulation was also included: changes in 

task difficulty were not presumed to change processing qualitatively. Segalowitz et al. observed 

a main effect of processing mode on both RT and CV, such that both were decreased for the 

nonswitch trials compared with the switch trials. In addition, they found a main effect of task 

difficulty for RT but not for CV such that easier tasks were faster but not less variable.  

Segalowitz et al. concluded that the CV effects matched their designation of the switch trials as 

controlled and the repetition trials as automatic. Thus there is evidence that variability changes 

can dissociate types of processing.  However, while some authors use variability to distinguish 

controlled from automatic processing, as described, others simply claim that more variability 

represents more processes (Wascher et al., 2001; Yap & Balota, 2007; Yap, Balota, Cortese, & 

Watson, 2006; Zhang & Kornblum, 1997).   

As previously stated, deficiencies in automatic or controlled processing have been 

proposed to be related to deficits in a variety of patient populations ((Christensen et al., 2005; 

Hart, Giovannetti, Montgomery, & Schwartz, 1998; Rumiati et al., 2001). To determine whether 

automatic or controlled processing is compromised in such populations, it is important to use a 
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relatively simple and robust RT task that is thought to include trials which differ in the level of 

automatic and controlled processing required (MacDonald, 2008).  Such a task can then be 

evaluated with a measure that can discriminate between automatic and controlled responses; the 

CV is a candidate for this measure. Some tasks that are considered to have both automatic and 

controlled components include Hayling’s A and B (Bouquet, Bonnaud, & Gil, 2003; Burgess & 

Shallice, 1996), flanker tasks (Mattler, 2005) priming tasks, and tasks with spatial compatibility 

components (e.g., Stroop and Simon tasks, see Lu & Proctor, 1995, for a review).  In these tasks, 

the automatic and controlled processing may result in conflicting response activation which 

slows response time in noncongruent trials.  In general conflict in a task entails competition 

between a more or less automatically primed response to an irrelevant stimulus dimension and a 

more controlled, intentional response to a stimulus dimension specified by instructions. 

Resolving the conflict requires that responses to irrelevant stimulus dimensions are inhibited by a 

top down, attention demanding process (Burle, van den Wildenberg, & Ridderinkhof, 2005).  

Band and van Boxtel (1999) reported that this inhibitory control is executed by the prefrontal, 

resource demanding system (see also Botvinick, Cohen, & Carter, 2004; MacLeod & 

MacDonald, 2000). In contrast, trials in which the automatic and controlled processing results in 

activation of the same response are faster, possibly because at least some of these trials escape 

some of the controlled processes required to resolve conflict (Burle et al., 2005). I have chosen to 

use the Simon task for this research because it is simple, does not require a linguistic response, 

the size of the effect increases in aging participants, it is robust in a one-handed format, and 
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because spatial aspects of motor tasks are often disrupted in apraxia, so an automatic spatial-

response compatibility effect seems most appropriate. 

Simon Task 

  The classic Simon task (Simon & Rudell, 1967) is a two-choice RT task in which 

participants identify the color of a stimulus, e.g.,  red or green, presented on a computer screen,  

and respond by pushing a corresponding response key, e.g., right key for red and left key for 

green (for a review, see Lu & Proctor, 1995).  The relevant color stimulus can occur on the 

monitor to the right or left side of body center.   In congruent trials, the stimulus occurs on the 

same side of the CRT display as the response key and limb designated by the color cue, such that 

the stimulus, correct response key, and correct response limb are all on the same side of the 

body. Thus, the relevant and nonrelevant stimulus dimensions both prime the same response.  In 

noncongruent trials, the stimulus appears on the side of the display opposite the response key and 

limb designated by the relevant color cue, such that the stimulus and correct response are on 

opposite sides of the body. This results in a conflict between the relevant and irrelevant 

dimensions.  Research shows that participants consistently respond 20-30 msec slower (Lu & 

Proctor, 1995) and less accurately for noncongruent trials than for congruent trials due to the 

conflict between dimensions (Lu & Proctor, 1995). This pattern of response has become known 

as the Simon effect, and is sensitive enough to be observed with as few as 48 trials in a block.  It 

is a robust effect, does not disappear with practice, and occurs in both visual and auditory tasks 

(Simon, 1990) and with both unimanual and bimanual responses (Cho & Proctor, 2003; Heister, 

Schroeder-Heister, & Ehrenstein, 1990; Katz, 1981).   
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Simon contended that people respond automatically first to the directional component of 

a stimulus as opposed to its meaning (1990).  Accordingly, Kornblum and colleagues 

(Kornblum, Hasbroucq, & Osman, 1990; Kornblum & Lee, 1995; Zhang & Kornblum, 1997)  

and De Jong and colleagues (De Jong, Liang, & Lauber, 1994) proposed dual route explanations 

of the Simon effect, each incorporating the automatic spatial priming component, described by 

Simon, in conjunction with additional controlled processes.  For example, De Jong et al.’s model 

consists of a direct route involving unconditional automatic priming by the irrelevant dimension 

(stimulus location), and an indirect, conditional route, which processes the relevant dimension 

(color).  Both routes are “automatic” and are activated on all trials: the slower performance for 

noncongruent trials arises from conflict between the direct route and the indirect route.  

According to this model, the congruent trials would be comprised of the two automatic processes 

while noncongruent trials add a conflict resolution process. However, Kornblum et al. (1990) and 

other more recent characterizations of the dual route hypothesis consider the indirect route to be 

a controlled process.  Thus, in this view, congruent and noncongruent trials have both the 

automatic and controlled activation components, and noncongruent trials add the conflict 

resolution component.  A component of the conflict resolution process, active suppression of the 

automatic, spatially primed direct route response, may be involved in both congruent and 

noncongruent trials (Ridderinkhof, 2002).  Either way, the dual route hypotheses suggest that the 

noncongruent trials have an additional controlled component, and thus should require more 

processing resources.   



 

 

15 

 

It is relatively certain that the direct route spatial priming has at least an automatic 

component.  For example, Burle, Possamai, Vidal, Bonnet, and Hasbroucq (Burle, Possamai, 

Vidal, Bonnet, & Hasbroucq, 2002) use electromyography to show that even in correctly 

completed incongruent Simon trials, the irrelevant stimulus elicits a degree of activation in the 

limb which would produce an incorrect response.  Interspersing trials of a secondary task 

between Simon trials has also provided evidence for automaticity of spatial priming (see 

Caessens et al., 2005, for review).  Thus there is debate over the types of automatic versus 

controlled processes involved in the congruent and noncongruent components of the task  

(Abrahamse & Van der Lubbe, 2008; Hommel & Milliken, 2007; Musseler, Koch, & Wuhr, 

2005);  however, relatively few studies have directly tested the contributions of automaticity 

versus controlled processing in Simon task congruent and noncongruent trials (Musseler et al., 

2005).   

The purpose of the present study was to determine whether the CV reflects differences in 

the amount of controlled processing in congruent versus noncongruent trials in a one-handed 

Simon task, since a one-handed task would be required to test apraxic participants. To achieve 

this goal, two experiments were conducted.  Experiment 1 examined whether there was a 

difference in CVs between congruent and noncongruent trials as a potential means of detecting 

qualitative differences in processing.   Since variability has been interpreted either as an indicator 

of the number of processes as well as differences between controlled and automatic processes, 

the second experiment utilized the dual task method to validate qualitative processing differences 

suggested by the CV results obtained in Experiment 1.     
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CHAPTER TWO: EXPERIMENT ONE 

 

Experiment 1 

 The purpose of Experiment 1 was to explore consistency as a measure of the amount of 

controlled processing in one-handed Simon task congruent versus noncongruent trials in normal 

participants.   If consistency is a sensitive measure of resource demands in the Simon task, and if 

more resources are required to overcome the incorrect automatic activation of the spatially cued 

response in noncongruent trials, then CVs should be larger for the noncongruent condition than 

for the congruent condition.  

Method 

Participants 

Forty-two right-handed undergraduate students from WSU kinesiology classes   

participated in this experiment in exchange for optional extra credit in a kinesiology course.  

Participants, by self-report, had no upper limb motor control deficits.  They had normal reading 

visual acuity and color vision, as tested by a standard Snellen chart and online screening test for 

color vision  ("Isahara Color Blind Test,").  

Task and Procedure 

 Participants performed a classic Simon task on a laptop computer.  DirectRT software 

was used to control the experiments and collect data.  Participants were seated with body center 

positioned at screen center, with eyes approximately 60 cm from the screen.  Stimuli consisted of 

30 mm squares presented 10 cm to the left or right of screen center.  Square color was the 
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relevant stimulus while location was the irrelevant stimulus.  Participants were asked to respond, 

as quickly and accurately as possible, based on the color of the square.  Responses were made 

with an index or middle finger of the right hand, responding with the index finger for a green 

square and middle finger for a red square and ignoring the stimulus spatial location.  Note that 

when the green square occurred on the left and when the red square occurred on the right, the 

condition was congruent, as the spatial location of finger matched the location of the square on 

the screen. In each block of 48 trials congruent and noncongruent trials occurred in random 

order.  Red was chosen as the mapping for the right side finger (middle finger) while green 

signaled a left response.  While this mapping was the same for all participants, it resulted in 

equal numbers of right and left responses, right versus left stimuli locations, and green versus red 

stimulus colors for both congruent and noncongruent trials.  Further this configuration was easier 

for participants to learn, using “r” as the mnemonic device, i.e., “red is right”, than the reversed 

(green for right and red for left).
1
   

Instructions for each block were presented on the laptop screen and were read aloud to 

the participant for the first trial block. Participants indicated readiness to begin by pressing either 

response key. A white X, used as a warning stimulus and means of centering the participant’s 

attention between trials, was presented at center screen for 1000 msec after which a red or green 

square was presented to the right or left of center yielding an interstimulus interval (ISI) of 1000 

msec. The stimulus remained on the screen until a response was made.  In the event of an error, 

participants received an error message stating “red is right and green is left”, after which they 
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pressed the correct key in order to continue with trials.  Participants also received a message if 

they responded slower than 1000 msec (“please try to respond faster”) or faster than 150 msec 

(“please wait for the stimulus”).  The white X ready signal was presented immediately after the 

participant’s response to the previous trial.  Feedback on average response time and number of 

errors was given after each block and participants were encouraged to maintain error rates at or 

below five percent for each block. Each participant completed 12 blocks of 48 trials with a rest 

period of approximately one minute between blocks.  

 

Results and Discussion 

 For all analyses, alpha levels were set at .05, and were controlled for familywise error 

rate in post hoc testing, using the Holm’s sequential Bonferroni procedure.  Error trials and trials 

after errors were removed from analysis; however, since variability was a measure of interest, no 

trials were eliminated because they exceeded an arbitrary cut-off point, either on the fast or the 

slow end of the distribution.  Trials from all blocks were included in analysis, since the Simon 

effect appears without practice, and does not disappear with even extended practice (Lu & 

Proctor, 1995; Simon, 1990).  A 12 blocks by trial type (congruent versus noncongruent) 

ANOVA confirmed the lack of block effect or interaction on correct RTs (p > .10); there were 

not enough errors per block to analyze. Two-way within subjects ANOVAs were conducted 

separately on percent errors and remaining correct RTs. Within subject factors were trial type 

(congruent versus noncongruent) and trial contingency (trials following congruent trials versus 

trials following noncongruent trials), and error trials and trials after errors were removed from 
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RT analysis.  Trial contingency was included as a factor since many Simon effect studies have 

demonstrated that the Simon effect is eliminated after noncongruent trials (Praamstra, Kleine, & 

Schnitzler, 1999; Stürmer, Leuthold, Soetens, Schröter, & Sommer, 2002; Valle-Inclán, Hackley, 

& de Labra, 2002).  

Overall Simon Effect (RTs and Errors) 

Mean correct RTs and percent errors for trial contingency and trial type are presented in 

Figure 1 (p. 59). For RTs, there was a significant main effect for both trial type [F(1, 41) = 107,  

p < .001, partial η
2 

 = .723] and trial contingency [F(1, 41) = 21.4,  p < .001, partial η
2 

 = .343].  

Also, the interaction between trial type and trial contingency was significant [F(1,41) = 83.3, p < 

.001, partial η
2 

 = .670].  Noncongruent trials were 56 msec slower than congruent trials when 

they followed congruent trials [t(41) = -13.17, p < .001, d = 1.14], but following noncongruent 

trials, there was an insignificant noncongruent-congruent difference of 3 msec  [t(41) = .847, p = 

.40]. Error results were consistent with RT results.  Percent error analysis revealed a main effect 

of trial type [F(1,41) = 23.34, p < .001, partial η
2 

 = .363] and of trial contingency [F(1,41) = 

5.411, p = .025, partial η
2 

 = .117].  Also, the interaction between trial type and trial contingency 

was significant [F(1,41) = 50.68, p < .001, partial η
2 

 = .553].  For trials following congruent 

trials, percent error was significantly less for congruent (1.36%) versus noncongruent (4.53%) 

trials [t(41) = -7.17, p < .001, d = 1.42].  However, following noncongruent trials, percent error 

was not significantly different between congruent (2.67%) and noncongruent trials (2.09%), 

[t(41) = 1.98, p > .05].  Thus, statistical analysis confirmed a Simon effect consistent with 
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previous research:  RT and errors were larger for noncongruent trials than for congruent trials, 

but only for trials following congruent trials. 

Consistency in the Simon Task   

Having demonstrated a typical Simon effect, consistency of congruent versus 

noncongruent trials was evaluated.  CVs were calculated by dividing the standard deviations of 

correct RTs for each condition for each participant by its corresponding mean.  A two-way 

within subjects ANOVA was conducted on CVs, with trial type (congruent versus noncongruent) 

and trial contingency (trials following congruent trials versus trials following noncongruent 

trials) as factors.  Figure 2 (p. 60) shows CVs for correct trials by trial type and trial contingency.  

There were no significant effects: trial type [F(1, 41) = 3.18,  p = .082];  trial contingency [F(1, 

41) = 1.94,  p = .171]; interaction between trial type and trial contingency [F(1,41) = .907, p = 

.347].  Thus noncongruent trials were not more variable than congruent trials, even when 

considering trial contingencies. In fact, the trend toward main effect of trial type is in the reverse 

of the predicted direction: congruent trials (CV = 0.2347) tended toward being more variable 

than noncongruent trials (CV = 0.2164).    

However, statistical differences between means, standard deviations or CVs of entire 

congruent and noncongruent RT distributions may not reflect the qualitative differences in 

processing between these trial types, whereas distributional analysis may be more useful.  De 

Jong et al. and others (Burle et al., 2002; Burle et al., 2005; De Jong et al., 1994; Ridderinkhof, 

2002; Wascher et al., 2001)  showed that, in the Simon task, congruent trial RTs may be 

distributed over a wider range than noncongruent trials (see Zhang & Kornblum, 1998, who 
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attest that this is not true for all studies). If this is true for a set of data, the congruent trial 

distribution will have larger variability than the noncongruent distribution simply by virtue of the 

statistical properties of distributions, even though mean RT is smaller for the congruent trials. In 

the present experiment, for trials after congruent trials, the range for congruent trial RTs (775 

msec) was larger than the range for noncongruent trials (687 msec), consistent with other 

research.  While this was not a significant difference (t = 1.25, p = .219, d = .25), the lack of 

power due to large between-participant variability is likely the cause of failure to reach 

significance.  Some researchers (e.g., Wascher et al., 2001) view increased range and 

correspondingly increased variability for the congruent trials as evidence that more processes are 

involved in these trials. Additionally, congruent distributions are generally more positively 

skewed than noncongruent distributions:  the Simon effect is usually strongest at the faster end of 

the RT distributions (Burle et al., 2002; Burle et al., 2005; De Jong et al., 1994).  Heathcote, 

Popiel, and Mewhort (1991) used the ex-Gaussian three parameter distributional analysis model 

to distinguish conflict from nonconflict trials in the Stroop task, claiming that the more positively 

skewed distributions for the conflict trials signaled additional processing in these trials.  Thus, 

distributional differences may indicate changes in numbers of processes involved, or as 

previously discussed, may distinguish controlled from automatic processing (N. Segalowitz et 

al., 1999; N. Segalowitz & Segalowitz, 1993; N. Segalowitz, Segalowitz et al., 1998). 

Vincentizing procedures, which divide distributions into quantiles, can elucidate 

differences between congruent and noncongruent trials at specific points in the distribution, in 

addition to distributional skew.  For example, Ridderinkhof et al. (2002; 2005; 2004) used 
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distributional analysis to support an activation-suppression hypothesis: since suppression of the 

direct, automatic spatial priming builds up over time, the difference between congruent and 

noncongruent trials will be smaller at the slower end of the distributions.  Also, when comparing 

congruent and noncongruent trial RTs, analysis by bin allows comparisons between fast 

congruent and fast noncongruent trials (Yap & Balota, 2007; Yap et al., 2006).  Burle et al. 

(2002) claim that fast correct congruent responses may escape controlled processing, as opposed 

to slower correct congruent responses.  Thus it is possible the distribution of congruent RTs may 

represent some fast, mostly automatic trials, while the slower trials may utilize controlled 

processing. This mix of trials may produce the observed variability.   

The previous examples of distributional analysis compared RTs of corresponding bins in 

order to evaluate differences between congruent and noncongruent trials.  However, the CV of 

each bin may provide additional information.  Since there was a trend for congruent trials to be 

more variable than noncongruent trials, distributional analysis may indicate why this trend was 

nonsignificant.  In addition, a comparison of the CVs for corresponding bins of congruent and 

noncongruent trials may highlight differences in skew between the distributions. For example, if 

the congruent distribution is more positively skewed than the noncongruent distribution, the 

fastest bin of the congruent distribution will have smaller CVs than the fastest bin of the 

noncongruent distribution.  Thus both mean RTs and CVs were compared for congruent versus 

noncongruent trials at the different quantiles of the RT distributions. 
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Distributional Analysis (RTs and CVs)  

Because the Simon effect was only observed for trials following congruent trials, only 

these correct trial RT distributions were analyzed.  In order to evaluate differences between 

correct congruent and noncongruent RTs at different quantiles of the RT distributions, correct 

RTs for each participant were numerically ordered and 20% cutoff points calculated to create 

five bins.  Within each bin, for each participant, mean correct RTs and CVs were calculated.  

Because of the extreme variability of the fifth bin across all conditions and participants, and 

because the largest effects were more likely for the faster RTs bins, the slowest fifth bin was 

removed from analysis (Wascher et al., 2001).  A two way repeated measures ANOVA was 

conducted to separately evaluate mean correct RTs and CVs.  Within subject factors included 

trial type (congruent versus noncongruent) and bin (1 through 4).  

RTs. Figure 3 (p. 61) illustrates correct RT results for congruent and noncongruent trial 

types following congruent trials at each of the four RT bins. The ANOVA revealed a significant 

trial type main effect [F(1, 41) = 435.7, p < .001, partial η
2 

 = .914] and a significant bin main 

effect [F(3,39) = 369.5, p < .001,  partial η
2 

 = .966].  The interaction between trial type and bin 

was also significant [F(3, 39) = 13.3, p < .001, partial η
2 
 = .506].  To evaluate the interaction, 

differences between congruent and noncongruent trials were calculated for each bin separately.  

Post hoc comparisons indicated that the difference between congruent and noncongruent trials at 

bin 1 (57 msec) was significantly smaller than the bin 2 difference [65 msec, t(41) = -3.89, p < 

.001], but the bin 1 difference was not significantly different from the bin 3 (65 msec) and bin 4 

(43 msec) differences (p values >.05).  Also, the difference between bin 2 congruent and 
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noncongruent RTs was similar to bin 3 (65 msec) and 4 (43 msec) differences (p values >.05).  

Finally, the difference between congruent and noncongruent RTs in bin 3 (65 msec) was larger 

than the bin 4 difference (43 msec) [t(41) = 3.02, p = .004].    Thus, while previous research has 

shown generally a larger difference between congruent and noncongruent trials at the fastest end 

of the distribution, this was not found.  RT results provided the foundation for the analysis of 

variability within each bin. 

CVs   CVs were calculated, as previously described, for each of the bins for each 

participant and condition, and entered into a two trial types by four bins repeated measures 

ANOVA.   Figure 4 (p. 62) illustrates the changes in congruent and noncongruent CVs across 

four bins.   

The trial type main effect [F(1, 41) = 4.56, p = .039, partial η
2 

 = .100], bin main effect [F(1,41) 

= 305.7, p < .001,  partial η
2 

 = .96] and interaction [F(3, 39) = 10.32, p < .001, partial η
2 

 = .443] 

were all significant.   Post hoc testing for simple main effects revealed that in bin 1, 

noncongruent trials had larger CVs (.0586) than congruent trials [.0519;  t(41) = -2.91, p = .006].  

However, in bins 2, 3 and 4, congruent trials had larger CVs than noncongruent trials. In bin 2 

congruent trials CV averaged .0227 and noncongruent trials CV averaged .0201 [t(41) = 2.384, p 

= .022].  Bin 3 congruent trials’ CV was .023 and noncongruent trials’ CV was .0181 [t(41) = 

4.62, p < .001] and in bin 4 congruent trials’ CV was .0314 and noncongruent trials’ CV was 

.024  [t(42) = 4.61, p < .001].
2
   The interaction explains the non-significance of the overall trial 

type effect for CVs discussed previously (congruent trials were slightly more variable than 
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noncongruent trials): throughout most of the distribution the bin CVs were larger for congruent 

trials than for noncongruent trials, with the exception of bin 1 which showed larger CVs for 

noncongruent versus congruent trials. 

 Thus, the distributional CV analysis showed that for most of the bins, CVs were larger 

for congruent trials than for noncongruent trials.  This finding provides two important pieces of 

information.  First, although the overall mean CV for congruent trials was not significantly larger 

than for the noncongruent trials, most of the congruent distribution is in fact more variable than 

the noncongruent trials, confirming the trend in overall CV main effect.  Second, the result 

indicates a more positive skew for the congruent trials than for the noncongruent trials. Greater 

skew combined with the larger range and overall larger variability for the congruent distribution 

support the possibility that the congruent trials actually require more controlled processing than 

the noncongruent trials.  This result was unexpected given that congruent trials are performed 

faster than noncongruent trials, since controlled processing is thought to require more time.  

Also, as previously mentioned, research on Stroop conflict trials suggests that the noncongruent 

Stroop RT distributions are actually skewed more than the congruent Stroop RT distributions, 

and thus the noncongruent trials require more controlled processing.  This result is in direct 

conflict with our findings that CVs are higher and more skewed for the congruent trial 

distribution.  One possible explanation is that the overall trend for congruent trials to be more 

variable than noncongruent trials is the result of trial contingency effects.  As shown in Figure 1, 

congruent trial performance after noncongruent trials is 38 msec slower than after congruent 

trials. By contrast, noncongruent trial performance decreases by 18 msec after noncongruent 
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trials when compared with performance after congruent trials.  This difference in trial 

contingency effect is significant (t(41) = 10.2, p < .001, d = .96) and may result in the increased 

variability observed for congruent trials.  However, the CV distributional analysis was performed 

only on trials after congruent trials, and the variability effect was stronger than in the combined 

analysis.   According to Segalowitz et al., this finding suggests that more controlled processing is 

involved in the congruent trials.  For the Simon task, therefore, it may be that the congruent trials 

are performed faster because of the larger amount of controlled processing resources invested in 

their performance, that simply more processes are involved in congruent trial performance than 

in noncongruent trial performance, or that there are a mix of trials in the congruent distribution. 

For example, fast congruent trials may be more automatic, while slower congruent trials may 

involve the addition of one or more controlled processes to the automatic spatial priming 

process. Experiment 2 used dual task methodology to determine whether congruent trials 

actually require more resources than noncongruent trials and therefore  that all or some of these 

trials may require more controlled processing than noncongruent trials.  If this is the case, it will 

validate the use of the CV measure to compare the amount of controlled versus automatic 

processing in two or more tasks. 



 

 

27 

 

CHAPTER THREE: EXPERIMENT TWO 

  

Experiment 2 utilized a dual task methodology to compare the resource demands of 

congruent and noncongruent Simon task trials:  Simon task performance alone was compared 

with Simon task performance combined with a continuous counting task.  Experiment 1 results 

showed that congruent Simon trials, except for the fastest ones, are more variable than 

noncongruent trials. This suggests, according to Segalowitz et al., that congruent trials require 

more controlled processing than noncongruent trials.  If this is true, adding a resource demanding 

secondary task should result in a larger increase in Simon task RTs and percent error for the 

congruent trials than for the noncongruent trials.  

 

Method 

Participants 

Sixty right-handed undergraduate students from the WSU kinesiology classes 

participated in this experiment in exchange for optional course points; none had participated in 

Experiment 1.  Participants were screened as in Experiment 1.  One participant was dropped 

from the study because he did not complete the seventh block of dual task trials and a second 

because of an extremely high error rate. 

Task and Procedure   

Simon Task.  The Simon task used in Experiment 2 was the same as described in 

Experiment 1.  Also, the blocks of 48 trials were configured in the same way as in Experiment 1. 
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Secondary task: Backwards counting.  In this experiment, backwards counting (Peterson, 

Peterson, & Miller, 1961) was performed with along with the Simon task
3
.   Counting back by 

ones at a self-determined rate resulted in a combined task with a moderate (200-300 msec) 

increase in RT, while errors and variability also increased.   Analysis of counting performance 

showed that counting rate for different participants ranged from an average of 51 to 178 numbers 

counted per Simon task block. Blocks ranged from two to five minutes in duration; thus, 

counting rate averaged approximately one number per two seconds.  Although the counting rate 

range was quite large there was no evidence that faster versus slower counters were putting more 

or less effort into the tasks. 
4
 

Procedure: All participants completed the Simon task alone first, then the Simon task 

with the counting task.  This order was necessary because of the difficulty that pilot participants 

had combining the Simon task with other tasks; participants needed to first learn the Simon task 

before adding a second task.  Thus, all participants first completed seven blocks of 48 Simon 

trials, as described in Experiment 1. Next, participants established a preferred backwards 

counting rate, which they were encouraged to maintain throughout the dual task blocks.  The 

arithmetic difference between the first and last number spoken for each trial block was recorded 

as the counting score, and served to confirm that the same counting rate was maintained for all 

dual task blocks (no block effect, p > .05).  Participants completed seven blocks of the Simon 

task concurrently with the counting task.  As participants started each block of 48 Simon trials, 
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they began counting backwards from a randomly generated three digit number between 300 and 

1000.  All participants were encouraged to focus on the counting task as the primary task, and to 

maintain the steady counting rate throughout each block. 

 

Results and Discussion 

Because Experiment 1 confirmed that the Simon effect occurred only after congruent 

trials, the trials following noncongruent trials were eliminated from data analysis.    For all 

analyses, alpha levels were set at .05, and were controlled for familywise error rate in post hoc 

testing, using the Holm’s sequential Bonferroni procedure.  Data were treated as in Experiment 

1.  

 

Initial Analysis of Simon Effect (RTs and Errors) 

To determine whether drawing resources from the Simon task affects congruent versus 

noncongruent trials differently, RTs and percent errors were compared for congruent versus 

noncongruent trials in single versus dual tasks.  Results are shown in Figure 5 (p. 63). Two-way 

repeated measures ANOVAs for RTs and errors included task condition (single versus dual) and 

trial type (congruent versus noncongruent) factors.  For correct RTs, the main effects of task 

condition [F(1,57) = 142.7, p < .001, partial η
2 

 = .711] and trial type [F(1,57) = 129.7, p < .001, 

partial η
2 

 = .691] were significant.  RTs were slower overall for noncongruent versus congruent 

trials, and the addition of the secondary task increased RTs for both congruent and noncongruent 
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trials.  Moreover, the interaction between task condition and trial type was also significant 

[F(1,57) = 6.91, p = .011, partial η
2 

 = .711].   

As is shown in Figure 5, addition of the resource demanding counting task increased RTs 

for both congruent trials and noncongruent trials, but the effect on congruent trials (254 msec) 

was greater than the effect on noncongruent trials [228 msec; t(58) = 2.63, p = .011].  Thus, 

drawing resources from the Simon task was overall more detrimental for congruent than for 

noncongruent trials.  This result is consistent with results from Experiment 1’s CV distributional 

analysis, suggesting that congruent trials may actually require more controlled processing than 

noncongruent trials. 

Error results were consistent with RT interpretations.  The lower panel of Figure 5 

depicts the error data, showing errors for congruent and noncongruent trials in both single and 

dual task conditions.  Although the task condition main effect was not significant [F(57 = .733, p 

= .395],   there was a significant trial type main effect [F(57) = 80.73, p < .001, partial η
2 

 = .578] 

and the task condition by trial type interaction [F(57) = 5.41, p = .023, partial η
2 

 = .084].  

Overall more errors were committed for noncongruent trials than for congruent trials.  

Furthermore, post hoc testing of the interaction indicated that for congruent trials, percent error 

in the single task condition was 1.17 and increased to 2.36 in the dual task condition [t(57) = -

2.15, p = .016].   However, the addition of the secondary task had no effect on error for the 

noncongruent trials [single noncongruent percent error was 8.33 while dual noncongruent 

percent error was 7.92; t(57) = .646, p = .521].   
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Distributional Analysis 

Evidence that noncongruent RTs increased significantly less than congruent RTs in the 

dual task condition strengthens the inference that the noncongruent trials were in fact less 

affected than congruent trials by combination with a resource demanding secondary task. To 

determine whether these effects are consistent throughout the RT distributions, the congruent and 

noncongruent RT distributions were Vincentized as in Experiment 1, for single and dual tasks 

separately, and mean RTs and CVs for each bin were compared. 

Figure 6 (p. 64) illustrates the RT distributional analysis, showing congruent and 

noncongruent means for four bins in the single task and dual task conditions.   A three way 

repeated measures ANOVA (two task conditions by two trial types by four bins) evaluated the 

relationships between factors for RTs and CVs.  All main effects and interactions were 

significant (see Table 1).  An inspection of Figure 6 shows that the increase in correct congruent 

RTs in the dual task relative to the single task condition was greater than that found for the 

noncongruent trials in all but the first RT bin [bin 2, 33 msec greater: t = 5.51, p < .001; bin 3, 59 

msec greater: t = 4.77, p < .001; bin 4, 55 msec greater: t = 4.29, p < .001].  In the first bin there 

was no significant difference between the effects of the dual task on congruent versus 

noncongruent trials [10 msec difference: t (58) = 1.76, p = .08]. The bin 1 RT trend, although not 

significant, is consistent with the pattern above for RT bins 2 through 4.  Thus, within 

Experiment 2, results of the RT distributional analysis are consistent with overall RT results, 

suggesting that congruent trials are actually more resource demanding than the noncongruent.  

Further, these results are consistent with Experiment 1 CV analysis in which the overall CV was 
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larger for congruent trials throughout most of the distribution and positive skew was greater than 

for noncongruent trials.  It appears that, overall, congruent trials require more processing 

resources than noncongruent trials and thus involve more controlled processing.  

 

CVs.  CVs were calculated as for Experiment 1 and were entered into a three way 

repeated measures ANOVA with task condition (single and dual), trial type (congruent and 

noncongruent) and bin (one through four) factors. Figure 7 (p. 65) shows CVs for congruent and 

noncongruent trials in the single and dual task conditions for four bins, and Table 2 shows results 

for CV bin analysis.  The task condition and bin main effects were significant but the trial type 

main effect was nonsignificant.  The two way interaction between condition and bin and the 

interaction between condition and type were significant   However, the interaction between trial 

type and bin was not significant, nor was the three way interaction. 

Paired comparisons clarified these interactions.  Replicating Experiment 1 results, for the 

single task, at bin 1, congruent CVs (.0578) were smaller than noncongruent CVs [.07; t(58) = -

2.446].  At the second, third, and fourth bin this reversed so that noncongruent CVs were 

smaller.  In bin 2 noncongruent CVs averaged .0217 while congruent CVs averaged .0255 [t(58) 

= 3.05, p = .005].  Similarly, in bin 3 noncongruent trials’ CVs (.0201) were less than congruent 

[.2373;  t(58) = 2.91, p = .0050] and in bin 4 noncongruent CV was .0296 while congruent CV 

was .034 [ t(58) = 2.03, p = .047].  In the dual task condition, noncongruent CVs were always 

less than congruent CVs.  The respective differences for bins 1 through 4 were: 0 .0067; 0.0115; 

0.0077; 0.0040 (all p values < .001). 



 

 

33 

 

Overall the results of Experiment 2 were in agreement with the results of Experiment 1.  

The CV analysis in Experiment 1 revealed greater variability and larger positive skew for 

congruent trials, suggesting that these trials utilize more resources and therefore more controlled 

processing than noncongruent trials.  The dual task manipulation confirmed that congruent trials 

require more processing resources than noncongruent trials.  Interestingly, the addition of the 

resource demanding counting task reversed the consistency difference between congruent and 

noncongruent trials at the fastest RT bin:  in the dual task condition all congruent trial bins had 

larger CVs than their corresponding noncongruent trial bins.  This result confirms that congruent 

trials are overall more variable than noncongruent trials but also that there was a change in 

distributional skew: in the dual task condition, the congruent distribution was no longer more 

positively skewed than the noncongruent bin.    If positive skew indicates more controlled 

processing, it appears that in the dual task condition skew no longer differentiates the congruent 

and noncongruent trials in terms of their respective processing types.  It is likely that the dual 

task condition imposed an additional controlled process which had its strongest effect on 

variability in the fastest congruent trial bin. 

 It should be noted that the experimental procedure used for the dual task in Experiment 2 

may have some limitations.  It was impossible to tell, for example, what kind of decrement 

occurred in the counting task when combined with the Simon task.  Counting backwards by ones 

is an easy task when done on its own, and any measurement of this task alone would likely have 

been subject to a ceiling effect.  It was clear from observing the participants that the counting 

task degraded in the dual task condition, although conditions did not allow measurement of 
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counting timing characteristics, such as pausing to allow a Simon task response.  However, 

participants were able to maintain consistent performance on the counting task across blocks, 

indicating that they were conscious of the necessity to maintain some consistency in the counting 

performance. 
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CHAPTER FOUR: GENERAL DISCUSSION 

Two experiments were conducted to explore whether the coefficient of variation (CV) 

can identify qualitative processing differences in congruent versus noncongruent Simon task 

trials.   Experiment 1 showed the expected Simon effect of an RT advantage for congruent trials 

compared with noncongruent trials.   More importantly, distributional analysis revealed that 

variability as measured by CV was larger for congruent trials than for noncongruent trials for all 

but the fastest RT bin, in opposition to the predicted direction of effect.  In accordance with 

Segalowitz et al. (Poulsen & Segalowitz, 2000; N. Segalowitz et al., 1999; N. Segalowitz, 

Segalowitz et al., 1998), larger CVs for congruent trials indicate that these trials involve more 

controlled processing than noncongruent trials. Distributional CV analysis revealed that the 

congruent trial RT distribution was more positively skewed than the noncongruent distribution, 

further evidence that more controlled processing is required for congruent trials. Results from 

Experiment 2 validated this interpretation.  In a dual task condition, congruent trials were 

affected more by the addition of a secondary task than were noncongruent trials, compared with 

a single task condition: RTs were increased more across the entire congruent distribution than in 

the noncongruent distribution, although the difference between the increases for congruent and 

noncongruent trials was not significant in the first bin.  The CV results indicated that in the dual 

task condition, all congruent bins were more variable than their corresponding noncongruent 

bins.  Overall, both CV analysis and dual task results identified the congruent trials as requiring 

more controlled processing than the noncongruent trials.  These results indicate that CV analysis 
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in a simple task like the Simon task identified differences in the degree of controlled processing 

between the two trial types.   

While the results of the distributional analyses in the two experiments are consistent in 

suggesting that congruent trials require more controlled processing than noncongruent trials, 

Experiment 1’s overall CV main effect was nonsignificant.  The CV differences between 

congruent and noncongruent trials were evident only in the distributional analysis; thus the 

analysis of CVs must go beyond simple analysis of central tendency in order to be meaningful.  

A variety of distributional analyses exist, some more complex than others.  The Vincentizing 

procedure used in these experiments is a method in which RT means for corresponding bins are 

compared between conditions to determine differences between distributions which may be 

masked by measures of central tendency.  In the present research, the Vincentizing procedure 

provided indication of RT differences between corresponding bins, and in addition, CVs were 

calculated and compared for all bins. When bin RTs are combined with a measure of variability 

for each bin, an estimation of the distribution’s skew results.  For example, at the fast end of the 

positively skewed distribution, where the slope of the distribution is steep, the variability of a bin 

will be small, compared with the center or more spread out slower tail of the distribution. 

 Ex-Gaussian analysis is another statistical method which provides information about 

distributional skew, but involves more complex statistical analysis and special software. 

Heathcote, Popiel, and Mewhort  (1991) piloted the use of ex-Gaussian analysis for Stroop task 

RT distributions.  Normally distributions are described by two parameters, the mean and 

variance.  The ex-Gaussian method uses a third parameter which identifies the degree of positive 
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skew in the distribution.  Thus, computing the variability of each bin during a Vincentizing 

procedure will produce roughly the same information as ex-Gaussian analysis but can be 

completed without the necessity for specialized software or training (see also Rouder & 

Speckman, 2004, for a description and analysis of using Vincentizing procedures with parameter 

estimation). A computationally simple and easily understood method for evaluating skew is 

useful since skew differences are critical when evaluating qualitative processing between 

conditions (Heathcote et al., 1991; Zhang & Kornblum, 1997).   

In the present experiments, the distributional CV analysis indicated more variability and a 

greater skew for congruent than for noncongruent trials in single task conditions; this result, 

combined with the dual task finding that congruent trials require more processing resources, can 

be taken as evidence that comparing the skew of distributions does in fact provide information 

about qualitative processing differences.  It is generally accepted that the Simon task trials 

represent a heterogeneous mixture of processing requirements rather than a clear automatic-

controlled distinction between congruent and noncongruent trials. The larger variability and 

skew for correct congruent trials indicates that these trials may involve a more complex mix of 

processes than noncongruent trials.   Automatic processes may be primary for some congruent 

trials and controlled processes may be primary for other congruent trials.  For example, 

distributional CV analysis in Experiment 1 suggested that only the fast correct congruent trials 

may benefit primarily from the automatic spatial priming process (congruent CVs were 

significantly less than noncongruent CVs for this bin only; in all other bins the result was 

reversed).  This interpretation is in accord with Burle et al.’s claim that fast congruent trials 
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escape controlled processing (Burle et al., 2002),  and Ridderinkhof et al.’s suggestion that 

controlled suppression takes longer to develop and thus will not affect correct fast congruent 

trials (Ridderinkhof, 2002; Ridderinkhof et al., 2005).  An analysis of congruent and 

noncongruent error trials in the present experiments supports these contentions.  Automatic 

spatial priming will result in fast correct responses for congruent trials but in fast errors in 

noncongruent trials. Thus, noncongruent error trials should be faster than congruent error trials.  

Experiment 1 had low error rates; however, for the 24 out of 40 participants who had error values 

in each cell, a two-way repeated measures ANOVA was conducted on error RTs, with trial type 

and trial contingency as factors.  The trial type main effect was the only significant effect:  

noncongruent error RTs (496 msec) were faster than congruent error RTs (595 msec) [F(1,23) = 

21.06, p < .001].  Noncongruent error RTs were 42 msec faster than correct congruent trials 

overall, and 25 msec faster than the congruent trials that occur after congruent trials.
5
   

Experiment 1’s distributional analysis showed that the fast congruent bin had less 

variability than slower congruent and all noncongruent bins, and the previous discussion relates 

this finding to the possibility that fast correct congruent trials are primarily automatic in nature.  

The increased variability of the slower congruent bins and all of the noncongruent bins suggests, 

in contrast, that these slower trials involve controlled processes in addition to the direct spatial 

priming.  This conclusion is compatible with  Ridderinkhof’s activation-suppression hypothesis 

(Ridderinkhof, 2002).  In his model, direct route activation from automatic spatial priming is 

thought to start immediately on stimulus presentation, as per Jong et al. (1994), and then decay 
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gradually, while indirect route activation related to the relevant stimulus characteristic starts 

somewhat later, as does controlled suppression of the direct route activation. When the 

suppression process is strong it may enter into the task earlier than when it is weaker; the 

strength of suppression can be varied by changing task parameters such as the probability of a 

congruent response, or by interference from a secondary task as in Experiment 2.  It should also 

be noted that suppression is expected to be stronger for noncongruent trials more than congruent 

trials (Ridderinkhof, 2002).   Specific predictions can be made based on the activation-

suppression hypothesis, for both RTs and errors under strong and weak suppression. For 

noncongruent trials, with strong suppression to prevent the direct route spatial priming from 

creating an overt response, differences between congruent and noncongruent trial RTs will 

decrease from the fast to the slow end of the distributions, while in weak suppression (dual task) 

the differences will increase.  Also, for strong suppression, there should be fewer fast errors than 

when suppression is weakened.  At the slower end of the distribution there should be a smaller 

difference between numbers of errors in single and dual task conditions than the fast end of the 

distribution. The Experiment 2 data are in agreement with Ridderinkhof’s activation-suppression 

model (see Appendix B) and also with the connection of increased variability and increased 

processes in correct congruent Simon task performance.  

The results of the present experiments are consistent with other Simon effect research 

describing a mix of automatic and controlled processing in Simon trials which potentially result 

in increased correct congruent variability.  However, the finding in dual task conditions that even 

the fast congruent trials require more controlled processing than noncongruent trials, as 
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confirmed by dual task results, was not expected based on many descriptions of behavior in the 

Simon task.  First, as described in the introduction, automatic processing is considered to be 

faster than controlled processing; correct congruent trials are performed faster than correct 

noncongruent trials.  Brain activation studies of conflict tasks indicate increases in anterior 

cingulate and prefrontal cortex activity during conflict trials (e.g., noncongruent trials) compared 

with nonconflict trials.  Activation is reduced after congruent trials and increased after 

noncongruent (conflict) trials, and this activation difference is considered to be the basis for the 

reduction or disappearance of the Simon effect after noncongruent trials (Kerns, 2006).  The 

distributional CV analyses in Experiment 1 and 2 included only trials after congruent trials, so 

the influence of these controlled processing brain areas should be minimized.  Despite this 

manipulation, both variability measures and dual task procedures implicate more controlled 

processing in the congruent trials.  Why do even the fastest congruent trials appear to require 

more controlled processing than fast noncongruent trials?   

One possibility for this is that participants put more effort into congruent trial 

performance. Increased effort would result in more fast correct trials and thus a more positive 

skew.  It is also possible that, while fast correct congruent trials are performed more 

automatically in the single task condition, in a dual task condition a controlled process is added 

which increases the variability of the fast congruent trials.  Another explanation  could be that 

the verbal responses in the dual task conditions may delay the Simon task responses enough that 

the direct route automatic spatial priming decays, usually after only several hundred msec (De 

Jong et al., 1994; Roswarski & Proctor, 1996; Simon, Acosta, Mewaldt, & Spiedel, 1976; Zhang 
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& Johnson, 2004). In Experiment 2, with the addition of the secondary task congruent trial mean 

RT increased almost 300 msec, supporting the possibility that decay of the spatial priming may 

affect performance within a single trial. 

Another possibility is that additional controlled processing operating in congruent trials 

actually speeds performance. Wascher et al. (Wascher et al., 2001; Wiegand & Wascher, 2005).  

compared anatomically mapped Simon tasks with crossed-hands Simon tasks, and proposed that 

there are two spatial activation processes in the Simon task.  One is based on anatomical 

correspondence with the stimulus orientation (visuomotor facilitation) and results in activation of 

the spatially corresponding response effector.  This process occurs only with anatomical 

positioning (does not occur in the crossed hands condition) and only in the visual Simon effect, 

implicating the dorsal stream and visually linked grasping system as the source.  The second 

process is a more cognitive spatial correspondence effect, based on the more natural tendency to 

respond with right limb to stimuli on the right. The authors claim that in the congruent trials the 

added visuomotor activation process, while increasing the variability of the congruent 

distribution, does not add time to the congruent task but rather speeds it (apparently the 

anatomical activation process is not allowed to unfold in noncongruent trials).  Wascher et al. 

suggest that activation of succeeding stages such as response programming may result from this 

visuospatial priming, which accelerates processing in those stages and facilitates the congruent 

trial response.  The present experiments utilized a body-centered, one-handed Simon task, so the 

parallel with Wascher et al. is not direct.  However, Experiment 1 showed the typical larger 

Simon effect for stimuli on the right side compared with the effect when stimuli were on the left 
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side (see Appendix 1).  Thus a visuomotor activation effect that is not necessarily restricted to 

the body’s hemispace may contribute to the congruent trial variability in the present experiments.   

Another possible facilitating process in the correct congruent trials is repetition effects as 

a result of trial to trial similarities between stimuli and/or responses.  Recall that the Simon effect 

occurred only after congruent trials.  When congruent trials followed congruent trials, for half of 

these pairings the stimulus for the second congruent trial was the same color and in the same 

location as the stimulus for the first trial and required the same side response.  In the other half of 

congruent trials the second stimulus did not share any characteristics with the first stimulus and 

required the opposite side response.  By contrast, for all noncongruent stimuli following 

congruent stimuli, either the stimulus was a different color or in a different position.  In these 

noncongruent trials, depending on the stimulus characteristic configuration, the second required 

response was either the same or opposite from that required by the first trial.  Previous research 

has shown that both complete alternations as well as complete repetitions benefit response times 

(see Wuhr & Ansorge, 2005, for a discussion of arguments relating to trial contingencies in the 

Simon effect).  It is possible that the process underlying these repetition effects could be resource 

demanding, and yet facilitate congruent trials.  However, the trial to trial modulations cannot 

explain increased congruent trial variability, since both types of repetition effects for congruent 

trial-congruent trial pairings are facilitatory.  Based on Wascher et al. and Wurh and Ansorge’s 

research, adding a control process may not always be time consuming, and may actually reduce 

response time if the process can prime, bias, or partially activate the correct response.   
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Ridderinkhof et al.’s delta plot analyses, Wascher et al.’s proposal of a controlled process 

which speeds performance, and the anterior cingulate research shed light on possible responses 

of patient populations in the Simon task, but also demonstrate the complexity of analysis 

required to understand the contributions of various processes to Simon task performance. 

Patients with controlled processing difficulty may have reduced controlled suppression, as 

occurred with the addition of the secondary task in Experiment 2.  They may also have slower 

congruent trial responses combined with less variability of the congruent distribution, if Wascher 

et al. are correct in their hypothesis of a facilitating controlled process.  If the contribution of the 

anterior cingulate is compromised in these patients, they should have more errors and slower 

RTs in noncongruent trials, but also perhaps slower congruent RTs if MacLeod and MacDonald 

are correct that congruent trials are faster because of more anterior cingulate activity.  In any 

event, analysis must go beyond simple measures of central tendency and variability to elucidate 

controlled and automatic processing contributions to Simon task congruent and noncongruent 

trials. 

 

 In conclusion, the coefficient of variation detected a processing difference between 

congruent and noncongruent trials that was verified by dual task methodology. The increased 

variability of congruent trial distributions, and the larger increase in RT for congruent trials 

compared with noncongruent trials when adding a secondary task, suggests that the congruent 

trials overall are more effortful and/or require a greater number of processes than noncongruent 

trials. However, the difference between congruent and noncongruent trials is not simply that one 
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is more automatic than the other.  Only the fastest congruent trials, which could be elicited by 

direct spatial priming due to correspondence between stimulus and response location may be 

primarily automatic in nature. Thus, for the Simon task, increased CVs appear to signal that the 

correct congruent trials may have a more complex mix of automatic and controlled processes 

than the noncongruent trials.  Distributional analysis is required in order to separate the more 

automatic faster congruent trials from the noncongruent and slower congruent trials.  Despite the 

complex analysis, Simon task performance is relatively simple for participants, and the CV 

analysis yields identifiable differences in processing between congruent and noncongruent trials.  

Therefore, the use of CV analysis combined with the Simon task is potentially a useful tool to 

explore controlled versus automatic processing.  
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Appendix A 

Side of Stimulus and Side of Response Effects 

 Experiment 1 

 Figure A1 (p. 66) shows RTs for congruent and noncongruent trial types when stimuli 

appear on the right versus left of the screen.  When the stimulus is on the right and the trial is 

congruent, the response side is also on the right.  Left sided stimulus values can be interpreted in 

the same way; thus these results can be interpreted both for stimulus side and response side.  A 

trial type by stimulus side repeated measures ANOVA indicated a main effect of trial type [F(1, 

41) = 111.14,  p < .001, partial η
2 

 = .726]  and a significant trial type by stimulus side interaction 

[F(1, 41) = 11.09,  p = .001, partial η
2 

 = .221].  Post hoc testing indicated that the Simon effect 

was larger for right sided stimuli (36 msec advantage for congruent trials) than for left (16 msec 

advantage for congruent trials, t (41) = 3.45, p = .001, d = .79).  Although there was a difference 

in Simon effect size, effects for right and left stimuli were strong and in the same direction. 

 Experiment 2 

 Figure A2 (p. 67) shows correct RT results for stimulus and response sides for both trial 

types in single and dual task conditions.  Again, data for stimulus side can be reinterpreted for 

response side; hence only stimulus side data was analyzed.  Repeated measures ANOVA 

indicated a significant trial type main effect such that congruent trials were faster [F(1, 57) = 

153.58,  p < .001, partial η
2 

 = .722].  There was also a significant task condition main effect: 

single task was faster [F(1, 57) = 163.7,  p < .001, partial η
2 

 = .735], and a significant trial type 

by task condition interaction [F(1, 57) = 19.17,  p = .001, partial η
2 

 = .245].  .  The important 
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information for the purposes of this analysis is that there was no significant effect of stimulus 

side, nor any interaction involving stimulus side (p values > .10). 
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Appendix B 

 

Delta Plot From Experiment 1  

 

 Figure B1 (p. 68) depicts delta plots comparing congruent and noncongruent RTs and 

percent errors for four RT bins. 
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Footnotes 

 

1
 Tagliabue et al. (2007) suggest that response and stimulus side should be considered as separate 

factors in Simon task experiments, since a typical finding is that for stimuli and responses on the 

right side, the Simon effect is greater than on the left side, and the left side effect may even be 

reversed.  However, they argued that where the Simon effect is in the same direction, and 

significant, for both right and left sides, data may be collapsed over side.  This was true for both 

Experiment 1 and 2.  In Experiment 1, while there was an interaction of response side and trial 

type (congruent versus noncongruent), the Simon effect was strong and in the same direction for 

both right and left responses.  In Experiment 2 there was no interaction of stimulus side or 

response side with trial type or condition (single or dual task). Using right hand only and one 

color-response mapping simplified a potentially complex design necessitated by distributional 

analysis.  See Appendix A for analysis of mapping effect results. The critical factors (trial type 

and trial contingency) are mapped equally to right and left finger responses (Wascher et al., 

2001) 

 

2
 It should be noted that the U-shape of the CV quantile plots is to be expected for RT 

distributions:  the range of RT values included in the fastest and slowest bins will be larger than 

the range in the center of the distribution, because of the generally normal (although skewed) 

shape of the distribution. 
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3
 Experiment 2 was first attempted using random number generation in time with a metronome 

as the secondary task.  Participants found this combination difficult and it resulted in an increase 

in Simon task RTs of over 2000 msec, with individual trial RTs ranging up to 4000 msec. 

Counting tasks were chosen next (Peterson et al., 1961). Pilot work using this task started with 

counting back by threes, which was also shown to be too difficult when combined with the 

Simon task:  pilot participants’ RTs increased by more than 800 msec from single to dual task, 

and errors and variability increased dramatically.  Further, any counting task with a metronome 

was determined to be too difficult for participants. 

 

4
  There was a significant negative correlation between counting score and RT for dual task 

noncongruent trials (r = -.452, p = .02, N = 58) while a negative correlation was marginally 

significant for dual task congruent trials and CS (r = -.35 p = .08, N = 58).  It appears that faster 

counters were also faster at responding to Simon task trials. Similarly, CS’s were significantly 

negatively correlated with the difference between single and dual congruent mean RTs (r = -

.397, p = .045, N = 58) and with the difference between single and dual noncongruent RTs (r = -

.479, p = .013, N = 58).  The effects of the dual task were thus reduced for the faster counting 

participants compared with the slower counting participants. 

 

5
 Because of the difference in numbers of trials between correct responses and error responses, 

statistical analysis is inappropriate.
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Table 1 

Experiment 2 RT analysis 

Source Statistic 

Condition (C) F(1,57) = 110.2, p < .001, partial η
2 
 = .655 

Type (T) F(1,57) = 238.6, p < .001, partial η
2 
 = .804 

Bin (B) F(3,55) = 229.2, p < .001, partial η
2 
 = .925 

C  x T F(1,57) = 24.18, p < .001, partial η
2 
 = .294 

C x B F(3,55) = 33.59, p < .001, partial η
2 
 = .643 

T x B F(3,55) = 5.05, p = .004, partial η
2 
 = .213 

C x T x B F(3,56) = 10.51, p < .001, partial η
2 
 = .36 
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Table 2 

Experiment 2 CV analysis 

Source Statistic 

Condition (C) F(1,58) = 55.94, p < .001, partial η
2 
 = .491 

Type (T)                F(1,58) = .323, p > .10] 

Bin (B) F(3,56) = 86.95, p < .001, partial η
2 
 = .823 

C  x T               F(1,58) = 5.93, p = .018, partial η
2 
 = .093 

C x B F(3,56) = 12.52, p < .001, partial η
2 
 = .402 

T x B               F(3,56) = 1.02, p = .393 

C x T x B              F(3,56) = 2.63, p = .059 
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Figure 1.  Experiment 1 RTs and percent error as a function of trial contingency (after congruent 

versus after noncongruent) and trial type (congruent versus noncongruent).  Error bars denote 

standard error. 
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Figure 2.  Experiment 1 CVs as a function of trial contingency (after congruent versus after 

noncongruent) and trial type (congruent versus noncongruent).  Error bars denote standard error. 
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Figure 3. Experiment 1 RTs from trials after congruent trials as a function of RT bin and trial 

type (congruent versus noncongruent).  Error bars denote standard error. 
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Figure 4.  Experiment 1 CVs from trials after congruent trials as a function of RT bin and trial 

type (congruent versus noncongruent).  Error bars denote standard error. 

 

 

 

 



 

 

64 

 

 

 

Figure 5.  Experiment 2 mean RTs and percent errors from trials after congruent trials as a 

function of task condition (single versus dual) and trial type (congruent versus noncongruent). 

Error bars denote standard error.  Standard error for percent error is too small to be pictured.
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Figure 6.  Experiment 2 mean RTs from trials after congruent trials as a function of task 

condition (single versus dual), trial type (congruent versus noncongruent), and RT bin.   Error 

bars, where visible, denote standard error. 
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Figure 7.  Experiment 2 mean CVs from trials after congruent trials as a function of task 

condition (single versus dual), trial type (congruent versus noncongruent), and RT bin.  Error 

bars denote standard error. 
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Figure A1.  Correct RTs in msec for congruent versus noncongruent trial types when stimuli 

occur on the right versus left of the screen.  Error bars denote standard error. 
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Figure A2.  Experiment 2 mean reaction times for congruent and noncongruent trials in both 

single and dual task conditions, for response finger in the top frame, and for side of stimulus in 

the lower frame. 
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Figure B1.  Delta plots showing the differences between noncongruent and congruent RTs (top 

panel) and percent correct (PC: lower panel) from Experiment 2.  


