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Several domains are inherently structural; relevant data cannot be represented as a single 

table without significant loss of information. The development of predictive models in such 

domains becomes a challenge as traditional machine learning algorithms which deal with 

attribute-valued data cannot be used. One approach to develop predictive models in such 

domains is to represent the relevant data as labeled graphs and treat subgraphs of these graphs as 

features on which to base the predictive model.  

The general area of this research is the development of predictive models for such 

domains. Specifically, we target domains which are readily modeled as sets of separate graphs 

(rather than a single graph) and on the tasks of binary classification and regression on such 

graphs. An example would be learning a binary classification model that distinguishes between 

aliphatic and aromatic compounds or a regression model for predicting the melting points of 

chemical compounds. 
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 The contributions of this work include a comprehensive comparison of current 

approaches to graph classification and regression to identify their strengths and weaknesses, the 

development of novel pruning mechanisms in the search for subgraph features for the graph 

regression problem, the development of a new algorithm for graph regression called gRegress 

and the application of current approaches in graph classification and regression to various 

problems in computational chemistry.  

Our empirical results indicate that our pruning mechanisms can bring about a significant 

improvement in the search for relevant subgraph features based on their correlation with each 

other and the target, sometimes by an order of magnitude. Our empirical results also indicate that 

gRegress addresses a key weakness in the current work on graph regression, namely, the need for 

a combination of linear models.  
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1. Introduction 

This chapter presents an introduction to the graph classification and regression problems. Before 

we introduce the formal definitions of these problems, we present some background on the 

subject. 

 The twenty-first century has seen an explosion of data in almost every field of human 

endeavor. As the amount of data grows, it becomes impossible for domain experts to analyze the 

data manually. To address these problems, machine learning and data mining techniques have 

found their way into a variety of application domains and in a number of cases have become 

indispensible research tools. The characterizing aspect of initial research in machine learning and 

data mining was the focus on developing models from attribute-valued data. Attribute-valued 

data is data represented as a single table consisting of a number of examples, each associated 

with a number of attributes and the values of these attributes. While techniques dealing with 

attribute-valued data are effective in many domains, they are inadequate when applied to 

problems from domains that are inherently structural.  

The general area of this research is dealing with such domains. Specifically, we target 

domains which are readily modeled as sets of separate graphs (rather than a single graph) and on 

the tasks of binary classification and regression on such graphs. An example would be learning a 

binary classification model that distinguishes between aliphatic and aromatic compounds or a 

regression model for predicting the melting points of chemical compounds.   

 

 



2 
 

1.1. Formal Definitions 

Our graphs are defined as 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐿𝐺 , ℒ𝐺  ), where 𝑉𝐺  is the set of vertices, 𝐸𝐺 ⊆ 𝑉𝐺  ×  𝑉𝐺  is 

a set of edges, 𝐿𝐺  is the set of labels and ℒ𝐺  is the labeling function ℒ𝐺 : 𝑉𝐺   𝐸𝐺  → 𝐿𝐺 . The 

notions of subgraph (denoted by 𝐺 ⊆ 𝐺′), supergraph, graph isomorphism (denoted by 𝐺 = 𝐺′) 

and subgraph isomorphism in the case of labeled graphs are intuitively similar to the notions of 

simple graphs with the additional condition that the labels on the vertexes and edges should 

match.  

 

 Given a set of examples 𝐸 = { 𝑋1, 𝑌1 ,  𝑋2, 𝑌2 , … 𝑋𝑛 , 𝑌𝑛 } where 𝑋𝑖  are labeled graphs 

and 𝑌𝑖  ∈ {+1, −1} which represents the class, the graph classification problem is to induce a 

function which predicts the class from the labeled graph for unseen examples. 

Given a set of examples 𝐸 = { 𝑋1, 𝑌1 ,  𝑋2, 𝑌2 , … 𝑋𝑛 , 𝑌𝑛 } where 𝑋𝑖  are labeled graphs 

and 𝑌𝑖  ∈  ℝ  which represents the output value, the graph regression problem is to induce a 

function which predicts the output value from the labeled graph for unseen examples. 

1.2 Key Issues in Graph Classification and Regression 

Given the formal definitions of the graph classification and regression problems we can now 

identify the key issues involved in developing solutions for these problems. The purpose of 

identifying these issues is to present the contributions of this research, which are presented in the 

next section, in perspective. 

 Figure 1 illustrates a set of toy examples for the graph classification or regression 

problem. Given that the predictive models are to be based on subgraph features, we must take 

note of the search space of features for these examples. Figure 2 shows all the 

subgraphs for the toy example. It is easy to see that this search space is exponential 
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both in the size of the examples and the number of examples. A key issue in addressing the graph 

classification and regression problems is how this feature space is to be ordered. Figure 3 

illustrates a simple ‘is-subgraph-of’ ordering of the feature space. Given such an ordering, the 

next issue is how this search space is to be searched so as to maximize a particular measure and 

how it might be possible to prune sections of this search space. Figure 4 shows how the search 

space might be drastically reduced by pruning mechanisms. Finally, after good features are 

identified, there is the issue of developing a predictive model based on these features. Figure 5 

shows a simple, weighted, threshold based model for classification.  

 

Figure 1. Examples for the Graph Classification or Regression Task 

 

Figure 2. Feature Space for the Examples 
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Figure 3. Structuring the Feature space 

 

Figure 4. Pruning the Feature Space 
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Figure 5. Building the Model based on Selected Features 

 

1.3. Thesis Statement and Contributions 

We now present our thesis statement which is as follows. The state of the art in graph 

classification and regression algorithms can be improved both in terms of runtime and predictive 

accuracy by understanding and combining their strengths and by understanding and addressing 

their weaknesses. 

The rest of the document is devoted to supporting the thesis statement. The key 

contributions of our research, which are stepping stones towards validating the thesis statement, 

can be categorized as theoretical, empirical and application oriented.  

1.3.1. Theoretical Results 

1.3.1.1 Pruning Mechanisms for Feature Search 

We developed a novel class of pruning mechanisms for searching the space of subgraph features. 

These pruning mechanisms are independent of the model building step and can be applied to a 

number of approaches to graph classification and regression. 
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1.3.1.2 gRegress: Algorithm for Graph Regression 

We developed a novel algorithm for graph regression called gRegress. Our algorithm 

outperforms previously introduced algorithms on graph regression and represents the current 

state of the art in graph regression. 

1.3.1.3 Faster Computation of Walk-based Kernel 

We develop an alternative approach for the computation of the Walk-based kernel for graph 

classification. Although this approach was not able to outperform the current approach for the 

kernel computation, it is an interesting direction in the faster computation of graph kernels.  

 

1.3.2. Empirical Results 

1.3.2.1 Strengths and weaknesses of graph classification algorithms 

We conducted a comprehensive comparison of the major approaches to graph classification and 

identified the strengths and weaknesses of these approaches.  

1.3.2.2 Pruning mechanism can drastically improve run times 

We conducted a performance study of our pruning mechanisms and demonstrated that pruning 

mechanisms can drastically improve the running time of graph regression algorithms. 

1.3.2.3 Certain problem domains need multiple linear models 

We demonstrate that certain problem domains with respect to graph regression require multiple 

linear models. Models which are at their core based on a single linear function perform poorly as 

compared to models based on combinations of linear models. 
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1.3.2.4 Structure can improve performance of regression models 

We demonstrate that in certain cases, incorporating structural features can drastically improve 

the performance of predictive models as compared to models based only on attribute valued 

features. 

1.3.3. Applications 

We successfully applied our observations, approaches and algorithms to various classification 

and regression problems from the domain of computational chemistry with promising results. 

 

1.4. Organization of the Thesis 

The rest of the document is organized as follows. Chapter 2 surveys the related work on the 

graph classification and regression problems. Chapter 3 introduces pruning mechanisms for the 

feature search in graph classification and regression. Chapter 4 discusses the gRegress algorithm 

and presents an empirical comparison of the gRegress algorithm with other approaches to graph 

regression. Chapter 5 presents a comprehensive empirical comparison of graph classification 

algorithms. Chapter 6 presents an alternative approach for the computation of the walk-based 

kernel. Chapter 7 presents the conclusions and the future work. 

While all the chapters of the document contribute in some way towards supporting our 

thesis, the most significant of results are presented in Chapters 3 and 4. Table 1 summarizes the 

empirical observations and theoretical results in each chapter. 
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Table 1. Organization of the Thesis 

 

  

Chapter Empirical Observations Theoretical Results 
Contribution towards validating the 

thesis 

Chapter 3 
Massive redundancy in search 
for subgraph features. 

Developed pruning mechanisms 

in the search for subgraph 

features. 

Order of magnitude improvement in 
runtime. 

Chapter 4 

 

1) Need for combination of 
linear models in certain 

domains. 

 
2) Including structure in 

models can improve 

predictive accuracy. 

Developed gRegress, an 

algorithm that induces a tree 

based combination of linear 
models. 

Significant improvement in predictive 

accuracy. 

Chapter 5 

 

1) Differences in the behavior 

of graph classification 
algorithms despite similar 

performance. 

 
2) Walk-based Graph Kernels 

cannot capture structure. 

 Motivation behind thesis. 

Chapter 6  
Language of Walks in a graph is 

a Regular Language. 

Important development in the direction 

of improving runtime. 
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2. Related Work 

Learning from structured data such as graphs, first-order logic and relational databases emerged 

as a sub-field of machine learning and data mining and received a significant amount of attention 

by researchers in the time period between 1989 and 2009. The distinguishing aspect of this body 

of research from previous work in machine learning and data mining was that it considered the 

relationships between entities in the development of predictive models. This body of research has 

produced a variety of tasks, approaches and algorithms to address these tasks, and the application 

of these approaches to real-world problems with promising results. Here, we first present a brief 

overview of this work and then survey the particular literature relevant to this research.  

 

We begin by making the following observations about learning from structured data. 

1) Learning from structured data requires the expansion of the hypothesis space to include 

structural features. 

2) Learning from structured data requires the expansion of the hypothesis space to include 

semantic features over structures. 

3) Learning from structured data must consider the violation of the independent and 

identically distributed (I.I.D) assumption and revisit traditional machine learning 

algorithms. 

 

Based on these observations, three major categories of models, approaches and algorithms 

have emerged. The first major category of models, approaches and algorithms is Inductive Logic 

Programming. The distinguishing aspect of this category is the use of first-order logic both for 

the representation of structured data as well as the induced models. Cheng et al. [7] survey all the 
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major developments in this category. The major strength of this category is its rich semantic 

power, and its major weakness is its computational complexity which restricts the induction of 

models with large structures [51].  

 

The second major category of models, approaches and algorithms is Structural Relational 

Learning. The distinguishing aspect of this category is the identification, correction and 

exploitation of biases that cause pathological behavior in traditional machine learning algorithms 

when the assumption that the examples are independent and identically distributed (I.I.D.) is 

violated, as in the case of structured data. Getoor et al. [59] survey all the major developments in 

this category. The major strength of this category is the significant improvement of traditional 

machine learning algorithms when applied to structural data, and its major weakness is that 

complicated structural features are not captured by these models which typically use simple 

aggregation to generate structural features. 

 

The third major category of models, approaches and algorithms is Graph Mining. The 

distinguishing aspect of this category is the use of a graph-based representation of structured data 

and the use of rich structural features like subgraphs in model building. Cook et al. [53] survey 

all the major developments in this category. The major strength of this category is that models 

can capture large structural features, and the major weakness of this category is the lack of 

formal semantics and the ad-hoc nature of the developed models [51].  

 

The work conducted in our research belongs to the third category (Graph Mining), on which 

we now present a brief overview. 
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2.1. Graph Mining 

The key tasks researched in Graph Mining are Frequent Subgraph Mining, Graph Classification, 

Graph Regression and their variants. We now present a concise overview of the same. 

 

2.2.1. Frequent Subgraph Mining 

The specific problem of mining frequent subgraphs was initially formulated in the work done by 

[19,22]. Significant improvements were made by introducing canonical labeling with DFS codes 

in the work done by [28]. The algorithm introduced in this work, called gSpan, remains to date, 

one of the best algorithms for the task. A novel form of canonical labeling using CAMs 

(canonical adjacency matrices) was introduced by [36]. The intuition is that the algorithm 

introduced in this work, FFSM, will outperform gSpan when the size of the graph transactions is 

large. This is because unlike gSpan, FFSM does not have to perform subgraph isomorphism to 

check the presence of a subgraph in graph transactions; this can be checked by operations on 

embedding lists of subgraphs when a new subgraph is generated by operations on CAMs. 

However, operations on embedding lists are quite costly. So in the case of moderately sized 

graph transactions, performing subgraph isomorphism might turn out to be cheaper and gSpan 

may perform better. Gaston [43] is another novel approach to the task which is based on the 

observation that most frequent graphs are not actually graphs but paths and trees. Searching for 

paths first, then trees and then finally graphs, the so called quick start, is a better way to organize 

and search the space efficiently. Various frequent subgraph mining algorithms are 

experimentally compared in the work done by [58] and [48]. Experimental results show that 

gSpan, FFSM and Gaston are the top performing frequent subgraph mining algorithms, but none 
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of them is clearly better than the other. A theoretical analysis of canonical labeling forms has 

been conducted in [46] and shows how the seemingly diverse canonical labeling systems in fact 

belong to the same general family of canonical forms. 

 

Related to the task of frequent subgraph mining are tasks like mining closed frequent 

graphs [38], mining geometric subgraphs [60], maximal frequent subgraphs [41], induced 

subgraphs [28], trees [29], and the more recent work on mining from tenuous outerplanar graphs 

[56]. The work on outerplanar graphs is extremely significant from a theoretical standpoint as it 

is the only known class of graphs beyond trees for which frequent subgraph mining can be 

performed in incremental polynomial time. 

 

2.1.2. Graph Classification 

We now survey all the major approaches to graph classification. 

2.1.2.1 SubdueCL 

The SubdueCL algorithm [25] is the pioneering algorithm for the graph classification problem. 

The key aspect of the algorithm is the greedy, heuristic search for subgraphs present in the 

positive examples and absent in the negative examples. The hypothesis space of SubdueCL 

consists of all the connected subgraphs of all the example graphs labeled positive. SubdueCL 

performs a beam search which begins from subgraphs consisting of all vertices with unique 

labels. The subgraphs are extended by one vertex and one edge or one edge in all possible ways, 

as guided by the input graphs, to generate candidate subgraphs. SubdueCL maintains the 

instances of subgraphs (in order to avoid subgraph isomorphism) and uses graph isomorphism to 

determine the instances of the candidate substructure in the input graph. Candidate substructures 
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are evaluated according to classification accuracy or the minimum description length principle. 

The length of the search beam determines the number of candidate substructures retained for 

further expansion. This procedure repeats until all substructures are considered or the user-

imposed computational constraints are exceeded. At the end of this procedure the positive 

examples covered by the best substructure are removed. 

 

The process of finding substructures and removing positive examples continues until all 

the positive examples are covered. The model learned by SubdueCL thus consists of a decision 

list, each member of which is a connected graph. Applying this model to classify unseen 

examples involves conducting a subgraph isomorphism test; if any of the graphs in the decision 

list are present in the example, it is predicted as positive, if all the graphs in the decision list are 

absent it the example, it is predicted as negative. 

2.2.2.2 FSG+SVM 

The FSG+SVM approach [49] for graph classification involves the combination of work done in 

two diverse fields of study, namely, frequent subgraph mining and support vector machines 

(SVM). The key idea in combining frequent subgraph miners and SVMs in order to perform 

graph classification is to use a frequent subgraph mining system to identify frequent subgraphs in 

the given examples, then to construct feature vectors for each example where each feature is the 

presence or absence of a particular subgraph, and finally to train a support vector machine to 

classify these feature vectors. The model produced by this approach thus consists of a list of 

graphs and a model produced by the SVM. Applying this model to classify unseen examples 

involves conducting a subgraph isomorphism test. First, a feature vector for the unseen example 

is produced where each feature is a Boolean representing the presence or absence of  the graph in 
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the list. Then, this feature vector is classified as positive or negative by the model produced by 

the SVM. 

 

2.2.2.3 CLDT-GBI 

The CLDT-GBI [26] approach involves combining aspects of frequent subgraph mining system 

GBI [19] and decision trees [4]. The approach induces a decision tree where every node is 

associated with a graph and represents an existence/nonexistence test in an example to be 

classified. The GBI system performs a heuristic, greedy search. In this approach, a variant of the 

GBI system, B-GBI which deals with overlapping candidate subgraphs, is used for feature 

generation. Broadly speaking, the approach involves a typical decision tree algorithm except that 

B-GBI is invoked to generate features at each node. The gain of each feature is computed on the 

basis of how the existence of the feature graph splits the examples at that node. This procedure is 

recursively applied until pure nodes with examples only from a single class are reached. In order 

to avoid overfitting, pessimistic pruning identical to C4.5 [4] is performed. 

 

2.2.2.4 Graph Kernels 

Another approach to applying SVMs to graph classification is to use graph kernels, which, given 

two input graphs, output a similarity measure between the two graphs. This similarity measure is 

basically the inner product of the feature vectors of these graphs over a high dimensional feature 

space which can be feasibly computed without actually having to generate the feature vectors. 

The key work on this approach is the walk-based (direct-product) kernel [33] and the cycle-based 

graph kernel [33]. Recently, another kernel based on random walks on graphs [34] has been 

introduced.  
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2.2.2.5 FSG+ADABoost 

The FSG+ADABoost [47] approach involves combining aspects of frequent subgraph miners 

and AdaBoost [55] in a more integrated way than that of the FSG+SVM approach discussed 

earlier. Broadly speaking, the approach involves boosting decision stumps, where a decision 

stump is associated with a graph and represents an existence/nonexistence test in an example to 

be classified. 

 

The novelty of this work is that the authors have adapted the search mechanism of gSpan 

which is based on canonical labeling and the DFS code tree for the search for such decision 

stumps. The key idea behind canonical labeling and the DFS code tree in gSpan is to prune the 

search space by avoiding the further expansion of candidate subgraphs that have a frequency 

below the user specified threshold as no supergraph of a candidate can have a higher frequency 

than itself. This idea cannot be directly applied to graph classification as the objective of the 

search is not to find frequent subgraphs but subgraphs whose presence or absence distinguishes 

positive examples from the negative ones. The authors prove a tight upper bound on the gain any 

supergraph of a candidate subgraph can have. Using this result, the proposed algorithm uses the 

search mechanism of gSpan, calculates and maintains the current highest upper bound on gain T 

and prunes the search space by avoiding the further expansion of candidate subgraphs that have a 

gain lower that T. The boosting of these decision stumps is identical to the meta-learning 

algorithm AdaBoost. 
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2.2.4. Graph Regression 

The problem of developing regression models from graph transactions is relatively new as 

compared to the related problem of graph classification. While the graph classification problem 

involves learning to predict the (binary) class of unseen examples, the graph regression problem 

involves learning to predict the real-valued output associated with unseen examples.  

The key work on graph regression thus far is that of applying partial least square 

regression [68] to the problem. Work related to the task of developing regression models from 

graph transactions also includes [61] in which the authors investigate the search from subgraphs 

with high correlation for a database of graph transactions. This work mainly dealt with the task 

of feature extraction; any attribute-valued regression algorithm could be applied to the extracted 

features. 

 

2.3. Subgraph Isomorphism 

Subgraph isomorphism is a fundamental building block of graph mining. Many approaches 

require performing subgraph isomorphism during the model building phase and almost all the 

approaches in graph mining require performing subgraph isomorphism during the prediction 

stage (except graph kernels). The subgraph isomorphism problem is NP-complete [70]. The 

subgraph isomorphism problem also has many other applications and has been studied to a great 

depth by researchers mainly in computer science and mathematics, and also by researchers in 

application specific areas like biochemistry and bioinformatics. Our research does not address 

the subgraph isomorphism problem directly, but we mention it here due to its fundamental role in 

graph classification and regression. 
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The pioneering algorithm for this task, proposed in [67], consists of a backtracking 

search. The large body of literature on this problem can be classified into two distinct categories. 

The first would be that of identifying and rigorously formulating special cases of subgraph 

isomorphism and establishing (by proof) the complexity class of such special cases. Examples of 

such work would be the work done on planar [68] and outerplaner [69] subgraph isomorphism. 

The second would be that of identifying special cases of subgraph isomorphism, designing 

algorithms to address these special cases and establishing, by experimental comparison, the 

improvement achieved by the approach. Examples of such work can be found in [71] and [72]. 

No major breakthroughs have been achieved in this area and are not to be expected in the recent 

future. While the NP-Completeness of subgraph isomorphism remains an obstacle to the 

successful application of graph classification and  regression, research in this area will continue 

to search for tractable approaches for restricted cases of the problem.   
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3. Pruning Mechanisms 

In this chapter we propose pruning mechanisms (in the search) for the task of extracting 

subgraph features from graph transactions. Given a set of graph transactions and a real value 

associated with each graph transaction the task is to extract the complete set of subgraphs such 

that  

 Each subgraph in this set has correlation with the real value above a user-specified 

threshold. 

 Each subgraph in this set has correlation with any other subgraph in the set below a user-

specified threshold.  

Our approach, embodied as a modification of gSpan, referred to as gSpanPrune, incorporates 

novel pruning mechanisms based on correlation of a subgraph feature with the output and 

correlation with other subgraph features. These pruning mechanisms lead to significant speedup. 

Experimental results indicate that in terms of runtime, gSpanPrune substantially outperforms 

gSpan, often by an order of magnitude while the regression models produced by both approaches 

have comparable accuracy. 

 

3.1 Motivation and Intuition  

Regression models are the trusted workhorse for predictive modeling in a variety of 

application domains. The problem of mining subgraph features from a database of graph 

transactions for building regression models is critical when an attribute-valued representation is 

insufficient to capture the domain of study. An example of such a scenario would be the case 

where we are trying to build a regression model for the toxicity of chemical compounds which is 

a real value collected from in-vivo experiments. The chemical compounds are represented as 
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graph transactions and the real value of interest associated with each transaction is the toxicity. Is 

such a scenario, the question is how to extract relevant features for building a regression model. 

Currently the state of the art in this regard is the large body of work on the problem of frequent 

subgraph mining (relevant literature on this topic was reviewed in Chapter 2). A typical frequent 

subgraph mining algorithm will mine the complete set of subgraphs with a user-defined 

frequency threshold and these subgraphs can be used as features to build a regression model. 

Such an approach involving feature extraction using a frequent subgraph mining algorithm has 

been studied in the context of the graph classification problem and has been applied to the task of 

classifying chemical compounds [49] and proteins [40] with promising results. However, this 

approach is plagued with a number of problems which we now illustrate by describing a small 

case study. The objective of this case study is to motivate our approach and set the stage for the 

rest of the chapter. 

 

The case study involves building regression models for predicting the melting point of a 

set of chemical compounds (details on the data set can be found later in the thesis) based solely 

on subgraph features extracted by the frequent subgraph mining system gSpan [28] using support 

vector regression (SVR) [45]. We ran gSpan on the dataset at thresholds ranging from 20% to 

5% in 1% decrements with a maximum subgraph feature size of 10. Regression models were 

built using the feature vectors based on the presence/absence of subgraph features using SVR 

(the particular implementation used was SVMlite [11]) and were evaluated using the 𝑄2   score 

on a 5-fold cross validation. The 𝑄2 score (which was used to evaluate gPLS [63]) is defined as 

follows. 
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The 𝑄2 score is close to 1 when the regression function f fits well, and is close to 0 when it does 

not. The 𝑄2 score for the model, the number of subgraphs discovered and the runtimes of gSpan 

for each threshold setting are illustrated in Figures 6, 7 and 8. We can observe the following. The 

predictive accuracy of the regression model improves as the threshold frequency reduces. This is 

an expected result [49] and has been observed earlier. It can be explained by the fact that 

additional relevant subgraph features are available on which the model can be based. The 

number of frequent subgraphs and the runtime also increase as the threshold decreases (as 

expected and observed earlier [49]) which in the worst case is expected to grow exponentially. 

 

These observations raise the question of how many of the newly considered subgraph features 

actually contribute to increased predictive accuracy of the regression model. To answer this 

question we analyzed the frequent subgraphs generated at the threshold of 10%. Figure 9 shows 

the absolute pairwise correlations between subgraph features for those subgraphs whose absolute 

correlation with the output is at least 0.20. Pairwise correlation lower than 0.20 is denoted in 

blue, while pairwise correlation greater than 0.20 is denoted in red. The subgraphs in blue are the 

ones that contribute most to the predictive accuracy of the regression model based on these 

thresholds on correlation with the output and the pairwise correlations. While these thresholds 

are somewhat arbitrary, they do give a certain measure of the redundancy of the subgraphs 

generated. Typically, feature selection for building regression models considers the tradeoff 

between how much a feature correlates with the output and how much the feature correlates with 

the features already selected. Our intuition is that mining features based on their frequency 
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produces useful features but also produces additional redundant features at an added cost. Of 

course, redundant features could be eliminated by a simple post processing step, but this is 

computationally expensive as the redundant subgraphs are still generated in the first place. We 

should prefer to mine for a set of subgraphs such that each member of this set has high 

correlation with the output value and that the members of this set have low correlation with each 

other. Mining a complete set of subgraphs based on two thresholds, correlation with the output 

and correlation with other features, is an intuitive approach for building regression models and is 

also computationally efficient. 

 

For a given subgraph feature, we prove an upper bound on the correlation with the output that 

can be achieved by any supergraph for this subgraph feature. For a given subgraph feature, we 

prove a lower bound on the correlation that can be achieved by any supergraph for this subgraph 

feature with any other subgraph feature. Using these two bounds we design a new algorithm 

called gSpanPrune, which extracts the complete set of subgraphs such that a) each subgraph in 

this set has correlation with the real value above a user-specified threshold, and b) each subgraph 

has correlation with any other subgraph in the set below a user-specified threshold. 

 

We conduct an experimental validation on a number of real-world datasets showing that in terms 

of runtime, gGraphPrune substantially outperforms gSpan, often by an order of magnitude while 

the regression models produced by both approaches have comparable accuracy. 
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Figure 6. Effect of Varying the Threshold on the Runtime of a Frequent Subgraph Mining System 

 

Figure 7. Effect of Varying the Threshold on the Number of Subgraphs produced by a Frequent Subgraph Mining 

System 
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Figure 8. Effect of Varying the Threshold on the Predictive Performance of the Model based on the Subgraphs Produced 

by a Frequent Subgraph Mining System 

 

Figure 9. Pairwise Correlations between the Subgraph Features, blue denotes pairwise correlations lesser than 0.2, red 

denotes pairwise correlations greater than 0.2. 
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3.1 Theoretical Results  

As discussed earlier, our graphs are defined as 𝐺 =  𝑉, 𝐸, 𝐿, ℒ , where 𝑉 is the set of vertices, 

𝐸 ⊆ 𝑉 × 𝑉  is a set of edges, 𝐿 is the set of labels and ℒ is the labeling function ℒ: 𝑉 ∪ 𝐸 → 𝐿. 

The notions of subgraph (denoted by 𝐺 ⊆ 𝐺′), supergraph, graph isomorphism (denoted 𝐺 = 𝐺′) 

and subgraph isomorphism in the case of labeled graphs are intuitively similar to the notions of 

simple graphs with the additional condition that the labels on the vertices and edges should 

match.  

 

Our examples consist of pairs, 𝐸 = {< 𝑥1, 𝑦1 >, < 𝑥2 , 𝑦2 >, … , < 𝑥𝑛 , 𝑦𝑛 >} where 𝑥𝑖  is a 

labeled graph and 𝑦𝑖 ∈ ℝ and is assumed to be centered, that is,  = 0𝑦𝑖
. We define the set 𝒮 to 

contain every distinct subgraph of every graph in 𝐸. For any subgraph feature 𝑔 we define the 

vector of existence of 𝑔 in each example 𝑥𝑖  as, 

𝑔(𝑥) =   
1 𝑖𝑓 𝑔 ⊆ 𝑥

 −1 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒  
  

 

We define the indicator vector 𝐼 as the vector of target output values 𝑦𝑖  for each example 𝑥𝑖 . The 

absolute correlation of a subgraph feature 𝑔𝑖  with the output is given by,  

𝜌𝑔𝑖 ,𝐼 =  
𝑔𝑖

 . 𝐼

 𝑔𝑖
 .  𝐼 

  

The absolute correlation of a subgraph feature 𝑔𝑖   with another subgraph feature 𝑔𝑗  is given by, 

𝜌𝑔𝑖 ,𝑔𝑗
 =  

𝑔𝑖
 . 𝑔𝑗

 𝑔𝑖
 .  𝑔𝑗

 
  

 

We can now define the problem as follows. 
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Given: 

1. A set of examples 𝐸 

2. A threshold on the correlation with the output, 𝛼 ∈  ℝ, 0 ≤ 𝛼 ≤ 1.  

3. A threshold on the correlation between subgraph features, 𝛽 ∈ ℝ, 0 ≤ 𝛽 ≤ 1. 

Find:  

A maximal set 𝐻 =  𝑔1, 𝑔2, … , 𝑔𝑘  such that, 

1. For each 𝑔𝑖 ∈ 𝐻,  

𝜌𝑔𝑖 ,𝐼 =  
𝑔𝑖

 . 𝐼

 𝑔𝑖
 .  𝐼 

 ≥ 𝛼 

2. For each 𝑔𝑖 , 𝑔𝑗 ∈ 𝐻,  

𝜌𝑔𝑖 ,𝑔𝑗
 =  

𝑔𝑖
 . 𝑔𝑗

 𝑔𝑖
 .  𝑔𝑗

 
 ≤ 𝛽 

 

We now discuss why it makes intuitive sense to mine for the set 𝐻. First, note that the 

formulation is in terms of absolute correlations. This is simply because we are interested in 

mining subgraph features with high correlations either positive or negative. Negative correlation, 

implying that the absence of a subgraph correlates with the output is equivalent to positive 

correlation as the regression model will simply learn negative weights for such a feature. Next, 

note that the set 𝐻 is the maximal or the largest possible set of subgraphs such that,  

 Each subgraph in this set has correlation with the real value above a user-specified 

threshold 𝛼   

 Each subgraph has correlation with any other subgraph in the set below a user-

specified threshold 𝛽.  
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Feature selection for building regression models considers the tradeoff between how much a 

feature correlates with the output and how much the feature correlates with the features already 

selected. The problem definition intuitively captures this trade off. 

 

We now prove some properties about 𝐻. We define 𝒮𝛼  to be the maximal subset of 𝒮 for 

which 𝜌𝑔𝑖 ,𝐼 ≥  𝛼  and  𝑔𝑖 ∈ 𝑆. We also define 𝐻∗ to be the set containing all possible 𝐻 sets. 

 

Lemma 1 

For any 𝛼, 𝛽 ∈  ℝ,0 < 𝛼, 𝛽 < 1, 𝐻 ⊆ 𝒮𝛼 ⊆  𝒮.  

Proof 

As 𝛼 < 𝜌𝑔𝑖 ,𝐼, 𝑔𝑖 ∈ 𝒮  𝒮𝛼 ⊆  𝒮 must hold true. Any choice of 𝛽 further constrains 𝐻 so that 𝐻 ⊆ 

𝒮𝛼 ⊆  𝒮. The result follows. ∎ 

 

Lemma 2 

For 𝛼 = 0 and 𝛽 = 1, 𝐻 =  𝒮. 

Proof 

As 𝛼 = 0, 𝒮𝛼 =  𝒮. As 𝛽 = 1, 𝜌𝑔𝑖𝑔𝑗
≤ 𝛽 is true for any pair of subgraph features. The result 

follows. ∎ 

 

 

Lemma 3 

If 𝛼 = 1 and 𝛽 = 0, either  𝐻 = 0 or  𝐻 = 1. 
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Proof 

There are two cases, first where there are no subgraph features 𝑔𝑖  such that 𝛼 < 𝜌𝑔𝑖
, in which 

case  𝐻 =  0. The other case is where there exists one or more subgraph features 𝑔𝑖  for which 

𝛼 < 𝜌𝑔𝑖
 . In this case only one subgraph feature can be in 𝐻 as 𝛽 = 0 and for any two features 

𝜌𝑔𝑖𝑔𝑗
≥ 𝛽. The result follows. ∎ 

 

Lemma 4 

For some 𝛼𝑖 , 𝛼𝑗 ,  𝛽 if 𝛼𝑖 ≥  𝛼𝑗  then |𝐻𝑖| ≤ |𝐻𝑗 |. 

Proof 

Follows from the fact that 𝛼𝑗  is more permissive than 𝛼𝑖   while constraining 𝐻. The 𝛽 being 

identical, the result follows.∎ 

 

Lemma 5 

For some 𝛼, 𝛽𝑖 ,𝛽𝑗 . If 𝛽𝑖 ≥  𝛽𝑗  then  𝐻𝑖 ≥  𝐻𝑗  . 

Proof 

Follows from the fact that 𝛽𝑖  is more permissive than 𝛽𝑗  while constraining 𝐻. The 𝛼 being 

identical, the result follows.∎ 

 

Lemma 6 

For any 𝛼 and 𝛽, |𝐻∗| ≤ |𝒮𝛼 |. 

Proof 
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Under the given constraints of 𝛼 and 𝛽 suppose we have a 𝒮𝛼  . In the extreme case, for every pair 

of subgraph features 𝜌𝑔𝑖𝑔𝑗
≥ 𝛽. Then  𝐻∗ = |𝒮𝛼 |. In the other extreme case for every pair of 

subgraph features 𝜌𝑔𝑖𝑔𝑗
≤ 𝛽. Then  𝐻∗ = 1. The result follows.∎ 

 

These results characterize the relation between the size of 𝐻, 𝛼 and 𝛽 in broad strokes. Figure 10 

illustrates this relationship. Note that the hypothesis space H is small for small values of 𝛼 and 

large values of 𝛽. H grows as 𝛼 increases and 𝛽 decreases. H is at its maximum (equal to S) 

when 𝛼 has the maximum value of 1 and 𝛽 has the minimum value of 0. These results are limited 

in the sense that they characterize the relationship at extreme cases of 𝛼 and 𝛽 and do not give a 

fine grained picture. A better characterization of this relationship is important as the size of 𝐻 

directly relates to the computational complexity of the problem. 

 

 

Figure 10. Effect of Pruning Parameters on the Feature Space 
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Given the formulation of the problem earlier, a naïve solution would be an algorithm that 

searches the complete space of subgraph features (of the graph transactions) checking for each 

subgraph feature conditions (1) and (2) retaining only those subgraph features that satisfy both of 

them. Of course, one of the many canonical labeling schemes introduced in frequent subgraph 

mining systems could be incorporated to prevent the generation of duplicate subgraphs. 

 

The critical problem here is determining pruning conditions corresponding to the 

frequency antimonotone pruning condition used by all frequent subgraph mining systems. The 

frequency antimonotone pruning condition is a simple observation that if a subgraph feature has 

frequency below the user specified threshold, no supergraph of this subgraph can be frequent 

given this threshold. This simple observation allows for massive pruning of the search space in 

the case of frequent subgraph mining. Thus the key problem is to answer the following two 

questions. 

 Given a subgraph feature, what is the highest possible correlation any supergraph of this 

subgraph feature can achieve with the output? 

 Given a subgraph feature what is the lowest possible correlation any supergraph of this 

subgraph feature can achieve with some other subgraph feature? 

 

It must be noted that once we have a quantitative measure for these two questions, it becomes 

very easy to adapt any frequent subgraph mining system to solve the problem at hand. 

Quantitative measures for these questions in a sense correspond the frequency antimonotone 

condition in the case of frequent subgraph mining. 
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For a graph 𝑔  we define  

𝑚𝑔(𝑥) =   
−1 𝑖𝑓 𝐼 𝑥 ≤ 0

 𝑔 𝑥  𝑖𝑓 𝐼 𝑥 > 0  
  

 

Intutively, 𝑚𝑔 𝑥  is a vector with every position corresponding to a training example 𝑥. If the 

training example has output less than or equal to zero, the value corresponding to this example is 

-1. If the training example has output greater than zero the value corresponding to this example is 

𝑔 𝑥 . 

We have the following upper bound on the correlation any supergraph of a subgraph feature can 

achieve with the output. 

Theorem 1 

 For some subgraph features 𝑔𝑖   and 𝑔𝑗    if 𝑔𝑗 ⊆ 𝑔𝑖  then  

𝜌𝑔𝑖 ,𝐼 =  
𝑔𝑖

 . 𝐼

 𝑔𝑖
 .  𝐼 

 ≤  
𝑚𝑔𝑖

 . 𝐼

 𝑚𝑔𝑖
 .  𝐼 

   

 

Proof 

It is easy to see that for any subgraph feature say 𝑔𝑖    if 𝑔𝑖
 𝑥 =  −1  then for no subgraph 

feature 𝑔𝑖 ⊆ 𝑔𝑗 , 𝑔𝑗
 𝑥 =  1. That is, all those 𝑥 such that 𝑔𝑖

 𝑥 =  −1, for any 𝑔𝑖 ⊆ 𝑔𝑗 , 

𝑔𝑗
 𝑥 =  −1 (this is captured by 𝑚𝑔𝑖

). Furthermore, only for those 𝑥 where 𝑔𝑖
 𝑥 =  1 can 

𝑔𝑗
 𝑥 =  −1  for some 𝑔𝑖 ⊆ 𝑔𝑗 . The highest possible 𝜌𝑔𝑗 𝐼

 can occur in the case where for all 𝑥 

 such that 𝐼 𝑥 ≤ 0,  𝑔𝑗
 𝑥 =  −1 (this is captured by 𝑚𝑔𝑖

). The result follows.∎ 
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For a graph 𝑔 we define  

𝑛𝑔(𝑥) =   
−1 𝑖𝑓 𝑔 𝑥 > 0

 𝑔 𝑥  𝑖𝑓 𝑔 𝑥 ≤ 0  
  

Intutively, 𝑛𝑔 𝑥  is a vector with every position corresponding to a training example 𝑥. If the 

training example has 𝑔(𝑥) greater that zero the value corresponding to this example is -1. If the 

training example has 𝑔(𝑥) lesser than zero the value corresponding to this example is 𝑔 𝑥 . 

We have the following lower bound on the correlation any supergraph of a subgraph feature can 

achieve with some other subgraph feature.  

 

Theorem 2 

 For some subgraph features 𝑔𝑖 , 𝑔𝑗  and 𝑔𝑘  if 𝑔𝑗 ⊆ 𝑔𝑖  then,  

𝜌𝑔𝑗 ,𝑔𝑘
 =  

𝑔𝑗
 . 𝑔𝑘

 𝑔𝑗
 .  𝑔𝑘

 
 ≥   

𝑛𝑔𝑖
 . 𝑔𝑘

 𝑛𝑔𝑖
 .  𝑔𝑘

 
  

 

Proof 

 As before it is easy to see that for any subgraph feature say 𝑔𝑖 , if 𝑔𝑖
 𝑥 = −1 then for no 

subgraph feature gi ⊆  gk , 𝑔𝑘
 𝑥 =  1. That is, all those 𝑥 such that 𝑔𝑖

 𝑥 =  −1, 

 for any 𝑔𝑖 ⊆ 𝑔𝑘 , 𝑔𝑘
 𝑥 =  −1. Furthermore, only for those 𝑥 where 𝑔𝑖

 𝑥 =  1 can 𝑔𝑘
 𝑥 =

−1  for some 𝑔𝑖 ⊆ 𝑔𝑘  (this is captured by 𝑛𝑔𝑖
). The lowest possible 𝜌𝑔𝑗𝑔𝑘

 can occur in the case 

where for all 𝑥 such that 𝑔𝑖
 𝑥 > 0, 𝑔𝑘

(𝑥) =  −1 (this is captured by 𝑛𝑔𝑖
). The result 

follows. ∎ 
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Using these bounds it is now possible to adapt any subgraph enumeration scheme to the 

task of finding a set H. To demonstrate this, we adopt the DFS search and DFS canonical 

labeling used by gSpan, which we refer to as gSpanPrune. The key steps of our algorithm are 

summarized as follows, and Figure 11 illustrates how the pruning mechanism works. Note that E 

refers to examples as discussed earlier. 

 

Algorithm: gSpanPrune (𝐸, 𝛼, 𝛽) 

1. 𝐻 ← 𝜙 

2. 𝑃 ← DFS codes of 1-vertex subgraphs in E 

3. for all 𝑔𝑖  such that 𝑔𝑖 ∈ 𝑃 do:  

4.              Extend(𝐸, 𝛼, 𝛽, 𝐻, 𝑔𝑖) 

5. return H 

Procedure: Extend(𝐸, 𝛼, 𝛽, 𝐻, 𝑔𝑖) 

1. if 𝑔𝑖  is not minimum DFS code: return 

2. if  
𝑔𝑖

 .𝐼

 𝑔𝑖
 . 𝐼 

 < 𝛼 :  

3.             return 

4. for all 𝑔𝑗  such that 𝑔𝑗 ∈ 𝐻 :  

5.                 if  
𝑔𝑖

 .𝑔𝑗

 𝑔𝑖
 . 𝑔𝑗

 
 > 𝛽 ∶ 

6.                              return 

7.                 else :  

8.                              𝐻 ← 𝐻 ∪ 𝑔𝑖  

9. 𝑃 ← DFS codes of rightmost extensions of 𝑔𝑖  
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10. for every 𝑔𝑗 ∈ 𝐻, 𝑔𝑘 ∈ 𝑃,such that  
𝑛𝑔 𝑗

 .𝑔𝑘

 𝑛𝑔𝑗
 . 𝑔𝑘

 
 ≤ 𝛽  : 

11.                                                            Extend(𝐸, 𝛼, 𝛽, 𝐻, 𝑔𝑘) 

 

It should be noted that there can be several ways we can select among a number of subgraph 

features each of which satisfy the 𝛼 constraints but no two of them together satisfy the 

𝛽 constraint. Our algorithm selects the smallest of the subgraphs (this is because the smaller 

subgraph will be added to H earlier than the larger subgraph feature and if the 𝛽 constraint is 

violated the subgraph is never added to H). But there are other methods for choosing between 

two features that violated the 𝛽 constraint, e.g., choose the feature that has higher correlation 

with the output, or randomly choose. One of the next steps for this research will be to investigate 

the effect different selection methods have on performance. 
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Figure 11. Pruning Mechanisms  in gSpanPrune. Every subgraph considered by gSpanPrune represents a node in the 

DFS code tree. The entire DFS code tree is not explored, the non-minimal pruning eliminates duplicate subgraphs and the 

𝜶, 𝜷 pruning eliminates subgraphs which do not obey the  𝜶, 𝜷 constraints. 
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3.2 Experimental Evaluation 
 

Our experimental evaluation of the proposed pruning mechanisms seeks to answer the following 

questions.  

1. How do the subgraph features extracted using gSpanPrune compare with frequent 

subgraph mining algorithms with respect to predictive accuracy of the regression model 

developed based on these features? 

2. How does gSpanPrune compare with frequent subgraph mining algorithms in terms of 

runtime when applied to the task of feature extraction for building regression models? 

3. How does the runtime of gSpanPrune vary for various choices of 𝛼 and 𝛽 parameters? 

 

In order to answer these questions we collected a number of data sets. All the data sets 

are publicly available and are from the domain of computational chemistry. They consist of 

chemical compounds with a specific property of interest associated with each compound. In 

every case we use a simple graph representation for the chemical compounds with element 

symbols as vertex labels and bond types (single bond, double bond, aromatic bond) as edge 

labels. This is illustrated in Figure 12. The value for which the regression model was to be built 

was centered to have a mean of zero. No information other than the subgraph features are used to 

build the regression models for these experiments. 
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Figure 12. Graphical Representation of chemical compounds 

 

The Karthikeyan [52] data set was originally collected to build a regression model for the 

prediction of melting points of chemical compounds. The Bergstrom [30] data set was originally 

collected to develop a model for the melting point of solid drugs. The Huuskonen [18] data set 

was originally collected to develop a model for the aqueous solubility of chemical compounds. 

The Delaney [39] data set was originally collected to develop a model for the aqueous solubility 

of compounds with low molecular weights. The ERBD (Estrogen Receptor Binding Dataset) 

[15] was originally collected for developing predictive models of the estrogen receptor binding 

activity. The ARBD (Androgen  Receptor  Binding  Data) [24] was originally collected for 

developing predictive models of the androgen receptor binding activity. Summary statistics for 

all these datasets are presented in Table 2.  
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Table 2. Properties of the data sets 

 

Among the various frequent subgraph mining systems to compare gSpanPrune with, we 

chose gSpan [28]. While it is unclear whether gSpan is the best frequent subgraph mining, it can 

definitely be considered to be among the state of the art as far as the frequent subgraph mining 

problem is concerned. In order to ensure that our results generalize to frequent subgraph mining 

algorithms in general, we compare the number of subgraphs considered by gSpanPrune and 

gSpan. This is simply a count of all minimal DFS codes considered by each of the approaches. 

The difference between the number of minimal DFS codes considered by gSpanPrune and gSpan 

gives us a measure of how the pruning approach compares with any other frequent subgraph 

mining system. This is because different frequent subgraph mining systems may use other forms 

of canonical labeling, and search mechanisms will prevent the generation of duplicate subgraph 

features better than gSpanPrune and gSpan, but every subgraph feature (the minimal code in the 

case of gSpan and gSpanPrune) will have to be considered at least once. If gSpanPrune considers 

significantly fewer subgraphs, the speedup in terms of runtime would most likely apply to other 

frequent subgraph mining systems. 

 

Among the various approaches to regression we chose SVR (Support Vector Regression) 

[45], which can be considered among the state of the art as far as the regression problem is 

concerned. In particular, we use the SVMLite package [11]. While it is possible that in certain 

situations other regression algorithms might outperform SVR, we find it unlikely to get opposite 
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results while comparing the quality of the regression models based on the subgraph features 

produced by gSpan and gSpanPrune with any regression algorithm.  

 

We use the 𝑄2 score (defined earlier on page 22) to evaluate the predictive accuracy of the 

regression models. Note that the 𝑄2 score is a real number between 0 and 1 and its interpretation 

is similar to the Pearson correlation coefficient. The closer it is to 1, the better the regression 

function fits the testing data. 

 

 In order to answer question (1) and (2) we conducted experiments on gSpan and gSpanPrune on 

the six data sets described above. The subgraph features produced by each algorithm were used 

to build a regression model using SVR. The predictive accuracy of the models was evaluated 

based on the 𝑄2 score using a 5-fold cross validation. Additionally the runtimes and the number 

of subgraphs considered by each algorithm were also recorded. The maximum subgraph size for 

each system was set to 10 (our initial experimentation indicated that features greater than a size 

of 10 do not contribute much to the predictive model. Such a constraint was also placed on the 

experimentation conducted by other researchers on gPLS [63]). The parameters of each system 

(threshold frequency in the case of gSpan and the 𝛼 and 𝛽 parameters in the case of gSpanPrune) 

were systematically varied. While comparing results on the various runs of the algorithms, we 

select the highest 𝑄2 scores achieved by each system and then compare the lowest possible 

runtimes and the subgraphs considered for this 𝑄2   score. The intuition behind this is to compare 

the lowest computational cost for the best possible predictive accuracy. The results of these 

experiments are reported in Figures 13, 14 and 15. 
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 In order to answer question (3) we ran gSpanPrune on the Karthikeyan and ARBD data set (we 

chose this data set as this was the largest data set in terms of transactions) with 𝛼   and 𝛽 

parameters systematically varied in small increments of 0.05. Figures 16, 17, 18, 19, 20 and 21  

illustrate these results with contour plots. 

 

We can observe the following from the experimental results. The predictive accuracy of 

the regression models based on the features generated by gSpan and gSpanPrune is comparable. 

GSpanPrune substantially outperforms gSpan in terms of runtime and the number of subgraphs 

explored. The runtime and the number of subgraphs explored by gSpanPrune increases for small 

values of 𝛼 and large values of 𝛽. 
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Figure 13. Predictive Performance of gSpan and gSpanPrune 

 

Figure 14. Subgraphs considered by gSpan and gSpanPrune 
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Figure 15. Runtimes of gSpan and gSpanPrune 

 

Figure 16. Effect of Pruning Parameters on the Feature Space, Number of Subgraphs Considered (Karthikeyan dataset) 
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Figure 17. Effect of Pruning Parameters on the Feature Space, Runtime (Karthikeyan dataset) 

 

 

 
Figure 18. Effect of Pruning Parameters on the Predictive Accuracy (Karthikeyan dataset) 
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Figure 19. Effect of Pruning Parameters on the Feature Space, Number of Subgraphs Considered (ARBD dataset) 

 

 
Figure 20. Effect of Pruning Parameters on the Feature Space, Runtime (ARBD dataset) 
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Figure 21. Effect of Pruning Parameters on the Predictive Accuracy (ARBD dataset) 

 

3.4 Limitations, Opportunities for Further Improvements and Alternative Evaluation 

Measures  

 

There are a number of limitations, opportunities for further improving the search for 

subgraph features, and alternative evaluation mechanisms for the search of subgraph features. 

Here, we present a brief discussion of these. 

1. The testing for the β constraint (line 12 in the Expand procedure) which involves 

computing and checking pairwise correlations for the subgraph features under 

consideration against all subgraph features included in H, can be a significant overhead. 

This is quite apparent in the Husskonnen dataset. Generally there is a vast difference 

between the number of subgraphs considered by gSpan and gSpanPrune. However in 

certain cases where there is a minor difference, as in the case of Husskonnen dataset, 

gSpanPrune consumes more time than gSpan. This discrepancy can be attributed to the 

overhead of computing the β constraint. In certain cases, as in the Husskonnen dataset, 
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this can lead to a worse performance as compared to running gSpan without the pruning 

mechanisms. 

2. There is an inherent relationship between the pairwise correlations of subgraph features. 

For example given three different subgraph features gi , gj and gk  we have three different 

pairwise correlations ρ
g i ,gj

 , ρ
g j ,gk

 and ρ
g i ,gk

 . If we can prove that these pairwise 

correlations are transitive, it will not be necessary to check the β constraint for the new 

subgraph feature under consideration against every subgraph feature already included H 

(step 12 in the expand procedure). As the size of H grows, checking the β constraint can 

become quite expensive and the transitivity between pairwise correlations (if true) can be 

exploited to address this issue.  

3.  Certain application domains may not require unconstrained graphs to fully capture the 

relevant data. Constrained cases such as trees or planar graphs might suffice. This raises 

the important question on the relevance of our pruning mechanisms in such cases. It must 

be pointed out that when the subgraph isomorphism test is not expensive (as in the case 

of trees or planar graphs) the pruning mechanisms may not give a speedup. It is also 

possible that the extra overhead of computing the 𝛽 constraint might make the pruning 

mechanisms expensive.  

4. The experimentation focused on maximizing the predictive accuracy achieved by features 

generated by each system and then comparing the computational resources consumed by 

each system (runtime). The intuition behind this experimentation is to compare the 

computational cost of the best possible predictive model produced by each system. An 

alternative evaluation mechanism would be to compare the number of subgraph features 

produced by each system per unit computational resource. This would be similar to the 
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notion of measuring floating point operations per second as in the case of high 

performance computing. Such an evaluation mechanism based on subgraph features 

produced per unit computational time does give an objective measure of the speedup 

caused by the pruning mechanisms, but raises the question as to how good the produced 

subgraph features are with respect to predictive accuracy of the model. Although this is a 

weakness, this could be a valid evaluation mechanism. An additional, alternative 

evaluation mechanism would be to compare the improvement in predictive accuracy per 

unit time for each of the systems. Such a metric would capture the tradeoff between 

computational expenditure and predictive accuracy and might be well suited for the task.  
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4. gRegress: An algorithm for Graph Regression 

In this chapter, we present a new algorithm for graph regression, which we refer to as gRegress. 

The intuition behind gRegress is the need for a combination of linear models in certain domains. 

gRegress addresses this need with a tree based combination of linear models. Our experiments 

indicate that gRegress outperforms the current state of the art gPLS in a number of application 

domains. We begin with the motivation behind our approach. 

 4.1 Motivation 

As mentioned earlier graph regression is a relatively new problem and the only published work 

in this area is gPLS [63], the basic idea behind which is to adapt partial least square regression 

for the task. Our intuition is that there might be certain graph regression problems that cannot be 

modeled by a single linear function and would require a combination of linear regression models. 

An example of this would be the following hypothetical problem from chemistry. Suppose we 

are trying to learn a regression model for the boiling point of chemical compounds. It is a well 

known fact that the boiling point is largely dependent on the functional group [73]. Learning a 

separate, linear regression model for different classes of compounds (one for alcohols, one for 

ethers, one for esters etc.) could perform better than a linear regression model for all the 

compounds. Learning such a combination of linear models involves two sub-problems. The first 

is to categorize the examples into classes and then to learn a regression model for each of them.  

 Our approach, which builds on this intuition, is to learn a model which consists of a 

decision tree such that each non-leaf is a subgraph presence/absence test which splits the 

examples into categories and each leaf is a linear regression model based on weights on the 

presence/absence of subgraph features. Such a model is illustrated in Figure 22. 
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Figure 22. A Decision Tree with Linear Models as Leaves 

 

4.1 Algorithm 

The key steps of the gRegress algorithm are summarized as follows.  

1. Build a decision tree recursively, splitting on presence/absence of subgraph features 

which minimize the following error measure, 

∆𝑒 = 𝑠𝑑 𝐸 −   
  𝐸𝑖  

|𝐸|
𝑖

× 𝑠𝑑 𝐸𝑖  

until the number of examples at a leaf node is less than or equal to a user-defined 

threshold L. 

2.  Build a multiple regression model for examples remaining at each leaf. 

 

Note that 𝑠𝑑 refers to standard deviation. Intuitively, the error measure evaluates the 

improvement in predictive accuracy due to the use of separate regression models based on a split 

on the current feature.It is important to distinguish gRegress from the previously discussed DT-

CLGBI [26]. While both of these approaches are based on decision trees, there are some 
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important differences. First, DT-CLGBI produces a pure decision tree where each node 

represents a subgraph presence/absence test while gRegress is a combination of linear models 

combined with a decision tree. Leaf nodes in DT-CLGBI are pure nodes (belonging to a single 

class) while leaf nodes in gRegress are linear models. Second, the splitting tests in DT-CLGBI 

are based on an entropy measure with respect to binary classification while those in gRegress are 

based on an error measure based on standard deviation with respect to regression. In the case 

where gRegress is run with L = 1 (number of examples at leaf) no linear model at the leaf is 

necessary (or possible) and the induced tree is quite similar although there might be a difference 

due to the difference in the splitting condition. The key difference between DT-CLGBI and 

gRegress is that DT-CLGBI produces a decision tree of subgraph presence/absence tests while 

gRegress produces a combination of linear models organized as a tree.  

4.2 Experimental Evaluation 

In order to evaluate the performance of the gRegress algorithm we compared it to the following 

approaches. 

1. gPLS  

2. Frequent Subgraph Mining and Support Vector Regression with the Linear Kernel 

3. Frequent Subgraph Mining and Support Vector Regression with the Polynomial Kernel 

4. Frequent Subgraph Mining and Support Vector Regression with the Radial Basis 

Function (RBF) Kernel 

5. Frequent Subgraph Mining and Simple Linear Regression 

6. Frequent Subgraph Mining and Additive Regression 

7. Frequent Subgraph Mining and K-Nearest Neighbor  
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It must noted here that gPLS is the current state of the art as far as the graph regression problem 

is concerned. While the other approaches have not been studied in literature, except for 

gRegress, they are straightforward combinations of existing work. Also note that additive 

regression is a simple combination of regression models. After the initial regression model based 

on the output, additional regression models are developed based on the residuals (errors). The 

final model is a simple addition of the values predicted by the models.  

We conducted experiments with the Karthikeyan, Bergstrom, Huuskonen, Delaney, ERBD and 

ARBD datasets discussed earlier. Mean correlations on the 5-fold cross validation are reported in 

Table 3. Note that correlation is different from 𝑄2 and is a more common evaluation measure for 

regression (we used 𝑄2 earlier to compare our results to gPLS [63]) and is defined as follows. 

 

 

Table 3. Comparison of approaches to Graph Regression. Values are mean correlations on a 5-fold cross validation.  

 

 

  

We can make the following observations from the results. 
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1. gRegress and SVM-RBF are the best performing approaches; they outperform gPLS, 

which is the current state of the art, in all cases except for the Bergstrom dataset.  

2. The performance of gRegress and SVM-RBF is found to be comparable in most cases. 

3. gPLS, SVM-Linear and Simple Linear Regression perform poorly in a number of cases 

supporting our intuition on the need for a combination of linear models. 

4. The KNN approach performs surprisingly well given its simplicity. 

5. In the case of the Bergstrom dataset, gPLS performs better than most approaches. This is 

an unexpected result and requires further analysis and experimentation.   

Another important question in regards to applying these approaches to real world problems is 

if incorporating structure can improve the predictive accuracy of existing attribute-valued 

models. To investigate this issue we use the 2C9 dataset introduced in [62]. This dataset consists 

of a number of attribute values associated with chemical compounds (other datasets which we 

experimented with earlier did not have such features or they were not available as a part of the 

public dataset)  Each of these  can be treated as a separate graph regression problem. Each of the 

approaches can be modified to handle attribute-valued features in addition to subgraph features. 

In the case of gPLS and gRegress, attribute threshold tests can replace subgraph 

presence/absence tests in the case of attribute-valued features. In the case of SVM, simple linear 

regression, additive regression and KNN, attribute valued features can simply be added to the set 

of selected subgraph features. We conducted experiments with only the attributes, only the 

subgraph features and a combination of both. Tables 4, 5 and 6 present the results of these 

experiments.  
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Table 4. Performance on 2C9 dataset with Attribute Features Only. Values are mean correlations on a 5-fold cross 

validation. 

 

Table 5. Performance on 2C9 dataset with Subgraph Features Only. Values are mean correlations on a 5-fold cross 

validation. 

 

Table 6. Performance on 2C9 dataset with Attribute and Subgraph Features. Values are mean correlations on a 5-fold 

cross validation. 
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We observe a significant improvement in performance in the model developed for 

predicting the PEOP_VSA_NEG property when both the attribute and subgraph features are 

used. In most other cases the performance is found to be comparable. This is a clear indicator 

that in certain cases the incorporation of structural features can lead to significant improvements 

in the predictive accuracy of the regression models. 

In addition to improving the predictive accuracy of the regression model, the 

incorporation of structural features can further the understanding of the underlying problem. For 

example, correlations between attribute-valued features and structural features can lead to a 

better understanding of the attribute-valued feature, or the correlations between structural 

features can raise important questions (For example, why do two structural features correlate 

with each other? Or, does this correlation imply that the presence of one feature causes another?) 

about the properties of the domain. In general, structural information represents a relevant body 

of features, and incorporating them into model building can lead to better models as well as a 

better understanding of the domain. 
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5. Empirical Comparison of Graph Classification Algorithms 

We performed an empirical comparison of the major approaches for graph classification 

introduced in the literature, namely, SubdueCL, frequent subgraph mining in conjunction with 

SVMs, walk-based graph kernel, frequent subgraph mining in conjunction with AdaBoost and 

DT-CLGBI. The objective of this comparison was to identify the strengths and weaknesses of 

these approaches. Experiments were performed on five real world data sets from the Mutagenesis 

and Predictive Toxicology domains, and a corpus of artificial data sets. This chapter presents the 

experiments and the results. 

 

5.1 Experiments with Real World Datasets 

 

For experiments with real world data, we selected the Mutagenesis data set introduced by [21] 

and the Predictive Toxicology Challenge (PTC) data introduced by [6]. The Mutagenesis data set 

has been used as a benchmark data set in graph classification for many years. The data set has 

been collected to identify mutagenic activity in a compound based on its molecular structure. 

The Predictive Toxicology Challenge (PTC) data set has also been used in the literature for 

several years. The PTC carcinogenesis databases contain information about chemical compounds 

and the results of laboratory tests made on rodents in order to determine if the chemical induces 

cancer. The data consists of four categories: male rats MR, female rats FR, male mice MM, or 

female mice FM. Each of the data sets were represented as graphs by introducing a vertex for 

every atom, labeled with its compound and by introducing an edge for every bond, labeled with 

its type. An example of such a representation for a compound in the Mutagenesis dataset is 

shown in Figure 23.  
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Figure 23. Graph Representation of Chemical Compounds 

 

As mentioned earlier, the empirical comparison included SubdueCL [17], frequent 

subgraph mining in conjunction with SVMs, walk-based graph kernel [32], frequent subgraph 

mining in conjunction with AdaBoost [47] and DT-CLGBI  [26]. For SubdueCL, we use the 

implementation from the Subdue described in [50]. For frequent subgraph mining in conjunction 

with SVMs we use the Gaston system [43] and SVMLite [11]. The walk-based (direct product) 

graph kernel was implemented using SVMLite. The frequent subgraph mining in conjunction 

with AdaBoost approach was implemented using code from Gaston and the Weka machine 

learning framework [13]. The DT-CLGBI was also implemented using code form Gaston and the 

Weka machine learning framework. 
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We compared the performance of the five algorithms/approaches on the five datasets 

using a five-fold cross validation. We measured accuracy for all the five algorithms/approaches 

and the area under the ROC curve (AUC) discussed in [9] for all the algorithms/approaches. 

Computing the AUC for SubdueCL involves some difficulties which are described next. 

 

In order to plot ROC curves and compute the AUC it is essential to produce a real-valued 

prediction between zero and one representing the degree of membership (where zero implies the 

negative class and one the positive class). Binary predictions made by classifiers can be trivially 

converted to a real-valued predictions, by considering the learning algorithm and the way in 

which the model is applied. For example, for decision trees, the class distribution at the leaf can 

be translated to such a real-valued prediction. For SubdueCL, producing such a value is not 

straightforward. As mentioned before, the model learned by Subdue consists of a decision list 

each member of which is a connected graph. If any of the graphs in the decision list are present 

in the example, it is predicted as positive. If all the graphs in the decision list are absent from the 

example, it is predicted as negative. We considered applying approaches studied by [20] for 

scenarios like this, all of which are based on combining and reporting the confidence of the rules 

(in the decision list) on the training set. Strategies for combining the confidence include voting, 

weighted voting, using the first matching rule, applying a random rule and applying the rule with 

lowest false positive rate. None of these is in accordance with the particular way in which the 

model learned by SubdueCL is supposed to be applied. The key problem here is that absence of a 

single graph (in the decision list) in an unseen example, does not imply that the example is 

predicted to be negative. All the graphs in the decision list have to be absent from the example 

for it to be predicted as negative. We therefore approximate the AUC for SubdueCL using a 
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single point in the ROC space. This does not accurately reflect the performance of SubdueCL, 

but is a reasonable approximation of the same.  

 

The results of the experiments are reported in Figures 24 and 25. None of the 

approaches/algorithms had significantly better performance than the others on the real world 

datasets we considered. Revisiting our original question on the comparative strengths and 

weaknesses of the algorithms/approaches, we decided to further compare their actual predictions 

and the agreements/disagreements among predictions on specific examples. The intuition behind 

this comparison is that comparable performance does not imply similar behavior. Two 

algorithms could differ in predictions, make different mistakes and be correct on different 

examples and end up in having comparable performance, overall. 

 

 

Figure 24. Accuracy on Real World Data Sets 
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Figure 25. AUC on Real Word Data Sets 
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We conducted a literature survey on how such a comparison can be performed and to our 

knowledge no framework for such analysis was found in literature. We therefore introduced the 

following visual mechanism to perform such an analysis. Note here that the purpose of the 

mechanism is exploratory and not confirmatory. 

 

The key idea is to generate a scatterplot between the predictions made by two classifiers on a set 

of test examples. Note here that all the algorithms/approaches except for SubdueCL can be made 

to predict a real value between zero and one representing the degree of membership (where zero 

implies the negative class and one the positive class). Given a set of test examples, we first 

separate them according to their class and for two classifiers, say, A and B, get a scatterplot of 

their predictions on the positive set and the negative set. When such a scatterplot is generated 

with both the X-axis and the Y-axis having a range from zero to one, we get two plots as shown 

in Figures 26 and 27. 

 

Every point on such scatterplots would fall in one of the following four zones assuming the 

threshold to be at 0.5: both classifiers make a similar correct prediction, both classifiers make 

similar incorrect predictions, A is correct and B is incorrect and vice versa. Note here that the 

positive and negative examples need to be separated as the four zones are different for each case. 

Furthermore, by looking at how far a point is from each axis, we can get an indication of how 

much the predictions are similar or dissimilar. 

 

Figures 28 up to 42 illustrate ROC curves and matrices of such scatterplots for each of the five 

datasets (note that SubdueCL was omitted from this analysis). The matrix of scatterplots has 
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each row and each column devoted to one graph classification algorithm. For example, row 1, 

column 1 correspond to FSG+SVM and row 2, column 2 correspond to the Graph Kernel. The 

agreement between the predictions made by FSG+SVM and Graph Kernel can be found in row 

1, column 2  and row 2, column 1. Note that each matrix of scatteplot corresponds to one dataset 

and either the positive examples or the negative examples. The ROC curves accompany the plots 

so that the true positive and the false positive rates at different thresholds can be compared. Note 

that in our analysis involving the comparison of the predictions (the scatterplots) we chose the 

threshold of 0.5. 

 

On all the datasets, a higher agreement is observed between the predictions made by the 

graph kernel and the FSG+SVM approach. There is a much larger disagreement observed among 

all other algorithms/approaches. We stress here that this observation is exploratory in nature, we 

cannot conclude disagreement at a statistically significant level as this is a null hypothesis as in 

correlation analysis and can only be rejected. However, for the purposes of our study this was 

sufficient indication that a further comparison on artificial datasets wherein we could evaluate 

the algorithms/approaches on specific parameters of interest was necessary. 
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Figure 26. Comparing Predictions on Positive Examples 

 

 

Figure 27. Comparing Predictions on Negative Examples 
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Figure 28. ROC Curves for the Mutagenesis Data Set 

 

Figure 29. Comparing predictions on Positive Examples for Mutagenesis Data Set 
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Figure 30. Comparing Predictions on the Negative Examples in the Mutagenesis Data Set 

 

Figure 31. ROC curves for the MR Data Set 
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Figure 32. Comparing the Predictions on the Positive examples in the MR Data Set 

 

Figure 33. Comparing the Predictions on the Negative Examples in the MR Data Set 
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Figure 34. ROC curves for the MM Data Set 

 

Figure 35. Comparing the Predictions on the Positive examples in the MM Data Set 
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Figure 36. Comparing the Predictions on the Negative Examples in the MM Data Set 

 

Figure 37. ROC curves for the FM Data Set 



67 
 

 

Figure 38. Comparing the Predictions on the Positive examples in the FM Data Set 

 

Figure 39. Comparing the Predictions on the Negative Examples in the FM Data Set 
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Figure 40. ROC curves for the FR Data Set 
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Figure 41. Comparing the Predictions on the Positive examples in the FR Data Set 

 

Figure 42. Comparing the Predictions on the Negative Examples in the FR Data Set 
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5.2 Experiments with Artificial Datasets 
 

In this section we discuss our experiments and results with artificial datasets. First, we discuss 

our artificial dataset generator. 

Our artificial dataset generator comprises two major components, namely, the graph 

generator and concept generator. The graph generator generates connected graphs based on five 

user specified parameters, namely, 𝑁𝑉  which is the number of vertices, 𝑁𝐸  which is the number 

of edges, 𝑁𝛼  which is the number of vertex labels, 𝑁𝛽  which is the number of edge labels, and S 

which is the seed for the random number generator. It is required that 𝑁𝐸  ≥  𝑁𝑉 −  1 , to ensure 

a connected graph. Based on these parameters, a connected graph 𝑔𝑆 = (𝑉𝑆 , 𝐸𝑆 , 𝛼𝑆 , 𝛽𝑆) is 

generated as follows.  

1. 𝑁𝑉    vertices are generated and assigned labels from 𝛼𝑆 (uniform) randomly.  

2. These vertices are connected by adding 𝑁𝑉 −  1  edges, forcing them to form a path of 

length 𝑁𝑉 . These edges are assigned labels from 𝛽𝑆 (uniform) randomly. 

3. Lastly, 𝑁𝐸 −  𝑁𝑉 +  1 edges are added to the graph by first picking two vertices from 𝑉𝑆, 

(uniform) randomly, and adding an edge between these two vertices with a label from 𝛽𝑆 

selected (uniform) randomly. 

The concept generator is similar to the graph generator except that the concept is a graph that is 

not assumed to be connected. So the generation process is identical except that step 2 is not 

performed and in step 3, 𝑁𝐸  edges are added. 

 

For any dataset generation, given user specified parameters for the graphs and the 

concepts, first a concept is generated. A negative example is simply any graph generated by the 

user specified parameters. A positive example is any graph in which the concept is embedded. 
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We describe the embedding procedure below. It is required that the number of vertices in the 

concept are less than or equal to the number of vertices in the input graph. 

1. Select n vertices randomly from the example graph where n are the number of vertices in 

the concept. Each selected vertex in the example graph is assigned to a vertex in the 

concept. 

2. Change the labels of the n selected vertices in the graph so that they match the vertices in 

the concept. 

3. For every edge between two vertices in the concept introduce an edge between the 

corresponding vertices in the example graph. If such an edge already exists, only a label 

change is required. 

 

Overall, the assumptions underlying the generation process are as follows. 

1. The distribution of vertex labels, edge labels and the degree distribution is assumed to be 

uniform and independent of each other, both in the concept and the example graph. 

2. Examples are generated using a random process, based on the user specified parameters 

and are connected graphs. 

3. Concepts are generated using a random process, based on the user specified parameters. 

4. Positive examples are generated by embedding the concept in an example; negative 

examples are those examples in which the concept has not been embedded. 

 

We use the artificial dataset generator to compare the performance of the five 

algorithms/approaches across various parameters of interest. For each experiment, five training 

sets and five test sets are generated, using different seeds. The algorithms are trained on the 
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training set and prediction accuracy is measured on the test set. All plots show mean accuracy on 

the five test sets versus a parameter of interest. 

 

5.2.1 Varying Number of Concept Vertices 

We vary the number of concept vertices from 1 to 10 adding a single edge with every additional 

vertex, with the example set to 100 vertices and 100 edges, 50 positive examples and 50 negative 

examples both in the training and test sets. Figures 43, 44, 45 and 46 show the mean accuracies 

for different numbers of vertex and edge labels. It can be observed in all the plots that initially 

when the number of vertices in the concept is small, all classifiers perform poorly as the training 

examples and test examples are indistinguishable. This changes as the number of vertices in the 

concept are gradually increased and the performance of all the classifiers improves. Eventually 

the concept is large enough to sufficiently distinguish the examples and all the classifiers achieve 

high accuracy. Another observation is that as the number of vertex and edge labels increases, the 

task becomes easier as it is possible to distinguish the examples by learning a small part of the 

concept. The difference in performance of the algorithms is noticeable only with both vertex 

labels and edge labels equal to 2. This difference was found to be significant at only concept size 

3, 4, 5 and 6 and we conclude that overall the performance was found to be comparable. 

 

5.2.2 Varying Concept Degree 

We vary the concept degree by increasing the number of concept edges with the example set to 

100 vertices and 100 edges, 50 positive examples and 50 negative examples both in the training 

and test sets. Figures 47, 48, and 49 show the mean accuracies for different number of vertices in 

the concept. It can be observed in all the plots that initially all classifiers perform poorly as the 
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training examples and test examples are indistinguishable. This changes as edges are gradually 

added to the concept. All the algorithms/approaches except for the graph kernel are able to use 

these additional distinguishing features to improve on their performance at a significant level. 

The graph kernel performs poorly and gains accuracy slowly as compared to the all the other 

algorithms/approaches. 

 

As the degree of the concept increases, distinguishing the examples does become easier 

but capitalizing on this difference to improve the performance requires learning concepts with 

structure (like trees and graphs). We postulate that the hypothesis space of the kernel is walks 

and it is insufficient at capturing concepts involving structure. 

 

 

5.2.3 Varying Number of Example Vertices 

We vary the number of vertices in the example by increasing the number of vertices adding a 

single edge with every additional vertex, with the concept set to 10 vertices and 10 edges, 50 

positive examples and 50 negative examples both in the training and test sets. Figure 50 shows 

the mean accuracies for different number of vertices in the concept. It can be observed that the 

performance of SubdueCL and the graph kernel drops with additional example size. This 

difference was found to be significant at all the cases with example vertices greater than 100. 

 

As the number of vertices in the example increases, the concept which is a disconnected 

graph and embedded at random positions is spread over larger distances. We postulate that the 
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hypothesis space of SubdueCL is connected graphs and it demonstrates poor performance as it 

fails to learn disconnected concepts. 

 

5.2.4 Varying Example Degree 

We vary the degree of the example by increasing the number of edges with the concept set to 5 

vertices and 5 edges, example vertices set to 10, 50 positive examples and 50 negative examples 

both in the training and test sets. Figure 51 shows the mean accuracies for different number of 

vertices in the concept. It can be observed that the performance of SubdueCL and the graph 

kernel drops with additional example size. This difference was found to be significant at all the 

cases with number of edges greater than 30.  

 

In the case of SubdueCL, we postulate that this poor performance is due to the increased 

number of candidates in the search which causes the greedy search to miss relevant concepts. 

The graph kernel also has to consider a increased number of walks which causes poor 

performance. 

 

5.2.5 Varying Concept Noise 

Varying the concept noise involves varying two parameters: how many examples contain the 

noisy concept and by what amount the concept is made noisy. We vary the noise in the concept 

by changing the labels on the vertices and edges in the concept. We refer to this as the noise 

level. Noise level in the concept is measured as the fraction of the labels changed. Experiments 

are performed by introducing an increasing number of noisy examples for a variety of noise 
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levels. Figures 52, 53, 54, 55, 56 and 57 show the performance at different noise levels. 

Accuracy drops as the number of noisy examples increases and as the noise level increases. 

 

The difference in performance of the algorithms is noticeable in all the cases. The graph 

kernel and SubdueCL perform poorly and lose accuracy faster as compared to the other 

algorithms/approaches. This difference was found to be significant at noise levels 0.1 and 0.2. It 

must be noted here that both SubdueCL and the graph kernel had poor performance even without 

noise. We postulate that their poor performance is due to difficulty learning the concept, even 

without noise. 

5.2.6 Varying Mislabeled Examples 

We vary the number of mislabeled examples, by mislabeling positive examples, mislabeling 

negative examples and swapping class labels on positive and negative examples. For the 

experiments involving mislabeling positive examples and mislabeling negative examples an 

additional amount of positive examples and negative examples were added to ensure a balanced 

dataset. This was because we wanted to analyze the effect of mislabeled examples and the 

increased negative and positive examples (mislabeled) would skew the training data, making it 

impossible to determine if the effect was due to the skewed training data or the noise (we also 

perform experiments with skewed training data which are reported later). The experiment 

involving swapping labels on positive and negative examples did not have this problem. The 

results are shown in Figures 58, 59 and 60. Performance drops as the number of mislabeled 

examples are increased. 
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The difference in performance of the algorithms is noticeable in all the cases. SubdueCL 

and DT-CLGBI outperform the others in the mislabeled positives case and the mislabeled 

negatives case. In the case where the labels are swapped, SubdueCL outperforms all the others.  

 

The model learned by SubdueCL is a list of graphs present only in the positive examples. Due to 

this, mislabeled examples do not affect its performance as much as the other 

algorithms/approaches are affected. Eventually however as the number of mislabeled examples 

increases to 50% of the training data, its performance drops to that of random guessing. 

 

5.2.7 Varying Number of Training Examples 

We vary the number of training examples and an increase in performance is observed as shown 

in Figure 61. The difference in performance of the algorithms is noticeable in all the cases. 

The best performance is achieved by FSG+AdaBoost and DT-CLGBI, the next better 

performance is achieved by FSG+SVM followed by SubdueCL and graph kernel. 

 

5.2.8 Varying Class Skew 

We vary the class skew in the training examples by increasing in turn, the positive or negative 

examples while holding the others constant. The results are presented in Figures 62 and 63. 

SubdueCL and graph kernels show poor performance as compared to others in both the cases.  

 

It must be noted here that the graph kernel had poor performance even without the skew. 

We postulate that their poor performance is due to difficulty learning the concept, even without 
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the skew. In the case of SubdueCL the poor performance is because it learns a list of graphs 

present only in the positive examples. Due to this, it is affected more by the skew. 

 

 

Figure 43. Varying the Number of Concept Vertices with 2 Vertex Labels and 2 Edge Labels 

 

Figure 44. Varying the Number of Concept Vertices with 3 Vertex Labels and 3 Edge Labels 
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Figure 45. Varying the Number of Concept Vertices with 4 Vertex Labels and 4 Edge Labels 

 

Figure 46. Varying the Number of Concept Vertices with 5 Vertex Labels and 5 Edge Labels 
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Figure 47. Varying the Concept Degree with 4 Vertices 

 

Figure 48. Varying the Concept Degree with 5 Vertices 
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Figure 49. Varying the Concept Degree with 6 Vertices 

 

Figure 50. Increasing the Example Size 
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Figure 51. Increasing the Example Degree 

 

Figure 52. Effect of Noise, Noise Level 0.1 
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Figure 53. Effect of Noise, Noise Level 0.2 

 

Figure 54. Effect of Noise, Noise Level 0.3 
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Figure 55. Effect of Noise, Noise Level 0.4 

 

Figure 56. Effect of Noise, Noise Level 0.5 
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Figure 57. Effect of Noise, Noise Level 0.6 

 

Figure 58. Effect of Mislabeled Positive Examples 
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Figure 59. Effect of Mislabeled Negative Examples 

 

Figure 60. Effect of Mislabeled examples, swapping of class labels 
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Figure 61. Effect of Increasing the Number of Training Examples 

 

Figure 62. Effect of Class Skew, Increased Positive Examples 
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Figure 63. Effect of Class Skew, Increased Negative Examples 

 

5.3 Conclusions of the Comparison 

We performed an empirical comparison of the major approaches for graph classification 

introduced in the literature, namely, SubdueCL, frequent subgraph mining in conjunction with 

SVMs, walk-based graph kernel, frequent subgraph mining in conjunction with AdaBoost, and 

DT-CLGBI. Experiments were performed on five real world data sets from the Mutagenesis and 

Predictive Toxicology domain, and a corpus of artificial data sets. The conclusions of the 

comparison are as follows. 

 

In datasets where the underlying concept has a high average degree, walk-based graph 

kernels perform poorly as compared to other approaches. The hypothesis space of the kernel is 

walks, and it is insufficient at capturing concepts involving significant structure. In datasets 

where the underlying concept is disconnected, SubdueCL performs poorly as compared to other 
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approaches. The hypothesis space of SubdueCL is connected graphs, and it is insufficient at 

capturing concepts which consist of a disconnected graph. FSG+SVM, FSG+AdaBoost, DT-

CLGBI have comparable performance in most cases. 

 

Given the overall goal of conducting a comprehensive empirical comparison of 

approaches for graph classification in order to identify their underlying strengths and 

weaknesses, our empirical comparison has two major limitations. First, the artificial datasets 

were generated according to a model that assumed a uniform distribution of 

vertex labels, edge labels and a uniform degree distribution. Furthermore, we assumed that these 

distributions are independent. Secondly, a qualitative comparison of the learned models was not 

performed. An approach that learns a model involving fewer/smaller graphs is superior, because 

prediction involves performing subgraph isomorphism. 
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6. Alternative Computation of the Walk-Based Kernel 

We now present our work on the computation of the direct product kernel. The 

motivation behind this work is to address the problem of computing the kernel for long walks. 

From the perspective of graph classification and regression, the use of graph kernels is an 

attractive approach as it avoids subgraph isomorphism. Any valid graph kernel could be used 

with support vector classification or support vector regression to extend these algorithms to 

operate on graph transactions. 

The direct product kernel [32] for graph classification, is based on defining a feature for 

every possible label sequence in a labeled graph and counting how many label sequences in two 

given graphs are identical. Although the direct product kernel has achieved promising results in 

terms of accuracy, the kernel computation is not feasible for large graphs. This is because 

computing the direct product kernel for two graphs is essentially computing either the inverse of, 

or by diagonalizing, the adjacency matrix of the direct product of these two graphs. For two 

graphs with adjacency matrices of sizes m and n, the adjacency matrix of their direct product 

graph can be of size mn in the worst case. As both matrix inversion and matrix diagonalizing in 

the general case is O(n3), computing the direct product kernel is O((mn)3). Our survey of data 

sets in graph classification indicates that most graphs have adjacency matrices of sizes in the 

order of hundreds which often leads to adjacency matrices of direct product graphs (of two 

graphs) having sizes in the order of thousands. 

 

 In this work we show how the direct product kernel can be computed in O((m+n)3). 

The key insight behind our result is that the language of label sequences in a labeled graph is a 

regular language and that regular languages are closed under union and intersection. 
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Intuitively, the direct product kernel is based on defining a feature for every possible 

label sequence in a labeled graph and counting how many label sequences in two given graphs 

are identical. So basically, the direct product kernel takes as input two graphs and outputs a count 

of the identical walks that can be taken in both of the graphs (refer to Figure 64). 

 

Figure 64. Feature Space of the Walk-based Kernel 

 

6.1 Notions and Notation 

To define the direct product kernel we need some more notions and notation. A walk w in a 

graph g is a sequence of edges 𝑒1, 𝑒2, 𝑒3, …𝑒𝑛  such that for every 𝑒𝑖 = (𝑢, 𝑣) and 𝑒𝑖+1 = (𝑥, 𝑦), v 

= x is obeyed. Every walk is associated with a sequence of edge labels 𝛼1, 𝛼2, 𝛼3 …  𝛼𝑛 . An 

adjacency matrix 𝑀𝑔  of graph g is defined as,  

 

𝑀𝑔𝑖 ,𝑗
=   

 1 𝑖𝑓 (𝑣𝑖 , 𝑣𝑗 ) ∈ 𝐸

 0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒  
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A direct product of two graphs g1 =   V1, E1, α1  and g2 =   V2 , E2, α2  (with identical edge label 

alphabet  ) 𝑔1 × 𝑔2 is defined as,  

1. 𝑉𝑔1×𝑔2  = { 𝑣1, 𝑣2 ∈ 𝑉1 × 𝑉2} 

2. 𝐸𝑔1×𝑔2
=   𝑢1, 𝑢2 ∈ 𝐸1 × 𝐸2  such that 

a)  𝑢1, 𝑣1 ∈ 𝐸1 

b)  𝑢2, 𝑣2 ∈ 𝐸2 

c) 𝛼1 𝑢1, 𝑣1 = 𝛼2 𝑢2, 𝑣2  

 

An important observation here is that taking a walk on a direct product graph g1 × g2 is 

equivalent to taking an identical walk on graphs 𝑔1 and 𝑔2. Stated differently, this means that we 

can take a certain walk on g1 × g2 if and only if there exists a corresponding identical walk in 

both 𝑔1  and 𝑔2. 

 

For two graphs g1 =   V1, E1, α1  and g2 =   V2, E2, α2   (with identical edge label 

alphabet  ) let 𝑀𝑔1×𝑔2
 be the adjacency matrix of their direct product graph 𝑔1 × 𝑔2        with a 

sequence of weights 𝜆0, 𝜆1, … such that 𝜆𝑖 ∈  ℝ and 𝜆𝑖 ≥ 0 for all 𝑖 ∈  ℕ, the direct product 

kernel 𝑘𝑔1×𝑔2
 is defined as, 

𝑘𝑔1×𝑔2
=      𝑀𝑔1×𝑔2

ℓ  
𝑖𝑗

∞

ℓ=0

𝑉𝑔1×𝑔2

𝑖,𝑗 =1

  

if the limit exists. 

 

Intuitively, the direct product kernel computes the powers of the adjacency matrix of the 

direct product graph 𝑀𝑔1×𝑔2
 and sums them. This is equivalent to counting the identical walks 
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that can be taken in both the input graphs. This is because any walk in 𝑔1 × 𝑔2 corresponds to an 

identical walk in both 𝑔1 and 𝑔2 and the ℓ
𝑡

 power of 𝑀𝑔1×𝑔2
 captures all walks of length ℓ in 

𝑀𝑔1×𝑔2
.  

 

6.2 Faster Alternative Computation 

In this section we present a faster alternative to computing the direct product kernel. The key 

insight behind this is based on showing that the language of edge label sequences corresponding 

to walks in a graph is a regular language.  

 

Lemma 1 

Let 𝑤 = 𝑒1, 𝑒2, …𝑒𝑛  be a walk in graph 𝑔 = (𝑉, 𝐸, 𝛼) and let 𝑠 = 𝛼 𝑒1 , 𝛼 𝑒2 , …𝛼 𝑒𝑛  be the 

sequence of edge labels corresponding to each of the edges in the walk. Let ℒ   be the language 

of all such sequences corresponding to walks in 𝑔. Then, ℒ  is a regular language. 

Proof 

Construct a finite automaton 𝑀 =  𝑄, Σ, 𝛿, 𝑞, 𝐹  as follows. The set of states 𝑄 is constructed by 

introducing a state 𝑠𝑣  corresponding to every vertex 𝑣 in 𝑔. Additionally, two states 𝑠0 and 𝑠𝐹  

are introduced in 𝑄. The alphabet Σ is the same as the alphabet of the edge labels. The set of 

transitions 𝛿 is constructed by introducing a transition from state 𝑠𝑢  to 𝑠𝑣 on symbol 𝛼 𝑒  for 

every directed edge 𝑒 =  𝑢, 𝑣  in 𝑔. Additionally ℇ transitions are introduced from the state 𝑠0 to 

every other state in 𝑠𝑣 in 𝑄 except 𝑠𝐹  each of which corresponds to a vertex in 𝑔. Also, ℇ 

transitions are introduced from every state in 𝑄 except for 𝑠0 and 𝑠𝐹  , each of which corresponds 

to a vertex in 𝑔 to the state 𝑠𝐹  . Set the start state 𝑞 = 𝑠0  and the final state 𝐹 = 𝑠𝐹 . By 

construction, 𝑀 accepts ℒ  and hence ℒ  is regular. ∎ 
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We now show that the language of edge label sequences corresponding to walks in a 

direct product graph is basically the intersection of the two regular languages of edge labels 

corresponding to walks in the two graphs and is itself a regular language as regular languages are 

closed under intersection. 

 

Lemma 2 

Let 𝑔𝑔1×𝑔2
 be the direct product graph of 𝑔1 and 𝑔2. Let ℒ𝑔1×𝑔2

 be the language of all sequences 

of edge labels corresponding to walks in 𝑔𝑔1×𝑔2  . Similarly, let ℒ𝑔1
 and ℒ𝑔2

 be languages of all 

sequences of edge labels corresponding to walks in 𝑔1 and 𝑔2   respectively. Then, ℒ𝑔1×𝑔2
=

 ℒ𝑔1∩𝑔2
 is regular. 

Proof 

 From the definition of direct graph product, taking a walk on a direct product graph 𝑔1 × 𝑔2 is 

equivalent to taking an identical walk on graphs 𝑔1 and 𝑔2. Each of these walks has a 

corresponding edge label sequence associated with it. As ℒ𝑔1×𝑔2
  is the language of all sequences 

of edge labels corresponding to walks in  𝑔𝑔1×𝑔2  , and ℒ𝑔1
   and ℒ𝑔2

  are languages of all 

sequences of edge labels corresponding to walks in 𝑔1  and 𝑔2 respectively, thus ℒ𝑔1×𝑔2
=

 ℒ𝑔1∩𝑔2
   follows. ∎ 

 

We now introduce the notion of union of the two languages corresponding to the 

sequence of edge labels corresponding to walks in the two graphs. Let g1 =   V1, E1, α1  and 

g2 =   V2, E2, α2   be two graphs (with identical edge label alphabet  ), then the union of the 

corresponding languages ℒ𝑔1
 and ℒ𝑔2

 is denoted by ℒ𝑔1∪𝑔2
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Lemma 3 

ℒ𝑔1∪𝑔2
 is regular. 

Proof 

Follows from the definitions and the property that regular languages are closed under union. ∎ 

 

We can now show a result that gives us a relation between the sizes of the languages 

considered so far. 

 

Lemma 4 

 Let 𝑔𝑔1×𝑔2   be the direct product graph of 𝑔1 and 𝑔2. Let ℒ𝑔1×𝑔2
 be the language of all 

sequences of edge labels corresponding to walks in 𝑔𝑔1×𝑔2  . Let 𝑔𝑔1∪𝑔2  be the union graph of 𝑔1 

and 𝑔2. Let ℒ𝑔1∪ 𝑔2
 be the language of all sequences of edge labels corresponding to walks in 

𝑔𝑔1∪𝑔2  . Similarly, let ℒ𝑔1
 and ℒ𝑔2

   be languages of all sequences of edge labels corresponding 

to walks in 𝑔1 and 𝑔2 respectively. Then |ℒ𝑔1×𝑔2
| =  ℒ𝑔1

 +  ℒ𝑔2
 −   ℒ𝑔1×𝑔2

 .  

Proof 

 Follows from Lemmas 1, 2 and 3 and the property that regular languages are closed under union 

and intersection. ∎ 

 

This result can be easily extended to subsets of these languages which place a restriction 

on the size of the sequences in the language. 
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Lemma 5 

Let  ℒ𝑔1
ℓ  , ℒ𝑔2

ℓ    ℒ𝑔1×𝑔2
ℓ  and ℒ𝑔1∪𝑔2

ℓ   be subsets of languages ℒ𝑔1
, ℒ𝑔2

 , ℒ𝑔1×𝑔2
 and ℒ𝑔1∪𝑔2

 such 

that they do not contain sequences longer than ℓ. Then ℒ𝑔1
ℓ  , ℒ𝑔2

ℓ    ℒ𝑔1×𝑔2
ℓ  and ℒ𝑔1∪𝑔2

ℓ  are regular 

and  |ℒ𝑔1×𝑔2
ℓ | =  ℒ𝑔1

ℓ   +   ℒ𝑔2
ℓ  −   ℒ𝑔1∪𝑔2

ℓ   holds. 

Proof 

Clearly ℒ𝑔1
ℓ  , ℒ𝑔2

ℓ    ℒ𝑔1×𝑔2
ℓ  and ℒ𝑔1∪𝑔2

ℓ  are finite languages by definition and hence regular. The 

result follows from Lemma 4 and the property that regular languages are closed under union and 

intersection. ∎ 

 

The problem thus reduces to counting the number of strings in a regular language of 

length no more than ℓ. It has been shown that this problem can be solved in 𝑂(𝑛3) [44] where 𝑛 

is the number of states in the finite automata for the regular language. This approach is also 

based on diagonalising the adjacency matrix of the 

finite automata.  Note here that in order to compute |ℒ𝑔1×𝑔2
ℓ |        we  compute  ℒ𝑔1

ℓ   +   ℒ𝑔2
ℓ  −

  ℒ𝑔1∪𝑔2
ℓ  . The largest finite automata and hence the largest adjacency matrix to be diagonalized 

is  ℒ𝑔1∪𝑔2
ℓ  . The previous approach in essence dealt with |ℒ𝑔1×𝑔2

ℓ |. The key difference from the 

previous computation is that now we are dealing with finite automata corresponding to the union 

of two regular languages which grows as 𝑂(𝑚 + 𝑛) for automatas with sizes 𝑚 and 𝑛 (for the 

two input graphs) instead of the finite automata corresponding to the intersection of the two 

languages which grows as 𝑂 𝑚𝑛 . This implies that the direct product kernel can be computed 

in 𝑂( 𝑚 + 𝑛 3)  instead of 𝑂( 𝑚𝑛 3). 
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6.3 Experimental Results 

We compare the proposed alternative kernel computation to the approximation of the kernel by 

matrix multiplication. Figure 65 shows the training time for the Mutagenesis and PTC datasets 

while approximating the kernel value using matrix multiplication. Figure 67 shows the time for 

the alternative computation (evaluation of the inverse of the union matrix). The results indicate 

that although the alternative computation is expensive as compared to approximation for small 

walks, it is comparable when compared to approximation for long walks. Longer walks, in 

general, lead to higher accuracy (refer Figure 66), but after a certain walk length, we have 

diminishing returns in the sense that the extra expense of computation does not buy us better 

predictive accuracy. So the predictive accuracy flattens out at a particular walk length where 

approximation by matrix multiplication turns to be cheaper. In general, it must be noted that 

approximation of the kernel by matrix multiplication may turn out to be cheaper than the 

alternative computation in practice for smaller walk sizes. 
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Figure 65. Effect of the length of Walks on the Accuracy 

 

Figure 66. Effect of the length of Walks on the Runtime 
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Figure 67. Runtimes for Alternative Computation 

 

 

6.3 Discussion 

The observation that the language of label sequences in a labeled graph is a regular language is 

important, as it can be the starting point for applying a number of results from automata theory to 

compute graph kernels. 
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7 Conclusions and Future Work 

The conclusions of our work can be summarized as follows. 

1. We developed a novel class of pruning mechanisms for searching the space of subgraph 

features. These pruning mechanisms are independent of the model building step and can 

be applied to a number of approaches to graph classification and regression. These 

pruning mechanisms drastically reduce the search space and reduce the computational 

time with no discernable loss of predictive accuracy. 

2. We developed a novel algorithm for graph regression called gRegress. Our algorithm 

outperforms previously introduced algorithms on graph regression and represents the 

current state of the art in graph regression. 

3. We developed an alternative approach for the computation of the Walk-based kernel for 

graph classification. Although this approach was not able to outperform the current 

approach for the computation, it is an interesting direction in the faster computation of 

graph kernels.  

4. We demonstrated that certain problem domains with respect to graph regression, in a 

sense, require multiple linear models. Models which are at their core based on a single 

linear function perform poorly as compared to models based on combinations of linear 

models. 

5. We demonstrate that in certain cases, incorporating structural features can drastically 

improve the performance of predictive models as compared to models based only on 

attribute valued features. 

 

We plan to pursue the following as a part of our future work. 
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1. With regards to pruning mechanisms, the relationship between the 𝛼, 𝛽 parameters and 

the size of the search space needs to be better characterized. We currently have a very 

coarse picture of how the search space varies with 𝛼 and 𝛽. A better understanding of 

this relationship is central to the efficient extraction of subgraph features.  

2. While we introduced pruning mechanisms for extracting one maximal set of features 

under the 𝛼, 𝛽 constraints, there are many sets of subgraph features which satisfy these 

constraints. The quality (with respect to the regression model based on these features) of 

these sets needs to be further investigated.  

3. The 𝛼, 𝛽 parameters are user-defined parameters, and the user needs to select them 

appropriately. A significant improvement would be replacing these user-defined 

parameters with a parameter selection process. Relationships between the 𝛼, 𝛽 

parameters and the size of the search space could be exploited to perform this search 

efficiently. 

4. The gRegress algorithm needs to be further tested on additional datasets. While we have 

demonstrated the need for a combination of linear models, results on additional data sets 

would strengthen our claim.  

5. The formulation of graph kernels in terms of problems from automata theory is an 

important direction in developing new graph kernels. As we have established that the 

language of walks is regular and leveraged these results to facilitate faster computation, 

we can apply this idea to other features spaces such as trees to develop new graph 

kernels.  
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