
NEW PARADIGMS FOR DESIGN AND

CONTROL OF DYNAMICAL NETWORKS

By

YAN WAN

A thesis submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering & Computer Science

May 2009

@ Copyright by Yan Wan, 2009

All Rights Reserved

© Copyright by Yan Wan, 2009
All Rights Reserved

To the Faculty of Washington State University

 The members of the Committee appointed to examine the dissertation of YAN WAN

find it satisfactory and recommend that it be accepted.

 Sandip Roy, Chair

 Ali Saberi

 Anton Stoorvogel

 Bernard Lesieutre

ii

ACKNOWLEDGEMENT

Looking back on my path over the past four-and-a-half years of my Ph.D studies, I could not be

more grateful for all the experiences that I have had and all the people that I have met. I established

an important body of research, worked with the most brilliant researchers, had enjoyable time with

a lot of friends, and was reborn in the name of Jesus Christ.

First of all, I am grateful to my advisor, Dr. Sandip Roy, the best advisor that a student

could ever imagine—brilliant, responsible, encouraging, and caring. Four years ago, I did not fully

recognize my research potential, until he and Dr. Ali Saberi excited me with a class research project

on decentralized partitioning. Sandip guided me very closely in the project and displayed to me this

picture that doing research is so much fun. I was amazed by his way of doing research—he seems to

me like a brave but experienced explorer of an unknown world and also a little kid playing with his

favorite toys, very happy, focused, skilled, enthusiastic, and energetic. After I joined his group, he

provided me systematic training in every aspects of research, including e.g., coming up with ideas,

working out complete results, and writing. When I was stuck in research, he could always point out

directions that broke the ice. He is also incredibly good and insightful in finding connections among

topics. I am especially grateful for all the discussions with him on figuring out new directions to

work on. Other than research, he also set the model for me as a successful educator. His class is

full of fun, and he has the ability to explain complicated concepts in an easy-to-understand way.

Moreover, he is willing to give huge time after class to his students. Sandip and I are also close

(life-time) friends, and he had always offered me tremendous help in aspects other than research.

I am also grateful to Dr. Saberi, who also guided me closely in research, and from whom I gained

significant knowledge in the area of Systems and Control. He impressed me as a master of Systems

iii

and Control with deep and precise understandings of the heart of the field. His conversations with

me were always very precious and beneficial, since I could obtain deep insights of the field from him

that are hard to find elsewhere, and get clear pictures of which topics are worth exploring. I am

indebted to him for being so supportive of me and his effort in training me to become a researcher

who is enthusiastic, insightful, highly focused, and dedicated, as a reflection of himself.

I also want to express my gratefulness to Dr. Anton Stoorvogel from the University of Twente,

the Netherlands. I really appreciate him flying to Pullman every year to guide the students in

our group in research, and also to come to my defense in this harsh winter season. I am deeply

impressed by his incredible ability in solving tough mathematical problems. Working and talking

with him is very inspiring and a lot of fun. I would also like to thank Dr. Bernard Lesieutre from

the University of Wisconsin-Madison for serving on my committee, and for the various insightful

discussions on several research topics.

Outside my research committee, I would like to give my thanks to other faculty and staff both in

my department and other schools. Dr. Zhe Dang, thanks to whom I started to build a Computer

Science background, is a well-respected researcher and a terrific friend. I will always remember

many insightful talks he gave in class and in person, concerning the interesting topics in the field of

Algorithmics, and also the philosophies of research and life. He is always there for help when I come

up to him. I really appreciate his caring and support. I am also grateful to Dr. Shira Broschat and

Dr. Douglas Call for their training in biology and for all their helps; and to Dr. James Krueger,

Dr. David Rector, and Dr. Chris Davis for the collaboration on the interesting project on sleep

regulation. My thanks also goes to Ms. Ruby Young, who is retired but showed her caring for all

the students in the department for many years, Ms. Sidra Gleason for all the help and being so

nice, and also Ms. Ning Hsu for all the enjoyable conversations and encouragement.

iv

At this point, I could not forget to give thanks to the educators who impacted my life and

paved my path piece by piece up to the point that I am now: my elementary school mathematics

teachers Ms. Yan Xu and Ms. Xiangyang Tong, Mr. Honggen Wang, who taught me middle school

Physics, my wonderful undergraduate instructors Dr. Jianjiang Zhou (EE) and Dr. Baiqing He

(Math), and my Master’s advisor Dr. Larry Wurtz.

My research is supported by National Science Foundation grants ECS-0528882 and ECCS-

0725589, and National Aeronautics and Space Administration grant NNA06CN26A. I also obtained

multiple travel grants from the School of Engineering and Computer Science and also the Graduate

School at Washington State University. I am grateful for the support from these agencies.

I am also grateful for the fellowship of students in our university, Mora Xue for her smile and

accompaniment, Linmin Yang and Huan Zhao for the fun and laughs we had together, Tao Yang

and Kevin Chang for the help and kindness, and also Zheng Wen, Jasmin Minteer, Xu Wang, Babak

Malek, and Da Meng for the conversions on research and the wonderful time we had together.

Thanks to my friends in Pullman and Moscow, who made my life here much more fun. I am

indebted to Dr. Tianxi Zhang and Ms. Yirong Sun, who cared for me as their kid (though I am

much older than their kids), and invited me over so many times to have a delicious dinner. I am

also grateful for the support from and the wonderful time I had with my friends in the local Chinese

church, Paster Yeh and his family, Lei Wang, Fei Pan, Tracy, Hongkun, Jingyi, Yan Zhuang, Winnie,

Edison, Yun Chen, Minhua, and many others.

No words can even come close to expressing my thanks to my sweet family, to whom I own

so much and who are the the most precious treasure of my life. I am indebted to my parents for

their tremendous love, and the trust and support for whatever decisions that I made; my brother,

sister-in-law and my grandpa for their love and care; and my uncle whom I will miss forever, for

v

his encouragement at my early age. And specially thanks to my beloved husband Haibo Zhu for

being my best friend, being there always for help and support, and making every day of my life a

happy day.

Finally, I would like to give my thanks to the Lord, for all the rejoicing and the tears. Thank

you, Lord, for your tremendous mercy and love. Thank you for all the blessings and forgiveness

that you gave me, and for everything in my life!

vi

NEW PARADIGMS FOR DESIGN AND

CONTROL OF DYNAMICAL NETWORKS

Abstract

by Yan Wan, Ph.D.
Washington State University

May 2009

Chair: Sandip Roy

My Ph.D. research is focused on devising novel paradigms for the design and control problems

in dynamical networks that arise in various infrastructure- and agent- network applications. While

network structure is ubiquitous in many modern systems and so network dynamics have been

systematically analyzed, works on design and control of networks (i.e., shaping the dynamics of

a network through applying static/dynamic feedback controllers) are sparse. Despite the lack of

works in network design and control, solutions in this field are badly needed in many network

applications such as traffic management, epidemic control, and sensor/vehicle networking.

In this research, we provide systematic solutions to design and control problems that are common

to many dynamical network applications. To develop these solutions, we are engaged in effort in two

major aspects: 1) modeling and identifying design and control problems in network applications;

2) developing novel tools for network design and control. In the development, our philosophy

is that network design and control must exploit network structure to be effective, due to the

significant role played by networks’ structures in their dynamics. With this philosophy in mind,

we have systematically addressed multiple important and typical network design and control tasks,

vii

including designing (static) network node properties and edge properties (at all or a subset of the

nodes/edges), and also designing decentralized dynamical controllers, to meet eigenvalue-related

performance requirements. We have also addressed novel controller design for networks that are

present to constraints such as input saturation and delays.

Part of the work is concerned with studies that support the above development of network

design and control methods. We provide some interesting results on infinite-dimensional systems,

stabilization of systems with saturation, and the maneuvering of system zeros. Moreover, we

have also addressed network-related numerical tasks, such as distributed network partitioning and

effective network simulation.

viii

CONTENTS

ACKNOWLEDGMENTS . iii

ABSTRACT . vii

LIST OF TABLES . xvii

LIST OF FIGURES . xx

1. Introduction . 1

1.1 Modeling: Network Control and Design Problem Formulations 2

1.2 Dynamical Network Design . 6

1.3 Decentralized Network Control . 8

1.4 Network Numerical Tasks . 10

1.5 Thesis Outline . 11

PART I: MODELING . 13

2. Designing Spatially-Heterogeneous Strategies for Control of Virus Spread 14

2.1 Problem Formulation and Motivation . 15

2.1.1 Epidemic Control: Brief Review . 17

2.1.2 Spatial Control in a Multi-Group Model: Formulation 18

2.1.3 Inhomogeneous Control in a Contact Network Model 24

2.2 Network Design . 29

2.2.1 Connection to Decentralized Control . 29

2.2.2 Designing λmax(D + G) . 31

2.2.3 Designing λmax(KG) and λmax(D + KG) . 46

2.2.4 Computation and Implementation Issues . 50

2.3 Control of the Hong Kong SARS Epidemics . 53

3. A Scalable Methodology For Evaluating And Designing Coordinated Air Traffic Flow Man-

agement Strategies Under Uncertainty . 57

3.1 Introduction . 58

3.2 A Family of Abstractions For Flow Management: Overview 61

3.3 Saturation Restriction Model . 64

3.3.1 Description of the Saturation Restriction . 65

3.3.2 Model Evaluation for Poisson Input Flow Statistics 66

3.3.3 Model Evaluation, Arbitrary Aircraft Flows 68

3.3.4 Canonical Example: Restricting Flows into PHL 73

3.3.5 Another Example: Which Flow Should Be Restricted? 74

3.4 A Linear Abstraction . 76

3.4.1 Model Description . 77

3.4.2 Analysis of the Linear Abstraction with Poisson Input 79

3.4.3 Restriction Design . 81

3.4.4 Analysis of Multiple Restrictions . 83

3.5 Algebraic Buffer Model and Network-wide Management Problem: Brief Introduction 86

x

3.5.1 The Algebraic Model for a Single Restriction 86

3.5.2 Network Model . 87

3.6 Conclusion . 89

4. Sensitivity of National Airspace System Performance to Disturbances: Modeling, Identifica-

tion from Data, and Use in Planning . 91

4.1 Introduction . 91

4.2 The Queueing Model . 94

4.2.1 Model Details . 95

4.2.2 Sensitivity Analysis . 97

4.3 Evidence for Congestion-Dependence of NAS Sensitivities 99

4.4 Using the Sensitivity Analysis for Planning . 105

4.4.1 Planning for a Bank of Queues . 107

4.4.2 Planning for an Interacting Network of Queues 111

5. A Network Model for Activity-Dependent Sleep Regulation 117

5.1 Introduction . 117

5.2 Network Model Formulation . 121

5.3 Prediction of Whole-Animal Sleep: Simulations and Analysis 125

5.3.1 Illustrative Simulations . 127

5.3.2 System-Theoretic Analysis . 128

PART II: Network Design . 136

6. A New Focus in the Science of Networks: Toward Methods for Design 137

xi

6.1 Introduction . 138

6.2 Controller Synthesis Problems in Modern Networks 141

6.2.1 Spatially Heterogeneous Virus Spreading Control 142

6.2.2 Coordinated Air Traffic Flow Management 144

6.2.3 Other Applications . 147

6.3 The Decentralized Design Problem . 148

6.4 Novel Methodology for Network Controller Design 150

6.5 Examples . 155

6.5.1 Control of the Hong Kong SARS Epidemic 155

6.5.2 Traffic Flow Management Design . 156

7. On the Structure of Graph Edge Designs that Optimize the Algebraic Connectivity 157

7.1 Introduction . 157

7.2 Review and Problem Formulation . 160

7.3 The Structure of the Optimized Eigenvector . 162

7.4 An Explicit Design for Tree Graphs . 166

7.5 Some Structural Results for Bipartite and General Graphs 171

7.5.1 Edge-Utilization Structure and Eigenstructure 172

7.5.2 Graph-Theoretic Bounds on Performance . 176

7.5.3 Meshing our Design with Numerical Methods 177

7.6 Illustrative Example: A Well-Designed Flow Network 180

8. On Time-Scale Designs for Networks . 183

8.1 Introduction . 183

xii

8.2 Motivation . 186

8.2.1 Design in Autonomous Vehicle Coordination and Sensor Networking 186

8.2.2 Epidemic Spread Control . 188

8.2.3 Multi-Target Drug Design . 189

8.2.4 Changing Coherency Topologies in Electric Power Networks 190

8.3 A Canonical Partial Graph Design Problem . 192

8.3.1 Formulation . 192

8.3.2 Reformulation as a Decentralized Controller Design 194

8.3.3 Topological Characterization of the Plant Dynamics 195

8.3.4 Time-Scale Design . 202

8.3.5 An Illustrative Example . 206

8.4 Connections and Future Directions . 207

9. Majorizations for the Dominant Eigenvector of a Nonnegative Matrix 211

9.1 Introduction . 211

9.2 Majorizations for Single-Row Incrementations . 212

9.3 Majorizations for Multiple-Row Incrementations . 214

10. An Explicit Formula for Differences Between Laplacian-Eigenvector Components Using Co-

alesced Graphs . 216

10.1 Introduction . 216

10.2 Main Result . 217

PART III: NETWORK CONTROL . 228

xiii

11. A Multiple-Derivative and Multiple-Delay Paradigm for Decentralized Controller Design:

Introduction using the Canonical Double-Integrator Network 229

11.1 Introduction . 229

11.2 Controlling the Double-Integrator Network . 233

11.2.1 Multiple-Derivative Controller Design . 234

11.2.2 Discussion: Concepts and Comparisons . 238

11.3 Implementation Issues: Overview . 245

11.4 Stabilization Under Constraint and Delay . 248

11.4.1 Design for Networks with Measurement Delay 249

11.4.2 Controller Design for Networks with Input Saturation 251

12. The Design of Multi-Lead-Compensators for Stabilization and Pole Placement in Double-

Integrator Networks . 254

12.1 Introduction . 254

12.2 The Main Result . 258

13. Semi-Global Stabilization of Double-Integrator Networks with Actuator Saturation 268

13.1 Introduction . 268

13.2 Double-Integrator Network: Introduction and Preliminary Design 270

13.3 Stabilization under Saturation . 272

PART IV: TOOLS . 277

14. On Multiple-Delay Static Output Feedback Stabilization of LTI Plants 278

14.1 Introduction . 278

xiv

14.2 Minimum-Phase Plants . 279

14.3 Non-Minimum Phase Plants . 282

15. On Multiple-Delay Approximations of Multiple-Derivative Controllers 291

15.1 Introduction . 291

15.2 A pole equivalence result . 293

15.3 Anatomy of higher derivative approximations: scalar examples 299

15.3.1 Instabilities caused by delay approximations 300

15.3.2 A Pole Placement Result for Some Approximations 305

15.4 Designing derivative-approximation controllers for relative degree 1 plants 307

16. A Class of Neutral-Type Delay Differential Equations that are Effectively Retarded 311

16.1 Introduction . 311

16.2 Equivalent Retarded Representations for a Multiple-Derivative-Feedback Model . . . 312

16.3 Retarded Equivalence in a Multiply-Delayed-Derivative Model 316

17. Explicit Precompensator Design for Invariant-Zero Cancellation 331

17.1 Main Result . 331

18. A Pre- + Post- + Feedforward Compensator Design for Zero Placement 341

18.1 Introduction and Problem Formulation . 341

18.2 Main Result . 342

19. An Alternative Approach to Designing Stabilizing Compensators for Saturating Linear

Time-Invariant Plants . 349

19.1 Introduction . 349

xv

19.2 Low-Gain Output Feedback Control through Precompensation 350

19.3 A Compensator that Exploits Time-Scale Structure 358

19.4 Example . 362

PART V: Numerics . 365

20. A Flexible Stochastic Automaton-based Algorithm for Network Self-Partitioning 366

20.1 Introduction . 366

20.2 Problem Statement . 371

20.3 The Copying Influence Model: A Brief Review . 375

20.4 Algorithm Description . 376

20.5 Algorithm Analysis . 383

20.6 Applications and Examples . 392

20.7 Future Work . 400

21. Uncertainty Evaluation through Mapping Identification in Intensive Dynamic Simulations 405

21.1 Introduction . 405

21.2 PCM for a Known Parameter Probability Distribution 408

21.3 PCM for an Unknown Parameter Probability Distribution 416

21.3.1 PCM based on Sample Parameter Data . 416

21.3.2 PCM with Knowledge of Only Some Low Moments 420

21.3.3 Higher Moments’ Impact on PCM . 421

21.4 PCM when Parameters Depend on Regressors: Brief Overview 426

21.5 Applications . 428

xvi

BIBLIOGRAPHY . 433

xvii

LIST OF TABLES

2.1 Notations . 15

2.2 Resource Allocation Needed to Reduce R0 to 1. 56

3.1 The mean backlog of the two regions for three different restriction settings. 74

3.2 Matching between the saturation model and linear model aids in MINIT restriction

design for the purpose of reducing variance in regional aircraft counts. Here, ΔT =

20, λ = 0.2, L = 3, λΔT = 4. 82

4.1 We tabulate excessive delay days (days in which the delay is twice the average for that

terminal) and congestion at Airports in the Northeast and Upper Midwest, during

December 2007 and January 2008. We also list the fractions of aircraft arriving

at each airport that were delayed more than one hour During December 2006 and

January 2007. High congestion airports are more likely to have excessive delays. . . 101

4.2 For nine airports, we regress the average delay incurred on the aircraft entering the

airport in terms of the percent change in annual traffic demand. The slopes of the

regression lines are shown in the table. We note that the five highly congested air-

ports (LAX,SFO,ORD,PHL,JFK) have strong dependences while the less congested

ones (PHX, MSP, SEA, SLC) have much weaker dependences. 106

20.1 The average steps to first reach the partition state with respect to Δ and ε based on

1000 sample runs . 399

20.2 Simulation result for Example 2 based on 1000 sample runs: Steps represents the

average steps the algorithm takes to distributedly stop, and Percent represents the

percentage of correct partitions the algorithm finds. 399

21.1 Comparison of PCM points between uniform distribution and Gaussian distribution,

both with mean as 8 and variance as 8. 422

xix

LIST OF FIGURES

2.1 Illustration of a three-node network topology. 45

2.2 The Map of Hong Kong’s 18 districts (obtained from

http://en.wikipedia.org/wiki/Hong Kong#Administrative divisions). We use the model

parameters in [24]: f̄ii = 1, f̄ji = 0.57 when District i, j are neighbors, f̄ji = 0.02

when i, j are not adjacent, β̄ = 0.062, and T̄ = 10.6. 54

3.1 Boundary restriction framework. 63

3.2 A single flow passing through a chain of two restrictions. 70

3.3 Downstream flow variance analysis for two saturation restrictions with different

thresholds. 71

3.4 Distribution of backlogs for three different combinations of restrictions. The two

restrictions can be carefully selected (Nc1 = 7, Nc2 = 6) to split the backlog between

the two regions. These distributions were computed using actual arrival data from

January 2006. 75

3.5 a) Abstract illustration of traffic flows entering SFO and arrival capacity during stra-

tus event. b) Backlog at SFO during stratus event assuming flows are not restricted

upstream; backlog was computed using actual arrival data from June 1, 2006. 76

3.6 Comparison of restrictions on major and minor flows using the saturation model.

We find that restriction of the major flow is more effective in decreasing downstream

flow variability, for a given backlog. 77

3.7 Upstream backlog caused by restriction of the a) major flow and b) minor flow, for

the purpose of limiting backlog at SFO during stratus event to 9 aircraft. 78

3.8 Linear boundary restriction scheme. 78

3.9 Dependence of downstream region count’s variance (Vr) and the backlog’s variance

VB on the linear model parameter a. Again, we see a tradeoff between backlog and

downstream variance. 81

3.10 Stochastic linearizations of saturation restriction. 81

3.11 Upstream backlog and downstream region count upon use of saturation restriction

model and corresponding linear restriction model, assuming mean inflow rate λΔT =

4, Nc = 5, and L = 3. 83

3.12 Linear boundary restriction model for a chain of regions. 85

3.13 Upper: Diagram of the network-wide flow-management model. Lower: An optimal

restriction topology for a network with five congested regions–dark shading indi-

cates a strong restriction, and light shading a weak one. Notice that the strongest

restrictions are placed upstream of multiple congested regions. 88

4.1 Queueing Model . 97

4.2 Sensitivity of backlog with respect to congestion level 99

xxi

4.3 The dependence of the average aircraft delay on the daily congestion level is shown

for two airports. We notice that the average delay exhibits a weak dependence on the

congestion level (the regression line is E(D) = 0.276ρ + 22.2) for the low congestion

airport, PVD. Meanwhile, there is a stronger dependence (E(D) = 1.168ρ − 9.334)

for the moderate-congestion airport, IAD. 103

4.4 Bank of queues . 107

4.5 Network of queues . 112

5.1 a) The network topology for the 30-cortical-column example is illustrated. b) The

baseline activity simulation is shown. c) The local overstimulation experiment is

simulated; activity variables for five representative cortical columns (neuronal as-

semblies) are shown. d) The coordination experiment is simulated, for two different

interaction strengths. Higher interaction strengths yield faster coordination. 126

6.1 The structure of the optimally-actuated topology is illustrated, for the cost λmax(D+

G). 153

7.1 Example demonstrating multiple optimal edge designs: a) 5-vertex designable edge

graph, b) Laplacian eigenvalues over the range of the optimal designs 179

7.2 Optimal edge design for a 40-vertex tree. The edges with maximum and minimum

weight are shown, and the weights are delineated with varying line thicknesses. . . . 181

8.1 a) 30-node graph: thin blue lines specify the fixed graph, while the thick red lines

specify the designable graph. b) the 5 smallest non-zero eigenvalues of the graph

Laplacian as we scale the strengths of the designable communication links. 208

xxii

10.1 A feedback representation of the system (2) . 223

11.1 Top: Actuation needed for multiple derivative control. Bottom: Actuation needed

for control through a single dominant channel. 244

12.1 We diagram several matrix classes that are of interest in representing a double in-

tegrator network’s sensing topology. A multi-lead-compensator design is possible

whenever the topology matrix is full rank, and a design that is robust to agent fail-

ures is possible if the topology matrix has stable principal minors to within a sign

scaling (a scaling of each row by ±1). 267

14.1 A minimum-phase non-square-invertible plant can be made minimum-phase square-

invertible using (in general dynamic) pre- and post-compensation. We can thus

develop multiple-delay controllers even in the non-square-invertible case. 281

15.1 The contour of poles when a = 1, b = 9 and Δ = 0.1. a) the contour of the OLHP

poles; b) the contour of the ORHP poles. 302

17.1 System structure showing SCB blocks and pre-compensator design 332

18.1 The pre- + post- + feedforward architecture for zero relocation is illustrated. 343

xxiii

18.2 A detailed diagram of the pre- + post- + feedforward controller for zero placement is

shown. Here, S.D. indicates compensation for squaring down, R.U. represents a rank-

uniformizing compensator, D.E. represents a derivative-estimation filter (specifically

one with transfer function sq−1

(1+εs)q−1 I where ε is small and q is the relative degree of the

rank-uniformized plant), S.F. is a smoothing filter with transfer function 1
(1+εs)q−1 I,

and the zero-relocation filter together with the static map permit arbitrary placement

of the plant transmission zeros. 344

18.3 This equivalent block diagram clarifies that the estimation can be viewed as a pure

derivative computation, with a smoothing filter after the feedforward addition. . . . 345

19.1 Compensator artechitectures: a) and b) show the compensator artechitectures pre-

sented in Ding and Pearson [265], in particular, a precompensator-together-with-

static feedback viewpoint. (b) is used to design a proper compensator of (a). c) and

d) show the compensator artechitectures that stabilize a plant under input saturation.352

19.2 The inputs a) u1 and b) u2 are shown, for ε = 0.5. Each plant state variable is

initialized at 0.99. 364

19.3 The inputs a) u1 and b) u2 are shown, for ε = 0.25. Each plant state variable is

initialized at 0.99. 364

20.1 This diagram illustrates how a network partitions itself (based on the update of the

time-varying copying influence model) in a totally distributed manner. 384

xxiv

20.2 Partitioning a 30-sensor network with reference nodes a) based on a minimum-

subgraph-eigenvalue cost, b) based on a greedy-routing cost, and c) with distributed

stopping. We also partition a 100-sensor network based on a minimum-subgraph-

eigenvalue cost (d). 396

20.3 We consider partitioning the Standard 14-Bus IEEE Test System, for the purpose

of isolating a disturbance at Bus 6 from the slack bus 1. The upper figure shows

the cut susceptance and generator-load imbalance for a sequence of 250 partitions

generated by our influence model algorithm. The lower figure highlights that the

minimum-cost partitions according to these two criteria are different. In the lower

figure, the solid line indicates the minimum susceptance cut while the the dashed

line indicates minimum generator-load imbalance. 402

20.4 Seven-node circuit and its influence model: Conductance values of R4 and R5 are

ε, and all the other conductances are 1; all the capacitances are 1; Δ stands for the

discretization step. 403

20.5 Example for distributed partitioning . 404

21.1 a) PCM finds a polynomial mapping between a stochastic parameter X and a sim-

ulation output g(X). b) Comparison of a degree-5 polynomial mapping with the

2nd-order PCM approximation (obtained from the true probability distribution); c)

The distribution of the stochastic parameter X. 409

xxv

21.2 a) The points obtained from sample moment-based PCM converge to those obtained

from pdf-based PCM. b) Comparison of a degree-5 polynomial mapping, its 2nd-

order pdf-based PCM approximation, and approximations obtained from sample

moments; c) The output mean obtained from the sample moment-based PCM con-

verges to the one obtained from pdf-based PCM, and hence in this case to the actual

output mean. 419

21.3 a) The dataset showing fog clearing time at SFO versus the pressure difference be-

tween SFO and SAC. Each red point is a data collected. The blue line shows the

average of clearing time associated with each particular pressure difference. b) Map-

ping between fog clearing time and traffic delay . 430

xxvi

To my dear parents Xinming Wan and Sulan Fu,

my husband Haibo Zhu,

my brother Li Wan and his family Xia Yang and Yuhao Wan,

my grandpa Xiuliang Wan,

and the Lord all mighty, my savior and my support.

In memory of my uncle Professor Xinguang Wan.

xxvii

1. INTRODUCTION

Large-scale networks are fascinating: a group of agents with relatively simple local dynamics

can coordinate to complete very complicated network tasks. Networks are ubiquitous and widely

analyzed. However, surprisingly little is known concerning the design and control of the dynamics of

modern large-scale networks, which exhibit two common characteristics: 1) network structure

is critical to the network dynamics and 2) control must be achieved in the face of severe constraints

and variations.

We aim to contribute to the challenging and rich field of network theory, by developing general

tools for the crucial tasks of design and control in modern networks. To develop these tools, we are

engaged in research in two deeply-coupled directions: 1) modeling and abstraction of critical dy-

namical design/control problems in various autonomous-agent and infrastructure networks;

2) development of general new control-theoretic methods for solving these problems ([1–21]).

Throughout this development, we take the perspective that a network’s structure (the interactions

between network agents or components) is a key factor determining its dynamics and must be ex-

ploited in control/design [5]. Our research has several applications, ranging from micro- and macro-

biological/ecological systems [1, 4, 7, 21], to air traffic, power, and sensor networks [2, 3, 7, 19, 21].

Our tools for control/design contribute to these applications, and also to fundamental development

in such areas as decentralized control, algebraic graph theory, and large-scale simulation.

Here, we will give a brief introduction of our research in the following four aspects. First,

1

we will motivate and formulate the core dynamical network control/design problems using four

applications: air traffic management, virus spread control, sleep regulation, and sensor/vehicle

networking (Section 1.1). Second, we will introduce the two exciting new design methodologies

(one concerned with static control, the other with dynamical or memoried control) that address

these core design problems (Section 1.2 and Section 1.3). Third, we will briefly describe some other

interesting network-related numerical problems in Section 1.4.

1.1 Modeling: Network Control and Design Problem Formulations

A primary aspect of my research is to identify design and regulation (control) problems in

modern networks. In comparison to the classical centralized system applications, modern network

applications have a major challenge: multiple agents must interact in a decentralized fashion to com-

plete cooperative tasks. This interaction significantly increases the difficulty of the control problem

itself, as well as its tractability. Thus, network modeling requires abstractions that capture only

the most intrinsic properties of both local dynamics and network interactions to be tractable. We

stress here that because network structure highly influences network dynamics, network structure

is a key aspect to consider in modeling. However, a bulk of network design/control works either do

not start with a tractable model or totally ignore network structure in the modeling, and hence are

far from effective in obtaining practical design and controls. Here, we describe our modeling and

problem formulation, which serve as a basis for design and control, in four network applications:

air traffic management, virus spread control, sleep regulation, and sensor/vehicle networking.

Air Traffic Management Air traffic flow management actions in the United States National Airspace

System (NAS) are complicatedly interdependent. We have taken the perspective that good flow

management strategies must be designed at a network level, by taking into consideration traffic in

2

multiple Centers in the presence of uncertainty (e.g., severe weather, airborne, taxi-in and taxi-out

delays). In order to design optimal network-level flow management strategies, we emphasize the full

understanding of boundary restrictions’ impact on generic traffic flows, with the aim of devel-

oping restriction abstractions for tractable network evaluation/optimization. In [2], we examined

several abstractions (e.g., the detailed queueing model, the discrete-time saturation model, and the

dynamic linear model) for boundary restrictions. Based on the essential dynamics of these models,

we introduced a highly-abstracted network model: the algebraic linear model. In this model,

each restriction trades off the variance of the outflow with backlog in a linear fashion, and each

flow merges or splits at a boundary. Using this model, we posed the network-level optimal restric-

tion design problem as a graph edge design problem with the objective of minimizing an outflow

variance plus mean backlog cost. We also studied the modeling and computation of sensitivities of

NAS performance to disturbances, and the use of sensitivities in air traffic flow management [3].

Virus Spread Control The spread of viruses (e.g., computer viruses or biological epidemics like

SARS or influenza) also demonstrates typical modern large-scale network behavior. The global

virus spread pattern is determined by both local dynamics (e.g. an individual or a group of closely

contacted individuals to become infected, recovered, or removed, etc.) and network interactions

(e.g. the transmission of virus from/to its contacting agents). Each agent (an individual or a

group of closely contacted individuals) has local dynamics (e.g., to become infected, recovered, or

removed, etc.), and is also involved in the virus transmission from/to its contacting agents. To-

gether, the local and network dynamics determine the global virus spread pattern in the population.

Hence in a practical virus spread model, whether a disease will spread throughout a population or

vanish depends on both intra-agent parameters for each agent (e.g., local transmission rate, in-

fectious period, and recovery rate), and inter-agent parameters between each pair of contacting

3

agents (e.g., inter-agent transmission rate). Although population structure is believed to be

crucial for epidemic spread, little work is concerned with designing control strategies (e.g., isolation,

quarantine, fast hospitalization, etc.) that exploit the network structure. It is our perspective that

designing heterogeneous control strategies can stop virus spread faster with less control resources

used. In [1], we incorporated the control parameters that exploit population structure in a com-

puter virus spread model and a biological-epidemic model, and examined the problem of allocating

limited control resources to the network to minimize the speed of virus spread in these two models.

Through modeling and analysis, the control resource allocation problems reduce to the problem

of designing a diagonal matrix D/K to minimize the dominant eigenvalue of D + KG subject to

constraints on D and K, where the matrix G represents the topology of spread.

Sleep Regulation Network Sleep is a fundamental biological process. The experimental research on

sleep mechanisms suggested that sleep is activity-dependent and is not a centralized phenomenon.

For instance, moving a single whisker can cause parts of rat’s brain, and in turn the entire organism,

to go to sleep faster or enter a deeper sleep. However, there is no work that models the translation of

local activity (activity at one or a small number of functional units known as cortical columns) into

a global sleep state, i.e., the regulation of sleep through external activity. We view organism sleep as

emerging from the local sleep states of the functional units; these local sleep states evolve through

integration of local activity inputs, loose couplings with neighboring cortical columns, and global

regulation (e.g. by the circadian clock). In [4], we constructed a network model that captures the

impact of the network connections. In the model, these cortical columns—represented as coupled

or networked activity integrators—transit between sleep and waking states based on thresholds

on the total activity. The model dynamics for the several canonical experiments (which we have

studied both through simulation and system-theoretic analysis) gives a qualitative explanation

4

for sleep evolution and emphasizes the role of network couplings in sleep regulation. The model

also motivates the study of and allows us to verify the network’s external stability (disturbance

rejection), i.e., the coordination in the presence of small persistent variations in the activity inputs.

Sensor Networks and Vehicle Control Autonomous vehicle teams and distributed sensor networks

are predicted to be important parts of future transportation and communication systems, due to

the following advantages: 1) security; 2) the ability to work in human-unsuitable environments;

3) ease in implementation (e.g., centralized communication/control is unnecessary). We describe

a sensor/vehicle network using the following two structures: 1) the local dynamics for a agent

(e.g., a double-integrator model is typical for a vehicle) and 2) the sensing architecture, which

characterizes the set of information that each agent can observe in the network. Having a decentral-

ized sensor/vehicle network complete certain tasks is challenging, especially under some practical

considerations, such as the presence of input saturation and actuation delays. Let me summarize

three control/design problems that we have worked on. First, we have sought to minimize the

settling time of a distributed sensor fusion algorithm through designing the sensing communica-

tion structures. The problem is formulated as selecting the edge weights of a graph subject to an

upper bound on their total, so as to maximize a spectral measure [6]. Second, we are interested

in various tasks performed by autonomous vehicle teams, like formation tasks. In [10–12, 14],

we have sought novel decentralized controls that allow autonomous vehicle teams to accomplish

these various tasks in the face of delay and saturation. Third, in [19, 20], we have motivated and

developed an algorithm for decentralized network partitioning.

5

1.2 Dynamical Network Design

A number of the critical dynamical network-related tasks that we have identified are funda-

mentally concerned with network design, i.e., the design of network interconnections to shape

dynamics. For instance, the air traffic management problem is to set boundary restrictions to min-

imize a network-wide cost, and the epidemic control problem is to allocate control resources across

the network to minimize the speed of virus spread. Given the special characteristics of modern

dynamical networks, we take the perspective that dynamical network design must take account

of topological structure to achieve desired performance. However, dynamical network designs that

exploit network structure are essentially nonexistent. The major difficulties of structural dynamical

network design are the following: 1) the design is intrinsically decentralized; 2) practical issues like

the constraints on design variables, implementability, and the robustness of design need to be con-

sidered. We address the dynamical network design problem by introducing new tools that resolve

these difficulties.

Although the applications that we address vary widely, the structures of all these networks can

be abstracted to graphs, with different interpretation of nodes and edges. Based on this abstraction,

we classify network design problems into two categories: graph node design and graph edge

design. Specifically, graph node design is concerned with designing node properties (e.g., affecting

all branches coming/leaving a node, or affecting local dynamics) to shape the dynamics of the

system subject to certain constraints. Graph edge design, instead, aims at designing edges for

the same goal. Typical node design problems are the air traffic management and virus spread

control problems that we formulated above. Edge design applications are also abundant: e.g., the

problem of minimizing settling time of a distributed sensor fusion algorithm. We have developed

new methods to solve these two design problems, which mesh optimization machinery together

6

with eigenvalue sensitivity and algebraic graph theory. The results contribute significantly to the

field of static decentralized controller design and its applications. Here we discuss these two graph

design tasks and the methods addressing them in some depth.

Graph Node Design A representative graph node property design problem can be abstracted to

the following linear algebra problem: design a diagonal matrix D/K to minimize a measure (e.g.,

the dominant eigenvalue) of D + KG subject to the constraints that 0 ≤ D/K ≤ L and
∑

K ≤ Γ,

where G captures the network topology [1, 8]. This problem is equivalent to a static decentralized

control problem: the control actions at an agent only directly impacts the dynamics locally and

are constrained (mathematically, only alter the system matrix through multiplication/addition of a

constrained diagonal matrix) and yet must be used in coordination to shape the dynamics globally.

By using tools from algebraic graph theory and optimization theory, e.g., the Courant-Fischer

theorem, eigenvalue sensitivity, and Lagrange multipliers, we have characterized the eigenstructure

of D + KG associated with the optimal solution, and hence devised finite-search algorithms for

the optimal design. For certain common classes of graph topologies, further structural results are

obtained, which have led to the development of algorithms for network designs with highly reduced

complexity. Rather than only providing the optimal solution, our novel design approach also gives

us insights about the optimal design. For instance, it suggests that the optimal D matrix is the

one that equalizes the row sums of D + KG, as best as possible within the constraint on D. In the

case the individual constraints prevent such a design, the entries in neighboring nodes are adjusted

to obtain the constrained optimum.

Graph Edge Design We have developed similar tools to address graph edge design [6]. Although

the methods are similar, we note that graph edge design problems have a property distinct from

7

that of the graph node design problems: edges in a cyclic graph have redundant contributions to

the associated network dynamics; this fact suggests that graph edge designs usually have multiple

optimal solutions. Our design method finds the common structural characteristics of the optimal

solutions, and is capable of obtaining multiple optima.

In many applications concerned with graph edge design, it is common that only a subset of edges

in a graph are eligible for design. In this partial graph edge design, the subgraph with the fixed

graph edges poses a crucial structure that limits the performance of designs. We bring tools from

the structural study of linear systems, namely, the Special Coordinate Basis (SCB), to obtain

the explicit relationship of this fixed edge graph and the zero structure of a linear control system [7].

This characterization facilitates using time-scale ideas in dynamic analysis and performance design.

In summary, our techniques give optimal solutions for graph design problems, which are in

essence constrained decentralized control problems. These structure-exploiting designs significantly

supersede homogeneous designs in shaping the network dynamics. As we showed in a case study of

SARS transmission in Hong Kong, our design provides significant advantage over a homogeneous

control strategy, with only 79% of the resources needed. Two particular benefits of our method are

1) the approach provides us with the structural characterization of the eigenvalue/eigenvectors of

the optimal solution; 2) the algorithms are quite efficient for certain common network topologies.

1.3 Decentralized Network Control

Decentralized controller design has long been of interest to the controls community, and has been

re-invigorated by the extensive need for controlling modern network in such fields as autonomous

vehicle control/sensor networking, and systems biology. Research on these modern networks’ dy-

8

namics has made clear that new decentralized controller designs are badly needed. Also, the

network design problems posed in Section 1.2 are in essence static decentralized controller design

problems, giving further motivation for studying network control. However, in order to obtain

better performance, dynamic decentralized controller designs need to be explored from the network

design viewpoint. However, very little is known about designing high-performance decentralized

controllers that are applicable for modern network applications (see [11] for more discussion).

We have been engaged in a major effort to design stabilizing and high-performance yet practi-

cal controllers for decentralized systems that is fundamentally based on 1) locally using feedback

of multiple derivatives of the observation and 2) using multiple-delay or lead-compensator control

schemes to implement these multiple-derivative controllers [10–14]. The philosophy is that by tak-

ing derivatives of the observations up to the order of integrator chain, the channels are presented

with statistics of the global state, and hence can achieve control. Rather than concentrating the

complexity and extent of actuation/observation at a single agent, this approach coordinates actu-

ation/sensing capabilities throughout the network, and hence is suitable for modern applications.

Moreover, this new methodology is capable of addressing many complexities common to modern

decentralized systems, including very general observation topologies, saturation nonlinearities, and

inherent network delays. In [10–12], we introduced the multiple-derivative methodology with de-

lay and lead-compensator implementation using a canonical double-integrator network. We have

also examined multiple-delay implementations of multiple-derivative output-feedback controllers

in [13–15].

Our efforts show that decentralized controller design requires new tools that deal with struc-

tural limitations of decentralization. For instance, system zeros can pose significant difficulties in

aspects of decentralized controller design, e.g., for high performance design or in the presence of

9

saturation. Motivated by these needs, we have been engaged in an effort to build new tools. We

have devised smart pre-compensators/feed-forward compensators to modify structure/dynamics of

Multiple-Input-Multiple-Output (MIMO) Linear Time-Invariant (LTI) systems for zero cancella-

tion and zero relocation [16,17], and introduced a novel alternative controller design for stabilizing

non-minimum phase saturating LTI plants [18].

1.4 Network Numerical Tasks

Given the complexity of modern networks, high-performance designs/controls may sometimes

need to be meshed with or verified using numerical analysis and simulation tools, so as to reduce

the complexity of control/design. To this end, we have been developing numerical algorithms/tools

that are specifically geared toward network applications [19–21]. Here, we introduce two topics that

we have worked on: a distributed and flexible network partition algorithm, and a tool for efficient

simulation under uncertainty.

Decentralized Network Partition Graph partitioning becomes important in essentially distributed

applications—i.e., for swarms of autonomous vehicles, in ad hoc wireless and sensor networks, and

for independent/competing players in the power market. Motivated by these applications, we have

developed a distributed algorithm for self-partitioning a network that uses a quasi-linear stochastic

automaton known as the influence model [19]. The automaton-based network partitioning algo-

rithm requires only local computation, and is capable of finding the optimal k-way partition with

respect to a broad range of cost functions and given various constraints, in directed and weighted

graphs. The decentralized partitioning is very useful for accomplishing complicated network control

tasks, by producing reduced-order systems for further decentralized control.

10

Efficient Simulation Many large-scale systems (e.g., power systems, air traffic networks, VLSI

circuits, and biological regulatory networks) have complicated parameter-dependent dynamics that

can only be examined in detail using time-consuming simulations. When these parameters are

uncertain, it is often critical to find the dependence of specific simulation outputs on the parame-

ters. However, because these large-system simulations are usually computationally costly, running

exhaustive simulations over the range of potential parameter values is not practical, especially for

real-time applications. We have studied polynomial representation of the mapping between uncer-

tain parameters—whose statistics may in general need to be inferred from data or may only be

partially known—and outputs from time-intensive simulations, using probabilistic collocation

method (PCM), which permits polynomial approximation of the mapping between the parameter

and output over the likely parameter values using only a few simulations [21]. We have given

several new analyses concerning the ability of PCM to predict the mapping structure as well as

output statistics. We have also developed a holistic methodology for the typical case that the

uncertain parameter’s probability distribution is unknown, and instead only depictive moments or

sample data (which possibly depend on known regressors) are available. Moreover, we studied the

application of PCM to weather-uncertainty evaluation in air traffic flow management.

1.5 Thesis Outline

The rest of the thesis is arranged as follows. In Part I (Chapter 1—Chapter 5), we motivate

and formulate the design and control problems in several applications, and also give preliminary

illustrations of our design and control methods. In Part II (Chapter 6—Chapter 10) and Part III

(Chapter 11—13), we throughly develop network design and control methods that exploit network

structure. Part IV (Chapter 14-19) is concerned with new studies and tools that support the

11

development of network design and control methods. Finally, Part V (Chapter 20—Chapter 21)

studies some network-related numerical tasks.

12

PART I: MODELING

The primary aim of this thesis is to introduce entirely new methods for design and control in

dynamical networks. Given the long history of research in both decentralized controls and network

analysis, it is important that we carefully motivate why radically different tools are needed for

modern dynamical networks. This first part of the thesis is focused on motivating core design and

control problems in modern dynamical networks from several application perspectives. Along with

problem formulations in these various application areas, this section gives preliminary illustrations

of the design/control methods to be developed systematically later, and highlights the achievements

in the application areas that stem from the design/control tools. In this way, we hope to whet the

readers’ interest in the core methods for dynamical networks introduced later.

Part I is organized as follows. Chapter 2 introduces resource allocation tasks for virus-spreading

control in both human-population and computer networks. Chapter 3 and 4 are concerned with

modeling network flow management design in air traffic networks. Finally, Chapter 5 develops a

network model for distributed sleep regulation in the brain’s cortex. We note that sensor network-

ing, autonomous-vehicle coordination, and numerical-methods applications are also pursued in the

thesis. However, study of these applications is deeply integrated with the core tool development,

and so they are not included in this Part.

13

2. DESIGNING SPATIALLY-HETEROGENEOUS STRATEGIES FOR CONTROL OF

VIRUS SPREAD

The spread of a virus—whether in a human population, computer network, or cell-to-cell—is

closely tied to the spatial (graph) topology of the interactions among the possible infectives. In this

chapter, we study the problem of allocating limited control resources (e.g., quarantine or recovery

resources) in these networks in a way that exploits the topological structure, so as to maximize

the speed at which the virus is eliminated. For both multi-group and contact-network models for

spread, these problems can be abstracted to a particular decentralized control problem for which

the goal is to minimize the dominant eigenvalue of a system matrix. We give explicit solutions to

these problems, using eigenvalue sensitivity ideas together with constrained optimization methods

employing Lagrange multipliers. Our design method shows that the optimal strategy is to allocate

resources so as to equalize the propagation impact of each network component, as best as possible

within the constraints on the resource. Finally, we show that this decentralized control approach

can provide significant advantage over a homogeneous control strategy, in the context of a model

for SARS transmission in Hong Kong.

14

Tab. 2.1: Notations
Epidemic Model Pa-
rameters
R0 Basic reproduction ratio
n No. of groups in a multi-group model; No. of individuals in contact network

model
βji For multi-group model, the transmission coefficient from District i to j; For

contact network model, the probability that virus spreads from node i to j
during one time step

N̄i Population in District i in the multi-group model
λi(t) Infectiousness of District i
β̄ Reference transmission coefficient
fji Corrective factor specifying transmission coefficient relative to reference
f̄ji Nominal value for fji (i.e., before control is applied)
ri Control variable: scales the transmission coefficients from District i
ci Control variable: scales the transmission coefficients into District i
Ti The average infectiousness duration of an individual in District i
T̄ Nominal average infectiousness duration without control
ti Control variable: scales the infectious duration in District i

pi(t) Probability that node i is infected in the contact network model
δi Recovery rate of a note i

Key Design Problem
Parameters
G Topology matrix
K Gain matrix
D Additive gain matrix
λmax, vmax, wmax Dominant eigenvalue and its associated right and left eigenvectors

We use ∗ to denote the optimized parameter values.

2.1 Problem Formulation and Motivation

The significant impacts of epidemics in recent years highlight the need for controlling virus

spread with limited resources [22,23]. Here, we put forth the perspective that spatially-heterogeneous

control strategies enable mitigation of virus spread with sparse resources. Thus, we pose the virus-

spreading control problem as a constrained decentralized design task for a dynamic network model,

and give an analytical methodology for completing the design task. Our design method leads us

15

to the insight that resources (whether vaccination, rapid detection capability, quarantines, or other

resources) should be allocated so as to equalize the propagation impact of each network compo-

nent, as best as possible within the constraints on the resource. We apply our method to design

spatially-heterogeneous controls for Hong Kong’s 2003 SARS outbreak (see [24]), which outperform

the existing homogeneous controls considered in the literature.

While our primary focus is on virus-spreading control, this work also constitutes a significant

contribution to our ongoing efforts in decentralized controller design and its applications. Recently,

researchers in such fields as autonomous vehicle control and sensor networking have recognized

the need for decentralized algorithms/controllers that exploit a network’s topological structure (see

e.g. [25], see also the review article [26]). Concurrently, systems biologists have recognized the

significant role played by a network’s graph structure on associated dynamics, in both molecular

and population biology, see the review article [27]. Further, in a subset of these efforts, control

and/or identification tasks that are based on the network structure are of interest.

From a control-theory standpoint, the existence of stabilizing decentralized controllers for net-

works can be checked using the seminal work of Wang and wang-davison-decentralized-1978 [28],

but the design of practical but high performance controllers remains difficult (whether by numer-

ical methods or explicit analysis). In [29], we posed an optimal decentralized design problem for

a simple class of network dynamics, and developed a design tool using optimization machinery

together with eigenvalue sensitivity and graph-algebra notions. Our efforts here show that similar

tools can be developed for a family of decentralized design problems including some constrained

ones. Our results also highlight that particularly simple and structurally-insightful design tools

can be obtained for certain special classes of network topologies, such as ones with non-negative

weights.

16

The chapter is organized as follows. In the remainder of this section, we review two models

for computer-virus and biological-virus spread, namely a multi-group model for spatially inhomo-

geneous populations (Section 2.1.2), and a contact network model for interactions of individuals

(Section 2.1.3). In turn, we formulate several virus-spread control problems as decentralized design

problems. In Section 2.1.1, we develop a methodology for solving these decentralized design prob-

lems in detail. Finally, in Section 2.3, we apply our method to synthesize spatially-heterogeneous

controllers for the SARS outbreak in Hong Kong.

2.1.1 Epidemic Control: Brief Review

Mathematical epidemiology has a history of more than two centuries. One major focus of the

mathematical work on epidemics is characterization of the basic reproduction ratio R0 (defined

as the average number of secondary infections produced during an infected individual’s infectious

period, when the individual is introduced into a population where everyone is suspectible [30]). It

is well known that for R0 > 1 a disease can spread throughout the population and may eventually

persist in equilibrium, while for R0 < 1 the epidemic eventually terminates. The basic reproduction

ratio can be computed from models and also found experimentally, see e.g. [24,30–33].

Control can be viewed as reducing R0, and hence stopping the spread of a virus. Common

control methods include: 1) vaccination; 2) reduction of local contact rates; 3) shortening of the

time between symptom appearance and hospitalization including through improved virus detection;

4) restriction on long-range movement; 5) isolation of symptomatic people and those in contact

with them (quarantine) [24, 32, 33]. All these control schemes change one or more parameters of

the epidemic model of interest. Hence, by analyzing R0 or simulating dynamics over a parameter

range [24, 32], we can analyze the impact of different control schemes. For example, the strategy

17

of vaccinating newborns in a heterogeneous population (assuming contact rates at only two levels)

was studied in [30,34], where an age-related model was used.

In the remainder of this section, we give explicit formulations of control-design tasks in the

context of two widely-studied models.

2.1.2 Spatial Control in a Multi-Group Model: Formulation

Spatial interaction structure is critical in epidemics (e.g., SARS [24,35]). However, there is little

work in the literature on designing controls (e.g. isolation and quarantine) that are specialized to the

network structure, to optimally mitigate epidemic spread with limited resources. We believe such

a systematic design of control parameters at different points in the network can provide guidance

for effective epidemic control. Here we review spatially inhomogeneous models for epidemics, and

so pose the optimal spread control problem.

Early epidemic modeling assumes homogeneous mixing, i.e. any pair of individuals are assumed

equally likely to interact (or equivalently the strengths of the interactions are the same). In reality,

populations are spatially heterogeneous, and in fact this spatial structure (social interaction topol-

ogy) of the population plays an important role in epidemic spread. Usually, multi-group models,

also called meta-population models (models in which the population is composed of multiple

interacting groups, which internally have homogeneous mixing) are used to represent the spatially

inhomogeneous dynamics. Abundant work exists in the literature on constructing and analyzing

these multi-group models [24, 32, 36–47], e.g., article [39] establishes the connection of coupling

between groups with explicit movement patterns, articles [46,47] study the effect of aviation traffic

on global epidemics, and [24, 32, 41–43] provide case studies of various diseases such as smallpox,

measles, SARS and foot-and-mouth disease. Of particular interest to us, references [48–50] show

18

how to calculate the epidemic threshold in a heterogeneous population. Article [48] calculates the

threshold from a reaction-diffusion point of view. In references [49,50], the basic reproduction ratio

R0
∗ is shown to be the dominant eigenvalue of the next generation operator, the elements of

which are defined as the expected numbers of new infections within a group that are produced

by one infective with another group during its infectious period. The next generation matrix has

been used to calculate R0 for various applications, see e.g. [24] and [32]. Often, stochastic models

for epidemic spread are also used because chance fluctuations can be large, especially in the early

stages of an epidemic [24,33].

Here, we study inhomogeneous (distributed) virus-spread control in a multi-group model for

spatial propagation, in particular designing controls that optimally reduce R0. Spatially inhomo-

geneous models have already been used to study epidemic control, however little effort has been

devoted to inhomogeneous control strategies. For instance, the outbreak of severe acute respiratory

syndrome (SARS) in 2003 aroused a lot of interest in spatial modeling and control [24, 33, 51],

because of the geographical patterns observed in the virus spread [24, 33, 35]. Of interest to us,

the article [24] models SARS in Hong Kong using a stochastic multiple-group model, where each

group corresponds to a (spatial) district in Hong Kong. The authors identify the basic reproduction

ratio R0 for the model, and show how homogeneous (identical network-wide) control can be used

to reduce R0 to 1. We notice that the early work [38] studies an inhomogeneous control strategy

for steady-state behavior of persistent epidemics in an open population. Our work builds on [38]

and introduces an optimal inhomogeneous control of the full epidemic dynamics. In Section 2.3,

we show that our optimal control which exploits network structure can reduce R0 further with the
∗ R0 is usually real since an interaction network structure is most often non-negative and irreducible. We limit

ourselves to the real maximum eigenvalue case in our later design.

19

same amount of resource, or equivalently achieve R0 = 1 with less resource.

Let us now formulate the multi-group epidemic model and associated control design problem.

Specifically, we will first describe the model in generality, and then consider the particular depen-

dence of model parameters on control actions. We note that the model without controls is very

similar to the one in [24], and can be viewed as a multi-group SIS model. We consider a multi-group

model with n groups, which we refer to as districts since we are primarily interested in the spatial

spread of epidemics. We use the notation N i for the population of each district i. The individuals

in each district are modeled as transmitting the disease through homogeneous mixing within the

district, as well as interaction with individuals in other districts; we model this transmission across

groups in an aggregate fashion using an effective coupling (rather than through explicit modeling

of individuals’ trajectories), see [40,52–55] for justification. As in the existing literature [24,52], we

find it convenient to define a reference transmission coefficient and then to define particular

transmission coefficients within and between groups relative to this reference. Specifically, we use

the notation β for the reference transmission coefficient, which identifies a typical rate at which

secondary infections would be produced if all contact were from infectives† (and incorporates both

the effective contact rate and the average infectiousness of an infected individual, see e.g. [24]).

Usually, the reference transmission coefficient is chosen as the transmission rate internal to a proto-

typical district and assuming that no control actions have yet been taken, although other references

can equivalently be used. The actual transmission coefficient βji between District i and Dis-

trict j—i.e., the average rate at which infections in District i would be produced by individuals in

District j if all contact were from infectives—is given by βji = fjiβ, where fji is a corrective factor

† We note that the transmission rate describes secondary-infection production capability for the whole population,

rather than per individual.

20

that specifies the transmission coefficient relative to the reference, and is a parameter amenable to

control in our model (as we shall specify in the next paragraph). We stress that fji and βji are

also defined within a district, i.e. for i = j; we note that fii may differ from 1 in our model, either

because of intrinsic differences between the regions or because control actions have been taken. For

two different districts (i �= j), fij captures the relative rate of inhomogeneous mixing as well as

any controls that further reduce contact. Finally, the average duration of the infectious period is

denoted as Ti, and also is assumed amenable to control. This model can be analyzed by tracking

the infectiousness λi(t) of each region i, i.e. the average total infectiousness of the individuals in

the region i (see [24] for details). Briefly, it can be shown that the average rate at which each

individual in region i becomes infected is given by
∑n

j=1 βji
λj(t)

N̄j
, and in turn that rate of change

of λi(t) is given by N̄iTi
∑n

j=1 βji
λj(t)

N̄j
(assuming that the infected population is small compared to

the total population). One thus recovers that the next-generation matrix (see [24,49,50]) is:

A = β̄ diag(TiN̄i) ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11 f21 . . . fn1

f12 f22 . . . fn2

...
...

...
...

f1n f2n . . . fnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[(diag(N̄i)]−1. (2.1)

Now let us consider applying controls in the context of this model. Specifically, we assume that

the corrective factors and infectious period durations have nominal values, namely f̄ji and T̄ . We

consider three sorts of control that deviate from this nominal (see e.g. [56] for motivation of these

controls in stopping virus spread): 1) We allow the change of the contact rate of individuals in

District i by a factor of ri ∈ [0, 1] which decreases the spread of virus both locally and to spatial

neighbors, and hence is modeled as scaling the transmission coefficient or equivalently the corrective

21

factor: fji = rif̄ji, for all j (including j = i). Note that ri can be reduced by isolation of closely

connected and fairly isolated groups such as a school/college, or restriction on public assemblage. 2)

we allow change of the contact rate of an individual from outside districts to a district i by a factor

of ci. In this case, fji = cif̄ji, for all i, j such that i �= j. The external contact rate factor ci ∈ [0, 1]

can be reduced by prohibition of travel from another district to District i, or similarly isolation of

arriving travelers for some days (i.e. for a period longer than the incubation period). 3) We allow

the average duration of the infectious period of each District i or Ti, to deviate from T̄ by a factor

of ti. Hence Ti = tiT̄ . The factor ti can be reduced by shortening the time between symptom

appearance and hospitalization in District i, e.g.,through faster detection of infected individuals.

Control measures such as isolation of people who may have contacted an infected individual (i.e.

isolation of a neighborhood with infected people), or isolation of symptomatic people (possibly

including some individuals that have false symptoms and are not infected), reduce both Ti and ri.

The next generation matrix upon specification of the control parameters is:

A = β̄T̄ diag(tiriN̄i) ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
diag(f̄ii) + diag(ci)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 f̄21 . . . f̄n1

f̄12 0 . . . f̄n2

...
...

...
...

f̄1n f̄2n . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
[(diag(N̄i)]−1. (2.2)

Let us now formally pose the controller design problem. In doing so, note that one very

reasonable performance measure is the dominant eigenvalue of the next generation matrix, which

represents the spread rate of the epidemic. Let’s say we are interested in designing ti and/or ri.

Noting that we can write the next generation matrix as A = KG, where the topology matrix is

22

G = β̄T̄ diag(f̄ii) + βT̄ diag(N̄ici)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 f̄21 . . . f̄n1

f̄12 0 . . . f̄n2

...
...

...
...

f̄1n f̄2n . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[(diag(N̄i)]−1,

and the gain matrix is K = diag(tiri), we can view the design problem as that of finding a

diagonal matrix K so as to minimize λmax(KG) (where λmax() denotes the dominant eigenvalue of

a matrix), subject to constraints that 0 ≤ Ki ≤ 1 and that the Ki in total exceeds a lower bound

Γ (since much resource is needed to make Ki small). Here is a formal statement:

Problem 1. Design diagonal matrix K such that λmax(KG) is minimized, where K is subject to

the following constraints:

1) tr(K) =
∑

Ki ≥ Γ

2) 0 ≤ Ki ≤ 1 for all i.

In the case that we restrict long-distance movement (i.e. movement between districts) and so

design ci, we can write the next generation matrix as A = D + KG, where

G = β̄T̄ diag(tiriN̄i)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 f̄21 . . . f̄n1

f̄12 0 . . . f̄n2

...
...

...
...

f̄1n f̄2n . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[(diag(N̄i)]−1,

K = diag(ci) and D = β̄T̄ diag(tirif̄ii).

In this case, we can formulate the design problem as follows:

Problem 2. Design diagonal matrix K such that λmax(D+KG) is minimized, where K is subject

to the constraints that

23

1) tr(K) ≥ Γ

2) 0 ≤ Ki ≤ 1 for all i.

Remark 1: We may alternately consider other constraints on K. Two realistic ones are listed

below. In this chapter, we do not explore these cases in any depth, though our approach of finding

an optimal solution can easily be generalized for these cases:

• We may consider a constraint based on resource cost increasing inversely with Ki, i.e.
∑ 1

Ki
≤

Γ. More generally, any cost that is concave with respect to the Ki can be assumed.

• Often, it is natural that the resource cost also scales with Ni, or otherwise differs from one

district to another. Thus we may wish to consider constraints of the form
∑

αiKi ≤ Γ, where

αi is a district-specific scaling factor.

Remark 2: Our focus here, on minimization of the basic reproductive ratio, is of course only

one aspect of epidemic control. One might also consider design of total epidemic size or duration,

or pursue design of the steady-state in an open system. Some of these problems are amenable to

similar analysis, see e.g. our efforts in [2, 5].

2.1.3 Inhomogeneous Control in a Contact Network Model

Contact network models (also known as agent based models or automaton models) for

virus spread—those in which individuals’ infection states (or state probabilities) are tracked—have

been used to model cell-to-cell spread of influenza [57], SARS propagation [58], and computer virus

spread [59], among other applications. Contact network models are motivated by the observation

that homogeneity usually does not exist in real populations, perhaps not even within small groups.

24

Contact network models are thus appealing in that they can capture the specific network interac-

tions among individuals. It is worth noting that, within the general framework of contact network

models, considerable research is focused on special classes of network topologies (e.g., scale-free,

small-world, correlated, mesh) [22,60–64].

A contact network model defined for a general network topology was proposed in [65] (which is

motivated by the computer virus application). This chapter approximated the epidemic threshold

(a threshold on the infection rate to curing rate ratio, above which epidemic occurs, i.e. such that

R0 = 1) as the inverse of the dominant eigenvalue of the network’s adjacency matrix, assuming that

(at each discrete time step) an infected node infects its adjacent node with a common probability

and is cured with a different common probability. However, because the interaction probabilities

are identical, this chapter does not provide us with insight into topology-based network design,

which can potentially lower the network’s vulnerability to virus spread. Our work here seeks

topology-exploiting designs, e.g. problems of where in the contact network to place limited control

resources.

Few works have studied heterogeneous network resource allocation for stopping virus-spread.

The article [22] proposed a targeted immunization strategy (a few nodes with the highest con-

nectivity are immunized) for power-law networks, and evaluated its performance using simulation.

The article [23] concluded that selective immunization (e.g. immunizing the upper-level nodes in a

tree-like topology, or nodes with high connectivity) significantly reduces a network’s vulnerability to

virus attack compared to random immunization. However, this work is also built on simulation, and

hence does not provide us with an immunization strategy that meets a performance requirement,

or that must operate under particular rigid constraints.

We develop network resource allocation strategies that optimize spread-based performance re-

25

quirements (e.g., epidemic diminishing rate, number of nodes affected, and the total duration of

the epidemic), with the motivation that such design will aid in defending networks against virus

attacks. In our effort, the network parameters (e.g., the local curing rates and infection rates)

from [65] have the flexibility of design. For example, providing a selected set of individuals/nodes

with faster detection capabilities and treatment (or, in the case of computer viruses, better virus

scan softwares) can increase these nodes’ local curing rates. Similarly, providing antibiotics to in-

dividuals (equivalently, providing computers with strong firewalls) can safeguard these nodes from

common viruses, or at least lower the rate of infection from their neighboring nodes. Each of these

control actions is associated with a cost (e.g., financial cost, productivity loss). Thus, it is not

realistic to immunize or provide real-time repair to every individual in a network. Instead, we must

assign limited control resources to achieve the best performance. Our study indicates how resources

can be allocated in a way that appropriately uses the network topology.

To pursue control, we build on the contact network model proposed in [65], with the motivation

that this model has already been of interest in studying resource allocation. Our model is a

generalization of [65], in that we allow variation in local curing rates and infection rates throughout

the network. As in [65], we model virus spread as a discrete-time dynamics defined on a directed

graph. Each node (i ∈ 1, ..., n) represents an individual (node) in the network, which may either

be infected or susceptible. Each directed edge represents a path along which a virus can spread

from one node to another. The branch weight βij represents the probability that virus originating

from node i spreads to node j during a time step. Notice that βij increases with the transmission

rate from node i to j and the infectiousness of the virus, and decreases as protection at node j

is increased (e.g., through giving antibiotics to humans, or providing firewalls to computers). We

set βij = 0 if node j is not a neighbor to i (node i cannot transmit an infection to j) or node j’s

26

protection prevents any infection. An infected node has probability δi to recover at a discrete time

step.

We consider two possible control actions in our model. 1) We allow for control that makes a

node j less susceptible to any virus spread. In this case, we assume that the nominal weights are

scaled by a constant for all entering branches, i.e. the weights become Kjβij , Kj ∈ [0, 1]. We note

that decreasing Kj from 1 is costly. 2) We allow control of the recovery rate δi. We note that

increasing the recovery rate is expensive, in that more medicine or quicker hospitalization is needed

(better virus removal programs or quicker human intervention, respectively, for computer network

applications).

Now let us analyze the network’s dynamics. Denoting the probability that each node i is infected

at time t as pi[t], we find that the probability the node is infected at time t + 1 is

pi[t + 1] =

⎛⎝1 −
∏
∀j

(1 − Kiβjipj [t])

⎞⎠ + (1 − δi)pi[t]. (2.3)

Assuming Kiβjipj[t] << 1 ∀i, j, t (which is accurate for small time steps), the quantity 1 −∏
∀j (1 − Kiβjipj[t]) can be well approximated by

∑
∀j Kiβjipj[t], and thus we can linearize (2.3)

to obtain the network dynamics

P [t + 1] = (D + KG)P [t] (2.4)

where topology matrix G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 β21 . . . βn1

β12 0 . . . βn2

...
...

...
...

β1n β2n . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, additive gain matrix D = diag(1 − δi),

gain matrix K = diag(Ki), and P [t] = [p1[t] p2[t] . . . pn[t]]T . In the case where only δi are being

27

designed, we find it convenient to use the notation that P [t + 1] = (D + G)P [t], since the Ki are

fixed.

The diagonal matrices D and K are the ones we have ability to design. Our aim is to design

D and K so that the network structure best inhibits virus spread, and hence minimizes epidemic

size. This goal leads us to consider optimization with respect to a performance measure. The one

we consider here is the dominant eigenvalue of D + KG (denoted as λmax(D + KG)), as we know

that the dominant eigenvalue governs the growth/decay rate of infection.

The matrix D contains the local recovery rate of each node. Increasing δi (or equivalently

decreasing Di) can speed up the elimination of a virus, but at higher resource cost. Therefore, we

aim to design D so that the cost of control (i.e., sum of δi) is under a limit, while the performance

of the design is optimized. Similarly, matrix K represents the virus protection strength for each

node. Decreasing Ki for more nodes can also speed up the elimination of a virus. We thus design

K so that the cost of control is less than a threshold (i.e., sum of Ki is over a limit), while the

performance of the design is optimized.

Let us pose these network design problems formally:

Problem 3. Design diagonal matrix D, such that λmax(D +G) is minimized, while D satisfies the

constraints:

1) tr(D) ≥ Γ

2) 0 ≤ Di ≤ 1 for all i.

Problem 4. Design diagonal matrix K, such that λmax(D+KG) is minimized, while K is satisfies

the constraints:

1) tr(K) ≥ Γ

28

2) 0 ≤ Ki ≤ 1 for all i.

2.2 Network Design

In this section, we address the design problems formulated in Section 2.1, namely to design

diagonal D to minimize λmax(D + G), and to design diagonal K to minimize λmax(KG) and

λmax(D + KG), subject to the described constraints. We give methods for finding the optimal

resource allocations both for general topologies G, and for specific classes of topologies that are

common in virus-spreading applications. Our methods turn out to be deeply connected to on-going

research on the design of high-performance decentralized controllers for modern networks, so we

begin by briefly discussing the connection. We then describe the solution to the D + G case, since

the full suite of results is easier to describe/interpret in this case. We further present the design

for the design of λmax(KG) and λmax(D + KG), and finally briefly highlight some computational

and implementation-related concerns.

2.2.1 Connection to Decentralized Control

Let us begin by explaining why the three design problems listed above are canonical decentral-

ized controller design problems. Decentralized control—i.e., the task of controlling a system with

many components each of which has only partial ability to regulate the global dynamics—has been

of interest for many years (e.g., [28, 66, 67]), and has application in such diverse fields as electric

power system control and robotics. The decentralized control of systems comprising simple but

highly limited agents that cooperate through sensing/communication has gained especial promi-

nence in recent years, as networks have become ubiquitous and increasingly coordination of the

29

network components is critical to achieving desired tasks [25, 26, 28, 29, 68, 69]. Our problems fit

within this paradigm for control of modern networks: the control actions in a region or for an

individual only directly impact the epidemic spread locally and are constrained (mathematically,

only alter the system matrix through multiplication/addition of a constrained diagonal matrix)

and yet must be used in coordination to stop spread globally. We stress that we have not taken

a decentralized-control perspective simply for the sake of convenience of analysis or implementa-

tion: the deisgn problems that we address are in their essence decentralied, in that control actions

(e.g., vaccination) in regions only react to and impact local infected populations; this fundamental

constraint is reflected in the diagonal structure of the designable matrices D and K.

For modern network tasks such as ours, understanding the role played by the graph topology

in permitting stabilization and high-performance control has been of particular interest (e.g., [25,

26, 29]). This graph-theoretic viewpoint has highlighted that, although the existence of stabilizing

decentralized controllers can be checked (see the seminal work of Davison and Wang [28]), the

problem of designing high-performance decentralized controllers remains difficult by any means.

Our efforts here contribute to understanding of high-performance decentralized controller design

(see also [29,69]).

More formally, the decentralized controller design problem is the following: for a network with

n channels or agents or components, controllers (rules for determining channel inputs or actuations

from observations) must be developed, so that the entire network’s evolution meets performance

and/or robustness requirements. While a variety of controller forms and performance requirements

are of interest, linear control schemes subject to constraints are especially common, and many

performance measures are based on the modes (eigenvalues) governing the dynamics. In such cases,

the controller design problem can be abstracted to a linear-algebraic design problem in which—due

30

to decentralization—the design parameters are contained in diagonal or block-diagonal matrices.

We notice that the virus-spreading control problems introduced in Section 2.2 take this form, in

that a linear but constrained decentralized mechanism is used to optimize an eigenvalue-based cost

measure; as expected, this problem abstracts to a linear-algebraic one concerned with designing

a diagonal gain matrix. It is worth noting that the particular linear algebraic design problems

posed here arise in a range of applications, including in autonomous-vehicle control and numerical

computation, among others [25,26,29,68].

2.2.2 Designing λmax(D + G)

We address the problem of designing diagonal D such that D + G has minimum dominant

eigenvalue, subject to the constraints that 0 ≤ Di ≤ L and tr(D) is lower-bounded. For convenience,

we refer to an optimum D as D∗, the dominant eigenvalue of D∗+G as λ∗
max, and the corresponding

left- and right- eigenvectors as w∗
max and v∗max. Our design method is founded on the observation

that an optimized topology D∗ + G has a very special eigenstructure, based on which we can

compute D∗ and find the optimal performance.

We begin with the structural result:

Theorem 2.1. Consider a matrix D + G, where D is diagonal and G is an n × n matrix. Con-

sider any D = D∗ that minimizes the dominant eigenvalue of D + G subject to the constraints 1)∑
Di ≥ Γ and 2) Di ∈ [0, L], and assuming the dominant eigenvalue of D + G is real and non-

repeated‡. The optimizing D∗ and corresponding eigenvalue/eigenvectors λ∗
max, w∗

max and v∗max

(properly normalized) satisfy one of the following two conditions:

‡ The theorem can be easily generalized to the case that D + G has real, simple dominant eigenvalues.

31

1)
∑

D∗
i = Γ. In this case, for each i we either have 0 < D∗

i < L and w∗
maxi

v∗maxi
= 1, or we

have D∗
i = L or D∗

i = 0.

2)
∑

D∗
i > Γ. In this case, for each i we either have 0 < D∗

i < L and w∗
maxi

v∗maxi
= 0, or we

have D∗
i = L or D∗

i = 0.

Proof: This result follows from standard theorems on eigenvalue sensitivity [70], as well

as theorems on constrained optimization using Lagrange multipliers [71]. Let us denote Di = d2
i ,

since we require Di ≥ 0 for all i. The procedure for finding an optimum D∗ under constraint is

to form the Lagrangian L = λmax(D + G) +
∑

ai(d2
i + m2

i − L) − C(
∑

d2
i − n2 − Γ) and set the

derivatives of it with respect to all variables (namely di, ai, mi, C and ni) to 0. (Here, mi and

n are slack variables to transform inequality constraints to equality constraints). This procedure

leads to the equations below:

d∗i (
w∗

maxi
v∗maxi

wT v
+ a∗i − C∗) = 0 (2.5)

d∗i
2 + m∗

i
2 = L

m∗
i a

∗
i = 0

n∗C∗ = 0

Γ + n∗2 =
∑

d∗i
2

Note that the first equation above follows from the eigenvalue sensitivity formula. The two cases in

the theorem thus follow automatically from consideration of the variables n∗ and C∗, one of which

must be 0. Specifically, the case where
∑

D∗
i = Γ follows from stetting n∗ to 0, while the case

where
∑

D∗
i > Γ follows from setting C∗ to 0. �

Theorem 2.1 tells us that an optimum D∗ can be either at or inside the constraint boundaries.

32

When D∗ is at the boundary
∑

D∗
i = Γ, each D∗

i falls into one of the three categories: 1) D∗
i = L;

2) D∗
i = 0; and 3) w∗

max,iv
∗
max,i = 1. When D∗ is not at the boundary

∑
D∗

i = Γ, each D∗
i again

is at 0 or L, or w∗
max,iv

∗
max,i = 0. We notice that, for any condition in one of the above forms,

the number of equations and variables are equal, and so we can get a possible optimal solution

from these equations. Thus, we see that a finite search can in theory be used to find the optimal

solution, among these possibilities. However, the number of possible optimal solutions (number of

solutions which satisfy one set of equations of this type) grows exponentially with the dimension

of the matrix G, and so the calculation will be very complicated for even moderate-sized G. In

the rest of this section, we will show that when G is specially structured—e.g., non-negative or

symmetric, we can develop more explicit (and hence easier-to-evaluate and interpret) expressions

for an optimal solution.

In the following Theorem 2.2, we show that for a very broad class of topology matrices G, an

optimizing D is one that uses maximum total resource, i.e. one for which
∑

i Di = Γ.

Theorem 2.2. Consider D + G, where D is diagonal, and G is an n × n matrix. Assume that

the largest eigenvalue of D + G is real and non-repeated for all D such that 1)
∑

Di ≥ Γ and 2)

Di ∈ [0, L]. Any matrix D∗ that minimizes the dominant eigenvalue of D + G subject to these

constraints satisfies
∑

D∗
i = Γ, if the left and right eigenvectors of D + G corresponding to the

dominant eigenvalue have the same sign patterns for all D. Classes of matrices satisfying this

condition include 1) irreducible§ non-negative matrices and 2) diagonally symmetrizable matrices

§ To ease the understanding of those readers not familiar with matrix theory, we note that irreducible matrix is

one that can not be transformed into block upper-triangular matrix by simultaneous row/column permutations. The

associated digraph of an irreducible matrix is strongly connected, e.g., a path exists between any two nodes in the

digraph.

33

(matrices for which there exists diagonal Q such that Q−1GQ is symmetric).

Proof: The condition that the left and right eigenvectors of the dominant eigenvalue have

the same sign pattern implies the relationship that, for all i, wmax,ivmax,i > 0. Thus, according

to the eigenvalue sensitivity theorem, the dominant eigenvalue decreases monotonically with the

decrease of Di for all i, since ∂λmax(D+G)
∂Di

= wmax,ivmax,i is positive. Therefore, an optimum D∗ is

on the boundary
∑

D∗
i = Γ. From the Perron Frobenius Theorem, the dominant eigenvalue of any

non-negative and irreducible matrix is real and non-repeated, and the left and right eigenvectors

associated with the dominant eigenvalue are positive [72], and hence have the same sign pattern.

For a diagonally symmetrizable G, it is easy to check through a similarity transform that the

eigenvalues are real and the left and right eigenvectors associated with any eigenvalue are identical

related by a positive diagonal scaling and hence have the same sign pattern. Hence, the theorem

is proved. �

Theorem 2.2 guarantees an optimum D∗ is located on the boundary
∑

D∗
i = Γ, whenever G

is an irreducible and non-negative square matrix, and hence simplifies the search for D∗ when G

has this special structure. This simplification is relevant to our applications, because for both the

multi-group and contact network models, G is non-negative and (for meaningful interaction topolo-

gies) irreducible. In the illustrating example, G is irreducible and non-negative, so we expect that

an optimum D∗ satisfies
∑

D∗ = Γ. In this case, D∗ can be found by searching only through the

first set of possibilities in Theorem 2.1. This search is formulated in Theorem 2.4 for some matrices

of this sort. Before that, in Lemma 2.3, we characterize the pattern of the eigenvector associated

with the dominant eigenvector under constraints Di ∈ [0, L] and
∑

Di ≥ Γ.

34

Lemma 2.3. Consider the matrix D + G, where D is diagonal, and G is an n × n irreducible

non-negative symmetric matrix. Any matrix D = D∗ minimizes the dominant eigenvalue of D + G

subject to the constraints
∑

Di ≥ Γ and Di ∈ [0, L] if and only if the components of the eigenvector

v∗max associated with the dominant eigenvalue of D∗ + G has a special pattern. In particular, it is

required that v∗max,i < v∗max,j < v∗max,l, for any i, j, k such that Di = L, 0 < Dj < L and Dl = 0,

and v∗max,j are identical for all j.

Proof: First let us show necessity. Suppose v∗max is the eigenvector associated with the

dominant eigenvalue of D∗ + G. The conclusion that v∗max,i(∀ i, s.t. 0<Di<L) (where we have used

the subscript notation to refer to the entries of v∗max for which 0 < Di < L) are the same directly

follows from Theorem 2.1, and the symmetry and non-negativity of G. More specifically, when G

is a symmetric matrix, so is D + G, and thus vmax,i = wmax,i for all i. Also, from Theorem 2.1, we

know that the eigenvectors v∗max and w∗
max of D∗ + G satisfy v∗max,i = w∗

max,i and v∗max,iw
∗
max,i = 1

for each i such that 0 < D∗
i < L. Finally, from positivity of G, we see that vmax has only positive

entries. Combining, we recover that v∗max,i(∀ i, s.t. 0<Di<L) are identical. Now we need to show that

v∗max,i(∀ i, s.t. Di=L) < v∗max,i(∀ i, s.t. 0<Di<L) < v∗max,i(∀ i, s.t. Di=0). Since D∗ achieves the minimum

dominant eigenvalue, decreasing D∗
i for i such that D∗

i = L (making them less than L) or increasing

D∗
i for i such that D∗

i = 0 (making them larger than 0) while maintaining
∑

Di = Γ should increase

λmax. Eigenvalue sensitivity naturally leads to the inequality of eigenvector components, since the

derivative of λmax with respect to Di equals v2
max,i.

For the sufficient condition, we know that if vmax,i(∀ i, s.t. Di=L) < vmax,i(∀ i, s.t. 0<Di<L) <

vmax,i(∀ i, s.t. Di=0) and vmax,i(∀ i, s.t. 0<Di<L) are the same, the corresponding D achieves a lo-

cal minimum (from above). It follows from convexity (which can be proved easily using e.g. the

Courant-Fisher theorem) that the local minimum is in fact global. �

35

Lemma 2.3 presents the pattern of the eigenvectors associated with the minimized dominant

eigenvalue of D+G. This allows us to check whether a solution D is optimum by simply evaluating

the dominant eigenvectors of D + G. Here we define the expression diagonalize(v) as placing the

ith entry of a vector v as the ith diagonal entry in a diagonal matrix, for i = 1, ..., n.

Theorem 2.4. Consider a topology matrix G that is non-negative, irreducible, and diagonally

symmetrizable. A matrix D = D∗ that minimizes the dominant eigenvalue of D + G can be found

using the following algorithm:

1) Find diagonal matrix Q such that Q−1GQ is symmetric¶. We denote Q−1GQ as Ĝ.

2) Choose some gains Di as 0 and some other gains Di as 1, and rearrange the rows and columns

of D + Ĝ in such a way that those Di fixed at 0 and 1 are in the lower right corner. The

permuted matrix can be decomposed as

⎡⎢⎢⎣Ĝ11 + DA Ĝ12

Ĝ21 Ĝ22 + DB

⎤⎥⎥⎦, where the matrix DA is

unknown, and the matrix DB has entries fixed at 0 or 1.

3) Solve the equation −1T Ĝ111 − 1T Ĝ12(λI − Ĝ22 − DB)−1Ĝ211 + 1T λ1 = Γ − tr(DB) for λ.

This can be done through a simple numerical procedure, such as a gradient search‖.

4) Calculate DA using DA = diagonalize(−Ĝ111 − Ĝ12(λI − Ĝ22 − DB)−1Ĝ211 + λ1). If

0 ≤ DA ≤ LI, and the pattern of eigenvector associated with the dominant eigenvalue of
¶ See [74] for a method for checking if a matrix is symmetrizable and if so how the diagonal matrix can be chosen

to achieve symmetry.
‖ This is a simple procedure because the optimization is with respect to a single variable. Standard optimization

tools can solve this problem in minimal time.

36

D + Ĝ follows Lemma 2.3, an optimum D is diag(DA, DB). Otherwise, go to step 2) until a

solution is achieved.

Proof: We know from similarity that the eigenvalues of D + G are same as that of D + Ĝ,

where Ĝ = Q−1GQ and Q is the positive diagonal matrix such that Ĝ is symmetric. Hence, we can

without loss of generality consider designing D∗ to minimize D∗ + Ĝ. Since all vmaxi (of D∗ + G)

whose corresponding D∗
i are not fixed at 0 or 1 are equal (let us normalize them to 1), we know

an optimum D satisfies

⎡⎢⎢⎣Ĝ11 + DA Ĝ12

Ĝ21 Ĝ22 + DB

⎤⎥⎥⎦
⎡⎢⎢⎣1

v

⎤⎥⎥⎦ = λ

⎡⎢⎢⎣1

v

⎤⎥⎥⎦, where DB contains the entries in

D that are 0 and 1. DA must be found, and Ĝ11, Ĝ12, Ĝ21, and Ĝ22 are submatrices of Ĝ (upon

appropriate permutation). A little bit of algebra leads to the solution of λ, D and v. If the pattern

of the eigenvector associated with the dominant eigenvalue of D + Ĝ follows Lemma 2.3, and the D

matrix is within the constraints 0 ≤ D ≤ LI, we have found a global optimum solution according

to Lemma 2.3. �

Although we have presented an algorithm for diagonally-symmetrizable G, a slightly more com-

plicated algorithm exists for all G that are non-negative matrices; we omit this algorithm here in

the interest of space. We also note that the above algorithm may be computationally intensive, in

that the steps may have to be repeated up to 3n times to find the optimum. For some topology

matrices G, the calculation of D∗ can further be simplified. We will describe the procedure to cal-

culate D∗ under these circumstances in Theorem 2.6. As a preliminary step, let us first explicitly

compute an optimal D when the constraints on individual Di are relaxed:

37

Lemma 2.5. Consider the matrix D + G, where D is diagonal, and G is an n× n symmetric and

non-negative irreducible matrix. D̄ that minimizes the dominant eigenvalue of D + G subject only

to the constraint
∑

Di ≥ Γ can be found as follows: First find λ̄max = 1
n(Γ +

∑
i

∑
j Gij) and then

find D̄i = λ̄max − ∑
j(Gij).

Proof: First, we notice all entries of v̄max are identical, based on Lemma 2.3 and the fact

that here only the constraint
∑

Di ≥ Γ is enforced. Thus, an optimizing D̄ and eigenvalue satisfy

(D̄ + G)1 = λ̄max1. Therefore, the D̄i’s make the row sums of D + G equal. D̄i also satisfies∑
D̄i = Γ, since G and thus D̄ + G is symmetric. A little bit of algebra leads to the expressions

for λ̄max and D̄i. �

Lemma 2.5 states that, without the constraints that Di ∈ [0, L], an optimum D (denoted D̄) is

the one that equalizes the row sum of D+G, i.e. resource is allocated to each part of the network so

as to make all their impacts identical. However, when the individual Di are constrained, sometimes

an optimum D̄ can not be reached. Building on Lemma 2.5, Theorem 2.6 illustrates an easy way

to find an optimum D under several circumstances.

Theorem 2.6. Consider a matrix D+G, where D is diagonal, and G is an n×n non-negative, ir-

reducible, and diagonally-symmetrizable matrix. We can find D = D∗ that minimizes the dominant

eigenvalue of D + G subject to the constraints 1)
∑

Di ≥ Γ and 2) Di ∈ [0, L] using the following

algorithm:

1) Find diagonal Q such that Q−1GQ is symmetric. We name Q−1GQ as Ĝ.

2) Calculate λ̄ and D̄i following Lemma 2.5, and check if 0 ≤ D̄i ≤ L for all i. Denote the set

38

of indices i such that D̄i > L as L+ and the set such that D̄i < 0 as L−. If L+ = φ and

L− = φ (i.e., both sets are empty), we have λ∗
max = λ̄ and D∗

i = D̄i.

3) If L+ �= φ, and L− = φ, we set Di = L for i ∈ L+. That is, Di can be calculated by first

applying: Di = L for i ∈ L+, v1i = 1 for i /∈ L+, and
∑

i Di = Γ, and solving the above

equations for Di as in Theorem 3. If Di ≤ L ∀i, we have D∗ = D. Otherwise, we must

recursively reduce those Di such that Di > L to L, and recompute D until all Di ≤ L.

4) If L− �= φ, and L+ = φ, we set Di = 0 for i ∈ L−. That is, Di can be calculated by first

applying: Di = 0 for i ∈ L−, v1i = 1 for i /∈ L−, and
∑

i Di = Γ, and solving the above

equations for Di as in Theorem 3. If Di ≥ 0 ∀i, we have D∗ = D. Otherwise, we must

recursively increase those Di such that Di < 0 to 0, and recompute Di until all Di ≥ 0.

Proof: This theorem consider three cases. The simplest case is when L+ = φ, and L− = φ.

In this case, obviously D∗ = D̄ is an optimum solution, as shown in Lemma 2.5. The cases when

one of L+,L− is φ and the other is not are similar, hence we only consider the case that L− = φ,

and L+ �= φ. In this case, an optimal solution has the special feature that D∗
i = L, for i ∈ L+.

This proof is complicated, however the idea is as follows.

Let’s say an unconstrained optimum (D̄) yields m elements in L+ (m of the D̄i are greater

than 1), and let’s consider an optimal solution when these D̄i are constrained to L (while the other

entries are left unconstrained for now). We will prove that the eigenvector components associated

with these m elements are smaller than the eigenvector components associated with all the other

elements (e.g. v̂max,i∈L+ < v̂max,i/∈L+), and hence prove that this optimum is in fact a global one

according to Lemma 2.3. We show this using induction. Moreover, if the solution obtained by

39

fixing Di = L for i ∈ L+ still has some Di > L, we will repeat the above process to suppress those

Di > L at L.

Basis: Let’s use Z = D̄ + Ĝ for the matrix that produces the unconstrained global optimal,

call its dominant eigenvalue λ̄, and assume (wlog) that the first m entries of D are too big (e.g.,

larger then L). Let’s us first consider decreasing the gain in entry 1 to unity while optimizing

the other gains (right now, we don’t apply constraints to these gains). Here we denote Di as

gain in entry i. Then the matrix of interest changes from Z to Z +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α

ΔD2

¨

ΔDn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where

α > 0 and
∑n

i=2 ΔDi = α. We would like to prove two statements: first, the eigenvector com-

ponent corresponding to entry 1 is less than the components associated with all the other entries

(e.g. vmax,1 < vmax,i�=1); and second, the gain corresponding to entries from 2 to m are still at least

L.

Recalling Theorem 2.1, we know that all vmax,i�=1 are the same, say c1. For convenience, let

us call vmax,1 as v1. Hence, the eigenvector associated with the dominant eigenvalue (denoted

by λ̂) for the new matrix is v̂ = [v1 c1 . . . c1]. The Courant-Fischer theorem [73] tells us that

λ̄ = maxvv
T Zv and λ̂ = maxvv

T (Z + Δ)v. λ̂ can be written as λ̂ = maxv1,c1(v̂
T Zv̂ − v2

1α + c2
1α).

When we decrease the gain in entry 1, we know that maximum eigenvalue of the new matrix, say

λ̂, is larger than λ̄. And we also know v̂T Zv̂ < λ̄, since v̂ is not the eigenvector for λ̄. Thus, from

the expression for λ̂, the first entry in the eigenvector for the new matrix is smaller than the rest

of the entries (i.e. v1 < c1). Thus the first statement is proved.

For the second statement, we prove it as follows. Since v1 < c1, the eigenvector associated with

40

the optimal gain changes from 1n to 1n +

⎡⎢⎢⎣ v

c1n−1

⎤⎥⎥⎦, where we know v < 0 < c (since only one gain

has been moved so far). Further, we know that maximum eigenvalue of the new matrix, say λ̂, is

larger than λ. Plugging into the eigenvector equation and doing some algebra, we finally get the

following: (λ̂ − λ)1n−1 + c(λ̂1n−1 − Z2:n,2:n1 − Z2:n,1
v
c) = (1 + c)

⎡⎢⎢⎢⎢⎢⎢⎣
ΔD2

...

ΔDn

⎤⎥⎥⎥⎥⎥⎥⎦. However, since λ̂ > λ,

v < 0 < c and Z is a non-negative matrix, we recover that all entries in the expression on the left

are positive, and hence the change in gains

⎡⎢⎢⎢⎢⎢⎢⎣
ΔD2

...

ΔDn

⎤⎥⎥⎥⎥⎥⎥⎦ must be all positive and so each other gain

strictly increases. Thus, we see that the gain corresponding to entries from 2 to m are still at least

L.

Induction: Suppose that we bring any l of the Di > L to L (l < m). Let us assume first that

the eigenvector components corresponding to the l entries are less than the components associated

with all the other entries (e.g. vmax,1,...,l < vmax,i>l); and second, that the gain corresponding to

entries other than these l ones are still at least L. Let us show that after we bring another (the

l + 1st) Di to L, we still have the appropriate eigenvector component majorization and condition

on the gains.

Let us consider bringing l + 1 of the D̄i from the unconstrained optimum s.t. i ∈ L+ to L. We

can do this using two steps. The first step is to move all but one of the offending gains to L (l

gains), and the second step is to bring the last gain to L. First note that this is possible, since after

the first step, all other gains remain greater than L by assumption. Without loss of generality, for

notational convenience, let us assume that we first bring the first l D̄i s.t. i ∈ L+ to L, and then

41

move D̄l+1. Denote the dominant eigenvalue after the first step as λ1 and the one that after bringing

the last gain to L as λ2. Again applying the Courant-Fischer theorem, λ1 = maxvv
T (D + Ĝ)v

and λ2 = maxvv
T (D + Ĝ + Δ)v, where diagonal matrix Δ corresponding to changing D̄i+1 to L

have entries as the following: Δl+1,l+1 = −b (b > 0), Δi,i = 0 for i ∈ [1, ..., l] and Δi = ΔDi for

i ∈ [l + 2, ..., n]. We also have
∑n

i=l+2 ΔDi = b. With a similar argument to that given in the

basis argument, we can show that the (l + 1)st eigenvector component is less than the (identical)

components after position l+1. Repeating this argument with each D̄i out of the l +1 possibilities

set to L last, we can reach the conclusion that the eigenvector components corresponding to all the

l + 1 entries are less than the rest common entries.

The proof that the remaining gains Di increase (and hence that they remain larger than L if

they were originally larger than L without the constraints) after bringing these l + 1 gains Di to L

is based on the knowledge that the eigenvector components corresponding to all the l+1 entries are

less than the remaining (identical) entries. This can be proved formally in a very similar fashion to

the case where a single gain is moved, which we have addressed in the basis step of the induction.

Thus the details are omitted.

In case some other gains exceed L in the process, these can be reduced in the same fashion.

For the case that L− �= φ, and L+ = φ, the proof is analogous to the case L− = φ, and L+ �= φ

that we have proved here, and hence it is omitted. �

Theorem 2.6 provides an easy way to calculate the diagonal matrix D that minimizes the domi-

nant eigenvalue of D+G for a diagonally-symmetrizable and non-negative G. We can first calculate

an optimum D̄ without the individual constraints on Di, i.e., if every D̄i satisfies its constraint, we

have found an optimum. Otherwise, if D̄i that violate their constraints are either all larger than L

42

or all less than 0, the actual optimal Di for positions where constraints are violated are equal to

boundary values. This allows us to quickly locate the Di’s at the boundary rather than to try all

combinations of K at boundary to find an optimal solution. In fact, at most n cases (rather than

3n) need to be considered. If D̄ has entries less than 0 and greater than L at the same time, we must

fall back on Theorem 2.4, i.e. search through the possible combinations of Di at the boundaries.

Interpretations of the Optimal Design D∗ + G

In this section, we have discussed designing a matrix D to minimize the dominant eigenvalue of

D + G subject to constraints. This design specifically allows us to allocate limited repair resources

to a contact network, so as to best fight against the spread of a virus. From this viewpoint, it is

instructive to study the structure of an optimizing D = D∗, and hence the structure of D∗ + G.

The structure of an optimizing D is highly dependent on the structure of the matrix G, which

describes the connection topology of the network. The theorems give us the insight that, for a

symmetric G, the matrix D should be chosen to best equalize the row sums of D + G, within the

permitted constraints. In terms of resource allocation, this means that placing the most resource

(whether sensing capabilities, vaccinations, quarantine, or other resources)at the nodes that have

strong connections best prevents virus spread. This makes sense since these nodes have the strongest

potential to spread the virus throughout the network if they are infected, and similarly to heal the

network when they are healthy. Eliminating viruses at these nodes as soon as possible can quickly

quench the spread. In case the individual constraints prevent placing enough resource at a node,

nearby nodes are provided with extra resources to prevent spread. It is interesting to note that our

optimal control strategy in general does not shatter the contact network into multiple components

43

(which has been shown in [75] to be infeasible because a very large number of vertices, even of

high degrees, must be removed to break the network), but instead sufficiently impedes the spread

of the virus (in a probabilistic sense) to reduce the basic reproduction ratio below 1 with limited

resource. An interesting future direction may be to extend our design to the case where resources

are allocated to many nodes (individuals) at once, so as to reflect the concept of placing epidemic

sensing capacities at locations visited by many individuals as proposed in [75].

It is worth noting that this design is suitable for repair resource allocation before the break-out

of a virus or real-time during a virus. In other words, this design is robust to the initial location of

the virus. This is useful even when real-time allocation of resources after the start of an epidemic

is not possible, or when it is hard to locate and respond to infected nodes network-wide in an

epidemic. When the initially affected nodes are known, the design can be improved further using

this additional information. We leave this improvement to later work.

We recall that our analysis of the contact-network model is based on a linear approximation, and

so it is worthwhile to briefly consider the dynamics of the original nonlinear model upon application

of our design strategy. A (continuous-time) Markov-process formulation of the nonlinear dynamic

model (see e.g. [76]) makes clear that, in fact, epidemics always eventually die out in models such as

ours, and so the time until die-off is of particular interest. Depending on the dominant eigenvalue

of the next-generation operator, the die-off may either be rapid (e.g. logarithmic in the size of the

network), or the virus may be essentially persistent (requiring a die-off time that is exponential in

network size) [76]. Let us now consider applying our repair-resource design to networks of increas-

ing size. Assuming that the network topology is symmetric, and that enough repair resources are

provided to ensure that eigenvalues of the next-generation operator are uniformly within a bounded

set strictly inside the unit circle, we can replicate the majorization-based argument of [76] to prove

44

that the die-off time is logarithmic in network size.

Fig. 2.1: Illustration of a three-node network topology.

Example We illustrate calculation of D = D∗ to minimize the dominant eigenvalue of D +G for

the nonnegative and symmetric topology matrix G =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1

4
1
8

1
4 0 1

16

1
8

1
16 0

⎤⎥⎥⎥⎥⎥⎥⎦, subject to the constraints

Di ∈ [0, 1] and
∑

i Di ≥ Γ (see Fig. 2.1). We consider the following two cases.

1) Γ = 1.5. In this case, we have D1
∗ = 0.4167, D2

∗ = 0.4792, D3
∗ = 0.6042, and λ∗ = 0.7917

and vmax = [1 1 1]T .

2) Γ = 2.9. In this case, we find that D1
∗ = 0.928, D2

∗ = 0.972, D3
∗ = 1, which yields

λ∗ = 1.2661, and vmax = [1 1 0.7047]T . We notice that the sum of each row of D∗ + G is not

identical in this case, and that D1 is increased by a larger fraction than D2 to make up for

the resource deficiency at node 3.

A brief discussion of the procedure for finding the optimal in the example is worthwhile. When

Γ = 1.5, the Di obtained following step 2) in Theorem 2.6 are feasible. Hence this single step finds

45

an optimum D. When Γ = 2.9, D3 obtained following step 2) is larger than 1, while D1 and D2

are smaller than 1. This satisfies the condition of step 3). Hence by fixing D3 at 1, and following

the calculation in Theorem 2.4, we find an optimum D∗.

2.2.3 Designing λmax(KG) and λmax(D + KG)

In this section, we address the other two design problems needed for virus-spreading control,

design of diagonal K to minimize the dominant eigenvalue of KG and D + KG (D diagonal)

respectively.

The results are similar to those for the D + G case, so the proofs are omitted. Here, we denote

an optimum gain K as K∗, the optimum dominant eigenvalue of KG (D + KG) as λ∗
max, and the

corresponding left and right eigenvector of KG (D + KG) as w∗
max and v∗max. Because the results

for KG and D + KG problems are so similar, we present them together. We begin with a general

structural necessary condition on an optimum:

Theorem 2.7. Consider the matrix KG (or D + KG), where K and D are diagonal and G is

a n × n matrix. Consider a matrix K = K∗ that minimizes the dominant eigenvalue of KG (or

D + KG) subject to the constraints 1)
∑

Ki ≥ Γ and 2) Ki ∈ [0, L], assuming the dominant

eigenvalue of KG is real and non-repeated. The optimizing K∗ and the corresponding left and right

eigenvectors v∗max and w∗
max satisfy one of the following conditions:

1)
∑

K∗
i = Γ. In this case, for each i we either have 0 < K∗

i < L and λ∗
maxK∗

i
−1w∗

maxi
v∗maxi

= 1,

or we have K∗
i = L or K∗

i = 0.

2)
∑

K∗
i > Γ. In this case, for each i we either have 0 < K∗

i < L and w∗
maxi

v∗maxi
= 0, or we

have K∗
i = L or K∗

i = 0.

46

An optimum K can be found through a search algorithm, as stated in Theorems 2.8-2.11. The-

orems 2.8 and 2.9 are for the KG case, and Theorems 2.10 and 2.11 are for the D + KG case.

Theorem 2.8. Consider a topology matrix G that is non-negative, irreducible, and diagonally sym-

metrizable. The K = K∗ that minimizes the dominant eigenvalue of KG subject to the constraints

1)
∑

Ki ≥ Γ and 2) Ki ∈ [0, L] can be found using the following algorithm:

1) Find diagonal Q such that Q−1GQ is symmetric. We denote Q−1GQ as Ĝ.

2) Set some Ki to 0 and some Ki to L, remove the rows and columns of Ĝ corresponding to the

Ki chosen as 0, and rearrange the remaining rows and columns of KĜ in such a way that

those Ki fixed at L are at the lower right corner. The resulting matrix can then be written as⎡⎢⎢⎣KA 0

0 LI

⎤⎥⎥⎦
⎡⎢⎢⎣Ĝ11 Ĝ12

Ĝ21 Ĝ22

⎤⎥⎥⎦.

3) The eigenvalue λ satisfies λ1T (Ĝ11−Ĝ12(LĜ22−λI)−1LĜ21)−11 = Γ−trace(LI), and can be

found through a simple numerical procedure. KA can be found as KA = diagonalize(λ1T (Ĝ11−

Ĝ12(LĜ22 − λI)−1LĜ21)−1). Check whether Ki is feasible.

4) Repeat with different Ki set to their boundary values until a global minimum λ is found.

Theorem 2.9. Consider a topology matrix G that is non-negative, irreducible, and diagonally

symmetrizable. The K = K∗ that minimizes the dominant eigenvalue of D + KG subject to the

constraints 1)
∑

Ki ≥ Γ and 2) Ki ∈ [0, L] can be found using the following algorithm:

1) Find diagonal Q such that Q−1GQ is symmetric. We denote Q−1GQ as Ĝ.

47

2) Set some Ki to 0 and some Ki to L, and rearrange the rows and columns of D + KĜ in such

a way that those Ki fixed at 0 or L are at the lower right corner. The resulting matrix can

then be written as

⎡⎢⎢⎣DA 0

0 DB

⎤⎥⎥⎦ +

⎡⎢⎢⎣KA 0

0 KB

⎤⎥⎥⎦
⎡⎢⎢⎣Ĝ11 Ĝ12

Ĝ21 Ĝ22

⎤⎥⎥⎦.

3) The eigenvalue λ satisfies (λ1T − DA1T)(Ĝ11 − Ĝ12(DB + KBĜ22 − λI)−1KBĜ21)−11 =

Γ− trace(KBI), and can be found through a simple numerical procedure. KA can be found as

KA = diagonalize(λ1T −DA1T)(Ĝ11− Ĝ12(DB +KBĜ22 −λI)−1KBĜ21)−1). Check whether

Ki is feasible.

4) Repeat with different Ki set to their boundary values until a global minimum λ is found.

When G is positive definite in addition to diagonally symmetrizable, we can show that λmax(KG)

is a convex function. In this case, the search algorithms given in Theorems 2.8 and 2.9 can be simpli-

fied: we can check whether a solution is a local optimum and stop or continue the search accordingly,

since a local optimum is guaranteed to be a global optimum. The simplified algorithms are given

below. Theorem 2.10 is for the KG case, and Theorem 2.11 is for the D + KG case.

Theorem 2.10. Consider a topology matrix G that is non-negative, irreducible, positive definite,

and diagonally symmetrizable. The K = K∗ that minimizes the dominant eigenvalue of KG subject

to the constraints 1)
∑

Ki ≥ Γ and 2) Ki ∈ [0, L] can be found using the following algorithm:

1) Find diagonal Q such that Q−1GQ is symmetric. We denote Q−1GQ as Ĝ.

2) Find K = diagonalize(Ĝ−11Γ/(1T Ĝ−11)). If 0 ≤ Ki ≤ L, this solution is optimal. Other-

wise, go to step 3.

48

3) Set some Ki to 0 and some Ki to L, remove the rows and columns of G corresponding to the

Ki chosen as 0, and rearrange the remaining rows and columns of KG in such a way that

those Ki fixed at L are at the lower right corner. The resulting matrix can then be written as⎡⎢⎢⎣KA 0

0 LI

⎤⎥⎥⎦
⎡⎢⎢⎣Ĝ11 Ĝ12

Ĝ21 Ĝ22

⎤⎥⎥⎦.

4) The eigenvalue λ satisfies λ1T (Ĝ11 − Ĝ12(LĜ22 − λI)−1LĜ21)−11 = Γ − trace(LI), and can

be found through a simple numerical procedure.

5) KA can be found as KA = diagonalize(λ1T (Ĝ11−Ĝ12(LĜ22−λI)−1LĜ21)−1). If 0 ≤ Ki ≤ L,

and the left eigenvectors associated with the dominant eigenvalue of KG has the pattern that

the entries corresponding to Ki = L are less then those corresponding to 0 < Ki < L, and

the latter are less than those corresponding to Ki = 0, this solution is optimal. Otherwise, go

back to step 3.

Theorem 2.11. Consider a topology matrix G that is non-negative, irreducible, positive definite,

and diagonally symmetrizable. The K = K∗ that minimizes the dominant eigenvalue of D + KG

subject to the constraints 1)
∑

Ki ≥ Γ and 2) Ki ∈ [0, L] can be found using the following algorithm:

1) Find diagonal Q such that Q−1GQ is symmetric. We denote Q−1GQ as Ĝ.

2) Find λ that satisfies Ĝ−1(λ1T −1T D)1 = Γ through a simple iteration. And then find K from

K = diagonalize(Ĝ−1(λ1T − 1T D)). If 0 ≤ Ki ≤ L, this solution is optimal. Otherwise, go

to step 3.

3) Set some Ki to 0 and some Ki to L, and rearrange the rows and columns of D + KG in such

a way that those Ki fixed at 0 or L are at the lower right corner. The resulting matrix can

49

then be written as

⎡⎢⎢⎣DA 0

0 DB

⎤⎥⎥⎦ +

⎡⎢⎢⎣KA 0

0 KB

⎤⎥⎥⎦
⎡⎢⎢⎣Ĝ11 Ĝ12

Ĝ21 Ĝ22

⎤⎥⎥⎦.

4) The eigenvalue λ satisfies (λ1T − DA1T)(Ĝ11 − Ĝ12(DB + KBĜ22 − λI)−1KBĜ21)−11 =

Γ − trace(KB), and can be found through a simple numerical procedure.

5) KA can be found as KA = diagonalize((λ1T −DA1T)(Ĝ11−Ĝ12(DB+KBĜ22−λI)−1KBĜ21)−1).

If 0 ≤ Ki ≤ L, and the left eigenvectors associated with the dominant eigenvalue of D + KG

has the pattern that the entries corresponding to Ki = L are less then those corresponding

to 0 < Ki < L, and the latter are less than those corresponding to Ki = 0, this solution is

optimal. Otherwise, go back to Step 3.

2.2.4 Computation and Implementation Issues

Let us make a couple of notes on our methods. First, the reader may wonder why we have

developed algorithms that are specialized to the stated decentralized design task rather than using

standard optimization algorithms, so we will briefly comment on the computational and conceptual

advantages provided by this approach. Second, we will briefly discuss the robustness of the design

strategy.

Advantages of our Optimization Approach

Computationally, the design (optimization) problem studied here is hard, because it is a decen-

tralized design/control problem with a cost based on an associated dynamics (e.g., a settling-rate

cost). Decentralized problems of this sort are known in general to be NP-hard, see e.g. [77]. The

50

particular decentralized problem of designing a diagonal matrix (say K) so as to place the eigenval-

ues of KG or K+G in desirable locations subject to constraints falls within this class of challenging

problems: in fact, there is no known general algorithm for deciding whether there is K that places

the eigenvalues in the unit circle (or in the closed left half plane), let alone doing so with minimal

resource [29, 78, 79]. Essentially, the difficulty in the problem stems from the fact that the cost

depends in a complicated (and implicit) way on the design variables, and yet there are not suffi-

cient degrees of freedom to construct the dynamics (modes) at will. Because of these limitations,

standard optimization packages cannot be used to find the optimal design. Specialized semi-definite

programming and in turn linear matrix inequality (LMI) techniques can be applied for some classes

of symmetric topology matrices G (see e.g. [80, 81]), but these techniques are not applicable for

the broad class of positive matrices considered here, nor can they be specialized to guarantee so-

lution using only a small number of iterations as we have done for the symmetrizable case. More

specifically, we have studied the KG and D+G design problems for networks of up to 1000 regions

(individuals), and find that typically at most 3 iterations of our algorithm are needed to exactly

find the optimal. Also, we note that some clever manipulation is needed to pose the design problem

as an SDP problem even in the symmetric case, so that implementation of the algorithm through

this approach is also complicated. The essential difficulties in decentralized design/control prob-

lems have led to a burgeoning interest in recent years on design for modern networks [25, 26, 29]

using graph-theoretic and matrix-theoretic methods; broadly, our techniques are aligned with this

methodology and permit low-computation design for relevant network topologies.

We also contend that the analytical design method presented here provides a conceptual ad-

vantage over numerical techniques. In fact, the presented algorithms admit a simple conceptual

interpretation, for the symmetrizable case: resources should be provided to regions (individuals)

51

to equalize the impact of the infectives from each region to the other ones. In the case where

the resource limits do not permit such allocation to a particular region (individual), neighboring

regions must be provided with additional resources to compensate for the resource deficiency (and,

equivalently, if a region has more resource allocation than needed due to the lower resource bound,

resources in neighboring regions can be curtailed. We believe that this simple conceptualization of

the optimal solution is valuable, especially, for achieving robustness: even when the model param-

eters and/or control models are inaccurate, one can allocate resources with the aim of equalizing

spread impact and expect to obtain a good if not optimal solution.

Robustness of the Design

Second, an important practical concern in applying these algorithms to the epidemic-control

problems introduced in Section 2.1.1 is whether or not the parameters in the models can be approxi-

mated with sufficient fidelity to achieve a high-performance design. In discussing these concerns, we

first note that the parametric data needed for the optimizations are only those needed for analyzing

the basic reproduction ratios of the two studied models (the multi-group model and the contact

model). We thus refer the reader to existing work [24,45] for discussions on how these parameters

can be identified. Fundamentally, we notice that the parameters in both models are concerned

with either with levels of interaction or with the infectiousness of the virus, and so counting of

flows/interactions as well as infection relative to total interaction can be used to find the parame-

ters. Also, the interaction parameters in particular can also be identified from historical epidemics

in the network of interest. However, in that we are proposing control actions, and recognizing that

the model parameters may indeed be uncertain (especially those that may need to be obtained in

52

real time), we recognize that the robustness of the developed algorithm requires further study. Our

preliminary efforts in this direction are very promising: for the Hong Kong SARS virus example, we

have found that the optimal heterogeneous optimal design far outperforms a homogeneous design

even when the parameters are uncertain by as much as 40% (see Section 2.3 for details). This high

tolerance of the design to parameter errors is not surprising since the optimum is deeply tied to

the network structure, and more specifically to the total impact of a region/node. These structural

features are well-characterized even when individual parameters are uncertain. We note that this

conceptual justification of robustness is yet one more advantage of addressing the decentralized

design problem explicitly rather than trying to apply standard optimization tools.

2.3 Control of the Hong Kong SARS Epidemics

Recall that the chapter [24] developed a spatial model for the spread of SARS in Hong Kong’s

18 districts (See Fig. 2.2), and proposed a homogeneous control for reducing the basic reproduction

ratio R0 to 1. In that model, the nominal corrective factor f̄ji takes three different values contingent

on the structural relationship of i and j: 1) i = j, 2) District i and j are contiguous, and 3) District

i and j are not contiguous.

Here, we find a optimal heterogeneous control that uses the same total resource amount as the

controller in [24]. This controller reduces the basic reproduction ratio to 0.64. Thus, we see that an

epidemic can be stopped more quickly with the same control resources, by allocating more resources

to some districts than others. Equivalently, it is easily shown that R0 = 1 can be achieved even

when the total control resource is reduced to 79% of the one with equal allocation (See Table 2.2).

This intelligent allocation takes advantage of the spatial structure of the population, by placing

more control resources in the districts that are important for the spread of an epidemic (see Fig. 2.2).

53

Fig. 2.2: The Map of Hong Kong’s 18 districts (obtained from

http://en.wikipedia.org/wiki/Hong Kong#Administrative divisions). We use the model parameters in [24]:

f̄ii = 1, f̄ji = 0.57 when District i, j are neighbors, f̄ji = 0.02 when i, j are not adjacent, β̄ = 0.062, and

T̄ = 10.6.

54

In this way, the limited control resources are best able to reduce the rate at which the epidemic

diminishes. Such a control would reduce the impact on people’s daily lives in some districts (which

have less control resources allocated) and overall, while still stopping the virus spread quickly.

For illustration, we also consider how the heterogeneous resource allocation changes when the

transmission coefficient within a district is increased (compared to the mixing rate between dis-

tricts). As expected, increasing the local mixing rate makes use of spatial information less impor-

tant, and also makes the allocation more homogeneous (See Table 2.2).

In all of these experiments, we see that the most resources are placed in Districts 5 and 7, and

the smallest resources are placed in District 1. This is expected since Districts 5 and 7 are the ones

with pivotal locations (e.g. with many neighbors) and hence the successful control of these districts

is important in the control of disease spread. In contrast, District 1 is almost isolated and hence

has the least contribution to the spread of diseases in Hong Kong.

We have also pursued a preliminary robustness analysis for our design. In particular, we have

analyzed the performance of our design in the case where the actual parameters are different from

the ones used for the design. For illustration, let us consider one of the designs shown in Table

2.2, say the one corresponding to f̄ii = 3. In this case, we see that a heterogeneous design reduces

R0 to 0.87 if the total amount of resource is that for which a homogeneous design reduces R0 to

1. Now say say that each interaction parameter f̄ij is in fact in error by at most 40%, or more

specifically that the parameter is in fact αij f̄ij, where αij is uniformly distributed between 0.6 and

1.4. Over 100 trials, our design achieves average R0 = 0.91, as compared to average R0 = 0.88 if

the design were re-optimized for the new parameters. We thus see that the design still significantly

outperforms a homogeneous design with 40% error in the parameters.

55

Tab. 2.2: Resource Allocation Needed to Reduce R0 to 1.
f̄ii = 1 f̄ii = 1.5 f̄ii = 3

District 1 0.9096 0.6222 0.3031
District 2 0.9096 0.5368 0.2525
District 3 0.5816 0.4338 0.2546
District 4 0 0 0.1919
District 5 0 0.0160 0.0915
District 6 0.5816 0.4242 0.1705
District 7 0 0 0.0834
District 8 0.9096 0.5926 0.2708
District 9 0 0.0789 0.1734
District 10 0 0 0.1419
District 11 0.5816 0.4553 0.2194
District 12 0 0.2118 0.1798
District 13 0.5816 0.4457 0.1985
District 14 0.9096 0.5428 0.2587
District 15 0.9096 0.4784 0.2475
District 16 0.9096 0.4784 0.2475
District 17 0 0.1919 0.1908
District 18 0 0.1919 0.1908∑

Ki using heteroge-
neous control

7.7842 5.7007 3.6667∑
Ki using homoge-

neous control
5.0138 4.4009 3.22

The Ki for each district are shown in the table. Notice that smaller Ki corresponds to more resources.
∑

Ki equals
the subtraction of total utilized resources from N (the number of districts, e.g., 18 in this case). Note that the

reduction in resource used for f̄ii = 1 is to 18−7.7842
18−5.0138

× 100% = 79% of the homogeneous allocation.

56

3. A SCALABLE METHODOLOGY FOR EVALUATING AND DESIGNING

COORDINATED AIR TRAFFIC FLOW MANAGEMENT STRATEGIES UNDER

UNCERTAINTY

As congestion in the United States National Airspace System (NAS) increases, coordination of

en route and terminal-area traffic flow management procedures is becoming increasingly necessary,

in order to prevent controller workload excesses without imposing excessive delay on aircraft. Here,

we address the coordination of flow management procedures in the presence of realistic uncertain-

ties, by developing a family of abstractions for implementable flow restrictions (e.g., miles-in-trail

restrictions, ground delay programs, or slot-based policies). Using these abstractions, we are able

to evaluate the impact of multiple restrictions on generic (uncertain) traffic flows, and hence to

design practical flow management strategies. We use the developed methodology to address sev-

eral common design problems, including design of multiple restrictions along a single major traffic

stream and design of multiple flows entering a congested terminal area or Sector. For instance, we

find that multiple restrictions along a stream can be used to split the backlog resulting from a single

restriction, and use this observation to develop low-congestion designs. We conclude the discussion

by posing a tractable NAS-wide flow management problem, using a simple algebraic model for a

restriction.

57

3.1 Introduction

Traffic flow management (TFM) procedures have been used successfully for many years in the

United States National Airspace System (NAS), to meet the capacity constraints resulting from

arrival-rate and controller-workload requirements in the face of uncertainties including adverse

weather, unexpected airborne delays, and departure delays [82–85]. Operationally, TFM is imple-

mented using procedures such as Air Traffic Control (ATC) preferred routes, time-based metering,

miles-in-trail (MIT), minutes-in-trail (MINIT), ground stops (GS), and ground delay programs

(GDPs) (see [86–88] for details of the TFM mechanisms). In recent years, there has been a grow-

ing need to coordinate these TFM actions over multiple Centers or even NAS-wide: for example,

congestion at Philadephia (PHL) airport needs to be alleviated by redistributing the delays and

workloads further upstream [89]. Effectively bringing multiple Centers into collaboration for flow

management is complicated because management actions cause complex correlations among air-

craft in uncertain flows, both upstream and downstream. This need for coordination motivates

study of TFM from a network point of view, which could provide a better understanding of global

TFM performance, and hence permit better management of aircraft traffic flows using existing and

new mechanisms. With this motivation, we develop a methodology for analyzing the performance

of networked TFM strategies operating in the face of realistic uncertainties, and in turn design

high-performance TFM strategies that can be implemented using existing mechanisms and/or new

low workload procedures such as the slot-based approach [90].

A formulation of the multi-Center TFM problem was given in [92], where the challenges asso-

ciated with implementing time-based metering of traffic to Philadelphia airport were illustrated.

This work was followed by the development of frameworks for coordination, including a distributed

scheduling architecture [91] and Multi-Center Traffic Management Advisor (McTMA)-based archi-

58

tecture [89]. Other work related to multi-Center TFM focuses on developing abstract deterministic

models for traffic flow, and in turn pursuing TFM design by solving optimal scheduling problems in

the context of the models [93,94,96,97]. Our work here builds on both the implementation-focused

studies [89,91,92] and the analytical approaches [93,94,96,97], in that we use models that capture

practical considerations of implementation/robustness, but in a way that permits analysis and de-

sign. Our studies build on network modeling efforts for air traffic flow [82,100] as well as queueing

models for flow restrictions (e.g., [86]).

Our study of multi-Center TFM recognizes the critical role played by uncertainties and imple-

mentation concerns, so it is worthwhile for us to briefly review the literature on these aspects. The

impact of uncertainties on air traffic has long been recognized [82–85], and traffic control actions

such as conflict avoidance maneuvers have been designed to be robust to uncertainties (e.g., [98]).

From the perspective of flow management rather than detailed control, recent works in network

modeling have implicitly or explicitly modeled uncertainty (e.g., [82, 86, 100]). The intrinsic com-

plexities associated with implementing flow management have been widely recognized, and in fact a

metric for the performance of implemented flow management strategies has been developed in [99].

This performance analysis of flow management strategies also recognizes the important role played

by weather uncertainties, and shows how the impact of weather can be separated from the intrinsic

performance of the method.

Here, we make two advances in network TFM: 1) we capture the specifics of existing TFM

restrictions within the network models, and 2) we study the impact of coordinated TFM strategies

on generic or typical uncertain flows, see [86] for such analysis for a single restriction. These efforts

provide the benefit of evaluation of managed air traffic flows in advance since uncertainties in flows

are considered, and lead to designs that are practical for implementation in the existing operational

59

framework. The reader will note that we emphasize on the modeling and design of restrictions on

aircraft flows since many currently-used restrictions (e.g., MIT, MINIT, some GDPs) have impact

on aircraft flows rather than requiring scheduling of individual aircraft. Our goal is to model such

restrictions in a scalable way, i.e. such that NAS-wide evaluation and design is permitted. We

note that our focus on flow management under uncertainty is closely aligned with the perspective

given in the chapters [101,102], which study optimization of coordinated re-planning and testing of

the optimal re-planning strategies in an uncertain simulation environment. Our approach builds on

theirs in that we design management strategies that are robust to uncertainty rather than designing

based on a forecast. Also, we obtain simple structural insights into good strategies, albeit at the

cost of using much more abstracted models for aircraft flows.

To facilitate the NAS-wide design task described above, we need to pursue two abstraction

tasks: one is to represent the traffic flow between regions (network flow/routing/splitting model)

under uncertainty; and the other is to model restrictions in a way that would allow design on a

network level. The key idea here is that we view this as a tractable network controller design

problem with stochastic air traffic flows as inputs. Each traffic flow can be modeled as a stochastic

process (e.g., Poisson Process), as justified in [82,86]. The restriction placement can be viewed as

a controller design, in the sense that the downstream flow is managed by the controller based on

the rate of flow in the upstream. In our previous work [86], we understand the essential impact

of a single restriction on traffic flow: the restriction smooths out the downstream flows (reduces

their variance), at the cost of upstream backlog and delay. Unfortunately, as we note in [86], the

single-restriction analysis does not easily scale to multi-restriction and hence multi-Center designs.

The complexity of the relationship between upstream and downstream flow under restriction drives

us to seek abstract restriction models that can capture the intrinsic relationship between the flows,

60

while significantly reducing the complexity of the analysis, and so permitting multi-Center TFM

design. In particular, we suggest a saturation model for restriction, as well as linear dynamic and

algebraic approximations. As we shall show, majorization and linear system analysis are the tools

that allow performance evaluation for the new models.

The remainder of the chapter is organized as follows: in Section 3.2, we introduce our frame-

work for studying flow management restriction design and overview the family of abstractions for

restrictions. In Section 3.3, we describe the saturation model, and show that it can be used to

analyze flow statistics in several topologies. In Section 3.4, we describe the linear abstraction and

use it for design of multiple restrictions. In Section 3.5, we give some preliminary discussions on

using a simple algebraic model for network-wide flow control design.

3.2 A Family of Abstractions For Flow Management: Overview

Let us introduce a framework for studying coordination of flow management restrictions and

overview our abstractions for individual restritions. Each abstraction captures the essential effects

of restrictions on general aircraft flows, but at different levels of detail/tractability. Together, they

permit evaluation and design of coordinated TFM.

Broadly, traffic in the NAS can be viewed as flows of aircraft (network flows) entering and

leaving regions (Sectors/Centers/airports). Traffic flow management is implemented by placing

restrictions on boundaries of the regions to avoid congestion in downstream regions, while not

causing unsatisfactory delay. We are interested in evaluating the effects of practical restrictions on

typical flows, which we expect to vary day-to-day due to unpredictable events such as weather and

take-off time uncertainties.

We first consider the flow into each restriction. We model this arrival of aircraft (or entering

61

flow) in a quite-general way, as a stochastic arrival process. We denote the the arrival rate—

the mean number of aircraft arriving at the boundary per unit time—as λ ∗. When a flow is an

amalgam from several routes or represents departures from a busy airport, a Poisson process model

is appropriate [82,86]. We study both the general and Poisson models here.

Let us now consider the dynamics of the restriction (control) at each boundary. To ease under-

standing, we imagine a virtual buffer at each boundary, as shown in Figure 3.1. Every approaching

aircraft automatically enters the buffer (at time t, the number of aircraft in buffer i, or the buffer

count, is denoted by bi(t)). However, only a portion of the aircraft in the buffer are allowed to enter

the downstream region. We denote the stochastic process describing the flow of aircraft into the

downstream region by ei(t), and call it the crossing flow. The number of aircraft being delayed

by the restriction at time t (backlog) is denoted by Bi(t). Note that Bi(t) is different from bi(t)

in that Bi(t) does not count the aircraft that enter the buffer and then leave smoothly without

being held by the restriction. The relationship of a boundary’s crossing flow ei(t) with respect to

its buffer count bi(t) is what we aim to design. Specifically, we develop several abstractions for

implementable restrictions (e.g., MINIT, MIT, and slot-based restrictions) within this framework

with the aim of achieving designs that can be put in place easily.

In some analyses, we explicitly model counts in downstream regions. We assume each aircraft

in a stream takes a constant time T to cross a downstream region with a capacity of C aircraft.

This assumption is often reasonable for en route airspace, where the aircraft follow a route through

a region at an approximately constant speed. The number of aircraft in a downstream region (or
∗ As noted in [86], the arrival rate at boundaries are in fact time-varying. Here, we are concerned with flows

during the busy part of the day or during particular common inclement-weather or other special scenarios (when the

restrictions are needed), so we use a time-invariant model for simplicity. Many of the results generalize naturally to

the time-varying case.

62

Fig. 3.1: Boundary restriction framework.

region count) is denoted as ri(t).

At a network level, we view streams of aircraft counting from various boundary restrictions as

merging and splitting within the regions. While restriction design for various network topologies

are of interest, a couple simple topologies are especially common, and so we often focus on these

topologies or study them in examples. One common phenomenon is the existence of a major stream

passing through a sequence of restrictions (for instance, traffic from the West Coast to Northeast

airports) together with some minor flows entering and leaving the major flow. We thus often

consider a stream of aircraft passing through a series of boundary restrictions, and aim to set these

boundary restrictions for suitable management. A second common topology is one with a single

capacity-constrained region with multiple flows that can be restricted before entering the region.

Such a network model is appropriate, for instance, in developing restrictions around a crowded

terminal area or Sector.

Our primary goal is to develop a series of abstract restriction models that capture the key

attributes of en route and terminal area restrictions, while permitting analysis of networked (coor-

63

dinated) restrictions to varying degrees. The models that we have studied, in order of increasing

abstraction (and also greater tractability), are:

1) Detailed queueing models for en route and terminal area restrictions (see [86]);

2) A discrete-time saturation model;

3) A dynamic stochastic linear model;

4) An algebraic linear model, for design in arbitrary networks.

We shall develop the three more abstract models in detail in this chapter. We kindly refer the

reader to our previous work [86] for details on the detailed queueing models, however let us give

a brief overview of these queueing models to motivate the need for further abstraction. Queueing

and queueing network models enjoy very wide application, including in representing aspects of both

road and air traffic control [86,103–106]. Of particular interest, in [86] we modeled an en route flow

restriction as a single-server queue with deterministic service times (M/D/1), and characterized the

tradeoff between downstream smoothing and upstream backlog/delay using the classical analysis

of M/D/1 queues. However, the queueing model is not amenable to a complete analysis of the

downstream traffic, nor easily scalable to a network setting.

3.3 Saturation Restriction Model

In order to better understand a restriction’s impact on flows and achieve design of coordinated

restrictions, we develop a discrete-time abstraction of the queueing model that we call the sat-

uration restriction model. This discrete time abstraction allows the analysis of downstream

variability for Poisson inflows, and in turn permits qualitative and quantitative study of multi-

Center restriction placement.

64

3.3.1 Description of the Saturation Restriction

The saturation restriction works as follows: during each time step of length ΔT , it allows a

maximum of Nc aircraft to pass the boundary, while the remaining aircraft remain in the buffer.

Formally, let us denote the number of aircraft arriving at a boundary between times kΔT and

(k + 1)ΔT as x[k], the number of aircraft allowed to pass the boundary during this time as e[k],

the number of aircraft in the buffer at time kΔT as b[k], and the backlog at time kΔT as B[k].

These variables evolve as follows:

e[k] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b[k − 1], (b[k − 1] ≤ Nc)

Nc, (b[k − 1] ≥ Nc)

(3.1)

b[k] = b[k − 1] + x[k] − e[k]

B[k] = b[k − 1] − e[k]

The parameter Nc of the saturation model can be matched with the specifics of actual TFM

restrictions. In particular, many restrictions enforce that aircraft are separated by τ minutes, and

hence that Nc = ΔT
τ aircraft are allowed to pass the boundary in ΔT minutes. For instance, using

this reasoning, Nc can be chosen as ΔT
q to represent q-MINIT restrictions and similarly a q-MIT

restriction can be matched with Nc = ΔTv
q assuming that each aircraft travels at velocity v. In

designing restrictions, it is worth noticing that Nc needs to be larger than the average aircraft flow

rate λΔT ; otherwise, there would be an unlimitedly growing aircraft count in the buffer. We expect

the setting of Nc will affect the flow, e.g., downstream volume, upstream backlog and delay. The

mapping from a TFM restriction to Nc provides an approach to evaluate the restriction’s impact

on flow, and conversely a designed Nc can be matched with a restriction duration.

We also note that the saturation model captures the slot-based management strategy proposed

65

in [90]. In particular, a restriction where aircraft are placed in slots that are q minutes apart can

be represented using a saturation model with ΔT = q and Nc = 1. This representation captures

the behavior of the slot model, with only the slight error that the initial delay of a fraction of

a slot when an aircraft first approaches a boundary is not captured. Our approach thus permits

evaluation of the slot-based strategy for stochastic entering flows.

The saturation model is a (tractable) discrete-time counterpart of the various detailed queueing

models, in that it also restricts aircraft at busy times and permits them to go through at times

with a small arriving flow. However, a couple limitations of this approximation of queueing models

are worth noting: 1) the saturation model is best suited for queueing dynamics that exhibit a

thresholding behavior, and 2) the model does not capture the queueing model’s dynamics accurately

over very short time intervals, i.e. intervals of smaller order than the times between aircraft.

3.3.2 Model Evaluation for Poisson Input Flow Statistics

For the saturation model, the statistics of upstream and downstream flows can be explicitly

computed when the approaching flow is a Poisson process. In this case, the numbers x[k] that

enters the buffer at different time steps are independent because of the Poisson process’ independent

increment property [107]. Specifically, we recall that when the input process is a Poisson Process

of rate λ, the probability that x[k] = c aircraft arrive at time step k is as follows:

Pλ(c) =
(λΔT)ce−λΔT

c!
, c ≥ 0. (3.2)

Next, we contend that statistics of the buffer count b[k], crossing flow e[k], and backlog B[k] can

be determined from Markov chain analysis [72]. In the infinite-state Markov chain representation,

each state i ∈ {0, 1, 2, ...,∞} represents a possible buffer count, and the weights pij descrive the

probabilities that the buffer count transitions from one state i to another state j during one time

66

step (i.e. P (b[k + 1] = j|b[k] = i). Based on the evolution equations (3.1) and the probabilistic

description of x[k] (3.2), the transition probability pij can be calculated:

pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pλ(j), 0 ≤ i ≤ Nc, j ≥ 0

Pλ(j − i + Nc), i > Nc, j ≥ i − Nc

0, i > Nc, j < i − Nc

(3.3)

We are interested in the steady-state probability that the buffer count b[k] equals i (we call it

πi), which enables us to calculate the statistics of flow in steady state. These probabilities can

be found from the transition probability matrix using classical techniques for Markov chains [72].

From the steady-state probabilities πi, the mean backlog in steady state can be calculated as

E(B[k]) =
∑∞

i=Nc+1(i − Nc)πi.

The mean crossing flow E(e[k]) equals the inflow rate λΔT since we require that Nc is larger than

λ: this condition guarantees that the buffer aircraft count is not growing, and hence the average

crossing flow is same as that of the entering flow. Moreover, the variance in the crossing flow can

be calculated as V (e[k]) =
∑∞

i=Nc+1(N
2
c πi) +

∑Nc

i=1(i
2πi) − (λΔT)2.

The above calculation shows that the saturation abstraction permits the calculation of flow statis-

tics (e.g., mean backlog and mean and variance of crossing flow) using a standard Markov chain

representation. Figure 3.6 illustrates the Markov chain analysis, in particular demonstrating its use

in comparing restriction of various flows entering a congested region. However, the calculation of

the flow statistics does not provide us a direct insight into a restriction’s effect on non-Poisson flows.

Also, unfortunately, the Markov chain analysis does not easily scale to the multiple-restriction case.

67

3.3.3 Model Evaluation, Arbitrary Aircraft Flows

We use the saturation model to gain qualitative insight into a restriction’s effect on arbitrary

stochastic aircraft flows. In turn, we analyze sequences of restrictions.

Before characterizing networked restrictions, it is important to understand a restriction’s impact

on a single generic flow, i.e. one that may originate from another restriction and hence be non-

Poisson. We expect the placement of a single restriction to smooth the downstream flows at the

cost of increasing backlog. The impact should become more pronounced as the restriction is made

stronger, i.e. Nc is decreased. We formalize this notion in Result 1.

Result 1 Consider two ergodic † aircraft flows with identical statistics approaching two saturation

restrictions c1 and c2 respectively, where restriction 1 is weaker than restriction 2 (Nc1 > Nc2).

The variances of the downstream flows V (ec1 [k]) and V (ec2 [k]) and the mean of backlogs E(Bc1 [k])

and E(Bc2 [k]) are related as follows: E(Bc1[k]) ≤ E(Bc2 [k]), V (ec1 [k]) ≥ V (ec2 [k]).

Proof: The statistics of an ergodic process can be calculated using time-averages of one of its

sample sequences. We study the effect of each restriction on an arbitrary sample sequence over a

sufficiently long time.

First, the relationship of the mean backlogs can be determined from the backlogs at each

time step, for any sample sequence of the input process. Since Nc1 > Nc2 , at the initial time

step (k = 1), if an aircraft is able to pass c2, it must be able to pass c1; or equivalently, if

an aircraft is delayed by c1, it must be also delayed by c2. Therefore, at the initial time step,

the backlog of c1 is smaller than that of c2. At subsequent times, we have the same conclusion
† An ergodic process is one whose statistics can be estimated from the time average of a single sample sequence [72].

It is reasonable to assume x[k], B[k] and e[k] are ergodic random processes, as a consequence of stationary and long-

term uncorrelation.

68

that if an aircraft is delayed by c1 it is delayed by c2 too, since the backlog caused by c2 is

larger than that by c1 and less aircraft are permitted through by c2 than c1. This leads to the

conclusion that Bc1[k] ≤ Bc2[k] for any k and thus the time-average of the backlog of each sample

flow has the relationship 1
T

∑T
k=1 Bc1[k] ≤ 1

T

∑T
k=1 Bc2[k] for all T . From ergodicity, we conclude

E(Bc1) ≤ E(Bc2). Noticing the relationship between the buffer count b[k] and backlog B[k], we

recover through an analogous argument that E(bc1) ≤ E(bc2).

The comparison of the variance of flows crossing the two boundaries can be analyzed from the

manipulation of the two flow sequences ec1 [k] and ec2 [k] over some time. Firstly, the time average

of ec1[k] is not less than that of ec2[k] because the backlogs have the relationship Bc2[k] ≥ Bc1[k]

for all k. Secondly, the conclusion that bc1[k] ≤ bc2[k] for all k leads to two conclusions: 1) if ec1[k]

is larger than Nc2, restriction 2 must be saturating and thus ec1 [k] ≥ ec2[k] = Nc2; 2) if ec1[k] is

less than Nc2, ec2 [k] must be no less than ec1 [k]. The inequality for the flow average and the two

relationships 1) and 2) above leads to the conclusion that the sum of ec1 [k] − Nc2 for those k such

that ec1 [k] ≥ ec2 [k] ≥ Nc2 is larger than or equal to the the sum of ec2[k] − ec1[k] for those k such

that ec1[k] ≤ ec2 [k] ≤ Nc2. Thus, by reducing ec1[k] by 1 for those ec1[k] > Nc2 and adding it to

those ec1 [k] with ec1 [k] < Nc2 step by step as shown in Figure 3.3, we can reshape the sequence of

ec1 to êc1 , which is same as ec2 , except possible with extra êc1 [k] > Nc2 for some k. Therefore, we

have V (êc1 [k]) ≥ V (ec2 [k]) assuming ergodicity. In the reshaping process, the second moment and

hence variance of ec1 is decreased monotonically. From ergodicity, we have V (ec1 [k]) ≥ V (êc1 [k]).

Thus, we see that V (ec1 [k]) ≥ V (ec2 [k]). �

This result clearly illustrates a boundary restriction’s role in flow control in a general way: it

reduces the variance of downstream flow, at the cost of increasing the mean backlog. A stronger

restriction produces smoother downstream flow, with more backlog in the upstream.

69

Fig. 3.2: A single flow passing through a chain of two restrictions.

The saturation model also permits evaluation of multiple coordinated restrictions, and hence

facilitates development of coordinated TFM strategies. In Result 2, we discuss restriction placement

for a sequence of two regions with a single flow passing through them, see Figure 3.2. This topology

of aircraft flow is common in many situations, such as the flows along major routes from the Western

states to the Northeastern states, which cross several Centers. An interesting question for this type

of flow is where to place restrictions on the route, i.e. at the boundaries of downstream regions

or further upstream. Result 2 gives insight into the combined effect of the multiple restrictions

along the route, in terms of backlog and downstream congestion caused by the restrictions. For

ease of presentation, we study a single flow that is restricted in several places; the result is useful

in practice whenever there is a dominant aircraft flow passing through several restrictions.

Result 2 Consider an arbitrary aircraft flow approaching a two-region chain. Placing a restriction

c1 at the first boundary with threshold Nc1 and another restriction c2 at the second boundary with

threshold Nc2 achieves the same total delay (on each aircraft)/backlog (over time) as placing a single

restriction c3 at the front of region 1 with the threshold designed as the strong restriction, i.e. as

Nc3 = min(Nc1, Nc2). In fact, the crossing flow processes of the second region for the two schemes

are identical.

Proof: When Nc1 < Nc2, we have Nc3 = Nc1 . In this case, the result is obvious since every

aircraft passing Nc1 will pass Nc2 without any delay.

70

Fig. 3.3: Downstream flow variance analysis for two saturation restrictions with different thresholds.

When Nc1 ≥ Nc2 , we have Nc3 = Nc2. Showing the equality of the delay of the single- and

two-restriction cases is equivalent to showing that any aircraft crosses boundary of region 2 at the

same time step for the two cases. The proof has two sides. First, we can prove that the delay of the

two-restriction design is not smaller than the delay of the single restriction design, i.e. if an aircraft

is able to cross boundary 2 for the two-restriction case, it must have crossed the boundary by the

same time for the single restriction case. This is obvious since the delay on each aircraft would be

the same for the two cases, if Nc1 were 0. Introduction of the first restriction for the two-restriction

design can only delay aircraft, hence the delay is at least as large in the two-restriction case.

Second, we show that the delay for the two-restriction design is not worse than that of the

single restriction design by contradiction. At the initial time step that the restrictions are set, the

number of aircraft in region 2 in both cases are the same. Assuming the clain does not hold, there

exists some time step when an aircraft is coming through boundary 2 in the single restriction case,

but not yet in the two-restriction case. We denote the first aircraft satisfying the above condition

as a1. All the aircraft before a1 in the flow are able to go through boundary 2 at the same time

step in both cases. The only two reasons that a1 can be delayed in the two-restriction case, but

71

not in the single restriction case, are: 1) for the two-restriction case, a1 has more aircraft in the

line before it than the threshold Nc2; and 2) a1 is not at boundary 2 yet because it was delayed at

boundary 1. Neither is possible, as shown by the following argument: If 1) happens, we know that

a1 is not the first aircraft which was delayed, since a1 has fewer aircraft before it in the buffer in the

single restriction case than the two restrictions case. The controversy denies reason 1. For reason 2:

this cannot happen, since the restriction at boundary 1 is weaker than that in the single restriction

case. As we argued for Result 1, if an aircraft is able to coming across a stronger restriction as in

the case of single restriction, it must be able to cross boundary 1 with a weaker restriction in the

two-restriction case.

Thus, we have proved the delays are identical. The result for delays automatically implies the

backlog result. �

For a chain of more than two regions with a single flow, Result 2 can be readily generalized to

the following: placing multiple restrictions along the boundaries of the regions achieves the same

total delay as placing a single restriction upstream, that is equal to the strongest of the original

restrictions.

This result is interesting in that it shows for a major stream of aircraft, multiple restrictions

placed along the route have the effect of splitting the delay, without increasing or reducing it. Also,

placing a single strong restriction further upstream has the benefit of eliminating downstream

congestion. For example, in the two-region case, using a single strong restriction before region

1 causes no congestion in region 1; when two restrictions are used, congestion may result from

the backlog caused by the second restriction, as well as the increased variance of the downstream

count due to the weaker restriction before region 1. In practice, when considering a single major

flow passing a series of regions, the end region often has the most stringent capacity restriction

72

since it represents the busiest region where many flows merge. For this case, Result 2 indicates

that restricting flows upstream is preferable, since the downstream congestion is reduced with the

same delay. It is wise to place the restriction at a boundary where the upstream region has little

congestion concern, and so can absorb the backlog. In some cases, if such a upstream region that

can hold all the backlog does not exist, we need to design multiple restrictions along the route to

split up the delay and in consequence the backlog.

Result 2 also makes clear that, in contrast to current practice, multiple restrictions acting on

a stream must be designed together because the upstream restriction impacts the delay/backlog

caused by the downstream one. For instance, it is unwise to first place a restriction downstream and

then place another one upstream to account for the backlog caused by the downstream restriction:

the upstream restriction will change the backlog caused by the downstream restriction.

One further note about the analyses of the saturation abstraction is needed. Our results are

a simplification of reality in that we have assumed stationarity in the process of aircraft arriving

at boundaries, while in fact the arrival rates are time-varying. Fortunately, several of the above

results—namely those concerned with mean backlogs and delays—generalize to the non-stationary

case. Also, we reiterate that the flows during busy periods are often indeed stationary; if not, they

can almost always be captured as arrival processes whose rates are themselves Markovian stochastic

processes (e.g., as Markov-modulated Poission processes). The above analyses fully generalize to

this case.

3.3.4 Canonical Example: Restricting Flows into PHL

Using the saturation restriction model, we have found that multiple restrictions along a stream

can be used to split delays/backlogs. This suggests that multiple restrictions may be effective

73

in partially pushing backlog upstream near complex terminal areas, such as the Philadelphia In-

ternational Airport (PHL). Here, for illustration, we have evaluated the impact of using multiple

restrictions on the entire flow arriving at PHL.

We use the arrival times of all aircraft coming to PHL in January 2006 as the inflow. Say

that we wish to limit the flow into the airport to 6 planes per 20 minutes (e.g., because of arrival

capacity requirements or constraints on nearby airspace). We have considered three combinations

of the restriction strengths N1 and N2 on the flow that each achieve the requirement. For each

case, the mean backlog and distribution of backlogs due to each restriction have been found (Table

3.1 and Figure 3.4). As expected, the total backlog for the three cases are the same. A more

stringent restriction upstream reduces the backlog caused by the second restriction. This informs

us that designing a stringent restriction at a upstream region will succeed in moving the backlog

further upstream. A good choice would be to locate a upstream region with little traffic congestion

concern, and place all the backlog there. If such a region does not exist, we can split the backlog

carefully among some upstream regions (the Nc1 = 7, Nc2 = 6 case).

Nc1 Nc2 EB1 EB2

10 6 0.0542 2.7852

7 6 0.9380 1.9014

6 10 2.8394 0

Tab. 3.1: The mean backlog of the two regions for three different restriction settings.

3.3.5 Another Example: Which Flow Should Be Restricted?

The saturation abstraction also facilitates restriction design for other flow topologies. Here, we

illustrate through an example that the saturation model helps us to choose which of multiple flows

74

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Distribution of Backlogs, Upstream Restriction

Backlog

F
re

qu
en

cy
 o

f t
he

 b
ac

kl
og

Nc1=10, Nc2=6
Nc1=7, Nc2=6
Nc1=6, Nc2>6

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Distribution of Backlogs, Downstream Restriction

Backlog

F
re

qu
en

cy
 o

f t
he

 b
ac

kl
og

Nc1=10, Nc2=6
Nc1=7, Nc2=6

Fig. 3.4: Distribution of backlogs for three different combinations of restrictions. The two restrictions can

be carefully selected (Nc1 = 7, Nc2 = 6) to split the backlog between the two regions. These distributions

were computed using actual arrival data from January 2006.

entering a congested region to restrict.

Let us consider the effect of an unexpected or incorrectly-predicted stratus event at San Fran-

cisco airport (SFO). Stratus at SFO severely limits the arrival capacity of the airport, because only

one of two parallel runways can be used. In cases where stratus impacts the airport unexpectedly,

or where the time at which the stratus will clear is underestimated, the rate of already-airborne

traffic approaching the airport may exceed the the permitted traffic. If these approaching flows

are not restricted upstream, backlogs 10-15 aircraft in the terminal airspace may result at certain

times of day (see Figure 3.5). Given the complexity of the airspace around SFO, such a backlog can

unacceptably increase controller workloads, and hence upstream en route management is needed.

Aircraft traffic approaches SFO along several jet routes, along which restrictions can be placed.

Abstractly, we can roughly separate the traffic flow approaching SFO into Northbound, South-

bound, and Westbound traffic‡, where the Westbound flow is the major one (see Figure 3.5). If an

unexpected stratus event necessitates placement of a restriction upstream, the Oakland ARTCC in
‡ The frequency of Eastbound traffic is small enough to be negligible.

75

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

������
������
������
������

�������
�������
�������
�������

AAR=30/hr.
SFO,

Northbound
Flow

Flow (Major)
Westbound

Flow
Southbound

550 600 650 700 750 800 850 900 950 1000

0

5

10

15

Backlog in Terminal Area

Time (Minutes)

B
ac

kl
og

 (
P

la
ne

s)

Fig. 3.5: a) Abstract illustration of traffic flows entering SFO and arrival capacity during stratus event. b)

Backlog at SFO during stratus event assuming flows are not restricted upstream; backlog was computed

using actual arrival data from June 1, 2006.

coordination with the ATCSCC must decide which flow(s) to restrict.

The Markov chain analysis of the saturation restriction indicates that restriction of the major

aircraft flow is most effective in smoothing the downstream flow with minimum backlog and delay

(see Figure 3.6). In Figure 3.7, we have compared restriction of the major (Westbound) flow

with restriction of the Northbound flow, for traffic approaching SFO on a particular day (June 1,

2006). These experiments bear out that restriction of the major flow achieves sufficient decrease

of terminal-airspace backlog with lower upstream backlog and delay. Thus, from the perspective

of minimizing average delay and preventing upstream congestion, we find that restriction of the

major flow is most effective, as predicted by the saturation restriction model.

3.4 A Linear Abstraction

Linear abstractions of boundary restrictions are very appealing because explicit expressions of

flow statistics and cross-statistics can be developed and, in consequence, multiple restrictions can

76

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Decrease in standard deviation of crossing flow
M

ea
n

ba
ck

lo
g

Comparison of Restrictions on Major and Minor Flow

Minor flow (rate=5)
Major flow (rate=45)

Fig. 3.6: Comparison of restrictions on major and minor flows using the saturation model. We find that

restriction of the major flow is more effective in decreasing downstream flow variability, for a given backlog.

be designed to shape Sector counts. Here, we show that a linear model can capture the intrinsic

characteristics of flow restrictions, and yet is suited for multi-region analysis.

3.4.1 Model Description

Our discrete-time linear abstraction for a boundary restriction is shown in Figure 3.8. Between

times kΔT and (k + 1)ΔT , the number of aircraft allowed to cross the boundary e[k] is calculated

as a fraction (denoted by a) of the aircraft in the buffer at the previous time step plus a constant c.

In Section 3.4.3, we will argue that such a model can be obtained through a stochastic linearization

of the saturation model. For the linear model, we find it convenient to explicitly represent traffic

in downstream regions, since statistics of these traffic flows can be obtained. For simplicity, let us

assume that each aircraft takes a fixed number of time steps say L to cross the downstream region.

(This is often quite reasonable for an en route restriction, where each aircraft in the flow is usually

traveling at roughly the same speed.) In summary, the dynamics of the linear abstraction are the

following:

77

0 500 1000 1500
0

1

2

3

4

5

6
Backlog at Restriction

Time (minutes)

B
ac

kl
og

 (
pl

an
es

)

0 500 1000 1500
0

2

4

6

8

10

12

14

16

18

20
Backlog at Restriction

Time (minutes)

B
ac

kl
og

 (
pl

an
es

)

Fig. 3.7: Upstream backlog caused by restriction of the a) major flow and b) minor flow, for the purpose of

limiting backlog at SFO during stratus event to 9 aircraft.

Fig. 3.8: Linear boundary restriction scheme.

78

e[k] = ab[k − 1] + c (3.4)

b[k] = b[k − 1] + x[k] − e[k]

B[k] = b[k − 1] − e[k]

r[k] =
L∑

k=1

e[k − L + 1]

where b[k], B[k], and e[k] are as defined before, and r[k] is the number of aircraft in downstream

region, or downstream region count, at time k.

3.4.2 Analysis of the Linear Abstraction with Poisson Input

We are concerned with two measures that indicate the performance of a boundary restriction,

namely downstream region count and upstream backlog [86]. For a Poisson input, the dynamic

and steady state statistics of these measures can be calculated from the linear system represen-

tation, using the classical two-moment analysis of linear systems driven by random processes.

Here, let us present the steady-state mean and variances of the backlog, downstream region count,

and crossing flow, when the input process is Poisson with rate λ. The mean and variance of

the backlog B[k] caused by the restriction are EB = 1
a (λΔT − c) − λΔT and VB = (1−a)2

1−(1−a)2 λΔT ;

the mean(Ee) and variance (Ve) of the crossing flow are Ee = λΔT and Ve = a2

1−(1−a)2 λΔT ;

and the mean (Er) and variance (Vr) of the downstream region count are Er = LλΔT and

Vr =
{

La2

1−(1−a)2 + 2a2

1−(1−a)2

∑L−1
k=1 (L − k)(1 − a)k

}
λΔT .

Let us briefly interpret these results, from the perspective of designing restrictions. First, we

note that λΔT has to be smaller than C/L (where C is capacity of the downstream region) to

be able to reduce downstream congestion while not causing growing delay in the upstream. The

parameters a (a ≤ 1) and c are responsible for the downstream and upstream performance. A

79

decrease in a decreases the variance of the downstream region count, but increases the mean and

variance of backlog, as shown in Figure 3.9. An increase in c reduces the mean of the backlog, and

does not affect the statistics of the region count. Thus, based on these observations, it is tempting

to design a to make the variance of region count small enough, and then choose c to make the

mean backlog arbitrarily small. However, such a restriction is unachievable in practice, because

it requires movement of more aircraft into the downstream region than are in the buffer. For a

restriction to be achievable, we need c to be small, and in this case, the boundary restriction that

we proposed also reduces the downstream congestion with the cost of upstream backlog.

Specifically to obtain a good performance while using an achievable restriction, we need to

choose parameters a and c carefully. Let us consider the following two cases:

1) Large aircraft inflow. For large λ (λΔT close to C
L), the prevention of downstream capacity

violation is the focus of the design. Suppose no restriction is placed at the boundary; the variance

of crossing flow is λΔT , which is very likely to cause congestion. By placing a restriction with

small a, we can significantly reduce the variance of region count (in another words, smoothen the

aircraft flow). In this case, we can have an achievable restriction even with a moderate c, since the

number of buffered aircraft is large, and so the buffer will not be overdrawn even with moderate c.

2) Small aircraft inflow. For small λ (λ << C
LΔT), it is a rare event that downstream congestion

occurs. In this case, we can choose a to be large (close to 1) to reduce the backlog. Essentially in

this case, we are using little control, so c must approximately be 0.

The above analysis indicates that the linear restriction can be chosen to resemble the saturation

restriction, as shown in Figure 3.10. With small inflow λ, we design large a and small c to resemble

the linear-increasing region of a saturation restriction; with large λ, we design small a and moderate

c to resemble the constant region of the saturation restriction. Using this stochastic linearization,

80

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

The Dependence of V
r
 on Parameter a

a

V
r

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

The Dependence of V
b
 on Parameter a

a

V
b

Fig. 3.9: Dependence of downstream region count’s variance (Vr) and the backlog’s variance VB on the linear

model parameter a. Again, we see a tradeoff between backlog and downstream variance.

Fig. 3.10: Stochastic linearizations of saturation restriction.

we can approximate the saturation restriction with a linear abstraction, and hence gain significant

advantage in its tractability.

3.4.3 Restriction Design

The similarity between the linear model and the saturation model provides us with an approach

for restriction design. As developed in Section 3.4.2, the linear model allows the explicit evaluation

of downstream count and backlog. The parameters of the linear model a and c can be calculated

from Nc of the saturation model, so as to match the variance of the crossing flow and the mean

81

backlog for the two models (assuming a Poisson flow). We thus can use the linear model to check

the performance of a saturation model and hence of an actual restriction (e.g MINIT or MIT).

Therefore, using the linear abstraction, we can design restrictions to meet downstream region-count

goals.

As an example, we study the performance of some MINIT restrictions acting on a Poisson

inflow with rate 0.2 (see Table 3.2). Here, we assume that the discrete time interval is ΔT = 20

and that each airplane takes 3 time steps to cross the downstream region. This example shows

that the analysis of downstream region count variance permitted by the linear abstraction can help

us design appropriate MINIT restrictions. Also, the values of the parameters a and c in the table

verify that the linear restriction abstractly represents the saturation restriction: a is close to 1 and

c is close to 0 when the inflow λΔT is small compared to Nc; and a is close to 0 and c is moderate

when the inflow λΔT is comparative to Nc.

MINIT Nc EB Ve a c Vr

2 10 0.004 3.950 0.994 0.021 11.95

4 5 1.156 1.688 0.593 0.940 8.365

5 4 14.713 0.160 0.077 2.561 3.920

Tab. 3.2: Matching between the saturation model and linear model aids in MINIT restriction design for the

purpose of reducing variance in regional aircraft counts. Here, ΔT = 20, λ = 0.2, L = 3, λΔT = 4.

For the above case 2, trajectories of the region count and upstream backlog for the saturation

restriction and corresponding linear restriction are shown in Figure 3.11. The plots show that the

linear abstraction captures the characteristic behavior of restriction, that downstream variability

is reduced at the cost of upstream backlog.

82

0 20 40 60 80 100
−1

0

1

2

3

4

5
Upstream Backlog Comparison

Time step

U
ps

tr
ea

m
 b

ac
kl

og

Saturation restriction
Linear restriction with a=0.593 and c=0.940

0 20 40 60 80 100
2

4

6

8

10

12

14

16

18

20
Region Count Comparison

Time step

R
eg

io
n

co
un

t

No control
Saturation restriction
Linear restriction with a=0.593 and c=0.940

Fig. 3.11: Upstream backlog and downstream region count upon use of saturation restriction model and

corresponding linear restriction model, assuming mean inflow rate λΔT = 4, Nc = 5, and L = 3.

The simulation also indicates some limitations of the linear abstraction. Since we are matching

the two models only through two steady state statistical measures, details of downstream region

count and upstream backlog trajectories have some differences. The differences result from the

fact that the saturation restriction model permits all aircraft to come through at low traffic times,

while for the linear restriction, only a fraction of aircraft can come through even at times of low

traffic. However, since the two steady state statistical measures mostly capture the important

characteristics of flow under restriction, we believe this abstraction is often valid, which provides

us with a lot of flexibility in design.

3.4.4 Analysis of Multiple Restrictions

When considering design of multiple restrictions, the classical analysis of linear systems with

stochastic inputs allows us to easily determine the relationship between the linear restrictions and

the statistics of flows. Thus, using the equivalence between the saturation model and linear model,

the effect of multiple restrictions on statistics of flows in multiple regions is made analyzable.

Specifically, we suggest the following procedure for analyzing a network of m restrictions:

83

1) Transfer possible combinations of restrictions durations to corresponding saturation param-

eters.

2) Calculate the steady-state crossing flow variance and mean backlog for each Nci using the

standard Markov chain analysis given in Section 3.3.2.

3) For each restriction, match the two statistical measures with those of the linear restriction,

by properly choosing the values of ai, ci for each i (as described in Section 3.4.3).

4) Calculate flow statistics for the entire network (e.g., downstream region counts spreads) using

the linear models.

5) Design the proper MINIT restrictions that satisfy the performance requirements of the flow

statistics.

The performance analysis for multiple regions using the linear model is similar to that for a

single region. In particular, we can develop a system of difference equations for the evolution of

the network, and analyze system output statistics (backlog and region count statistics) with the

knowledge of input flow statistics, using the classical 2nd-moment analysis of a linear system driven

by a stochastic process [107]. We do not give a full formulation in the interest of space, and since

we will suggest an even simpler model for preliminary network TFM design.

Let us illustrate optimal restriction design using the linear abstraction, for the important case

of two regions traversed by a single major flow. As discussed above, for possible combinations of

MINIT restrictions at the two boundaries, we can calculate the corresponding saturation model

parameters Nc1 and Nc2, and then map these to linear restriction parameters a1, c1, a2 and c2

by equivalencing the statistics of flow variance and mean backlog. Thus, we obtain a model with

two linear restrictions driven by a single flow, as shown in Figure 3.12. Once the linear restriction

parameters have been obtained, the difference-equation description for the two-region case can be

84

Fig. 3.12: Linear boundary restriction model for a chain of regions.

systematically constructed, and in turn first- and second-order transient and steady-state statistics

for region counts, backlogs, and delays can be obtained. In the interest of space, we omit these

expressions. This example illustrates that the linear restriction 1) permits study of transient aspects

of the flow dynamics, and 2) allows not only analysis but also design of multiple restrictions.

Noting the ability of the linear model to evaluate the statistics of region count, we discuss further

the result stated in Section 3.3.3 that a single restriction placed before the first region in a chain

achieves better performance than two restrictions placed in front of both regions. Using the linear

abstraction, we can revisit the result, from the perspective of downstream region counts. In order

to compare the cases, we enumerate combinations of Nc1 and Nc2 and calculate the statistics of

the two downstream region counts and the upstream backlog using the linear model. This analysis

shows that using Nc1 ≥ Nc2 produces nearly the same total backlog as placing a single restriction

of strength equal to Nc2 in from of the first region, while significantly increasing the variance in the

number of aircraft in region 1 because of the backlog caused by restriction 2. The analysis confirms

that placing a single restriction at the front reduces downstream variability in aircraft counts.

In summary, the linear abstraction captures the intrinsic impact of a boundary restriction on

flows, and yet permits computation of steady-state and dynamic network flow statistics, including

regional aircraft count statistics. Because the linear model is amenable to analysis of dynamics, we

can also use it to evaluate coordinated TFM strategies under time-varying uncertainties including

85

weather events with uncertain duration/scope (e.g., fog at SFO). This direction will be pursued in

future work.

3.5 Algebraic Buffer Model and Network-wide Management Problem: Brief Introduction

The final model that we develop is a highly-abstracted algebraic description of a flow-management

restriction. This simplistic model is motivated by the need for systematic design of flow-management

strategies for an arbitrary network. Such design problems are in their essence decentralized con-

troller design problems (see [28] for background, and [5, 29] for our efforts), and remain extremely

challenging. We thus take the perspective here that such design is best achieved using the simplest

plausible model, with more accurate models subsequently being used to evaluate and refine the de-

sign. With this goal in mind, we develop a simple algebraic model for the dynamics of a restriction,

and describe its application in network-wide flow control design. In the interest of space, we only

overview the model and give a few results here.

3.5.1 The Algebraic Model for a Single Restriction

At the most abstract level, a restriction simply serves to decrease downstream variance at

the cost of upstream backlog. Very crudely, we can assume a simple linear dependence of the

downstream variability and upstream backlog in steady-state on the strength of the restriction;

such a linear dependence is roughly borne out by comparison of upstream backlog and downstream

variance in the saturation abstraction. Specifically, we use a single parameter a ∈ [0, 1] to describe

the strength of the restriction. Assuming an input process with rate λ and variability v, we model

the resulting steady-state backlog as B = γaλ (where γ is a scale parameter) and the variability of

the downstream flow as w = (1 − a)v.

86

3.5.2 Network Model

We use the highly abstracted algebraic model for a restriction to pose a network-wide flow-

management design problem. Our aim here is formulate the flow management problem in such a

way that graphical insights into the structure of good flow management designs can be developed

(for instance, to answer the question of whether it is better to restrict long traffic flows or cross

traffic). Also, as throughout this work, we focus on designing flows (rather than guiding individual

aircraft) using the network model, with the motivation that practical management strategies can

be designed in this way.

In this network model, we are concerned with the characteristics of aircraft traffic just before

and after ”boundaries” in the airspace, including waypoints between Sectors en route and control

points for arrival and departure traffic, see Figure 3.13). We assume that the network has n

boundaries in total, labeled 1, . . . , n. Each boundary i is assumed to have a mean flow rate λi

through it, which is not affected by the management scheme. We use the algebraic model for a

restriction from Section V.A to capture flow management at each boundary. That is, we represent

the variabilities of flows before and after each boundary i (as vi and wi, respectively), as well as the

backlog (Bi) caused by the boundary restriction. The variabilities are related as described above,

by wi = (1 − ai)vi, and the backlog is given by Bi = γaiλi. Here, the strength of the restriction

ai is a design parameter in some cases (e.g., for a MINIT restriction), and pre-set in other cases

(e.g., for a restriction representing the arrival capacity or rate in a terminal area). Let us define A

as the set of parameters ai that are designable.

We now have left to describe how the flows merge and split within regions (between boundaries)

and how they enter the airspace. By doing so, we will model the variability vi of the aircraft flow

approaching each boundary. Let us consider the following two cases:

87

���
���
���
���

���
���
���
��� ���

���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���������
���������
���������
���������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Restriction 3

Restriction 4

Restriction 1
(Takeoffs)

Restriction 2

Restriction 5
��
��
��
��

��
��
��
��

Flow

Boundary
Restriction

Fig. 3.13: Upper: Diagram of the network-wide flow-management model. Lower: An optimal restriction

topology for a network with five congested regions–dark shading indicates a strong restriction, and light

shading a weak one. Notice that the strongest restrictions are placed upstream of multiple congested regions.

1) For flows entering the airspace from the ground (take-off flows), the variability vi is well-

modeled as the variance of the number of arrivals in a Poisson process of rate λi during a unit

interval, i.e. the variance of a Poisson random variable with mean λi.

2) Flows approaching other boundaries are formed by splitting/merging of flows in a region

in the airspace (including flows entering the airspace from the ground, and flows that have passed

through other restrictions). Since these various flows that combine to form the approaching flow are

typically independent processes, it is sensible that the approaching flow’s variability is a combination

of the variabilities of these flows. In other words, we contend that the variability vi can abstractly

be written in the form vi =
∑n

j=1 wjgji, where the constants gji can be obtained by determining

how flows merge/split within the region. We notice that the gji specify a connection network for

restrictions: for a particular pair (i, j), gji > 0 implies that there is a flow from restriction j to

restriction i.

We note that our abstract model is similar in structure to the Eulerian Traffic Flow Model

developed in [108], but represents flow variabilities rather than densities and explicitly represents

88

design parameters.

The design problem of interest is to set the parameters ai ∈ A to get desirable variability in

flows or regional counts, while maintaining small backlogs (so that total counts in upstream regions

do not exceed thresholds, and aircraft are not subject to long delays). With just a little effort,

one can show that the variabilities decrease mononotonically as the restrictions are strengthened

(ai are increased), while the backlogs increase monotonically with ai. Thus, the design goal is to

appropriately trade off variability with backlog, by setting ai ∈ A. A natural aim is to choose ai

to optimize a performance measure that is based on the variabilities and backlogs. For instance, a

cost measure of interest might aim to capture the total impact of the control on the aircraft counts

in a couple critical regions, by combining the variabilities of flows in the region with backlogs

caused by restrictions on flows out of the region. Many such measures are well-approximated as

being quadratic in the backlogs Bi and variabilities Wi. We have addressed this design problem,

as one application of a comprehensive methodology for decentralized controller design, in [5]. Our

design methodology yields insight into the topology of the optimal restriction placement, and hence

provides a starting point for more refined designs. In the interest of space, we omit details from

this chapter, but illustrate the design using a small (five-region) example, see Figure 3.13.

3.6 Conclusion

Air traffic flow management in the NAS is complex and interrelated. We have taken the pre-

spective that good flow management strategies must be designed at a network level, by taking

into consideration traffic in multiple Centers in the presence of uncertainty and using realistic

management capabilities. In order to obtain optimal network-level flow management strategies,

we emphasize the full understanding of restrictions’ impact on generic traffic flows, with the aim

89

of developing restriction abstractions for analyzable network evaluation and optimization. In this

chapter, we examine four abstractions, namely, the detailed queueing model, the discrete-time sat-

uration model, the dynamic linear model, and the algebraic linear model. The queueing model

best approximates the details of restrictions, and permits some analysis of the flow statistics with

a Poisson inflow. We suggest the saturation restriction model as an approximation of the queueing

model with the ability of identifying both the upstream and downstream flow statistics of a single

restriction under a Poisson inflow. This model can be used to study restrictions in simple topolo-

gies, but lacks the scalability for a full network analysis. Furthermore, we introduce a stochastic

linearization of the saturation restriction model. This linearization has the advantage of 1) find-

ing explicit expressions for the flow and region-count statistics; 2) only requiring the statistics of

inflow rather than a Poisson inflow; and 3) permitting a network-level analysis and design. Fi-

nally, we develop a highly-abstracted algebraic linear model, and pose the problem of network-level

optimization of restrictions using this model.

90

4. SENSITIVITY OF NATIONAL AIRSPACE SYSTEM PERFORMANCE TO

DISTURBANCES: MODELING, IDENTIFICATION FROM DATA, AND USE IN

PLANNING

We study of the sensitivity of traffic flow management (TFM) performance in the United States

National Airspace System (NAS) to disturbances, such as weather-driven capacity/flow variations

and gradual changes in route usage. We make the argument that these sensitivities can be roughly

computed using queueing models for flow-management actions, and so postulate that performance

becomes much more sensitive to disturbance in congested airspace. Next, historical data on the

sensitivity of TFM performance to weather and other uncertainties is used to support the postulate

of increasing sensitivity with increased congestion. Finally, we put forth the idea that performance

sensitivity information can aid in planning TFM (e.g., planning airspace reconfiguration or aircraft

routing), by showing that optimally- or well- designed queue banks and queue networks have very

special sensitivity structures and hence that planning actions should aim to achieve these structures.

4.1 Introduction

The United States National Airspace System (NAS) is continuously subject to alteration. In

the short term, disturbances including convective and winter weather, runway/airport maintenance,

and security-related closures lead to changes in flows and capacities. Over a longer period, traffic

densities increase at disproportionate rates at different locations in the airspace, while improve-

91

ments/realignments in the traffic flow management (TFM) system modify both traffic patterns

and capacities. While each of these variations in flows or capacities may impact the NAS perfor-

mance, it is well understood that some have much more acute impact than others. For example,

Sridhar and coworker’s empirical tool for predicting delays from weather and traffic counts, the

weather-impacted traffic index (WITI), demonstrates that severe weather in particular regions (the

Northeast and Upper Midwest) have disproportionate effect on delays [109,110]. In the same vein,

improved flow-management strategies at critical airports or en route locations can significantly

reduce delays throughout the airspace [93].

The observed hyper-sensitivity of NAS performance to disturbances (for our purposes, capacity

and flow-density changes) at certain critical congested locations suggests that TFM planning should

focus on such hyper-sensitive locations. We contend that new strategies for flow management—

including local strategies such as airspace flow programs (e.g., [111]) and reconfiguration (e.g., [112]),

as well as radical global alterations such as use of free flight [113]—must ameliorate this hyper-

sensitivity to be effective. In particular, reducing hyper-sensitivity both allows the system to better

withstand disturbances, and as we shall argue in Section 4.4, helps reduce congestion and delays

overall. To implement these TFM strategies in the most effective way, we thus need to analyze

their impact on NAS performance-measure sensitivities (e.g., delay or backlog sensitivities). While

planning in the air traffic flow management system already implicitly accounts for sensitivities,

in the sense that locations that are perceived to be bottlenecks during e.g. inclement weather are

allocated more control resources, disturbance sensitivities have not been characterized in terms

of traffic parameters nor systematically used for airspace planning. The purpose of this chapter

is to introduce the notion of disturbance sensitivity in TFM planning. We do this in two steps.

1) We give a systematic methodology for modeling the sensitivity of NAS performance to distur-

92

bances/modifications and identifying these sensitivities from data. 2) We make the argument that

sensitivities can inform evaluation and design of various strategies, because sensitivities throughout

the NAS assume a special structure for optimal or high-performance designs.

To delineate the contributions to TFM planning made by our study, let us briefly connect it

to the existing literature. First, our study builds on recent efforts to characterize the impact of

weather on traffic flows and TFM performance [109,110,114,115]. From this evaluation standpoint,

our work shows that sensitivities are a means for understanding the impact of weather disturbances,

and gives a causation between congestion and disturbance sensitivity. Second, we notice that there

is an extensive literature on developing optimal strategies for traffic flow management, including

for such diverse tasks as airspace configuration, route planning (including under inclement weather

conditions), terminal and en-route flow restriction, and capacity reassignment (e.g., [93, 94, 111,

112,116–120]). While these various optimization algorithms each help in mitigating congestion, the

air traffic system is so complex and extensive that practical global strategies for flow management

are difficult to evaluate, let alone optimize. This is not least because characterization of useful

performance measures in the presence of weather and other uncertainties is complicated. Our effort

here is not meant to supplant the optimization tools developed in the literature, but rather to show

that sensitivities are useful measures that can help in testing and improving flow management

strategies.

The approach that we take for estimating the sensitivity of NAS performance measures to

disturbances is based on queueing theory. Queues have long been used to model numerous aspects

of the NAS (including departure and arrival processes, aspects of surface operations, en route flow

restriction, and long-term planning, among others) [86, 103, 104]. Here, we put forth that the

impact of disturbances on NAS performance can be characterized by considering the sensitivities

93

of queue performance measures to capacity and inflow changes. In turn, we further show that flow

management should be planned to equalize scaled sensitivities at the design locations in order to

optimize overall NAS sensitivity. We motivate and validate this approach, as follows:

• In Section 4.2, we review the use of queueing models in air traffic flow management, and

present the sensitivity analysis for the prototypical M/D/1 queues. In particular, we find the

sensitivity of backlogs/delays to congestion changes, showing that increased congestion leads

to much higher sensitivity to disturbances.

• In Section 4.3, we give evidence of the increased sensitivity to disturbances in high-congestion

locations using historical data as well as relevant literature, to validate the modeling approach.

This validation also clarifies how sensitivities can be inferred or compared from data.

• In Section 4.4, we consider planning of flow management strategies from the perspective of

the sensitivity analysis. Specifically, we argue that efforts that equalize sensitivities improve

NAS performance, and show how this idea can be used for such tasks as controller workload

redistribution and route re-planning.

4.2 The Queueing Model

Queueing models have been widely used to represent various en route and terminal area man-

agement restrictions acting on air traffic flows [86,103,104]. An advantage of using queueing models

is that they provide a systematic way to analyze traffic flow statistics and hence evaluate the per-

formance of management strategies, in the presence of uncertainties [95]. As an example, in [86],

the performance measures (e.g., average delay/backlog) of various en route TFM strategies (e.g.,

MIT/MINIT, Time-based Metering, and Intelligent Control) are compared assuming a typical Pois-

94

son flow. In that work, MINIT and MIT restrictions are modeled as M/D/1 queues (Poisson input,

deterministic single server). Furthermore, TFM actions on multiple Centers or NAS-wide can be

viewed as a network of queues. Very similar queueing models have been developed for arrival and

departure as well as surface traffic [103, 104]. In [2], we considered the design of both en route

and terminal area TFM restrictions in a multi-Center region to achieve desired performance. By

capturing the key features of the detailed queueing model in terms of flow statistics, we came up

with more abstracted models (e.g., saturation model, stochastic linear model, and algebraic linear

model), and by using these simplified models, we posed the NAS-wide TFM restriction design prob-

lem as a tractable constrained optimization problem. The artical [2] is especially important to our

current development, since it shows that the NAS is well-represented as a network of capacitated

queues.

In this chapter, we use the idea that the NAS can be viewed as a network of queues to inform

longer-range planning of traffic flows and flow management. To begin, we use the queueing model to

analyze the sensitivity of traffic delay/backlog to a disturbance, which alters congestion due to the

change of either traffic flow rate or capacity. The disturbance on congestion may be either positive

or negative: congestion may increase due to unexpected weather events; and it may decrease due

to effective planning, e.g., airport construction, route re-planning, improved management facilities,

and increased human or facility resources. Before pursuing the disturbance sensitivity analysis, let

us give a description of the prototypical queueing model used for our analysis.

4.2.1 Model Details

Broadly, we consider a stream of air traffic flow entering/leaving a region (e.g., entering a Sector,

at a fix, or arriving at an airport). A TFM action (e.g., an en route program such as an AFP or

95

spacing for arrivals at airports) incurs backlog and delay on aircraft, while shaping the crossing flow.

The TFM action can very often be modeled as a single-server queue: each incoming aircraft waits

in line at the boundary, and the first one in the waiting list is served for some time (e.g., passes

through the AFP region) and leaves the boundary. In particular, M/D/1 queues (deterministic

single sever queues) are widely used to model various TFM actions (en route, take-off, landing, taxi-

in, and taxi-out). This is because the actions generally ensure the time/distance difference between

two adjacent crossing aircraft, and this fixed difference can be reflected in modeling through a

deterministic constant serving time, with the assumption that each aircraft has a similar speed.

Because of the wide applicability of M/D/1 queueing models in modeling air traffic, we use this

model for our analysis here, though similar sensitivity computations can be obtained for other

queueing models.

Specifically, here we model the incoming air traffic flow as being a Poisson process with rate λ.

This memoryless stochastic representation is representative of many aggregate flows in the airspace,

in particular ones that are mixtures of several independent flows, see [86] and [82] for a justification.

Hence, in a time interval T , the distribution of the number of airplanes approaching is given by the

Poisson Probability Mass Function:

P (N = Nc) =
λTe−λT

Nc!
, Nc = 0, 1, 2, ... (4.1)

Moreover, we model a boundary action/restriction as having a (deterministic) service rate λc, or

in other words a serving time of 1
λc

(see Figure 4.1). This model for example could be used to

represent a 1
λc

-MINIT restriction or an airport arrival process with AAR of λc. We refer to λ and

λc as the inflow rate and restriction stength (or capacity) of the queue, respectively.

96

Fig. 4.1: Queueing Model

4.2.2 Sensitivity Analysis

Based on the M/D/1 queue representation, we can find the statistics of performance measures

such as backlog and delay imposed by a TFM action [86]. The mean backlog is

E(B) =
λ2

2λc(λc − λ)
(4.2)

and the mean delay is

E(D) =
λ

2λc(λc − λ)
. (4.3)

Now let us study the sensitivity of delay/backlog with respect to congestion. To do so, let us

define the congestion level ρ as the ratio λ
λc

. For inflow rates λ near the restriction rate λc, the

congestion level ρ is near 1, which represents a highly congested server. Meanwhile, ρ << 1 implies

that the region has a lot of resources (e.g., runways, airline spacing, human controllers) that are

not utilized.

The congestion level at a TFM restriction is subject to change due to unexpected weather events,

and due to re-organization of traffic flows/region capacities through planning. Specifically, in the

face of severe weather, the restriction λc is decreased to, say, λ̃c < λc due to the reduced capacity,

and hence the congestion level is increased by Δρ = λ
λc

− λ

λ̃c
. Right after the weather event, the

capacity returns to normal, but the inflow rate may be increased to, say, λ̃ due to the waiting delayed

97

aircraft. Hence the congestion level is increased by Δρ = λ̃−λ
λc

from its nominal value. Similarly,

congestion may increase simply because of increased traffic demand in a region. The congestion

level can also be decreased through remedial strategies. For instance, re-planning aircraft routes

helps to reduce the inflow rate to a boundary, say to λ̃, and hence the congestion level is changed by

Δρ = − λ̃−λ
λc

. Similarly, investment in airport runway expansion, reallocation of human controllers,

and improved TFM decision-making schemes can increase a region’s capacity, say to λ̃c, so that

congestion level is changed by Δρ = − λ
λc

+ λ

λ̃c
. The fact that all these different mechanisms change

congestion levels indicates the importance of finding the sensitivity of backlogs/delays to congestion.

The backlog’s sensitivity to congestion level can be obtained from Equation 4.2 by taking the

derivative of E(B) with respect to ρ. This yields a sensitivity SB(ρ) given by

SB(ρ) =
ρ(2 − ρ)
2(1 − ρ)2

. (4.4)

Equation 4.4 clearly demonstrates the nonlinearity of the sensitivity of the backlog. As seen from

Figure 4.2, the impact of a small disturbance on congestion level becomes more critical with the

increase of the congestion level. This fact suggests two important viewpoints:

• TFM actions or airspace with high congestion levels are more sensitive to unexpected weather

events. Much more backlog can be produced due to capacity variations in these sensitive

regions than in other regions. These backlogs can propagate from these sensitive regions to

the network and greatly worsen TFM performance NAS-wide.

• In terms of planning (e.g., route replanning, allocation of human controllers, facility improve-

ment, and runway expansion), allocating resources to the regions that have high congestion

levels will reduce the backlog more effectively. Hence, these sensitive regions that have higher

congestion levels are more critical in planning.

98

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

20

25

30

35

40

45

50

Congestion Level
B

ac
kl

og

Fig. 4.2: Sensitivity of backlog with respect to congestion level

We note that a very similar analysis can be used to determine sensitivity of average queueing

delays. Unlike the backlog, the queueing delay is not explicitly a function of the congestion ρ,

and so we find it more convenient to separately compute the sensitivity to inflow and restriction

rate changes. Specifically, the sensitivity to inflow rate changes is captured by SD(λ) = 1
2(λc−λ)2 ,

and the sensitivity to restriction rate changes is captured by SD(λc) = −λ(2λc−λ)
2λ2

c(λc−λ)2 . The sensitivity

analysis of delays provides insight into weather impact and planning in the same way as the analysis

of backlog.

4.3 Evidence for Congestion-Dependence of NAS Sensitivities

In this section, we give evidence supporting that the sensitivity of NAS performance to distur-

bances varies widely with the disturbance’s location, and more particularly that queueing models

predict the dependence of sensitivity on performance. This supporting evidence also clarifies how

sensitivities can be identified/compared from historical data, and related to congestion measures.

With the motivation that we are introducing a broad approach to planning, we pursue canonical

examples for various disturbances (e.g., weather-based capacity changes and evolution of flow densi-

99

ties) and locations (terminal-area and en route). We note that the examples are pursued in varying

levels of detail (in some cases, we give numerical verification of the queueing-theory predictions

from historical data, while in other cases only citing relevant qualitative results), but each gives

credence to the described sensitivity analysis.

Example 1: Terminal Area Delays due to Winter Weather

Severe weather—including convection, winter weather, stratus, and high winds—is the most

significant cause of delays in the NAS [85]. Here, as an example, we study the impact of winter

weather on departure delays. In particular, we characterize the sensitivity of delays at eight airports

in the Northeast corridor to capacity reductions due to winter weather in December 2007 and

January 2008, as well as in December 2006 and January 2007. We use the Aviation System

Performance Metrics (ASPM) database to perform this comparison. In particular, from the

ASPM data, we obtain historical Airport Acceptance Rates (AARs) and Airport Departure

Rates (ADRs) as well as actual traffic demands, and hence capacity utilization or congestion level.

We also obtain the average arrival and departure delays during Instrument Flight Conditions (IFC)

periods, which specify the inclement-weather periods at these airports. At the simplest level, we

wish to verify that the sensitivity to weather disturbances grows with the nominal congestion level

(the average congestion level during the three-month period). To this end, we have tabulated the

number of excessive delay days—i.e., days in which the average delay is more than twice the

average delay for the whole period—as well as the average congestion at each airport (Table 4.1).

As a second comparison, we have also tabulated the fraction of arriving airport delayed more than

one hour at each airport, as a measure of high sensitivity. We see that the number of excessive

delay days exhibits a strong dependence on the nominal congestion, with lightly congested airports

100

(Pittsburg, Providence) having only one or two excessive delay days and the busiest (New York’s

Laguardia and John F. Kennedy airports) having 10-12 excessive delay days. Similarly, the busiest

airports have a much larger fraction of highly-delayed aircraft. This tendency for the busiest

airports to have excessive delays verifies the higher sensitivity of queueing systems with higher

congestion levels.

Tab. 4.1: We tabulate excessive delay days (days in which the delay is twice the average for that terminal)

and congestion at Airports in the Northeast and Upper Midwest, during December 2007 and January 2008.

We also list the fractions of aircraft arriving at each airport that were delayed more than one hour During

December 2006 and January 2007. High congestion airports are more likely to have excessive delays.

Airport % Congestion Excessive Delay Days High-Delay Fraction

PIT 13 2 0.048

PVD 16 1 —

IAD 35 4 0.053

BOS 42 12 0.039

BWI 44 7 0.028

DCA 45 6 0.035

MDW 46 7 0.042

PHL 55 12 0.072

EWR 56 8 0.11

ORD 58 10 0.084

LGA 58 12 0.081

JFK 61 12 0.080

101

We can potentially obtain a more refined characterization of the sensitivity to winter weather,

by accounting for variations in weather severity at the airports. Of note, Boston’s Logan airport

(BOS) appears to have an unusally high number of excessive delay days; it is plausible that this

excess is caused by a higher severity in the weather at BOS as compared to the other terminals. To

check whether this is the case, we have compared the reduction in capacity (ADR/AAR) at BOS

during IFC periods as compared to other terminals with similar nominal congestion (e.g., IAD).

As a preliminary analysis, we have compared the variability in the capacity at BOS as compared

to IAD, and find that the spread is indeed larger at BOS.

Finally, as a more detailed study, we have plotted daily average delays against congestion on

that day (see Figure 4.3), for two airports (Washington’ Dulles Airport, IAD, which has moderate

congestion; and Providence Airport, PVD, which has low congestion). Linear regression of the

delay with respect to the congestion is also performed∗. We reach two conclusions from this

detailed survey: first, it lends credence to the argument that a queueing mechanism underlies the

delay sensitivity of the airports, and 2) it permits detailed comparison of each airport’s sensitivity.

We indeed observe much higher sensitivity at IAD.

Example 2: Effect of Disturbances on En Route Delays

Weather events also engender en route delays, by forcing re-routing of aircraft along less opti-

mal routes, restriction of flows using AFPs and MIT/MINIT restrictions, and ground-based flow

management. As with terminal-area delays, we would expect en route delays to be more sensitive

to weather in highly congested areas.

The variable sensitivity of NAS-wide total delay (i.e., the total of both airborne and terminal
∗ We have checked that the regressions meet the criterion of the F -test, to ensure that sufficient data is present.

102

Fig. 4.3: The dependence of the average aircraft delay on the daily congestion level is shown for two airports.

We notice that the average delay exhibits a weak dependence on the congestion level (the regression line

is E(D) = 0.276ρ + 22.2) for the low congestion airport, PVD. Meanwhile, there is a stronger dependence

(E(D) = 1.168ρ− 9.334) for the moderate-congestion airport, IAD.

103

area delay, for all flight legs during a period), is borne out by the numerical delay-prediction tool of

Sridhar and coworkers [109,110]. In particular, this empirical tool regresses total delay in terms of

a weather-coverage- and traffic-density- based measure known as the weather-impacted traffic

index (WITI). What is important to us here is that WITI scores for certain critical regions (in

particular, the Northeast and Upper Midwest) contribute disproportionately to the total delay in

the regression. On the highest delay days, the WITI for these critical regions are the ones that

are exaggerated. In other words, the regression coefficients for these terms are larger than for

other WITI regressors, suggesting that the sensitivity of the NAS performance (in terms of per-

aircraft delays) to disturbances in these regions exceeds that of other regions. Noting that the

critical regions are the ones with highest congestion, the study of regional WITI matches with the

prediction of increased sensitivity obtained through queueing models. In this sense, our study can

be viewed as giving a causation for the dependency of total delay on WITI and regional WITI

scores.

To give further evidence for this higher sensitivity, we compare the en route average aircraft

delays for two city pairs over three months (Nov. 2007 through Jan. 2008) using ASPM data.

In particular, we compare en route delays for DFW-to-IAD flights, which do not pass through

the highly congested Northeast corridor, and for DFW-to-BOS flights, which do pass through the

Northeast corridor. We find that the standard deviation in an aircraft’s en route delay is larger by

roughly a factor of 1.5 for DFW-to-BOS flights even though the mean delays are similar, indicating

the higher sensitivity to disturbances of the flights passing through the congested area.

104

Example 3: Sensitivity of Delays to Increased Traffic

The higher sensitivity of NAS performance measures at high-congestion locations is also reflected

in the dependence of delays on long-term changes in traffic demands. Here, we study the dependence

of average aircraft delay on traffic demand for nine airports with varying congestion levels, over

a span of 15 years. In particular, we have studied aircraft arrivals into 9 terminals of varying

congestion levels. For each terminal, we have regressed the annual average delay for arriving

aircraft with respect to the total arrival traffic. As expected, the five congested terminals (JFK,

LAX, ORD, PHL, and SFO) have a strong dependence of delay on traffic demand, while the

remaining terminals (MSP, PHX, SEA, and SLC) have much weaker dependence, see Table 4.2.

4.4 Using the Sensitivity Analysis for Planning

In Sections 4.1, 4.2, and 4.3, we have verified that NAS performance is acutely sensitive to some

disturbances and much less so to others. Fundamentally, we expect that knowledge of sensitivities

may help us in planning and evaluation of new TFM strategies, in that high sensitivities are

indicative of large delays and also are of concern themselves. In this section, we give a preliminary

study on the use of sensitivity information in planning air traffic flow management strategies.

Specifically, we first show that the optimal flow management schemes for banks/networks of queues

are ones that equalize sensitivities to local disturbances in a certain scaled sense. We then use this

insight to inform planning of various traffic flow management strategies, including reconfiguration

and controller-redistribution ones. We find it most convenient to develop these design results in

two steps: first, for banks of non-interacting queues (which may for instance represent multiple

airports, or en route congestion points with largely uncorrelated flows); and second, for a network

of queues with routing among them.

105

Tab. 4.2: For nine airports, we regress the average delay incurred on the aircraft entering the airport in

terms of the percent change in annual traffic demand. The slopes of the regression lines are shown in the

table. We note that the five highly congested airports (LAX,SFO,ORD,PHL,JFK) have strong dependences

while the less congested ones (PHX, MSP, SEA, SLC) have much weaker dependences.

Airport Regression Slope

JFK 0.88

LAX 1.00

MSP 0.17

ORD 2.26

PHL 1.70

PHX -0.59

SEA 0.38

SFO 1.19

SLC 0.13

A couple further notes about the ensuing development are needed. First, we note that our

analysis is focused on optimizing total backlogs, however a very similar analysis can be used to

minimize delays. Second, we stress that our methodology is not focused on providing precise

numerical results on optimal strategies, but instead on informing various planning tasks through

use of sensitivity information.

106

4.4.1 Planning for a Bank of Queues

Here we consider a bank of n queues, i.e. a set of n queues that are operating on their own, or

in other words do not have traffic flowing between them (see Figure 4.4). We assume an inflow rate

to queue i equal to λi; when we are designing inflows, we shall assume that these flows originate

from a single major flow of rate λ. Each queue i’s restriction strength is denoted as λci . We define

the congestion level related to queue i as ρi = λi
λci

, hence the backlog of queue i is E(Bi) = ρ2
i

2(1−ρi)
,

and sensitivity is SB(ρi) = ρi(2−ρi)
2(1−ρi)2

according to the development in the previous section. We give

the designs that minimize the total backlog using two planning schemes: 1) reconfiguration of the

flows; and 2) human-controller redistribution.

Fig. 4.4: Bank of queues

Reconfiguration and Route Re-Planning

Reconfiguration—or redrawing of region boundaries to ameliorate human-controller workload

concerns and resulting congestion—is an area of intense current research [112,118–120]. Although

reconfiguration has been widely studied, however, a key difficulty lies in choosing measures to

optimize. From a planning standpoint, our approach to reconfiguration may be valuable for reducing

delays and sensitivity to adverse weather. In similar fashion, re-planning of routes may mitigate

107

congestion and delay. From our perspective, both problems resolve to that of reconfiguring the

inflows to reduce backlogs. Specifically, we consider the following optimization problem:

Design Problem 1 Consider a bank of n queues, as shown in Figure 4.4. Each queue i has a fixed

restriction strength λci . We assign the inflow rate λi for each queue i so that the total backlog of

the queues
∑n

i=1 E(Bi) is minimized, subject to the following constraints:

• ∑n
i=1 λi = λ, where the total inflow rate λ is positive, and less than

∑n
i=1 λci .

• λi ≥ 0.

We refer to the optimal inflow rate in queue i as λ∗
i , and the corresponding congestion as ρ∗i .

We show in Theorem 4.1 that the sensitivities of the queues’ backlogs have a simple relationship

at the optimum:

Theorem 4.1. Consider Design Problem 1. The optimal inflow rates λ∗
i satisfy the following

condition: there exists a constant C such that SB(ρ∗i)
λci

= C for all i.

Proof: This result follows directly from constrained optimization using Lagrange multipliers

[71]. Specifically, the Lagrangian associated with the objective function and constraints is L =∑n
i=1 E(Bi) + C(λ − ∑n

i=1 λi) + uiλi, where the constants C and ui are nonnegative. Taking

derivatives of the Lagrangian with respect to C, λi, and ui for all i, we obtain:

SB(ρ∗i)
λci

− C + ui = 0 ∀i (4.5)

n∑
i=1

λ∗
i = λ

uiλ
∗
i = 0 ∀i

108

Assuming ui = 0 and solving the first two equations in Equation 4.5, we obtain λ∗
i > 0 for all i.

From convexity, this solution is the global optimum. Thus, we see that SB(ρ∗i)
λci

= C for all i. �

This theorem shows that for the optimal flow allocation, the ratio between sensitivity and re-

striction strength is common among all queues. The proof of the theorem also gives the design of

the optimal flow allocation: by rearranging the conditions given in the theorem together with the

first constraint in the problem formulation, we can obtain the optimal flow allocation. The details

of the algebra are unimportant for our purposes here.

The optimal design presented in Theorem 4.1 informs planning of reconfiguration and route-

selection strategies in several ways:

1) The design is based on useful measures of performance (i.e., small backlog or delay), and

hence permits design and evaluation with these measures in mind. Of particular interest,

for a particular plan, we can ckeck the sensitivity to restriction-strength (capacity) ratio

for each congestion point, and so decide whether the performance is near-optimal. Such an

approach would be helpful e.g. in evaluating the configuration design in [112], in the case

where capacities vary throughout the airspace.

2) The design result suggest a data-driven methodology for iteratively improving reconfiguration

strategies. In particular, from historical data, we can obtain sensitivities of backlogs/delays

on various routes, as well as the capacities of the congested points along the routes. Our

design shows that inflows should be reduced through route selection or reconfiguration at

locations where the sensitivity-to-capacity ratio is high.

109

Controller Redistribution

Assuming that the flow rates are fixed, we can also redistribute control resources to minimize

the total backlog. For instance, for en route flow restriction, human controllers can be re-assigned

to mitigate capacity concerns. The problem can be formulated as follows:

Design Problem 2 Consider a bank of n queues, as shown in Figure 4.4. Each queue i has an

approaching Poisson flow with fixed rate λi. We assign restriction strength λci to queue i for

each i, so that the total backlog of the queues
∑n

i=1 E(Bi) is minimized, subject to the following

constraints:

• ∑n
i=1 λci = λc (i.e., the total capacity resource is fixed). Here, the constant λc is greater than∑
i λi;

• λci ≥ λi.

We denote the optimal restriction strengths (capacities) by λ∗
ci

, and the corresponding congestion

by ρ∗i . Theorem 4.2 gives the structural condition of the optimal controller allocation.

Theorem 4.2. Consider Design Problem 2. The optimal restriction strengths λ∗
ci

satisfy the fol-

lowing condition: there exists a constant C such that SB(ρ∗i)ρ∗i
λc∗

i

= C for all i.

Proof: The proof is very similar to the proof of Theorem 4.1 and hence is omitted.

Similarly to the flow reconfiguration, for the optimal controller redistribution, the backlog sen-

sitivities of each queue are equal in a scaled sense. To obtain the optimal controller allocation, we

can solve the condition given in Theorem 4.2 together with the first constraint given in the problem

formulation.

110

We note that the re-distribution result also shows how new controller resources should be

assigned, in particular to reduce SB(ρi)ρi

λci
where this measure is large. This observation may be

especially helpful for planning improvement at airports, in that airports with critical need for

improvement can be identified.

4.4.2 Planning for an Interacting Network of Queues

Finally, we study design of inflow rates for an acyclic network of queues, with the motivation

of gaining insight into route-planning in a more general way. In particular, we characterize the

minimum backlog design in terms of backlog sensitivities along paths in the network. We discuss

application this analysis to re-allocation of routes in the NAS, either for the purpose of enacting

long-term improvements in performance or for planning re-routes for common adverse-weather or

high-traffic conditions. We again stress that we do not seek to capture all the details involved in

route planning, but rather give a rubrik for what high-performance routing strategies are, for the

purpose of planning.

The Network Model

We consider a network of queues that represent flows along multiple routes between one traffic

source and one destination (Figure 4.5). Specifically, we consider a network of n restrictions or

queues, labeled 1, . . . , n, with traffic of total flow rate λ approaching Queue 1, and leaving the

network from Queue n. We assume that traffic flow is permitted along the edges in a directed

acyclic graph, i.e. that there are a set of ordered Queue pairs {i, j} (where WLOG i < j) such that

traffic flow is permitted from Queue i to Queue j. We refer to these Queue pairs as flow edges in

the network, and refer to the set of such edges E as the flow edge set. Without loss of generality,

we assume that there is a flow path (a path of flow edges) from Queue 1 to each other queue, and

111

similarly that there is a flow path from each queue to Queue n. We find it convenient to diagram

the queueing network, see Figure 4.5. We note that an arrow is drawn from Queue i to Queue j in

the diagram if and only if flow is permitted between the queues.

Fig. 4.5: Network of queues

We assume that Queue i has a strength or capacity λCi for the traffic between this source

and destination. We assume that, for any set of queues whose removal separates the network into

multiple pieces, the total capacity is at least λ: this requirement is necessary to permit the entire

flow to traverse the network without backlog growing in time.

Meanwhile, we assume that the traffic flow from Queue i to Queue j is a Poisson process of rate

λij . If there is a flow edge between Queue i and Queue j, then the flow rate λij is a nonnegative

constant. If there is not a flow edge between the queues, then λij = 0.

We enforce that total flow into each queue is equal to the total flow out of the queue, i.e.

∑
j �=1

λ1j = λ

∑
j �=i

λij =
∑
j �=i

λji, i = 2, . . . , n − 1

∑
j �=n

λjn = λ

The reader will note that we have made the simplifying assumption that the flow into each Queue

i is Poisson; this assumption is often appropriate in air traffic management applications given that

112

mixing of flows occurs between the bottleneck queues, see [82, 86] for details. We refer the reader

to [2] for more accurate queueing network models, which explicitly capture the effect of smoothing

at one restriction on delays/backlogs at the next. We are currently pursuing routing design for one

such queueing network model, namely a network of M/M/1 queues. However, these models are not

critically needed for the planning tasks pursued here, so we defer a treatment to future work.

We refer to the expected backlog at Queue i by E(Bi), and note that the expected backlog is

given by SB(ρi) = ρi(2−ρi)
2(1−ρi)2

, where now ρi =
∑

j �=i λij

λCi
. We notice that the sensitivities of E(Bi) to

each capacity and flow rate can be computed, as in the proofs of Theorems 4.1 and 4.2.

Holistically, we refer to the model as the traffic flow queueing network.

Flow Rate Design and its Application to Route Selection

Several design problems may be of interest for the traffic flow queueing network. Specifically,

as with the design for banks of queues, both capacity selection and flow rate selection can be

pursued. However, noting that the inflows to each queue are assumed to be Poisson regardless of

the dynamics of upstream queues, we immediately see that the capacity design problem resolves to

corresponding problem for a bank of queues, and so no further development is needed. Thus, we

focus here on the problem of designing flow rates between queues, to reduce backlog.

Specifically, the design problem that we address is to select the flow rates λij for {i, j} in the

flow edge set E, so as to minimize the total expected backlog
∑n

i=1 E(Bi). Here, we note that

the nonnegative rates λij are constrained to satisfy
∑n

i=1 λij ≤ λCi. We refer to this task as the

flow-rate design problem. We use the notation λ∗
ij for the optimal flow rates, and refer to this

design as the optimal flow assignment. We use the notation ρ∗i for the inflow to Queue i for the

optimal flow assignment.

113

As with the design for banks of queues, it turns out that we can learn much about the optimal

flow assignment by considering the sensitivities of the backlogs to the flow rates. In particular,

we find that the backlog sensitivities satisfy a set of insightful conditions, as detailed in the below

theorem. Before presenting the theorem, we find it convenient to define a sensitivity notion for a

path. In particular, consider a path {j1, j2, . . . , jq} from Queue j1 = i to Queue jq = n. We define

the total backlog sensitivity (TBS) for the path as follows:

TBS =
q∑

r=2

SB(ρjr)
1

λC,jr

. (4.6)

That is, the TBS can be computed by finding the sensitivity of the backlog to the congestion

along each path edge, scaling each sensitivity by the queue capacity, and summing over the edges.

Conceptually, the TBS is an aggregate measure for the sensitivity of the backlog to changes in flows

along the path.

We are now ready to present the theorem on sensitivities for the optimal solution:

Theorem 4.3. A flow assignment is optimal if and only if the total backlog sensitivity (TBS) along

all paths from Queue 1 to Queue n are the same.

In words, a flow assignment is optimal only if the TBSs along all paths from each queue to

the destination are equalized; conceptually, such an assignment achieves an extremum since the

backlog is insensitive any differential rearrangement of flow rates (subject to the flow conservation

constraints). The fact that the optimal is in fact a minimum follows naturally from the convexity of

the cost. Since the analysis is quite similar to that for a bank of queues, we omit the detailed proof.

Again, we note that the optimal allocation can be obtained straightforwardly from the sensitivity

conditions.

114

The above result on the structure of optimal flow allocations is instructive for planning of routes,

either for overall improvement of NAS performance or for particular common weather scenarios.

In either case, the optimization result shows the following: when multiple routes from a source

to a destination are available, a good route selection is one for which the total backlog sensitivity

(TBS) along each path is similar. This observation can be used for route planning, as follows:

from historical data, estimates of TBSs can be obtained; in turn, the sensitivities can be used to

obtain improved route selections. This approach may be useful, for instance, in splitting flows

among multiple routes in high-congestion or inclement-weather scenarios, see [116] for background

on probabilistic planning in these circumstances.

Let us conclude our development by pointing out a couple connections and future directions of

the routing-design study:

1) The result presented here is closely connected with our ongoing efforts to design controllers

and/or graphs to shape an associated dynamics (e.g., [1, 2, 5]). These various efforts have

the common theme that we identify the structure of well-designed graphs or networks, and

hence compute designs that achieve high performance. Our other studies have focused on

deterministic linear network dynamics; this effort is a step toward applying such structural

design strategies to queueing networks.

2) Two enrichments of the presented design strategy are especially important. First, our rout-

ing design does not yet account for nominal differences in cost (e.g., delay, fuel cost) among

the various options. Such differences are often present, and so making the tradeoff between

nominal-cost differences and queueing costs is important. Second, our design does not explic-

itly try to reduce backlog sensitivity but rather only the backlog itself (though the resulting

optimum is related to the sensitivities). In situations where disturbances are common, reduc-

115

ing the sensitivies themselves may be important.

116

5. A NETWORK MODEL FOR ACTIVITY-DEPENDENT SLEEP REGULATION

We develop and characterize a dynamical network model for activity-dependent sleep regulation.

Specifically, in accordance with the activity-dependent theory for sleep, we view organism sleep as

emerging from the local sleep states of functional units known as cortical columns; these local sleep

states evolve through integration of local activity inputs, loose couplings with neighboring cortical

columns, and global regulation (e.g. by the circadian clock). We model these cortical columns as

coupled or networked activity-integrators that transition between sleep and waking states based on

thresholds on the total activity. The model dynamics for three canonical experiments (which we

have studied both through simulation and system-theoretic analysis) match with experimentally-

observed characteristics of the cortical-column network. Most notably, assuming connectedness of

the network graph, our model predicts the recovery of the columns to a synchronized state upon

temporary overstimulation of a single column and/or randomization of the initial sleep and activity-

integration states. In analogy with other models for networked oscillators, our model also predicts

the possibility for such phenomena as mode-locking.

5.1 Introduction

Sleep is a fundamental process in human and animal life, that comprehensively impacts both

our day-to-day existence and our long-term growth and development. The fundamental importance

of sleep has fostered extensive study on its neurological characteristics and mechanisms (e.g., [121,

117

122]). This research has been complemented by efforts to mathematically model the sleep-wake

cycle as a homeostatic (regulation) process, with the aim of giving predictive descriptions of sleep

dynamics (e.g., [123–125]). In the activity-dependent or use-dependent theory for sleep [122, 126],

the fundamental units that transition between sleep and wake states (as reflected by functional

changes in these units) are groups of tightly-connected neurons in the cortex known as cortical

columns. The biochemical and bioelectrical mechanisms underlying the sleep/wake transition in

each cortical column are modulated by local activity, i.e. by electrical and biochemical drives that

project a particular function (e.g., the twitching of a particular whisker on a rat) onto an individual

cortical column. The transition is also modulated by loose network couplings among the columns,

and by sleep regulatory circuitry. Our aim here is to develop a mathematical model for this network

of cortical columns, that captures the fundamentals of the activity-dependent mechanism of sleep.

It is worthwhile to connect our modeling efforts with the existing models concerned with sleep

regulation. Sleep has been extensively modeled at the behavioral level (e.g., [123]). These sim-

ple models capture 1) the projection of the circadian rhythm into sleep dynamics and 2) some

homeostatic regulation of the sleep state, at a whole-organism level. However these models do not

capture either the spatial structure or the biochemical/bioelectrical pathways underlying activity-

dependent sleep. Cortical columns (and more generally neuronal assemblies) are well-known to be

basic building blocks for sleep and memory, and there has been some interest in modeling their

dynamics. In particular, a variation of the classical Wilson-Cowan model has been shown to display

the periodic responses characteristic of excitatory/inhibitory processes in cortical columns [127].

Recently, a more complicated model for cortical column dynamics has been developed, that ex-

plicitly codes the notion of a sleep state as well as the activity-dependent evolution of assembly

dynamics [128]. While these models represent the regulatory role played by cortical columns, they

118

cannot capture the translation of local activity (activity at one or a small number columns) into a

global sleep state. Also of interest, network models (often comprising excitatory/inhibitory agents

as components) have been used to capture a variety of neuronal dynamics in e.g. the thalamus

and subthalamic nucleus including in sleep regulatory circuitry (e.g., [129–132]). In this direction,

Hill and Tononi have developed a circuit-level model of the thalamocortical system, that permits

examination (through simulation) of the nominal sleep-wake transition and the slow-wave sleep

dynamics [133]. Massimini and coworkers have put forth and tested the hypothesis that the net-

work connectivity changes between waking, REM, and NREM sleep, respectively; their effort can

be viewed as an explicit modeling of the network topology’s evolution, and hence complements our

efforts to model overlayed dynamics [134]. The evolution of synaptic weights (connectivities) is

also explored using a mean-field analysis of a network model, in [135]. Meanwhile, cortical activity

has also been represented using continuum models rather than networks with discrete elements, see

e.g. [136]. On the other hand, activity-dependence has also recently been considered in the sleep

modeling literature [137], though only at the level of detail of a two-process model. The current

work advances the existing modeling efforts by making explicit the role played by the cortex in

sleep and its regulation, in particular by 1) making explicit the incorporation of local activity in

sleep regulation through the cortical columns and 2) capturing networked interactions among the

columns.

The biochemical and electrical mechanisms of sleep include the processes by which local activ-

ity, coupling of neighboring cortical columns, and regulatory circuits modulate sleep regulatory

substances (SRSs), as well as the mechanisms by which accumulated SRSs cause the functional

changes associated with sleep-state change. Here, we abstractly view each column’s intricate dy-

namics as an activity-integrator that modulates a functional sleep state; using this abstraction,

119

we represent the cortical columns as a network of activity-integrators with associated functional

states, that further interact through loose coupling and through regulatory circuitry. With this

coarser or network-level model, we are able to study how the local dynamics of the columns can

foster formation of a global sleep state.

Specifically, our modeling efforts contribute to ongoing research in the following ways:

1) From the perspective of sleep research, our network model captures analytically the com-

bined roles of local activity inputs, coupling between cortical columns, and regulatory circuitry in

formation and evolution of a global sleep state. As such, it is depictive of the activity-based theory

for sleep developed by Krueger and co-workers [122,126], and permits exploration of the sleep-state

dynamics under the premises of the theory. While our primary aim here is to give a plausible

description and analysis of activity-dependent sleep, the model holds promise in the long run as a

tool for prediction and design, for instance in characterizing the effects of sleep deprivation and/or

designing drugs that impact regulation.

2) In that we study regulatory dynamics defined on a graph, our work also explicitly connects

sleep modeling with the ongoing effort to model and in turn control dynamical networks, e.g.

[1, 25, 140]. We note here that the activity-dependent theory for sleep regulation matches the

developing paradigm for control in modern engineered networks, wherein highly limited agents

interact through localized network couplings (with possibly rather complex or arbitrary coupling

topologies) to achieve a global regulation task (see, e.g., the overviews [141,142] or the articles [68,

143]). Within this broad domain, our efforts are especially connected with ongoing research in both

the physics and electrical engineering communities on synchronization or agreement in oscillator

networks (see e.g [144–147] in the physics and natural-sciences literature, and [140, 148–153] in

the engineering community). From this perspective, the key contributions of the work are the

120

1) introduction and characterization a general network model for synchronization with external

inputs, and 2) the study of a novel nonlinear dynamic model for oscillators.

The chapter is organized as follows. In Section 5.2, we motivate and formulate the network

model. Section 5.3 characterizes the model and illustrates its predictive capability, through both

simulation and analysis.

5.2 Network Model Formulation

In this section, we propose a network model for the interaction of cortical columns, which shows

promise in predicting activity-dependent regulation of sleep. Specifically, we represent individual

cortical columns as very simple but interacting activity-based regulators, and explore the role

played by the network interactions in translating local activity inputs as well as global regulatory-

circuit signals into whole-animal sleep. Our model captures both the spatial structure and temporal

characteristics of sleep identified in the activity-dependent theory [122,126].

In the model that we propose, the interactions among the cortical columns are critical to the

rapid formation of a global sleep state. This paradigm of local interactions leading to a global

state has been of considerable interest to the complex-systems modeling community (e.g., [140,

157]) as well as the network-control community (e.g., [1, 25, 141]). A key feature of the networks

considered in this literature is that they are built of agents with very simple internal dynamics,

but quite complicated interactions that lead to interesting global dynamics. We note that the

model developed here is of the same form, and hence indicates a new application for this complex

networks theory. Also of interest, the model described here can be viewed as having an intrinsic

mechanism for the emergence of a global state, but complementarily also can be viewed as using

both external inputs and feedback through network coupling to achieve regulation. In this sense,

121

this study connects the modeling paradigm pursued in the complex-system community with the

regulator-design paradigm of the network-control community.

The following are the key points of the activity-dependent theory for sleep used in model

development [122,126]. During awake periods, individual cortical columns integrate (store) activity

information (or energy for activity relative to available energy) through biochemical and electrical

means, in entities known as sleep regulatory substances; when this integrated activity becomes

large enough, the cortical column transitions to a sleep state (a state exhibiting unresponsiveness

to sensory stimuli, certain increases in synaptic plasticity, etc). It is postulated that the transition

to a sleep state is also impacted by spatially-close cortical columns that are already in a sleep state.

These columns tend to drag the awake column toward the sleep state through biochemical and

electrical means, and hence foster the formation of a global sleep state. Similarly, a cortical column

in the sleep state can be viewed as containing processes that gradually return to a waking state

(either through inhibition of the processes inducing sleep, or through other integrative processes);

again, nearby columns that are in an awake state have an impact. Besides the activity-dependent

dynamics and couplings, sub-cortical global regulatory circuits impose a circadian rhythm and also

permits rapid waking under stimulus.

Based on the above description, we abstractly model each cortical column using a sleep state

variable and an activity variable, which evolve in time due to integration of local activity, as well

as interactions with other columns and global regulation. Precisely, let us consider a network of n

cortical columns. Each cortical column i is described by a binary sleep state variable Si(t), where

Si(t) = 1 indicates that the column is in the sleep state, while Si(t) = 0 indicates a wake state. We

also associate a continuous-valued total activity variable (or simply activity variable in short)

xi(t) with the cortical column i, which indicates the total activity since waking when the column

122

is in the wake state, and indicates the total restoration effort in the sleep state.

In addition to the internal variables for each column, the model comprises a network topology

describing the strengths of interactions between cortical columns. In particular, for each pair of

cortical columns i and j, we use a fixed nonnegative weight wij to capture the strength of the effect

of cortical column i on cortical column j. We find it convenient to assemble the weights into a

(possibly asymmetric) topology matrix W
�
= [wij]. Also, we draw a network graph comprising n

vertices labeled 1, . . . , n, with an edge drawn from i to j if and only if wij > 0. One can postulate

several plausible formative odels for the network topology; however, the fundamental observed

behaviors of the model are not dependent on the specifics of the network topology beyond its

connectedness, so we leave the representation general.

We also assume the existence of a global clock signal, which eventually enforces (under normal

activity conditions) that the cortical columns not only synchronize but transition between the sleep

state and wake state at environmentally-appropriate times, i.e. according to a circadian rhythm.

In humans, the clock signal is maintained by the suprachiasmatic nuclei (SCN), and distributed

globally through neuronal connections, see e.g. [125] for details and modeling methods. Here, we

denote the scalar clock signal by C(t), where C(t) = 1 indicates that the organism should be awake,

C(t) = −1 indicates that sleep is desirable, and C(t) between −1 and 1 indicates weaker proclivities

for waking/sleep.

Now we are ready to describe the evolution of the sleep state variables and the activity variables.

Broadly, the activity variable gradually increases for each column during awake periods (depending

on activity at the column), and gradually decreases during asleep periods. The sleep state variable

changes when the activity relative to provided energy reaches thresholds; this threshold conceptually

represents either an energy-deficit level, or a biochemical state, such that sleep occurs. Specifically,

123

let us first consider the evolution of a cortical column i that is currently in the awake state (Si(t) =

0). We model the activity variable xi(t) and sleep state variable Si(t) as evolving as follows:

• ẋi(t) = +ui(t) +
∑n

j=1 Sj(t)step(xj(t) − Ej)wji + αi(1 − C(t))

• Si(t) → 1 if xi(t) − Ei > Ti,

where ui(t) is the activity input at the cortical column i at time T , Ei(t) is the energy available

during the awake period, Ti is the sleep threshold, and step() is a function that equals 1 for

positive arguments and 0 for negative arguments. We notice that, nominally, the activity variable

xi(t) integrates the activity at the column over time, but the cortical column is more quickly

driven toward the sleep state when connected cortical columns have recently entered the sleep state

(Sj(t)step(xj(t) − Ej) > 0). The strength of this interactive response scales with the weight wji.

Similarly, the activity variable and sleep state variable evolve during the asleep period, as

follows:

• ẋi(t) = −ri(t) +
∑n

j=1(1 − Sj(t))step(Ej − xj(t))wji + αiC(t)

• Si(t) → 0 if Ei − xi(t) > Ti,

where ri(t) is called the recovery input to cortical column i, and represents restoration of the activity

variable prior to waking (which is connected to the repair and synaptic development occurring

during sleep). Again, we note that the activity variable integrates both local input and signals

from nearby cortical columns that have recently entered the awake state.

We holistically refer to the model as the activity integrator-network (AIN). Let us reiterate the

connection of the AIN with the extensive literature on network control. Over the several years,

there has been extensive research concerned with analyzing dynamics defined on a graph, and

relating characteristics of such dynamics with structural characteristics of the underlying graph,

124

see [73, 142, 158] for overviews of some important aspects of this analysis. Recently, control theo-

rists have realized that understanding network structure further is critical to controlling/designing

dynamics on a network, in such diverse fields as autonomous vehicle team formation, sensor net-

working, and virus-spreading control [1, 25, 68, 141]. What these various works have in common is

that individual agents with very simple internal dynamics achieve a global task through network

interactions. The AIN falls within this paradigm, in that cortical columns with essentially inte-

gration and thresholding capabilities achieve global sleep regulation. Within this broad class, the

AIN is most closely connected to models for oscillator networks and rotational agreement, though

the specifics of the dynamics differ from the models in the literature, e.g. [148–151]. One very

significant novelty in our development, from a modeling and control-theory standpoint, is that we

consider the impact of external input signals (disturbances) on the dynamics.

Let us conclude our formulation of the AIN by noting two limitations of the model. First,

we have entirely excluded modeling of the humoral mechanisms for sleep, see e.g. [160], because

our efforts are focused on the local couplings in the cortex that underly sleep. Second, we have

not attempted yet to model all the time- and state-dependent variations of the network struc-

ture/parameters that are observed in the sleep cycle (e.g. [126]). Most prominently, the coupling

parameters between the cortical columns would be expected to change between the sleep and wake

states, and also during sub-intervals of sleep and waking (e.g., REM sleep, high-activity waking

periods).

5.3 Prediction of Whole-Animal Sleep: Simulations and Analysis

We illustrate that the AIN dynamics match the predictions of the activity-dependent sleep

theory through simulations (Section 5.3.1) and system-theoretic analysis (Section 5.3.2). We note

125

a) b)

c) d)

Fig. 5.1: a) The network topology for the 30-cortical-column example is illustrated. b) The baseline activity

simulation is shown. c) The local overstimulation experiment is simulated; activity variables for five repre-

sentative cortical columns (neuronal assemblies) are shown. d) The coordination experiment is simulated,

for two different interaction strengths. Higher interaction strengths yield faster coordination.

126

that our efforts characterize both the internal dynamics and the input-to-state behavior of the AIN.

5.3.1 Illustrative Simulations

We illustrate the combined role of the activity inputs and network interactions in the AIN

dynamics, using several canonical simulations. We present simulation results using a network with

30 cortical columns with identical internal dynamics, see Figure 5.1.

Baseline Activity Simulation Under normal rest or light activity conditions, a reasonable assump-

tion is that the cortical columns are initially synchronized, and the activity inputs at each column

are independent stochastic signals with identical statistics. In Figure 5.1, we show time-traces of

two columns’ total activity variables in the example AIN, under baseline activity conditions. The

simulation illustrates that the loose couplings between columns are needed for maintaining coor-

dination: because of the loose coupling, we see that the transition to the sleep state flows in a

wave-like fashion through the network.

Local Overstimulation Experiment Experiments in which one or a small number of cortical columns

are overstimulated have been of particular interest in the sleep community, because they permit

evaluation of the claim that sleep is activity dependent. For instance, the impact on a rat’s sleep

response of repeatedly moving a single whisker has been studied [159]. We simulate such an experi-

ment, by driving one or a small number of cortical columns with an input that is significantly larger

than the nominal. In particular, we overstimulate one cortical column for a period, causing it to

quickly enter the sleep state. Once the column has entered the sleep state, nearby columns begin

to rapidly transition toward a sleep state, with the rate of transition become more pronounced as

more columns enter the sleep state, see Figure 5.1. Thus, the sleep state spreads rapidly throughout

127

the network, before the nominal falling-asleep time. We also note that the columns become even

further coordinated during the subsequent transition from sleep to waking.

Coordination Experiment It has been postulated that cortical columns with initially uncorrelated

sleep states eventually achieve coordination, because of the interactions between the columns. To

capture this instance in our model, we initialize each cortical column with a random total activity

variable value and a random sleep state, and observe the responses of the columns over several

days. Our simulations indicate that, indeed, the cortical columns become coordinated over time,

with the duration needed for coordination depending on the strengths of interactions between the

columns (Figure 5.1).

The simulations together highlight the critical role played by both the activity inputs and the

network couplings in regulating sleep, in the presence of varying activity inputs.

5.3.2 System-Theoretic Analysis

We conclude our study of the AIN with a preliminary system-theoretic analysis of its dynamics.

Explicit analysis of the AIN dynamics is both difficult and valuable from a system-theory stand-

point. The novelty (and complexity) in the analysis stems from three aspects of the model: 1) the

(novel) nonlinear dynamics, 2) the fact that the model represents a distributed system or network

defined on an arbitrary graph, and 3) the need for characterizing the response to (deterministic or

stochastic) external signals. Our analysis here characterizes, largely at a qualitative level, the dual

role played by the activity inputs and the network couplings in governing sleep-state evolution. We

stress here that the this study is, to the best of our knowledge, the first effort to characterize the ex-

ternal (disturbance rejection) properties of a complex-network model such as this one. Specifically,

128

we pursue two analyses:

1) We study the internal stability properties of the system, i.e. we study the approach to

synchronization (coordination) from an initially-uncoordinated state (and assuming identical

activity inputs).

2) we study the external stability or disturbance-response properties of the AIN, in particular

verifying that the network coupling permits the AIN to remain coordinated in the presence

of activity-input variations.

We characterize the AIN’s dynamics for arbitrary network topologies, but for convenience we shall

assume that the cortical columns in the AIN have identical internal dynamics (that is, Ei, Ti, and

αi are the same for all cortical columns); it is easy to see that the results naturally transfer to an

inhomogeneous network with scaled inputs.

Internal Dynamics: Approach to Synchronization

Here, we analyze the approach to synchronization (perfect coordination) of the AIN when

the activity/recovery inputs are all the same, i.e. we study the internal stability of the AIN∗.

We notice that this analysis characterizes return-to-synchronization of the AIN upon local over-

stimulation, as well as the coordination when e.g. a lesion has caused the cortical column to become

unsynchronized. We shall study the approach to synchronization in two steps, first in the case

where the perturbation of the cortical columns from their synchronized state is small (i.e., local

syncronization) and second in the general case. In the general (large-perturbation) case, we will
∗ We notice that the synchronization problem is in fact a partial stabilization problem in that only state differences

need approach the origin; however, it can equivalently be viewed as a stabilization problem in a relative frame, so we

loosely use this terminology.

129

only give a preliminary illustration of the analysis through a simple two-assembly example.

Let us begin by formally defining synchrony for the AIN. To do so, we first find it convenient

to define relative activity variables. WLOG, we define these relative states with respect to the

integrated activity of cortical column 1. In particular, we define the relative activity variable zi

for agent i, i = 2, . . . , n, as zi = xi−x1. We also define the relative sleep state yi as yi = Si−S1.

Synchrony is naturally defined in terms of the relative activity variables and relative sleep states:

Definition 5.1. The AIN is said to be synchronized at time t if zi(t) = 0 and yi(t) = 0 for

i = 2, . . . , n.

As a preliminary step, we formalize that the syncronized cortical columns remain so when the

activity inputs to the columns are the same; that is, we note that any synchronized state is a

(relative) equilibrium in this case:

Theorem 5.2. Consider an AIN whose cortical columns have identical internal dynamics (Ei, Ti,

and αi are the same for all i). If the AIN is initially synchronized and the activity/recovery inputs

to the cortical columns are identical, then it remains synchronized at all time t ≥ 0.

Proof: From the fact that the cortical columns and activity inputs are identical, it follows auto-

matically that żi = 0 for i = 2, . . . , n whenever the columns are synchronized. Thus, synchronization

is maintained. �

To present the small-perturbation result, we find it convenient to combine the sleep state variable

and activity variable into a single angular state, which describes the “distance” along the sleep-

wake cycle traveled by the cortical column from a reference point (say the occurrence of waking).

Formally, let us define the angle θi of column i as follows:

• When the cortical column is awake, θi = 180xi−(Ei−Ti)
2Ti

.

130

• When the cortical column is asleep, θi = 180 + 180Ei+Ti−xi
2Ti

.

Notice that the cortical column’s angle moves from 0 to 180 during the wake state, and from 180 to

360 during the sleep state. This notion of an angle is a clever way to incorporate both the activity

variable and sleep state variable into a single scalar, and hence to differentiate between asleep and

awake columns that have equal activity variables.

We also find it useful to define angle differences, to describe the “distance” along the sleep-wake

cycles between two cortical columns. Specifically, for two cortical columns with angles θi and θj,

we define the angular distance d(θi, θj) as follows: d(θi, θj) = (θi − θj + 180)mod360 − 180. This

measure equals the shorter of the two angles between the two columns’ angles. We note that the

network is synchronized at time t if and only if d(θi(t), θj(t)) = 0 for all i, j.

Let us now present the asymptotic-synchronization result in the case where the cortical columns

are perturbed only a small amount from synchronization. For simplicity in presentation, we describe

only the case where the identical input to each cortical column is a positive constant during the wake

period and a negative constant during the sleep period, although the analysis generalizes naturally

to the case where the columns have identical but non-constant nominal inputs. To highlight the

role played by the network, we also exclude the SCN input in the analysis. Here is the result:

Theorem 5.3. Consider an AIN whose cortical columns have identical internal dynamics (Ei and

Ti are the same for all i, and αi = 0), and have identical constant activity inputs ui(t) = ū and

recovery inputs ui(t) = −ū. Also assume that the AIN has a connected network topology. Then there

exists M > 0 such that if |d(θi(t0), θj(t0))| ≤ M for all i, j at some time t0, then the synchronized

state is attractive, i.e. d(θi, θj) → 0 as t → ∞ for all i and j.

Proof: Choose any M less than 90, and let r(t) and s(t) be the pair of cortical columns for which

131

|d(θr(t)(t), θs(t)(t))| is largest†, and assume WLOG that d(θr(t)(t), θs(t)(t)) > 0. Notice that the angle

of cortical column r can be viewed as “leading” the angles of the other cortical columns, while the

angle of s can be seen as “lagging”. Now let us consider the time-derivative of d(θr(t)(t), θs(t)(t)).

Let us separately consider four cases. If both cortical columns r(t) and s(t) are awake (Case 1) or

asleep (Case 2), then all the columns are awake (respectively, asleep). In this case, ẋi is identical for

all columns including r(t) and s(t), and so the time-derivative of d(θr(t), θs(t)) is zero. Now consider

the case where column r(t) is in the sleep state and column s(t) is in the wake state (Case 3). From

the activity-variable update, it is clear that the angle of s(t) is increasing at least as quickly as

the angle of r(t) (see Figure 3). We find the same result in the case that r(t) is in the sleep state

and s(t) in the wake state. We thus immediately find that the time-derivative d(θr(t)(t), θs(t)(t)) is

always nonpositive. In turn, we recover that d(θr(t)(t), θs(t)(t)) is a non-increasing function of time

that is also lower-bounded. We thus recover that d(θr(t)(t), θs(t)(t)) approaches a limit.

What remains to be proved is that, in fact, the limiting value of d(θr(t)(t), θs(t)(t)) is 0 and hence

the AIN is attractive to a synchronized state. Let us prove this by contradiction. In particular,

assume that the limiting value is some γ �= 0. Next, notice that the leading column r(t) is the same

one for all t ≥ t0, since when it is in either the sleep or wake part of the cycle, no other (lagging)

column in the same state can overtake it. Now, consider the ordered sequence of lagging columns

r2(t), ..., rn(t) = s(t), and consider the measure
∑n

i=2 |d(θr(t)(t), θri(t)(t))|. It is easy to see that,

during each sleep/wake cycle, this measure strictly decreases by at least a fixed positive amount

(which incidentally is linear in γ). Since each relative angle |d(θr(t)(t), θri(t)(t))| is non-negative, we

thus recover that all such relative angles, including |d(θr(t)(t), θs(t)(t))|, eventually decrease. Thus,

we have a contradiction. �

† Notice that these columns apparently may change with time.

132

Next, let us study the asymptotics of the AIN for arbitrary initial conditions (i.e., for large

perturbations). The global stability of nonlinear-oscillator networks such as this one are well-known

to be complicated, see e.g. [148–150]. One prominent characteristic of these oscillator networks is

the possibility for mode-locked trajectories, or in other words equilibrium trajectories that do not

correspond to synchronized states. Here, let us demonstrate using a two-cortical-column example

that the AIN also can have such mode-locked trajectories, although in this case the mode-locked

trajectory is not attractive.

Theorem 5.4. Consider an AIN with n = 2 cortical columns with identical internal dynamics (Ei

and Ti are the same for all i, and αi = 0), and identical constant activity inputs ui(t) = ū and

recovery inputs ui(t) = −ū. Also assume WLOG that w21 ≥ w12 > 0. Now consider that cortical

column 2 has an initial angle θ2(t0). Then there is exactly one initial angle for cortical column 1

such that the AIN does not synchronize and instead reaches a periodic orbit; for all other initial

angles, the AIN synchronizes.

Proof: First we notice that, as proved in Theorem 5.3, once we have |d(θ1(t), θ2(t))| ≤ 90, then

|d(θ1(t), θ2(t))| is monotonically non-increasing and in fact decreases during each cycle; thus, the

two columns become synchronized. Hence, we only need to consider 90 < |d(θ1(t), θ2(t))| < 180. In

the case that cortical column 2 is “leading”, we can easily see that |d(θ1(t), θ2(t))| also decreases by

at least a fixed amount with each cycle. Thus, there exists a time t such that |d(θ1(t), θ2(t))| ≤ 90,

which implies synchronization.

In the case that cortical column 1 is leading, |d(θ1(t), θ2(t))| may change non-monotonically.

For instance, when the two columns are in different sleep states and both network couplings are

activated, |d(θ1(t), θ2(t))| increases (enlarges); and then when they are still in opposite states and

only column 1 drives column 2, |d(θ1(t), θ2(t))| decreases (shortens). Thus, we expect the possi-

133

bility for extension-shrinkage-constant half-cycles, which would imply that the cortical columns do

not synchronize. In fact, based on the initial angles of the two columns, we have three different

outcomes. First, if θ2(t0) is larger than a particular angle, after a half-cycle the distance enlarged is

bigger than that shortened, and hence the overall |d(θ1(t), θ2(t))| increases. Eventually the distance

increases beyond 180◦ after some half-cycles, and column 2 leads instead. Synchronization then is

achieved as proved above. Second, if θ2(t0) is smaller than this angle, the distance shrinks after

a half-cycle, and eventually decreases below 90◦. Again, synchronization is guaranteed. Third,

the distance enlarged is exactly the same as that shortened for a half-cycle. In this case, we have

mode-locking; in particular, |d(θ1(t), θ2(t))| is periodic. Simple calculation shows that the initial

angle of column 2 that delineates the three outcomes is θ2(t0) = 270 − 90◦ w12
w21

. �

Since the mode-locked state is not an attractive one, we notice that in practice the cortical

columns will not evolve to this state. However, the existence of the mode-locked state indicates the

possibility that the cortical columns will remain away from synchronization for an extended period.

This possibility for extended asynchronization may be reflective of such phenomena as part-brain

sleep in e.g. dolphins.

Disturbance Response of the AIN

A key postulate of the activity-dependent theory for sleep is that the cortical columns main-

tain coordination for variable activity levels and inputs, but their sleep state dynamics are also

modulated by the activity inputs. This dual task is fundamentally achieved through the inter-

play of local activity integration at individual columns and network couplings among the columns.

Here, we verify that coordination among the columns in the AIN is maintained in the presence

134

of persistent variations in the activity inputs, but the predicted durations of sleep/waking are de-

pendent on the local inputs. The verification of coordination in this case fundamentally requires

study of the disturbance-rejection (or external stability) properties of the AIN. We stress that a

disturbance-rejection analysis constitutes an entirely new focus in the study of oscillator networks

(see e.g. [161] for a discussion of why the disturbance rejection of even simple nonlinear systems,

let alone networks, is so complicated).

For the AIN, verification of coordination in the presence of input variations (disturbances) fol-

lows naturally from the initial-condition analysis of the AIN. In particular, we obtain the following:

Theorem 5.5. Consider an AIN comprising identical cortical columns that are driven by activity

inputs ui(t) = u + dui(t), where u is a strictly positive constant. Let us call the angle difference

between the leading column s(t) and the lagging column r(t) at an initial time t0 by θinit. For

each θinit < 90, there exists β̂ > 0 such that for all β < β̂, if ||dui(t)||∞ ≤ β for all t, then 1)

|d(θr(t)(t), θs(t)(t))| < 90o for all t ≥ t0, and 2) |d(θr(t)(t), θs(t)(t))| ≤ Cβ for all sufficiently large t

and for some constant C.

The proof of the theorem follows automatically from the proof of Theorem 5.3: specifically,

the observation that the decrease in
∑n

i=2 |d(θr(t)(t), θri(t)(t))| over a cycle is linear in its value,

together with the fact that the absolute integral of dui(t) over one cycle is bounded, yields the

desired results. We thus omit the details.

The above theorem points out the critical role played by the network coupling in achieving and

maintaining a coordinated sleep state: without the coupling, the columns would lose coordination

over time. While the columns remain coordinated through the couplings, however, the sleep-state

evolution nevertheless is modulated by the activity input.

135

PART II: NETWORK DESIGN

Part II together with the Part III form the heart of the thesis. In Part II, we systematically

develop tools for the design of modern dynamical networks. The tools, which are applicable to both

autonomous-agent and infrastructure networks, achieve high performance design of both nodal and

edge properties of networks and also allow static (memoryless) controller design.

Part II is organized as follows. Chapter 6 introduces our philosophy of network design for mod-

ern network applications—designing high performance controllers that exploit network structure—

and presents several results in this direction. Chapter 7 describes the structural approach of design-

ing graph edges so as to maximize the algebraic connectivity. Chapter 8 is concerned with using

time-scale techniques to shape network dynamics through designing only a subset of graph edges.

Through these developments, we notice that eigenvectors are tightly tied to network performance.

Hence, in Chapter 9, we develop further results on properties of dominant eigenvectors associated

with non-negative matrices, and in Chapter 10, we find the explicit expression for eigenvector

components of a Laplacian graph using only eigenvalues of the graph and its coalesced graph.

136

6. A NEW FOCUS IN THE SCIENCE OF NETWORKS: TOWARD METHODS FOR

DESIGN

In recent years, a realization that networks are ubiquitous in the natural and engineered worlds

has led to burgeoning interest in finding commonalities in their structures and dynamics. Here, we

introduce a new design focus in this science of networks, by proposing generic methods for synthesiz-

ing network controllers that exploit topological structure. That is, we motivate a canonical controller

synthesis problem for networks that has application in such diverse areas as virus-spreading control

and air traffic flow management. We address this design problem by using new techniques from

decentralized control theory. Specifically, we mesh optimization machinery together with eigenvalue

sensitivity and graph theory notions to identify general structural features of optimally-actuated

networks. From these features, we are in turn able to explicitly construct high-performance con-

trollers, i.e. ones that best exploit the networks’ topological structure. Our general approach for

controller design is important both because it provides broad insight into the structure of well-

designed networks, and because it contributes engineering solutions in numerous application areas

(for instance, reduction of management delays and human-controller workload in air traffic sys-

tems).

137

6.1 Introduction

Historically, efforts have been made to model various network’s dynamics, including electri-

cal power system transients [163], metapopulation dynamics [172], and (more recently) biological-

oscillator synchronization [147], among many others. In the last twenty years or so, these individual

efforts have evolved into a “science of networks” (see, e.g., [158, 162, 164, 173, 174, 177]). That is,

scientists and engineers have identified commonalities among the structures and dynamics of many

natural and man-made networks. They have thus sought to codify the typical structural features of

networks, and in turn to understand how these features modulate the networks’ dynamics. There

have been numerous outcomes of this science of networks, ranging from statistical prediction of

failure event sizes [166] to conceptual discussions about whether the structures of engineered (de-

signed) and natural networks are similar [165]. These studies have been buttressed by an impressive

body of analytical research on matrix algebra, which proves valuable for network analysis because

interactions between network components (parts) can be codified using matrices. Of particular note

in this broad domain are works on D-stability and diagonal Lyapunov stability (which are useful

e.g. in studying population dynamics) [78], efforts to characterize pertinent classes of matrices such

as nonnegative matrices [74], and the more recently developed field of spectral graph theory [73].

While the science of networks has been extensively developed, however, it is our contention

that these efforts have largely focused on modeling, that is on predicting networks’ structural and

dynamic characteristics. What has heretofore not been addressed in a general way is the critical

task of network management and design, i.e. of efficiently using available resources to improve a

network’s dynamic performance by exploiting its topology. In myriad application areas, addressing

such design tasks would permit significant improvement of network performance (for instance,

reduction of air traffic delays, or less intrusive containment of virus spread). Just as networks

138

have commonalities in their structures and dynamics, one would hope that management/design

problems for various networks could be abstracted to a common core, and in turn that features of

good designs (or of networks upon design) could be identified. Here, we motivate through many

examples a canonical problem of network controller (or management-scheme) synthesis. Through

this canonical problem, we make clear that network controller synthesis problems require new matrix

analysis methods, and hence develop matrix-theoretic tools for synthesis. In the process, we also

identify characteristics of well-controlled networks.

In discussing the need for design, it is worth noting that communication-network engineers (in

such domains as ad hoc networking, Internet congestion control, and computer-work elimination,

among others) have recently begun contemplating the role played by a network’s graph in sys-

tem design (e.g., [167, 170]) and have studied optimization of certain network (routing or control)

algorithms (e.g., [168, 171, 176]). These efforts are meshed with our philosophy that network per-

formance must be shaped/optimized through utilization of the network topology. However, the

graph-theoretic studies such as [167,170] largely focus on evaluating the impact of the graph struc-

ture on network performance for a particular design, or at best pursue design of a few global graph

statistics (e.g. node-degree distribution). On the other hand, the heterogeneous design studies

are focused on optimizing static (steady-state) performance measures [176] using e.g. a linear pro-

gramming formulation, or on optimizing congestion/throughput at single bottlenecks [168,171]. In

contrast, we motivate and address the design of network dynamics using fine (local) controls, while

still making explicit the role played by the graph topology. We believe strongly that our efforts to

control/shape the network dynamics by assigning local resources to exploit the graph topology is

of significant interest in communications applications, in addition to the network applications that

we develop here.

139

The tools that we develop are inspired by problems from the field of decentralized control the-

ory [28, 66], and in fact contribute to research efforts in this field. In contrast to the complex

networks literature, control theory has long focused on designing dynamics through feedback. De-

centralized control theory—which is concerned with systems whose parts each have incomplete

ability to observe and actuate the dynamics—can potentially address network management/control

problems. Unfortunately, decentralized controllers historically have been designed to achieve per-

formance goals by making individual system components robust to any network impact [66]. Such

a paradigm is not viable for modern networks, in which individual parts cannot possibly achieve

performance aims without using their network connections, and hence modern control strategies

must take advantage of the network topology. With this requirement in mind, only the seminal

work of Wang and Davison and works derived thereof—which give conditions for the existence of

stabilizing dynamic controllers for a very broad class of decentralized systems—are viable for control

of modern networks [28]. In fact, beyond the existence results provided in [28] and in [79] (which

considers static or memoryless controllers), very little is known about complex network control. In

particular, novel methods for synthesizing high-performance controllers are badly needed.

Over the last five years or so, there has been a recognition that practical decentralized control

requires analyzing the structure and dynamics of complex networks, using graph theory methods

[25, 26]. This recognition has led to the formulation of a suite of algorithms and controllers for

autonomous-agent networks (e.g., vehicle teams, sensor networks) that use the network’s graph

topology. In turn, various tests for checking whether such algorithms/controllers can complete

desired tasks have been developed. However, systematic tools for designing high-performance

controllers have not been developed even for these applications. Our recent work [29] proposes a

methodology for designing high-performance heterogeneous controllers (ones that provide different

140

amounts of resource/actuation) for certain simple autonomous-agent dynamics. Our efforts here

show that similar tools—which are based on optimization machinery together with eigenvalue

sensitivity and graph algebra notions—are applicable to an important family of decentralized design

problems for both autonomous-agent and internally-coupled networks, including some constrained

ones. Our results also highlight that very simple and structurally-insightful design tools can be

obtained for certain special classes of network topologies, such as ones with nonnegative weights.

The remainder of the chapter is organized as follows: in Section 6.2, we motivate the impor-

tance of decentralized design using several applications, including virus-spreading control and air

traffic management. In Section 6.3, a canonical design problem that addresses these applications

is formulated. Specifically, the problem of designing diagonal matrices D and/or K to minimize a

cost that is a function of D + KG, where the square matrix G represents the network topology, is

introduced. Section 6.4 introduces the analytical methods used to solve these design problems, and

summarizes the design—some details can be found in Chapter 2. Finally, examples are pursued in

Section 6.5.

6.2 Controller Synthesis Problems in Modern Networks

Decentralized controller design is a critical need in myriad network applications. Here, we for-

mulate network controller synthesis problems in some detail for two applications: 1) virus spread

control and 2) coordinated air traffic flow management. We also briefly describe synthesis prob-

lems in two other domains, namely autonomous vehicle control and iterative numerical solution of

systems of linear equations. Each synthesis task is an example of the canonical problem pursued

in this chapter. More extensive formulations of these four design tasks can be found in [1, 2, 29].

141

6.2.1 Spatially Heterogeneous Virus Spreading Control

The impacts of recent biological virus epidemics (SARS, foot-and-mouth disease) and computer

viruses highlight the need for mathematically modeling virus spread, and in turn developing con-

trollers that reduce spread with limited resources. Epidemic control can be viewed as reducing the

basic reproduction ratio R0 (defined as the average number of secondary infections produced

during an infected individual’s infectious period, when the individual is introduced into a popu-

lation where everyone is suspectible [30]). For virus spreads in heterogeneous populations, R0 is

often computed as the dominant eigenvalue∗ of the next generation operator (matrix) of a

multi-group model (see [50]). Although spatial structure is believed to greatly impact epidemic

spread [24], there is little work in the literature on designing controls (e.g. isolation and quarantine)

that exploit the network’s topological structure to reduce epidemic spread with limited resources.

We seek to design limited resource allocations (controls) that optimally reduce R0, by exploiting

the topological structure.

In the interest of clarity, we pursue design for a basic (susceptible-infected-susceptible, or SIS)

heterogeneous multi-group model, with the understanding that similar designs can be developed

for more detailed models. Specifically, the multi-group model for spatial epidemic spread developed

in [24] can be generalized to admit spatially-heterogeneous control. In this case, the next generation

matrix is

A = βT diag(TiriNi)

⎛⎜⎜⎜⎝diag(hii) + diag(ci)

⎡⎢⎢⎢⎣
0 h21 . . . hn1

h12 0 . . . hn2

.

.

.

.

.

.

.

.

.

.

.

.

h1n h2n . . . 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ [(diagNi)]

−1, where β is the

transmission coefficient (incorporating infectiousness and average contact rate), T is the nominal

infectious period, Ni is the population in region i, and each hji is a corrective term that accounts

∗ R0 is a real number since an interaction network structure is non-negative and irreducible.

142

for the relative rate of inhomogeneous mixing between regions i and j. The region-specific scaling

parameters Ti, ri and ci (∈ [0, 1]) are the controls that admit design:

1) The parameter ri scales the contact rate of individuals in region i, which decreases virus

spread both locally and to spatial neighbors. Note that ri can be reduced by isolation of

closely connected and fairly isolated groups such as a school/college, or by vaccination.

2) The parameter ci scales the contact rate of individuals from outside regions to a region i. The

external contact rate factor ci can be reduced by prohibition of travel from other regions to

region i, or similarly isolation of arriving travelers for longer than the incubation period.

3) We allow the average duration of the infectious period in each region i to deviate from T by

a factor of Ti, which can be reduced by shortening the time between symptom appearance

and hospitalization in region i.

Control measures such as isolating people who may have contacted an infected individual (e.g. through

isolation of a neighborhood) reduce both Ti and ri.

Our aim is to design Tiri and/or ci to minimize the basic reproduction ratio (i.e. the dominant

eigenvalue of A) subject to the individual constraints on these parameters and subject to total

resource constraints (
∑

Tiri or
∑

ci larger than a lower bound). For instance, to design Tiri, we

can form the following constrained optimization problem:

Problem 1. Design a diagonal matrix K such that λmax(KG) is minimized, where K is subject

to the following constraints:

1) tr(K) =
∑

Ki ≥ Γ;

2) 0 ≤ Ki ≤ 1 for all i.

143

Here, the actuation matrix K equals diag(tiri), the topology matrix G captures the remainder

of the dynamics; the constraints on TiRi yield that 0 ≤ Ki ≤ 1 and that the Ki in total exceed a

lower bound Γ (since much resource is needed to make Ki small), see [1] for further details.

In the case that we design ci, we can similarly formulate the following design problem:

Problem 2. Design a diagonal matrix K such that λmax(D + KG) is minimized, where K is

subject to the constraints that

1) tr(K) ≥ Γ;

2) 0 ≤ Ki ≤ 1 for all i.

Equivalently, we address the problem of reducing R0 to a desirable value (e.g., the critical thresh-

old R0 = 1) using minimal amount of resource. Such a systematic design of these inhomogeneous

control parameters can provide guidance for effective epidemic control.

Automaton models that capture the evolution of individuals’ infection states through interaction

are also widely used in epidemic modeling, especially in characterizing computer viruses. We have

also formulated the problem of designing optimal spatially-heterogeneous controls in the context of

an automaton model (in which probabilities that individuals are infected evolve). This decentralized

design problem is similar to the one detailed above, see [1] for details and [23] for background. We

stress here that the design problems introduced here are decentralized ones, in that the controls

act on populations traveling to or from one region, or on individuals.

6.2.2 Coordinated Air Traffic Flow Management

One major complexity in air traffic flow management (TFM) is that flow restrictions (e.g., en

route miles-in-trail restrictions, ground delay programs) only act locally, and yet must be coordi-

nated to achieve network-wide objectives [92]. Appropriately designing decentralized management

144

strategies can permit significant reduction in traffic delays, while simultaneously reducing human-

controller workload and reducing safety concerns.

The bulk of the literature on coordinated flow management either focuses on how strategies

can be implemented in practice [89], or pursues design of coordinated TFM assuming that aircraft

flows are deterministic and further that individual aircraft can be scheduled at each restriction [93].

In fact, uncertainties (due to take-off time variations and weather) critically impact flows, and also

many flow restrictions simply enforce spacing between aircraft rather than permitting arbitrary

scheduling. With these concerns in mind, we have developed a family of abstractions for restrictions

acting on stochastic flows, each of which demonstrate the essential tradeoff between downstream

variability and upstream backlog/delay effected by a restriction [2]. Here, we incorporate a highly

abstracted algebraic model for a restriction into an Eulerian network flow model (which captures

take-off/splitting/merging flows) to pose a network-wide flow-management design problem. This

formulation allows us to design restriction strengths, and further yields graphical insights into the

structure of good flow management designs.

Our model captures aircraft-count variabilities before and after n boundary restrictions

(which we denote vi and wi respectively), as well as the backlogs Bi caused by these boundary

restrictions. We assume a simple linear dependence of the downstream variability and upstream

backlog (in steady-state) on the strength of the restriction. Specifically, for boundaries within the

airspace, we have wi = (1 − ai)vi, and Bi = γaiλi, where ai ∈ [0, 1] is the restriction strength, γ

is a scaling factor, and λi is the mean number of aircraft passing the boundary. For boundaries

i corresponding to flows entering the airspace, we assume variabilities corresponding to Poisson

process flows, and no backlog. We also model splitting/merging of flows between boundaries by

relating each inflow variability to the outflow variabilities of neighboring restrictions, specifically

145

as vi =
∑n

i=1 wjgji where gji > 0 implies that there is a flow from restriction j to restriction i. We

notice that some restriction strengths ai can be designed while others are fixed.

The design problem of interest is to set the parameters ai to get desirable variability in down-

stream flows or regional counts, while maintaining small backlogs (so that total counts in upstream

regions do not exceed thresholds, and aircraft are not subject to long delays). Specifically, a natural

performance measure is one that captures the total impact of the control on the aircraft counts in

a couple critical regions, by combining the variabilities of flows in the regions with the backlogs in

the regions caused by restrictions. Many such measures are well-approximated as being linear or

quadratic in the backlogs Bi and variabilities wi.

The design problem posed above can straightforwardly be rewritten as the following linear

algebraic design problem:

Problem 3. Design a diagonal matrix Z so as to minimize a cost measure that is quadratic in the

entries of I − Z or Z−1 and in w (e.g., (Z−11)T (Z−11) + wTw) subject to the constraints that

1) the system of n equations (I − ZĜ)w = Zλ̂ is satisfied;

2) each diagonal entry of Z is constrained to be in [0, 1].

Here, the topology matrix Ĝ can be simply computed from the routing parameters gji, the

input vector λ̂ depends on the boundary flow rates λi, and the actuation matrix Z contains the

designable restriction strengths ai. We stress here that this design problem is also a decentralized

one, in that each restriction impacts only local flows and yet a global objective is pursued.

146

6.2.3 Other Applications

Controlling Autonomous Vehicle Teams

Autonomous vehicle teams must move in formation for such diverse purposes as sweeping for

mines, exploring underwater geologic formations, or studying the Martian landscape. Physical

constraints, cost requirements, and security concerns often necessitate that the vehicles only make

decentralized measurements, i.e. each vehicle can only partially observe the entire network’s state

through some set of (in general non-absolute) position and velocity observations. The decentralized

controller synthesis task then is to design the force inputs to each vehicle from its observations.

Assuming a static (memoryless) feedback control paradigm, a high-velocity-gain controller can

generally be used (see [29]). In this case, the high-performance design problem can be abstracted

to the decentralized design problem of selecting diagonal matrix K to place the eigenvalues of KG

at desirable locations, where G describes the agents’ position observation topology. Analogous

problems also arise in designing e.g. distributed estimation algorithms for sensor fusion.

Designing Preconditioners for Numerical Analysis

Preconditioners are used to speed up convergence of linear iterative algorithms, such as can

be used to solve the system of linear equation Gx = b [169]. Diagonal preconditioners are especially

common because the extra computation required for their implementation is small. Essentially, a

preconditioner’s performance can be measured in terms of a condition number (typically either

|λmax(KG)|
|λmin(KG)| or |σmax(KG)|

|σmin(KG)| , where λ() and σ() are the eigenvalues and singular values, respectively,

and K is the preconditioner). Thus, an optimal diagonal preconditioner is a diagonal matrix K

that minimizes one of the condition numbers, subject to a constraint on the signs of the eigenvalues.

Finding the optimum is a decentralized design problem, in that we are optimizing gains (weights)

147

that have “local” influence (change one row of G). The methodologies developed here can give

insight into the structure of the optimal diagonal preconditioner.

6.3 The Decentralized Design Problem

The controller design tasks introduced in Section 6.2 are all of the following form: a scalar

cost c(D + KG) must be minimized with respect to the diagonal actuation matrices D and K,

where the topology matrix G ∈ Rn×n captures the interactions among components in a network,

and the diagonal entries of D and K are subject to one or more constraints. We view this design

problem as canonical but widely applicable, and hence seek methods for solving it.

Let us first elaborate on each aspect of this design problem, and distinguish the problem from

those previously addressed in the matrix-analysis literature.

The Topology Matrix G represents the strengths and polarities of interactions among network

components, such as traffic flow densities between boundaries in the airspace or infection-spread

probabilities for networked computers. The topology matrix may in general be an arbitrary real,

square matrix, but for many applications is known to be more structured, for instance nonnegative,

symmetric, and/or positive definite [74]. We notice that the network’s interaction topology can be

illustrated using a graph with n nodes, and with weighted and directed edges defined from the

topology matrix.

The Actuation Matrices D and K directly or indirectly specify the control effort provided to

each component in the network, for instance the quarantining/vaccination efforts provided to each

district to prevent biological virus spread or the actuation of autonomous vehicles in a team. We

stress here that D and K capture distributed control efforts in that they locally or partially change

148

the structure of G. The additive matrix D describes entirely local actuations or topology changes

in the network (for instance, use of a computer virus detection and removal program). Meanwhile,

the multiplicative actuation matrix K describes actuations or topology changes that proportionally

impact all components connected to a particular component (for instance, a restriction in the air

traffic system, which proportionally reduces flows to all downstream restrictions). The entries in

the diagonal matrices D and K may be variously constrained; particularly common are instances

where the entries are constrained to a simplex. Such a constraint results for instance when the total

resource allocated for virus control is lower-bounded, and the resource permitted in each region is

bounded in an interval. We note that the special case where D = 0, and hence the topology matrix

has the form KG, is relevant in several application areas.

The Cost Function c() is application-specific. However, the cost is very often associated with a

dynamics defined on the actuated network topology D + KG, as in all the examples in Section

6.2. In fact, the cost functions for the examples in Section 6.2 are all based on a linear (or linearized)

dynamics defined on the network. That is, the components in the network each have dynamically-

varying states xi associated with them (e.g., numbers of aircraft or probabilities of infection),

such that xT �
= [x1 x2 ... xn] is governed by the differential equation ẋ = (D + KG)x + w or

x[k + 1] = (D + KG)x[k] +w, where w(t) specifies external inputs to each component. Since these

dynamics (whether representing virus spread or vehicle movement) are of fundamental interest

for the applications, it is no surprise that the optimization cost is often defined based on the

solution of the above linear differential/difference equations. Classically, the transient solutions

of these equations are written as a sum of response terms each governed by an eigenvalue of

the matrix D + KG, and hence the stability and settling rate of the dynamics depend on the

eigenvalue locations in the complex plane. This motivates design of actuation matrices to optimize

149

a dominant eigenvalue-based parameter (often the least negative among the eigenvalues’ real parts

in the continuous-time case, and the largest among the eigenvalues’ magnitudes in discrete-time).

Alternatively, the steady-state solutions to above linear equations for a constant persistent input

w(t) = w (given by −(D+KG)−1w and (I − (D+KG))−1w respectively, assuming stability) may

define the cost†. It is worth noting that, even if dynamics are not of interest, the eigenvalues of

D + KG give much insight into the network’s topological structure (see [73]) and hence eigenvalue

design is commensurate with topology design.

Connection to Existing Matrix Algebra Methods This design problem unfortunately cannot be ad-

dressed by the existing matrix algebra techniques developed for complex networks. Spectral graph

theory methods and methods for particular matrix classes largely focus on analyzing a given topol-

ogy (matrix), rather than seeking high-performance topologies among a class of possibilities [73,74].

Meanwhile, the D-stability and diagonal Lyapunov stability tools give conditions under which all

gains within a class achieve stability (essentially a robustness result), rather than identifying a

single high-performance design.

6.4 Novel Methodology for Network Controller Design

Fundamentally, our control-theoretic method for solving the described network design problem

is based on recognizing that the actuated topology matrix D + KG has a special structure when

the optimal actuation matrices D = D∗ and K = K∗ are chosen. That is, optimal or near-optimal

actuations serve to alter the topology matrix to a particular form; our approach is to identify this
† The careful reader will note that the asymptotic cost for the air traffic example is slightly different in form. The

difference results because the inflow variabilities can be easily eliminated from the original expressions for asymptotics

in this case. Either form can serve as a starting point for design.

150

form, which in turn permits us to compute the optimal actuation explicitly with a finite search.

We have applied this three-step methodology to design both D and K for various cost functions,

including those discussed in Section 6.2. In order to make the presentation accessible to a broad

audience and also in the interest of space, we only include an overview of the methodology and a

brief description of the results here. We kindly refer the readers to [1,2,29] for details. Specifically,

we achieve the design through the following steps:

1. Finding the Structure of the Optimally Actuated Topology We apply standard constrained op-

timization techniques (i.e., Lagrange multiplier techniques [71]) to obtain structural characteristics

of the optimally-actuated topology matrix D∗ + K∗G. Specifically, by taking derivatives of the La-

grangian (which is formed from the cost function and constraints, we can obtain a set of equations

that are necessarily satisfied by the optimization parameters (in our case the diagonal entries of D

and K). Here, we are very often concerned with costs based on dynamics and especially eigenval-

ues, and hence taking derivatives with respect to the the optimization parameters involves invoking

eigenvalue sensitivity results [70]. Doing so, we obtain structural conditions on the eigenvectors

of D∗ + K∗G, i.e. when the optimizing actuations are used. This special structure implies to us

that critical dynamics of the optimized network are excited by, and propagate in, certain spatial

patterns. Identifying these common structural and dynamic characteristics of optimally-actuated

topologies is one of the key contributions of this research.

Let us list the structure of the optimally-actuated topology, for several example costs and

constraints:

• Consider designing D to minimize the dominant eigenvalue of D + KG, where each gain

Di is constrained to an interval and
∑

Di is also constrained. For the optimizing actuation

151

D = D∗, the following is true for each i ∈ 1, . . . , n: either D∗
i is at a limiting value, or the ith

participation factor (the product of the left and right eigenvectors’ ith components‡) of the

dominant eigenvalue of D∗+KG is equal to a fixed constant. That is, the optimizing actuation

serves to equalize the participation factor of each network component (from actuation to

response) in the dominant-eigenvalue dynamics, to the extent permitted by the constraints

(Figure 6.1). We refer the readers to Theorem 2.1 in Chapter 2 for a formal statement of

this result and also the proof. Briefly, the result is developed as follows: for an optimizing

actuation, from Lagrange multiplier techniques we obtain that either the sensitivity of the

dominant eigenvalue to each parameters is 0, or the parameter hits the constraint boundary.

Working from the fact that the dominant eigenvalue’s sensitivity to each parameter (that is

not at a boundary) is 0, we obtain from the left- and right- eigenvector equations (with a

little algebra) that the corresponding participation factors are identical.

• For optimal diagonal preconditioners K∗, the ith participation factors of the maximum and

minimum eigenvalues of K∗G are equal in absolute value (i.e., they can differ only in sign).

The development of this result is analogous to the one for the dominant eigenvalue of D+KG,

see Theorem 3 in [29] for details.

• For the asymptotic cost 1T (I − (K + G))−1w̄ subject to a simplex constraint, the product of

the asymptotic state xi with the sum of the ith column of (I − (K + G))−1 is equal for all

i. The methodology for deriving this result is again very similar to that for the above costs,

with only the exception that the sensitivity of the quadratic cost rather than of an eigenvalue

is used.
‡ Participation factors were originally introduced in the study of electric power networks, to codify how the dy-

namics of a particular mode (eigenvalue) of a system are impacted by each network component, see [175].

152

G =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1

4
1
8

1
4 0 1

16

1
8

1
16 0

⎤⎥⎥⎥⎥⎥⎥⎦,

Di ∈ [0, 1],
∑

Di ≥ Γ

Optimal Designs:

1) Γ = 1.5: D∗
1 = 0.4167, D∗

2 = 0.4792, D∗
3 = 0.6042,

λ∗
max = 0.7917 and v∗max = [1 1 1]T . (Individual

constraints not reached, all components participate

equally.)

2) Γ = 2.9: D1
∗ = 0.928, D2

∗ = 0.972, D3
∗ = 1,

λ∗ = 1.2661, and v∗max = [1 1 0.7047]T . (Compo-

nents 1 and 2 participate equally, Component 3 at

constraint.)

Fig. 6.1: The structure of the optimally-actuated topology is illustrated, for the cost λmax(D + G).

2. Computing the Optimal Actuations By invoking these structural characteristics of the optimally-

actuated topology, it turns out that we can limit ourselves to solving a finite (albeit in general large)

set of systems of equations to find the optimum actuations D∗ and K∗. Thus, we can give explicit

formulae for the optimizing actuations, or develop finite search algorithms for finding them. We

note that these reformulations often require use of basic eigenanalysis or of algebraic graph theory

notions such as the Courant-Fisher Theorem [73]. For instance, for optimization of λmax(D + G)

with respect to D, the structural result described above allows us to find D∗ by choosing each Di

as 0, 1 or 0 < Di < 1. By placing sets of Di at 0 and 1 respectively and then solving for the re-

maining gains based on the structural result, we find that the optimal actuations can be computed

by solving at most 3n systems of equations (see Theorem 2.4 in the Chapter 2).

153

3. Simplifying Computation for Special Classes of Topologies For special classes of topology ma-

trices (e.g., nonnegative, diagonally-symmetrizable, and/or positive definite [72,74]), the dimension

of the computation of D∗ or K∗ can often be reduced even further. These simplifications result

because the special topology guarantees convexity of the optimization (so local optimality yields

global optimality), and/or because the eigenvectors of D+KG are further structured in these cases.

The additional structure also often permits simple interpretation of the optimizing actuations.

For instance, again consider optimizing the dominant eigenvalue of D + KG with respect to D,

subject to the simplex constraints. When G is nonnegative and diagonally-symmetrizable (which

are reasonable assumptions in describing e.g. virus spread), the iterative algorithm for finding D∗

in many cases requires at most n solutions of systems of equations, rather than 3n. Specifically, the

optimal actuation can be found by first finding the optimum when the constraints on individual

Di are relaxed. Then, if too much actuation is required for some i, these Di can simply be set to

their limiting value and the optimum recomputed (with the process repeated if other gains exceed

their bounds), see Theorem 2.6 in the Chapter 2. An eigenvector majorization result allows us to

justify that such a simple algorithm can find the optimum. Recently, we have been able to obtain

similar results on majorization of eigenvector components for arbitrary irreducible nonnegative

matrices (not just diagonally-symmetrizable ones), which permit extension of this algorithm to

such topologies [8].

In terms of simplifying interpretations, for positive and symmetric topologies, one sees that the

requirement of equalized participation factors corresponds to seeking equalization of row sums, or

individual components’ impacts, as best as is permitted by the constraints (Lemma 2.5 in Chapter

2). Further, the proof of Theorem 2.6 also clarifies that, for nonnegative topologies, a network

component that cannot fully participate due to its resource limits is supported through extra

154

resource allocation at its neighbors. This interpretation is, for instance, valuable in virus-spreading

applications.

6.5 Examples

6.5.1 Control of the Hong Kong SARS Epidemic

The article [24] developed a multi-group model for the propagation of SARS in Hong Kong’s

18 districts, and identified the homogeneous control needed to reduce the basic reproduction ratio

R0 to 1. Our approach allows us to find the optimal heterogeneous control that uses the same

total resource amount (see also [1]); this control reduces the basic reproduction ratio to 0.64.

Equivalently, it is easily shown that R0 = 1 can be achieved even when the total control resource

is reduced to 79% of the one with equal allocation. We kindly ask the reader to see Figure 2.2 and

Table 2.2 in Chapter 2 for the details.

These studies show that an epidemic’s spread can be stopped more quickly with the same total

control resources, through heterogeneous allocation. This intelligent allocation takes advantage of

the spatial structure of the population by placing more control resources in the highly connected

parts of the network such as Districts 5 and 7 in Hong Kong, and fewer resources in isolated parts

such as District 1 (see Figure 2.2 and Table 2.2). In this way, the limited control resources are best

able to reduce the rate at which the epidemic diminishes. Such a control would significantly reduce

the impact on people’s daily lives in some districts (which have less control resources allocated)

and overall, while still stopping the virus spread quickly.

For illustration, we also consider how the heterogeneous resource allocation changes when the

local mixing rate hii is increased (compared to the mixing rate of neighboring districts hij). As

expected, increasing the local mixing rate makes the resource allocation more homogeneous (Ta-

155

ble 2.2).

6.5.2 Traffic Flow Management Design

We also use our methodology to design en route restrictions for air traffic flow management (see

illustration of the restriction model in Figure 3.13 of Chapter 3). Specifically, we consider restric-

tion design for several congested regions in an air traffic network, with merging and splitting flows

(Figure 3.13). Flow management is required to reduce the variability in regional aircraft counts (so

as to prevent capacity violations), but without causing excessive backlog and delay. As discussed in

Section 6.2, the flow management problem can be abstracted to the decentralized design problem

studied here. We can thus use the design methodology to optimally choose restriction strengths

in this example, as shown in Figure 3.13. In agreement with detailed modeling-based and oper-

ational studies [2], our approach shows that restrictions are most effective when placed upstream

on flows that impact multiple congested regions. The additional value provided by our approach

is the ability to design restriction strategies for arbitrary flow topologies, and the possibility of

optimizing/improving these strategies.

156

7. ON THE STRUCTURE OF GRAPH EDGE DESIGNS THAT OPTIMIZE THE

ALGEBRAIC CONNECTIVITY

We take a structural approach to the problem of designing the edge weights in an undirected

graph subject to an upper bound on their total, so as to maximize the algebraic connectivity.

Specifically, we first characterize the eigenvector(s) associated with the algebraic connectivity at

the optimum, using optimization machinery together with eigenvalue sensitivity notions. Using

these characterizations, we obtain an alternative finite-search algorithm for finding the optimal

design in tree graphs that is quadratic in the number of vertices, and further address update of the

design upon addition of a new vertex. We also obtain a suite of results concerning the topological

and eigen-structure of optimal designs for bipartite and general graphs. In turn, we obtain a lower-

bound on the optimal algebraic connectivity in terms of the graph’s diameter, and also describe

how our structural insights can inform and be meshed with numerical solution techniques. Finally,

an example concerning flow-network design is presented.

7.1 Introduction

The burgeoning importance of large-scale dynamical networks in our day-to-day lives has

brought about a keen interest in graph theory in the engineering community. While the inter-

face between graph theory and dynamical-network analysis has been widely studied, the problem

of designing networks and their controllers to exploit a their topological structure remains chal-

157

lenging. It is our perspective that such network and controller designs are of critical importance,

and so we have engaged in a major effort to develop a systematic graph-based methodology for

design [1,5,10,29]. Here, we enrich our methodology to address the particular problem of designing

the edge weights in a graph, so as to optimize an associated network’s dynamics.

Edge-weight design in graphs is needed for a range of network applications, including sensor

network algorithm-design, assembly of autonomous vehicle teams, virus-spreading control, and op-

timization of numerical sampling tools, among others [5, 29, 80]. Of particular interest, Boyd and

his co-workers have identified and given a common framework for several important edge-weight

design problems [80,178–184], and in turn have used a semi-definite programming (SDP) method-

ology to find optimal edge-weight designs. While the SDP methodology does provide solutions to

the edge-weight design problems given some (non-trivial) regularity conditions, it does not directly

yield insight into graphical and dynamical properties of high-performance designs; such insights

are critical both because they help to characterize the behaviors of the optimally designed systems,

and because they allow us to identify/construct good designs even when precise optimization is

not possible. Here, we use a methodology that meshes optimization, spectral graph theory, and

eigenvalue sensitivity notions to obtain structural results concerning optimal edge designs. Our

approach enriches and informs the existing numerical (SDP-based) characterizations of the optimal

edge design.

The methodology for edge-weight design introduced here is closely connected to the techniques

for static controller design that we introduced in [1, 5, 29]. In [29], we motivated and addressed

an optimal node-design or scaling problem, in particular addressing the design of diagonal matrix

K to optimize a performance measure defined from the matrix KG. In [1, 5], we went one step

further and showed that the approach can be used to solve some optimal decentralized design

158

problems with constraints, i.e., the design of a diagonal matrix D or K to minimize the dominant

eigenvalue of D+KG subject to constraints on D/K. That problem is common in the decentralized

control of infrastructure network dynamics such as epidemic spread or air traffic flow. We have

also given a complementary methodology for designing dynamic decentralized controllers using a

multiple-derivative and multiple-delay paradigm, in [10].

Our efforts here also constitute a contribution to algebraic graph theory research. While the bulk

of the literature in this domain is focused on analyzing particular graphs rather than designing them,

Fiedler has addressed an optimal edge-weight design problem. Fiedler’s important work provides

structural understanding of an optimal edge-weight design (in particular, for an eigenvalue design

of tree-graph Laplacian matrices) [185]. Also of interest, a few recent efforts have obtain structural

results for other graph design problems (e.g., the fastest mixing Markov chain problem), but for

limited classes of graphs such as paths [178, 179]. Meanwhile, other efforts in the algebraic graph

theory community have sought structural insight into optimal edge-weight designs, starting from

the SDP formulation [186–189]. From this algebraic graph-theory perspective, our efforts serve to

1) further the structural analysis given in [178–180], 2) achieve design for a much broader class of

edge-weight design problems and graphs, and 3) clarify that structural insights into the optimal

design in fact yield and/or permit refinement of good algorithms for edge-weight design.

In this chapter, we study one canonical graph-edge design problem: namely, that of selecting

the edge weights subject to an upper bound on their total, so as to maximize the graph’s alge-

braic connectivity (i.e., the second-smallest eigenvalue of the Laplacian matrix associated with the

graph). The problem is motivatived and introduced in Section 7.2. We then give several structural

characterizations of the eigenvector associated with the optimal algebraic connectivity (Section

7.3); these characterizations summarize and extend the early work of Fiedler [185]. We use this

159

structural interpretation to give an atternate design for tree graphs that can be constructed in

O(n2) operations, and also identify an O(n) algorithm for updating the design upon addtion of

new vertex (Section 7.4). Next we also specify several properties of the optimal solution for more

general classes of graphs, with a particular focus on recognizing the presence of repeated-eigenvalue

solutions as well as multiple optimal designs (Section 7.5). We also describe how the structural

approach here can inform and be meshed with numerical (e.g., semi-definite programming-based)

tools for design. Finally, we illustrate our development with an example on flow-network design

(Section 7.6).

The structural approach to graph-edge design studied here can be adapted to numerous other

design problems of interest. We are in the process of applying the graph-edge design methodology

for two other canonical problems—namely, 1) optimization of the dominant eigenvalue of (both

symmetric and asymmetric) positive matrices defined on a graph, and 2) optimization of the mixing

rate of a Markov chain (i.e., optimization of the subdominant eigenvalue of a stochastic matrix

defined on a graph). In the interest of space, these results will be presented in future work.

7.2 Review and Problem Formulation

We consider the problem of designing the edge weights in a graph, to maximize the algebraic

connectivity or Fiedler eigenvalue of the graph, i.e. the second-smallest eigenvalue of the

associated Laplacian matrix.

Formally, let us consider a non-negatively weighted, undirected graph G with vertex set V =

{1, . . . , n}, edge set E (where edges are specified as unordered pairs of vertices), and nonnegative

weight kij = kji associated with each edge {i, j} ∈ E. We recall that the Laplacian matrix

L of the graph G is defined as follows: L = D − K, where kij
�
= 0 for {i, j} /∈ E, K

�
= [kij],

160

and D is a diagonal matrix with ith diagonal entry given by
∑n

j=1 kij . We note that the Laplacian

matrix L is a symmetric positive semidefinite matrix, and so has real eigenvalues with the minimum

one equal to 0. The second-smallest eigenvalue of the Laplacian matrix, known as the algebraic

connectivity (or, more informally, the Fiedler eigenvalue in honor of the extensive study of it by

M. Fiedler), is of wide interest to both graph theorists and dynamical-network analysts.

Here, we aim to assign the nonnegative edge weights kij for {i, j} ∈ E so as to maximize the

algebraic connectivity λ2, subject to an upper bound Γ on the total edge weight:
∑

{i,j}∈E kij ≤ Γ.

We refer to this edge-weight design problem as the Laplacian edge design problem and refer to E

as the designable edge set. We call a design that achieves the maximum an optimal edge design,

and use the notation k∗
ij for the edge weights in such a design; analogously, we use the notation

λ∗
2 for the optimal algebraic connectivity (i.e., the algebraic connectivity for the optimal edge

design). We refer to eigenvectors associated with the algebraic connectivity at the optimum as

optimized eigenvectors. In the case where the optimal eigenvalue is non-repeated and use the

notation x∗ for the unique (to within a scale factor) eigenvector. When the optimal eigenvalue is

repeated m times, we denote a basis for the corresponding eigenspace as x∗(1), . . . ,x∗(m), and use

the notation x∗ for vectors in the span of x∗(1), . . . ,x∗(m) We also find it convenient to refer to

the set of edges in a design that have strictly positive weights as the non-zero edge set, and to

use the notation Ed (respectively, E∗
d for an optimal design) for this set. We notice that E∗

d ∈ E.

The Laplacian edge design problem posed above was first studied by Fiedler in [185], wherein

he coined the term absolute algebraic connectivity∗ for the optimal λ2. In particular, the

article [185] gives a structural characterization of the eigenvector of the Laplacian L associated
∗ To be precise, Fiedler uses the term for the case where Σi,j∈Ekij ≤ n, so we use different terminology here;

however, notice that the more general problem trivially reduces to this one through scaling.

161

with the optimal algebraic connectivity when it is nonrepeated, and in turn finds the optimal

edge design for tree graphs (including ones with repeated algebraic connectivity) in terms of the

variance of the graph. More recently, Boyd and his co-workers have used semi-definite programming

methods to obtain the absolute algebraic connectivity for general graphs, in the process obtaining

a set of optimal edge weights. Also of interest, the article [185] exposes that the absolute algebraic

connectivity can be found as a solution to an embedding problem, and in turn relates absolute

algebraic connectivity to the graph separators.

The structural approach that we pursue here is very closely connected with the eigenvector

structure-based approach of Fiedler. However, our focus here is not only on characterizing the

absolute algebraic connectivity but also explicitly constructing and characterizing the optimal edge

design (or designs). To this end, we clarify that a polynomial-time (in fact, O(n2)) algorithm can

be used to find the optimal edge design for trees, as an alternative to the design strategy given in

Fiedler. We also characterize the topological structure of the optimal design in this case and show

how the design can be obtained with O(n) effort upon addition of a new vertex. Further, we obtain

several characterizations of the family of optimal edge designs, as well as bounds on the absolute

algebraic connectivity, for bipartite and general graphs.

7.3 The Structure of the Optimized Eigenvector

Let us review and extend the structural characterization of the optimized eigenvectors given

in [185]; Specifically, we first review the result from Fiedler’s work on the optimized eigenvector, in

the case where the optimal algebraic connectivity is assumed non-repeated.

Theorem 7.1. Consider the Laplacian edge design problem. For an optimal edge design such that

the algebraic connectivity is a non-repeated, the following condition holds: for each {i, j} ∈ E,

162

either 1) k∗
ij = 0 or 2) |x∗

i − x∗
j | = u and k∗

ij > 0, where u is a positive constant.

In words, the theorem states that the absolute difference in eigenvector components along each

edge in E used in the optimal design is identical, as long as the algebraic connectivity is non-

repeated. We have proved the result using the standard Lagrange multiplier machinery together

with eigenvalue sensitivity ideas, as an alternative to the majorization proof in [185]. The proof

methodology highlights the analagy of our graph-design methodology with our previous results on

optimal scaling and static decentralized controller design [1, 5, 29].

The above result fully characterizes the optimized eigenvector, in the case where the optimal

algebraic connectivity is a nonrepeated eigenvalue of the Laplacian matrix. We note that this

optimized eigenvector has numerous other structural properties that are common to all eigenvectors

associated with the algebraic connectivity of a Laplacian, see e.g. [73] for details. We also note

(as was also noted in [185]) that the above structural result implies that the non-zero edge set of

the optimum forms a bipartite graph, if indeed the algebraic connectivity is not repeated. We will

show in the following subsections that the above structural result facilitates design and provides a

variety of insights into the optimal design.

As our later discussion will clarify, the optimal solution commonly has repeated algebraic con-

nectivity, and so characterizations of the optimized eigenvectors associated with a repeated alge-

braic connectivity are needed. Broadly, characterizing the opitmized eigenvectors for the repeated-

eigenvalue case is complicated because of the difficulty in finding sensitivities of repeated eigenvalues

to perturbations, see e.g. [190]. Here, we review the explicit characterization of the eigenvectors

given by Fiedler for the case that the designable edge set forms a tree [185]. We then develop a

check for whether a repeated-eigenvalue solution is an optimal one, for general graphs.

Let us begin with the tree case.

163

Theorem 7.2. Consider the optimal edge design problem for a connected tree graph (i.e., for the

case that the designable edge set E specifies a connected tree). In this case, the unique optimal edge

design satisfies one of the following three conditions:

1) the optimal algebraic connectivity is non-repeated, the optimized eigenvector x∗ has no zero

components, |x∗
i −x∗

j | is identical for each {i, j} ∈ E, and the optimized eigenvector’s compo-

nents are strictly increasing along the path from any vertex s to any vertex t in the designable

edge graph such that x∗
s < 0 and x∗

t > 0.

2) the optimal algebraic connectivity is non-repeated, the optimized eigenvector x∗ has a single

zero component at a vertex of degree 2 in the designable edge graph, |x∗
i − x∗

j | is identical for

each {i, j} ∈ E, and the optimized eigenvector’s components are strictly increasing along the

path from any vertex s to any vertex t in the designable edge graph such that x∗
s ≤ 0 and

x∗
t > 0.

3) the optimal algebraic connectivity is repeated z times. Also, all (eigen)vectors

x∗ ∈ Span(x∗(1), · · · ,x∗(z))

have a zero component at a particular vertex i with degree z + 1. Further, for a path from

vertex i to any vertex t, the sequences x∗
i , · · · , x∗

t is monotonic and the differences of the

eigenvector components across each edge in the path are identical.

We refer the reader to [185] for the proof.

Next, we give a condition for checking whether or not a repeated-eigenvalue solution is optimal.

Theorem 7.3. Consider an edge weight assignment with
∑

{i,j}∈E kij = Γ, which has algebraic

connectivity repeated z times, and coresponding eigenvectors x∗(1), · · · ,x∗(z). This assignment

164

is an optimal edge design, if and only if the following condition holds: for any set of numbers

Δij, {i, j} ∈ E such that
∑

{i,j}∈E Δij = 0 and Δij ≥ 0 if kij = 0, there exists x∗ �= 0 ∈

Span(x∗(1), · · · ,x∗(z)) such that
∑

{i,j}∈E Δij(x∗
i − x∗

j)
2 ≤ 0.

Proof: An edge-design is optimal if and only if any permissible (small) perturbation of the design

does not increase the Fiedler eigenvalue. Thus, let us compare the Fiedler eigenvalue of L (the

Laplacian when the edge weights kij are considered) with the Fiedler eigenvalue of L̂ (the Laplacian

when edge weights kij +Δij are considered). We note that L̂ can be written as L+δL, where ||δL|| is

small when the perturbation Δij is assumed small. To obtain conditions for optimality, we need to

determine the sensitivity of the Fiedler eigenvalue to the edge-weight perturbations Δij, here in the

case that the Fiedler eigenvalue is repeated. To do so, we apply an existing result of the sensitivity

of repeated eigenvalues, that fundamentally is based on obtaining the sensitivities through solution

of a lower-order eigen-problem [191]. Specifically, say that the matrix L has Fiedler eigenvalue

λ1(L) repeated m times, with an eigenspace whose basis is specified by the columns of the n × m

matrix V . Now consider the eigenvalue of λ1(L̂). The result [191] indicates that the change in

the m repeated Fiedler eigenvalues of L is approximated to the first order by the m eigenvalues of

V T δLV . That is, L̂ has m eigenvalues that are given by λ1(L) plus each of the m eigenvalues of

V T δLV plus a further O(||δL||2) error. Thus, further invoking convexity, we obtain that the graph

design kij is optimal, if V T δLV has at least one non-positive eigenvalue for every perturbation δL

corresponding to a permissible perturbation of the edge weights. With just a little algebra.

We note that Theorem 7.3 gives a full structural characterization of the optimal design, albeit

in an implicit form. We also note that Theorem 7.3 reduces to Theorem 7.1 when z = 1, i.e. the

algebraic connectivity is non-repeated.

165

7.4 An Explicit Design for Tree Graphs

The structural characterizations of the optimized eigenvector(s) presented in Section 7.3 im-

mediately permit us to develop finite-dimensional search algorithms for finding the optimal edge

design. For tree graphs, it turns out that we can obtain the optimal design exactly with O(n2)

operations. In this section, we give the algorithm for finding the optimal edge design for tree

graphs, present some simple qualitative insights into the pattern of the optimal edge weights, and

show how the design can be updated upon addition of a new vertex in O(n) time. The algorithm

and further results are obtained naturally from the structural characterization of the eigenvector

given in Section 7.3 together with the eigenvector equation, and hence we present the algorithm

here without proof.

We note that the article [185] already has obtained the optimal edge weights for tree graphs, with

the results phrased in terms of the variance of the graph (with the motivation the the designable

edge graph’s structure is thus connected to the optimal design). Our algorithm for the optimum is

an alternative to the one of Fiedler, that to some extent facilitates distributed computation of the

design and leads to the further presented results.

Before presenting the algorithm, we find it useful to define some terminology. First, consider

an edge {i, j} in the tree. We refer to the two partitions formed upon removal of the edge as the

partitions induced by edge {i, j}, and use the notation Si({i, j}) and Sj({i, j}) for the partition

including i and the partition including j, respectively. Similarly, we refer to the partitions formed

upon removal of a vertex i in the tree as the vertex-partitions induced by the vertex i. We use

the notation S1(i), . . . , Sm(i) for the (in general m) partitions formed. Finally, we use the notation

D(i, j) for the distance (number of edges) between vertex i and vertex j.

We are now ready to present the algorithm. The algorithm has two steps. The first concerns

166

finding the critical edge or critical vertex, i.e. the edge such that the optimized eigenvector

has components of different signs at the two ends, or else the vertex for which the eigenvector

component is null. The second step is the computation of the optimal design

Algorithm:

Step 1: Finding the Critical Edge or Vertex. Search through the edges in the graph, un-

til a critical edge or vertex is found. In particular, for each edge {i, j} ∈ E, find C({i, j}) =

1
n(

∑
k∈Sj({i,j}) D(i, k)−∑

k∈Si({i,j}) D(i, k)). If 0 < C({i, j}) < 1, then {i, j} is the critical edge. If

none of the edges is critical, find C({i}) = 1
n

∑
k=1,··· ,n D2(i, k). Then the vertex i for which C({i})

is minimized is the critical one (and in fact C({i}) ≤ C({j})-1 for all j in this case). We notice

that finding the distances and hence C({i, j}) or C({i}) requires O(n) additions/multiplications,

and so Step 1 has maximum computational complexity O(n2).

Step 2: Finding the Optimal Edge Design. Let us consider two cases, namely the case where

we have a critical edge and that where we have a critical vertex.

Critical-Edge Case: Say that the edge {i, j} is the critical one. Then construct the n-

component vector x̂ that has kth entry given by D(i, k)−C({i, j}). Then x∗ = x̂
||x̂||2 is the optimized

eigenvector (normalized to unit length). Also, the optimal algebraic connectivity is λ∗ = Γ(x∗
i −x∗

j)
2.

Finally, the optimal edge weights can be found recursively, as follows. For edges {a, b} such that a

is a leaf, k∗
a,b = λ∗x∗

a
x∗

a−x∗
b
; these optimal edge weights can immediately be calculated. Once they have

been calculated, notice that there exists at least one non-leaf edge {a, b} whose optimal weights

167

has not been computed, and for which all the optimal edge weights in the partition Sa({a, b}) have

been computed. For this edge, k∗
a,b can be computed as k∗

a,b =
λ∗x∗

a−
∑

q∈N (a) k∗
q,a(x∗

q−x∗
a)

x∗
a−x∗

b
, where N (a)

contains the neighbors of vertex a except for b. After computing this optimal edge weight, we

see that again one of the edges whose optimal weight remains to be computed has an associated

partition for which all optimal weights have been computed; hence, recursively, all the optimal edge

weights can be computed. It is easy to check that this computation is O(n).

Critical Vertex Case: Say that the vertex i is the critical one. Construct a vector y with

kth entry given by D(i, k). For each edge {a, b} in the graph, find the scaled weight k̂a,b of

the edge. Do this as follows: first, for each edge {a, b} such that a is a leaf of the tree, find

k̂a,b = ya

ya−yb
. After the weights for the leaves have been found, notice that in each vertex-partition

induced by i, at least one of the edges whose weight remains to be found has associated (edge)

partition which 1) is within the vertex partition and 2) has all scaled weights determined. For

any such edge {a, b} (with a connected to the partition with known weights), the scaled weight is

computed as k̂a,b =
ya−

∑
q∈N (a) k̂q,a(yq−ya)

ya−yb
. In this way, scaled weights can recursively be computed

for all edges. Next, the optimal edge weight for each edge {a, b} can be computed as k∗
a,b = Γk̂a,b

T ,

where T =
∑

{a,b}∈E k̂a,b. Also, the optimal eigenvalue is given by λ∗ = Γ
T . Finally, the optimized

eigenvectors form a vector space of dimension m − 1, where m is the number of vertex-partitions

induced by i. In particular, any vector with kth entry given by cjyk, where j is the induced par-

tition which contains vertex k, that has zero sum is an optimized eigenvector. It is easy to check

that this computation is O(n). �

We note that the computation of the critical edge or vertex is identical to the one given in [185].

Meanwhile, the edge-weight computation that we use contrasts from that in [185], in that individual

168

weights are found recursively from neighbors’ weights. We notice that this approach make clear

that only a limited set of global information (e.g. the critical edge location) need be transmitted

to permit local computation of the optimal weights.

The algorithm is computationally O(n2). We notice that when we add new vertices to an

existing tree, we do not need to recalculate the critical edge or vertex from scratch. Specifically,

when a single node is added to an existing tree, Step 1 can be simplified to have only constant

computational time. This simplification is made possible by the fact that upon tree expansion, the

critical edge/vertex {i, j} moves in a special pattern. We show this result in Theorem 7.4. For

convenience, let us denote the tree constructed from tree T = T (V,E) by connecting new vertex q

to vertex p ∈ V as T̃ = T (Ṽ , Ẽ), where Ṽ = {V, q} and Ẽ = {V, {p, q}}.

Theorem 7.4. Consider a tree graph T = T (V,E) and say that a vertex q is added to the graph

through connecting to vertex p ∈ V . The critical edge or vertex of tree T̃ can be determined as

follows:

1) Suppose tree T has a critical edge {i, j}, and q ∈ Si({i, j}), then tree T̃ either has a critical

edge {i, j} or has a critical vertex i.

2) Suppose tree T has a critical vertex i, and q ∈ Sk(i), then tree T̃ either has a critical vertex

i or has a critical edge {i, j}, where j ∈ Sk(i) and {i, j} ∈ E.

Proof: We prove this theorem using the concept of absolute center proposed in [185], which

is defined as the point M that minimizes S(M) =
∑

k∈v d2(M,k). Clearly, the absolute center is

either the critical vertex or lies on the critical edge. In order to prove the theorem, we only need

to show that with the addition of a vertex, the following two facts hold: 1) the absolute center

can not move in the opposite direction aginst where the extra vertex is added; and 2) the absolute

canter can not move across the closest vertex.

169

The first statement can be easily proved using a simple contradiction argument, directly based

on the definition of the absolute center. Now let us prove the second statement. Let us consider the

case that T has a critical vertex i, and the distance between the vertex q and i is lq +1. Clearly, we

have lq ≤ n−1
2 . We could see easily that for the tree T̃ , we have S(j) − S(i) ≥ n + l2q − (lq + 1)2 =

n− 1− 2lq ≥ 0, since for the origial tree, S(j)− S(i) ≥ n holds according to Theorem 3.3 in [185].

Hence the absolute center of T̃ can not cross j. Combining the first and the second statements, we

see that T̃ either has a critical vertex i or has a critical edge {i, j}, where j ∈ Sk(i) and {i, j} ∈ E.

When T has a critical edge, the proof is similar and hence is omitted here.

The theorem informs that by adding one node to an existing tree, the critical vertex/edge of

the expanded tree can be easily found. The critical vertex/edge in the expanded tree either stays

the same, or moves along the edge in the direction of the added node without crossing the nearest

vertex. The precise location of the critical vertex/edge can be obtained in constant time through

modifying C({i, j}) of tree T .

We also note that the edge weights in the optimal solution have some interesting dependence

on the visual graph structure. We present these simple results in Theorem 7.5 and Theorem 7.6.

Theorem 7.5. Consider any path from the critical edge/vertex to a leaf in a connected tree graph.

The optimal edge weights along the path decrease monotonically.

Theorem 7.6. Consider the set of edges that connect to a leaf in a connected tree graph. The

magnitudes of optimal edge weights in the set are ordered according to, and in fact are linear

proportional to, the corresponding leaves’ distances to the critical edge/vertex.

For a connected tree graph, the above two theorems give us necessary conditions for an edge

weight design to be the optimum. In the circumstance that the optimal edge weights are hard to

170

obtain, we can resort to the theorems to obtain a solution that is close to the optimum through

designing the edge weights, by walking from the leaves to the critical vertex/edge.

7.5 Some Structural Results for Bipartite and General Graphs

From the structural results in Section 7.3, we also can obtain a finite-search algorithm for finding

the optimal design, in the case where the optimal algebraic connectivity is not repeated. Briefly,

the finite-dimensional algorithm works as follows: for each possible cutset of the graph, it turns out

that one can assign a unique potential optimal eigenvector such that the cutset separates eigenvector

components with different signs. In turn, an edge weight assignment that achieves this eigenvector

can be identified, if one exists, and the optimality of the potential solution can be checked. A

direct implementation of such a finite-search algorithm (which is deeply related to our algorithms

for scaling design, see [1,5,29]) is computationally intensive as compared to the standard numerical

methods, and so we omit the details.

A more important consequence of our direct approach to the Laplacian edge design problem

is that it yields significant structural insight into the optimal design for general (non-tree) graphs.

Here, we summarize some interesting insights into the optimal designs for more general classes of

graphs. In particular, we 1) characterize the edge-utilization structure and aspects of the eigen-

structure of the optimal, focusing especially on the observation that many optimal edge assignments

are present and on the consequences of this observation; 2) lower-bound the minimum eigenvalue

in terms of graph properties and use this to improve existing bounds for design performance; and

3) show how the direct approach can inform, and be meshed with, LMI-based approaches.

In presenting results for non-tree designable edge sets, we shall often find it convenient to

distinguish between bipartite and non-bipartite graphs. Let us thus recall that a bipartite graph

171

is one in which the vertices can be divided into two sets, such that every edge connects a vertex in

one set with a vertex in the other. We shall also find it convenient at times to classify graphs in

terms of whether they admit an optimal design without a repeated algebraic connectivity.

7.5.1 Edge-Utilization Structure and Eigenstructure

Let us begin with analysis of the edge-utilization structure and eigen-structure for the optimal.

A critical observation that underlies the results in this subsection is that the Laplacian edge design

problem (almost) always admits multiple optimal edge designs. Let us formalize this concept, in

the following theorem:

Theorem 7.7. Consider a Laplacian edge-design problem that has at least one optimal design with

non-repeated algebraic connectivity. The optimal edge design for the problem is unique if and only

if the designable edge set forms a tree graph.

Proof: This result can be proved straightforwardly by using the eigenvalue/eigenvector equation

at the optimum together with perturbation arguments. Suppose we start with a non-tree optimal

design with non-repeated algebraic connectivity. We can always modify the edge weights by small

values to obtain another optimal design, while maintaining the same total edge weight. This

process is possible because of the freedom in design given by the extra edges together with the

special eigenvector structure at the optimum. Hence this optimal design is not unique. The only

unique design occurs when the designable edge set forms a tree, see our earlier results and [185].

This result can be proved straightforwardly by using the eigenvalue/eigenvector equation at

the optimum together with perturbation arguments. Thus, we see that for non-tree designable

edge sets, the Laplacian edge-design problem admits a family of optimal edge-weight selections.

The method of proof shows that, in fact, multiple edge designs exist even though the optimizing

172

eigenvector may be unique.

Observing that many optimal edge designs are possible, we may be motivated to seek for

designs that have particular edge-utilization characteristics. The next result clarifies that, at least

for bipartite graphs, optimal designs can be obtained that have the identical structural properties

as the graph of designable edges, e.g. identical minimum cutsets, node-degree properties, etc.

Designs with these characteristics may be preferable e.g. because of their desirable fault-tolerance

properties.

Theorem 7.8. Consider a Laplacian edge-design problem with designable edge set that forms a

bipartite graph. If there is at least one optimal design for which the algebraic connectivity is non-

repeated, then there is an optimal design for which all the designable edges are assigned non-zero

weights.

Proof: Consider any design for which the Fiedler eigenvalue is non-repeated. The designable

edge graph has a spanning tree with non-zero edge weights. This observation, together with the

eigenvector-component-difference result given in [185] and the fact that the graph is bipartite, yields

that the difference in the components of optimized eigenvector v∗ across each edge in the designable

edge graph is identical. Now consider incrementing each edge weight that is not in the mentioned

spanning tree by a small amount ε. Let us next re-solve for the edge weights in the spanning tree

so that λ∗ remains an eigenvalue, and the corresponding eigenvector is v∗. From the fact that the

differences in eigenvector components are identical, we automatically recover that the sum of the

edge weights in the new solution is also Γ. For sufficiently small ε, we see from perturbation notions

that all the edge weights are strictly positive, and further that λ∗ remains the Fiedler eigenvalue.

Thus, we recover that there is an optimal design that uses all edges.

Using a very similar argument, one can also obtain a more restricted result on edge utilization

173

for general graphs:

Theorem 7.9. Consider a Laplacian edge-design problem. If there is at least one optimal design

for which the algebraic connectivity is non-repeated, then there is an optimal design that 1) is bi-

partite and 2) would become non-bipartite if any other edge from the designable edge set E were

made non-zero.

Also, the locations of the eigenvalues in the optimal solution—and in particular the possibility

for repeated algebraic connectivity—is important because it informs on e.g. the sign patterns of

eigenvector components (and hence associated dynamics) and impacts use of numerical tools for

design.

In the following theorem, we characterize the presence of solutions to the Laplacian edge design

problem with repeated eigenvalues:

Theorem 7.10. Each Laplacian edge design problem either has an optimal edge design such that

the non-zero edge weight set Ed forms a tree, or has an optimal edge design such that the algebraic

connectivity is repeated.

Proof: We prove this theorem using a purturbation argument. Suppose we start with a non-

tree optimal design with non-repeated algebriac connectivity λ∗. Now let us iteratively reduce the

weight of a edge that is not in a spanning tree, while modifing the other edge weights to maintain

one eigenvalue at λ∗. This process either leads to an optimal tree solution, or to a solution that λ∗ is

not the algebraic connectivity, e.g., λ∗ is the third dominant eigenvalue. Clearly for the second case,

in the middle of the iteration process, there exists a design has repreated algebraic connectivity.

This theorem, which also is proved by studying the family of possible designs achieving the opti-

174

mum, clarifies the very common presence of repeated-eigenvalue optima. This common occurrence

of repeated-eigenvalue solutions is important from the perspective of using numerical optimization

tools (such as SDP-based methods, see e.g. [80]): at feasible solutions with repeated eigenvalues,

the derivative of the Lagrangian with respect to the design parameters becomes ill-defined; the fact

that the optima themselves have such a structure suggests that appropriate regularization may be

needed in using the numerical techniques.

In concluding the discussion on the edge-utilization structure and eigenstructure of optimal

designs, we recall that the optimizing eigenvector has a very special structure, in the case where

the algebraic connectivity is nonrepeated, see also [185]. In particular, as we stated in positing the

finite-search algorithm, we can uniquely determine the optimizing eigenvector (obviously, to within

a scaling factor) once the cutset that separates positive-valued and negative-valued components in

the eigenvector is known. This conclusion is a natural generalization of the eigenvector construction

for trees (see Theorem 7.2), but does not provide low-order algorithms for finding the optimum,

and so we omit the details. What is interesting is that this insight into eigenvector structure (or,

alternatively, the check for optimality given in [185]) immediately yields a conclusion about whether

or not an the optimal edge design can be a tree:

Theorem 7.11. Consider a Laplacian edge-design problem, where the minimum edge- and vertex-

cutsets of the designable edge graph are both at least 2. Then the non-zero edge set for any optimal

edge design does not form a tree.

Proof: Let us prove the result by contradiction. Assume that the optimal edge design was a tree.

Then there is either a vertex whose corresponding optimized Fiedler eigenvector component is nil,

or an edge for which the optimized eigenvector components are of different signs at its two ends.

Consider the edge case (which is in fact the non-repeated-eigenvalue case). Let us view this edge

175

as separating two partitions of the tree. From the condition of the theorem, we know that there is

at least one designable edge connecting vertices in the two partitions. Finally, from monotonicity

of eigenvector components, we know that the difference in eigenvector components across this edge

is more than the difference between two vertices in the tree, hence the design cannot be optimal.

A very similar argument holds in the nil-vertex case, with the observation that there are edges

between the multiple partitions formed being used.

We notice that this result gives a more precise characterization of the edge-utilization structure,

in particular one where the structures of all optimal designs are characterized, for a broad class of

designable edge graphs.

7.5.2 Graph-Theoretic Bounds on Performance

Our solution methodology for the Laplacian edge-design problem also permits development of

graph-theoretic bounds on the optimal algebraic connectivity. Such bounds lend insight into the

design methodology, because they permit comparison of the optimal design with uniform-weight

designs and allow evaluation of performance for particular graph classes (e.g., regular meshes, small-

world networks, etc). Here, as an example, we introduce a lower-bound on the optimal algebraic

connectivity, and discuss application of this bound.

Lower bounding the algebraic connectivity is often of particular interest, because such a bound

implies an upper bound on the settling time of an associated dynamics, e.g., a distributed agreement

protocol in a sensor network or a formation dynamics in an autonomous-vehicle team (e.g., [25,141]).

Here, we are interested in lower-bounding the algebraic connectivity, in the case where the optimal

edge design is used. We can simply bound the algebraic connectivity in terms of the diameter of

graph specified by the designable edge-set, as follows:

176

Theorem 7.12. Consider a Laplacian edge design problem that has resource bound Γ. Then the

optimal Fiedler eigenvalue is lower-bounded by 4Γ
nD2 , where D is the diameter of the designable edge

graph (i.e. of the unweighted graph in n- vertices with edge set E).

The proof of this lower-bound follows from considering a modified Laplacian edge design problem

for a spanning tree of the original designable graph, and using the eigenvector-structure result given

in Theorem 7.2. We omit the details. A particularly interesting instance of the above theorem is

in the case where the upper bound Γ is set equal to the number of vertices n; this instance permits

us to study the scaling of the optimal eigenvalue with respect to the number of vertices in the

designable graph, when the total available resource (Γ) is proportional to the number of vertices.

In particular, we find that optimal Fiedler eigenvalue is lower-bounded by 4
D2 in this case. Thus,

we see that the optimal eigenvalue remains relatively large as the number of vertices in the graph

increases, as long as the diameter remains small. This result immediately implies that the optimal

edge design for small-world graphs, which have small diameter (see [157, 192, 193]), achieve fast

settling.

It is worth noting that an even tighter lower bound, phrased in terms of the variance of spanning

trees of the graph, follows immediately from [185]. However, application of the variance-based result

is more complex, because of the difficulty both in its computation and in choosing the appropriate

spanning tree.

7.5.3 Meshing our Design with Numerical Methods

Our direct methodology for addressing the Laplacian edge-design problem can also inform ex-

isting numerical solution techniques. To review, Boyd and co-workers have used semi-definite pro-

gramming (SDP) techniques to solve the Laplacian edge-design problem and other similar design

177

problems (e.g., [80]). In our complementary work on network scaling problems [29], we have also

noted that simple gradient descent-type algorithms can be used to obtain optima. These numerical

methods typically yield fast solutions to the design problems, which complement the structural

insights that can be obtained through our direct approach. Here, let us briefly discuss one way in

which our approach can inform, and be meshed with, the numerical solution strategies.

In particular, we stress again that our methodology shows that many optimal designs can be

obtained for non-tree graphs, not only the single optimum provided by the numerical methods.

Thus, our direct methodology can naturally be interfaced with the numerical techniques to identify

a family of optimal edge designs, as follows:

1) The numerical technique can be used to obtain with high fidelity one optimal edge design

and corresponding optimal algebraic connectivity and optimized eigenvector. We notice that

our direct analysis explicitly specifies the optimized eigenvector once the cutset separating

vertices with positive- and negative- valued components is identified; thus, the exact optimized

eigenvector can be obtained after a finite number of iterations of the numerical algorithm.

2) Once the optimized eigenvector x∗ and eigenvalue λ∗ have been obtained, the eigenvector

equation can be used to find the space of edge designs for which x∗ and λ∗ are an eigenvector

and eigenvalue, respectively. We notice that only some of these designs have λ∗ as the

algebraic connectivity (rather than as one of the higher eigenvalues); it is straightforward to

check whether λ∗ is the optimal eigenvalue from the eigen-analysis.

Let us illustrate the method for finding a family of designs in an example:

We consider the Laplacian edge design problem for the 5-vertex designable edge graph shown

in Figure 7.1, where the upper bound is assumed to be Γ = 52. From the above theorems,

178

a) b)
4 6 8 10 12 14 16 18

−10

0

10

20

30

40

50

60

X: 6.31
Y: 10

X: 15.69
Y: 10

Eigenvalues

k
23

λ

λ
0

λ
1

λ
2

λ
3

λ
4

Fiedler eigenvalue

Fig. 7.1: Example demonstrating multiple optimal edge designs: a) 5-vertex designable edge graph, b)

Laplacian eigenvalues over the range of the optimal designs

we recover that the vector x = [1610 , 6
10 , −4

10 , −14
10 , −4

10]′ is the optimal eigenvector (if there is an

optimum with non-repeated eigenvalue), and that the corresponding optimal eigenvalue is 10.

Eigenanalysis can then be used to find the necessary conditions on the edge weights at the

optimum:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∗
12 = 16

k∗
23 + k∗

25 = 22

k∗
23 − k∗

34 = 4

k∗
34 + k∗

45 = 14

(7.1)

We note that the family of solution to these necessary-condition equations is parameterized

by a single edge weight. All these solutions have the x as an eigenvector, with corresponding

eigenvalue at 10. However, the eigenvalue is the algebraic connectivity for only some of the

designs. In particular, from Figure 1, which shows the dependence of the all the eigenvalues

of the design on the edge weight between vertices 2 and 3, we see that the optimum is reach

whenever this edge weight is between 6.31 and 15.69.

179

7.6 Illustrative Example: A Well-Designed Flow Network

In numerous domains, items/materials transport through a network toward an equilibrium

state—for instance, water may flow among reservoirs until their depths balance; or a vehicular

transportation network may spread goods, new ideas, or (on a less positive note) viruses through

a community; or a network of biochemical interactions may allow units in the brain to match their

sleep states (e.g., [1, 4, 5]). In these various applications, the settling time of the network—i.e.,

the time required for the network to reach its equilibrium state—is often of interest. When the

settling time is to be designed (or has been designed through an evolutionary process) subject to

transportation resource constraints, a network design problem must be addressed.

A canonical model for the evolution of nodal quantities in a flow network toward equilibrium is

described by the differential equation ẋ = −Lx, where x lists the evolving quantities at the nodes,

and L is a Laplacian matrix associated with a specified graph. In the case where we can allocate

flow resources between connected nodes subject to a total resource limit, we recover the Laplacian

edge design problem. As an illustration of our design methodology, let us address the Laplacian

edge design problem for a canonical flow network with tree graph structure.

In particular, we consider design for the 40-vertex tree shown in Figure 7.2, subject to a resource

bound Γ = 50. The egde marked “max” turns out to be the critical edge, and hence the algebraic

connectivity is non-repeated. The optimal edge-weight allocation is illustrated in the figure, with

the thickness of a line representing the edge weight. we find that the the optimal resource allocation

yields a settling dynamics governed by the (negative of) the optimized eigenvalue λ∗ = 0.1086, as

compared to a governing eigenvalue of 0.0423 for a uniform resource allocation of 50 units.

Although the above the design could also be achieved through numerical methods, we stress

that our design methodology informs us on the structure of the optimal resource allocation and

180

Fig. 7.2: Optimal edge design for a 40-vertex tree. The edges with maximum and minimum weight are

shown, and the weights are delineated with varying line thicknesses.

associated dynamics in several ways. Here are some observations that are illustrated by the flow-

network example:

• Our structural design methodology provides information on the distribution (pattern) of the

optimal edge weights in the tree. In particular, we see from Theorem 7.5 that the largest

weights are close to the critical edge/vertex, and specifically fall on the the longest paths to

the critical edge/vertex. Meanwhile, the weak edge weights are at or near the tree’s leaves,

with the strength proportional to the leaves’ distance to the critical edge/vertex, e.g., the

weakest is on the shortest paths to the critical edge/vertex as observed in the example (see

Figure 2). We again stress that the characterization of edge weight parameters permits us to

obtain good designs even when the precise construction of the optimum is infeasible.

• Our design method clarifies the structure of the optimized eigenvector associated with the

algebraic connectivity. Specifically, we know that the eigenvector components associated with

each graph vertex are structured as follows: they decrease/increase by equal intervals along

each path from the critical edge or vertex. That is, the eigenvector has a linear shape along

each graph edge. This characterization gives insight into the initial states in the flow network

181

that result in slowest settling, when the optimal design is used. In particular, let us compare

the settling to equilibrium for different initial nodal quantities (that are normalized to unit

spread). Among such initial quantities, the one in which nodal quantities grow linearly along

each branch away from the critical edge settle most slowly†. Such an initial condition can be

visualized for the particular given example.

• We can lower-bound the performance of the optimal design. Specifically, noting that the

example network has diameter D = 13, we immediately find from Theorem 7.12 that λ∗ ≥

0.0296.

† Notice that the vector is non-unique in the repeated-eigenvalue case.

182

8. ON TIME-SCALE DESIGNS FOR NETWORKS

We motivate the problem of designing a subset of the edge weights in a graph, to shape the

spectrum of an associated linear time-invariant dynamics. We address a canonical design problem

of this form by applying time-scale assignment methods, and give graph-theoretic characterizations

of the designed dynamics.

8.1 Introduction

Controller design for the purpose of time-scale assignment is a cornerstone of classical and

modern control theory. In such controllers, high and/or low gains of various scales are used to

assign the eigenvalues of a linear time-invariant (LTI) plant along one or more asymptotic time

scales, e.g. [139, 194–196]. Time-scale assignment has proved critical for a family of stabilization

and performance-design tasks. In particular, multiple time-scales are fundamentally needed for

disturbance rejection (e.g. [197]), and further permit systematic solution of such varied problems

as stabilization/regulation under actuator saturation (e.g. [198]), loop transfer recovery (e.g. [196]),

and decentralized controller design [10], among others. The ability to assign eigenvalues along

desired time-scales is fundamentally related to the linear-system structure, i.e. to the zero dynam-

ics and infinite-zero structure of the plant. As designs for large-scale systems and networks are

increasingly needed, however, it is becoming more and more important that time-scale assignment

capabilities be related to the topological (graph) structure of the system. To clarify this connec-

183

tion, the zero- and infinite-zero- structure—and hence the time-scale design properties—must be

characterized in terms of the topological structure.

In a complementary direction, the common presence of multiple time-scale dynamics in existing

large-scale infrastructure networks has been explained, and the time-scale structure has been related

to the topological structure of the network (e.g., [138,199]). This characterization—which originated

in the electric power systems community under the heading of slow coherency [138] and was

further generalized through the definition of synchrony [199]—is based on the premise that large-

scale networks naturally have groups of components that are strongly connected to each other

but only weakly tied to the remainder of the network. The special topological structure yields

1) slow dynamics that are global but coherent or synchronic within each tightly-connected group,

and 2) fast dynamics that are localized to individual groups. This recognition of the typical time-

scale structure of networks is valuable for a family of infrastructure-network analyses, including for

model reduction and partitioning (e.g., [138, 199, 200]). However, the graph structure-based time-

scale characterizations are only for existing networks, and the idea of designing desirable time scales

by exploiting the graph structure has not been addressed. Such design is of significant interest,

because it can permit shaping of the network dynamics, including specifically the modification of

existing coherency structures.

The purpose of this this work is to marry the efforts on time-scale assignment with the graph-

structural characterization of time-scales in large-scale network analysis. That is, we motivate

the problem of designing time-scales in large scale systems by exploiting their topological structure,

and in turn initiate research in this direction by addressing a canonical design problem of wide

interest. Precisely, we identify several controller design and graph-edge design problems in networks,

for which time-scale designs that exploit the network’s topology are needed. The problems that

184

we identify originate from such diverse fields as virus-spreading control, drug design, traffic flow

management, and sensor networking. We then fully address the time-scale design for an example

problem motivated by these applications, namely that of designing some edge weights in a graph

(while others remain fixed) to shape a dynamics defined by the associated Laplacian matrix

(see [73] for background on the Laplacian matrix and its spectrum). Specifically, viewing this

partial graph design problem as a (decentralized) controller design problem, we characterize the

infinite-zero structure and finite-zero dynamics of the plant in terms of the topologies of the fixed

and designable graph edges. In turn, we propose a high-gain methodology for the partial graph

design, and characterize the spectrum upon design in terms of the graph topologies. We thus tie

the performance of time scale-based designs to the topological structure, and (in a complementary

direction) characterize the network dynamics over a range of edge-weight values.

In that we are obtaining designs for networks that exploit their graph structure, our efforts here

also contribute to the nascent research on high-performance network design [1, 5, 10,29,80]. These

recent studies are focused on designing network controllers or connections (edges) to optimize

dynamic measures, typically using optimization machinery together with algebraic graph-theory

notions. These design problems are complex, and only the simplest cases have been addressed—

for example, designing all the transition probabilities in a Markov chain to achieve fast mixing,

or selecting static controllers for a network of autonomous agents with single-integrator dynamics

[29,80]. Our efforts here expose that time-scale designs can be used for a much wider class of design

problems, in particular ones where the network has a complex existing structure and only some

local features (whether edge properties or local controllers) can be altered. For these partial design

problems, the dynamics from the point of the designable features exhibit a rich structure that is

deeply tied to the existing network topology; a graph-based approach to time-scale design is critical

185

for shaping these dynamics.

The remainder of the chapter is organized as follows. In Section 8.2, we motivate partial graph

design problems in several applications. In Section 8.3, we address a canonical partial graph design

problem, and also present an example illustrating our design.

8.2 Motivation

We motivate the partial graph design problem, and hence the time-scale assignment methodol-

ogy that exploits topological structure, from several application domains.

8.2.1 Design in Autonomous Vehicle Coordination and Sensor Networking

In recent years, the development of distributed algorithms/controllers for autonomous vehicle

coordination and sensor networking applications has been of wide interest in the controls community

(e.g., [19,25]). Network controller/algorithms have been developed for myriad tasks (including for-

mation, agreement, and distributed partitioning), but these various tools have in common that they

permit simple and highly-limited agents to coordinate by exploiting network interactions. Although

many network tasks have been studied, however, design of high-performance controllers/algorithms

(that achieve fast settling, and robustness to disturbances and variations) is in its early stages

(e.g. [29, 80]). These few efforts have focused on designing the entire communication/observation

network, or else local controllers at all the network nodes, to optimize a scalar performance mea-

sure (e.g., a settling rate or condition number) [1,5,29]. Building on these works, we have recently

demonstrated that pole placement can be achieved using a multiple-delay and multiple-derivative

control scheme at all network nodes [10].

In many cases, only partial design of the network interactions and controllers is possible. For

186

instance, only a few nodes in a large-scale mobile sensor network may be amenable to modifica-

tion, due to limitations in resources or access. Similarly, sensor networks that are operated by

multiple players perhaps only can be updated in parts, only newly-added sensors/vehicles in a

network may be amenable to modification, or only certain communication links may admit higher

bandwidth/fidelity. In these cases, design of a subset of the network edges (specifically, protocol

strengths or weights) and nodes (specifically, controller gains) is of critical interest. This is precisely

the partial graph design problem.

In a complementary direction, we often need to characterize the dynamics of autonomous-vehicle

teams or sensor-network algorithms upon perturbation of network parameters, due to e.g. commu-

nication failures or environmental variation. Such characterizations also require us to study network

dynamics as edge weights or controller gains are varied, and so partial graph design informs the

analysis.

A wide variety of agent, network, and controller models are used in sensor networking and

autonomous vehicle control applications, and so a range of partial graph design problems can be

posed. Here, let us abstractly introduce only one canonical design problem, which for instance is

representative of consensus-algorithm and velocity-coordination design, e.g. [25,29]. Specifically, let

us consider the dynamics ẋ = −Lx, where x represents the agents’ states (e.g., velocities, opinions),

and L is the Laplacian matrix associated with a weighted graph Γ that has vertex set V and edge

set E, and weight kij > 0 for each {i, j} ∈ E. Let the edge set E consist of a subset Ef with edges

having fixed weights and a subset Ed = E − Ef with edges whose weights can be designed. The

design problem of interest is to select the weights kij for {i, j} ∈ Ed, so as to shape the dynamics

ẋ = −Lx (in particular, to decrease the settling time of the dynamic response while limiting the

impact of initial-condition- and external- disturbances).

187

8.2.2 Epidemic Spread Control

Epidemic spread is a typical large-scale network application that demonstrates strong topo-

logical structure-dependent and time-scale behavior (e.g. [1, 49]). Since viruses are transmitted

through the close contact of susceptibles with infectives, the distribution of the contact rates

(and hence transmission rates) among a population [49]—or in the other words, the popula-

tion structure—crucially impacts epidemic spread. Moreover, slow coherency is apparent since a

population is naturally composed of rather highly connected groups (that usually coincide with

geopolitical regions) with much lower contact rate in between.

Several control strategies (e.g., vaccination, fast hospitalization, and restriction on traveling)

function to reduce the transmission rates among/within regions. By heterogeneously distributing

these control resources (e.g., reducing the transmission rates by different amounts across the net-

work) to exploit the topological structures, we can efficiently reduce the spread of virus with limited

control resources [1]. In our previous work [1], we developed an optimal heterogeneous resource

allocation by taking into account the topological structure. One specific control problem that we

explored in that chapter was to optimally scale the outflow transmission rate of each region so as

to minimize the virus spreading rate, subject to resource constraints.

In designing optimal resource allocations, an important practical concern is that the nominal

transmission rates in some parts of a network are costly or impossible to change. For instance,

we may reduce the transmission rate across regions by checking travelers’ health conditions and

quarantining the ones with susceptible symptoms; however some regions may not have such medical

equipment. Also, reducing traffic flows between some regions is infeasible because of the close

economic ties between them. In these circumstances, the transmission rates between certain regions

are fixed while others are free to design. This motivates the partial graph design problem.

188

As a simple example, we consider the multi-group Susceptible-Infected-Susceptible (SIS) epi-

demic model [1]. At early stages of spread, the dynamics of the number of infectives in each region

i can be described by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

İ1

İ2

...

İN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β11N1 − v1 β21N1 ... βn1N1

β12N2 β22N2 − v2 ... βn2N2

...
... . . .

...

β1nN2 β2nNn ... βnnNn − vn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1

I2

...

IN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where Ii is the number of infectives in region

i, Ni is its population, vi is the local recovery rate, and βij is the transmission rate from region

i to region j. For edges {i, j} in a set Ef ,the weights βij are fixed. A typical design problem is

to design βij for (i, j) ∈ E − Ef so as to minimize the dominant eigenvalue of the system matrix,

perhaps subject to constraints on the total resource, (e.g.,
∑

βij ≥ Γ) and individual constraints on

the designable transmission rates. Beyond designing the dominant eigenvalue, spectral assignment

for the purpose of shaping the spread response and disturbance rejection may be needed.

8.2.3 Multi-Target Drug Design

One task in drug design is to modify targets (e.g., compounds, reactions, or enzymes) in a

microbiological network, to affect the network in a desired way (e.g., stop the production of some

compounds while minimizing the interference to the remaining compounds in the network) [201].

Multi-target drug design is believed to be more favorable to single-target design in that it efficiently

provides more reliable dynamics [202]. This motivates study of a partial graph edge design problem,

where the designable edges represent the interactions that are potential targets. Let us give an

example formulation of the drug targeting design problem as a partial graph design problem.

Let us consider a simplified model ẋ = σ(Ax) of a gene regulatory network, where xi denotes

the the activity of gene i, Aij denotes the strength of interaction from gene i to gene j (see [203]),

and the standard saturation function σ(·) represents that the activity of each gene is constrained.

189

Also we denote the set of interactions that are potential targets as Ed. In terms of controlling the

asymptotic behavior, the optimal edge design problem can for example be formulated as: designing

the interaction strengths for edges {i, j} ∈ Ed such that 1) the system model is stable in the

sense of Lyapunov, and 2) a quadratic function
∑n

i=1 εi(x̄i − x∗
i)

2 is minimized, where x̄i is the

asymptotic value of xi, x∗
i is the desired asymptotic activity of gene i, and εi is a weighting factor.

When transient dynamics are also considered, the optimal edge design problem can for example be

formulated as: designing interaction strengths for edges {i, j} ∈ Ed such that a quadratic function∑n
i=1 εi(x̄i − x∗

i)
2 +

∑n
i=1 gi

∫ to+T
t=t0

(xi(t) − x∗
i)

2 is minimized, where T is a settling time, and gi is

also a weighting factor. We note that these design problems also fundamentally require spectrum

assignment through edge-weight design.

Other than the selective control problems like drug target design, evaluation tasks such as:

1) predicting dynamics with partial knowledge of the network and 2) inversely detecting certain

pathways based on the exhibited system behavior, are important in biological network applications.

These problems arise commonly because of the difficulty in detecting/quantifying all reaction path-

ways experimentally. In these cases, characterizing dynamics over the range of possible interaction

strengths is important. These complementary problems also thus benefit from the analysis of partial

graph edge design.

8.2.4 Changing Coherency Topologies in Electric Power Networks

The slow-coherency theory has long been used in electric power system analysis, for such varied

tasks as model reduction, partitioning, and identification of critical failures (e.g., [138]). Recently,

DeMarco and coworkers have argued that identification of coherency groups (partitions) is also

critical for evaluation of generator market power, because such groups are constrained in active-

190

power transfer with the remaining network and so the generators within them achieve similar

locational marginal prices [204].

Broadly, coherency of generators in the electric power system is defined in terms of the gen-

erator’s rotor angles. In particular, coherent groups are typically determined from a linearized

model of the swing dynamics around a nominal power-flow (steady-state) solution. The linearized

dynamics turn out to be defined by the Laplacian of a graph, where the edge weights in the graph

are related to the line susceptances and the nominal angle differences between the buses. The

coherency groups are identified from this Laplacian.

We contend that a variety of evaluation and design tasks can be informed through characteri-

zation of linearized swing dynamics over a range of graph edge weights. Most prominently, changes

in the operating point of the model will result in changes in weights in the linearized model, and

hence will affect the dynamics and coherency structure of the model. For instance, increasing load

demand in parts of the system may force lines toward their active-power limits even if they have

large susceptance, and hence change the coherency structure (and in turn market power, etc). Sim-

ilarly, line susceptances may vary due to environmental conditions, or may be uncertain. Thus, it

is valuable to evaluate the network’s performance—and more specifically, the spectrum associated

with the linearized dynamics—as some of the edge weights in the associated graph change. This

evaluation over a range of possible graph edge weights is the partial graph design problem studied

here. In a complementary direction, critical transmission problems (e.g., hyper-sensitivity to line

failures, or the presence of generators with extreme market power) and inclusion of new generation

may require construction of new lines. Design of further transmission can similarly be viewed as

a partial graph design problem. We note that partial graph design for the purpose of disturbance

rejection is of particular interest in the power system application.

191

8.3 A Canonical Partial Graph Design Problem

While the partial network design problems introduced in Section 8.2 vary in their specifics, the

fundamental design aim is common: we seek to design the strengths of some interconnections in

a network, or else decentralized controllers at some network nodes, so as to shape the network’s

dynamics. Furthermore, we aim to obtain designs and design characterizations that are phrased in

terms of the graph structure of the network.

To this end, we here pursue a canonical partial network design problem, specifically the prob-

lem of designing a subset of the edges’ weights in a graph to shape the dynamics defined from

an associated Laplacian matrix. We introduce the design problem in Section 8.3.1. We then re-

formulate the problem as a decentralized controller design problem (Section 8.3.2). Based on the

reformulation, we take two steps to address the partial network design problem: 1) we relate the

linear system structure (finite- and infinite-zero structure) of the open-loop plant in the analo-

gous control problem to network’s topology, in particular a fixed-edge graph (i.e., comprising edges

that cannot be designed) and a designable-edge graph (comprising edges whose weights can be se-

lected) in the original problem (Section 8.3.3); 2) by bringing to bear the time-scale-based design

methodology [195, 196], we address the partial network design problem from the controller design

viewpoint (Section 8.3.4) and so characterize the closed-loop spectrum. In this way, we both obtain

and characterize designs in terms of the network’s topology. Finally, we give an example (Section

8.3.5).

8.3.1 Formulation

We focus on designing the weights of a subset of the edges in a graph, to shape the spectrum

of an associated Laplacian matrix and hence to shape dynamics defined thereof. This design

192

problem for Laplacians is directly applicable to two of the applications in Section 8.2, namely the

sensor networking and electric power applications. We stress, however, that the methodologies

for this particular design problem naturally can be adapted to the various other controller and

network-interconnection design problems posed in the introduction including one with asymmetric

topologies.

Precisely, we consider a weighted and undirected graph Γ with n vertices, labeled 1, . . . , n. We

specify the edges in the graph through two disjoint sets each containing pairs of distinct vertices,

which we term the fixed edge set Ef and the designable edge set Ed. Specifically, for each pair

of vertices {i, j} ∈ Ef , the graph Γ has an edge between vertex i and j with fixed weight kij > 0.

Meanwhile, for each pair {i, j} ∈ Ed, the graph has an edge between vertex i and vertex j with

weight kij that can be set to a desired nonnegative value. For pairs {i, j} that are neither in Ed

or Ef , we shall say that there is not an edge between vertex i and vertex j, and for convenience

we set the weight kij to 0. We also find it convenient to label and order the edges in Ed with the

positive integers 1, . . . , |Ed|, and refer to the weight of the edge m ∈ {1, . . . , |Ed|} as km.

We aim to design the edge weights kij for {i, j} ∈ Ed, so as to shape a dynamics defined from the

weighted Laplacian matrix associated with the graph Γ (e.g. [73]). Let us recall that the Laplacian

matrix associated with the graph Γ, which we denote as L(Γ), is defined as follows: [L(Γ)] is an n×n

matrix with entries given by [L(Γ)]ij = [L(Γ)]ji = −kij for all i �= j, and [L(Γ)]ii = −∑
j �=i[L(Γ)]ij

for all i. Our goal is to design the edge weights kij ∈ Ed, to shape the spectrum of L(Γ) (i.e., to

assign its eigenvalues and eigenvectors), or equivalently to shape the dynamics of such differential

equations as ẋ = Lx, ẋ = −Lx, or ẍ = −Lx (see the motivation in Section 8.2).

We refer to the above design problem in its entirety as the partial graph design problem.

For convenience, we refer to the graph Γ in the case where the designable edge weights are set to

193

zero as the fixed-edge graph, and use the notation ΓF for it. We use the notation L(ΓF) for

the corresponding Laplacian. We also form a designable-edge graph ΓD by removing the fixed

edges from Γ; we define the Laplacian matrix L(ΓD) for the designable graph in the standard way.

8.3.2 Reformulation as a Decentralized Controller Design

Our aim is to set the designable edge weights in graph Γ to shape the dynamics of ẋ = L(Γ)x,

or in other words to assign the spectrum of L(Γ). Here, we show that the problem of shaping the

dynamics can be reformulated as a linear static decentralized controller design problem. Through

designing the gains of the decentralized controller, we in turn are able to assign the spectrum of

L(Γ).

To present the reformulation, we find it convenient to use the notation qj
i for the n-component

vector with ith entry equal to 1, jth entry equal to −1, and remaining entries null. In this notation,

the Laplacian L(Γ) can be rewritten as

L(Γ) =
∑

{i,j}∈E

kijq
j
iq

j
i

T
=

∑
{i,j}∈Ef

kijq
j
iq

j
i

T
+

∑
{i,j}∈Ed

kijq
j
iq

j
i

T
.

To clarify that the design of L(Γ) is a decentralized controller design problem, let us define the

following matrices:

• We let A =
[∑

{i,j}∈Ef
kijq

j
iq

j
i

T

]
.

• For each edge m = 1, . . . , |Ed| in the designable edge set, let Bm equal qj
i , where {i, j} are

the two ends of the edge. Also, we let Cm = BT
m.

• Recall that we denote the weight of edge m in the designable-edge graph by km.

194

In this notation, we immediately recover the following expression for L(Γ):

L(Γ) = A +
|Ed|∑
m=1

BmkmCm

. Noting that the weights km are the parameters in L(Γ) amenable to design, we see that the partial

graph design problem is the following decentralized controller design problem: a decentralized LTI

plant with state matrix A has |Ed| channels, where channel m has observation matrix Cm and actu-

ation matrix Bm; static nonnegative linear feedback gains km for all m such that m ∈ {1, ..., |Ed|}

must be developed at the |Ed| channels, to shape the dynamics ẋ = L(Γ)x, or equivalently the

spectrum of L(Γ).

For convenience, let us stack each channel’s observations and inputs into matrices, as follows:

B
�
=

[
B1 . . . B|Ed|

]
, and C

�
=

⎡⎢⎢⎢⎢⎢⎢⎣
C1

...

C|Ed|

⎤⎥⎥⎥⎥⎥⎥⎦. In this notation, the decentralized system’s closed-loop

dynamics can be written as ẋ = Ax + BKCx, where K is an |Ed| × |Ed| diagonal matrix whose

diagonal entries are the designable edge weights. Thus, we see that the partial graph design problem

can be viewed as an |Ed| channel static decentralized controller design for the plant (C,A,B), for

the purpose of spectrum assignment. In the remainder of this section, we obtain and characterize

solutions to this design problem, that are based on the topology of the fixed- and designable- edge

graphs.

8.3.3 Topological Characterization of the Plant Dynamics

Time-scale assignment for LTI plants requires characterization of the linear-system-structure, i.e.

the infinite-zero- and finite-zero dynamics of the plant. The special coordinate basis (SCB) for

linear systems provides a representation of the linear system structure that particularly facilitates

195

time-scale design [205]. Thus, here we obtain the SCB for the plant model formulated in Section

8.3.2, as a step toward time-scale assignment through partial graph design. We note that the SCB,

and the linear system structure that it captures, were developed for centralized control; however,

this work as well as our recent efforts [10] indicate that the SCB facilitates decentralized controller

design also.

The special structure of the partial graph design problem permits us to characterize the linear

system structure of the plant (C,A,B) in terms of the graph topology. We begin with a preliminary

remark on the plant’s open-loop poles:

Remark: The open-loop poles of the plant (C,A,B) are the eigenvalues of the matrix L(ΓF).

Next, we present a sequence of results that together specify the finite- and infinite-zero dynamics

of the plant (C,A,B) in terms of the fixed- and designable- edge graph topologies. For convenience,

we do so (Theorems 8.1, 8.2, 8.3) in the case where the designable graph ΓD is is a z-forest,

i.e. a collection of z trees or connected acyclic graphs. From the perspective of obtaining the

linear system structure, we can limit ourselves to the case where the designable graph is acyclic

WLOG, since cyclic designable graphs yield redundant observation and input, i.e. the matrices

B and C are not full rank. In particular, one can always view the control as using a subset of

observations and inputs and hence define the finite- and infinite- zero dynamics thereof, while the

redundant observations and inputs are simply considered unused. Thus, the results that we obtain

for the linear-system structure for the z-forest case trivially translate to the general case, and so

we focus on the z-forest case for notational simplicity. It is worth making one further (and rather

intricate) observation, however: redundancy in B and C is of no value to design in the centralized

setting, hence the centralized infinite-zero and finite-zero structure decomposition always ignores

this case. Interestingly, however, the use of non-tree designs fundamentally affects other aspects of

196

performance in the decentralized setting. With this contrast in mind, we give a brief discussion of

the cyclic designable graph design in Section 8.3.4. As an aside, we note that acyclic designable

graphs are typical in many of the applications of our theory, for instance for design of a single

interaction (edge), or for design of the interconnections between newly added nodes and existing

ones.

In characterizing the finite- and infinite-zero dynamics, let us first specify the dimensions of

each, and in the process clarify that the plant has a uniform-rank structure (see e.g. [206]):

Theorem 8.1. When ΓD is a z-forest with |Ed| edges in total, the plant (C,A,B) is square-

invertible and uniform-rank-1, with finite- invariant zero dynamics of dimension n − |Ed|.

Proof: Notice that the first Markov parameter CB is an |Ed| × |Ed| matrix of full rank. Thus,

we immediately recover that the plant is uniform-rank-1 and square invertible. Since the plant has

|Ed| inputs and outputs, the total dimension of the infinite-zero dynamics is |Ed|, and so the finite

invariant zero dynamics has dimension n − |Ed|.

The uniform-rank-1 structure of the plant immediately permits us, through simple transforma-

tion of the standard representation for uniform-rank systems (see e.g. [196] for details), to phrase

the dynamics of the plant (C,A,B) as follows:

ẏ = P1y + Caxa + Qu (8.1)

ẋa = Aaxa + Bay,

where xa ∈ Rn−m represents the state of the plant’s finite-invariant zero dynamics, and the ma-

trices P1, Ca, Q, Aa, and Ba are obtained through the state transformation. Next, we focus on

characterizing the parameters of the SCB representation in terms of the fixed- and designable- edge

graphs’ topologies, to permit high-gain design and design characterization in terms of the graph

197

topology.

Our characterization of the infinite-zero and finite-zero dynamics is in two steps: first (Theorem

8.2), we define a state vector for the finite-zero dynamics, and so specify the finite- and infinite-zero

dynamics formally in terms of the plant model (C,A,B) (but in a form that facilitates connection

with the graph topology). Next (Theorem 8.3), we give an explicit graph-theoretic construction

of the state matrix associated with the finite-zero dynamics. Before presenting these results, we

require some further notations∗:

—We call xi the state variable associated with vertex i in the graph.

—We find it convenient to partition the vertices based on the graph ΓD. In particular, we

partition the vertex set in such a way that two vertices are in the same partition if and only if there

is a path between them in ΓD. Notice that the groups of vertices that form connected subgraphs

in ΓD, as well as the remaining isolated vertices, are the partitions. In total, there are n − |Ed|

partitions, which we label S1, . . . , Sn−|Ed|.

—We define the superstate xi associated with each partition i = 1, . . . , n − |Ed|, as xi =

1
|Si|

∑
j∈Si

xi. We notice that a vector containing the super-states can be computed as a linear

combination of the state vector x, say as Ĉx.

We are now ready to specify a state for the zero dynamics, and hence obtain the SCB repre-

sentation formally in terms of the plant model.

Theorem 8.2. The superstates xi, i = 1, . . . , n− |Ed|, together form a state for the zero dynamics
∗ We note that the following definitions are for arbitrary designable-edge graphs, not only forests.

198

of the plant. In these coordinates, the SCB representation of the plant is

ẏ = CA

⎡⎢⎢⎣C

Ĉ

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣ y

xa

⎤⎥⎥⎦ + CBu (8.2)

ẋa = ĈA

⎡⎢⎢⎣C

Ĉ

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣ y

xa

⎤⎥⎥⎦ .

Proof:

Since the plant is uniform-rank-1 with |Ed| outputs and n − |Ed| zeros, the plant dynamics

can be expressed through state transformation with the two equations ẏ = P1y + Caxa + Qu and

ẋa = Aaxa + Bay, where xa ∈ Rn−|Ed| represents the state of the plant’s zero dynamics. We claim

that xa =

⎡⎢⎢⎢⎢⎢⎢⎣
x1

...

x|Ed|

⎤⎥⎥⎥⎥⎥⎥⎦ serves as a state for the zero dynamics.

To prove the claim, we need to show that the plant dynamics can be written in the form (8.1)

when xa is defined as above. To do this, it is sufficient to show that the whole plant state x can

be recovered from xa and y (so that ẏ can be written in terms of y, xa, and u), and that ẋa does

not depend on the input (and so can be written as a linear combination of xa and y).

To show that the whole state x can be recovered from xa and y, notice that

⎡⎢⎢⎣ y

xa

⎤⎥⎥⎦ =

⎡⎢⎢⎣C

Ĉ

⎤⎥⎥⎦x,

where Ĉ ∈ R(n−m)×(m) computes xa from x according to the definition of the superstate. We

need only show that

⎡⎢⎢⎣C

Ĉ

⎤⎥⎥⎦ has full rank to show that x can be recovered from y and xa. From

the fact that ΓD is a z-forest, we immediately see that the m rows of C are linearly independent.

Now consider appending C sequentially with each row of Ĉ. The augmented row is clearly linearly

199

independent to previously-added rows of Ĉ, since the non-zero entries of the new row are at different

locations than those of the previously-added ones. Also, note that the newly-added row is linearly

independent of the rows of C, since any linear combination of these rows has entries that sum to

zero within each partition. Thus, all rows of

⎡⎢⎢⎣C

Ĉ

⎤⎥⎥⎦ are linearly independent, and hence x can be

recovered from

⎡⎢⎢⎣ y

xa

⎤⎥⎥⎦.

We also must show that ẋa can be written as only a linear combination of y and xa. To do so,

notice that ẋa = Ĉẋ = Ĉ(Ax+Bu) = ĈAx+ ĈBu. Noting that the two entries in each column of

B corresponding to a partition sum to zero, we recover that ẋa = Ĉx = ĈA

⎡⎢⎢⎣C

Ĉ

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣ y

xa

⎤⎥⎥⎦. We have

thus shown that xa as defined in theorem statement specifies a state for the finite-zero dynamics.

The SCB form follows automatically: the expression for ẋa has already been found, while the

expression for ẏ can be obtained from the original plant model together with the computation of

x in terms of

⎡⎢⎢⎣ y

xa

⎤⎥⎥⎦.

While Theorem 8.2 formally specifies the SCB of the plant, the representation is not explicitly

connected to the fixed- and designable- graphs’ topologies. In fact, all the parameter matrices in

the SCB representation can be described explicitly in terms of the graph topologies. In the interest

of space, we only characterize the state matrix of the zero dynamics, which is of critical importance

in the high-gain design, in this way. We first require a bit further notation: Consider two distinct

partitions Si and Sj, where i, j ∈ 1, . . . , n − |Ed|. We use the notation k(Si, Sj) for the sum of the

(fixed-graph) edge weights between partitions i and j, i.e. k(Si, Sj) =
∑

l∈Si,m∈Sj
klm. We refer to

k(Si, Sj) as the aggregate weight between partitions i and j.

We are now ready to present the structural result:

200

Theorem 8.3. Consider the partial edge design problem when the designable-edge graph is a z-

forest, and consider the state matrix of the zero dynamics Aa in the SCB representation (8.1). The

entry at row i and column j of Aa is given by k(Si,Sj)
|Si| , for i �= j. The diagonal entries are the

negative of the sum of the off-diagonal entries, i.e. they make the row sums zero.

Proof:

We seek to simplify the expression for the zero dynamics given in Theorem 8.2 (Equation 8.2), so

as to give an explicit graph-theoretic characterization of its state matrix. To this end, let us denote

the matrix

⎡⎢⎢⎣C

Ĉ

⎤⎥⎥⎦ by
[
Z1 Z2

]
, where Z1 has dimension n×|Ed| and Z2 has dimension n×(n−|Ed|).

From Theorem 8.2, we see that the state matrix of the zero dynamics is Aa = ĈAZ2.

Let us characterize the matrices Ĉ and Z2 in terms of the graph structure, and hence obtain

a graph-theoretic characterization of Aa. To do this, notice first that row i of the matrix Ĉ has

entries as follows: the jth entry is equal to 1
|Si| if j ∈ Si, and is equal to zero otherwise. Now

consider the matrix Z2. From its definition, we see that

⎡⎢⎢⎣C

Ĉ

⎤⎥⎥⎦ Z2 =

⎡⎢⎢⎣ 0|Ed|×(n−|Ed|)

I(n−|Ed|)×(n−|Ed|)

⎤⎥⎥⎦. We claim

from this expression that Z2 has the following form: the jth entry in column i is equal to 1 if

j ∈ Si, and is equal to zero otherwise. To check this, notice that each row in C sums to zero and

has non-zero entries within a single partition. Thus, we obtain that CZ2 = 0 for Z2 as defined.

Meanwhile, we see that the entries in each row i of Ĉ are contained within partition i and sum

to 1, and so ĈZ2 = I. From the characterization of C and Ĉ, and noticing that A = L(ΓF), we

recover the result of the theorem with just a little algebra.

Let us make a couple observations about the structural result given in Theorem 8.3. First, we

note that the state matrix of the zero dynamics is a Laplacian matrix with each row i inversely

scaled by the number of vertices in partition i. More specifically, the zero dynamics is defined by a

201

Laplacian matrix of a graph with the aggregate weights specifying the edge values, together with a

diagonal scaling matrix. Precisely, let us define the zero graph† ΓZ as a weighted and undirected

graph with n − |Ed| vertices, with the edge between vertex i and vertex j having weight k(Si, Sj).

We refer to the Laplacian of the graph (defined in the standard way) as L(ΓZ). Further, let us

define the size-scaling matrix D as an |Ed| × |Ed| diagonal matrix with entries given by |Si|. In

this notation, the state matrix of the zero dynamics is given by D−1L(ΓZ). From this expression, we

see that the plant (C,A,B) has at least one zero at the origin, with the number at the origin given

by the number of components in the graph ΓZ . It is easy to check that the zeros at the origin are

both input- and output- decoupling zeros. Meanwhile, the remaining zeros are strictly positive, and

are transmission zeros. Since the zeros are the eigenvalues of a scaled Laplacian matrix, algebraic

graph theory tools can be brought to bear to characterize the zeros (e.g. [73]).

8.3.4 Time-Scale Design

A high-gain controller architecture permits systematic assignment of the closed-loop poles of

an LTI plant along asymptotic time scales, see the literature on asymptotic time-scale and

eigenstructure assignment, or ATEA, design [196]. Specifically, given a plant’s infinite-zero

structure (which is clarified by the SCB), one can specify a family of high-gain controllers that

allow placement of certain eigenvalues at one or more desirable fast time scales, while the remaining

slow eigenvalues approach the finite invariant zeros of the plant. These multiple time-scale designs

are widely used, including for design of stabilizing controllers [195], almost-disturbance-decoupling

[197], and (as we have recently clarified) decentralized controller design [10]. As a further refinement,

high-and-low-gain methods can be used for e.g. stabilization under saturation [198].

† We again note that the definition is in force for any partial edge design problem, not only one with designable-edge

graph that is a z-forest.

202

High-gain and high-and-low-gain methods are apt for the partial graph design problem. Specif-

ically, in the various applications, large or small edge weights—which correspond to high- and low-

gains in the controller design reformulation—are often naturally assigned: e.g., algorithm weights

can be set to desired large or small values, or the rates of chemical reactions can be drastically

changed in the context of drug design. For the complementary analysis tasks (e.g., characterization

of settling rates over a range of uncertain weights), the design methods are also valuable because

they specify the dynamics of the network over the range of possible parameter values and identify

the extremes.

Here, we give a first set of results concerning high-gain approaches for the partial graph design

problem‡. Our focus here is on designing the initial-condition response of the plant and in particular

the closed-loop spectrum, and also characterizing these designs in terms of the graph topology. We

present our results in two steps, first specifying the high-gain design and its spectrum, and second

discussing the spectrum over the range of possible edge weights by using the results from the design.

Finally, we mention several generalizations and connections.

Let us begin by specifying and characterizing the high-gain design. Because of the special

uniform-rank-1 structure of the equivalent controller design problem (as indicated in the SCB rep-

resentation of the plant), we immediately recover from the ATEA design literature that identically

scaling up all decentralized controller gains (equivalently, all designable edge weights) achieves a

two-time-scale design. Specifically, we apply the following parameterized design: for each edge

{i, j} ∈ Ed, we choose the edge weight as kij = αk̂ij where each nominal edge weight k̂ij can

be any fixed positive value, and the parameter α (0 < α < ∞) provides an identical scaling to

each weight. We use the notation K(α) for a family of edge designs of this form, and call these a

‡ We note that the results in this section hold for arbitrary designable-edge graphs, not only forests.

203

high-gain edge design.

The following theorem specifies the two-time-scale structure resulting from use of a high-gain

edge design:

Theorem 8.4. The spectrum of L(Γ) upon application of a high-gain edge design K(α) with arbi-

trary nominal edge weights is as follows: for α → ∞, L(Γ) has 1) |Ed| eigenvalues that approach

+∞, and in particular are within O(1) of the non-zero eigenvalues of L(ΓD); and 2) n − |Ed|

eigenvalues that approach (i.e., are within O(1
α) of) the n − |Ed| eigenvalues of D−1L(ΓZ).

This theorem clarifies that any high-gain edge design drives |Ed| (fast) eigenvalues of L(Γ)

arbitrarily far right in the complex plane, while moving the other (slow) eigenvalues toward those

of the scaled zero graph (which are the in fact the zeros of the plant model (C,A,B)). The result

follows immediately from consideration of the ATEA design methodology [196] together with the

SCB representation from Section 8.3.3 and simple algebraic graph theory notions, and so we omit

the proof.

When a high-gain edge-design is used, we can also characterize the eigenvectors of L(Γ). Briefly,

we find the following, for sufficiently large α. 1) The eigenvectors associated with the slow eigen-

values have (approximately) identical entries corresponding to vertices in the same partition; these

entries are matched with the entries of the eigenvector of D−1L(ΓZ). 2) The eigenvectors associated

with the fast eigenvalues are each concentrated in the vertices corresponding to a single connected

subgraph in ΓD.

We stress that the above characterizations of the graph design hold for any high-gain edge

design, i.e. regardless of the choice of the nominal edge weights. Let us briefly discuss how one

can choose among possible nominal designs. In doing so, first let us note a fundamental difference

between centralized and decentralized high-gain feedback: a centralized static output feedback

204

can be used to place the |Ed| fast eigenvalues at arbitrary locations, while in the decentralized

setting the fast eigenvalues (i.e., the eigenvalues of L(ΓD)) cannot be assigned arbitrarily. In fact,

the problem of assigning the eigenvalues of L(ΓD) is that of designing all the edge weights in a

specified graph to place the eigenvalues of the associated Laplacian at desirable locations, see the

previous works [6, 80] for numerical/analytical solutions to this problem. It is worth noting that

our capability for assigning the fast eigenvalues is highly dependent on whether or not ΓD is a

tree, demonstrating that the (decentralized) partial graph design problem depends intricately on

the structure of ΓD even though the linear system structure does not.

Next, we note that the high-gain design also provides insight into the Laplacian’s spectrum,

over a range of possible designable edge weights. Such insight is valuable for the complementary

task of evaluating a network’s dynamics, when some of the interconnection strengths are subject to

variation. To this end, we show in the following theorem that the eigenvalues of L(Γ) are bounded

by those of the fixed-edge graph and zero-graph Laplacians.

Theorem 8.5. Consider a partial graph design problem. Denote the eigenvalues of L(ΓF) as

0 = λ̂0 ≤ λ̂1 ≤ . . . ≤ λ̂n−1, denote the eigenvalues of D−1L(ΓZ) as 0 = λ0 ≤ λ1 ≤ . . . ≤

λ|Ed|−1, and denote the eigenvalues of L(Γ) by 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1. For any assignment of

nonnegative edge weights in the designable graph, we have λi ≥ λ̂i, i = 0, . . . , n − 1 and λi ≤ λi,

i = 0, 1, . . . , |Ed| − 1.

In other words, the ith eigenvalue of the graph Laplacian is between the eigenvalues of the fixed-

edge graph’s Laplacain and the scaled zero graph’s Laplacian. The result follows automatically from

Theorem 8.4 along with the property that a Laplacian’s eigenvalues increase monotonically with

the edge weights, so we omit the details.

We have thus developed and characterized the performance of high-gain partial-graph designs.

205

The fundamental contribution of this design methodology is two-fold: 1) it shows how a network’s

topology can be exploited to assign an associated dynamic’s spectrum along time scales, and 2) it

characterizes the performance of the design explicitly in terms of the network’s graph topology.

Let us conclude our discussion of the high-gain design, by remarking on several generalizations

and connections:

1) The canonical problem studied here provides a simple illustration of the time-scale design

strategy, but the strategy applies to other problems. We especially stress that asymmetric partial

graph designs can also be addressed.

2) High-gain design can break existing slow-coherency structure (time-scale separation) only

when edges between two subnetworks that were initially weakly linked can be designed (and hence

the nodes become part of the same partition in our terminology). Our methodology clarifies that

such a design not only eliminates slow eigenvalues associated with the coherency structure, but also

loses the disturbance-localization properties that result from coherency.

3) Analogous results can be obtained for low-gain designs.

8.3.5 An Illustrative Example

We study a 30-node graph (Figure 8.1). The fixed-edge graph in this graph (identified by the

thin blue lines) has edge weights inversely proportional to the length of the line in the plot. The

fixed-edge graph has three completely decoupled subgraphs (A, B,and C), and subgraph A itself is

composed of two weakly-coupled subgraphs (A1, A2). The designable graph (marked by the thick

red lines) combines A and B into a single graph, and reduces weak coupling between the subgraphs

A1 and A2. We are concerned with assigning the spectrum of the graph’s Laplacian.

Now let us apply the time-scale design. From Theorem 8.1, the equivalent plant for this example

206

has a zero dynamics of dimension R25×25. Twenty-three state variables in the zero dynamics are

identical to the state variables of the open-loop plant, while the other two state variables are the

averages of the state variables in its partition, e.g., one state variable is the average of the states

of vertices 8, 19, 22 and 26. The state matrix of the zero dynamics can be easily characterized in

terms of the graph topologies using Theorem 8.3.

The above structural decomposition provides us with insights into the spectrum of the Laplacian

matrix upon high-gain design. The spectrum (or, equivalently, associated dynamics) obtained

through modifying these edge weights is constrained by the inherent structure of the zero graph.

In this example, as we scale up the weights in the designable edge graph from nominal values,

5 eigenvalues of L(Γ) move towards ∞. The other 25 increase monotonically, and approach but

can never surpass the zeros, which are in fact the eigenvalues of the scaled zero-graph’s Laplacian.

From the zero graph, we infer that: 1) one eigenvalue moves from zero to a non-zero value, 2) the

original slow-coherent behavior is eliminated/reduced since the zero graph has no edge-cutset of

size 1, and 3) many larger eigenvalues change little since they are specified by strongly-connected

subgraphs in the fixed-edge graph that are also present in the zero graph. A plot of the 5 smallest

non-zero eigenvalues of the Laplacian as we scale the strengths of the 5 designable edges verifies

these observations (Figure 8.1).

8.4 Connections and Future Directions

The control of dynamical networks has been widely studied during the last few years, so it is

worthwhile to briefly connect our results with the existing literature in retrospect. To position

our work in this context, let us first note that a great majority of the recent network controls

literature has focused on introducing/modeling various algorithmic and control tasks and associated

207

a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2
3

4

5

6

7

8

9

10

11

12

13

1415

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30

A

BC

A1
A2

b)

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

20
Trajectories of the five smallest non−zero eigenvalues

Scale Factor

E
ig

en
va

lu
es

Fig. 8.1: a) 30-node graph: thin blue lines specify the fixed graph, while the thick red lines specify the

designable graph. b) the 5 smallest non-zero eigenvalues of the graph Laplacian as we scale the strengths of

the designable communication links.

algorithms/controllers (see [26, 141, 207, 208] and the references contained therein). In contrast,

only very few of the recent works on network controls have addressed controller and graph design,

i.e. specification of controller structure and gains, algorithm weights, or graph edge weights so that

a network’s dynamics meets performance criteria (see e.g. [1, 5, 6, 10, 29, 80]). Our perspective is

that the design of network controllers and graphs is the principal outstanding task in the network

controls arena, and so our focus has been in this direction.

The particular contributions made by this work are 1) solution of the important partial net-

work design problem and 2) illustration of time-scale methods as a key tool for spectrum design.

Both contribution significantly enhance the existing results on graph and network-controller design.

Specifically, we note that the existing results on dynamical network design can be classified into

graph-edge design problems [6, 80] and nodal controller/resource design problems [1, 29]. In the

nodal controller design direction, our group has addressed several dominant eigenvalue or Fiedler

eigenvalue optimization tasks, through design of static controllers (under constraint) at all nodes in

208

the network. As a subsequent step, we have considered designing dynamical controllers for networks

of double-integrator agents as well as hardwired networks, so as to achieve not only stabilization

but effective placement of closed-loop eigenvalues [10]. In the graph-edge design direction, the

article [80] and our work [6] have taken complementary (respectively, numerical and structural)

approaches to the problem of designing all edge weights in a graph to optimize a Fiedler eigen-

value measure for an associated Laplacian matrix. However, in a wide range of network control

applications (e.g., sensor networking, virus-spread control, or electric power systems ones), only

some graph edges or controllers at some nodes can be designed. This chapter has initiated study

of such partial graph/controller design problems, and so significantly enhances the scope of the

graph-design efforts. Our study of partial graph design also elucidates that Fiedler eigenvalue opti-

mization as a design goal is both unwieldy (due to non-convexity) and incomplete (since the entire

spectrum may need design, and also since a family of good solutions rather than a single optimal

one may be needed). What our time-scale design methodology provides is a systematic technique

for obtaining a family of good partial graph designs, and for comparing them. Our results suggest

that, in analogy with centralized controller designs, time-scale notions are fundamental to graph

and network controller design.

We stress that the results presented here are only a beginning to research on partial graph

design. The following are particular outstanding tasks that we plan to address in our future work:

1) The time-scale-based graph design introduced here directly applies even when the graph topol-

ogy is non-symmetric and the matrix of interest is not a Laplacian. However, the eigenvalue

majorization results obtained from the time-scale design (Theorem 8.5) are specific to the

symmetric Laplacian case, since they depend on monotonicity properties of the Laplacian-

matrix eigenvalues (and hence of the dynamical system’s invariant zeros). We will seek to

209

characterize the system’s invariant zeros for other common topology matrices (e.g, nonnega-

tive matrices), and so further characterize the asymptotic design.

2) Although our focus here has been on eigenvalue assignment, the time-scale design approach

naturally also permits us to shape the eigenvectors of a graph’s Laplacian. A thorough study

of eigenvector assignment using time-scale notions requires a full graph-theoretic character-

ization of the closed-loop zero dynamics (not only its state matrix). We will pursue this

characterization in our future work.

3) Multiple time-scales are fundamentally needed for disturbance rejection [197], and so our

design approach is promising for achieving external stability (disturbance rejection) in network

applications. We expect to explicitly study the external stability of the models introduced

here, using a time-scale approach.

210

9. MAJORIZATIONS FOR THE DOMINANT EIGENVECTOR OF A NONNEGATIVE

MATRIX

Motivated by network controller design applications, we develop several majorization results for

the dominant eigenvector of an irreducible nonnegative matrix.

9.1 Introduction

Recent efforts on network control and design have made clear that graph-theoretic charac-

terization of eigenvector components is critical, for both undirected and directed graphs (which

correspond to symmetric and asymmetric topology matrices). However, graph-theoretic character-

ization of eigenvalues and especially eigenvectors of asymmetric matrices is very limited. Here, we

study the structure of the eigenvector associated with the dominant eigenvalue, for the broad class

of irreducible nonnegative matrices (see e.g. [74]). More precisely, we characterize the dependence

of the dominant-eigenvector components on individual entries in the matrix (equivalently, edge

weights in an associated graph), as well as on row scalings (Section 9.2). Motivated by network de-

sign tasks in particular, we also briefly study the dependence of dominant eigenvector components

on simultaneous modifications in multiple rows (Section 9.3).

Our particular motivation for studying the dominant eigenvectors of positive matrices stems

from our efforts in decentralized controller design [1, 29]. From another viewpoint, this work also

contributes to the extensive research on positive dynamical systems and the associated nonnegative

211

matrices (see e.g [74,209]), by further characterizing the eigenvector associated with the dominant

eigenvalue.

9.2 Majorizations for Single-Row Incrementations

We are concerned in this section with understanding how the dominant-eigenvector components

of a nonnegative matrix depend on individual matrix entries, and on scalings of single rows in the

matrix. In fact, we find it most convenient to study the dependence in the case that a single row

of the matrix is incremented in an arbitrary fashion, and hence to obtain results for single-entry

changes and row scalings as special cases.

Precisely, let us consider an n × n real irreducible nonnegative matrix G
�
= [gij]. We consider

incrementing a single row of G, say (WLOG) the first row, by a vector aT �
=

[
a1 . . . an

]
, where

each ai ≥ 0 and a �= 0. That is, we study Ĝ = G + e1aT , where e1 is an 0–1 indicator vector with

first entry equal to 1.

We notice that Ĝ is also an irreducible nonnegative matrix. Thus, G and Ĝ each has a real

positive eigenvalue (denoted λ and λ̂, respectively) that is non-repeated and has magnitude at least

as large as each of its other eigenvalues. The eigenvector v (respectively v̂) associated with G (Ĝ)

is strictly positive entrywise. For the purpose of this note, we refer to v (v̂) as the dominant

eigenvector of G (Ĝ). Also, we use the notation vi (respectively, v̂i) for the ith component of v

(respectively v̂).

Our purpose is to compare the components of the dominant eigenvectors v and v̂. We find

that incrementing the first row increases the first eigenvector component relative to each remaining

component:

Theorem 9.1. Consider the dominant eigenvectors v and v̂. Then v̂1
v̂j

> v1
vj

and for j = 2, . . . , n.

212

We thus recover that, when the eigenvector is normalized to unit length, v̂1 > v1.

The above theorem shows that, when a particular row of a positive matrix is incremented (in

an arbitrary way), the associated component of the dominant eigenvector increases relative to the

other components. This results automatically specializes to two cases of particular interest, namely

1) the incrementation of a single entry in the matrix (which corresponds to incrementing an edge

weight in an associated graph), and 2) the scaling of a row in the matrix (which corresponds to

scaling the “influence” of a node in the graph, e.g. by changing a controller gain):

Corollary 9.2. Consider incrementing the entry at row i and column j of an irreducible nonnega-

tive matrix G. Then the ratio of the ith component of the dominant right eigenvector of G to each

other component strictly increases. Similarly, the ratio of the jth component of the dominant left

eigenvector to each other component strictly increases.

Corollary 9.3. Consider scaling the ith row of an irreducible nonnegative matrix G by a factor

α > 1 (respectively 0 < α < 1). Then the ratio of the ith component of the dominant right

eigenvector of G to each other component strictly increases (respectively, strictly decreases).

The result for row-scaling of positive matrices also permits us characterize the eigenvectors

of nonsingular irreducible M matrices (see [74]) upon row-scaling, using the fact that inverses of

irreducible M matrices are nonnegative (in fact, strictly positive) matrices:

Corollary 9.4. Consider scaling the ith row of a nonsingular and irreducible M matrix by a con-

stant α > 1 (respectively, α < 1), and consider the left eigenvector associated with the eigenvalue

of minimum magnitude that is real. The ratio of the ith component of this eigenvector to each

other component strictly decreases (respectively, increases) upon row-scaling.

213

Let us take a moment to briefly interpret the above results for a couple applications, to illustrate

their use. In the interest of space, we shall only discuss these examples at a conceptual level.

1) Velocity-control problems in autonomous-vehicle-coordination applications can often be ab-

stracted that of designing a diagonal gain matrix K so as to optimize the dynamics ẋ = −KHx,

where H is an M -matrix (see e.g. [29]). The above analysis clarifies that increasing the gain for

a particular vehicle not only speeds up the slow mode of the system, but reduces the excitation

caused by the initial conditions of that vehicle (since the left eigenvector component is depressed).

2) In virus-spreading-control applications, reducing the flow of infectives from one region i to

another j has the effect of reducing the impact of the infectives in region i on other regions and

reducing the size of the infected population in j (in addition to slowing the spread of the infection

in general).

9.3 Majorizations for Multiple-Row Incrementations

In decentralized controller design tasks, it turns out that understanding the dependence of

eigenvector components upon scaling of multiple rows or incrementation of multiple diagonal entries

is important [1, 29]. With these applications in mind, here we briefly characterize the dependence

of dominant eigenvector components of nonnegative matrices on diagonal entries of the matrices

(noting that similar results hold for other multi-row incrementations). We develop the majorization

results in two steps: first, we consider designing incrementations of multiple diagonal entries to

achieve certain ratios among the dominant eigenvector components. Second, we use this result to

study arbitrary incrementations of multiple diagonal entries.

First, here is the design result:

Theorem 9.5. Consider an irreducible nonnegative matrix G, and say (WLOG) that we can

214

increment the first m < n diagonal entries by amounts k1, . . . , km, respectively, to obtain Ĝ. Then,

for each k1 > 0, we can find k2 > 0, . . . , km > 0 so that 1) v̂i
v̂j

= vi
vj

for i = 1, . . . ,m, j = 1, . . . ,m,

and 2) v̂i
v̂j

> vi
vj

for i = 1, . . . ,m, j = m + 1, . . . , n. Furthermore, k2, . . . , km increase monotonically

with increasing k1.

In words, this theorem states that there is a way to increment m diagonal entries of a nonnegative

matrix (for any fixed increase in the first component) so that the corresponding m components of

the dominant eigenvector remain the same to within a scaling, while the ratios of these components

to the others increase.

Finally, the above design result yields a majorization of eigenvector components for arbitrary

diagonal incrementations, as formalized in the following theorem:

Theorem 9.6. Consider an irreducible nonnegative matrix G, and say (WLOG) that we increment

the first m < n diagonal entries by amounts k1, . . . , km, respectively, to obtain Ĝ. Then, there is

i ∈ 1, . . . ,m such that v̂i
v̂j

> vi
vj

for all j = m + 1, . . . , n.

This theorem states that, when multiple diagonal entries of an irreducible nonnegative matrix

are incremented, at least one corresponding components in the dominant eigenvector becomes larger

in relation to all the components corresponding to non-incremented entries. This majorization result

can proved by iteratively applying the design result (Theorem 9.5), and at the final stage applying

the result of Theorem 9.6 to obtain the majorization.

215

10. AN EXPLICIT FORMULA FOR DIFFERENCES BETWEEN

LAPLACIAN-EIGENVECTOR COMPONENTS USING COALESCED GRAPHS

We obtain an explicit formula for the absolute difference between two eigenvector components

for a weighted graph’s Laplacian matrix, in terms of the the Laplacian’s eigenvalues as well as the

eigenvalues of matrices associated with certain coalesced graphs. We then briefly illustrate two uses

of this formula, in analyzing graph modifications.

10.1 Introduction

The eigenvalues of the Laplacian matrix associated with a weighted graph have been exten-

sively characterized in terms of topological features of the graph. Eigenvectors, as other important

statistics of the Laplacian matrix, provide significant further information about graph properties

and network dynamics defined on a graph. Hence, the characterizations of eigenvectors are needed

for a range of decentralized controls and dynamical-network analysis/design applications, including

e.g., network partitioning [210], synchronization design [211], and optimal network resource allo-

cation [1]. Despite such need, graph theoretic studies of the Laplacian’s eigenvectors are sparse

(see [73, 212, 213] for some reviews of these literature), and do not provide exact general charac-

terizations of eigenvector-component values in terms of graph constructs for arbitrary graphs. Of

relevance to our work, Merris in [214] obtained some exact results regarding Laplacian eigenval-

ues/eigenvectors under certain special graph topology changes (including upon coalescing of some

216

particular vertices in a graph, e.g. ones that have identical components in an eigenvector).

Motivated by problems in such areas as network identification, graph partitioning, and secure

controller design, we have been seeking explicit characterizations of various Laplacian eigenvector

characteristics (including of eigenvector component values and differences). In this technical com-

munique, we obtain that certain important eigenvector characteristics can be computed explicitly

in terms of the Laplacian’s eigenvalues, as well as the eigenvalues of Laplacian-type matrices of

graphs formed by coalescing vertices in the original graph. Specifically, we give explicit expressions

for differences between the eigenvector components associated with two vertices (which are widely

used in e.g. graph partitioning and controller design applications) in terms of these eigenvalues. We

also show two preliminary uses of the result. First, we obtain bounds on Laplacian eigenvalues upon

modification of the graph in terms of the original eigenvectors, and hence we better characterize

the spectra of certain designed networks. Second, we characterize the dependences of eigenvalues

on edge weights solely in terms of the eigenvalues of the original and coalesced graphs.

We stress that our characterization is in force for an arbitrary graph’s Laplacian matrix, and for

any unique eigenvector of the matrix. In this sense, our work exposes that, generally, eigenvectors of

a Laplacian matrix are precisely specified by the matrix’s eigenvalues together with the eigenvalues

of particular coalesced graphs’ Laplacians.

10.2 Main Result

Let us consider an undirected and weighted graph G with n vertices (labeled 1, . . . , n), m edges

(each comprising a pair of distinct vertices), and positive weight kij = kji associated with each

pair {i, j} that is an edge. We define the symmetric n × n Laplacian matrix L of the graph in the

standard way, i.e. as follows: the off-diagonal entry lij is set equal to −kij if {i, j} is an edge, and

217

is set to 0 otherwise. Each diagonal entry is selected so that the rows of the matrix sum to 0, i.e.

lii = −∑n
j=1,j �=i lij .

We recall that the Laplacian matrix L is a symmetric positive semi-definite matrix, with the

number of zero eigenvalues equal to the number of maximal connected subgraphs of G. From here

on, let us assume that G is connected. In this case, L has a non-repeated zero eigenvalue with corre-

sponding eigenvector equal to 1 (the vector of all ones). The remaining n−1 eigenvalues are strictly

positive and simple, though they may be repeated. Our primary aim here is to characterize the

corresponding eigenvectors (in particular, to compute differences between eigenvector components)

in terms of the eigenvalues of L and of certain derived graphs’ Laplacians. For ease of presentation,

we will address the case where the eigenvector of interest corresponds to a non-repeated eigenvalue,

but also briefly summarize the result for the more general case (where the eigenspaces associated

with repeated eigenvalues need to be considered).

Our main result is phrased in terms of the eigenvalues of Laplacian-type matrices formed when

vertices in the original graph are coalesced, and so we require several definitions regarding coalesced

graphs and associated Laplacian-type matrices. To this end, let us consider the graphs formed when

one pair of vertices in a graph G are coalesced into a single vertex. We use the notation G̃(i, j) to

represent the n−1 vertex graph formed through coalescing vertices i and j in G. Specifically, n−2

of the vertices in G̃(i, j) represent the n− 2 vertices other than i and j in G. For each distinct pair

x and y of these vertices, we associate an edge in G̃(i, j) with the pair if {x, y} is an edge of G, and

assume that the weight of the edge k̃xy = k̃yx is the same as in G (i.e., equal to kxy). Also, let us

denote the remaining vertex in G̃(i, j), which represents the aggregation of vertices i and j in G,

as ij. We associate an edge with vertices ij and x (x �= ij), if there is an edge between x and i or

an edge between x and j in G. We let the weight of this edge equal kix (respectively kjx) if G only

218

has an edge between i and x (respectively, j and x), and set the weight of this edge to kix + kjx if

both edges are present in G. We refer to the graph G̃(i, j) as the (i.j)-coalesced graph.

Finally, we use the notation L(G) for the Laplacian matrix associated with the original graph

G, and use the notation L(G̃(i, j)) for the Laplacian matrix associated with the graph where i

and j are coalesced. (For convenience, we assume that the coalesced vertex is the one of lowest

ordinality in constructing the Laplacian matrix, so that the first row and column of the Laplacian

correspond to the coalesced vertex. Also, we find it convenient to define a scaled Laplacian

matrix L(G̃(i, j)) for coalesced graphs: this matrix is formed from the Laplacian matrix by scaling

the first row of L(G̃(i, j)), i.e. the row corresponding to the coalesced vertex, by 1
2 (and leaving

the remainder of the matrix G̃(i, j) unchanged).

We are now ready to present the main result, which relates the differences between eigenvector

components for a graph’s Laplacian matrix to eigenvalues of this matrix and those of its coalesced

graphs’ Laplacians:

Theorem 10.1. Consider a graph G. Let us label the eigenvalues of the Laplacian matrix L(G)

as λ1, . . . , λn, where 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. Consider any non-repeated and non-zero eigenvalue

λq of L(G), and denote the corresponding eigenvector as vq (where vq is normalized to unit length,

i.e. vT
q vq = 1). The absolute difference between the ith and jth entries of vq can be computed as

|vqi − vqj | =

√
2

∏n−1
z=2 (μz − λq)∏n

z=2,z �=q(λz − λq)
, (10.1)

where 0 = μ1 < μ2 ≤ . . . ≤ μn−1 are the eigenvalues of the scaled Laplacian for the (i.j)-coalesced

graph L(G̃(i, j)).

Proof

219

For ease of presentation, let us consider i = 1 and j = 2. This is done WLOG, since the

vertices in the graph can simply be relabeled in this way. The outline of the proof is as follows: we

will consider the response of a linear time-invariant dynamical system defined from the Laplacian

matrix above, and compute the response in two ways. Equivalencing the two forms will yield the

desired result.

As a preliminary notational step, let us give the Jordan decomposition of L(G). Since L(G) is

symmetric, it can be written in the form

L(G) =
[
1 v2 . . . vn

]
⎡⎢⎢⎢⎢⎢⎢⎣
λ1 = 0

. . .

λn

⎤⎥⎥⎥⎥⎥⎥⎦
[
1 v2 . . . vn

]T

, where each column of the matrix

V =
[
1 v2 . . . vn

]
is an eigenvector of L(G) normalized to unit length. Since the eigenvalue

λq is assumed non-repeated, the qth column of V is the unique normalized eigenvector associated

with λq, which we wish to characterize.

Now, let us consider the impulse response of the system

ẋ = L(G)x + e12u

y = eT
12x, (10.2)

where e12 is an n-component vector whose 1st component is 1, whose 2nd component is −1, and

which is zero otherwise. It follows immediately from the Jordan form of L(G) together with classical

linear systems analysis that this impulse response is

y(t) =
∑n

z=2 eλzt(vz1 − vz2)2, t ≥ 0. From this expression, we see that the coefficient of the

exponential eλqt is (vq1 − vq2)2; we shall obtain an alternate characterization of this coefficient in

terms of the original and scaled Laplacian’s eigenvalues, and hence obtain the desired results.

We can alternately find the response y(t) by finding the transfer function of the system, and

220

writing the transfer function in pole-residue form. We will relate the poles and zeros (and hence

the transfer function) to the eigenvalues of L(G) and L(G̃(1, 2)), hence obtaining an expression

for the coefficient of eλqt in the dynamical response in terms of these eigenvalues and proving the

equivalence. We first note that the characteristic function, and hence denominator of the transfer

function (prior to any pole-zero cancellation), is
∏n

z=1(s − λz). We also must find the numerator

of the transfer function. We do this in two steps: first, we demonstrate an equivalent feedback

representation of the system (10.2). We then use this equivalent representation to determine the

numerator.

The equivalent representation that we obtain is based on a more general reformulation of linear-

time-invariant systems known as the special coordinate basis, that identifies the invariant zeros of

the dynamics (we ask the reader to see [196,205] for further background). To present the equivalent

representation, we find it convenient to define an n−1 component zero state vector xa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1+x2
2

x3

...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We claim that that the dynamics of the system (10.2) can equivalently be written in terms of the

zero state vector, as follows:

ẏ = ay + cT xa + 2u

ẋa = L(G̃(1, 2))xa + by, (10.3)

where the specific values of a, b, and c are not important to our development. To verify this claim,

221

we note the following invertible relationship between the state vector x and the vector

⎡⎢⎢⎣ y

xa

⎤⎥⎥⎦:

⎡⎢⎢⎣ y

xa

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1

1
2

1
2

In−2

⎤⎥⎥⎥⎥⎥⎥⎦x

and

x =

⎡⎢⎢⎢⎢⎢⎢⎣
1
2 1

−1
2 1

In−2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣ y

xa

⎤⎥⎥⎦ (10.4)

Using these expressions together with the definitions of y and xa, we obtain

ẏ = eT
12ẋ = eT

12L(G)x + eT
12e12u

= eT
12L(G)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

−1
2

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y + eT

ijL(G)

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

In−2

⎤⎥⎥⎥⎥⎥⎥⎦xa + 2u.

222

y=ay+w

x = L(G(i,j))x +by

q=c x

a

a
T

u
2 +

y

q a

Fig. 10.1: A feedback representation of the system (2)

Thus, we have verified that ẏ can be written in the form shown in (10.3). Similarly, we find that

ẋa =

⎡⎢⎢⎣1
2

1
2

In−2

⎤⎥⎥⎦ ẋ =

⎡⎢⎢⎣1
2

1
2

In−2

⎤⎥⎥⎦ (L(G)x + e12u)

=

⎡⎢⎢⎣1
2

1
2

In−2

⎤⎥⎥⎦ L(G)

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

In−2

⎤⎥⎥⎥⎥⎥⎥⎦xa +

⎡⎢⎢⎣1
2

1
2

In−2

⎤⎥⎥⎦ L(G)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

−1
2

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y.

Noting that

⎡⎢⎢⎣1
2

1
2

In−2

⎤⎥⎥⎦ L(G)

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

In−2

⎤⎥⎥⎥⎥⎥⎥⎦ = L(G̃(1, 2)), we see that ẋa has the form given in

(10.3). Thus, we have shown that the system (10.2) can be written in the form (10.3).

As a second step, let us use the form (10.3) to characterize the transfer function of the system

(10.2). To do so, note the special form (10.3) clarifies that a projection of the state vector (in

particular, the (n−1)-component vector xa) evolves without any direct influence from the input u,

223

and without directly impacting the output y. That is, we see that the system can be viewed in the

feedback form shown in Figure 1, i.e. one with a first-order dynamics in the forward path and an

order-(n − 1) dynamics in the feedback path. Let us characterize the transfer function H(s) from

the feedback representation given in Figure 1. To do so, let us consider the transfer functions of

the forward and feedback paths. We see that the forward path transfer function is HA(s) = 1
s−a .

Meanwhile, using that the state matrix of the the feedback-path transfer function is L(G̃(1, 2)), we

see that the transfer function (prior to any pole-zero cancellations) is HB(s) = r(s)
s(s−μ2)...(s−μn−1) ,

where r(s) is a polynomial of degree less than n− 1. From these path transfer functions, we obtain

that

H(s) = 2
HA(s)

1 − HA(s)HB(s)
=

2s(s − μ2) . . . (s − μn−1)
s(s − a)(s − μ2) . . . (s − μn−1) + r(s)

.

Recalling that the denominator of the transfer function prior to pole-zero cancellation is the degree-

n characteristic polynomial, we immediately see that the transfer function is H(s) = 2
∏n−1

z=2 (s−μz)∏n
z=2(s−λz)

.

It is classical that H(s) can be written in the form
∑n

z=2
Az

s−λz
through partial fraction de-

composition, and hence that the impulse response can be written as
∑n

z=2 Aze
λzt. Thus, we see

that (vqi − vqj)2 = Az, where Az is obtained through partial fraction decomposition of H(s) =

2
∏n−1

z=2 (s−μz)∏n
z=2(s−λz) . We thus shortly recover the result of the theorem. �

This theorem shows that eigenvector component differences for a Laplacian matrix with distinct

eigenvalues can be explicitly computed in terms of these eigenvalues, as well as the eigenvalues of

certain coalesced graphs’ Laplacian matrices. These explicit relationships between eigenvalues and

eigenvector components constitute an interesting interpretation of the role played by a graph’s

structure in its Laplacian’s spectrum. Also, these relationships hold promise for providing bounds

on eigenvector components in terms of the eigenvalues, and, conversely, for providing bounds on

224

eigenvalues in terms of eigenvector components. Further, the result gives insight into optimal graph

designs (for which certain Laplacian eigenvector components are specially structured, [1, 29]), and

also possibly may provide graph-theoretic (specifically, Laplacian eigenvalue-based) interpretations

for linear systems constructs (reachability, observability) in some dynamical-network models. Let

us make a few remarks about the above result, and then give a two simple examples illustrating its

potential uses.

Here are the remarks regarding the theorem:

1) Graph-theoretic characterizations of a feedback representation for linear systems, as used

in the proof of Theorem 10.1, have also been developed in [7]. In that work, the charac-

terizations were used in designing edge weights in a graph for the purpose of shaping an

associated dynamics. We also stress that the feedback representation that we presented for

the system (10.2), known as the special coordinate basis (SCB) representation, has been de-

veloped generally for linear time invariant systems and enjoys wide application in controls

engineering [205]. The article [7] as well as this short note constitute a first effort to give

graph-theoretic characterizations of the SCB.

2) When an eigenvalue of L(G) is repeated, the corresponding eigenvectors form a subspace of

Rn of dimension greater than 1. Thus, eigenvector components and their differences are not

specified uniquely. However, it can be shown that there exists precisely one vector in this

eigenspace (of normalized length) whose components can be explicitly calculated in terms of

eigenvalues as in the theorem statement.

3) The proof of the theorem can be presented entirely using various canonical representations

of the Laplacian matrix, i.e. without invoking the dynamical system (10.2). However, we feel

225

that such a proof is more clumsy and also less insightful than one that uses a dynamical-system

construct.

Finally, let us give two examples that preliminarily illustrate application of the above theorem.

Example 1: Eigenvector-Based Bounds on Eigenvalue Augmentations

It is well-known that increasing an edge weight in a graph results increases (or at least does not

decrease) all the corresponding Laplacian matrix’s non-zero eigenvalues. This concept is valuable

in numerous network engineering tasks wherein limited resources must be assigned to some links

in the network, for example in traffic network design [7]. In the limiting case that a particular

edge-weight is made large, it is well-known that the eigenvalues of the resulting graph’s Laplacian

monotonically approach those of the coalesced graph’s scaled Laplacian, as defined above (see [7]).

Thus, characterizing eigenvalues of the coalesced graphs’ scaled Laplacians in terms of the original

Laplacian matrix’s eigenvector components can help to easily select edges (links) that are worthwhile

to modify. Noting that the eigenvalues of each coalesced graph’s scaled Laplacian are interleaved

with the eigenvalues of the original graph’s Laplacian, we straightforwardly recover from Theorem

10.1 the following bounds on μ2(i, j), i.e. the second-smallest (or Fiedler) eigenvalue when vertices

i and j are coalesced (assuming it is not repeated):

λ2 +
1
2
(λ3 − λ2)(v2i − v2j)2 ≤ μ2(i, j) ≤ λ2 +

1
2
(λn − λ2)(v2i − v2j)2 (10.5)

We note that the presented upper bound can also be viewed as an upper bound on the Laplacian’s

Fiedler eigenvalue, upon any augmentation of the edge weight between vertices i and j.

Let us illustrate the bound using a small example. In particular, let us consider a 5 vertex

line graph with identical (unity) weights for all four edges. The Fiedler eigenvalue of the graph’s

Laplacian is λ2 = 0.382 in this case. If we apply the bound above for one of the leaf edges in

226

the graph, we recover that 0.408 ≤ μ2 ≤ 0.467. In contrast, for the interior edges, we find that

0.451 ≤ μ2 ≤ 0.606. In fact, we find that μ2 (or in other words the Fiedler eigenvalue when the

edge weight is made large) equals 0.429 and 0.546, respectively, for the two cases. We note that

the upper bounds provided are considerably less than the next-smallest eigenvalue, λ3 = 1.382.

We also note that useful bounds can be found on other eigenvalues using the explicit expression

for the eigenvector components; we omit the details.

Example 2: Finding Eigenvalue Dependencies on Edge Weights

The dependence of a Laplacian matrix’s non-zero eigenvalues on an edge weight in the associ-

ated graph is often of interest. The eigenvalue-eigenvector relationship that we developed above

shows that, surprisingly, this dependence can be determined from only the eigenvalues of Lapla-

cians associated with two graphs: 1) the original graph, 2) the graph with the edge of interest

condensed. In particular, noting that the sensitivity of each (non-repeated) eigenvalue λq to a

particular edge weight kij is given by dλq

dkij
= (vqi − vqj)2 and applying the above equivalence, we

find that the dependence of the eigenvalues on kij can be found by solving the following set of

differential equations∗:

dλq

dkij
= 2

∏n−1
z=2 (μz − λq)∏n

z=2,z �=q(λz − λq)
,

q = 1, . . . , n − 1, where μ2, . . . , μn−1 are the (fixed) eigenvalues of the Laplacian of the graph with

edge {i, j} coalesced. We note that finding all the eigenvalue derivatives with respect to kij requires

on the order of n2 operations, and so the above differential equations are appealing for numerically

approximating the dependence of the eigenvalues on kij .

∗ From the interlacing property, it is easy to see that the eigenvalues will remain non-repeated as kij is changed.

227

PART III: NETWORK CONTROL

In Part III, we develop novel dynamical controllers (memoried designs) to shape the dynamics

of networks. Additionally, the tools permit shaping of dynamics under common limitations, such as

saturation constraints and delays, and allow completion of a range of complex tasks in dynamical

networks.

In Chapter 11, we introduce our novel decentralized controller design in the context of a

double-integrator network. The controller is constructed by first designing a stabilizing (and

high-performance) derivative controller with higher relative degree, and then implementing the

controller using delay approximation. Chapter 12 studies an alternative implementation of the

stabilizing derivative controller using lead compensators, and Chapter 13 studies the design of the

multi-lead-compensator controller in the presence of input saturation.

228

11. A MULTIPLE-DERIVATIVE AND MULTIPLE-DELAY PARADIGM FOR

DECENTRALIZED CONTROLLER DESIGN: INTRODUCTION USING THE

CANONICAL DOUBLE-INTEGRATOR NETWORK

We are engaged in a major effort to design decentralized controllers for modern networks,

that is fundamentally based on 1) applying feedback of multiple derivatives of local observations

and 2) implementing these derivative feedbacks using multiple-delay controllers. Here, we fully

motivate and introduce the design paradigm in the context of a canonical sensing-network model,

namely a network of saturating double integrators with general sensing topology that is subject

to measurement delays. In this context, we illustrate that our design paradigm yields practical

high-performance (in particular, group pole-placement) decentralized controllers that exploit the

network topology while distributing the complexity and actuation requirements among the agents.

11.1 Introduction

Decentralized feedback systems have long been of interest to the controls community [28, 66,

67]. In recent years, research in decentralized control has been re-invigorated by interest in such

applications as cooperative control of autonomous vehicle teams, data fusion in sensor networks, and

virus-spreading control, among others, (see the overviews [141,142,207,208], see also, e.g., [1,25,29]).

In particular, the novel characteristics of these sensing-agent networks (networks of highly-limited

autonomous agents with distributed communication/sensing capabilities [208]) has brought about a

229

focus on understanding the role played by a network’s topology in permitting stabilization and high-

performance control. This focus has again made clear that very little is known about designing high-

performance controllers for decentralized systems—even for the very specially structured sensing-

agent networks—and hence new tools for design are badly needed.

We are engaged in a major effort to design stabilizing and high-performance yet practical

controllers for decentralized systems, that is fundamentally based on 1) locally using feedback of

multiple derivatives of the observation and 2) using multiple-delay control schemes to implement

these multiple-derivative controllers. We show that this new methodology is capable of addressing

many of the complexities that are common to modern decentralized systems (such as sensing-agent

networks), including very general observation topologies, saturation nonlinearities, and inherent

network delays. We shall describe aspects of this systematic methodology for design in several

installments [14,215]. In this chapter, we fully motivate and introduce the design methodology using

a canonical but very widely applicable sensing-agent network model, namely a network of double-

integrator agents with general sensing/communicating topology (e.g. [25,143]). The complementary

installments demonstrate application to uniform rank and more general decentralized plant models

(including for modern infrastructure networks) [215], and flesh out the implementation of multiple-

derivative feedback using multiple-delay controllers.

Given the long history of decentralized control, the reader may well wonder why new techniques

are needed for decentralized controller design. In fact, the study of sensing-agent networks, as

well as certain infrastructure networks such as air traffic management systems [2] and electric

power systems [216], has made it clear that a single agent cannot possibly provide the actuation

or complexity required to control the whole network, and further the controllers must exploit the

network topology to cooperatively achieve performance requirements. Unfortunately, the bulk of the

230

traditional decentralized control theory views the network as a disturbance that must be dominated

by the local dynamics [66], and hence does not permit design of controllers that exploit the network

topology.

The seminal work of Wang and Davison [28] does make the role played by the network explicit,

in that it gives necessary and sufficient conditions for stabilization of decentralized systems based

on fixed modes (see also, e.g., [67,217,218]). Their methodology is very much applicable to modern

networks, and we have used it to address the foundational problem of determining whether a

sensing-agent network can be stabilized [25]. Unfortunately, Wang and Davison’s perturbation-

based approach does not permit constructive design of practical high-performance or even stabilizing

controllers. While several works have extended [28] toward allowing eigenvalue placement (and

hence high performance) in addition to stabilization, these approaches essentially concentrate the

complexity and extent of actuation/observation at a single agent, and hence also are unsuitable for

our applications [66]. For these reasons, new tools for decentralized controller design are critically

needed.

In this document, we develop a multiple-derivative and multiple-delay paradigm for control-

ling decentralized systems. Fundamentally, the derivatives of local observations provide the local

controllers with information about the entire network’s state, and so permit control. To develop

practical implementations of these multiple-derivative controllers for modern (e.g. sensing-agent)

networks, we pursue multiple-delay approximations for the multiple-derivative controllers (i.e.,

feedback controls where the actuation signals are combinations of multiple delayed observations),

see [14] for further development of multiple-delay controllers. This use of delayed observations may

at first seem surprising since delays often serve to destabilize feedback control systems [219], but

it is also well known that properly-selected delays can be used effectively in control [13,220]. This

231

derivative/delay paradigm is a very natural one for decentralized systems, for which centralized

notions of state estimation fail, and hence delays/derivatives provide the only known approach to

finding the global state from local observations. What is surprising is that we can achieve not only

stabilization but effective pole placement, while using only one more delayed observation (or one

higher derivative) than is needed for centralized control. We thus are able to construct fully decen-

tralized controllers with quite low complexity and distributed actuation effort. In this chapter, we

conceptualize and illustrate the delay-based decentralized control paradigm, using as a canonical

example the double-integrator-network model.

Decentralized systems, and in particular sensing-agent networks, are strongly impacted both

by constraints on the agents and network limitations and variations. An essential advantage of

our delay-based control methodology is its effectiveness even in the presence of these harsh con-

straints/limitations. Specifically, actuator saturation nonlinearities are ubiquitous in sensing-

agent network applications [1, 25]. While controller design under saturation has been extensively

studied for centralized systems [221], design under saturation for decentralized systems is wholely

unknown (see [222] for partial existence conditions). In fact, our multiple-derivative/delay control

scheme provides a natural avenue for design under actuation saturation. Further using low-gain

ideas, we can naturally design multiple-delay controllers that stabilize networks with actuator sat-

uration. Also, network communications/sensing are always subject to delays, and so controlling

networks with inherent delays is critically important. Since our control strategy systematically

uses delayed observations, it is eminently suited for networks with inherent delays. In particular,

we show that networks with arbitrary and inhomogeneous delays can be stabilized with a low-gain

controller. These results for networks with saturation and delay indicate the wide applicability of

our methodology for practical controller design.

232

We stress here that the delay-based control methodology is applicable to general linear time-

invariant decentralized control systems, and so the reader may wonder why we have chosen to in-

troduce the methodology using only a canonical example. In fact, focusing on the double-integrator

network permits a clearer and simpler presentation for two reasons: 1) it permits a full characteri-

zation of the derivative-based and hence delay-based controller’s performance and implementation

from first principles (Sections 11.2 and 11.3), without requiring the complicated special coordinate

basis (see [205] and also [215]) , and 2) the time-scaling properties of the double-integrator net-

work permits simple design of low-gain multiple-delay controllers (Section 11.4). We feel strongly

that presenting results in this simpler context allows us to expose the conceptual underpinnings

of derivative/delay-based decentralized control, and to clearly develop the (rather intricate) tools

for analyzing multiple-delay controllers. We also note that sensing-agent networks, and in partic-

ular double-integrator networks, are of wide current interest [25, 208] and so deserve an explicit

treatment.

11.2 Controlling the Double-Integrator Network

In this section, we illustrate our methodology of using multiple derivative feedbacks to achieve

stabilization and high-performance control, in the context of a decentralized double integrator

network (see [25]). In this simple network model, each agent has a double-integrator internal

dynamics, and observes only a linear combination of the states of some agents. Although sim-

ple, this network model is widely applicable, including for various autonomous-vehicle control and

sensor-networking tasks [25, 141, 143]. We present our controller design for this simple but very

widely-applicable decentralized network, to highlight the conceptual foundation for the methodol-

ogy. Specifically, we show that, using linear feedback of derivatives of observations up to order 2

233

for each agent, we can stabilize the double integrator network. Moreover, we can place groups of

poles at arbitrary locations or in desirable ranges using high gain control. The fundamental concept

underlying this design is that feedback of derivatives of the output up to the relative degree of the

local plant (2 in our case) gives each agent enough information about the global state to permit

high-performance control through, essentially, plant inversion; we notice that one more derivative

is needed then for centralized control of the plant, see the literature on asymptotic time-scale and

eigenstructure assignment (ATEA design) and our recent application of it to multiple-delay control

of centralized plants [13,196]. In this section, we first present the controller design (Section 11.2.1),

and then give a conceptual discussion of the design method and its characteristics (Section 11.2.2).

11.2.1 Multiple-Derivative Controller Design

Formally, consider a linear time-invariant (LTI) system consisting of n double-integrator agents,

i.e. described by

ẍ(t) = u(t) (11.1)

y(t) = Gx(t),

where x(t) ∈ Rn represents the positions of the n agents, u ∈ Rn and y ∈ Rn are the inputs

and observations respectively, and matrix G = {Gij}n×n. Note that each agent i has only one

input ui and makes only one observation yi, which is a linear combination of the positions of other

agents, i.e., yi = [Gi1, ..., Gin]x. Further, each agent i has its own local feedback control law, which

constructs its input ui from its local observation yi. We refer to this system as a double-integrator

network (see [25]).

The condition to stabilize such a network using a linear time-invariant controller is that G has

full rank (from [25], based on Wang and Davison’s classical existence result [28]). Unfortunately, the

234

existence condition seemingly does not translate to a simple controller design: the system can not

always be stabilized with a static decentralized feedback controller u(t) = Ky(t) (K diagonal), nor

can it always be stabilized with position and velocity feedback (i.e. using a control law of the form

u(t) = K1Gx(t)+K2Gẋ(t), K1 and K2 diagonal) [25]. However, by introducing one more derivative

to the feedback control—specifically by using the control law u(t) = k1k3y(t) + k2k3ẏ(t) + k3ÿ(t),

where k1, k2, k3 are some properly chosen scalars — it turns out that we suddenly gain the ability to

achieve stabilization and high performance (in particular, a “group” pole placement, where groups

of n poles are placed at desirable locations). It is valuable to note that all agents have the same

gains k1, k2 and k3: one does not even need to employ agent-specific gains for stabilization and

high-performance control.

We can design this multiple-derivative-based control law using a simple algorithm. We first de-

scribe the algorithm, and then formally show that the two tasks (stabilization and high-performance

control) can be completed using the multiple-derivative-based controller.

Algorithm The following is the algorithm for designing the multiple-delay-based controller:

1) Choose two constants, say k1 and k2, such that the roots of λ2 + k1λ + k2 are at desirable

locations.

2) Choose k3 sufficiently large, and apply the control law

u = k1k3y + k2k3ẏ + k3ÿ (11.2)

We will show that the algorithm yields not only stabilizing controllers, but ones with closed-loop

poles near to the roots of λ2 + k1λ + k2. The above algorithm for designing the derivative-based

controller, and the justification that it achieves stabilization/performance goals, is essentially based

on using the second derivative of the observation in feedback with high gain (k3 large) to effectively

235

permit local control of agents’ states.

In Theorem 11.1, we state the main result concerning stabilization of the double integrator

network using the multiple-derivative-based controller (Equation 11.2).

Theorem 11.1. Consider the double-integrator network described in (11.1), where G is nonsin-

gular. The network can be stabilized using the multiple-derivative control law (Equation 11.2) with

k1, k2 and k3 satisfying: ai1 > 0, ai1ai2−ai3
ai1

> 0, a2
i1ai4+ai3(ai3−ai1ai2)

ai3−ai1ai2
> 0 and ai4 > 0 for all

i, where ai1 = −2Re(k2k3λi
1−k3λi

), ai2 = −2Re(k1k3λi
1−k3λi

) +
∣∣∣ k2k3λi
1−k3λi

∣∣∣2, ai3 = 2Re(k1k3λi
1−k3λi

)Re(k2k3λi
1−k3λi

) +

2Img(k1k3λi
1−k3λi

)Img(k2k3λi
1−k3λi

), ai4 =
∣∣∣ k1k3λi
1−k3λi

∣∣∣2, and λi is the ith eigenvalue of G. As a special case, if

G has real eigenvalues, the network can be stabilized with k1, k2 and k3 satisfying: k1 > 0, k2 > 0

and k3 > 1
min(λ(G)>0) (where min(λ(G) > 0) denotes the minimum positive eigenvalue of G) .

Proof: We study the closed-loop poles of the system using the control law (Equation 11.2).

The state-space of the closed loop system thus is Ẋ = AcX, where X =

⎡⎢⎢⎣ẋ

x

⎤⎥⎥⎦ and

Ac =

⎡⎢⎢⎣(I − k3G)−1k2k3G (I − k3G)−1k1k3G

I 0

⎤⎥⎥⎦ .

Denoting

⎡⎢⎢⎣x1

x2

⎤⎥⎥⎦ as the right eigenvector of Ac, we have Ac

⎡⎢⎢⎣x1

x2

⎤⎥⎥⎦ = λ

⎡⎢⎢⎣x1

x2

⎤⎥⎥⎦, which implies that

x1 = λx2, and λ(I − k3G)−1k2k3Gx2 + (I − k3G)−1k1k3Gx2 = λx1. The latter yields: λk2k3Gx2 +

k1k3Gx2 = λ2(I − k3G)x2, or (λk2k3 + k1k3 + λ2k3)Gx2 = λ2x2. This means that x2 must be

an eigenvector of G with a eigenvalue, say λi. Hence, we have (λk2k3 + k1k3 + λ2k3)λi = λ2, or

λ2 − k2k3λi
1−k3λi

λ − k1k3λi
1−k3λi

= 0. The closed-loop poles are the roots of the characteristic equations

λ2 − k2k3λi
1−k3λi

λ− k1k3λi
1−k3λi

= 0, for all i. Placing the roots of λ2− k2λi
1−k3λi

λ− k1λi
1−k3λi

= 0 in the Open Left

Half Plane (OLHP) is equivalent to placing the zeros of (λ2 − k2k3λi
1−k3λi

λ − k1k3λi
1−k3λ∗

i
)(λ2 − k2k3λ∗

i
1−k3λ∗

i
λ −

236

k1k3λ∗
i

1−k3λ∗
i
) = 0 into the OLHP, since the latter has two conjugate complex root pairs, each pair

specifying a root of the original equation. As a special case, when λi is real, the latter has two

repeated roots corresponding to each root in the original equation. The Routh Criterion naturally

leads to the conditions for stabilization. �

It is easy to check that the conditions on the gains in Theorem 11.1 can always be satisfied by

choosing k1 and k2 positive and k3 sufficiently large. Theorem 11.1 states that by introducing the

derivatives of observations y(t), ẏ(t) and ẏ(t) into the control law as in (11.2), the decentralized

system can be stabilized whenever G has full rank. This result is significant in that it gives an

explicit controller design for stabilization of a double integrator network, rather than only giving

conditions for the existence of such a controller. We will see that this design far outperforms

single-channel-based designs (Section 11.2.2).

Using derivatives in the control law also allows performance design, e.g., placing groups of

closed-loop poles at pre-defined positions or within ranges.

Theorem 11.2. Consider the double-integrator network described in (11.1), where G is nonsin-

gular. The closed-loop poles of the network can be placed arbitrarily near to any two pre-defined

locations xA and xB (on the real axis or as a conjugate pair) using the multiple-derivative controller

(Equation 11.2), by setting k3 sufficiently large and choosing k1 and k2 such that k2 = −(xA + xB)

and k1 = xAxB.

Proof: From the proof of Theorem 11.1, we know that the closed-loop roots are the zeros of

the characteristic equations λ2− k2k3λi
1−k3λi

λ− k1k3λi
1−k3λi

= 0, for all i. Hence, when k3 is sufficiently large,

the coefficients of the characteristic equation approach the coefficients of the quadratic equation

λ2 + k2λ + k1 = 0. From the continuous dependence of roots on parameters, the closed-loop poles

thus approach the roots of this characteristic equation. The result follows with just a little algebra.

237

�

This theorem states that, by using sufficiently high gains, we can place all the closed-loop poles

arbitrarily close to any two predefined locations, with n poles at each location. Moreover, one can

see through the root locus that when we decrease k3 from a high value, the poles that are originally

close to each pre-defined location separate, with speeds dependent on k1, k2, k3, and λi. Thus, by

choosing proper k1, k2 and k3, we can place the poles in specified ranges.�

Motivated by Theorem 11.2, we define group pole placement as the task of placing a group

of poles of a decentralized system near (or within a range of) some pre-defined positions in the

complex plane. Note that group pole placement is different from exact pole placement in that we

only place sets of poles within a range or near a location, rather than design the exact location

of each pole. However, group pole placement is a much stronger achievement than stabilization.

Group pole placement design allows us to set such performance statistics as the dominant eigenvalue

and dominant eigenvalue ratio [29], and further through an inverse-optimality argument the design

can be shown to achieve phase-margin requirements [223]. The derivative-based controller permits

us to achieve group pole placement, with the locations of the groups of poles and the closeness of

the poles within each group depending on the values of the gains that we have chosen.

11.2.2 Discussion: Concepts and Comparisons

It is worthwhile to further discuss our multiple derivative controller, so as to better interpret

how it works (Section 11.2.2) and compare it to existing approaches for decentralized control (Sec-

tion 11.2.2).

238

A Structural Interpretation

Our design methodology is based on using multiple-derivative-control—and specifically using

one higher derivative than is needed for centralized pole placement (see the work on ATEA design

[196])—to achieve high-performance decentralized control. The use of derivative-based control for

decentralized systems is sensible (broadly speaking), in that derivatives of linear-system outputs

identify the global state and so should facilitate control at each channel of a decentralized system.

What is surprising is that precisely as many derivatives as the relative degree of the local plant,

or one more than is needed for centralized control, is sufficient to provide each agent with enough

state information to permit stabilization and group pole placement. Here, we give some further

conceptual discussion of this special characteristic of the multiple-derivative control.

Specifically, let us argue that our controller, which uses an ”extra derivative”, implicitly and

distributedly provides each agent with the local state information and so permits simple control of

n sets of ”local” dynamics. To see why this is the case, notice that the positions can be found from

the observations as x = G−1y, and similarly the velocities can be found as ẋ = G−1ẏ. Thus, if

each agent can be given the statistics hT
i y and hT

i ẏ, where hT
i is the ith row of the matrix G−1,

then it has available the local position and velocity. However, the use of the extra derivative in the

decentralized controller implicitly does exactly this. In particular, note that upon application of the

multiple-derivative control, the closed-loop dynamics are ẍ = (I−k3G)−1k1k3y+(I−k3G)−1k2k3ẏ,

where we have written the right-hand side in terms of the observation y rather than the state.

Thus, ẍ = k1(1
k3

− G)−1y + k2(1
k3

− G)−1ẏ. For k3 sufficiently large, ẍi ≈ k1hT
i y + k2hT

i ẏ =

k1xi + k2ẋi. That is, each agent is approximately feeding back its local state and derivative, i.e.

locally using a proportional-derivative controller, to achieve performance requirements. Such local

control of identical double-integrators is of course straightforward, and so we automatically infer the

239

possibility for group pole placement. We notice that this approach is a fundamentally distributed

one, in the sense that actions at each channel are together permitting computation of the local

state and control using it.

The above discussion clarifies that, fundamentally, the derivative-based controller achieves high

performance by distributedly providing each agent with local state information from the network

observation. Several further points regarding this viewpoint are worthwhile:

a) We note the great difference of this approach to the traditional approach taken in decen-

tralized control, where knowledge of local state is assumed and is used to dominate the network

interactions rather than being meshed with them [66].

b) The above discussion clarifies that decentralized control is greatly simplified whenever the

agents are provided with the statistics hT
i y and hT

i ẏ, whether by derivative-based control or through

another means. For instance, direct communication of appropriate observations so as to permit

computation is an alternative.

c) This viewpoint motivates us to seek better characterizations of the matrix G−1, in terms of

the network topology codified in G. The relationship between the structure of the topology matrix

G and that of its inverse is generally complicated. Even when the matrix G is sparse, G−1 may be

dense, and hence we see that conceptually the statistics needed by each agent require observations

from throughout the network (which are rather slickly provided to the agent through use of one

higher derivative). These statistics are much simplified, or amenable to interesting interpretations,

for special classes of topology matrices such as those with a slow-coherent structure. We leave it

to future work to make precise the structure of G−1 for these special classes.

240

Comparison with the Dominant Channel Approach

We have argued that our design is fundamentally different from the existing approaches for

decentralized pole placement [67], in that it distributes the complexity and actuation among the

channels (agents) rather than concentrating them at one channel. Here, we make explicit the

advantage in complexity and actuation provided by our approach. Precisely, we show through

an example that high complexity and large actuation may be needed in a single channel when

the existing methods are used, as compared to when the multiple derivative controller is used.

We recall that in the existing approaches, the entire network dynamics are made controllable and

observable from a single channel through static feedback, and then a linear dynamic controller is

implemented at this channel for pole placement (using standard method for centralized systems);

it is this dominant channel approach that we will compare to our multiple-delay-based design.

First, let us compare the controller complexities for dominant channel-based approach and

the multiple-derivative design, in the context of the double integrator network. For the multiple-

derivative design, each agent requires precisely three signals (yi, ẏi, and ÿi), which are linearly

combined to generate the actuation signal, regardless of the network topology; these signals can be

approximated arbitrarily well using either 3 variously-delayed observations or a lead compensator

with two poles, see the implementation section (Section 11.3) for further details. On the other hand,

as we shall show below, the dominant channel approach necessitates use of a dynamic controller

of order 2n at a single agent for certain network topologies. The comparison is formalized in the

following theorem:

241

Theorem 11.3. Consider a double-integrator network with full graph matrix G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . .

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If the dominant channel approach for decentralized pole placement is used, then one agent requires

a controller that has dynamic order 2n. In contrast, the multiple derivative design requires a

linear feedback of the observation and its first two derivatives, which can be implemented using

three delayed observations or else a dynamic controller of order 2 at each channel for group pole

placement.

Proof: The result is automatic for the multiple-derivative design.

In the dominant channel approach, a static linear feedback is applied to each agent, and then

this closed-loop system is controlled from any single channel (which we can choose WLOG to be the

channel n, from symmetry). Specifically, let us consider applying the controls ui = piyi for channels

1, . . . , n − 1 and the control un = pnyn + wn, and then consider designing a further feedback in

channel n (from yn to wn). With a little algebra, we find that the (SISO) transfer function from wn

to yn for the example full graph matrix G is 1
s2n+P

, where P = p1p2 . . . pn. We claim that feedback

control of this plant for the purpose of pole placement requires a dynamic controller of order 2n. To

see why, consider applying a strictly proper linear dynamic controller r(s)
q(s) to the plant. Then notice

that the characteristic polynomial of the closed-loop system is γ(s) = s2nq(s)+Pq(s)+ r(s). If the

degree of q(s) is m, notice that the only non-zero coefficients in the characteristic polynomial are

those for the terms s2n, . . . , s2n+m, and 1, . . . , sm. Then we require m ≥ 2n− 1 to achieve stability,

let alone pole placement. In fact, even a controller of order m = 2n − 1 is not sufficient for pole

placement since the ratio between the coefficients of s4n−1 and s2n−1 is fixed. Thus, a controller of

242

order 2n is needed for pole placement. �

Let us also, through an example, compare the actuation needed by the agents for the multiple-

derivative design and the dominant-single-channel approach. In particular, we consider a double-

integrator network with n = 5 agents, and the cyclic graph G from Theorem 11.3. In this example,

we assume that the agents are initially at position 1 and have velocity 0.

For the multiple-derivative design, we use parameter k1 = 1, k2 = 2, and k3 = 25. We notice

that this design aims to place all the eigenvalues at s = −1. It turns out that the gain k3 has been

chosen large enough that, in fact, the eigenvalues are to the left of s = −0.8. We note that the

actuation signal for each agent is identical in this example. This common actuation signal is shown

in Figure 11.1.

For the dominant single-channel approach, we initially apply unity static gains at each agent.

We then place all the poles at −0.8 using dynamic feedback at (WLOG) agent 5, where we have

conservatively chosen to place the poles at −0.8 to ensure that the comparison of the two controllers

is fair. The actuation signal for agent 5 for this controller is shown in Figure 11.1. We notice that

the magnitude of the required actuation signal is very large compared to that for the multiple-delay-

based design (roughly, by a factor of 104 over a single agent’s actuation in the multiple-delay design).

Very similar results are obtained for other initial conditions, and for designs where randomly-chosen

static gains are used rather than uniform ones. This need for large actuation is not surprising: in

particular, a large effort is needed to move Agent 1 using the controller at Agent 5 (and in fact this

also cause large swings in the location of Agent 1 in part of the transient).

243

0 1 2 3 4 5 6 7 8 9 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
Actuation for Multiple−Derivative Controller

Time

A
ct

ua
tio

n

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4 Actuation for Dominant Channel Approach

Time (sec)

A
ct

ua
tio

n

Fig. 11.1: Top: Actuation needed for multiple derivative control. Bottom: Actuation needed for control

through a single dominant channel.

244

11.3 Implementation Issues: Overview

So far, using the double-integrator network as a canonical example, we have introduced a

philosophy for decentralized control based on each channel (agent) using multiple derivatives of its

local measurements. Here, we shall discuss the realistic implementation of such multiple-derivative

controllers, with a particular focus on multiple-delay control (see e.g. [13,14,220] for background).

In the interest of space, our development here is only an overview, with a focus on providing the

user with working controllers for typical network topologies, discussing briefly the implementation

for general topologies, and explaining to the reader the richness of this multiple-derivative-control

task. Further details can be found in our related works [13,14].

Fundamentally, our control scheme for the double integrator requires that each agent obtain

and feed back the first two derivatives of its observations, or in other words the derivatives up to the

relative degree of the local plant. Traditionally, derivatives of observations are obtained through

either 1) explicit measurement (e.g., measurement of vehicle velocities) or 2) approximation of

the derivative with a proper transfer function, e.g. through use of lead compensation or, less

commonly, multiple-delay approximations [13,14,220]. Approximation of derivatives up to one less

than the relative degree of a plant can be done systematically, so that a feedback system using

these approximations has performance arbitrarily close to one actually using the derivatives. That

is, the finite closed-loop poles upon use of the approximating controller can be made to approach

the ones for the derivative-based control system, while all other poles∗ are driven to −∞.

On the other hand, approximations of derivatives of order equal to the relative degree of the

plant in the feedback can, if improperly used, produce highly unstable spurious dynamics (while in

many other cases harmlessly replicating the derivative-based control). This possibility for instability
∗ Notice that the multiple-delay-controlled system is infinite-dimensional and has an infinite number of such poles.

245

essentially results from the effective delay that is imposed by any implementable approximation

combined with the possible non-continuity of this derivative, at least at an initial time, see e.g. [224]

for a treatment of the phenomenon. Luckily, for the double-integrator-network, even the most basic

multiple-delay-based or lead-compensation-based control implementations are successful for many

typical network topologies. In the cases where these basic schemes are not successful, a variety of

alternatives are available, including 1) clever selection of the approximation used by each agent,

2) adaptation to eliminate potential unstable dynamics, and 3) explicit use of the relationship

between the highest derivative and the lower derivatives and input through communication of a few

observations/inputs between agents. We have shown that the first of these alternatives is sufficient

for addressing approximation for arbitrary network topologies [14], but each alternative may have

certain advantages/disadvantages in implementation and deserves further study. It is this wealth

of alternative approaches that yields a rich problem space in the arena of approximating multiple-

derivative-based control. Here, let us describe the basic approximation scheme and delineate the

network topologies to which it applies (without proof in the interest of space), and then ruminate

on the alternatives.

As noted above, either lead compensation or multiple-delay-based designs can be used. Since

networks are very often subject to intrinsic delays, designs using multiple delayed observations are

naturally applicable to network tasks, and so we shall focus on multiple-delay-based controls. A

basic approach to implement the multiple-derivative controller is to approximate derivatives with

identical delays, e.g., the first derivative ẏ(t) can be approximated as y(t)−y(t−τ)
τ , where τ is a small

delay. Higher derivatives can similarly be approximated by interpolating the observation with a

polynomial [13, 220]. Here, we consider using the decentralized control law u(t) = α1y(t − τ1) +

α2y(t − τ2) + α3y(t − τ3), where 0 ≤ τ1 < τ2 < τ3, α1, α2, and α3 are some properly chosen

246

scalars, to stabilize the double integer network. The controller parameters can be selected using

the following simple algorithm.

1) Choose two constants, say k1 and k2, such that the roots of λ2 + k1λ + k2 are at desirable

locations.

2) Choose a set of times 0 ≤ τ̄1 ≤ τ̄2 ≤ τ̄3, which will specify the relative spacing in time

between the delayed measurements used by the controller, see Equation 11.3 below. The delays τ̄1,

τ̄2, and τ̄3 need to be properly chosen so that a large k3 does not introduce closed-loop poles in the

ORHP (see [14] for the details).

3) Apply the control law:

u =
k3

Δ

[
k1

(
τ̄2τ̄

2
3 − τ̄2

2 τ̄3

) − k2
τ̄2
2 − τ̄2

3

ε
+ 2

τ̄3 − τ̄2

ε2

]
y(t − ετ̄1) + (11.3)

k3

Δ

[
k1

(
τ̄3τ̄

2
1 − τ̄2

3 τ̄1

) − k2
τ̄2
3 − τ̄2

1

ε
+ 2

τ̄1 − τ̄3

ε2

]
y(t − ετ̄2) +

k3

Δ

[
k1

(
τ̄1τ̄

2
2 − τ̄2τ̄

2
1

) − k2
τ̄2
1 − τ̄2

2

ε
+ 2

τ̄2 − τ̄1

ε2

]
y(t − ετ̄3),

where Δ =

∣∣∣∣∣∣∣∣∣∣∣∣

1 τ̄1 τ̄2
1

1 τ̄2 τ̄2
2

1 τ̄3 τ̄2
3

∣∣∣∣∣∣∣∣∣∣∣∣
, k3 is chosen sufficiently large, and ε is a sufficiently small number.

This multiple-delay controller is based on the approximation of the multiple-derivative controller

u = k1k3y + k2k3ẏ + k3ÿ, i.e. the multiple-derivative controller that we showed in Section 11.2 to

achieve group pole placement. From the results in [14], and using the fact that G can always be pre-

scaled by a diagonal gain matrix in decentralized control, we recover that the delay-based controller

(Equation 11.3) with y = KGx is equivalent in a pole-placement sense to the multiple-derivative

control† whenever the eigenvalues of KG are in the OLHP. Matrices G whose eigenvalues can be

placed in the OLHP by a diagonal scaling include all those that have a sequence of n nested principal
† Notice that we have excluded this pre-scaling up to this point for the sake of simplicity of presentation.

247

minors with full rank (e.g., [25]). Positive definite matrices such as grounded Laplacian matrices

and diagonally-dominant matrices, which are common in many applications such as autonomous

vehicle control and sensor network management ones, of course fall in this class (and require only

pre-scaling by −I). Let us complete the discussion with a claim. We expect that derivative-based

controllers can be implemented for arbitrary topologies simply by using inhomogeneous multiple-

delay controllers.

We also note that multi-lead-compensator architecture can achieve stabilization and pole place-

ment of a double integrator network with arbitrary topology [11].

11.4 Stabilization Under Constraint and Delay

Limitations, e.g., measurement delays and input saturation, are common in decentralized sys-

tems. These limitations pose further difficulty for stabilization. In the centralized setting, low-gain

techniques have been long used for designing stabilizing controllers under saturation constraints

and intrinsic delays [198, 225]. In the decentralized setting, Stoorvogel and coworkers recently ob-

tained a check for the existence of a stabilizing control under actuator saturation [222], for plants

without defective jw-axis eigenvalues. However, no effort has been devoted to designing stabilizing

controllers for decentralized systems with these limitations. In this section, we will explore how

to stabilize a double integrator network with measurement delay and/or input saturation using

a multiple-delay controller. The scaling property associated with pure integrators facilitates the

analysis, and so allows us to highlight the concepts underlying low-gain delay for decentralized

systems with little technical complexity; we shall address the low-gain design more generally in

future work.

It is worth stressing that the low-gain (scaling) arguments that we use here could have alterna-

248

tively been used to design multiple-derivative controllers that operate in the presence of saturation

and delay. However, it is critical that our implementation of the controllers—which may involve

using certain high-gains, e.g. in approximating derivatives as delay differences—operate in the

presence of derivatives and delays, and hence we find it more instructive to work directly with

the multiple-delay controllers. For ease of presentation, we will show how the basic multiple-delay

controller introduced in Section 11.3 can be modified to permit control under delay and actuator

saturation, although similarly other multiple-delay-based or lead-compensation implementations

can be adapted.

11.4.1 Design for Networks with Measurement Delay

Intrinsic delays in measurement pose one of the primary challenges in achieving control of net-

work dynamics. It is well known that measurement delay can cause poor performance and even

instability in linear control systems. However, as delays are inherent to our controller implementa-

tion, it is possible for us to account for this measurement delay,

Specifically, consider an LTI system consisting of n double integrators with measurement delay,

i.e. described by

ẍ(t) = u(t) (11.4)

yi(t) = Gix(t − τi),

where x(t) represents the positions of the n agents and u(t) the inputs, yi(t) is the observation

made by agent i, Gi =
[
Gi1 . . . Gin

]
, and τi ≥ 0 is the (known) time delay in the measurement

made by agent i. Since the delays are assumed known, we can further delay the observations in

appropriate channels for the purpose of feedback, so WLOG let us henceforth assume a common

delay τ which is the maximum of τ1, . . . , τn in each channel.

249

In order to stabilize (11.4), let us use a modification of the delay-based decentralized controller

given in Equation 11.3:

u(t) =
k3

ρ2Δ

[
k1

(
τ̄2τ̄

2
3 − τ̄2

2 τ̄3

) − k2
τ̄2
2 − τ̄2

3

ε
+ 2

τ̄3 − τ̄2

ε2

]
y(t) + (11.5)

k3

ρ2Δ

[
k1

(
τ̄3τ̄

2
1 − τ̄2

3 τ̄1

) − k2
τ̄2
3 − τ̄2

1

ε
+ 2

τ̄1 − τ̄3

ε2

]
y(t − ρετ̄2 + τ) +

k3

ρ2Δ

[
k1

(
τ̄1τ̄

2
2 − τ̄2τ̄

2
1

) − k2
τ̄2
1 − τ̄2

2

ε
+ 2

τ̄2 − τ̄1

ε2

]
y(t − ρετ̄3 + τ),

where we choose ε, τ̄i > 0 and ki , i = 1, 2, 3 in the same way as for the basic multiple-delay

controller, and then choose ρ such that ρ = τ
ετ̄1

. We formalize the design of the control law for a

double integrator network with measurement delay in Theorem 11.4:

Theorem 11.4. Consider the double-integrator network with measurement delay described in (11.4),

where G is nonsingular, and assume that the corresponding undelayed double-integrator can be sta-

bilized using the basic multiple-delay controller (11.3). The network can be stabilized using the

delay-based control law (Equation 11.5) by choosing sufficiently small ε, ρ = τ
ετ̄1

, and k1, k2 and k3

satisfying the conditions given in Theorem 11.1.

Proof: It is easy to check that the closed-loop system is

ẍ(t) =
k3

ρ2Δ

[
k1

(
τ̄2τ̄

2
3 − τ̄2

2 τ̄3

) − k2
τ̄2
2 − τ̄2

3

ε
+ 2

τ̄3 − τ̄2

ε2

]
Gx(t − ρετ̄1) (11.6)

+
k3

ρ2Δ

[
k1

(
τ̄3τ̄

2
1 − τ̄2

3 τ̄1

) − k2
τ̄2
3 − τ̄2

1

ε
+ 2

τ̄1 − τ̄3

ε2

]
Gx(t − ρετ̄2)

+
k3

ρ2Δ

[
k1

(
τ̄1τ̄

2
2 − τ̄2τ̄

2
1

) − k2
τ̄2
1 − τ̄2

2

ε
+ 2

τ̄2 − τ̄1

ε2

]
Gx(t − ρετ̄3).

According to the scaling property presented in [220], a scaling of each delay term in the control law

by a factor of ρ together with a scaling of 1
ρ in each corresponding gain does not change the stability

250

of the system. Hence the closed-loop system (11.6) is stable if and only if the system (11.1) using

control law (11.3) is stable. Thus, we can design ε, 0 < τ̄1 < τ̄2 < τ̄3 and ki, i = 1, 2, 3 according to

Theorem 11.1, and choose ρ = τ
ετ̄1

to achieve stabilization under delay. �

This theorem allows us to design the control law to stabilize a decentralized network with

measurement delay. Essentially, by using the low-gain technique [220] and choosing the scaling

factor ρ to match ρετ̄1 with the measurement delay τ , we can absorb the measurement delay into

the delay in the control law, and hence transform the closed-loop dynamics of the system with

measurement delay into exactly the same form discussed in Section 11.2. A design that achieves

stability can thus be implemented. The performance of the controller can be optimized by choosing

τ̄i and ki, i = 1, 2, 3 such that ρ is minimized.

Remark: The above result applies to systems with known measurement delay. However, the

design can straightforwardly be adapted to plants with unknown but upper-bounded delays, which

are also of common interest [219]. In particular, noting that the multiple-derivative controller

achieves stability for all sufficiently large k3, we see that the plant can be stabilized using the

controller (5) with ρ ≥ τmax
ετ1

, where τmax is the upper bound on the delay. We notice that this

generalization requires that the open-loop jω-axis eigenvalues of the plant are in fact at the origin.

11.4.2 Controller Design for Networks with Input Saturation

In general, low gain techniques can help to resolve instability caused by input saturation [220].

In our setting, as we discussed in Section 11.4.1, we can simultaneously decrease the input gain and

introduce more delay to the decentralized control law. With such scaling, we can guarantee that

actuators do not saturate while leaving the closed-loop (linear) system’s poles in the OLHP, and

251

hence ensure stability. For the following decentralized system with input saturation:

ẍ(t) = σ(u(t)) (11.7)

y(t) = Gx(t),

we use the following control law:

u(t) =
k3

ρ2Δ

[
k1

(
τ̄2τ̄

2
3 − τ̄2

2 τ̄3

) − k2
τ̄2
2 − τ̄2

3

ε
+ 2

τ̄3 − τ̄2

ε2

]
y(t − ρετ̄1)

+
k3

ρ2Δ

[
k1

(
τ̄3τ̄

2
1 − τ̄2

3 τ̄1

) − k2
τ̄2
3 − τ̄2

1

ε
+ 2

τ̄1 − τ̄3

ε2

]
y(t − ρετ̄2) (11.8)

+
k3

ρ2Δ

[
k1

(
τ̄1τ̄

2
2 − τ̄2τ̄

2
1

) − k2
τ̄2
1 − τ̄2

2

ε
+ 2

τ̄2 − τ̄1

ε2

]
y(t − ρετ̄3),

where we choose ε, τ̄i and ki , i = 1, 2, 3 in the same way as for the basic multiple-delay controller

(i.e., assuming no saturation), and then choose ρ so that the actuator does not saturate. We

formalize the design of the control law for a double integrator network with input saturation in

Theorem 11.5:

Theorem 11.5. Consider the double-integrator network with input saturation described in (11.7),

where G is nonsingular. Assume that the corresponding (unsaturated) double-integrator network

can be stabilized using the basic multiple-delay controller (11.3). The network can be semiglobally‡

stabilized using the multiple-delay control law (Equation 11.8). Specifically, for any bounded set

of initial conditions W and for fixed k1, k2 and k3 satisfying the conditions in Theorem 11.1 and

sufficiently small ε, we can choose ρ sufficiently large such that W is in the domain of attraction.

Proof: According to the scaling property presented in [220], as long as the actuators never

saturate, the response x(t) for the scaled system is exactly a time-scaled version of the response to

the unscaled system (Equation 11.3). We shall use this fact to prove stability. First, from stability

‡ See [221] for a full introduction to semiglobal stabilization.

252

of the original unscaled system, we obtain that, for the given compact set of initial conditions,

there is a bound on the absolute value of all state variables x(t) over all t ≥ 0. Thus, there is also

a bound, say Γ, on the inputs over all t ≥ 0. By choosing ρ <
√

1
Γ , invoking the time-scaling of the

state, and noting that thus the input is scaled by a factor of Γ, we obtain that the inputs do not

saturate. We thus automatically recover semi-global stability. �

253

12. THE DESIGN OF MULTI-LEAD-COMPENSATORS FOR STABILIZATION AND

POLE PLACEMENT IN DOUBLE-INTEGRATOR NETWORKS

We study decentralized controller design for stabilization and pole-placement, in a network of

autonomous agents with double-integrator internal dynamics and arbitrary observation topology.

We show that a simple multi-lead-compensator architecture, in particular one in which each agent

uses a derivative-approximation compensator with three memory elements, can achieve both sta-

bilization and effective pole placement. The multi-lead-compensator design is practical for modern

dynamical network applications, in that it subdivides actuation effort and complexity among the

agents and in many cases is robust to agent failure.

12.1 Introduction

Through our efforts in studying control tasks in several modern dynamical networks [1,2,5,10,19,

25], we are convinced that network structure (i.e., the sensing/interaction interconnection structure

among the agents) is critical in driving network dynamics, and hence must be exploited in controller

design. Due to the crucial role played by the network structure, novel decentralized controller

architectures that have the following two features are badly needed in dynamical network control

applications: 1) control complexity and actuation are roughly equally contributed by all the agents,

and 2) the controller can address control/algorithmic tasks in networks with very general sensing

and/or interaction topologies. In this work, we introduce a novel decentralized dynamic controller

254

that can guide network dynamics with arbitrary sensing structures—the very simple multi-lead-

compensator controller. Specifically, we show that the design of the multi-lead-compensator—

precisely, an LTI decentralized state-space controller with a small number of memory elements

used in each channel, that approximates a multiple-derivative feedback—allows stabilization and

pole-placement in an autonomous-agent network model with a general sensing structure.

To motivate the network stabilization and pole placement problem addressed here, let us briefly

review two bodies of literature: the recent efforts on autonomous-agent network control, as well as

historical efforts in decentralized control. The many recent works on autonomous-agent network

control are fundamentally derived from prominent work by Chua and his colleges [226, 227] on

network synchronization (see also the literature in the Physics community on synchronization,

e.g. [147]). Chua in [226] gave the necessary and sufficient condition for a network with identical

agents to achieve synchronization; and in [227] gave a graph interpretation of the condition when the

network is diffusive, i.e., the sensing structure is described by a Laplacian matrix. Fax and Murray

in [228] and Pogromsky in [229] brought forth control interpretations to the synchronization tasks

in a diffusive network, and thus gave conditions for synchronization through control. We notice

that network synchronization through control is closely connected to the network stabilization

task, with only the distinction that network synchronization is concerned with the the stability

of an invariant set while network stabilization is concerned with the stability of an equilibrium

point. Thus very similar methods apply to both types of network problems, and in fact with

this understanding, various other control tasks such as formation, agreement, alignment, tuning,

consensus, and distributed partitioning [25, 207, 208, 230–232] have been addressed in essentially

similar ways.

Attempts have also been made to design stabilizing controllers in the classical decentralized

255

literature. In a seminal work [28], Wang and Davison give an implicit sufficient and necessary

condition for the existence of a stabilizing time-invariant dynamic controller for a general decen-

tralized system. Decentralized controller wan-roy-saberi-stoorvogel-doubledelay-2008 for network

stabilization, and similarly other network control tasks, is difficult due to the limitations imposed

by the sensing structures. The book [66] and related works view the network interconnections as

disturbances, and provide controller designs based on that assumption. In an alternate direction,

building on [28], Corfmat and Morse studied stabilization of complete systems in [67]. In their

work, applying non-dynamic controller to all but one channel of a complete system makes the sys-

tem controllable and observable from the remaining channel, and then a dynamical controller is

applied to this single channel to achieve stabilization and also pole-placement for the whole system.

Now let us emphasize the contribution of the multi-lead-compensator controller design with

respect to both the autonomous-agent network control and the existing decentralized controller

design literature. We notice that the approaches in the existing literature (e.g., [66, 67, 228]) do

not serve our goal of finding controller architectures that are suitable for many modern network

control applications, for two reasons. 1) These existing designs are impractical to implement: either

the decentralized stabilization is achieved by hiding the contribution of network connections [66]

(while in fact the network connections are critical in modern applications), or by making a single

channel dominant in terms of actuation and complexity [67]. 2) Many studies, for instance those

giving conditions for stabilization in the recent autonomous-agent-network literature, only work

for a limited subclass of sensing structures such as ones specified by a Laplacian matrix [228,229].

Hence, we are motivated to study the simple multi-lead-compensator architecture as an alternative.

We will show that this controller can be designed for stabilization in networks with general sensing

structures, using roughly equal actuations at each agent. Moreover, we stress here that the multi-

256

lead-compensator architecture allows practical high performance design (pole placement), which

is missing in the literature, as a further major contribution of this work. We focus here on the

important class of double-integrator networks (networks with agents whose internal dynamics are

double integrators), which are common models for autonomous-agent network applications (see

e.g., [25, 232]). Our design for the double-integrator network is also illustrative of the design for

much more general plants, which is applicable not only to autonomous-agent networks but ones

with hardwired interconnections such as population dynamics ∗.

Finally, let us discuss several recent works that have in fact addressed network topology and

controller design, for high performance. Of interest, Boyd and his coworkers have used linear

matrix inequality (LMI) techniques to optimize the Fiedler eigenvalue of a Laplacian matrix through

design of an associated graph [80] (and hence to shape e.g. an associated single integrator network

dynamics). In complement, building on a classical result of Fisher and Fuller [79], we have taken

a structural approach to performance optimization through graph-edge and static decentralized

controller design [1, 6, 7, 29]. This meshed control-theory and algebraic-graph-theory strategy has

yielded designs for several families of network-interaction models and performance criteria, and

has also permitted as to address the partial design problem. This chapter shows that even very

simple dynamical controllers when properly used can give significant freedom in shaping a network’s

response (for instance, allowing pole placement).
∗ The more general case requires use of the special coordinate basis for linear systems, see our previous work on

multiple-delay control for further details [215].

257

12.2 The Main Result

In this section, we first discuss the philosophy underlying our multi-lead-compensator design,

then introduce the double-integrator network model formally, and finally demonstrate the controller

design for stabilization and pole-placement.

Let us first illustrate the philosophy of the design. Our multi-lead-compensator design is based

on 1) construction of a high-gain feedback of multiple derivatives up to degree 2 to place the

close-loop poles in desired locations in the OLHP; and 2) approximation of the multiple-derivative

controller with lead compensators. The philosophy is that for double integrator networks, high

gain feedback of output derivatives up to the degree of 2 can permit each agent to recover its local

state information [10], and hence permit pole placement and stabilization. We emphasize that the

novelty of the design resides in the concept that one higher derivative (here, the second derivative,

or in other words the derivative equal to the relative degree of the local plant) is being used in

feedback. This feedback concept has not been used in the literature. Moreover, since derivative

controllers are not implementable due to their unbounded high frequency gains, we implement the

derivative controllers using lead compensators. The lead compensators produce poles close to those

of the derivative controller and also extra poles far inside the OLHP, and hence achieve stabilization

and high performance. In this controller architecture, the control actions are distributed among all

agents rather than being centered at a single agent. This architecture also has the advantage that

it is more robust to network failures/attacks, and hence is practical for modern network applications.

Next, let us introduce the double-integrator network, i.e. a decentralized system comprising

n autonomous agents with double-integrator internal dynamics whose (scalar) observations are

258

linear combinations of multiple agents’ states. Precisely, we assume that each agent i has internal

dynamics ẍi = ui, where we refer to xi as the position state of agent i and ẋi as the velocity

state, and ui is the input to agent i. For notational convenience, we define x =

⎡⎢⎢⎢⎢⎢⎢⎣
x1

...

xn

⎤⎥⎥⎥⎥⎥⎥⎦ and refer

to it as the full position state of the network, and also define u =

⎡⎢⎢⎢⎢⎢⎢⎣
u1

...

un

⎤⎥⎥⎥⎥⎥⎥⎦. We assume each

agent i makes a scalar observation yi = gT
i x, i.e. that its observation is a linear combination of

the position states of various agents. We find it convenient to stack the observations into a vector,

i.e. y =

⎡⎢⎢⎢⎢⎢⎢⎣
y1

...

yn

⎤⎥⎥⎥⎥⎥⎥⎦. We also stack vectors gT
i to form a matrix G =

⎡⎢⎢⎢⎢⎢⎢⎣
gT

1

...

gT
n

⎤⎥⎥⎥⎥⎥⎥⎦, which we refer to as the

topology matrix since it captures the sensing/communication among the agents. In short, a

double-integrator network comprises n agents that together have the dynamics

ẍ = u (12.1)

y = Gx,

where each agent i makes an observation yi and can set the input ui.

Our goal is to design a linear decentralized controller (mappings from each yi to ui) to stabilize

the double-integrator-network’s dynamics. As a further step, we seek a pole-placement controller,

i.e. one that achieves the classical controller design goal of placing the eigenvalues of the closed-

loop dynamics at desirable locations. This decentralized controller design problem for the double-

integrator network is widely applicable, see [25].

259

For the double-integrator network, it is necessary and sufficient for stabilization that G has full

rank [25], regardless of whether centralized or decentralized control is considered and regardless

of whether a linear or a non-linear time-varying (NLTV) controller is used (see also [28, 217]).

Here, we will demonstrate not only stabilization but effective pole placement for arbitrary full rank

G using the most limited of these schemes, namely an LTI state-space decentralized controller.

In fact, we will show that a very simple controller—one that has third-order dynamics at each

channel—suffices. The controller that we use may be viewed as applying first- and second-order

lead compensation, or in other words approximating feedback of the first- and second- derivatives

of the local observation, at each channel. This architecture, though very simple, is novel and

specifically of use in the decentralized control context. Structurally, the novelty of the controller

lies in that (approximate) feedback of derivatives up to and including the relative degree of the

local dynamics is used. This is in contrast to the centralized setting, where controllers (whether

designed using the observer-plus-state-feedback paradigm or in other ways) at their essence feed

back derivatives up to one less than the plant’s relative degree to achieve stabilization and pole

placement [196].

We note that the dynamical controller design presented here enhances our existing work on

stabilizing double-integrator networks [25], which is at its essence derived from Fisher and Fuller’s

classical result [79]. In fact, the proof of our main result in this chapter also relies on this result.

Thus, for the reader’s convenience, let us describe the classical result of Fisher and Fuller here,

before introducing and proving our main result.

Theorem 12.1. (Fisher and Fuller) Consider an n× n matrix A. If the matrix A has a nested

sequence of n principal minors that all have full rank, then there exists a diagonal matrix K such

that the eigenvalues of KA are in the open left half plane.

260

The following theorem, our main result, formalizes that stabilization and pole-placement can

be achieved generally in the double-integrator network using third-order compensators at each

channel. The proof of the theorem makes explicit the compensator design. Specifically, we describe

how to design a controller so that sets of n closed-loop eigenvalues can be placed arbitrarily near

to two desired locations (closed under conjugation) in the complex plane, while the remaining 3n

eigenvalues are placed arbitrarily far left in the complex plane. Here is a formal statement:

Theorem 12.2. Consider a double-integrator network with arbitrary invertible graph-matrix G.

Proper LTI compensators of order 3 can be applied at each channel, so as to place n eigenvalues

each close to two desirable locations in the complex plane while driving the remaining 3n eigenvalues

arbitrarily far left in the complex plane. Specifically, consider using a compensator at each agent i

with transfer function hi(s) = ko + k1s
1+ελfis

+ k2s2

1+εsλdi+ε2s2λzi
, and say that we wish to place n closed-

loop eigenvalues at each of the roots of s2 + αs + β. By choosing k2 sufficiently large, k1 = αk2,

and ko = βk2, and choosing λfi, λdi, and λzi appropriately, n closed-loop eigenvalues can be placed

arbitrarily close to each root of s2 + αs + β as ε is made small, while the remaining 3n eigenvalues

can be moved arbitrarily far left in the complex plane (in particular, having order 1
ε).

Proof:

The proof is in two steps. In the first step, we show that decentralized feedback of the observation

and its first two derivatives can be used to to place the (2n) closed-loop eigenvalues arbitrarily near

to two locations in the complex plane, and in fact there is a parameterized family of controllers of

this form that suffice. In the second step, we use this result to construct proper third-order LTI

compensators at each channel that achieve the pole-placement specification given in the theorem

statement.

Step 1: Let us study the closed-loop eigenvalues of the system when the (decentralized) control

261

law u(t) = k0y(t) + k1ẏ(t) + k2ÿ(t), where k0 = βk2 and k1 = αk2, is used. The state-space

representation of the closed loop system in this case is Ẋ = AcX, where X =

⎡⎢⎢⎣ẋ

x

⎤⎥⎥⎦ and Ac =

⎡⎢⎢⎣(I − k3G)−1k2k3G (I − k3G)−1k1k3G

I 0

⎤⎥⎥⎦. Using the notation

⎡⎢⎢⎣X1

X2

⎤⎥⎥⎦ for a right eigenvector of Ac,

we have Ac

⎡⎢⎢⎣X1

X2

⎤⎥⎥⎦ = λ

⎡⎢⎢⎣X1

X2

⎤⎥⎥⎦, which implies that X1 = λX2, and λ(I − k2G)−1αk2GX2 + (I −

k2G)−1βk2GX2 = λX1. The latter yields: λαk2GX2 + βk2GX2 = λ2(I − k2G)X2, or (λαk2 +

βk2 + λ2k2)GX2 = λ2X2. This means that X2 must be an eigenvector of G with, say, eigenvalue

λi. In this notation, we have (λαk2 + βk2 + λ2k2)λi = λ2, or λ2 − αk2λi
1−k2λi

λ − βk2λi
1−k2λi

= 0. Thus,

the closed-loop eigenvalues are the roots of the characteristic equations λ2 − αk2λi
1−k2λi

λ − βk2λi

1−k2λi
, for

i = 1, . . . , n. Hence, by making k2 sufficiently large, the coefficients of the characteristic equation

can be made arbitrarily close to the coefficients of the quadratic equation λ2 + αλ + β = 0. From

the continuous dependence of roots on parameters, the closed-loop poles thus come arbitrarily close

to the roots of this characteristic equation, as desired. To summarize, when the presented multi-

derivative compensator is used, the closed-loop eigenvalues can be made arbitrarily close to the two

desired locations in the complex plane, for all k2 sufficiently large.

Step 2: We now consider using a compensator at each channel i with transfer function hi(s) =

ko + k1s
1+ελfis

+ k2s2

1+εsλdi+ε2s2λzi
, where the gains k0, k1, and k2 are those determined in Step 1, λfi, λdi,

and λzi are constants to be designed, and ε is a positive constant that will be designed sufficiently

small after the other parameters have been designed. We note that this controller requires at most

three memory elements at each channel to implement.

Substituting for the controllers’ transfer functions, one immediately find the closed-loop char-

262

acteristic polynomial. In particular, the closed-loop system’s poles are values s such that Q(s) =

(I +εsΛf)(I−k2G+εsΛd +ε2s2Λz)s2−(I +εsΛd +ε2s2Λz)k1Gs−(I +εsΛf)(I +εsΛd +ε2s2Λz)k0G

lose rank, where Λf , Λd, and Λz are diagonal matrices with ith diagonal entry given by λfi, λdi,

and λzi, respectively. We notice that the closed-loop system has 5n poles (counting multiplicities).

To continue, we note that Q(s) can be written as Q(s) = s2I − k0G− sk1G− s2k2G+ εM1(s)+

ε2M2(s), where M1(t) and M2(s) do not depend on ε. Let us first consider the 2n values s for which

s2I − k0G− sk1G− s2k2G loses rank. We note that these are precisely the closed-loop poles when

the derivative-based controller is used, and so these values of s are in two groups of n, arbitrarily

near to the two desired pole locations. It follows easily from perturbation arguments that, thus, n

poles of the closed-loop system upon lead-compensator control (values s such that Q(s) loses rank)

are arbitrarily close to each desired pole location.

What remains to be shown is that the remaining poles are order 1
ε and indeed can be placed

in the left-half-plane. To see this, let us rewrite the Laplace-domain expression in terms of s = εs.

Doing so, we recover that R(s) = ε2Q(s) = s2(I + Λfs)(I − k2G + sΛd + s2Λz) + εN1(s) + ε2N2(s).

To characterize the values s such that R(s) and hence Q(s) lose rank, let us first consider T (s) =

s2(I + Λfs)(I − k2G + sΛd + s2Λz). We recognize that T (s) loses rank at s = 0 with multiplicity

2n, as well as at the 3n values s such that (I + Λfs)(I − k2G + sΛd + s2Λz) loses rank. We note

that these 3n values are non-zero as long as I − k2G is made full rank (which we shall shortly

guarantee), and we choose Λf , Λd, and Λz full rank and k2 �= 0, as we shall do. In this case, we

see immediately from perturbation arguments that the polynomial R(s) loses rank at 2n values s

that approach the origin as ε is made small, as well as at 3n other values s that approach the 3n

non-zero points in the complex plane where (I + Λfs)(I − k2G + sΛd + s2Λz) loses rank, as ε is

made small. Rewriting all these values in terms of s rather than s, we see that the closed-loop

263

system has 2n poles that are close to the origin in that they do not grow as fast as θ(1
ε) (and which

we have already characterized to be close to two desired locations in the complex plane), as well

as 3n poles of order 1
ε if the poles of (I + Λf)(I − k2G + s̄Λd + s̄2Λz) are nonzero (as we will show

shortly).

Finally, let us construct the controller so that the values s for which (I + Λfs)(I − k2G + sΛd +

s2Λz) loses rank are all in the OLHP, and hence complete the proof. Clearly, n of these values are

the s such that (I + Λfs) loses rank. We can make these values negative and real by choosing each

λfi, and hence ΛF , positive and real.

Next, let us consider the 2n values s such that (I − k2G + sΛd + s2Λz) loses rank. Since we

have assumed Λz is full rank, we can equivalently find s such that s2I + Λ−1
z Λds + Λ−1

z (I − k2G)

loses rank. To continue, we note that all principal minors of I − k2G are full rank for all k2 except

those in a particular finite set, i.e. for all k2 except those that are inverses of eigenvalues of the

principal minors of G. Hence, for any design with k2 large enough, I − k2G has a nested sequence

of principal minors of full rank. Using any such design, we thus can choose Λz to place the eigen-

values of Λ−1
z (I − k2G) at positive real values, according to the classical result of Fisher and Fuller

(quoted as Theorem 12.1 above). Finally, let us choose Λd = Λ−1
z . In this case, we see from simple

eigenanalysis that the values s for which rank is lost are the solutions of the n scalar equations

s2 + s + λi, where each λi is an eigenvalue of Λ−1
z (I − k2G). Thus, we obtain that all solutions s

are in the OLHP. �

We have thus demonstrated a multi-lead-compensator decentralized controller design for an

arbitrary double-integrator network, which achieves stabilization as well a certain group pole place-

ment. Let us stress that this group pole-placement capability gives us wide freedom to shape the

264

dynamical response (in terms of settling and robustness properties), including by guaranteeing

phase margin in the design through an inverse optimality argument (see [10]). It is worth noting

that further design of the θ(1) poles is possible through consideration of heterogeneous deriva-

tive controller, however this further effort does not provide much further improvement in design

performance and so we omit the details.

The multi-lead-compensator introduced here is promising for modern network applications be-

cause it is tailored to distribute controller effort and exploit the network topology (in particular

by obtaining the local state at each agent through a combination of uniform feedback control and

derivative estimation). Let us conclude the discussion of the multi-lead-compensator by discussing

several conceptualizations and extensions of the design:

1) Although we have presented the design assuming each agent makes a single observation for

convenience, the result automatically generalizes to the case where each agent may make

multiple observations. In particular, whenever stabilization is possible (see [25] for conditions

derived from [28]), the above pole-placement design can be applied as follows. First, the

multiple observations made by the agent should be combined linearly, with each observation

weighted by a randomly chosen constant. It follows automatically that this reduced (single-

input, single-observation) double-integrator network can be stabilized (with probability 1),

and hence the design technique introduced above can be applied.

2) The design that we have presented can be interpreted as comprising an estimator and a state-

feedback controller. Specifically, if the pure derivative controller is used (with k2 large), the

agents can be viewed as immediately obtaining their local state (in particular, by rearranging

their initial conditions in such a way that the second-derivative estimate and hence local

state estimate are precise); thus, state feedback control can be used. In practice, such an

265

immediate estimation/rearrangement of initial conditions is not implementable. Instead, the

lead compensator design achieves estimation (in part through rearrangement of the state)

at a faster time scale than the state feedback response, but not immediately. We note that

such use of fast observers is classical, and so our design naturally fits the estimation-plus-

state-feedback paradigm. However, the design is fundamentally different from the traditional

one, in that the state estimation is only possible when the feedback is in force—that is, the

estimation and control tasks are NOT decoupled.

3) In dynamical network stabilization tasks, robustness to agent failure is an important concern.

For instance, in an autonomous vehicle network, if the failure of a single agent can spoil the

stability of the entire network, the viability of a stabilization design really falls in question.

Let us briefly expand on this particular robustness problem. In this case, by agent failure,

we mean there exist certain agents that can not be observed by all other agents. Robustness

in the presence of agent failure problem is concerned with whether the rest of the agents

can still achieve stability using the original controller design. Mathematically, this is the

problem of whether, if all rows and columns in the sensing structure associated with the

failed agents are removed, stability in the reduced dimensional system remains. We notice

that current literature on decentralized controller design does not address this important

issue. For instance, the dominant channel design in [67] is highly sensitive to the failure of

the dominant channel, due to the significant role played by this single channel in stabilization.

In the contrast, since in our lead-compensator design, all agents contribute roughly equally to

the stabilization task, this design appears to be more robust to agent failure. For broad classes

of sensing structures, e.g., those for which I − k2G is strictly D-stable through a diagonal

(sign-pattern) scaling, stability is maintained in the presence of any number of agent failures.

266

Sequential Full Rank

Full Rank

All topology matrices

D−stable (upon sign scaling)

Stable principal minors (upon sign scaling)

Stable (upon sign scaling)

Positive Definite (upon sign scaling)

Grounded Laplacian
(upon sign scaling)

Fig. 12.1: We diagram several matrix classes that are of interest in representing a double integrator network’s

sensing topology. A multi-lead-compensator design is possible whenever the topology matrix is full rank,

and a design that is robust to agent failures is possible if the topology matrix has stable principal minors to

within a sign scaling (a scaling of each row by ±1).

Clearly, subclasses of G that satisfy the above include strictly D-stable, positive definite, and

grounded Laplacian topology matrices (see Figure 12.1 for a full illustration).

4) We stress that the value of the gain k2 needed for stabilization or approximate pole placement

is dependent on the structure of the graph matrix G: we refer the reader to our earlier work [10]

for precise bounds on the gain. Because the actuation capability is distributed among the

agents, and because the gain parameter can be tuned based on the network structure, the

gain often need not be large to achieve stabilization and approximate pole placement.

267

13. SEMI-GLOBAL STABILIZATION OF DOUBLE-INTEGRATOR NETWORKS

WITH ACTUATOR SATURATION

As a step toward designing controllers for general decentralized plants with actuator saturation,

we develop a low-gain controller design for a network of saturating double-integrator agents with

a general sensing topology. We obtain a practical low-gain design (in particular, one in which

each agent uses a third-order LTI dynamic compensator) that permits semi-global stabilization for

arbitrary sensing topologies.

13.1 Introduction

Actuator saturation nonlinearities are ubiquitous in control systems, and so controller design

for linear time-invariant plants subject to actuator saturation has been extensively studied. A

classical approach is to use dynamic linear-time-invariant controllers, for the purpose of semiglobal

stabilization of the plant. Historically, this effort to design controllers for semi-global stabilization

of LTI plants progressed in two steps. First, low gain designs for state feedback and in turn output

feedback control were obtained, and secondly a low-and-high gain methodology was pursued for

performance design under saturation (e.g. [198,233]).

On the other hand, applications in such diverse areas as vehicle coordination, virus-spreading

control, and air traffic management have led to much recent interest in decentralized control of

dynamical networks [1, 2, 5, 10, 25]. These modern networks are very often made up of simple but

268

highly constrained components that must coordinate through their network interactions to achieve

control goals [5]. In that these modern dynamical networks’ components are often constrained,

designing controllers under actuator saturation constraints is important. We believe strongly that

systematic low- and low-and-high gain controller design methodologies must be obtained for dy-

namical networks with actuator saturation, and, more generally, for decentralized LTI plants. This

short note illustrates a low-gain design for a canonical and representative network model called the

double-integrator network, namely a network of autonomous agents with double-integrator internal

dynamics and actuator saturation that must coordinate using an arbitrary observation topology.

Let us briefly review the limited literature on controlling dynamical networks under saturation,

to give context to this work. Stoorvogel and coworkers have given sufficient conditions for existence

of decentralized controllers under saturation, in particular showing that stabilization is possible

when the open-loop decentralized plant has 1) closed-left-half plane eigenvalues, 2) decentralized

fixed modes only in the open left-half-plane, and 3) jw-axis axis eigenvalues with algebraic mul-

tiplicity 1 [222]. However, this study does not address the (obviously crucial) case where jw-axis

eigenvalues are repeated, nor does it give a practical controller design. Meanwhile, our group has

been able to give a sufficient condition on the observation topology under which a double-integrator

network (which has repeated and defective jω-axis eigenvalues) can be stabilized under saturation,

by focusing on a proportional-derivative control scheme [25]. As an alternative, for double-integrator

networks with symmetric relative-position observations, Ren shows that a diffusive controller with

a hyperbolic tangent nonlinearity can achieve a consensus or synchronization task [232]. Here, we

present a systematic low-gain dynamical controller design for arbitrary double-integrator networks

with actuator saturation. The design comprehensively addresses the problem of decentralized con-

trol in the presence of actuator saturation for the important double-integrator network model, and

269

also focuses analysis and design efforts for more general decentralized plants with repeated jω-axis

eigenvalues.

The remainder of the note is organized as follows. In Section 13.2, we review the double-

integrator network model and revisit a previous design, for stabilization and pole-placement without

saturation. In Section 13.3, we develop a low-gain scaling of the previous design, to obtain a

controller that achieves stabilization under saturation.

13.2 Double-Integrator Network: Introduction and Preliminary Design

The double-integrator network, i.e. a network model comprising agents with double-

integrator internal dynamics and general sensing topology, has been widely motivated and stud-

ied [10, 11, 25, 232]. Here, let us review the model, see [10, 11, 25] for further details. Formally,

the double-integrator network with saturation comprises n autonomous agents with double-

integrator internal dynamics with input saturation whose (scalar) observations are linear combi-

nations of multiple agents’ states. Precisely, we assume that each agent i has internal dynamics

ẍi = σ(ui), where we refer to xi as the position state of agent i and ẋi as the velocity state,

ui is the input to agent i, and σ() is the standard saturation function. For notational convenience,

we define x =
[
x1 . . . xn

]T

and refer to it as the full position state of the network, and

also define u =
[
u1 . . . un

]T

. We assume each agent i makes a scalar observation yi = gT
i x,

i.e. that its observation is a linear combination of the position states of various agents. We find

it convenient to stack the observations into a vector, i.e. y =
[
y1 . . . yn

]T

. We also stack

vectors gT
i to form a matrix G =

[
g1 . . . gn

]T

, which we refer to as the topology ma-

trix since it captures the sensing/communication among the agents. In short, a double-integrator

270

network with saturation comprises n agents that together have the dynamics

ẍ = σ(u) (13.1)

y = Gx,

where each agent i makes an observation yi and can set the input ui, and the notation σ() represents

that each input is subject to the saturation nonlinearity. We also consider the case where input

saturation is not in force, and so refer to this model as the double-integrator network without

saturation.

Our goal is to design a linear decentralized controller (mappings from each yi to ui) to make

the closed-loop dynamics of the double-integrator network with saturation semi-globally stable∗.

Let us present some existing results on the control of double-integrator networks without satu-

ration, as a preliminary step. For the double-integrator network without saturation, it is necessary

and sufficient for decentralized stabilization using LTI compensation that G has full rank [10, 25].

Two promising dynamical control architectures have been established, using which controllers for

stabilization and pole-placement can be designed for general classes of topology matrices: 1) an

architecture in which delayed observations are deliberately used in feedback [10], and 2) a multi-

lead-compensator architecture [11]. Controllers of both architectures that have been designed for

stabilization/pole-placement can be adapted for semi-global stabilization under actuator saturation

through a low-gain strategy. These methods yield practical designs, in that complexity and actu-

ation are subdivided among the agents and robustness to agent failure is often established. Here,

for brevity, let us focus on the multi-lead-compensator architecture since this approach yields finite
∗ Semi-global stabilization means that, for any bounded set around the origin in the state space, there exists a

controller that achieves a region of attraction containing this set [198]. For systemswith saturation constraints, it is

classical to pursue designs that achieve semi-global stabilization.

271

dimensional controllers as considered in the ongoing work on decentralized control of saturating

plants [222], and permits design for arbitrary full-rank G. Before progressing to the design under

saturation, let us quote the main result on multi-lead-compensator control of the double-integrator-

network without saturation:

Theorem 13.1. Consider a double-integrator network without saturation with arbitrary invertible

graph-matrix G. Proper LTI compensators of order 3 can be applied at each channel, so as to place

n eigenvalues each close to two desirable locations in the complex plane while driving the remaining

3n eigenvalues arbitrarily far left in the complex plane. Specifically, consider using a compensator

at each agent i with transfer function hi(s) = ko + k1s
1+ελfis

+ k2s2

1+εsλdi+ε2s2λzi
, and say that we wish to

place n closed-loop eigenvalues at each of the roots of s2 +αs+β. By choosing k2 sufficiently large,

k1 = αk2, and ko = βk2, and choosing λfi, λdi, and λzi appropriately, n closed-loop eigenvalues

can be placed arbitrarily close to each root of s2 + αs + β as ε is made small, while the remaining

3n eigenvalues can be moved arbitrarily far left in the complex plane (in particular, having order

1
ε).

We kindly ask the reader to see [11] for a proof of the above result, as well as exact specifications

of the compensators’ parameters. Analogous results for the deliberate-delay architecture, and

further discussion on the benefits of these control schemes, can be found in [10,14,15].

For convenience, let us define H(s) = [diag(hi(s))]. We note that H(s) is the full controller’s

transfer function.

13.3 Stabilization under Saturation

In this section, we show that a multi-lead-compensator can semi-globally stabilize a double-

integrator network under saturation, for an arbitrary graph matrix G. We stress again that the

272

double-integrator network has 2n poles at the origin. Hence, the result is an expansion of the

sufficient condition for the existence of a stabilizing controller provided in [222].

In the following Theorem 13.2, we show the design of the stabilizing multi-lead-compensator

using a low-gain strategy. More specifically, we discuss a scaling of the compensator design presented

in Theorem 13.1, that yields semi-global stabilization under actuator saturation. Here is the result:

Theorem 13.2. Consider a double-integrator network with input saturation, and arbitrary in-

vertible graph-matrix G. Say that compensators hi(s) = ko + k1s
1+ελfis

+ k2s2

1+εsλdi+ε2s2λzi
have been

designed for each agent i according to Theorem 1, so that stabilization is achieved in the double-

integrator network without saturation. Then the network with input saturation can be semiglobally

stabilized using at each agent i the parameterized family of proper LTI compensators ĥi,ε̂(s) =

koε̂
2 + ε̂k1s

1+ ε
ε̂
λfis

+ k2s2

1+ ε
ε̂
sλdi+

ε2

ε̂2
s2λzi

That is, for any specified ball of plant and compensator initial

conditions W , there exists ε̂∗(W) such that, for all 0 < ε̂ ≤ ε̂∗(W), the compensator with the trans-

fer function ĥi,ε̂(s) at each channel achieves local stabilization of the origin and contains W in its

domain of attraction.

Proof: Without loss of generality, we can limit ourselves to examining the response from the

plant initial conditions, since the component of the response due to the precompensator initial

conditions can be made arbitrarily small through static pre- and post-scaling of the compensator

at each agent, see e.g., [18].

In order to prove that the proposed controller semiglobally stabilizes the double-integrator

network under input saturation, it suffices to show that, for any bounded set of initial conditions W

the ∞-norm of the input ||u(t)|| where t ≥ 0 remains upper bounded by 1, and also the dynamics

without saturation are asymptotically stable. Thus, we can verify semi-global stabilization by

showing that, for any bounded set of initial conditions W the norm of the input ||u(t)|| where t ≥ 0

273

scales by ε̂ and further the closed-loop dynamics without actuator saturation are asymptotically

stable. Let us prove this through a spectral argument.

Let us first consider applying the new scaled controller, i.e. the controller with transfer function

Ĥ(s) = [diag(hi(s))]. In the Laplace domain, the closed-loop dynamics of the double-integrator

network ignoring saturation (when this scaled controller is used) are given by

s2X(s) − sx(0) − ẋ(0) = koε̂
2GX(s) + (13.2)

(I +
ε

ε̂
Λfs)−1ε̂sk1GX(s) + (1 +

ε

ε̂
Λds +

ε2

ε̂2
Λzs

2)−1k2s
2GX(s),

where Λf , Λd, and Λz are diagonal matrices whose ith diagonal entries are λfi, λdi, and λzi,

respectively.

Let us apply the change of variables ε̂s̄ = s, and scale both sides of Equation 13.3 by 1
ε̂2 . The

closed-loop system dynamics in terms of s̄ in the Laplace domain becomes

s̄2X(ε̂s̄) − 1
ε̂
s̄x(0) − 1

ε̂2
ẋ(0) = koGX(ε̂s̄) (13.3)

+(I + εΛf s̄)−1s̄k1GX(ε̂s̄) + (1 + εΛds̄ + ε2Λz s̄
2)−1k2s̄

2GX(ε̂s̄).

From Equation 13.4, we get

274

X(ε̂s̄) = (13.4)

(s̄2I − koG − (I + εΛf s̄)−1s̄k1G − (1 + εΛds̄ + ε2 + Λz s̄
2)−1k2s̄

2G)−1 1
ε̂
s̄x(0)

+(s̄2I − koG − (I + εΛf s̄)−1s̄k1G − (1 + εΛds̄ + ε2Λz s̄
2)−1k2s̄

2G)−1 1
ε̂2

ẋ(0)

=
1
ε̂2

((s̄2I − koG − (I + εΛf s̄)−1s̄k1G − (1 + εΛds̄ + ε2Λzs̄
2)−1k2s̄

2G)−1ε̂s̄x(0)

+(s̄2I − koG − (I + εΛf s̄)−1s̄k1G − (1 + εΛds̄ + ε2Λz s̄
2)−1k2s̄

2G)−1ẋ(0))

On the other hand, we note that using the original controller design with transfer function H(s̄)

and initial conditions (ε̂x(0), ẋ(0)) gives us (for the double integrator network ignoring saturation)

X(s̄) = (13.5)

((s̄2I − koG − (I + εΛf s̄)−1s̄k1G − (1 + εΛds̄ + ε2Λzs̄
2)−1k2s̄

2G)−1ε̂s̄x(0) +

(s̄2I − koG − (I + εΛf s̄)−1s̄k1G − (1 + εΛds̄ + ε2Λz s̄
2)−1k2s̄

2G)−1ẋ(0)),

where we have used the notation X(s̄) for the Laplace transform of the state to avoid confusion.

Equations (13.5) and (13.6) together inform us that ε̂X(ε̂s̄) is X(s̄) scaled by 1
ε̂ . Hence, clearly,

the double-integrator network’s response adopting controller with transfer function Ĥε̂(s) is the

response of the double-integrator network using the controller with transfer function H(s̄) with

the initial conditions (ε̂x(0), ẋ(0)), scaled in amplitude by 1
ε̂ and in frequency also by 1

ε̂ . Hence

with just a little algebra, we see that the input norm ||u(t)|| is upper-bounded by a multiple of

ε̂. Furthermore, we directly recover from Equations (13.5) and (13.6) that the closed-loop poles

scale with ε̂ upon use of the scaled controller, and so asymptotic stability is maintained. Thus,

semi-global stabilization is achieved.

275

In the above theorem, we have shown that a low-gain scaling of a (decentralized) multi-lead-

compensator stabilizes a double-integrator network under saturation, for an arbitrary full-rank

topology matrix G. Thus, we have fully addressed design of low-gain decentralized controllers for

the double-integrator network with saturation. Let us conclude with two remarks about the design:

1) Let us distinguish the approach to design taken here with the traditional approach for cen-

tralized systems with saturation [198,233]. In the low-gain design for centralized plants, actuation

capabilities are subdivided between the observer and state feedback. In contrast, the double-

integrator network requires integrated design of the entire dynamical controller, and hence we need

a scaling of the full design to address control under saturation.

2) It is an open question as to whether decentralized plants with repeated jω-axis eigenvalues

(and with all eigenvalues in the CLHP and all decentralized fixed modes in the OLHP) are amenable

to semi-global stabilization. This first result shows that there is some promise for achieving semi-

global stabilization broadly.

276

PART IV: TOOLS

Just as a child needs a village to grow up, a new scientific methodology requires a village of

supporting tools to mature. Our efforts on dynamical network control and design—both those pre-

sented in this thesis, and those soon to come—require a range of new control-theoretic methods, in

such domains as analysis of neutral-type delay systems and design of a linear system’s invariant zero

structure. Part IV catalogs the various supporting control-theoretic tools that we have developed.

Part IV is organized as follows. Chapter 14 studies the delay implementation of derivative

controllers up to one less than the relative degree of a SISO plant. Chapter 15 extends the study to

MIMO plants, and also studies the the delay implementation of derivative controllers whose orders

are equal to the relative degree of a plant. Chapter 16 gives a thorough comparison of retarded-type

delay systems with neutral-type delay systems. Chapter 17 and 18 are concerned with manipulating

system zeros. Chapter 17 presents a precompensator design that cancels all OLHP zeros of a

general MIMO LTI plant, and Chapter 18 presents a pre- + and post- + feedforward compensator

that places the transmission zeros of a stabilizable and detectable MIMO LTI plant at arbitrary

locations. Finally, Chapter 19 gives an alternative approach to designing stabilizing compensators

for saturating LTI plants using a precompensator plus static-output-feedback architecture.

277

14. ON MULTIPLE-DELAY STATIC OUTPUT FEEDBACK STABILIZATION OF LTI

PLANTS

We develop a control methodology for linear time-invariant plants that uses multiple delayed

observations in feedback. Using the Special Coordinate Basis (SCB), we show that multiple-delay

controllers can always be designed to stabilize minimum-phase plants, and identify a class of non-

minimum-phase plants that can be stabilized using these controllers.

14.1 Introduction

Control systems subject to delays have been extensively studied (see e.g. the textbook [234]).

Recently, several researchers have sought to design controllers that use multiple delayed observa-

tions, with the motivation that properly-designed delays can in some special cases act to stabilize

a system [220, 235, 236]. Fundamentally, these multiple-delay controllers are constructed by first

designing controllers that use derivatives of the output, and then approximating these derivatives

using delay-differences. Specifically, Niculescu and coworkers have addressed multiple-delay pole-

placement controller design for plants that are chains of integrators, and have also established that

certain unstable plants cannot be stabilized with multiple delays [220,235]. Independently, the arti-

cle [236] has pursued multiple-delay control for minimum-phase plants with relative degree 1 and 2,

in particular proving stability in the special case where the Markov parameters are all positive. In

this chapter, we develop the multiple-delay controller methodology for general linear time invariant

278

(LTI) plants, using the Special Coordinate Basis (SCB) [205]. In particular, we demonstrate design

of stabilizing multiple-delay controllers for arbitrary minimum-phase plants (Section 14.2), and also

discuss conditions for stabilizability for arbitrary LTI plants (Section 14.3).

While this note is narrowly focused on extending the existing results on multiple-delay control

to general LTI plants, our broader motivation for pursuing delay-based feedback originates from

our study of decentralized controller design [10, 215]. In this domain, multiple-delay controllers

are highly effective, because 1) they naturally permit control in the presence of intrinsic observa-

tion/actuation delays, which are commonplace in modern dynamical networks; and 2) they are often

amenable to decentralized implementation, unlike traditional observer-based control strategies. We

kindly ask the reader to see or efforts on decentralized controller design for details [10,215].

14.2 Minimum-Phase Plants

We first study multiple-delay control of square-invertible minimum phase plants, and then

address the non-invertible case. In particular, let us first consider multiple-delay control of a plant

ẋ = Ax + Bu

ẏ = Cx, (14.1)

that is minimum phase (i.e., has finite invariant zeros in the OLHP) and square invertible, with

x ∈ Rn, and y,u ∈ Rmd .

Theorem 14.1. The minimum-phase square-invertible plant (14.1) can be stabilized by a multiple-

delay output feedback controller of the form u(t) =
∑M

i=1 Kiy(t − τ̄i), where 0 ≤ τ̄1 < τ̄2 < ... < τ̄M

and where the Ki are of appropriate dimension. Moreover, the required number of delayed obser-

vations M is equal to the maximum order among the infinite zeros of the plant.

279

Proof: We prove the theorem by first showing that a multiple-derivative controller stabilizes

the plant, and then invoking an equivalence between multiple-derivative control and multiple-

delay control. From the SCB ([205]), it follows immediately that there exist invertible linear

transformations Γx, Γy, and Γu such that

⎡⎢⎢⎣xa

xd

⎤⎥⎥⎦ = Γxx, yd = Γyy, and ud = Γuu, satisfy

ẋa = Aaaxa + Ladyd

ẋi = Aqixi + Lidyd + Bqi [ui + Eiaxa +
md∑
j=1

Eijxj],

yi = Cqixi, (14.2)

for i = 1, . . . ,md, where yT
d =

[
y1 . . . ymd

]
for scalars yi (i ∈ 1, . . . ,md), xT

d =
[
x1 . . . xmd

]
,

uT
d =

[
u1 . . . umd

]
for scalars ui (i ∈ 1, . . . ,md), xi ∈ Rqi, Aqi =

⎡⎢⎢⎣0 Iqi−1

0 0

⎤⎥⎥⎦, Bqi =

⎡⎢⎢⎣0

1

⎤⎥⎥⎦,

Cqi =
[
1 0

]
, and further structure in the SCB parameters is described in e.g. [205]. Here, we

notice that xa is the state of the finite invariant zero dynamics, while xi, i = 1, . . . ,md comprise the

states associated with the infinite-zero structure. Now let us construct a vector ỹ comprising each yi

and its first qi−1 derivatives. From the SCB representation, it automatically follows that ỹ is related

to the state associated with the infinite-zero structure, xd, by an invertible transformation; thus,

static feedback of xd can be achieved through static feedback of ỹ, and hence through appropriate

static feedback of y and its derivatives up to order maxi qi − 1. The existence and design of a

stabilizing multiple-derivative controller then follows immediately from the asymptotic time-scale

and eigenstructure assignment (ATEA) methodology [195, 196, 237]. Specifically, one sees that a

high-gain static feedback of the state associated with the infinite-zero dynamics can be used to

1) place a closed-loop pole arbitrarily near to each of the plant’s finite invariant zeros, and 2)

280

Non−square−
invertible
plant

(s)preK Kpost(s)

Fig. 14.1: A minimum-phase non-square-invertible plant can be made minimum-phase square-invertible using

(in general dynamic) pre- and post-compensation. We can thus develop multiple-delay controllers even in

the non-square-invertible case.

drive the remaining eigenvalues arbitrarily far left in the complex plane along desired time scales.

Thus, we recover that a controller of the form u(t) =
∑M

i=1 kiy(i−1)(t), where the ki are matrices

of appropriate dimension and M = maxi qi, can stabilize the plant.

Second, from Lemma 14.3 (see Appendix), we immediately recover that a controller of the form

u(t) =
∑M

i=1 Kiy(t − ετi), where 0 ≤ τ1 < τ2 < ... < τM and ε is a small positive constant, can

stabilize the plant. We thus recover that the result of the theorem, choosing τ̄i = ετi. �

Let us now consider non-square-invertible minimum-phase plants. In this case, a multiple-

delay controller can be designed through squaring-down followed by application of the above result

for square-invertible plants. Specifically, an (in general dynamic) open-loop precompensator and

postcompensator can be applied to make the plant square-invertible and minimum phase [238], see

Figure 14.1. In turn, the multiple-delay controller design can be applied. We stress here that in

many cases static pre- and post-compensation can be used, in which case the form of the controller

is exactly as in Theorem 14.1. We also note that the pre- and post-compensation do not change

the infinite zero structure of the plant (see [238]), so the required number of delays is identical to

the number required in the square-invertible case.

281

14.3 Non-Minimum Phase Plants

In essence, multiple-delay controllers use delayed observations to estimate output derivatives.

The SCB formulation above clarifies that, while these output derivatives partially identify the

system state, they do not identify the zero dynamics of the plant. We thus expect that non-

minimum-phase plants will not generally be stabilizable by multiple-derivative or multiple-delay

controllers. Let us first give two examples, one of a non-minimum phase plant that can be stabilized

using multiple-delay control and one of a non-minimum-phase plant that cannot be stabilized by

any multiple-derivative linear controller (and hence also cannot be stabilized by a controller that

approximates derivatives using delays). After presenting the examples, we will clarify that the

problem of stabilizing a general plant with multiple delays (or derivatives) can be equivalenced

with a static controller design problem, and hence the wide literature on static stabilization [239]

can be applied.

Example 1: The non-minimum phase SISO plant with transfer function H(s) = s−1
s2(s+10)2

can

be stabilized using a multiple-delay feedback controller. To verify, notice that a negative feedback

controller that uses two derivatives of the output, namely u(t) = d2y
dt2

+2dy
dt +y, stabilizes the plant.

We thus can construct a three-delay stabilizing controller. �

Example 2: A SISO plant with transfer function H(s) = (s−1)3

s4 cannot be stabilized by any

multiple-derivative feedback controller, i.e. any controller of the form u =
∑N

i=0 αiy
(i), for any

N . To see this, notice that the controller’s transfer function is a degree-N polynomial, say p(s).

Let us first consider the case that p(s) has no zeros at the origin. In this case, the characteristic

polynomial of the closed-loop is easily seen to be s4 + (s − 1)3p(s). Noticing that (s − 1)3p(s) is a

polynomial with three positive real roots, its coefficients have at least three sign changes according to

Descartes’ classical rule of signs. Thus, the coefficients of the closed-loop characteristic polynomial

282

s4+(s−1)3p(s) change signs at least once, and so all roots cannot be in the OLHP. In the case where

p(s) has roots at the origin, the closed-loop characteristic polynomial takes the form sj +(s−1)3p̂(s)

where j = 0, 1, 2, 3 and p̂(s) = p(s)
s4−j . Thus, by exactly the same argument, we see that not all roots

of the characteristic polynomial are in the OLHP, and stability cannot be achieved. �

This example shows that multiple-derivative controllers, and so multiple-delay controllers based

on approximating derivatives with delay differences, cannot always be used to stabilize non-minimum-

phase plants. More fundamentally, we conjecture that multiple-delay controllers essentially approx-

imate multiple-derivative ones, and so cannot be used to stabilize some non-minimum-phase plants.

Finally, we seek to distinguish general LTI plants that can and cannot be stabilized by multiple-

delay controllers. In fact, we can straightforwardly pose this classification problem as a static

stabilizability question. Let us present this equivalence for SISO plants (for simplicity).

Theorem 14.2. Consider a SISO LTI plant ẋ = Ax + bu, y = cx, with n poles and m ze-

ros. Let us construct a SIMO plant with the same state equation, but with the output ỹ =[
y y(1) . . . y(n−m−1)

]T

. If this virtual SIMO plant can be stabilized using static linear feed-

back, then the SISO plant can be stabilized using using an (n − m)-delay controller.

The proof of this theorem is immediate: static stabilizability of the SIMO plant implies sta-

bilizability of the SISO plant using feedback that is a linear combination of the first n − m − 1

derivatives of the output, and in turn stabilizability using multiple-delay control. We note that

only n − m − 1 derivatives (equivalently, n − m delays) are considered, since higher derivatives of

the output involve the input and hence cannot always be computed/approximated in practice using

multiple-delay approximations.

The theorem generalizes automatically to the MIMO case. Specifically, upon transformation

to the SCB coordinates (14.2), it is automatically clear that the output can be appended with

283

the first qi − 1 derivatives of each yi (without involving the input directly), and so we can pose

the multiple-derivative controller design as a static controller design problem for this appended

system. We thus recover that multiple-delay controllers can be designed whenever an appended

static controller design problem can be solved.

Remark: We note that that the system with extended output as given above has the same

spectrum and blocking-zero structure as the original plant. It follows immediately that a necessary

condition for the multiple-derivative control and hence our multiple-delay control is that the parity

interlacing property holds, e.g. [239,240].

Conclusion

We have demonstrated that multiple-delay controllers can be used to stabilize arbitrary minimum-

phase plants, and have given conditions for stabilization of general LTI plants using multiple-delay

controllers. These results significantly broaden the class of plants for which multiple-delay control

is possible.

Appendix

We show that a multiple-delay controller can be designed to stabilize an LTI plant whenever

a multiple-derivative controller of the form given in Theorem 14.1 can be used to stabilize the

plant. Our proof is essentially based on the Razhumikjim-Lyapunov theory (which connects the

time-evolution of a Lyapunov function to that of an interval-maximum functional [234]), though for

clarity we work directly with an interval-maximum functional rather invoking the theory. Specifi-

cally, we prove stability using a quadratic functional C(t) = maxτ∈[0,MετM] x(t− τ)Px(t− τ) where

τM is the maximum delay used in the multiple-delay controller. Our argument generalizes that of

284

Michiels and Roose [241].

Fundamentally, the equivalence between multiple-derivative control and multiple-delay control

is evident: because we have the freedom to choose the delays arbitrarily small, the closed-loop

trajectory upon multiple-delay control can be made to approximate that achieved by multiple-

derivative control (at least as long as the feedback does not include delayed derivatives of the

state itself, see e.g. [224] for discussion of these neutral delay-differential equations). In turn the

functional can be shown to be non-increasing and attractive. This result is formalized below.

Lemma 14.3. Consider a SISO LTI plant with relative degree M that can be stabilized by the

controller u =
∑M

i=1 kiy
(i−1)(t). Then the controller u(t) =

∑M
i=1 Kiy(t − ετi), where Ki =

∑M
j=i

(j−1)!kjdQ(j)i,j

εj−1det(Q(j))
, Q(j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 τ1 ... τ j−1
1

1 τ2 ... τ j−1
2

...
... . . .

...

1 τj ... τ j−1
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and dQ(j)i,j

is the (i, j)th minor of Q(j), also

stabilizes the plant for sufficiently small ε∗.

Proof: We will prove stability using a Lyapunov functional of the form V (t) = maxs∈[0,MετM]xT (t−

s)Px(t − s). Specifically, we shall show that V (t) is not only non-increasing but also attractive to

the origin, and hence we shall prove stability (see e.g. [234]). The proof is organized as follows: first,

we formalize that the closed-loop dynamics can be viewed as a stable finite-state LTI dynamics plus

a small approximation error. Using this formulation, we specify a Lyapunov functional that can be

used to prove stability and attractivity.

First, let us express the closed-loop system dynamics when the multiple-delay controller is

used in terms of the closed-loop dynamics upon multiple-derivative control, plus an error. For
∗ We note that the gains in the multiple-delay controller are based on approximating the observation y(t) with a

polynomial interpolations over the interval [0, ετM].

285

convenience, let us first define an extended output vector ỹ =
[
y ẏ . . . y(M−1)

]T

. In this

notation, the input u(t) when the multiple-delay controller is used can be written as the input when

multiple-derivative control is used (which constitutes a static linear feedback of ỹ), plus a (small)

correction term that captures the difference between multiple-delay-based approximation of output

derivatives and the derivatives themselves. That is, u(t) = kT ỹ+kT ỹdiff , where ỹdiff = ỹapp − ỹ,

where ỹapp =

⎡⎢⎢⎢⎢⎢⎢⎣
yapp

...

y
(M−1)
app

⎤⎥⎥⎥⎥⎥⎥⎦, where y
(i−1)
app is the approximation of the i − 1st derivative of y using i

delays as in the Lemma statement, and k =
[
k1 ... kM

]T

. We notice that our approximation

for the ith derivative (y(i)) is constructed by interpolating the observation y(t) at i + 1 points on

the interval [t− ετi, t]. We note that, from the classical mean value theorem for divided differences,

there exist θi ∈ [0, ετi], i ∈ 1, . . . ,M such that y(i−1)(t)− y
(i−1)
app (t) = ετiy

(i)(t− θi); we shall use this

fact subsequently to show that the functional is non-increasing and attractive†.

Using the re-written observation vector, we can straightforwardly express the closed-loop dy-

namics as ẋ = Ax + bkT (ỹ + ỹdiff). Noting that ỹ = C̃x for appropriate C̃ (since, from the SCB,

each of the first M derivatives of y(t) can be written as linear combinations of x(t)), we obtain that

ẋ = (A + bkT C̃)x + bkT ỹdiff . We note here that A = A + bkT C̃ is Hurwitz stable, and so there

exists P > 0 and Q > 0 such that A
T
P + PA ≤ −Q.

Next, we prove stability of the closed-loop using the functional V (t) = maxs∈[0,MετM]xT (t −

s)Px(t − s). We do so from first principles, in two steps: 1) we show that V (t) is a non-increasing

† We note that the parameters θi vary with time, i.e. the given approximation is correct for the particular time

t. Our argument only requires consideration of the Lyapunov function at individual times, so we do not make the

time-dependence explicit in our notation.

286

function of time, and 2) we show that V (t) approaches 0 (in fact exponentially) by bounding the

times at which V (t) is less than arbitrary fractions of its initial value.

To show that V (t) is non-increasing, let us first show that if V (t̂) = c, then V (t) ≤ c for

t ≥ t̂, for any c (when ε is chosen sufficiently small). From the fact that V (t̂) = c, we know that

W (t) = xT (t)Px(t) is less than or equal to c for t̂−MετM ≤ t ≤ t̂. From continuity of the solution,

we thus know that there must be a particular time t such that W (t) = c for the first time if c is

to be exceeded, and further W () must increase from less than c to greater than c at this time t.

We prove this is impossible by showing that Ẇ is less than 0 for W (t) = c, and hence prove that

V (t) ≤ c for t ≥ t̂. Specifically, note that

Ẇ = xT (AT
P + PA)x + xT PbkT ỹdiff + ỹT

diffkbT Px ≤ −xT Qx + 2|x||PbkT ỹdiff |. (14.3)

Substituting for ỹdiff , we obtain that

Ẇ ≤ −xT Qx + 2|x||PbkT |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ετ1y
(1)(t − θ1)

ετ2y
(2)(t − θ2)

...

ετMy(M)(t − θM)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (14.4)

for some θ1, . . . , θM ∈ [0, ετM]. Note that ετiy
(i)(t− θi) are clearly bounded linearly with the norm

of x(t − θi) and with ε for i = 1, . . . ,M1, since each of these derivatives is a linear function of the

concurrent state. However, further effort is needed in bounding ετMy(M)(t − θM).

To continue, notice that this term can be rewritten as ετMC(M−1)ẋ(t−θM)) = ετMC(M−1)(Ax(t−

θM) + bkT ỹapp(t− θM)), where C(M−1) describes the linear transformation from x to y(M−1). No-

tice that ετMC(M−1)Ax(t − θM) is guaranteed to be bounded by a function that is linear with ε

and with the norm of x(t − θM), but bkT ỹapp(t − θM)) requires more work to bound since the

approximation ỹapp(t− θM) depends on ε. Let us thus study this term a bit further. In particular,

287

note that ỹapp(t−θM)) can be rewritten as ỹapp(t−θM) = ỹ(t−θM)+ỹdiff (t−θM). The first term,

ỹ(t − θM) is bounded. The second term, ỹdiff (t − θM) can be approximated in the same way as

ỹdiff (t), specifically as ỹdiff (t − θM) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ετ1y
(1)(t − θM − φ1)

ετ2y
(2)(t − θM − φ2)

...

ετMy(M)(t − θM − φM)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, for some φ1, . . . , φM . Here, all

terms are guaranteed to be bounded with respect to ε and the norm of x at the appropriate time,

except the highest-order one. However, substituting this highest-order term into the expression for

Ẇ , we finally recover that the only (possibly) unbounded term has the form ε2qy(M)(t−θM −φM),

where q is a fixed constant. Repeating this process M − 2 further times, we finally recover that

the only (possibly) unbounded term has the form εMry(M)(t − θbig), where θbig < MετM and r is

a fixed constant.

Finally, noting that y(M) = C(M−1)ẋ, we obtain that this term is εMrC(M−1)ẋ(t − θbig) =

εMrC(M−1)(Ax(t − θbig) + bu(t − θbig)). The first of the two terms in the above expression is

bounded with ||x|| and ε (in fact, εM). Meanwhile, from the expression for the multiple-delay

controller, we see that u(t − θbig) can be bounded by C
εM−1 for some positive constant C (for x in

the given ball). Thus, we recover that εMrC(M−1)Ax(t− θbig) +bu(t− θbig) is bounded by a linear

function of ε and the norm of x. Hence, we have proved that the perturbation of Ẇ from that

upon use of a multiple-derivative controller (see Equation 14.3) can be bounded by a sum of terms

that are each linear with ε, and with a norm of x at a time in [t − MετM , t]. In turn, we recover

that Ẇ ≤ −λmin(Q)|x|2 + εL|x|2, where the positive constant L (which does not depend on c) is

not worthwhile to compute. By choosing ε < λmin(Q)
L , we can guarantee that the derivative of W (t)

is negative for W (t) = c, and hence W (t) and in turn V (t) do not exceed c. Since this statement

holds for all c, we automatically recover that V (t) is a non-increasing function of time.

288

We can straightforwardly extend the above argument to show that the functional V (t) not only

is non-increasing but in fact approaches 0. In particular, we can prove the following: if V (t̂) = c,

then V (t̂ + 2λmax(P)
λmin(Q) + MετM) ≤ c

2 , as long as we choose ε < λmin(Q)
4L (where L is the positive

constant described above). To prove this, simply note that by choosing ε in this way and using

the fact that the norms of the delayed versions of x are bounded by 2λmax(P)
λmin(P) |x(t)| while W (t)

is between c
2 and c, we guarantee that Ẇ ≤ −1

2λmin(Q)|x|2. Thus, while c
2 ≤ W (t) ≤ c, it is

guaranteed that W (t) decreases at a rate of at least 1
2λmin(Q)|x|2 ≥ 1

2
λmin(Q)
λmax(P)W (t) ≥ 1

2
λmin(Q)
λmax(P)

c
2 .

We thus recover that W (t) can remain between c and c
2 for a maximum time of 2λmax(P)

λmin(Q) . Once

W (t) has dropped below c
2 , it is clear from the fact that the derivative is negative for W (t) ≥ c

2

that V (t) cannot again exceed c
2 . Thus, we recover the result above. Repeating the argument, we

obtain that V (t) ≤ c
2n for t ≥ t̂ + 2nλmax(P)

λmin(Q) + nMετM , and so we have proved asymptotic (and in

fact exponential) convergence of the state to the origin.

We have thus proved that, if the state is upper-bounded by a constant c over the interval

[−MετM , 0], then it is bounded by c for all t ≥ 0 and in fact converges exponentially to the

origin. The only remaining step in proving stability (see e.g. [234]) is to show that boundedness

over the shorter interval [−ετM , 0] yields boundedness and convergence. However, it is trivial to

show that the shorter interval suffices by viewing the response over the longer interval as that of a

finite-dimensional linear system with bounded input. �

Remark: In Lemma 14.3, we have approximated the ith derivative using degree-(i+1) polyno-

mial interpolation, for ease of presentation. Alternately, a single approximation of all the derivatives

from a single M -point interpolation can be shown to achieve stability, using a similar argument.

Thus, our result generalizes Niculescu’s result for integrator chains [220] to general SISO plants. �

The result generalizes naturally to the MIMO case. We can approximate all the required deriva-

289

tives of the the output (specifically, of linear combinations of output variables), as delay differences.

Again, as we make the delays small, we find that the multiple-delay controller approximates the

multiple-derivative controller more and more accurately, and hence an identical Lyapunov argument

suffices to prove stability—the only difference is that the observation and its required derivatives

are vectors (rather than scalars) that depend linearly on the state and its derivative. Since the

highest derivative used by the controller is the maximum M among the orders of the infinite zeros

minus 1, we recover that M − 1 + 1 = M delays are needed.

A couple further notes about the multiple-delay approximation are worthwhile. First, the above

argument can straightforwardly be extended to show that the Lyapunov exponent for the multiple-

delay control can be made arbitrarily close to that for the multiple-derivative control. Second, it

can be shown that the finite poles of the multiple-delay-controlled system approach the poles of the

multiple-derivative-controlled system, while the additional poles move toward −∞ as ε becomes

small. A full treatment of this second point is deferred to future work. We also leave it to future

work to select the delays τ1, . . . , τM , so as to trade off accuracy in the derivative approximation

(and hence in the settling response) with robustness to additive noise, see e.g. [242] for relevant

analysis.

290

15. ON MULTIPLE-DELAY APPROXIMATIONS OF MULTIPLE-DERIVATIVE

CONTROLLERS

We study approximation of multiple-derivative output feedback for linear time-invariant (LTI)

plants using multiple-delay approximations. We obtain a condition on the plant and feedback

that yields an equivalence between the closed-loop spectra for the approximate feedbacks and the

desired multiple-derivative feedbacks. On the other hand, we use a scalar example to illustrate that

multiple-delay approximations of sufficiently high derivatives may in some cases yield closed-loop

spectra that differ greatly from the dynamics upon derivative feedback (for instance, containing

many and very large right half plane poles), while in other cases replicating the derivative feedback

perfectly. Finally, through understanding this dichotomy, we present a condition for stabilizing a

SISO relative degree-1 plant when a delay implementation of the first-order derivative is used in

the output feedback control law.

15.1 Introduction

Control of linear time-invariant plants at its essence requires feedback of the output’s derivatives,

and so control schemes explicitly or implicitly must obtain approximations of output derivatives

(see e.g. [196]). Typically, finite-dimensional filters (for instance, lead compensators) are used to

obtain output derivatives. However, in recent years, feedback controllers in which derivatives

are approximated directly from current and delayed output samples have gained some promi-

291

nence [13, 220, 236, 244–246]. Specifically, these multiple delay controllers have been of interest

as alternatives to the typical finite-state controllers for several reasons, including: 1) the need for

new signal-based control schemes in applications where the traditional observer design fails (such

as decentralized and adaptive control applications), 2) the simplicity of approximating derivatives

with delay-differences in some application areas, and 3) the intrinsic presence of delays in many

modern control systems. Thus, modeling and analyzing feedback control systems that use delay

approximations for derivatives, and in turn designing delay-approximation schemes in controls, is

important.

Differential equations with delays, and more specifically the closed-loop dynamics of control

systems subject to delay, have been extensively studied [219]. However, the systems studied here are

distinct from those studied in the delay literature, in that multiply-delayed outputs are deliberately

being used to approximate output derivatives and hence to implement desirable feedbacks. This

deliberate use of delays engenders new analyses—namely, efforts to equivalence the performance

of the delay-based controller with a true derivative feedback control. It also forces study of delay

systems in the case where the delays are made small, as is needed for accurate approximation

of derivatives using delayed outputs. To the best of our knowledge, a systematic treatment of

deliberate-delay-based output-feedback controllers has not been given: several works have addressed

design for particular plants or particular controllers. Of interest to us, integrator-chains and relative

degree one and two plants with certain high frequency gain constraints have been addressed in [220,

236,244]. Moreover, motivated by their study of stabilizing uncertain steady states using difference

feedback, Kokame and Mori in [246] studied the stability when using difference counterparts in

a feedback that is only involved with a first-order derivative. Our earlier work [13] expanded on

these efforts by showing that deliberate-delay-based controllers can stabilize a large class of LTI

292

plants, but did not address more complicated controls goals such as pole placement (which we will

address here); this previous effort also only gave a detailed proof of results for the SISO case, while

we will fully study the MIMO case here. We note that the studies [13, 220] of deliberate-delay-

based output feedback controls only consider approximation of sufficiently low output derivatives,

in particular ones that are less than the relative degree of the plant. Meanwhile, several researchers

have recognized in the state-feedback arena that deliberate-delay approximations of some higher

derivative feedbacks may fail, while stability is achieved upon approximation of other feedbacks

[236,246]. This motivates the systematic study of higher derivative feedbacks pursued here.

In this chapter, we further the study of deliberate-delay control of LTI plants. We first show,

in Section 15.2, that the closed-loop spectrum of MIMO plants upon derivative feedback can be

achieved asymptotically using deliberate-delay approximations, as long as the approximated deriva-

tives are of sufficiently low order. In Section 15.3, we demonstrate through a scalar example the

phenomenon that approximation of higher-derivative feedbacks can in some cases yield unexpected

and undesirable response characteristics (including spectra with poles far in the right half plane),

while replicating derivative control exactly in other cases. Based on this understanding, we also

give a more general result on delay approximation of first-derivative output feedback control of

relative-degree-1 plant. These characteristics of the closed-loop spectrum and response are similar

in flavor to characteristics of neutral-type delay differential equations, but also have some significant

distinctions.

15.2 A pole equivalence result

Here, we give conditions under which delay approximations of multiple-derivative controllers

achieve the same closed-loop performance as derivative feedback, in the sense that the closed-loop

293

eigenvalues upon delay control either approach those upon derivative control, or move arbitrarily

far to the left in the complex plane. In particular, we find that delay-based and derivative-based

controllers can be made arbitrarily close as long as the derivatives being approximated are of

sufficiently low order, namely such that the closed-loop system under derivative feedback would

be strictly proper. Derivative feedback of this form is well known to permit stabilization and

pole placement for a large class of LTI plants (see the classical literature on asymptotic timescale

eigenstructure assignment, or ATEA, design [196]), and so we see that delay-based approximations

are apt for stabilization and pole placement.

Specifically, let us consider a MIMO LTI system:

ẋ = A0x + B0u

y = C0x

(15.1)

with x ∈ Rn, u ∈ Rm and y ∈ Rp. Say that a multiple-derivative feedback controller

u(t) =
n∑

i=1

Kiy
(i−1)(t), (15.2)

where Ki ∈ Rm×p, (which has transfer function F (s) =
∑n

i=1 Kis
i−1) can be designed for this

system, so that the closed-loop transfer functions

C(sI − A)−1BKis
i−1 (15.3)

are strictly proper for i = 1, . . . , n and the zeros of

sI − A − BF (s)C

are in the open left half plane.

Remark: We stress that such multiple-derivative controllers can be designed for a wide class

of LTI plants, including all minimum phase plants [13].

294

Let us consider approximating the derivative feedback using a multiple-delay scheme. In par-

ticular, we consider approximating y(1), . . . , y(n−1) by developing a polynomial interpolation of the

observation at times t − ετ1, . . . , t − ετn, and computing the derivatives from the interpolation

(see [13, 220] for background). With a little algebra, we can specify the transfer function Fε(s) of

this approximate feedback (which is parametrized on ε) as follows. First defining

Li,ε(s) = (i−1)!
(−ε)i−1 e′i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 τ1 · · · τn−1
1

1 τ2 · · · τn−1
2

...
...

...

1 τn · · · τn−1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎜⎝
e−ετ1s

...

e−ετns

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where 0 ≤ τ1 < τ2 < · · · < τM and ei denotes the ith unit vector, we get

Fε(s) =
n∑

i=1

Ki

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Li,ε(s) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 Li,ε(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

n∑
i=1

KiL̃i,ε(s). (15.4)

We shall consider the closed-loop spectrum upon use of this approximate feedback control∗, as a

function of ε. We obtain the following main result:

Theorem 15.1. For sufficiently small ε, the closed system upon application of the approximate

feedback Fε(s) to the system (15.1) is also stable. In particular, n closed-loop poles approach the

closed-loop poles when the true derivative feedback (15.2) is used, while the remaining (infinite

number of) poles move arbitrarily far left in the complex plane as ε is decreased.
∗ We stress that these control problems that we are addressing here is not simply a delay-independent stability

problem, in that not only the delays but the parameters are changing with ε.

295

Proof: The proof consists of two steps. We will first show that the closed-loop system using the

approximate feedback Fε(s) has exactly n poles in the right half plane Re s ≥ −1/ε. Then we will

show that these n poles converge to the the n poles of the closed-loop using derivative feedback as

ε → 0.

Let us look at the resulting closed loop system:

sI − A0 − B0Fε(s)C0 (15.5)

and the associated zeros. We use the factorization:

C0(sI − A0)−1B0 =
1

q(s)
P (s)

where P is a polynomial matrix and q(s) = det(sI−A). Note that our earlier assumption guarantees

that

P (s)Ki

is a polynomial of order less than or equal to n − i for i = 1, . . . , n. Next we note:

q(s)p−1Gε(s) = q(s)p−1 det (sI − A0 − B0Fε(s)C0)

= q(s)p det
(
I − (sI − A0)−1B0Fε(s)C0

)
= q(s)p det

(
I − C0(sI − A0)−1B0Fε(s)

)
= det (q(s)I − P (s)Fε(s)) .

The next step is to apply a scaling:

s̄ = εs

296

and obtain:

Ḡε(s̄) = εpnq(s)p−1Gε(s)

= εpnq(s)p−1 det (sI − A0 − B0Fε(s)C0)

= det (εnq(s)I − εnP (s)Fε(s))

= det

(
εnq(s)I − εn

n∑
i=1

P (s)KiL̃i,ε(s)

)

= det

(
q̄ε(s̄)I −

n∑
i=1

P̄i,ε(s)L̄i,ε(s)

)

where

q̄ε(s̄) = εnq(ε−1s̄),

P̄i,ε(s̄) = εn−iP (ε−1s̄)Ki,

and

L̄i,ε(s̄) = εiL̃i,ε(ε−1s̄).

We note that q̄ε(s̄), P̄i,ε(s̄) and L̄i,ε(s̄) all depend polynomially on ε and converge to s̄n, Pi,0s̄
n−i

and 0 respectively when ε → 0 where Pi,0 is some constant matrix (which might be zero). Hence

Ḡ0(s̄) = s̄pn has exactly pn zeros at the origin.

Next we note that for Re s̄ ≥ −1 there exists constants N1, N2 and N3 such that ‖L̄i,ε(s̄)‖ ≤ εN1,

‖P̄i,ε(s̄)‖ ≤ N2|s̄|n−i and |s̄n − q̄ε(s̄)| ≤ εN3|s̄|n−1. But then(
q̄ε(s̄)I −

n∑
i=1

P̄i,ε(s)L̄i,ε(s)

)
v = 0

for some v with ‖v‖ = 1 implies:

s̄nv = (s̄n − q̄ε(s̄)) v +
n∑

i=1

P̄i,ε(s)L̄i,ε(s)v.

297

But then

|s̄|n ≤ εN3|s̄|n−1 +
n∑

i=1

εN1N2|s̄|n−i

which clearly implies that for ε small enough we must have that |s̄| ≤ 1. Hence for ε small enough,

all zeros of Ḡε(s̄) in Re s̄ ≥ −1 are also inside the unit circle. Next, an application of Hurwitz’s

theorem, see [243], implies that Ḡε(s̄) has exactly np eigenvalues inside the unit circle for ε small

enough and which converge to zero as ε → 0. Hence we know that Ḡε(s̄) for ε small enough has

exactly np eigenvalues in Re s ≥ −1. This implies immediately that Gε(s) has, again for small ε,

exactly n eigenvalues in Re s ≥ −1/ε.

Next we choose a region K such that it contains all zeros of

sI − A0 − B0

(
n∑

i=1

Kis
i−1

)
C0. (15.6)

We will show that Gε(s) has exactly n zeros in K which converge to the zeros of (15.6) as ε converges

to zero. As already indicated in [220]

Fε(s) =
n∑

i=1

Kis
i−1 + O(εs).

in the region K. But this implies that inside the compact region K, (15.5) converges uniformly to

(15.6) as ε → 0. This implies that Gε(s) has, for small enough ε, n zeros inside K which converge

to the zeros of (15.6) as ε → 0. Since Gε(s) has exactly n zeros in the region Re s ≥ −1/ε, we find

that Gε(s) has no other zeros outside K in the region Re s ≥ −1/ε. This clearly implies that n

zeros converge to the zeros of (15.6) while the remaining zeros approach −∞. This completes the

proof of stability and the associated convergence of eigenvalues.

Let us make one note about the above result. For SISO plants and MIMO uniform rank

plants, the condition given in the above theorem reduces to the condition that the derivatives being

approximated are strictly lower in order than the (common) relative degree of the plant; the theorem

298

indicates that approximation of these derivatives can be used successfully in feedback control. More

generally, the theorem indicates that output derivatives which can be written as linear functions

of the concurrent state are amenable to multiple-delay approximation in feedback. We note that,

often, many fewer than n delays may be needed for approximation; a careful delineation of the

number of delays needed requires the special coordinate basis for linear systems, see the study of

asymptotic timescale and eigenstructure assignment (ATEA) in [196].

15.3 Anatomy of higher derivative approximations: scalar examples

In Section 15.2, we have shown that multiple-delay approximations to multiple-derivative con-

trollers achieve equivalent performance in the limit of small delay, as long as the highest output

derivative approximated is less than the relative degree of the plant (i.e., the closed loop transfer

functions are strictly proper). In several domains including decentralized and adaptive control, one

encounters the problem that multiple-derivative controllers involving derivatives up to and includ-

ing the relative degree of the plant (i.e., controllers that make the closed-loop non-strictly proper)

are needed (see e.g., [10]). We are thus motivated to understand the closed-loop dynamics when

multiple-delay approximations for derivatives of order equal to the relative degree are used.

In this section, we expose the complexity of the dynamics when delay approximations for deriva-

tives of order equal to the relative degree are used. It turns out in this case that the delay approx-

imation does not always yield the dynamics achieved using the derivative controller, even in the

limit of small delay. We show this interesting phenomenon using a canonical (scalar) example.

We consider the scalar system

ẋ(t) = u(t), (15.7)

299

and consider delay approximation of the following stabilizing derivative-based controller

u = ax(t) + bẋ(t), (15.8)

where the gains a and b need to satisfy either a > 0 and b > 1 or a < 0 and b < 1 for stability.

Specifically, we approximate the derivative term ẋ(t) in the controller (15.8) as x(t)−x(t−Δ)
Δ , where

Δ is a small time delay, in which case the delay-based controller is

u =
b + aΔ

Δ
x(t) − bx(t − Δ)

Δ
. (15.9)

We notice here that the derivative being approximated is in fact that of the full state (in this case,

a scalar), and so the special output feedback structure used in Section 15.2 to prove equivalence is

not in force here.

In Section 15.3.1, we show that delay approximations to stabilizing derivative controllers can

lead to instabilities that are not present if derivative control is used, and compare this effect with the

instabilities observed in delay-differential equations of neutral type. Next, Section 15.3.2 identifies a

class of derivative feedbacks (for the scalar plant) that are amenable to approximation by multiple-

delay controllers. Using this insight into the dichotomy of approximation performance, we give

conditions in Section 15.4 on feedback controllers for relative-degree-1 plant with higher derivative

feedbacks that allow approximation.

15.3.1 Instabilities caused by delay approximations

Here we use a simple first-order system (15.7) to show that the delay approximation of certain

derivative controllers may introduce ORHP poles. We find the pole locations of the closed-loop

delay-based system, and present an interesting phenomenon: the unstable pole becomes larger with

more accurate approximations. Let us present several results describing this possible instability

caused by approximation.

300

The delay-based controller (15.9) may introduce ORHP poles, although the corresponding

derivative controller stabilizes the system when a > 0 and b > 1. When (15.9) is used, the

closed loop poles satisfy

s = a +
b

Δ
(1 − e−Δs). (15.10)

As an example, when a = 1, b = 10, and Δ = 0.001, the closed-loop system has a real root at

s ≈ 10000. With the decrease of Δ, the real pole moves further to the right.

This peculiar phenomenon motivates us to further characterize the precise locations and number

of the ORHP poles. Interestingly, we can constrain the pole locations of the system upon use of

the delay-based approximation to a contour in the complex plane. We show this result in Lemma

15.2.

Lemma 15.2. Consider the first order system (15.7) and a stabilizing derivative-based controller

(15.8). The poles of the closed-loop system using the corresponding delay-based implementation of

the controller (15.9) are located on the contour

(r − a − b

Δ
)2 + q2 =

b2

Δ2
e−2Δr.

Proof: Rewrite (15.10) with s = r + qj, where r is the real part of a pole, and q is the imaginary

part. A little bit of algebra leads to

r = a +
b

Δ
− b

Δ
e−Δr cos(Δq) (15.11)

q =
b

Δ
e−Δr sin(Δq) (15.12)

By combining equations (15.11) and (15.12) and noticing sin(Δq)2 + cos(Δq)2 = 1, we obtain the

condition.

301

−120 −100 −80 −60 −40 −20 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

6

r

q

Contour of OLHP Pole Locations

90.985 90.99 90.995 91 91.005 91.01 91.015 91.02
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

r

q

Contour of ORHP Pole Locations

Fig. 15.1: The contour of poles when a = 1, b = 9 and Δ = 0.1. a) the contour of the OLHP poles; b) the

contour of the ORHP poles.

This result shows that the poles reside on a contour centered at (a + b
Δ , 0) with varying radius

b
Δe−Δr. An example of the contour when a = 1, b = 9 and Δ = 0.1 is shown in Figure 15.1. When

the delay Δ is small, Δr roughly equals the constant b, hence the shape of the ORHP contour is

roughly a circle. Also, with the decrease of Δ, the ORHP contour shifts to the right with the radius

roughly scaled with 1
Δ . On the other hand, the shape of the contour in the OLHP is determined

by the dominant exponential term. Of interest to us, we note that the OLHP contour scales to

the left as Δ decreases. Meanwhile, the OLHP contour changes significantly with r, due to the

exponential term. We again stress that, as the delay Δ is decreased, the unstable pole becomes

larger and larger.

The delay-based controller (15.9) for any fixed set of parameters is formally one of retarded

type, and hence has a finite number of ORHP poles. We notice that if we instead use a controller

with a delayed-derivative approximation for the scalar plant, i.e.

u(t) = ax(t) + bẋ(t − Δ) (15.13)

the resulting closed-loop system is a neutral delay-differential equation. One characteristic of

302

neutral delay-differential equations (see e.g. [219, 247]) is the presence of an “infinite root chain,”

i.e. of an infinite number of ORHP eigenvalues all with real part located in an interval. Besides

the difference, the controllers in (15.13) and (15.9) may result in unstable dynamics that do not

resemble that using the derivative controller (15.8). It is quite interesting to observe when using

delay approximation, how this number of poles depends on the system parameters, to see whether

the dynamics are similar to those of a neutral type system.

Let us describe the dependence of the number of ORHP poles on the delay Δ and on the gain

b.

Lemma 15.3. Consider the first order system (15.7) and a stabilizing derivative-based controller

(15.8) with a > 0 and b > 1. The corresponding delay-based implementation of the controller (15.9)

introduces a finite number of poles in the ORHP. The number of ORHP poles can grow with the

decrease of the time delay Δ, but remains bounded. However, the number of ORHP poles grows

unboundedly with b.

Proof: First, we notice that when a > 0 and b > 1, the derivative-based controller (15.8) stabilizes

the system. Moreover, from (15.12) we have |Δq| ≤ be−Δr.

Next, we recall the well-known property that the closed-loop system using the delay-based

controller—which is a retarded delay-differential equation for any fixed Δ—has only a finite number

of ORHP poles (see e.g., [219].)

Now let us count the number of ORHP poles. When q = 0, the closed-loop system has a

single real pole at (a + b
Δ − b

Δe−Δr, 0). When q �= 0, combining equations (15.12) and (15.11) and

eliminating r from the expression, we obtain

ΔqeaΔ+b = b sin(Δq)eΔq cot(Δq). (15.14)

303

By introducing q′ = Δq, we can see that the right side of (15.14) is simply an oscillating function

of q′ with varying amplitude within the bound |q′| < be−Δr, and the left side is a monotonic

function of q′ with the scaling factor eaΔ+b. From consideration of the oscillating function on the

right side with the observation that cot(Δq) is unbounded, one automatically sees that the number

of solutions to (15.14) and hence the number of complex ORHP poles is between be−Δr

π − 2 and

be−Δr

π + 2. Hence as Δ decreases, one sees that the number of solutions to (15.14) may increase

but always below the bound b
2π + 1. We also automatically recover from the lower bound that the

number grows unboundedly with b.

We notice that our delay-based approximation, though formally yielding a retarded differential

equation, has some resemblance to delayed-derivative approximation for large b, in terms of having

highly unstable dynamics and a large number of ORHP poles.

The analysis of the example in this section demonstrates that the delay approximation when the

stabilizing derivative controller has highest derivative term equal to the relative degree may cause

instability. Such a system is different in terms of dynamics from both the delayed-derivative system

and the delay approximation when we use one less degree in the derivative controller. The former

system is a neutral system that has chains of infinite number of roots in certain right half planes.

Meanwhile, the later controller guarantees that the dynamics using the approximation resembles

the dynamics using the derivative controller. When a derivative equal to the relative degree is used

in the control law, the resulting system remains retarded but may not represent the dynamics using

the derivative controller anymore, and in fact show certain neutral type behavior, as we see when

b becomes large. This peculiar dynamics is cause by the fact that delay is used to approximate a

quantity that is not part of the state of the system.

304

15.3.2 A Pole Placement Result for Some Approximations

We have shown that, unfortunately, delay approximations to derivative feedbacks of order equal

to the relative degree of a plant can fail. Luckily, only some such approximations cause instability.

In fact, in many cases, depending on the parameters of the stabilizing derivative controller, certain

delay approximations can be shown to achieve equivalence to the derivative feedback in a pole-

placement sense, as the delay Δ is made small. Here, we shall demonstrate this pole-equivalence

result for the canonical scalar system (15.7) with a < 0 and b < 0 in (15.9). This simple example

provides us with a means for implementing multiple-derivative controllers for decentralized systems.

That is, through smart design of the stabilizing derivative controller, stability can be maintained

using delay approximation.

Although this delay feedback only differs from the one considered in Section 15.3.1 in its sign,

the resulting closed-loop dynamics are stable, and in fact the spectrum become equivalent to that

in (15.8) as the delay Δ becomes small. Precisely, the following result holds:

Theorem 15.4. Consider the poles of the first-order system (15.7) using delay-feedback control

(15.9) where a < 0 and b < 0. As Δ → 0, one pole approaches a
1−b , i.e. the single pole of the

closed-loop system using derivative feedback control (15.8). The remaining poles have real parts

approaching −∞.

Proof: We notice that this closed-loop dynamics, which represents a negative derivative feedback

to a single-integrator plant, has a single stable pole, at a
1−b . As in Section 15.3.1, we can limit the

poles to the contour given in Lemma 15.2. For a < 0 and b < 0, it is immediate that this contour

is located entirely within the OLHP, so stability of the closed-loop follows.

What remains to be shown is that one pole approaches a
1−b , while the remaining poles move

305

arbitrarily far left. To prove this, let us first show that one pole can be placed arbitrarily close to

a
1−b by choosing Δ small, while the remaining poles must be outside a circle centered the origin

with radius increasing unboundedly as Δ becomes small.

We notice that the characteristic equation of the delay-feedback system is given by s = a+ bs
1+q(s) ,

where q(s) = sΔ
1−e−sΔ −1, and we have written the differential equation in this form to highlight that

the delay approximation performs a low-pass filtering. Notice that, roughly, q(s) ≈ 0 for |s| < 1
Δ

and q(s) ≈ sΔ for |s| > 1
Δ .

Rearranging, we obtain that the characteristic polynomial is (s − a)q(s) + (1 − b)s − a = 0.

Using this form, we shall prove that all poles within a circle in the complex plane whose radius

increases unboundedly as Δ decreases can only lie within a small ball around a
1−b . In particular,

consider a small ball of radius ε > 0 around the point a
1−b . For all s outside this ball, notice that

|(1 − b)s − a| ≥ |(1 − b)|ε. Now consider a (large) circle of radius f . For any f , it is clear that the

maximum value of |q(s)| within this circle can be made arbitrarily small by choosing Δ sufficiently

small; more specifically, it is easily seen that |q(s)| within this circle can be upper bounded by KfΔ,

for some positive constant K. In turn, we find that |(s− a)q(s)| within the circle is upper bounded

by Kf(f +a)Δ. Thus, by choosing Δ < (1+b)ε
Kf(f+a) , we can guarantee that |(1+b)s+a| > |(s−a)q(s)|

for all s in the circle of radius f , for any f . Choosing Δ in this way, we guarantee that all roots of

the characteristic equation within the circle of radius f must be within the ball of radius ε around

a
1−b . By considering the characteristic equation, we can trivially check that there is indeed precisely

one (real) pole within the ball, and that this pole has multiplicity 1.

We can use the contour on which the poles must be located to complete the proof. Notice

that, for particular a < 0 and b < 0, the contour is located in the OLHP and further that as Δ

is decreased the real part of the point on the contour for each possible imaginary value decreases

306

(becomes more negative). This observation, together with the fact that Δ can be selected to exclude

poles from inside a circle of arbitrary radius f (except the one near a
1−b), shows that the remaining

poles can be moved arbitrarily far left in the complex plane by choosing Δ sufficiently small.

The equivalence of the delay-feedback approximation with the derivative-based controller for

a < 0 and b < 0 is heartening, because it suggests that some derivative controls of order equal to

the relative degree of a plant can be implemented using multiple-delay approximations.

15.4 Designing derivative-approximation controllers for relative degree 1 plants

The anatomy of higher-derivative approximations introduced in the above sections shows that

instabilities may result when approximating some derivative feedbacks, while approximations of

other derivative feedbacks match the derivative feedback’s performance. That is, approximation

is possible when some feedback gains are applied to the higher-derivative terms, but not when

other gains are used. This understanding motivates study of which feedback gains allow for use of

higher-derivative approximations, for more general LTI plants. Here, let us present a first result in

this direction. Specifically, let us show how delay-approximation controllers can be used to stabilize

SISO LTI plants with relative degree 1. Formally, consider a SISO plant

ẋ = Ax + bu

y = cx

(15.15)

that has relative degree 1, i.e. for which cb is nonzero. Assume that there exist a derivative feedback

u = k1y + k2ẏ which stabilizes this system. Let us consider control of this plant by approximating

this derivative feedback by

k1y(t) + k2
y(t) − y(t − ετ)

ετ
, (15.16)

307

for any τ > 0. We note that the derivative of the output to be approximated in feedback is equal to

the relative degree of the plant, which equivalently means that 1) the closed-loop transfer function

is not strictly proper and that 2) the derivative ẏ is not simply a linear function of the concurrent

state. Thus, we expect this feedback might not be easily approximated when certain gains k1 and k2

are used. The following theorem gives conditions under which the deliberate-delay approximation

matches the derivative-feedback control.

Theorem 15.5. Consider the system (15.15) with relative degree 1 and the delay-based feedback

(15.16). Provided k2 and cb have opposite sign, the closed loop system is asymptotically stable for

all small enough ε > 0.

Proof: The closed loop poles of the approximating feedback are the zeros of:

det
(
sI − A − b

[
k1 + k2

1
ετ

(
1 − e−ετs

)]
c
)

which can be rewritten as:

gε(s) = det
(
q(s) − p(s)

[
k1 + k2

1
ετ

(
1 − e−ετs

)])
where

c(sI − A)−1b =
p(s)
q(s)

where q(s) is a monic polynomial of order n and p(s) is a polynomial of order n − 1 whose leading

coefficient equals cb. The next step is to apply a scaling:

s̄ = εs

and obtain:

gε(s̄) = εngε(s)

= det
(
q̄ε(s̄) − p̄ε(s̄)

[
k1ε + k2

1
τ

(
1 − eτ s̄

)])
308

where

q̄ε(s̄) = εnq(ε−1s̄),

p̄ε(s̄) = εn−1p(ε−1s̄),

We note that q̄ε(s̄) and p̄ε(s̄) depend polynomially on ε and converge to s̄n and p0s̄
n−1 respec-

tively when ε → 0 where p0 is some constant matrix (which might be zero).

Next we note that for Re s̄ ≥ −1 there exists constants N1, N2 and N3 such that

‖k1ε + k2
1
τ

(
1 − eτ s̄

) ‖ ≤ N1

‖p̄ε(s̄)‖ ≤ N2|s̄|n−1

and

|s̄n − q̄ε(s̄)| ≤ εN3|s̄|n−1.

But then ḡε(s̄) = 0 implies:

|s̄|n ≤ εN3|s̄|n−1 + N1N2|s̄|n−1

which clearly implies that for ε small enough we must have that |s̄| < N4 for some constant N4.

Next, we note that

s̄n − k2(cb)
τ s̄n−1(1 − e−τ s̄) (15.17)

has n zeros at the origin since k2(cb) �= 1. Moreover, this function has no zeros with Re s̄ > 0.

After all in that case

s̄ = k2(cb)
τ (1 − e−τ s̄) (15.18)

with Re(1− e−τ s̄) ≥ 0 and k2(cb) < 0 yields that the right hand side lies in the open left half plane

while s̄ lies in the open right half plane which provides us with a contradiction. Thus, we have that

309

q̄ε(s̄) has no zeros in the ORHP. Next, we consider the possibility of imaginary axis zeros. If there

were any, one would need

τ s̄ = 2qπj

for some integer q. Since in (15.18) the right hand side must be on the imaginary axis. However,

this immediately yields s̄ = 0 if we go back to (15.18).

We find thus that (15.18) has exactly n zeros in Re s̄ ≥ 0 and |s̄| ≥ N4. Using that the function

is analytic, we find that there exists δ > 0 such that this function has exactly n zeros in Re s̄ ≥ −δ

and |s̄| ≤ N4. But this implies that ḡε(s), which converges uniformly in the region Re s̄ ≥ −δ

and |s̄| ≤ N4 to (15.17), has exactly n zeros in this region. Since we already established that this

function did not have zeros with |s̄| ≥ N4, we find that (15.17) has exactly n zeros in Re s̄ ≥ −δ.

Next we choose a region K in the open left half plane such that it contains all zeros of

det (sI − A − b [k1 + k2s] c) (15.19)

which is possible since the derivative based feedback was stabilizing. We will show that gε(s) has

exactly n zeros in K which converge to the zeros of (15.6) as ε converges to zero. Similar to the

proof of Theorem 15.1 we find:

k1 + k2
1
ετ

(
1 − e−ετs

)
= k1 + k2s + O(εs).

But this implies that inside the compact region K, Gε(s) converges uniformly to (15.19) as ε → 0.

This implies that gε(s) has, for small enough ε, n zeros inside K which converge to the zeros of

(15.6) as ε → 0. Since gε(s) has exactly n zeros in the region Re s ≥ −δ/ε, we find that gε(s) has

no other zeros outside K in the region Re s ≥ −δ/ε. This clearly implies that n zeros converge to

the zeros of gε(s) while the remaining zeros approach −∞. This completes the proof of stability.

310

16. A CLASS OF NEUTRAL-TYPE DELAY DIFFERENTIAL EQUATIONS THAT

ARE EFFECTIVELY RETARDED

We demonstrate that some delay-differential equations of neutral type can be equivalenced

with retarded-type delay differential equations. In particular, for two classes of neutral-type delay

differential equation models, we use state transformations to show that delayed derivatives can

in some cases be expressed in terms of the model’s state. Hence, we obtain conditions on the

neutral-type delay differential equations for retarded equivalence.

16.1 Introduction

The class of differential equations that involve delayed derivatives is classically referred to in the

mathematics and control communities as the neutral delay differential equations [234]. As opposed

to retarded delay differential equations, those of neutral type may exhibit such peculiarities as

spectra with chains of infinite numbers of roots in certain right half planes with imaginary parts

tending to infinity, which unfortunately brings stability and robustness to parameter variations of

such systems into question [234, 250]. In this chapter, we point out that many delay differential

equations that are traditionally classified as neutral type (i.e., having delayed derivatives in the

equation) are essentially retarded type. Specifically, we study two neutral delay differential equation

models; the first is motivated in the study of output feedback control, while the second (and very

classical) model arises in numerous feedback control as well as modeling applications. For both

311

models, through using smart state transformations including the widely-used special coordinate

basis (SCB) transformation [?] and more tailored transformations, we give conditions under which

the delayed derivatives can be expressed in terms of the models’ states, and hence show that

such equations actually have retarded type dynamics. This study significantly helps clarify the

definitions of neutral and retarded delay differential equations.

Although we focus here on linear time-invariant delay-differential equations, the retarded equiv-

alences that we obtain can naturally be generalized to nonlinear delay systems using their normal-

form representation. We do not believe that the non-linear case yields further application of or

insight into our equivalence results, and so we limit ourselves to the linear case.

The remainder of the chapter is organized as follows. In Section 16.2, we motivate and describe

the first neutral-type delay-differential equation model, namely one that arises when multiple output

derivatives of an LTI system are used in feedback upon delay. Then we give a condition under which

such a differential equation is equivalent to ones of retarded-type, using the SCB. In Section 16.3,

we study a delay-differential equation model that is classical in the study of neutral systems, namely

one in which multiply-delayed first derivatives are present. We give the necessary and sufficient

condition that such a differential equation can be made equivalent to one of retarded type through

a state transformation.

16.2 Equivalent Retarded Representations for a Multiple-Derivative-Feedback Model

Time-derivatives of system outputs (up to a certain order) are well-understood to codify state

information [195]. Thus, computation of output derivatives is in its essence equivalent to (partial)

state estimation, and is requisite for feedback controller design. For systems that are subject to

time delays in observation, as well as ones where model-based observer design is impracticable and

312

instead signal-based methods are needed (e.g., adaptive or decentralized systems), direct computa-

tion/approximation of output derivatives for feedback control is a promising strategy [10,236,246].

One natural means for using output derivatives in feedback is through delayed measurement.

Complementarity, various natural and engineered systems from such diverse domains as computa-

tional biology and electric power system management are modeled using differential equations with

delayed-derivative terms. Motivated by these complementary controls and modeling applications,

we study the dynamics of a class of linear delay systems (linear delay differential equations) with

delayed-derivative feedback.

The delayed-derivative model that we consider here comprises an LTI plant ẋ = Ax + Bu,

y = Cx, x ∈ Rn, u ∈ Rm, y ∈ Rp, where the input u is a linear combination of delayed output

derivatives of multiple orders. In particular, the input is

u(t) =
M−1∑
i=0

Kiy(i)(t − h), t ≥ 0,

where the delay h is strictly positive, the gains Ki ∈ Rm×p may be arbitrary, M is a positive

integer, and the initial condition of the system is the signal x(t) over the time-interval [−h, 0].

This class of feedback models is representative of systems where observations of outputs and their

derivatives (e.g., velocity or position-derivative measurements) are subject to delay (e.g., due to the

need for communication through a data channel). Substituting for the input in terms of the output

and then the state, we automatically see the closed-loop dynamics are described by the following

delay-differential equation:

ẋ = Ax + B

M−1∑
i=0

KiCx(i)(t − h). (16.1)

This delay differential equation is of neutral type for M = 2 and of advanced type for M > 2, since

it involved first derivatives (respectively, higher derivatives) of the delayed state vector x(t−h) for

M = 2 (respectively, M > 2). We refer to this model as multiple-derivative-feedback model.

313

The multiple-derivative-feedback model, which is nominally described by delay differential equa-

tions of neutral type, can equivalently be represented by delay differential equations of retarded

type. That is, the delay differential equation can be rewritten without any delayed derivative

terms. The concept underlying this reformulation is simple: derivatives of linear-system outputs

(or their linear combinations) up to a certain order generally can be written as linear functions

of the state variables, and hence in our case the delayed-derivative terms (up to a certain order)

can be re-written in terms of the the state. The number of derivatives of particular output linear

combinations that can be written in this way follows immediately from a structural decomposition

of linear systems known as the special coordinate basis (SCB) [195,196]. This equivalence of output

(linear combination) derivatives with states is well-established for finite-dimensional LTI plants.

What our efforts here clarify is that such an equivalence is in force for delayed-derivative models,

and in fact permits us to represent seemingly neutral/advanced-type systems as retarded ones.

To make the presentation clear to both control theorists and modelers, we focus our analysis on

the control representations but then also explicitly consider the model form (closed-loop form) as

needed. We develop the results in three steps. We first give a sufficient condition for the maximum

number of derivatives that can be used in feedback such that, for any set of gains, the system can be

equivalenced to a retarded one (Theorems 16.1). Second, we discuss the possibility of using higher

derivatives of particular linear combinations of outputs while maintaining the retarded structure.

A formal description of this general case would require us to develop the SCB in full intricacy

(which detracts somewhat from the perspective put forth here), and so we only give a conceptual

discussion.

Let us begin with the multiple-derivative-feedback model. Our condition for the maximum

number of delayed-derivatives for which the dynamics is effectively retarded is easily phrased in

314

terms of the Markov parameters of the plant (from which the special coordinate basis can be

constructed, see [195]). We recall that the ith Markov parameter is given by Mi = CAi−1B,

i = 1, 2, In terms of the Markov parameters, we recover the following upper bound on the order

of the delayed derivative, such that any controller will yield a retarded-type system:

Theorem 16.1. Consider the multiple-derivative-feedback model, and assume that the delay is

fixed (rather than designable). If the first q Markov parameters are identically zero, then the delay-

derivative model for any M ≤ q + 1. can be rewritten as a retarded-type model.

Proof: We claim that y(i)(t− h) = CA(i)x(t− h), i = 0, 1, 2, . . . , q. Let us verify this recursively.

To do so, notice that the expression is clearly true for i = 0. Now say that the expression holds

for arbitrary i ∈ 1, . . . , q − 1, and consider y(i+1)(t − h). However, noting that y(i+1)(t − h) equals

d
dty

(i)(t − h), we obtain that y(i+1)(t − h) = d
dtCA(i)x(t − h) = CA(i)(Ax(t − h) + Bu(t − h)) =

CA(i+1)x(t− h) + CA(i)Bu(t− h). Noticing that the first q Markov parameters are nil, we recover

the result for the first q output derivatives. From this result, we automatically find that ẋ =

Ax+Bu = Ax+B
∑M−1

i=0 Kiy(i)(t−h) can in fact be written as ẋ = Ax+B
∑M−1

i=0 CA(i)x(t−h),

for any M ≤ q + 1. Hence, the system is of retarded type in this case.

We thus see that many feedback control systems that at first glance appear to be of neutral or

even advanced type are in fact retarded systems. We notice that their spectra do not display any

of the characteristics of neutral-type systems, including infinite root chains and hyper-sensitivity to

parameter variations. This observation indicates that feedback of delayed derivatives of low enough

order will not yield highly unstable/sensitive dynamics, and in fact may be of use in stabilization

and other control tasks.

When the highest derivative M in the multiple-derivative-feedback model is greater than or

equal to the number of the first non-zero Markov parameter, it is easy to check that the dynamics

315

will display the characteristics of neutral-type systems (e.g., infinite root-chains) for some feedback

gains. However, certain linear combinations of the higher output derivatives may still be linear

functions of the concurrent (in particular, identically delayed) part of the state, hence permitting

a retarded representation of the closed-loop system for other gains. The number of derivatives of

a particular combination of the output that can be written as linear functions of the state is made

precise by the the special coordinate basis for linear systems [195]. In particular, by rewriting a

linear system in its SCB through a linear transformation of the input, output, and state, we can

view particular output linear combinations as being governed by input linear combinations that pass

through chains of integrators of various depths. These integrator-chain depths, which equivalently

are the orders of the infinite-zeros of the plant, immediately identify the number of derivatives of

particular output combinations that are linear combinations of the state. Thus, we can determine

whether particular feedback gains in multiple-derivative-feedback model yield dynamics that are

effectively of retarded type. It is worth noting that, for the class of square-invertible uniform-rank

plants (ones in which the the infinite zeros are of the same order M̂ , or in other words the first

non-zero Markov parameter is in fact square and full rank), only the first M − 1 derivatives of any

output combination can be written as a linear combination of past states.

16.3 Retarded Equivalence in a Multiply-Delayed-Derivative Model

Delay differential equations with multiply-delayed first derivatives of the state vector are also

prominently used in modeling systems subject to time delay. These neutral-type models originate

variously from control systems applications in which multiply-delayed observation derivatives are

being used in feedback, as well as from modeling of systems in nature with response delays. Because

these differential equations with multiply-delayed derivatives have traditionally been introduced in

316

their differential equation form (rather than a control system form), we also progress from this

modeling rather than controller design formulation. From this formulation, we study whether a

state transformation can be used to to equivalence the neutral differential equation with a delay-

differential equation of retarded type (in an algebraic sense as well as in terms of the sprectrum and

sensitivity). In this case, we are able to obtain necessary and sufficient conditions for equivalence to

a retarded system through any state transformation. We first present this general case along with

some motivational examples. We then remark on the development of delay-independent conditions,

and illustrate our results in the simple but useful case that the model originates from a feedback

control paradigm.

Formally, let us consider the following system:

d
dt

⎛⎝x(t) −
M∑

j=1

Hjx(t − ρj)

⎞⎠ = Ax(t) +
M∑

j=1

Hjx(t − τj) (16.2)

This is a classical model for neutral linear time-invariant delay systems, which we refer to the

multiply-delayed-derivative model. On the other hand we have the classical model for retarded

delay systems:

d
dt

x(t) = Ax(t) +
M∑

j=1

Hjx(t − τj) (16.3)

We recall an important property of retarded delay systems:

Lemma 16.2. Consider a retarded system of the form (16.3) and the associated spectrum, i.e. the

zeros of

g(s) = det

⎛⎝sI − A −
M∑

j=1

Hje
−sτj

⎞⎠
Then for any r ∈ R there exists only a finite number of zeros of g(s) in the half plane Re s ≥ r.

317

Proof: Note that, since τ1, . . . , τM > 0, there exists N such that for all s with Re s ≥ r we have:∥∥∥∥∥∥A +
M∑

j=1

Hje
−sτj

∥∥∥∥∥∥ ≤ N

But then clearly for s ∈ C with |s| > N we have that

sI − A −
M∑

j=1

Hje
−sτj

is invertible. Hence all zeros of g(s) with Re s ≥ r are in a bounded set |s| < N . But a nonzero

analytic function has only a finite number of zeros in a bounded set.

Let us first present an example, that makes clear that state transformation can achieve retarded

equivalence in the multiply-delayed-derivative model:

d
dt

⎛⎜⎜⎝x(t) −

⎛⎜⎜⎝0 −1

1 0

⎞⎟⎟⎠ x(t − 1) −

⎛⎜⎜⎝0 0

0 1

⎞⎟⎟⎠ x(t − 2)

⎞⎟⎟⎠ = Ax(t) +
M∑

j=1

Hjx(t − τj)

where A and H1, . . . ,HM can be arbitrary. We define a state space transformation:

x̃(t) = x(t) −

⎛⎜⎜⎝0 −1

1 0

⎞⎟⎟⎠ x(t − 1) −

⎛⎜⎜⎝0 0

0 1

⎞⎟⎟⎠x(t − 2)

which is nicely invertible:

x(t) = x̃(t) −

⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠ x̃(t − 1) −

⎛⎜⎜⎝1 0

0 0

⎞⎟⎟⎠ x̃(t − 2)

This transformation results in a model in terms of x̃(t) which is of retarded type (16.3):

d
dt

x̃(t) = A

⎛⎜⎜⎝x̃(t) −

⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠ x̃(t − 1) −

⎛⎜⎜⎝1 0

0 0

⎞⎟⎟⎠ x̃(t − 2)

⎞⎟⎟⎠ (16.4)

+
M∑

j=1

Hj

⎛⎜⎜⎝x̃(t − τj) −

⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠ x̃(t − τj − 1) −

⎛⎜⎜⎝1 0

0 0

⎞⎟⎟⎠ x̃(t − τj − 2)

⎞⎟⎟⎠
318

Consider the same example as in Example (16.3). Consider this model in the frequency domain:

s

⎛⎜⎜⎝x(s) −

⎛⎜⎜⎝0 −1

1 0

⎞⎟⎟⎠ e−sx(s) −

⎛⎜⎜⎝0 0

0 1

⎞⎟⎟⎠ e−2sx(s)

⎞⎟⎟⎠ = Ax(s) +
M∑

j=1

Hje
−τjsx(s)

Premultiply the above equation on both sides from the left by:

I −

⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠ e−s −

⎛⎜⎜⎝1 0

0 0

⎞⎟⎟⎠ e−2s

We obtain, in the frequency domain:

sx(s) =

⎛⎜⎜⎝I −

⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠ e−s −

⎛⎜⎜⎝1 0

0 0

⎞⎟⎟⎠ e−2s

⎞⎟⎟⎠ ×
⎛⎝Ax(s) +

M∑
j=1

Hje
−τjsx(s)

⎞⎠
which in the time domain yields a model in terms of x(t) which is of retarded type (16.3):

d
dt

x(t) = Ax(t) +
M∑

j=1

Hjx(t − τj) − (16.5)⎛⎜⎜⎝ 0 1

−1 0

⎞⎟⎟⎠ ×
⎛⎝Ax(t − 1) +

M∑
j=1

Hjx(t − τj − 1)

⎞⎠ −

⎛⎜⎜⎝1 0

0 0

⎞⎟⎟⎠
⎛⎝Ax(t − 2) +

M∑
j=1

Hjx(t − τj − 2)

⎞⎠

The interesting aspect is that this new model is of retarded type in the original state space

coordinates without even using a basis transformation.

Based on these examples, we are motivated to determine conditions such that a neutral system

of the form (16.2) can be transformed into a retarded system of the form (16.3). We have the

following result:

Theorem 16.3. Consider a system of the form (16.2). There exists an invertible basis transfor-

mation of the form:

x̃(t) = x(t) −
M∑

j=1

Hjx(t − ρj) (16.6)

319

such that x̃(t) satisfies a retarded delay model of the form (16.3) if and only if

f(s) = det

⎛⎝I −
M∑

j=1

Hje
−sρj

⎞⎠
has no zeros in the complex plane or, equivalently, the function f is equal to a constant a. Moreover,

the basis transformation (16.6) has the property that⎛⎝I −
M∑

j=1

Hje
−ρjs

⎞⎠−1

= I −
N∑

j=1

V je
−μjs

for appropriately chosen V 1, . . . , V N and we have, besides (16.6), that:

x(t) = x̃(t) −
N∑

j=1

V j x̃(t − μj)

Proof: Note that an invertible basis transformation will not affect the spectrum of the system.

After Laplace transformation our model is of the form

H(s)x(s) = 0

where

H(s) = sI +
M∑

j=1

sHje
−sρj − A −

M∑
j=1

Hje
−sτj

Assume H(s0) is singular, i.e. s0 is an element of the point spectrum. In other words, there exists

x0 �= 0 such that H(s0)x0 = 0. Then x(t) = Re e−s0tx0 satisfies the system dynamics. Given

the structure of our basis transformation, this implies that x̃(t) = Re e−s0tx̃0 satisfies the retarded

model and this yields that s0 is also an element of the point spectrum of the retarded model. Hence

if our original model has a point spectrum which has an infinite number of points in Re s ≥ r then

by Lemma 16.2 it can not be transformed into a retarded model by a basis transformation.

Next, note that f(s) can clearly be written as:

f(s) = 1 −
R∑

i=1

αie
−βis

320

where, without loss of generality, we assume that β1 < β2 < . . . < βR. We note that for s ∈ C with

Re s sufficiently large we have: ∣∣∣∣∣
R∑

i=1

αie
−βjs

∣∣∣∣∣ ≤ 1
2

and hence f(s) has no zero in that region. Next, we note that:

f(s) = −αRe−sβn

(
1 − 1

αR
eβRs +

R−1∑
i=1

αi
αR

e(βR−βi)s

)

Hence for s ∈ C with Re s sufficiently small we have∣∣∣∣∣ 1
αR

eβRs −
R−1∑
i=1

αi
αR

e(βR−βi)s

∣∣∣∣∣ ≤ 1
2

and hence f(s) has no zero in that region either. Therefore all zeros of f(s) are in a band:

L := { s ∈ C | β1 ≤ Re s ≤ β2 } .

We note that the spectrum of the system is defined by the zeros of

h(s) = det

⎡⎣s

⎛⎝I −
M∑

j=1

Hje
−sρj

⎞⎠ − A −
M∑

j=1

Hje
−τjs

⎤⎦
Assume r1 is such that h(s) has an infinite number of zeros in the region Re s ≥ r1. It is easily

established that h(s) has no zeros in the region Re s ≥ r2 for r2 sufficiently large. Hence if we

choose without loss of generality β2 > r2 and β1 < r1 we find hat h(s) has an infinite number of

zeros in the strip L. Note that we have:

h(s) = sn
(
f(s) + 1

sg(s)
)

where g(s) is an analytic function which is bounded on the strip L̄ defined by:

L̄ := { s ∈ C | β1 ≤ Re s ≤ β2, |s| > 1 } .

Clearly if h(s) or, equivalently, f(s) + 1
sg(s) has an infinite number of zeros in L then it also has

an infinite number of zeros in L̄, i.e. we have sk for which h(sk) = 0 and since necessarily sk → ∞

321

we find that f(sk) → 0 as k → ∞. We will show that this implies that f has an infinite number of

zeros in L.

Conversely, we will show that if f(s) is not a constant then f(s) has an infinite number of zeros

in L and we will also establish that in this case also h(s) has an infinite number of zeros in L Hence,

using these results we find that a basis transformation exists if and only if f(s) is a constant.

Next, we present our core mathematical result proving the claims made above. This result can

be based on a fundamental result for almost functions obtained in [248] and Hurwitz’s theorem

(see [243]) as used in [249, Lemma 1, p. 268] to establish the existence of an infinite number of

zeros of f(s) using its structure as an exponential function. Our proof is based on first principles.

Note that the structure of f(s) implies that f and all its derivatives are bounded on L. Moreover

f(s) is bounded away from zero outside the set L. Hence if f(s) is bounded away from zero inside

the set L then the function 1/f(s) would be a bounded analytic function which, by Liouville’s

theorem is then constant and therefore f(s) is equal to a constant. Therefore if f(s) is not a

constant then either f has a zero in L or it has a sequence s1, s2, . . . with sk → ∞ and f(sk) → 0 as

k → ∞. In case L has a zero s̄ in L then the fact that f(s) is almost periodic implies that also in

this case, we can construct a sequence s1, s2, . . . with sk → ∞ and f(sk) → 0 as k → ∞. Remains

to show that this implies that f(s) has an infinite number of zeros.

322

We construct a subsequence of sk such that

f(skj
) → 0

f(s(1)
kj

) → 0

...
...

f(s(�−1)
kj

) → 0

|f (�)(skj
)| > β

as j → ∞. This is possible for some � ≤ r since otherwise we would find a sequence such that:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

0 −β1 · · · −βr

...
...

...

0 (−β1)r · · · (−βr)r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−α1e
−β1skj

...

−αre
−βrskj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ 0

as j → 0 which is impossible since the given matrix is invertible (using the invertibility of the

Vandermonde matrix). We can even guarantee that f (�)(skj
) converges to some fixed value Z since

this sequence is bounded and hence an appropriate subsequences converges. We then obtain:

f(s) = Tskj
(s − skj

) +
f(�)(skj

)

�! (s − skj
)� + v(s)(s − skj

)�+1

where Tskj
(s) is the Taylor polynomial around skj

of order �−1 whose coefficients, by construction,

converges to zero. Hence

f1(s̄) = Tskj
(s̄) +

f(�)(skj
)

�! s̄�

converges uniformly in the region |s̄| ≤ r to

Zs̄�

323

Hence by Hurwitz’s theorem f1(s̄) has a zero in the region |s̄| ≤ r for j large enough. For r small

enough we have:

v(s̄ + skj
)s̄�+1 < f1(s̄)

for all s̄ with s̄ = r as long as j is large enough since h is bounded and f1(s̄) converges to Zs̄�. But

then Rouche’s theorem guarantees that also

f̄ (̄(s)) = f1(s̄) + h(s̄ + skj
)s̄�+1

has a zero in |s̄| ≤ r for j large enough. But this implies that f(s) has a zero in the ball |s−skj
| < r

for all j large enough which yields an infinite number of zeros in the given region.

We need to prove that also h(s) or

f(s) + 1
sg(s)

has an infinite number of zeros where g(s) is bounded. Since skj
converges to infinity within L we

can assume without loss of generality that we are within L̄ where g(s) is bounded. Next we use

the same arguments as above. Clearly:

f2(s̄) = Tskj
(s̄) + 1

skj
+s̄g(skj

+ s̄) +
f(�)(skj

)

�! s̄�

converges uniformly in the region |s̄| ≤ r to

Zs̄�

Hence by Hurwitz’s theorem f2(s̄) has a zero in the region |s̄| ≤ r for j large enough. For r small

enough we have:

v(s̄ + skj
)s̄�+1 < f2(s̄)

324

for all s̄ with s̄ = r as long as j is large enough since h is bounded and f2(s̄) converges to Zs̄�. But

then Rouche’s theorem guarantees that also

h̄(̄(s)) = f2(s̄) + h(s̄ + skj
)s̄�+1

has a zero in |s̄| ≤ r for j large enough. But this implies that h(s) has a zero in the ball |s−skj
| < r

for all j large enough which yields an infinite number of zeros in the given region.

Finally, we need to look at the invertibility of the state space transformation (16.6) in case f(s)

has a finite number of zeros in f(s) or equivalently f(s) is a constant. We look at the invertibility

of the matrix:

I −
M∑

j=1

Hje
−ρjs

for the case that f(s), which is equal to the determinant of this matrix, is a constant. The inverse

is equal to the adjoint matrix divided by the determinant. We note that the elements of the adjoint

matrix are defined by multiplication and addition of elements of the original matrix. Hence it will

be a linear combination of delays. Dividing by the determinant does not affect this since in our

case this is just a constant.

Remark 1. Note that just as in Example 16.3, instead of a state space transformation we can also

find a retarded model in terms of the original state x by premultiplying the model (after Laplace

transformation) by:

I −
N∑

j=1

V je
−μjs

which is of course only well-defined in case f(s) is equal to a constant.

In the above theorem, we have given necessary and sufficient conditions such that basis trans-

formations within a particular class can be used to convert the multiply-delayed derivative model

(16.2) into a neutral-type equation. The following theorem shows that, if the condition of the above

325

theorem is not satisfied, then in fact there does not exist even a more general state transformation

to bring the system into retarded form. Since any reasonable basis transformation should preserve

the spectrum, the fact that the spectrum contains an infinite number of poles in a vertical strip

in the complex plane means it does not satisfy the property outlined in Lemma 16.2 that retarded

systems will always have only a finite number of poles in such a vertical strip. We use this spectral

condition to show that retarded-equivalence is not possible if the conditions of the above theorem

are not met:

Theorem 16.4. Consider a system of the form (16.2) and define

f(s) = det

⎛⎝I −
M∑

j=1

Hje
−sρj

⎞⎠
The function f either has an infinite number of zeros in a vertical strip in the complex plane or is

equal to a constant.

If f has an infinite number of zeros in a vertical strip then also

g(s) = det

⎛⎝sI +
M∑

j=1

sHje
−sρj − A −

M∑
j=1

Hje
−sτj

⎞⎠
has an infinite number of zeros in a vertical strip. In other words, the spectrum of the system

contains an infinite number of poles in a vertical strip in the complex plane.

Proof: This follows directly from the proof of Theorem 16.3

Interestingly, the ability to transform the neutral-type differential equation into a retarded-type

equation may be highly sensitive to changes in the delays:

Consider the same system an in example (16.3) but with some uncertainty in the delay terms:

d
dt

⎛⎜⎜⎝x(t) −

⎛⎜⎜⎝0 −1

1 0

⎞⎟⎟⎠ x(t − ρ1) −

⎛⎜⎜⎝0 0

0 1

⎞⎟⎟⎠x(t − ρ2)

⎞⎟⎟⎠ = Ax(t) +
M∑

j=1

Hjx(t − τj)

326

Applying Theorem 16.3 we construct:

f(s) = 1 − e−2ρ1s + e−ρ2s

and note that the system is equivalent to a retarded system if and only if 2ρ1 = ρ2, a property

that is clearly trivially ruined by small perturbations in the delay.

Given the sensitivity to perturbations in the delays of the state space transformations, we can

ask ourselves the question of whether we can find a characterization which is independent of the

delays. The following theorem gives such a delay-independent characterization:

Theorem 16.5. Consider a system of the form (16.2). There exists for all ρ1, ρ2, . . . , ρM an

invertible basis transformation of the form:

x̃(t) = x(t) −
N∑

j=1

V jx(t − μj) (16.7)

such that x̃(t) satisfies a retarded delay model of the form (16.3) if and only if

f̄(z1, . . . , zM) = det

⎛⎝I −
M∑

j=1

Hjzj

⎞⎠
has no zeros in the complex plane or, equivalently, the function f̄ is equal to a constant a.

Proof: Note that for any value for ρ1, ρ2, . . . , ρM we have that such a basis transformation exists

if and only if f(s) is a constant. We know

f(s) = 1 −
R∑

i=1

αie
−βis

while ⎛⎜⎜⎜⎜⎜⎜⎝
β1

...

βR

⎞⎟⎟⎟⎟⎟⎟⎠ = A

⎛⎜⎜⎜⎜⎜⎜⎝
ρ1

...

ρM

⎞⎟⎟⎟⎟⎟⎟⎠
327

while the αi are independent of ρ. Without loss of generality, we can exclude that βi = βj for

all ρ1, ρ2, . . . , ρM (then we can simple combine both terms in one). But f(s) is then equal to a

constant if either all αi are equal to zero or if βi = βj for some i and j and the corresponding αi

cancel. In the first case, clearly f(s) is equal to a constant for all ρ1, . . . , ρM and it is easily seen

that f̄(z1, . . . , zM) is equal to a constant. Conversely if βi = βj then this is a nontrivial linear

equation and the set of ρ1, . . . , ρM that satisfy this form a hyperplane. Hence the points for which

f(s) is a constant form the union of a finite set of hyperplanes and an arbitrary small perturbation

brings you to a function f(s) which has a zero and then

f̄(eρ1s, . . . , eρM s) = f(s) = 0

Note that the above condition on f̄ is still a necessary and sufficient condition, when only small

perturbations of the delays (rather than arbitrary valuations of them) are possible. That is, if given

ρ̄1, . . . , ρ̄M , we require existence of ε > 0 such that for all ρ1, . . . , ρM with |ρi − ρ̄i| < ε there is a

basis transformation such that the new state satisfies a model of the form (16.3), then the condition

is necessary and sufficient.

Of interest, the above delay-independent condition for retarded equivalence can be written

explicitly in terms of the matrices Hi, rather than in terms of the existence of zeros of a function

defined thereof. Before presenting this result, we require a little further notation and terminology.

Specifically, let us consider products of m matrices such that each matrix is one of H1, . . . ,HM .

We note that that there are 3M such products in total. Of these, m!
k1!...kM ! have k1 terms equal to

H1 in the product, k2 terms equal to H2, and so on (and where k1 + . . . + kM = m). Let us define

the sum of these m!
k1!...kM ! terms as Q(k1, . . . , kM ;m), and call them combinatorial sums.

Theorem 16.6. Consider the multiply-delayed-feedback model (Equation), where M is the number

of delay terms and n is the dimension of x(t). If there exists i ∈ 1, . . . , n such that the combinatorial

328

sums Q(k1, . . . , kM ; i), k1 ≥ 0, . . . , kM ≥ 0, k0 + . . . + kM−1 = i are all zero, then the model is

equivalent to a retarded-type model. Furthermore, if there is no such i, then the model cannot be

viewed as retarded-equivalent for at least some sets of delays ρ1, . . . , ρM .

This result follows algebraically from the above Theorem 16.2. We omit the details.

Finally, let us briefly discuss an example where the multiply-delayed derivative model is ob-

tained from a controls paradigm, to crystallize the connection between the special coordinate basis

transformation (as used in the previous section) and the transformation considered here. Precisely,

let us consider an LTI plant ẋ = Ax + Bu, y = Cx, x ∈ Rn, u ∈ Rm, y ∈ Rp, where the input u is

a linear combination of multiply-delayed outputs and output derivatives:

u(t) =
M∑
i=1

Kiy(t − τi) + Kiẏ(t − ρi), t ≥ 0,

where WLOG 0 < ρ1 < ρ2 < . . . < ρM , 0 < τ1 < τ1 < . . . < τM , and the gains K̂i and Ki

may be arbitrary. We recover immediately from the special coordinate basis transformation (or

from first principles) that the closed-loop dynamics of this neutral-type system is equivalent to a

retarded system whenever CB = 0. However, we see that the condition is by no means necessary

for retarded-equivalence. For instance, consider the system with state equation ẋ(t) = u(t) and

observation y(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦x(t), with control law u(t) = ẏ(t − ρ). This system’s first Markov

parameter CB is nonzero, and yet the closed-loop dynamics satisfy ẋ(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

3

u(t−3ρ) = 0,

or in other words the dynamics are retarded-equivalent. This example makes evident that the

special coordinate basis transformation is concerned with equivalencing delayed output derivatives

329

with the concurrent state, and so is a special case of the transformation developed in this section

for the multiply-delayed-derivative model. We leave it to future work to check the whether the

broader transformation can be given a structural control-theoretic interpretation, and whether

such a transformation can be applied to the multiple derivative feedback model.

330

17. EXPLICIT PRECOMPENSATOR DESIGN FOR INVARIANT-ZERO

CANCELLATION

We explicitly construct a precompensator that cancels all open left half plane (OLHP) finite

invariant zeros of a general MIMO LTI plant, by exploiting the special coordinate basis for linear

systems. This approach to cancellation avoids the inclarity inherent in defining generalized zero

directions, and so clarifies cancellation of defective eigenvalues in the zero dynamics.

17.1 Main Result

We revisit the classical problem of pole-zero cancellation for MIMO plants. In [251], Douglas

and Athans fully characterize the cancellation of simple OLHP poles and zeros in square-invertible

LTI plants, through consideration of the associated zero directions. Unfortunately, the definition

of zero directions for defective eigenvalues of the invariant zero dynamics is problematic, see [238],

and so cancellation of such zeros has not been fully characterized. In this brief correspondence,

we exploit the special coordinate basis (SCB) for linear systems [196, 205] to explicitly construct a

precompensator that can cancel all OLHP invariant zeros of an arbitrary LTI plant, and hence we

address cancellation of both simple and defective eigenvalues in full generality. The invariant-zero

cancellation design involves a cascade of two pre-compensators (see Figure 1): the first compensator

C1 makes the cascaded plant uniform rank, while maintaining the finite-zero structure; the second

compensator C2 serves for invariant zero cancellation, i.e., forces the OLHP invariant zeros of the

331

plant to become output-decoupling zeros. The following theorem formalizes the design:

Theorem 17.1. Consider a minimum-phase stabilizable and detectable LTI plant with q inputs.

A q-input precompensator (see Figure 1) can be designed, so that 1) the finite invariant zeros of

the whole system are at the locations of the plant invariant-zeros and the OLHP invariant zeros

further become output-decoupling zeros (i.e., they are cancelled), 2) stabilizability and detectability

is maintained, and 3) the invertibility properties of the plant are maintained (i.e., a left-invertible

plant or right-invertible plant remains so upon precompensation, while a non-left-and-right invertible

plant remains non-left-and-right invertible and in fact maintains the same normal rank).

A a

X a

u i yi

P re-compensator for
Uniformation

A c

B c

Y

C cv

...

Non-invertible dynamics

Infinite zero dynamics

zero dynam ics

unl xn l

C 1
C 2

B nl

A nl

C nr ynr

A nr

Fig. 17.1: System structure showing SCB blocks and pre-compensator design

Proof:

332

Let us begin with the cancellation design for square invertible plants. We will address non-

invertible plants later in the proof. For invertible plants, the number of inputs, number of outputs,

and normal rank are all equal (to, say, m).

The design is composed of two steps. In the first step, we construct a pre-compensator to

cascade with the plant which makes the cascaded plant uniform rank, while preserving the finite-

zero dynamics. The precise compensator design is given in [254].

In the second step, we construct a pre-compensator for invariant-zero cancellation. The con-

struction is made possible using SCB, which explicitly exposes a plant’s invariant zeros and output-

decoupling zeros, and hences facilitates the design that transforms the invariant zeros to output-

decoupling zeros. A uniform rank system can be written as Σ in SCB (Equation 17.1) through

input, state and output transformations, Γi, Γs, and Γo, respectively:

Σ : ẋa = Aaxa + A1x1 (17.1)

ẋ1 = x2

...

ẋq = Eaxa + L(x1, ...xq) + u

y = x1,

where u ∈ Rm×1, Aa ∈ Rna×na , and L() denotes a linear function of the elements in (). Here, the

eigenvalues of Aa are the invariant zeros of the plant, and ẋa = Aaxa + A1x1 is referred as the zero

dynamics. The output y and its derivatives x2, ...,xq are the states of the infinite-zero chains. An

invariant zero is an output-decoupling zero if it is an unobservable eigenvalue of the pair (Ea, Aa).

Hence, in order to cancel all invariant zeros of the plant Σ, we can eliminate the appearance of the

state associated with zero dynamics in the infinite zero chain. We realize this elimination through

333

the following pre-compensator design.

Let us first construct the m-input pre-compensator, as

ẋc = diagm(Aa)xc + Bcv (17.2)

yc = ΓiCcxc,

where u = Γ−1
i yc, diagm() denotes the block-diagonal with m copies of the argument as the blocks,

Bc ∈ Rmna×m, and Cc ∈ Rm×mna . Clearly, the pre-compensator has stable dynamics.

Bc and Cc are designed in the following steps.

1) Find the minimum polynomial degree∗ of Aa, and denote it by l.

2) Design Bc as diagm(bc), where bc ∈ Rm×1 is chosen such that (Aa, bc) has controllability index

l. To see that this is possible, notice that the minimum polynomial degree of a matrix is the

sum of the maximum geometric multiplicities of the distinct eigenvalues of the matrix [255],

which is precisely equal to the maximum achievable dimension of the controllable space and

hence the maximum achievable controllability index.

3) Find the state transformation P such that P−1AaP =

⎡⎢⎢⎣A11 A12

0 A22

⎤⎥⎥⎦, P−1bc =

⎡⎢⎢⎣B11

0

⎤⎥⎥⎦, where

A11 ∈ Rl×l and B11 ∈ Rl×1 are in the controllability canonical form.

4) Design Cc as diagm(cc), where cc ∈ R1×m is
[
1 0 ... 0

]
P−1.

∗ Here, by minimum polynomial degree, we mean the minimum integer l such that Al can be written as a linear

combination of Ai, for i = 0, 1, 2, . . . , l − 1.

334

Notice that the above design of Bc and Cc is achieved through simple algebraic procedures.

Clearly, this design guarantees that the Markov parameters Ccdiagm(Aa)iBc (see [256] for more

explanation) are zero for i = 0, ..., l − 2, while Ccdiagm(Aa)l−1Bc equals identity and is full rank.

Now let us show that this compensator forces the input direction of the invariant-zeros to null,

or in other words makes all the invariant-zeros of the closed-loop system output-decoupling zeros

or cancels them. To do so, let us analyze the infinite zero structure of the compensated system.

We claim that the infinite-zero chains are each expanded by l from the infinite zero chain of the

original system, and in turn that the input directions of the invariant-zeros are null. To do this,

let us consider the first l derivatives of xq, as follows:

Step 1: Denote ẋq as xq+1. Combining Equations 17.1 and 17.2, we obtain Eaxa + Ccxc =

L(x1, ...,xq+1), and also ẋq+1 = EaAaxa + L(x1, ...xq+1) + Ccdiagm(Aa)xc + CcBcv. The last term

is 0, according to the design of Bc and Cc.

Step 2: Similarly, denote ẋq+1 as xq+2, we obtain EaAaxa + Ccdiagm(Aa)xc = L(x1, ...xq+2),

and also ẋq+2 = EaA
2
axa + L(x1, ...xq+2) + Ccdiagm(A2

a)xc + Ccdiagm(Aa)Bcv. The last term is

also 0, according to the design of Bc and Cc.

...

Step l: Denote ẋq+l−1 as xq+l, we obtain EaA
l−1
a xa + Ccdiag(Al−1

a)xc = L(x1, ...xq+l),

and also ẋq+l = EaA
l
axa + L(x1, ...xq+l) + Ccdiag(Al

a)xc + Ccdiagm(Al−1
a)Bcv. According to

the design of Cc and Bc, EaA
l
axa + Ccdiagm(Al

a)xc can be expressed as a linear combination

of EaA
i
axa + Ccdiagm(Ai

a)xc, where 0 ≤ i ≤ l − 1, and also Ccdiagm(Aa)l−1Bc is full rank

while Ccdiagm(Aa)iBc = 0 for 0 ≤ i ≤ l − 1. These properties lead to ẋq+l = L(x1, ...xq+l) +

Ccdiagm(Al−1
a)Bcv.

From the expression of ẋq+l, clearly, the invariant zeros are now output-decoupling zeros, or

335

in other words the input directions of the invariant zeros are null [205]. Also, the compensator

introduces m(na − l) further invariant zeros at the locations of the plant’s invariant zeros, which

are also output-decoupling zeros. The entire system remains uniform rank and invertible, with

normal rank m. It follows immediately that stabilizability and detectability are maintained.

In the non-invertible case, we can use the full Special Coordinate Basis (SCB) transformation

(see [205]) to generate the invariant-zero-cancelling design. For instance, for a non-left-invertible

but right-invertible system, the SCB for the system upon rank-uniformization has the following

form:

ẋa = Aaxa + A1x1 (17.3)

ẋnl = Anlxnl + Lnlx1 + Bnl(unl + Enlxa)

ẋ1 = x2

...

ẋq = Eaxa + L(x1, ...xq) + Ldxnl + u

y = x1

In these coordinates, it is clear that we can simply precompensate the dynamics associated with

the infinite-zero structure (denoted u) as above, and leave the remaining inputs (denoted unl)

unchanged. In this way, we maintain the invertibility properties of the plant while achieving

invariant-zero cancellation. A similar argument permits precompensation for non-right-invertible

dynamics, and so the full design for invariant-zero-cancellation is complete.

Notice that in the above proof, we have given an explicit algebraic construction of the pre-

compensator that cancels the invariant zeros of a multivariable plant.

336

Remarks: There are several further issues worth discussing.

First, we reiterate that [251] also discusses pole-zero cancellation for MIMO systems. However,

the definition of MIMO invariant zeros in this work is problematic: when the invariant zeros are

not simple, the zero directions are hard to identify (see [252] for a detailed discussion). Our

work here shows that the correct and clear way to study invariant zeros is through the SCB

transformation [196, 205], as we have done. It is this transformation that permits us to explicitly

develop controllers that cancel non-simple invariant zeros. Equivalently, we note that our work

can be viewed as providing a full deconstruction of the conditions for invariant zero cancellation

presented in [251]: although the work [251] analyzes the concurrence of poles and zeros for an

existing system rather than designing extra dynamics to cancel the invariant zeros of a system as

we do here, our structural insight into invariant zero cancellation carries over to this case.

Second, the pre-compensator introduces (n − l) × m extra decoupling zeros, but at the same

locations as those of the plant (and hence in the OLHP). We notice that we can trivially modify the

pre-compensator to exclude those extra invariant zeros while keeping the input-output relationship

unchanged, by implementing a minimal realization of the controller. The system upon use of

this reduced pre-compensator maintains the invertibility properties of the original plant, while not

introducing any extra invariant zeros.

Third, the design can easily be generalized to permit cancellation of the OLHP invariant zeros

of a non-minimum phase plant.

Fourth, the compensator design that we show in the proof is not unique, and may not be the

one that introduces the dynamics of minimal order. This is because we only need to design k, Cc

and Bc that satisfy the following two requirements: 1) EaA
k
axa + Ccdiagm(Ak

a)xc can be expressed

as a linear combination of EaA
i
axa + Ccdiagm(Ai

a)xc, where 0 ≤ i ≤ k − 1; and 2) the Markov

337

parameters are 0 for 0 ≤ i ≤ k − 2 and non singular for i = k − 1. The minimal polynomial degree

may not be the smallest number that works. For instance, there may exist a number k between

the minimal polynomial degree and the observability index of the pair (Aa, Ea) such that EaA
k
a is

a linear combination of EaA
i
a, where 0 ≤ i ≤ k − 1.

Fifth, the precompensator designed in the proof is a decentralized one, in the sense that the

dynamics added at each input channel are decoupled.

Sixth, for some special cases, finding an adequate pre-compensator is quite simple, and we do

not need to go through the procedures in the proof to design Cc and Bc. Here we note one special

case: if the system is SISO with no decoupling zeros, then l = m, and we can choose Cc = Ea and

then choose Bc to achieve the desired Markov parameters.

Example 1: In this example, we design a pre-compensator to cancel the invariant zeros of the

following system

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 2 0 0

0 1 0 2 1 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 1 0 1 0 1 1

0 0 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u (17.4)

y =

⎡⎢⎢⎣0 0 0 1 0 0 0

0 0 0 0 1 0 0

⎤⎥⎥⎦ x. (17.5)

Clearly, the system is already in its SCB form, and is square invertible and uniform rank. For

338

clarity, we rewrite the system in its SCB form as follows:

ẋa = I3xa +

⎡⎢⎢⎢⎢⎢⎢⎣
1 2

1 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎦x1 (17.6)

ẋ1 = x2

ẋ2 =

⎡⎢⎢⎣0 1 0

0 0 1

⎤⎥⎥⎦xa +

⎡⎢⎢⎣1 0

0 1

⎤⎥⎥⎦x1 +

⎡⎢⎢⎣1 1

0 0

⎤⎥⎥⎦x2 + u

y = x1.

Since the minimal polynomial degree of Aa is 1, we have l = 1. Many designs work for this

example. Let us follow the design given in the proof of the theorem: by noticing that Aa is already

in the controllability canonical form, we can easily choose BT
c = Cc =

⎡⎢⎢⎣1 0 0 0 0 0

0 0 0 1 0 0

⎤⎥⎥⎦. Thus,

the precompensator is

ẋc = I6xc +

⎡⎢⎢⎣1 0 0 0 0 0

0 0 0 1 0 0

⎤⎥⎥⎦
T

v (17.7)

uc =

⎡⎢⎢⎣1 0 0 0 0 0

0 0 0 1 0 0

⎤⎥⎥⎦xc.

Example 2: Let us consider cancelling the invariant zeros of a system in which the zero

dynamics have a defective eigenvalue. In particular, we modify the example above to have Aa =⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦. Notice that the zero dynamics have an eigenvalue at 1 with Jordan block of size two

in this case.

For this example, the minimal polynomial degree of Aa is 2. Following the design given

339

in the proof of the theorem, we obtain a precompensator with state matrix diagm(Aa), Bc =⎡⎢⎢⎣0 1 0 0 0 0

0 0 0 0 1 0

⎤⎥⎥⎦
T

, and Cc =

⎡⎢⎢⎣1 0 0 0 0 0

0 0 0 1 0 0

⎤⎥⎥⎦.

340

18. A PRE- + POST- + FEEDFORWARD COMPENSATOR DESIGN FOR ZERO

PLACEMENT

We demonstrate the design of a pre- + post- + feedforward compensator that places the trans-

mission zeros of a stabilizable and detectable multi-input multi-output linear-time-invariant plant

at arbitrary locations.

18.1 Introduction and Problem Formulation

Relocation of a system’s finite invariant zeros using feed-forward controller architectures is of

importance in several control applications (e.g., [257–261]), including adaptive control and stable-

plant-inversion-based design. In particular, lifting techniques—which parallelize and combine plant

inputs and outputs to achieve zero relocation and annihilation—have been developed for several

plant models. While researchers have developed a range of lifting techniques, a systematic method-

ology for placing invariant zeros at desired locations is not known, and in fact the literature makes

clear the complexity of the zero relocation problem [258,260]. In this brief communique, we develop

a systematic methodology for relocating the finite invariant zeros of a continuous-time MIMO LTI

plant using the time-invariant feed-forward control architecture shown in Figures 18.1 and 18.2. Our

zero-relocation methodology exploits the special coordinate basis (SCB) for linear systems [196,205].

Precisely, let us consider an arbitrary stabilizable and detectable linear time-invariant plant:

341

ẋ = Ax + Bu (18.1)

y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×m, and x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, input,

and output, respectively. We denote the plant in Equation 18.1 by ΣP .

We will demonstrate that precompensation plus postcompensation plus feedforward compen-

sation can be used to place the transmission zeros of the plant at will. That is, we will design

compensators Σpre, Σpost, and Σff such that Σ = ΣpreΣP Σpost + Σff (the cascade of ΣP with Σpre

and Σpost all in parallel with Σff) is stabilizable and detectable, and has transmission zeros at a

set of desired locations. The pre- + post- + feedforward compensator is illustrated in Figure 18.1.

18.2 Main Result

In this section, we elucidate our zero-relocation design that combines the common approach of

squaring-down and rank uniformization with a specific feedforward controller design.

Before presenting the main theorem on the complete compensator design, let us quote two

classical lemmas that together demonstrate that a LTI plant Σp can be made square-invertible

and uniform rank by adding dynamic compensation. Lemma 18.1 considers design for square-

invertibility, see Theorems 3.1 and 3.2 in [238] for the full derivation of the design.

Lemma 18.1. (Squaring Down) Consider the stabilizable and detectable LTI plant
∑

P (Equa-

tion 18.1). Proper pre- and post-compensators can be designed, so that the resulting plant is 1)

square invertible and 2) stabilizable and detectable. The compensated system has the same number

of inputs as outputs, and this number is equal to the normal rank of the original plant. The com-

342

+ΣΣ Σ

Σ

pre P post

ff

Fig. 18.1: The pre- + post- + feedforward architecture for zero relocation is illustrated.

pensators induce an additional set of invariant zeros in the squared-down system, whose locations

can be designed.

The algorithm for designing the squaring-down precompensator can be found in [238]. Upon

squaring down, the finite invariant zero structure is expanded by z open left half plane (OLHP)

transmission zeros, where z is the order of the non-invertible dynamics; meanwhile, the infinite-zero

structure is unchanged.

Lemma 18.2 considers adding further pre-compensation to make the plant uniform rank. Specif-

ically, for a non-uniform rank system (one which has different lengths of infinite zero chains), the

shorter chains can be extended by adding integrators at the input side, and hence the system can

be made uniform rank without altering the finite invariant zero dynamics. Please see Proposition

4 in [206] for the derivation.

Lemma 18.2. (Rank Uniformization) Consider a stabilizable and detectable square-invertible

plant. A proper pre-compensator can be designed so that the resulting system is stabilizable and

detectable, uniform rank, and its invariant zeros are the same as those of the original plant.

The algorithm for designing the rank-uniformizing pre-compensator is given in [206]. Now we

are ready to state the main result of chapter on zero relocation.

Theorem 18.3. Consider the stabilizable and detectable LTI plant
∑

P (Equation 18.1). A pre-

+ post- + feedforward compensator of the form shown in Figure 18.1 can be designed, so that the

343

R.U.Zero Static
Map

Reloc.
S.D. D.E.Plant Σ P

S.D. +

S.F.

Fig. 18.2: A detailed diagram of the pre- + post- + feedforward controller for zero placement is shown.

Here, S.D. indicates compensation for squaring down, R.U. represents a rank-uniformizing compensator,

D.E. represents a derivative-estimation filter (specifically one with transfer function sq−1

(1+εs)q−1 I where ε is

small and q is the relative degree of the rank-uniformized plant), S.F. is a smoothing filter with transfer

function 1
(1+εs)q−1 I, and the zero-relocation filter together with the static map permit arbitrary placement

of the plant transmission zeros.

compensated plant remains stabilizable/detectable, and is 1) square-invertible, 2) uniform rank, and

3) minimum phase. In fact, the m transmission zeros of the compensated plant can be placed at

any set of locations x1, ..., xm that are closed under conjugation. Furthermore, Σpre (which is of

dimension r × m, where r is the normal rank of the system), Σpost (which is of dimension p × r),

and Σff (which is of dimension r × r) are all proper.

Proof:

We shall give an explicit construction of the controller, by designing the compensator blocks

around the plant, as shown in Figure 18.2.

The two lemmas demonstrate the design to make the LTI plant Σp square-invertible and uniform

rank while maintaining stabilizability/detectability by adding dynamic compensation (blocks S.D.1

and S.D.2 for achieving square invertibility and R.U. for rank uniformization). Henceforth in this

proof, we only consider zero relocation of a square-invertible and uniform-rank system.

Let us denote the input of the uniform-rank square-invertible system as u ∈ Rr, the output as

344

R.U.Zero Static
Map

Reloc.
S.D.Plant Σ P

S.D. + S.F.s In

Fig. 18.3: This equivalent block diagram clarifies that the estimation can be viewed as a pure derivative

computation, with a smoothing filter after the feedforward addition.

y ∈ Rr, and the relative degree as q. The system can be written in the Special Coordinate Basis

(SCB) as (see [196,205] for details):

ẋa = Aaxa + A1x1 (18.2)

ẋ1 = x2

...

ẋq = Eaxa + L(x1, ...xq) + CAq−1Bu

y = x1

where Aa ∈ Rna×na, Ea ∈ Rr×na and L() denotes a linear function of the elements in (). Here,

the triple (Ea, Aa, A1) specifies the zero-dynamics of the system, and the system zeros are the

eigenvalues of Aa.

Next, let us use post-compensation to obtain the output-derivative xq from the output y, using

blocks D.E. and S.F. in Figure 18.2. To obtain xq from y, we should use an estimator block with

transfer function sq−1I, however we require a proper LTI compensator. As an alternative, let us use

a high-gain estimator, for instance one with transfer function sq−1

(1+εs)q−1 I with small ε, together with

a smoothing filter with transfer 1
(1+εs)q−1 I on the feedforward path. We notice that this scheme

is equivalent to using a pure derivative estimator sq−1I before the addition of the feedforward

signal, together with a filter with transfer function 1
(1+εs)

q−1
I after the addition (see Figure 18.3).

Thus, the use of the high-gain estimator only serves to introduce a set of poles that are far in

345

the OLHP; we can thus continue the analysis from here on assuming use of the pure derivative

compensator. We notice that this compensator serves to cancel the infinite zeros of the plant, and

does not introduce any new finite invariant zeros. Upon compensation, we can view the dynamics

as being the same as the above one, but with output ŷ = xq. Upon reformulation, a portion of the

infinite zero chains (of length q− 1) is attached to the previous zero dynamics at its input side and

hence, clearly, the new system is uniform rank-1 and remains square-invertible, stabilizable and

detectable. The SCB of the new system is:

˙̂xa = Âax̂a + Â1x̂1 (18.3)

˙̂x1 = Êax̂a + Ê1x̂1 + ĈBu

ŷ = x̂1,

where x̂ =
[
xa x1 ... xq−1

]T

, x̂1 = xq, and Âa, Â1, Êa, Ê1 and Ĉ can be obtained from

Equation 18.2 directly. We see that the zeros of the new system contain all of the previous zeros plus

a number q − 1 of zeros at the origin. Moreover, the zero dynamics (Âa, Â1, Êa, Ê1) is stabilizable

and detectable. This is because the stabilizability and detectability of the reconstructed system

in Equation 18.3 implies that the transmission zeros are controllable and observable modes of the

zero dynamics [205] and the decoupling zeros are in OLHP.

Let us construct the feed-forward compensator as

ẋc = Acxc + Bcv (18.4)

yc = Ccxc

u = Gxc + Fv

ỹ = ȳ + yc

where ỹ is the new system output, G = (ĈB)−1CcAc, and F = (ĈB)−1(CcBc − I). Notice that

346

this feed-forward compensator is shown in the blocks labeled Static Map and Zero Reloc., as well

as in the summation at the output in Figure 18.2. Let us show that the system with this pre-

compensator can be designed to be minimum-phase (and in fact to have transmission zeros at

arbitrary locations). To do so, let us find the zeros of the system with this pre-compensator. By

taking ỹ = 0, and ˙̃y = 0, we see that the zero dynamics is⎡⎢⎢⎣ẋa

ẋc

⎤⎥⎥⎦ =

⎡⎢⎢⎣ Âa Â1Cc

BcÊa Ac + BcÊ1Cc

⎤⎥⎥⎦
⎡⎢⎢⎣xa

xc

⎤⎥⎥⎦ . (18.5)

Clearly, when the system (Âa, Â1, Êa, Ê1) is detectable and stabilizable, a dynamic controller

(Ac, Bc, Cc) exists to arbitrarily relocate the zeros, and consequently stabilize the zero dynamics.

Hence, the proof is complete.

In this theorem, we gave a systematic controller design that moves the invariant zeros of a

general stabilizable and detectable LTI plant to arbitrary locations. It is known that invariant

zeros are invariant under feedback control (both state feedback and output feedback), and so our

zero relocation through use of new controller architecture is significant. Our design is based on

the smart construction of a pre- + post- + feedforward compensator, which equivalences the zero-

relocation problem with a feedback controller design problem directly of the zero dynamics. Let us

make a few further comments about our design:

1) In essence, the estimation of xq−1 = y(q−1) from y (represented by the block D.E. in Figure

18.2) is straightforward, since the quantity to be estimated is part of the infinite zero struc-

ture. As a note, one need not place the smoothing filter 1
(1+εs)q−1 in the feedfoward path. In

this case, we can use a time-scaling approach [195] to show that the fast dynamics introduced

by the estimator only has minor impact to the system dynamics (specifically, moving existing

zeros only slightly and introducing highly stable zeros). As an alternative to the high-gain

347

estimator presented in the proof, a multiple-delay approximation can also be used for estima-

tion [13]. It is worth noting that, for uniform-rank plants with relative degree 1, derivative

estimation is not needed at all. Whatever method is used, the estimation of the state from

observations may be susceptible to sensor noise, as is true in all controller designs. In that

estimation is only required on a feedforward path, while any subsequent controller design is

based on a minimum-phase plant, the estimation required in the zero-relocation design can

sensibly be implemented.

2) The result presented in this chapter is applicable to many controller design problems. For

instance, it permits stabilization directly through use of a high gain output-feedback control,

which relies on the fact that the plant is minimum-phase. Such a direct output-feedback

methodology is especially valuable in the context of decentralized control, where the standard

paradigm of estimation followed by state feedback fails [10, 215]. Zero relocation is also

needed for e.g. adaptive control of nonminimum phase plants and for plant-inverse controller

design [257–261].

3) The pre-, post-, and feedforward controller gains can be straightforwardly found in practice,

using standard software for computing the SCB (as documented in [262]) together with simple

algebraic manipulations.

348

19. AN ALTERNATIVE APPROACH TO DESIGNING STABILIZING

COMPENSATORS FOR SATURATING LINEAR TIME-INVARIANT PLANTS

We present a new methodology for designing low-gain linear time-invariant (LTI) controllers for

semi-global stabilization of an LTI plant with actuator saturation, that is based on representation

of a proper LTI feedback using a precompensator plus static-output-feedback architecture. We also

mesh the new design methodology with time-scale notions to develop lower-order controllers for

some plants.

19.1 Introduction

Low-gain output feedback stabilization of linear time-invariant plants subject to actuator satu-

ration has been achieved using the classical observer–followed–by–state–feedback controller archi-

tecture [198, 263, 264]. In this note, we discuss an alternative controller architecture for designing

low-gain output feedback control of linear time-invariant (LTI) plants with saturating actuators.

Specifically, we use a classical result of Ding and Pearson to show that a dynamic prefiltering to-

gether with static output feedback architecture can naturally yield a stabilizing low-gain controller

under actuator saturation (Section 19.2). Subsequently, by using time-scale notions, we illustrate

through a single-input single-output (SISO) example that lower-order controllers can be designed,

in the case where the jω-axis eigenvalues of the plant are in fact at the origin (Section 19.3).

The reader may wonder what advantage the alternate architectures provide. Our particular

349

motivation for developing the alternatives stems from our ongoing efforts on decentralized controller

design, and in particular our effort to develop a low-gain methodology for decentralized plants

[10, 16, 17, 25, 215, 222]. In pursuing this goal, we have needed to use several novel controller

structures, in particular ones that utilize pre-compensators and output derivatives together (see

our works in [10, 16, 17, 215]). This chapter delineates the particular use of the new controller

atchitectures in stabilization under saturation.

What this study of decentralized control makes clear is that freedoms in the structure of the

controller facilitate design, because they can permit design that fit the structural limitations of the

problem (in this case, decentralization). The alternatives to low-gain control that we propose here

serve this purpose, because they naturally permit selection of a desirable controller architecture for

the task at hand. While our primary motivation is in the decentralized controls arena, we believe

that these alternate architectures may also be useful in such domains as adaptive control and plant

inversion through lifting [17].

19.2 Low-Gain Output Feedback Control through Precompensation

In this section, we demonstrate design of low-gain proper controllers for semi-global stabilization

of LTI plants subject to actuator saturation, using a novel precompensator-based architecture. We

also briefly discuss the connection of our design to the traditional observer-based design, and expose

that the design is deeply related to a family of precompensator-based designs that also permit e.g.

zero cancellation and relocation.

Formally, we demonstrate design of a proper output feedback compensator that achieves semi-

350

global stabilization of the following plant G:

ẋ = Ax + Bσ(u) (19.1)

y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, σ() is the standard saturation function, A has eigenvalues

in the closed left-half-plane (CLHP), and the triple (C,A,B) is observable and controllable∗. Our

design is fundamentally based on 1) positing a control architecture comprising a pre-compensator

with a zero-free and uniform-rank structure together with a feedback of the output and its deriva-

tives (see Figure 19.1), 2) designing the controller using this architecture, and 3) arguing that

the designed controller admits a strictly proper feedback implementation. This controller design

directly builds on two early results: 1) Ding and Pearson’s result [265] for pole-placement that

is based on a dynamic pre-compensation + static feedback representation of a proper controller

(Figure 19.1a and 19.1b); and 2) Lin and Saberi’s effort [198] on stabilization under saturation

using state feedback. For clarity, we cite the two results in the lemmas before we present our main

result.

Lemma 19.1 concerns pre-compensator and feedback design for pole placement in a general LTI

system, i.e. one of the form

ẋ = Ax + Bu (19.2)

y = Cx,

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.

∗ In fact, the methods developed here trivially generalize to the case where the dynamics are stabilizable and

detectable. We consider the observable and controllable case for the sake of clarity.

351

Fig. 19.1: Compensator artechitectures: a) and b) show the compensator artechitectures presented in Ding

and Pearson [265], in particular, a precompensator-together-with-static feedback viewpoint. (b) is used to

design a proper compensator of (a). c) and d) show the compensator artechitectures that stabilize a plant

under input saturation.

352

Lemma 19.1. Consider a plant of the form (19.2) that is controllable and observable, with observ-

ability index v. Pre-compensation through addition of v − 1 integrators to each plant input permits

computation of the plant’s state x as a linear function of the plant’s output y, its derivatives up

to y(v) and the pre-compensator’s state. A consequence of this computation capability is that it

permits design of a strictly proper feedback controller C(s) that places the poles of the compensated

plant at arbitrary locations (that are closed under conjugation).

When the matrix C in the system (19.2) is not invertible, the classical method to obtain the

state information from output is through observer design. This lemma of Ding and Pearson gives

an alternative design for state estimation and feedback controller design, that is based on viewing

certain proper compensators C(s) as a dynamic pre-compensation together with static feedback

(Figure 19.1a and 19.1b). Specifically, the methodology of design is as follows: first, from the pre-

compensator-based representation (Figure 19.1b), a computation of the plant state from the plant

output and its derivatives together with the precompensator state can directly be obtained. Second,

the classical state feedback methodology thus permits us to compute the static feedback in the pre-

compensator-based representation, so as to place the closed-loop eigenvalues at desired locations.

Third, the equivalence between the precompensator-based representation and a proper feedback

controller is used to obtain a realization of the feedback control (Figure 19.1a). We kindly ask the

reader to see [265,266], both for the details of the state computation and the equivalence between

the precompensator-based architecture and the proper feedback controller. In our development, we

broadly replicate the design methodology of Ding and Pearson, but use a stable rather than neutral

precompensator in order to obtain a controller that works under input saturation.

Lemma 19.2 is concerned with using linear state feedback control to semi-globally stabilize the

353

plant:

ẋ = Ax + Bσ(u), (19.3)

where A ∈ Rn×n, B ∈ Rn×m, and σ() is the standard saturation function. Please see Lin and

Saberi’s work [198] for the proof of the lemma.

Lemma 19.2. Consider a plant of the form (19.3) that satisfies two conditions: 1) all the eigenval-

ues of A are located in the CLHP; 2) (A, B) is stabilizable. Then the plant can be semiglobally sta-

bilized using linear static state feedback. That is, a parametrized family of compensators u = K(ε)x

can be designed such that, for any specified ball of plant initial conditions W, there exists ε∗(W)

such that, for all 0 < ε ≤ ε∗(W), the compensator K(ε) achieves local exponential stabilization of

the origin and contains W in its domain of attraction.

Now we are ready to present the main result. Specifically, the following theorem formalizes

that a family of proper controllers can be designed for semi-global stabilization of G, based on the

precompensator-together-with-derivative-feedback architecture shown in Figure 19.1. The proof of

the theorem makes clear the design methodology.

Theorem 19.3. The plant G (Equation 19.1) can be asymptotically semi-globally stabilized using

proper feedback compensation of order mv, where v is the observability index of the plant. Specif-

ically, a parametrized family of compensators C(s, ε) can be designed (Figure 19.1c) to achieve

the following: for any specified ball of plant and compensator initial conditions W, there ex-

ists ε∗(W) such that, for all 0 < ε ≤ ε∗(W), C(s, ε) makes the origin locally exponentially sta-

ble and contains W in its domain of attraction. The design can be achieved by developing a

controller of the architecture shown in Figure 19.1d—i.e., comprising an m-input uniform-rank

354

square-invertible zero-free precompensator P with input up together with a feedback of the form

up = K0(ε)y + K1(ε)y(1) + . . . + Kv−1(ε)y(v−1) (where K0(ε), . . . ,Kv−1(ε) are matrices of dimen-

sion m × p)—and then constructing a proper implementation.

Proof:

We shall prove that, for the given ball of initial conditions, a family of proper compensaters

C(s, ε) can be designed so that the actuator does not saturate, and further the closed-loop system

without saturation is exponentially stable. Together, these two aspects show that the origin is

locally exponentially stable with W in the domain of attraction. We first note that, as long as

the compensator permits a proper state-space implementation and the system operates in the

linear regime, the additive contribution of the compensator’s initial condition on the input can be

made arbitrarily small through pre- and post-scaling of the compensator by a large gain Γ and its

inverse (see Figure 19.1). Thus, WLOG, we seek to verify that ||u||∞ < 1 for the ball of initial

states and assuming null compensator initial conditions. To do so, we will design a compensator

of the architecture shown in Figure 19.1 that achieves the design goals, and then note a proper

implementation.

To do this, let P̃ be any asymptotically stable LTI system of the following form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)

P̃

y(2)

P̃

...

y(v)

P̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im

. . .

Im

Q̃0 Q̃v−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yP̃

y(1)

P̃

...

y(v−1)

P̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

Im

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
uP̃ , (19.4)

where uP̃ ∈ Rm and yP̃ ∈ Rm are the input and output to P̃ . Notice that P̃ is square-invertible,

355

zero-free, and uniform rank. Let us denote the ∞-norm gain of this plant as q.

Let us first consider pre-compensating the plant G using P̃ , and then using feedback of the

first v derivatives of the output along with the states of the precompensator (see Figure 19.1).

That is, upon precompensation with P̃ , we consider using a feedback controller of the form uP̃ =∑v−1
i=0 Kiy(i)+

∑v−1
i=0 K̃iy

(i)

P̃
, where we have presciently used the notation Ki for the output-derivative

feedbacks since these will turn out to be the gains in the conpensator diagrammed in Figure

19.1d, and where we suppress the dependence on ε in our notation for the sake of clarity. For

convenience, let us define K =
[
K0 . . . Kv−1

]
, K̃ =

[
K̃0 . . . K̃v−1

]
, y(ext) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y

y(1)

...

y(v−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

yP̃ (ext) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y

y(1)

P̃

...

y(v−1)

P̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. In this notation, the controller becomes uP̃ =

[
K K̃

]⎡⎢⎢⎣ y(ext)

yP̃ (ext)

⎤⎥⎥⎦.

We claim that such a controller can be designed, so that 1) the closed-loop system without

saturation is exponentially stable, 2) ||uP̃ ||∞ ≤ ε for the given ball of plant initial conditions and

any 0 < ε ≤ 0.9
q , and 3) the controller gains K and K̃ are O(ε). To see why, first note that, based

on the fact that the relative degree of the precompensator equals the observability index, the state

of the pre-compensated system x̂ =

⎡⎢⎢⎣ x

yP̃ (ext)

⎤⎥⎥⎦ is a linear function of

⎡⎢⎢⎣ y(ext)

yP̃ (ext)

⎤⎥⎥⎦. In particular, it

is automatic that x =

⎡⎢⎢⎣ x

yP̃ (ext)

⎤⎥⎥⎦ = Z

⎡⎢⎢⎣ y(ext)

yP̃ (ext)

⎤⎥⎥⎦, where Z has the form

⎡⎢⎢⎣Z1 Z2

0 I

⎤⎥⎥⎦, see Ding and

Pearson’s development [265] for the method of construction. Next, from Lemma 19.2, we see that

356

a low-gain full state-feedback controller K̂(ε) of order ε can be developed for the precompensated

plant, that achieves local exponential stabilization of the origin and also makes the ∞-norm of the

input less than ε for any ε > 0, for the given ball of plant initial conditions. Thus, by applying the

feedback K̂(ε)Z

⎡⎢⎢⎣ y(ext)

yP̃ (ext)

⎤⎥⎥⎦, we can meet the three desired objectives.

It remains to be shown that the plant input u does not saturate upon application of this

compensation. To do so, simply note that ||u||∞ ≤ q||uP̃ ||∞ ≤ 0.9.

We can absorb the feedback of yP̃ (ext) into the pre-compensator, so that we obtain a control

scheme comprising a precompensator P with dynamics

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(1)
P

y
(2)
P

.

.

.

y
(v)
P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im

.
.
.

Im

Q̃0 + K̃0 Q̃v−1 + K̃v−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yP

y
(1)
P

.

.

.

y
(v−1)
P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

.

.

.

0

Im

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
uP (19.5)

together with feedback uP =
∑v−1

i=0 Kiy(i).

Finally, exactly analogously to the design method in [265]. we see automatically that the

transfer function from y to u is in fact strictly proper, and so the design admits a proper state-

space implementation. Through appropriate scaling of the compensator, we thus see that saturation

is avoided for the ball of plant and compensator initial conditions, while the dynamics without

saturation are exponentially stable. Thus, semi-global stabilization has been verified.

We have given an alternative low-gain controller design for semi-global stabilization under sat-

uration. It is worth stressing that the crux of the design is the ability to construct the plant’s

full state as a static mapping of output derivatives together with precompensator variables, upon

adequate dynamic precompensation. This observation yields a design strategy where a dynamic

precompensator’s impulse response is designed followed by low-gain static state feedback, with the

goal of ensuring that the output of their cascade is small (for the given ball of initial conditions).

357

This is a different viewpoint from the traditional one in limited-actuation output-feedback de-

sign [198,222,263], where actuation capabilities are divided between observation and state-feedback

tasks.

Remark: By choosing the Q̃i appropriately, we can set the gain q of the precompensator P̃ to an

arbitrary value. Appropriate selection of the precompensator can potentially facilitate selection of

more numerically-stable feedback gains, by permitting a larger input prior to the precompensator.

We leave a careful analysis to future work.

19.3 A Compensator that Exploits Time-Scale Structure

Our philosophy for low-gain control using a precompensation-plus-feedback architecture also

permits construction of stabilizers that exploit time-scale structure in the plant. Specifically, we

here demonstrate design of precompensators for semi-global stabilization of the plant G, that are

generally lower-order than those in Section 19.2 because they exploit time-scale separation in the

plant. Conceptually, when stabilization under saturation is the goal, low-gain state feedback only

need be provided for the plant dynamics associated with jw-axis eigenvalues (see e.g. [222] for

use of this idea in observer-based designs). In the case where these eigenvalues are at the origin,

the corresponding dynamics are in fact the slow dynamics of the system. Thus, through time-

scale separation, we can design precompensation together with feedback so as to stabilize the slow

dynamics under actuator saturation, and then obtain a proper feedback implementation. The use

of time-scale separation ideas in the precompensator-based design becomes rather intricate, and

so we illustrate the design only for SISO plants for the sake of clarity. We shall use standard

singular-perturbation notions to prove the result. Here is a formal statement:

Theorem 19.4. Consider a plant G (as specified in Equation 19.1) that further is SISO, and has

358

q poles at the origin. This plant can be semi-globally stabilized under actuator saturation using a

proper dynamic compensator of order q.

Proof:

We shall prove that, for any given ball of plant and controller initial conditions, there exists

a proper compensator of order q such that 1) the closed-loop system without saturation is expo-

nentially stable and 2) actuator saturation does not occur. Together, these observations yield that

the origin is locally exponentially stable for the given ball of initial conditions, and hence that

semi-global stabilization is achieved.

To this end, let us begin by denoting the the transfer function of the plant’s linear dynamics

by G(s). We note that the transfer function can be written as G(s) = bmsm+...+b0
sq(sn−q+an−q−1sn−q−1+...+a0)

,

where m is the number of plant zeros. We find it easiest to conceptualize the compensator as

comprising a zero-free dynamic precompensator of order q, together with a feedback of the output

y and its first q − 1 derivatives, as shown in Figure 19.1. We choose the precompensator to be

any stable system of this form. We denote the precompensator’s transfer function by Cp(s) =

1
(sq+cq−1sq−1+...+c0)

, and the feedback controller by K(s) = kq−1s
q−1 + . . . + k0. We note the entire

compensator K(s)Cp(s) has order q and is proper.

With a little algebra, we find that the characteristic polynomial of the closed-loop system is

p(s) = sq(sn−q+an−q−1s
n−q−1+. . .+a0)(sq +cq−1s

q−1+. . .+c0)+(bmsm+. . .+b0)(kq−1s
q−1+. . .+

k0). We note that the polynomial pf (s) = (sn−q +an−q−1s
n−q−1 + . . .+a0)(sq + cq−1s

q−1 + . . .+ c0)

has roots in the OLHP, by assumption, for the chosen stable pre-compensator Cp(s).

Let us now consider a family of multiple derivative output feedbacks, parameterized by a low-

gain parameter ε > 0. In particular, let us consider feedback with ki = a0c0
b0

γiε
q−i, where sq +

γq−1s
q−1 + . . . + γ0 is a stable polynomial with roots λ1, . . . , λq, and ε is a low-gain parameter.

359

We will verify that the characteristic polynomial has n roots that are within O(ε) of the roots

of pf (s), while the remaining q roots are within O(ε2) of ελ1, . . . , ελq. To prove this, notice first

that p(s) = sqpf (s) + (bmsm + . . . + b0)(γq−1εs
q−1 + . . . + γ0ε

q)a0c0
b0

. Noting that the entire second

term in this expression is O(ε), we see that the roots of p(s) are O(ε) perturbations of the roots of

sqpf (s). Thus, we see that n roots are within O(ε) of the roots of pf (s), while the remaining are

within O(ε) of the origin.

To continue, let us consider the change of variables s = ε
s . Substituting into the closed-loop

characteristic polynomial, we find that p(s) = (ε
s)

qpf (s) + εq(bm
εm

sm + . . . + b0)(
γq−1

sq−1 + . . . + γ0)a0c0
b0

.

Scaling the expression by sn+q

a0c0
, we obtain that the expression p(s) = 0 is the following degree-

(n + q) polynomial equation in s: εq(γ0s
n+q + . . . + γq−1s

n+1) + εqsn + r(s) = 0, where r(s) is a

polynomial in s of degree no more that sn+q−1 with each term scaled by a coefficient of order εq+1

or smaller. Thus, dividing by εq, we find that the solutions s to the equation are within O(ε) of

the solutions to γ0s
n+q + . . . + γq−1s

n+1 + sn = 0. However, the roots of this equation are precisely

1
λ1

, . . . , 1
λq

, as well as 0 repeated n times. Noting that s = ε
s , we thus recover that q roots of the

characteristic polynomial are within O(ε2) of ελ1, . . . , ελq. Thus, we have characterized all the poles

of the closed-loop system. We notice that all the poles are guaranteed to be within the OLHP.

Now consider the response for a ball of initial conditions W. As in the proof of Theorem

19.3, we notice that the initial state of the precompensator is of no concern in terms of causing

saturation, since the precompensator can be pre- and post-scaled by an arbitrary positive constant.

Thus, WLOG, let us consider selecting among the family of compensators, to avoid saturation for a

given ball of plant initial conditions and assuming zero precompensator initial conditions. Through

consideration of the closed-loop dynamics associated with the slow eigenvalues (ελ1, . . . , ελq), we

recover immediately (see the proof of Lemma 19.1 in [198]) that, for any specified ball of initial

360

conditions, ||y(i)(t)||∞, is at most of order 1
εq−1−i for i = 1, . . . , q − 1. Thus, from the expression for

the feedback controller, we find that the maximum value of the precompensator input u is O(ε), say

v1ε + O(ε2) for the given ball of plant initial conditions. Furthermore, the stable precompensator

imparts a finite gain, say v2, so the maximum value of u(t) is v1v2ε + O(ε2). Thus, for any given

ball of initial conditions, we can choose ε small enough so that actuator saturation does not occur.

Since actuator saturation is avoided and the closed-loop poles are in the OLHP, stability is proved.

Conceptually, the reduction in the controller order permitted by Theorem 19.4 is founded on

focusing the control effort on only the slow dynamics of the system. That is, the controller is

designed only to place the eigenvalues at the origin at desired locations (that are linear with respect

to the low-gain parameter ε); simply using small gains enforces that the remaining eigenvalues

remain far in the OLHP. Thus, one only needs to add precompensation to permit estimation of the

part of the state associated with the slow dynamics. In this way, stability can be guaranteed and

saturation avoided, without requiring as much precompensation as would be needed to estimate

the whole state.

We notice that the time-scale-based design is aligned with the broad philosophy of our alter-

native low-gain design, in the sense that it provides freedom in compensator design. In particular,

as with the design in Section 19.2, we notice that any stable precompensator can be used for the

time-scale-exploiting design, and further design of feedback component in the architecture only

requires knowlege of the DC gain of the plant.

361

19.4 Example

In this example, we demonstrate the design of a low-gain controller that semi-globally stabilizes

the following plant:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0

0 0 1

0 0 −3

⎤⎥⎥⎥⎥⎥⎥⎦x +

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦σ(u) (19.6)

y =

⎡⎢⎢⎣ 1 1 0

0 0 1

⎤⎥⎥⎦x. (19.7)

Specifically, we show that the compensator of the form u(t)(v) =
∑v−1

0 Aiu(t)(i) +
∑(v−1)

0 Biy(t)(i),

where v is the observability index of the plant, can stabilize the plant under saturation. As de-

veloped in the chapter, the design is achieved by first designing a pre-compensator together with

output feedback control law, and then implementing the controller in the proper feedback repre-

sentation above. We shall use the notation from the above development in our illustration.

Let us begin with the precompensator-plus-output-feedback design. To begin, we notice that

the observability index of this system is 2. As per the proof of Theorem 19.3, let us thus choose P̃

to be

⎡⎢⎢⎣ẏP̃

ÿP̃

⎤⎥⎥⎦ =

⎡⎢⎢⎣ 0 I

−I −I

⎤⎥⎥⎦
⎡⎢⎢⎣yP̃

ẏP̃

⎤⎥⎥⎦ +

⎡⎢⎢⎣0

I

⎤⎥⎥⎦uP̃ (19.8)

The eigenvalues of this system are located at −1/2 ± √
3/2i, hence it is clearly asymptotically

stable.

Now let us pre-compensate the plant (Equation 19.6) using P̃ and design feedback of the form

362

uP̃ = K̃0(ε)yP̃ + K̃1(ε)ẏP̃ + K0(ε)y + K1(ε)ẏ (19.9)

To design the feedback, we first recover the state of the entire system including the pre-compensator

from the outputs yP̃ , ẏP̃ ,y, ẏ through linear transformation, and then apply the low-gain state

feedback design (see [198]) to shift eigenvalues of the whole system left by −ε. Doing so, we have

K̃0(ε) =

⎡⎢⎢⎣−0.42ε5 + 0.30ε4 + 1.8ε3 − 4.2ε2 − 0.90ε 0.082ε5 − 1.0ε4 + 5.2ε3 − 11.4ε2 + 5.8ε

−0.11ε5 + 0.28ε4 − 0.55ε3 − 6.0ε2 − 2.2ε 0.024ε5 − 0.3ε4 + 1.5ε3 − 4.3ε2 − 0.33ε

⎤⎥⎥⎦ ,

K̃1(ε) =

⎡⎢⎢⎣ −0.0084ε5 + 0.13ε4 − 0.66ε3 + 0.74ε2 − 5.3ε 0.029ε5 − 0.47ε4 + 2.3ε3 − 2.5ε2 + 1.0ε

−0.0024ε5 + 0.039ε4 − 0.19ε3 + 0.21ε2 − 0.95ε 0.0084ε5 − 0.13ε4 + 0.66ε3 − 0.74ε2 − 1.70ε

⎤⎥⎥⎦ ,

K0(ε) =

⎡⎢⎢⎣ −0.30ε5 − 1.2ε4 − 1.2ε3 − 0.91ε2 −0.71ε5 + 4ε4 − 15.7ε3 + 34ε2 − 23ε

−0.088ε5 − 0.35ε4 − 0.35ε2 − 0.26ε2 −1.0ε5 + 1.18ε4 − 4.6ε3 + 10ε2 − 6.7ε

⎤⎥⎥⎦ ,

and K1(ε) =

⎡⎢⎢⎣ 0.39ε5 − 0.06ε4 − 3.3ε3 − 2.5ε2 − 1.8ε 0

0.091ε5 + 0.020ε4 − 0.95ε3 − 0.72ε2 − 0.53ε 0

⎤⎥⎥⎦.

Hence, the control scheme can be viewed as comprising a precompensator P :⎡⎢⎢⎣ẏP

ÿP

⎤⎥⎥⎦ =

⎡⎢⎢⎣ 0 I

−I + K̃0(ε) −I + K̃1(ε)

⎤⎥⎥⎦
⎡⎢⎢⎣yP

ẏP

⎤⎥⎥⎦ +

⎡⎢⎢⎣0

I

⎤⎥⎥⎦uP (19.10)

and the feedback flow uP = K0(ε)y + K1(ε)ẏ.

Finally, the above procedure leads to the proper feedback compensator design

u(2)(t) = (−I + K̃0(ε))u(t) + (−I + K̃1(ε))u(1)(t) + K0(ε)y(t) + K1(ε)y(1)(t) (19.11)

Now let us show how ε can be chosen. WLOG, let us assume that the precompensator initial

conditions to nil, with the understanding that scaling of the precompensator (with appropriately

revised proper implementation) permits design with non-zero compensator initial conditions. In

363

Fig. 19.2: The inputs a) u1 and b) u2 are shown, for ε = 0.5. Each plant state variable is initialized at 0.99.

Fig. 19.3: The inputs a) u1 and b) u2 are shown, for ε = 0.25. Each plant state variable is initialized at 0.99.

particular, consider the case where initial conditions of the plant are in a ball W with infinity-norm

radius 1, i.e., where each initial condition has a magnitude less than or equal to 1. We find that

ε∗(W) ≈ 0.5 through an exhaustive search. Thus ε can be chosen between 0 and 0.5. Trajectories

of the two inputs are shown for an initial condition at the edge of the ball, for two different values

of ε.

364

PART V: NUMERICS

As all of the earlier parts of the thesis have shown, modern dynamical networks are extraor-

dinarily complex and intricate. While the focus of this thesis has been on addressing design and

control in networks analytically (using sensible abstractions of the network dynamics), the sheer

scale and complexity of modern networks may force use of numerical methods and simulations in

aspects of the design process. Here, we introduce a few numerical and smart-simulation tools for

networks, that enrich the analytical design methodology by allowing completion of more intricate

network tasks (e.g., network self-partitioning) and permitting evaluation of designs using detailed

simulation models.

Part V is organized as follows. Chapter 20 introduces a decentralized network partitioning

algorithm that uses a stochastic automaton—the influence model. Chapter 21 gives further studies

of the probabilistic collocation method for effective simulation, characterizing its properties and its

use with data.

365

20. A FLEXIBLE STOCHASTIC AUTOMATON-BASED ALGORITHM FOR

NETWORK SELF-PARTITIONING

This chapter proposes a flexible and distributed stochastic automaton-based network parti-

tioning algorithm that is capable of finding the optimal k-way partition with respect to a broad

range of cost functions, and given various constraints, in directed and weighted graphs. Specifi-

cally, we motivate the distributed partitioning (self-partitioning) problem, introduce the stochastic

automaton-based partitioning algorithm, and show that the algorithm finds the optimal partition

with probability 1 for a large class of partitioning tasks. Also, a discussion of why the algorithm

can be expected to find good partitions quickly is included, and its performance is further illus-

trated through examples. Finally, applications to mobile/sensor classification in ad hoc networks,

fault-isolation in electric power systems, and control of autonomous vehicle teams are pursued in

detail.

20.1 Introduction

Networks of communicating agents—including sensor networks and autonomous-vehicle teams—

require distributed algorithms for a variety of tasks, including data communication/routing, esti-

mation/agreement, and pattern-formation control, among others (see [267] and [142] for interest-

ing overviews). In this chapter, we put forth the perspective that algorithms for network self-

partitioning or self-classification, i.e. algorithms using which a network’s nodes can form groups so

366

as to minimize a cost while communicating in a distributed manner, are needed. We further con-

tend that partitioning algorithms for these communicating-agent networks—whether distributed

or centralized—must be flexible, in the sense that the algorithms should permit minimization of

complex and varied cost measures. With these motivations in mind, we develop a flexible algorithm

for network partitioning and self-partitioning using a stochastic automaton known as the influence

model [268].

Distributed algorithms for self-partitioning may be valuable for various sensor networking and

autonomous vehicle control applications. Consider the following:

• A group of autonomous vehicles in the field may need to self-assemble into multiple teams,

in order to simultaneously complete multiple control tasks, e.g. search-and-destroy tasks (see

e.g. [25, 228] for formation-control algorithms for autonomous vehicles). The vehicles should

be grouped (partitioned) in such a manner that the self-assembly takes little time, and the

robots in each group can easily communicate with each other.

• Sensors in an ad hoc network must choose one of several base stations for communication, so

as to minimize the power required for multicasting as well as the latency of transmission from

the sensors back to the base (see [273] for an overview of multicasting in ad hoc networks).

Further, the sensors may need to classify themselves in such a manner that all the sensors

associated with a particular base station can communicate among themselves, and further

the network can tolerate any single failure in a communication link.

• Weakly-connected subnetworks within a computer network may need to be identified, so as

to isolate a spreading computer virus.

In each of the these tasks, the nodes in a network must be partitioned so as to minimize a cost.

367

Further, for a variety of reasons (including security concerns, need for low-power and hence localized

communication, and possibility for topological changes that are not known by a central authority),

we may require a distributed algorithm for these partitioning tasks.

While there is a wide literature on graph partitioning (which derives primarily from parallel-

processing applications, see [269] for an overview), partitioning tasks for the communicating-agent

networks described above are novel in several respects:

1) As motivated above, the algorithms used often must be distributed, e.g. because of the high

power cost of communicating with a central agent or the need for security. For the same

reasons, sparsity of communication in use of the algorithm is also often a must. Further,

algorithms that are scalable, i.e. ones in which the computational cost for each agent grows

in a reasonable manner with the network size, are needed; distributed algorithms can permit

scalability.

2) The cost to be minimized is often a complex or multivariate one (e.g., for sensor network

applications, delay, power dissipation, and reliability may each play a role in the cost), and

varies from one applciation to another. Thus, we require algorithms that are flexible with

respect to the cost minimized. This contrasts with the bulk of the literature on partitioning

[270–272], in which algorithms are designed for a particular cost, typically a min-cut cost or

a min-cut cost with partition-size constraints∗.

3) Communicating-agent networks are commonly subject to topological changes, for instance

due to the addition of an agent or the failure of a particular communication link. Thus,

partitions of the network may need to be adapted rapidly and frequently, ideally with minimal
∗ Bisection, in which the minimum cut that breaks the network into multiple equal-sized partitions is found, is of

particular interest in the partitioning community [269].

368

communication.

These novel features have motivated us to develop a distributed and flexible algorithm for network

partitioning/classification.

Specifically, we introduce an algorithm for network self-partitioning (i.e., distributed partition-

ing) that is based on a stochastic automaton known as the influence model. The influence model

can be viewed as a network of discrete-time, finite-state Markov chains, which interact in the sense

that the current status (state) of each site (chain) probabilistically influences the future statuses of

its neighboring sites [268]. The basic premise for using the influence model (specifically the copying

influence model) for partitioning graphs is that groups of sites in the model that are separated by

weak influences tend to have different statuses, while sites interconnected by strong influences tend

to form a cluster with a common status. Therefore, by associating influences with edge weights in a

graph, allowing the influence model to run for some time, and then examining the statuses, we can

identify a good partition quickly with respect to many typical cost functions. At the same time,

the algorithm randomly searches through many potential partitions, and hence holds promise for

minimizing multi-objective and complex cost functions. The technique is distributed in that each

site only needs to communicate with graphical neighbors to determine its own partition.

This algorithm for network partitioning builds on our earlier work on a control-theoretic ap-

proach to distributed decision-making or agreement [68] (see also [230, 274] for other control-

theoretic approaches to agreement and [275] for a study of sensor fusion that addresses/motivates

distributed detection/decision-making). In the context of decision-making, we used the influence

model to reach consensus among nodes in a manner that reflected their initial divergent opinions

about a topic of interest; here, the influence model does not generate one opinion, but instead finds

low cost cuts as boundaries between multiple opinions or statuses. Also of interest to us, stochastic

369

automata have been used as tools for routing in sensor networks (e.g. [276]), and have been used

as gossip protocols for information dissemination in ad hoc networks [277]. There is also a much

broader literature on the analysis of stochastic automata, and their application to modeling and

computational tasks. This literature is outside the scope of this chapter, see [278, 279] for general

introductions.

While our primary motivation is self-partitioning, our studies suggest that the influence model-

based algorithm is also valuable for centralized partitioning problems in which multiple compli-

cated costs must be minimized, or in which costs are implicitly found through a simulation. For

instance, motivated by fault-tolerance and fault-isolation applications (e.g. [280]), we have applied

the algorithm to partition an electric power system so as to minimize both a line-weight and a

power-imbalance cost in isolating two generators from each other. We shall briefly explore this

centralized application in the chapter.

The remainder of this chapter is organized as follows. Section 20.2 poses the graph partitioning

problem in a quite general way, in the process overviewing commonly-studied partitioning prob-

lems and standard algorithms for solving them. Section 20.3 briefly reviews the influence model,

on which our partitioning algorithm is based. Section 20.4 describes the influence model-based

distributed partitioning algorithm, in particular describing the mapping from the graph to the in-

fluence model, the distributed recursion used for partitioning, and centralized/distributed means

for stopping the algorithm. In Section 20.5, we prove that the algorithm finds the optimal partition

with certainty given certain weak graph-structural assumptions, and also discuss the performance

of the algorithm. In Section 20.6, we pursue applications and give several illustrative examples, to

better motivate our approach to partitioning and to further evaluate its performance.

370

20.2 Problem Statement

Since one of the features of our influence model-based partitioning algorithm is its flexibility, we

begin by describing the partitioning (classification) problem in a quite general manner, but taking

care to highlight sub-problems of particular interest. In the process, we give a brief review of the

research on partitioning that is relevant to our development. We refer the reader to [269, 284] for

thorough reviews of the partitioning literature.

Broadly, a k-way partitioning algorithm is concerned with classifying the vertices of a graph

into k disjoint subsets. Specifically, let us consider a graph with (finite) vertex-set V that has

cardinality n. We associate a positive mass mv with each vertex (node) v ∈ V . In addition to the

vertices, our graph also comprises a set of positively-weighted, directed edges. That is, for each

ordered pair of distinct vertices vi, vj , we associate a weight wij ≥ 0, where wij = 0 indicates that

a directed edge is not present while wij > 0 indicates a weighted edge.

The partitioning problem that we consider is to classify the n vertices into k disjoint, non-empty

subsets so as to minimize a cost function, while possibly enforcing one or more constraints. The

cost function and constraints are phrased in terms of the total masses of the subsets and the edge

weights on cuts.

Formally, we define a k-way partition of a graph as a subdivision of the nodes of the graph

into k disjoint, non-empty subsets (components) S1, . . . , Sk. We are interested in identifying a

partition that minimizes a cost function

f(M(S1), ...,M(Sk),W (S1, S2), ...,W (Sk, Sk−1)),

where M(Si)
�
=

∑
i∈Si

mi is the mass of subset i, and W (Sl, Sm) =
∑
i∈Sl

∑
j∈Sm

wij is the size of the

cut between subsets i and j. We seek to minimize the cost function over the class of partitions

371

that, in general, satisfy a number of constraints of the following types:

• Algebraic constraints. These are of the form

g(M(S1), ..., M(Sk), W (S1, S2), ..., W (Sk, Sk−1)) = 0.

• Set inclusion constraints. These have the form vi ∈ Sj, i.e. particular vertices are

constrained to lie in particular subsets. We often refer to a vertex that is constrained to lie

in Sj as a reference vertex for subset j.

We use the notation S∗
1 , . . . , S∗

k for a partition that minimizes the cost subject to the constraints,

and refer to this partition as an optimal solution of the partitioning problem†. Our aim is to

solve the partitioning problem in a distributed manner, i.e. so that only communications along the

edges of the graph are needed in finding the optimal partition.

A variety of partitioning problems considered in the literature are examples of the problem

described above. It is worth our while to briefly discuss these problems and associated literature,

focusing in particular on Partitioning with Reference Nodes (Item 4 below) because of its relevance

to our applications. Commonly-considered partitioning problems include the following:

1) The Min-cut Problem is a k-way partitioning problem in which the subsets are chosen to

minimize the total strength of the cuts between the components, with no algebraic or set inclusion

constraints enforced. That is, the components are chosen to minimize the unconstrained cost

function f =
k∑

i=1

k∑
j=1
j �=i

W (Si, Sj). The min-cut problem is well-known to admit a polynomial-time

solution, and several search algorithms have been developed (see e.g. [285]). Spectral methods

([287–289]) and stochastic algorithms based on coalescing strongly-connected nodes [286] have

also long been used to find min-cuts.
† We can in fact allow a far more general cost function, e.g. one that depends on dynamics defined on the graph.

We adopt this form here for clarity in our explanation of why our algorithm is expected to work well.

372

2) The Bisection Problem is a 2-way partitioning problem, in which the subsets are chosen to

minimize the strength of the cut between them, subject to the constraint that the masses of each

subset are equal. That is, the cost function f = W (S1, S2) + W (S2, S1) is minimized, subject to

the algebraic constraint g(M(S1),M(S2)) = M(S2) − M(S1) = 0. Very often, the masses of the

vertices are assumed to be all unity, so that the constraint reduces to enforcing that subsets have

equal cardinality. The bisection problem finds its major application in parallel computing [269],

where equally distributed workloads are desired. Bisection is a difficult (NP-hard) problem and has

a wide literature. Specifically, classical bisection algorithms fall into four categories: (1) geometric

partitioning algorithms based on coordinate information [290,291], (2) greedy search algorithms like

the Kernighan-Lin algorithm [271], (3) spectral methods (methods based on eigenvalue/eigenvector

structure of matrices associated with the network graph) [270, 292], and (4) stochastic algorithms

including genetic algorithms [293,294] and simulated annealing [272,295].

3) In some applications, the exact mass constraint of bisection is not needed, yet it is useful to

have subsets of roughly equal size or mass. For such applications, a mass-weighted min-cut problem

is often solved. In particular, a cost function f =

∑
i

∑
j �=i

W (Si,Sj)

M(S1)...M(Sk) is minimized, assuming no algebraic

constraints. The form of this cost function has been studied in [297] and is deeply connected to

the convergence rate of the linear dynamics defined on the graph. We note that term ratio cut has

sometimes been used in the literature for these weighted problems.

4) Sometimes, an application dictates that one of the above problems (or another k-way par-

titioning problem with a different cost) must be solved, subject to set-inclusion constraints, i.e.

subject to constraints that certain reference nodes are contained in each component. We refer to

such problems as k-way partitioning problems with reference nodes. Partitioning with reference

nodes is of interest to us for several reasons: 1) problems in several distributed applications—for

373

instance, the problem of grouping sensor nodes with base stations for multicasting—have this form,

2) these problems are known to be NP-hard for k ≥ 3 and hence still require development of good

algorithms [283], and 3) our algorithm is naturally designed to address this problem and hence

gives fast solutions to the problem.

There is a wide literature on algorithms for solving these partitioning problems (see, e.g., the

review articles [269,284,290]). A thorough review of this literature is far beyond the scope of this

chapter, but let us attempt to briefly summarize this work with the aim of delineating our approach

from those in the literature. Most of the current partitioning algorithms are aimed at solving a

particular problem (perhaps most commonly the bisection problem) in a centralized manner. For

example, spectral methods have been used for min-cut and bisection problems, while SA, GA

and K-L are designed specifically for bisection [271, 272, 293]. In constrast to these methods, our

applications motivate us to seek an algorithm that can find the optimal partition for a range of

cost functions, even if perhaps at slightly higher computational complexity.

The algorithms in the literature that are stochastic (e.g., GA and SA) are of interest to us [269],

since our algorithm is also stochastic. Very broadly, our algorithm is similar to these in that it

searches randomly through plausible partitions, using the uncertain generation to seek more optimal

partitions. However, our algorithm is significantly different from those in the literature, in that our

algorithm does not react to the cost of the current partition: instead, its update is based solely on

the graph topology. This topological approach has the advantage of permitting flexibility in the

optimized cost, and (as we shall show) of allowing identification of the minimum-cost solution with

probability 1.

Perhaps most significantly, we contribute to this broad literature by developing an algorithm

374

for distributed or self-partitioning, i.e. an algorithm in which agents associated with graph vertices

can decide their optimal partitions based solely on communication with neighboring agents. To the

best of our knowledge, there have been no other algorithms developed that achieve partitioning

without any global perspective at all in the graph.

20.3 The Copying Influence Model: A Brief Review

Our algorithm for partitioning is based on evolving a stochastic automaton model. Specifically,

we map a graph to a dynamic stochastic network model—a model in which values or statuses asso-

ciated with network nodes are updated based on interactions with neighboring nodes. The statuses

associated with the nodes form patterns as they evolve with time; these patterns turn out to identify

good partitions of the graph. Since the automaton is updated only through interactions of nodes

with graphical neighbors, it permits partitioning in a decentralized manner. The automaton that

we use for partitioning is an instance of the influence model [268], a stochastic network automaton

with a special quasi-linear structure. In this section, we very briefly review the influence model.

We refer the reader to [268] for a much more detailed development.

An influence model is a network of n nodes or vertices or sites, each of which takes one of a

finite number of possible statuses at each discrete time-step. We use the notation si[k] for the

status of site i at time k. We refer to a snapshot of all the sites’ statuses at time k as the state of

the model at time k. The model is updated at each time-step according to the following two stages:

1) Each site i picks a site j as its determining site with probability dij .

2) Site i’s next-status is then determined probabilistically based on the current status of the

determining site j. That is, the next status is generated according to a probability vector,

which is parameterized by the current status of the determining site.

375

We shall only be concerned with a special case of the influence model called the copying influence

model, in which each site takes on the same number k of statuses (labeled 1, . . . , k w.l.o.g.), and

furthermore each site simply copies the status of its determining site at each time step. To reiterate,

at each time-step in the copying influence model, each site i picks a neighbor j with probability dij

and copies the current status of that neighbor.

The influence model and copying influence model are compelling as modeling and algorithmic

tools because they have a special quasi-linear structure. In general, for stochastic network models

such as the influence model, we note that the statuses of all sites together are updated in a Marko-

vian fashion, and hence the joint status of all sites are governed by a very large “master” Markov

chain with kn states. However, for the influence model, status probabilities of individual sites and

small groups of sites can in fact be found using low-order recursions. For instance, the probability

of site i taking status m at time k + 1 in the copying influence model can be tracked using the

following low-order recursion:

P (si[k + 1] = m) =
∑

j

P (sj[k] = m)dij (20.1)

Furthermore, the special structure of the influence model permits us to identify qualitative features

of the master Markov chain based on the low-order recursions. These special tractabilities of the

influence model make it possible to characterize the performance of algorithms built using the

model, such as the algorithm developed here.

20.4 Algorithm Description

We can use the copying influence model as a tool for solving the partitioning problem described

in Section 2 under rather broad conditions. Furthermore, since the influence model update only

requires interaction among graphical neighbors (in a sense that will be made precise shortly), the

376

algorithm is essentially decentralized (though a bit further effort is needed to stop the algorithm in

a decentralized manner). The combination of flexibility and decentralization makes the influence

model-based algorithm applicable to a range of partitioning tasks, including those discussed in the

introduction. In this section, we describe the influence model-based partitioning algorithm. In the

next section, we prove that the algorithm works (finds the optimal solution with certainty) under

broad conditions. Here, we first outline the algorithm, and then fill in the details.

1) Mapping We map the graph to a copying influence model, by associating large influences

with strong interconnections in the graph, and weak influences with weak interconnections.

We note that we can permit asymmetric interconnection strengths.

2) Initialization and Recursion We choose the initial state for the copying influence model.

Here, the status of each site identifies the subset of the corresponding node in the graph.

The statuses of the sites are updated recursively according to the developed copying influence

model, and hence a sequence of possible partitions of the graph are generated. We note

that this is a distributed computation, in that each site updates its status using only local

information (i.e. information from graphical neighbors). Thus, in cases where a group of

nodes in a real distributed system must self-partition, the influence model recursion can be

implemented using localized communications between agents in the network. In presenting

and analyzing the recursion, we find it convenient to first consider the case of partitioning

with reference nodes‡, and then address partitioning problems without reference nodes.

3) Stopping The recursion is terminated based on cost evaluations for a centralized algorithm

‡ For notational convenience, we focus on the case where there is one reference node per component, but our

development can straightforwardly be generalized to cases where the number of partitions is different from the

number of references.

377

and by decreasing influence model probabilities in the decentralized case. The statuses of the

influence model at the stopping time specify the chosen partition.

Mapping

We map the graph to a copying influence model with k possible statuses, with the motivation

that we can identify a sequence of partitions of the graph by updating the influence model. That

is, our algorithm classifies (partitions) the vertices in the graph according to the statuses of the

corresponding influence model sites at each time-step of the recursion. The first step toward building

this partitioning algorithm is to map the graph to a copying influence model, in such a manner

that the copying probabilities in the influence model reflect the branch weights. In particular,

we associate an influence model site with each vertex in the graph. We then choose the copying

probabilities (influences) as

dij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δwji

mi
, i �= j;

1 − Δ
∑
l

wli
mi

, i = j,

(20.2)

where Δ is chosen such that Δ ≤ 1

max
i

∑
j

wji
mi

. Thus, large weights are associated with large influences,

and small weights are associated with small influences; moreover, a large mass (inertia) mi incurs

small influence from other sites on site i (and large influence from itself), and a small mass mi

incurs large influence from other sites on site i.

In addition to above direct interpretation, we can also give a linear systems-based interpretation

for the mapping. In particular, we can show that the status-probability recursion (Equation 20.1)

of the developed influence model is a discretized version of a certain linear differential equation

defined on the graph. This linear system viewpoint is valuable because it indicates the close

connection of our algorithm with some typical network dynamics, and because it can potentially

378

permit analytical connection of our algorithm with spectral partitioning algorithms. From the linear

system viewpoint, the parameter Δ can be interpreted as the discretization step. More generally,

Δ should be chosen large enough to achieve a fast convergence rate. We have specified the upper

bound to guarantee that all the influence model parameters are valid.

In many decentralized and centralized applications, we envision this mapping stage as being done

a priori by a centralized authority, even when the partitioning itself must be done in a decentralized

manner. For instance, when new sensors are added to an existing network, the network designer can

perhaps pre-program information about the communication topology and strengths of interactions

between the sensors. However, it is worth noting that the mapping to the influence model is in

fact inherently decentralized (i.e., an agent associated with vertex i in the graph can compute the

weights dij from the vertex’s mass and the weights of edges to neighbors) except in one sense: the

scaling parameter Δ is a global one. Noticing that the maximum allowed value for Δ depends on

the total weights of edges out of nodes and node masses, we note that Δ can often be selected

a priori based on some generic knowledge of the graph topology (for instance, knowledge of the

maximum connectivity of any single node), when decentralized mapping is also required.

Initialization and Recursion

Let us first develop an algorithm for k-way partitioning with reference nodes (specifically, with

one reference node per partition). For the problem of k-way partitioning with reference nodes, we

fix the k reference sites (the sites in the influence model corresponding to the reference nodes) with

distinct statuses from 0 to k − 1, and choose the initial statuses of other sites arbitrarily. Here,

in order to fix the reference sites’ statuses, we need to make a slight modification to the influence

model developed in Equation 20.2 such that reference site i always chooses itself as the determining

379

site:

dij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, i �= j;

1, i = j,

(20.3)

(In a distributed context, notice that we only require that the reference nodes know their own

identities to implement this initialization).

To generate a good partition, we then update the copying influence model. The state at each

time-step of the recursion identifies a partition of the graph: that is, we classify the nodes whose

associated sites are in status i in subset Si. We note that the partition identified at each time-step

automatically satisfies the set inclusion constraints for k-way partitioning with reference nodes. We

shall show that this recursion, which generates a random sequence of partitions, eventually finds

(passes through) the optimal solution with probability 1 under broad assumptions, after sufficient

time has passed. We note that the recursion is completely distributed, in the sense that each node

can decide its own subset at each time-step solely from its graphical neighbors.

In practice, we must develop a methodology for stopping the algorithm. Below, we discuss

distributed and centralized approaches for stopping. The stopping methodologies seek to select

low-cost partitions, while checking possible algebraic constraints. We shall show that appropri-

ate stopping criteria permit identification of the optimal solution under broad assumptions, with

probability 1.

Conceptually, one might expect this partitioning algorithm to rapidly identify low-cost parti-

tions, because strongly-connected sites in the influence model (sites that strongly influence each

other) tend to adopt the same status through the influence model recursion§, while weakly-connected

sites do not influence each other and hence maintain different statuses. Recalling that the influence
§ We refer the reader to our earlier work on agreement for further discussion about the dynamics of strongly-

influencing sites [68].

380

strengths reflect edge weights and node masses, we thus see that the partitions identified by the

model typically have strongly-connected subsets with weak cuts between them. For many typical

cost functions, the optimal partition comprises strongly-connected subsets with weak links, and

hence we might expect the algorithm to find good cuts quickly.

For k-way partitioning (without reference nodes), we can find the optimum by solving the

partitioning problem with reference nodes for all sets of distinct reference node selections, and

optimizing over these. (Notice that we can actually keep one reference fixed, and search through

possible placements of the other references.) This search is impractical when a large number

of partitions is desired; we shall briefly consider alternatives in discussing future work. Most

applications of interest to us have natural reference vertices, so we do not focus on the case without

references.

A few further notes about the recursion are worthwhile:

• For simplicity of presentation, we have considered a discrete-time update, and hence a dis-

tributed implementation of the recursion in a network nominally requires a common clock for

the agents in the network. However, we can equivalently use an update in which each site

updates its status at random times (specifically, according to a Poisson arrival process); the

recursion in this case is amenable to the same analyses as the recursion described here, and

hence can be shown to achieve optimal partitioning.

• Regarding scalability in a distributed setting, we note that each agent in a network only

needs to randomly select a neighbor and poll that neighbor at each time-step to implement

the recursion, so the processing/communication per time step does not increase with the size

of the network. The total processing/communication cost thus scales with the duration of

the recursion. In the next section, we give an argument that the scaling of the algorithm’s

381

duration with the size of the network is good compared to other partitioning algorithms in

many cases.

• In some applications, we may already have one partition of a graph, and may wish to improve

on this partition (with respect to a cost of interest) or to adapt the partition to changes in

the graph. In such cases, we can speed up the recursion by initializing the influence model

according to the original partition.

Stopping

Again, consider the k-way partitioning problem with reference nodes. (The adaptation to the

general k-way problem is trivial.) For centralized problems, the global partition is known to a central

agency at each recursion stage (time-step) and hence the cost can be evaluated and constraints can

be checked. The minimum cost partition found by the algorithm can be stored. In this case,

we propose to stop the updating after a waiting time, i.e. when the minimum-cost partition has

not changed for a certain number of algorithm stages. This waiting time depends on the network

structure and should be pre-calculated before the updating process. Generally speaking, the larger

the size of the network, and the smaller the influences, the bigger the waiting time should be. We

will show that a sufficiently long waiting time guarantees that the optimal solution is identified.

For distributed problems, it is unrealistic that a single agency can evaluate the global cost of a

partition as in the centralized case, since each node only has available local information. A simple

strategy in the distributed case is the blind one: the algorithm can be stopped after a finite number

of time-steps, where this number is based on the convergence properties of influence models. A more

complex strategy is to distributedly compute the cost at each stage using an agreement protocol

(see, e.g., [230]).

382

Another clever strategy for distributed stopping is to use an influence model with state-dependent

parameters. In particular, we progressively isolate (reduce the influence) between sites with differ-

ent statuses after each update (and increase the self-influence correspondingly), until the influence

model is disconnected (partitioned). More specifically, for each update, the (time-varying) influence

dij [k] is modified as follows:

• If si[k] �= sj[k] and dij [k] ≥ δ, then dij [k + 1] = dij [k] − δ (i �= j) and dii[k + 1] = dii[k] + δ;

• If si[k] �= sj[k] and dij [k] < δ, then dii[k + 1] = dii[k] + dij [k] and dij [k + 1] = 0 (i �= j);

• If si[k] = sj[k], then dij [k + 1] remains the same.

When this time-varying algorithm is used, we note that the statuses of sites converge asymptot-

ically (see Figure 20.1). This is because the influence model becomes disconnected, so that each

partitioned component has only one injecting site and is guaranteed to reach consensus. Thus, a

partition is found asymptotically. Furthermore, it is reasonable that this algorithm finds a good

partition, since weak edges in the original graph tend to have different statuses at their ends in the

influence model, and hence these edges are removed by the algorithm. We refer to this strategy as

partitioning with adaptive stopping.

20.5 Algorithm Analysis

In this section, we prove that the influence model-based partitioning algorithm finds the optimal

solution when either centralized or decentralized stopping is used. Specifically, we show that the

influence model algorithm identifies the optimal solution with probability 1, given that the optimal

solution satisfies certain broad connectivity conditions (which, as we show, is automatic for several

383

Fig. 20.1: This diagram illustrates how a network partitions itself (based on the update of the time-varying

copying influence model) in a totally distributed manner.

common partitioning problems). The (quite-weak) connectivity conditions required of the optimal

solution are based on the requirement that the influence model must be able to distribute a single

status to all sites corresponding to a particular subset, from a particular source site (which in the

case of partitioning with reference nodes is the reference).

Before presenting results on the algorithm’s ability to find optimal partitions, let us begin by

formally defining source vertices, so that we can formalize the connectivity conditions required of

the optimal:

Definition 1 Consider a particular partition of a graph, and a vertex v within a particular sub-

set. For this partition, the vertex v is a source vertex, if we can find a path from v to each other

vertex in the subset that remains within the subset (i.e., never enters a vertex in another subset).

We are now ready to present the main results on the algorithm’s ability to obtain the optimal

384

solution. We assume throughout this development that the partitioning problem of interest to us

has at least one feasible solution. We first give conditions under which the algorithm can reach the

optimal solution for a partitioning problem with reference nodes.

Theorem 20.1. Consider the general k-way partitioning problem with reference nodes, as described

in Section 20.2. An optimal solution is identified by the influence model algorithm with probability

1 (i.e., the algorithm passes through an optimal solution), if there is an optimal solution such that

each reference vertex is a source vertex.

Proof. In order to show that the optimal solution is identified with probability 1, let us consider

the master Markov chain for the influence model. We only need to show that the optimal state

(the influence model state associated with the optimal solution) can be reached with positive

probability from any other state (i.e., there is a sequence of influence model updates that leads

from an arbitrary state to the optimal state) [72]. The optimal state has the property that all

the sites in each partition have the same status, while sites in different partitions have different

statuses.

In showing that the optimal state can be reached, let us limit ourselves to updates in which sites

determine their statuses from other sites in the same partition in the optimal solution—only such

updates are needed. Now consider a single subset in the optimal solution. Let us call the reference

vertex in the subset vs. Since vs is a source vertex, there is a path from vs to every other vertex

in the subset that remains in the subset. Let us suppose that the longest path from vs to another

vertex in the subset is m. Then we note that there is a positive probability that all influence model

sites corresponding to that subset take a status of the reference site (the site corresponding to the

reference vertex) after m time-steps. This can be proved simply by recursion: assume there is a

385

positive probability that all sites within a distance of i from the reference take on the initial status

of the reference site at each time step i; since there is a positive probability that each site within

a distance of i + 1 is influenced by a site within a distance of i from the reference, there is also

a positive probability that all sites within a distance of i + 1 from the reference site take on the

reference status at time i + 1. Using this argument, we also find that there is non-zero probability

that all sites take on the reference status, at any time k ≥ m. Thus considering the influence model

as a whole, we see that there is a positive probability that all partitions are found after a finite

number of time-steps, and so the theorem is proved. �

We note that this proof is closely related with the proof characterizing the asymptotics of a

binary influence model in [268].

We have thus shown that the algorithm can solve the partitioning problem for a wide variety

of cost functions, specifically ones in which the optimal solution has the described connectivity

condition. We stress that the connectivity condition—namely, the existence of paths from each

reference vertex to the other vertices in its subset—is quite weak: connectedness of the subsets in

the (directed) graph is sufficient but not necessary for the connectivity condition to hold. In fact,

for a range of distributed applications (for instance, for multicasting in mobile networks or tracking

using autonomous-vehicle teams), such connectivity may automatically be required or desired since

we need agents/nodes in each identified subset to subsequently communicate among themselves.

Let us next formalize that the algorithm can be used to find optimal solutions for the k-way

partitioning problem without reference nodes.

Theorem 20.2. Consider the general k-way partitioning problem. An optimal solution is identified

386

by the influence model algorithm with probability 1, if each subset of some optimal solution has a

source vertex.

Proof. Since we solve partitioning problems without reference nodes by searching through distinct

reference node placements, this result follows directly from Theorem 20.1.

We have noted that Theorems 20.1 and 20.2 require the optimal solution to have a particular

weakly-connected structure to guarantee its identification. Of course, the optimal partition is not

known a priori, so it is helpful to identify classes of partitioning problems for which this connec-

tivity condition is necessarily true. The following corollary identifies two such classes.

Corollary 20.3. Consider the min-cut problem and mass-weighted min-cut problem with/without

reference nodes. An optimal solution is identified by the influence model with probability 1, if the

graph has the following structure: all the edges are bi-directional.

Proof. It is easy to check that optimal partitions for these problems constitute connected sub-

graphs. Thus, together with the bi-directionality assumption, we see that Theorems 20.1 and 20.2

can be applied.

Theorems 20.1, 20.2 and Corollary 20.3 show that an optimal solution is identified with prob-

ability 1 (i.e. the influence model passes through an optimal solution), given that this solutions

satisfies the appropriate connectivity conditions. However, we have not yet shown that the algo-

rithm will stop at the optimal solution with certainty. The following two theorems show that our

partitioning scheme is successful when the centralized and distributed stopping criteria are used,

387

respectively.

Theorem 20.4. Consider the general k-way partitioning problem with (without) reference vertices,

and assume that each reference vertex is a source vertex (respectively, each subset has a source ver-

tex) in the optimal solution. Then the probability that the influence model algorithm with centralized

stopping chooses the optimal solution approaches 1, in the limit of long waiting times.

Proof. This result follows directly from the standard analysis of Markov chains (see e.g. [72]).

Specifically, as the waiting time is increased, the probability that a better solution, if one exists, is

not found while waiting can be seen to decrease to 0.

Partitioning with distributed stopping (in particular, partitioning with adaptive stopping) is

quite a bit more complicated to analyze than the centralized algorithms, because the parameters

of the influence model are changing in reaction to the site statuses. Here, we formalize that

the partitioning-with-adaptive-stopping algorithm is able to solve the min-cut k-way partitioning

problem with reference nodes, in the case where the edges between subsets are weak (of order ε

in weight) compared to edges in the partition. Although our formal result is in such a limiting

case, the proof in fact makes clear that the minimum cut is found whenever the influence model

associated with the original graph is more likely to have status differences over the minimum cut

than over any other cut. The influence model has this property for a large (albeit somewhat hard to

delineate) class of graphs, not only ones with weak minimum cuts; this is sensible, since after all the

influence model update is structured to find minimum cuts (not only order-ε cuts) more commonly

than other cuts. Our examples bear out that the distributed-stopping algorithm is practical for

typical distributed applications.

388

Here is the formal result, with proof:

Theorem 20.5. Consider the min-cut partitioning problem with reference nodes. Assume that the

graph has bi-directional edges, and further that the optimal cut is small (of order ε) compared to

any other cut. Then the probability that the influence model algorithm with distributed stopping

chooses the optimal cut approaches 1, in the limit of small δ.

Proof. First notice that if we can show that all the weights of edges in the optimal cutset (the

cutset associated with the optimal solution) go to 0 before any other one does in the average sense,

we are done since as δ approaches 0, the probability for a particular run to be deviated from the

average run approaches 0. Let ε1[0], ε2[0],...εn[0] denote the weights of edges in the optimal cutset

of an influence network I at time-step 0. Without loss of generality, we arbitrarily pick an edge

with weight λ[0] other than the edges in the optimal cutset and show that all the n εi[k]’s approach

0 before λ[k] approaches λ′ = λ[0] −∑n
i=1 εi[0] in the average sense at some time-step k. With the

assumption that the edges in the optimal cutset are sufficiently weak, we have λ′ > 0, then we are

done.

To do so, we construct a new influence network I ′, whose only difference with I resides in that

the weight λ[k] is replaced by λ′, and each εi[k] is replaced by εi[0]. The reason to come up with

I ′ is that the original I is a very complex network with varying weights. By proving for I ′ whose

weights never change, that the conclusion holds first, and reducing the problem for I to the one for

I ′, we can simplify the proof.

Considering I ′ with fixed weights, it is easy to check that in the average sense, εi[k] reaches

0, before λ[k] reaches λ[0] − εi[0]; consequently, both εi[k] and εj [k] reach 0 before λ[k] reaches

λ[0] − εi[0] − εj [0]; and finally, all εi[k] reach 0 before λ[k] reaches λ′, where λ[k] and εi[k] are

389

weakened with time. This is because with the existence of sufficiently small optimal cut, the

probability for each site in an optimal partition to take the reference site’s status is very high, and

thus the joint probability for a pair of sites in an optimal partition to take different statuses are

very small. In contrast, the probability for a pair of sites across the optimal cut to have different

statues are very high. Therefore, the edges in the optimal cutset are weakened faster than weight

λ[k] does in the average sense.

Now that we know for I ′ with fixed weights, all εi[k] reach 0 before λ[k] reaches λ′ in average,

we need to show that it implies for I with varying weights, the same conclusion also holds. With

the assumption that λ[k] is greater than λ′, λ[k] in I approaches λ′ slower than λ[k] in I ′ does, and

every εi[k] in I approaches 0 no slower than than εi[k] in I ′ does, since εi[k] may be weakened in I.

The above assumption is true since before λ[k] decreases to λ′, all the edges in the optimal cutset

are already broken. Hence we prove that all the edges in the optimal cutset approach 0 before other

edge does in the average sense. The proof is complete.

We have thus shown that our algorithm can find the optimal partition in both a centralized

and a distributed manner, under broad conditions. Next, it is natural to characterize or test the

performance of the algorithm: of course, any algorithm that searches through all possible partitions

can find the optimal one, so an algorithm such as ours is useful only if it can find the optimal solution

quickly compared to a combinatorial search. Although we leave a full analytical treatment of the

algorithm’s performance for future work, we give here a conceptual discussion of why the algorithm

is fast, and also evaluate the performance of the algorithm in examples in the next section.

The No Free Lunch theorems [299] provide an interesting conceptual framework for the perfor-

390

mance evaluation of our algorithm. These negative results state that, over the class of all possible

cost functions, there are no algorithms that always perform well; in fact, all algorithms are equally

costly (i.e., take equally long) on average. Thus, an algorithm must be tailored for the particular

cost function of interest. From this perspective, our algorithm works well because typical optimal

costs correspond to weak cuts in the graph and strongly-connected partitions, and hence good algo-

rithms should search through these weak-cut partitions first. Our algorithm is tailored to quickly

find these weak-cut solutions (since the strongly-connected sites in the copying influence model

tend to adopt the same status while weakly connected ones differ), while also searching through

other solutions less frequently.

We have recently obtained an analytical justification for the performance of the algorithm.

Specifically, we can show that, on average, the algorithm solves the k-way min-cut problem with

reference nodes in polynomial time, given that the minimum cut is sufficiently weak compared to

other cuts in the graph. Since the k-way partitioning problem with reference nodes is NP-hard, a

polynomial-time algorithm for a class of graphs is a worthwhile result, and gives some indication

of the performance of the algorithm. This performance analysis also has the benefit of explicitly

connecting the performance with spectral properties of the linear recursion for influence model site

statuses, and hence potentially permitting comparison of the algorithm with spectral partitioning

methods (e.g., [287–289]). This analysis of performance unfortunately requires rather extensive

review of the influence-model’s analysis, so we omit the details of the result from this expository

chapter.

391

20.6 Applications and Examples

In this section, we briefly introduce several potential applications of our algorithm, and also

present canonical examples that illustrate or enrich aspects of our analytical development. The

applications and examples together are meant to further motivate the described algorithm.

Application 1: Classification for Multicasting in Ad Hoc Networks Distributed partitioning holds

promise as a tool for classification in distributed sensor networks and mobile ad hoc networks, e.g.

for the purpose of multicasting or of transmitting information from the sensors/mobiles back to

“leader nodes” or base stations or central authorities.

There is a wide literature on routing in ad hoc networks when the absolute positions of the

sensors/mobiles are known (see [300] for a survey of methods). Recently, distributed algorithms

(specifically local-averaging methods) have been used to infer location information in the case

where absolute positions are unknown except at peripheral locations (see e.g. [301]), and hence

permit development of routing algorithms for these networks. Beyond routing, classification of sen-

sors/mobiles with base stations is an important task, for the purpose of multicasting (transmitting

information to many destinations from multiple sources) or so that subsequently data can be routed

to and from appropriate base stations to the sensors/mobiles.

Several recent articles have addressed multi-hop multicasting in ad hoc networks (see e.g. [273]).

In multicasting applications as well as other settings where data may be transmitted to/from

several sources or base stations, classification of mobiles/sensors with the base stations is important.

We contend that the influence model-based partitioning tool can advance the state-of-the-art on

classification in ad hoc networks, for several reasons:

• As made clear by the comparison of location-known and location-unknown algorithms for

392

routing, decentralized algorithms for classification may be needed in cases where there is

no central authority with full knowledge of the network. Even if classification is done in a

centralized manner, only partial information may be known about the network. For instance,

distances between sensors/mobiles or at least the connection topology may be known, but the

exact locations of each sensor/mobile may not. Conversely, exact locations may be known,

but the connection topology may be unknown. The mapping from the graph to the influence

model, and the influence model update itself, are based on local information and hence our

partitioning method is suited for this setting.

• We may need to optimize the classification with respect to several (possibly complex) cost

criteria (including for example minimum (or average) hops to each base station, average delay

cost, and various reliability criteria). In fact, the costs may depend on the specifics of the

decentralized algorithm used for routing/multicasting. The influence model-based algorithm

permits us to consider multiple and complex cost criteria.

• Often, the topologies of sensor networks and mobile ad hoc networks change with time, and

hence it is beneficial to use an algorithm that can update the optimum with little effort

(in either a distributed or centralized case). The influence model-based algorithm has this

advantage.

For illustration of this application, we have used the influence model-based algorithm for sensor

classification in a small example (one with 3 base stations and 27 sensor nodes). The example was

generated by placing the 30 sensors in a uniform i.i.d. manner within the unit square, allowing

communication between sensors within 0.3 units of each other, and choosing three sensors (Sensors

3, 14, and 20) to also serve as base stations. We associate a weighted undirected graph with

393

the sensor network in which the 30 vertices correspond to the 30 sensors, and branches indicate

communication between sensors. Each branch weight is chosen to be inversely proportional to the

distance between the pair of sensors, with the motivation that longer communication links are more

apt to failure and delay and hence are more weakly connected. We consider 3-way partitioning of

this graph with reference vertices 3, 14, and 20 using the influence model algorithm.

We consider partitioning with centralized stopping, with respect to two cost functions:

• First, we partition the graph so as to maximize the minimum of the positive eigenvalues

of the Laplacian matrices associated with the three subsets (partitions)¶. The minimum

non-zero eigenvalue of the Laplacian associated with each subset is well-known to indicate

the connectivity of that subset, and can be used to bound several relevant graph-theoretic

properties such as the graph diameter (see [73] for a full development). By maximizing the

minimum among the non-zero eigenvalues, we thus find a partition with strongly-connected

subsets and weak links between them. The optimal partition with respect to this minimum-

subgraph-eigenvalue cost measure is shown in Figure 20.2.

• Our second cost measure is motivated by consideration of low-cost and low-overhead dis-

tributed routing for ad hoc and sensor networks. A simple greedy algorithm for routing when

location information is available is to send the message to the node (sensor) closest to the

destination during each transmission (see e.g. [300]). Assuming such a greedy routing al-

gorithm is used, our aim is to classify the sensors with base stations so that the maximum

number of hops to a sensor from its base station is minimized. (The average number of

hops could be used instead.) Thus, we partition the graph using this maximum number of

¶ We notice a maximization problem can routinely be converted to a minimization by choosing a cost that is the

negative of the original cost.

394

hops when greedy routing is used. The optimal partition when this greedy-routing cost mea-

sure is shown in Figure 20.2. We note that, as expected, the optimal partition has subsets

which are more balanced in size but contain weaker links, as compared to optimum for the

minimum-subgraph-eigenvalue measure. This example highlights an interesting advantage of

the influence model: the greedy-routing cost function does not admit an analytical form but

can be computed for a given partition, but nevertheless the optimal partition can be found.

We have also considered min-cut partitioning with distributed (adaptive) stopping for this

example. The result is shown in Figure 20.2. We note that such a distributed algorithm could

be implemented in the sensor network itself, and would only require individual sensors to have

local parameters (in particular, distances to neighbors). Such a distributed algorithm might be

especially useful in cases where the topology is subject to change, so that the sensors must re-

classify themselves periodically.

As further illustration, we also show a 4-way partition with reference nodes of a 100-sensor

network in Figure 20.2.

Application 2: Flexible Partitioning for Electric Power Systems We believe that our algorithm

potentially has significant application in power system analysis, because of its flexibility. One

potential application is for islanding, i.e. isolation of a portion of the power network to prevent

disturbance propagation. We note that a good algorithm for islanding may need to take into account

several requirements, including small generation-load imbalance within the isolated component,

feasibility of making the desired cut, and disturbance-propagation dynamics. Our algorithm is a

natural tool for such partitioning problems, in that we can minimize and keep track of multiple costs

while identifying plausible islands (partitions). We have applied the influence model algorithm to

395

a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

b)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

c)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

d)
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85 90

95

100

Fig. 20.2: Partitioning a 30-sensor network with reference nodes a) based on a minimum-subgraph-eigenvalue

cost, b) based on a greedy-routing cost, and c) with distributed stopping. We also partition a 100-sensor

network based on a minimum-subgraph-eigenvalue cost (d).

identify plausible islands in a very small (14-bus) example (see Figure 20.3). Specifically, we have

used the influence model algorithm to track and minimize two cost metrics—the cut susceptance

and the total absolute generator-load imbalance over the partitions. Our optimization shows the

use of a partitioning algorithm that can track multiple costs: two different optimal solutions are

identified quickly based on the two cost metrics, and both costs are computed for a family of

396

plausible partitions (Figure 20.3). Interestingly, the optimal partition with respect to the minimum

susceptance cost is typically found more quickly than the optimal partition with respect to the

generator-load imbalance cost. The better performance in finding the minimum susceptance cost

is not surprising, in that the susceptances are directly mapped to influence probabilities.

Because our algorithm can track multiple costs, we believe that it can potentially enhance the

recent approach to islanding suggested in [280], which is slow-coherency (equivalently, spectrally)

based. More generally, we believe that the flexibility offered by our partitioning algorithm may

be valuable for various model-reduction tasks in power system analysis, as well as other network-

centric tasks such as the identification of line trips of minimal cardinality that make infeasible the

power flow solution.

Application 3: Self-Classification for Autonomous Vehicles Our distributed partitioning algorithm

provides a means for networked autonomous vehicles to classify themselves. For instance, say

that a network of communicating autonomous vehicles seeks to form two teams, each of which

must congregate at a convenient location in space. Our self-partitioning algorithm can be used

to identify groups of autonomous vehicles that are close to each other, and so to form the teams,

in a completely distributed manner. We note that using partitioning in this context permits task

dynamics in autonomous-vehicle applications, for which the role played by each agent actually

depends on its initial position (state). In the interest of space, we do not pursue this application

in detail here.

Canonical Example 1: Performance Simulations We explore the performance of our algorithm by

pursuing min-cut partitioning with reference nodes on a seven-node circuit. Figure 20.4 illustrates

the mapping between the circuit’s conductance graph and an influence model. It is worth noting

397

that the mapping has a meaningful dynamic interpretation in this case: the expected dynamics of

the influence model is a discretization of the dynamics of a circuit with the specified conductances

and unit capacitors from each node to electrical ground.

Our algorithm is guaranteed to find the optimal cut. Table 20.1 shows the performance of our

algorithm, in terms of the average number of time-steps needed to reach this cut, for several values

of the cut strength and discretization time-step. We note that the expected number of time-steps

needed to reach the optimal cut is dependent on the strength of the optimal cut: the weaker the

cut, the faster the algorithm.

We have compared our algorithm with spectral methods for this circuit example. When the

weak cut is between nodes 2 and 3 and nodes 4 and 5, both the spectral method and our algorithm

find the min-cut partition for all 0 ≤ ε < 1. We notice that our algorithm requires 5 random number

generations and 5 copying actions (communications in a decentralized setting) per time-step, and

requires between 5 and 10 time-steps for a good choice of Δ and 0 ≤ ε ≤ 1. In comparison, a simple

implementation of the spectral method requires on the order of 73 additions and multiplications.

We notice that the expected computational cost of our algorithm depends on the strength of the

cut, in contrast to the spectral algorithm. Interestingly, if the size-ε cuts are placed between node

1 and nodes 2 and 3 instead, the spectral method only finds the weak cut for ε ≤ 0.26, while our

algorithm obtains the optimal solution for all ε (albeit at higher computational cost).

Canonical Example 2: Convergence of Distributed Stopping Recall that distributed stopping of

our algorithm is achieved through reduction of influences. In this case, the algorithm’s ability to

obtain the minimum cut is predicated on choosing a sufficiently small influence reduction size. In

this example (see Figure 20.5), we have characterized the percent of time that the correct partition is

found, for several cut strengths and influence reduction sizes. In each case, we have also determined

398

ε

Δ 0.1 0.2 0.5 1

0.05 26.2 27.6 31.8 37.8

0.1 13.2 13.8 16.3 19.6

0.2 6.9 7.0 8.6 10.8

0.25 5.5 5.7 7.1 9.6

0.3 4.7 4.9 NA NA

Tab. 20.1: The average steps to first reach the partition state with respect to Δ and ε based on 1000 sample

runs

the expected number of iterations until the algorithm stops (see Table 20.2 for the results). The

simulation results indeed show that the optimal cut is found with certainty, when the influence

reduction size is chosen sufficiently small. We note that the time required to find the optimal

partition increases as the influence reduction size is decreased.

ε δ Δ Steps Percent

1 0.1 0.02 0.47 6.2 99.6

2 0.1 0.01 0.47 8.3 100

3 0.5 0.01 0.39 30.759 99.7

4 0.5 0.005 0.39 56.672 100

5 1 0.001 0.33 122.49 86.8

Tab. 20.2: Simulation result for Example 2 based on 1000 sample runs: Steps represents the average steps

the algorithm takes to distributedly stop, and Percent represents the percentage of correct partitions the

algorithm finds.

399

20.7 Future Work

Several directions of future work are worth discussing:

• Complexity Analysis and Comparison. A careful analysis of the complexity of our

algorithm is required. Roughly, the computation required at each time-step scales with the

number of edges in the graph. However, we have not determined the scaling of the number

of time-steps required to find the optimal solution with the size of the graph, expect in the

case where the optimal cut is sufficient weak compared to the others. We reiterate that, in

contrast to e.g. spectral algorithms, the time taken by our algorithm depends on the structure

of the graph and the cost being minimized, and hence much remains to be done in connecting

the number of time-steps with graph properties. We believe that our earlier study of the

settling rates of influence model-based agreement protocols (see [68]) may permit analysis of

the settling rate of our partitioning algorithm. A complexity analysis of our model will also

permit further comparison of our algorithm’s performance with those of other algorithms.

• Anti-Copying Algorithm for Bisection. Bisection and recursive bisection are of signif-

icant interest in the parallel processing community, and remain hard for some graph struc-

tures [296]. In its current form, our algorithm is not well-suited for bisection problems: the

constraint of equal-mass components is rarely satisfied by the partition generated at each

time-step, so the algorithm is likely to take many time-steps to identify the optimal solution.

Further, the bisection solution need not have connected components (even in the symmetric

case), and hence the optimal solution may not be found at all. However, we believe that a

simple modification of the influence model algorithm can permit bisection. To conceptual-

ize this algorithm, we note that the bisection problem can be rephrased as an unweighted

400

max-cut problem for a certain dual graph [298], and hence that we can seek an algorithm

for identifying max-cuts to solve the bisection problem. An interesting approach for finding

maximum cuts is to use an two-status influence model in which each site copies the oppo-

site of its determining neighbor’s status. This model favors configurations in which nearby

neighbors’ statuses are different from each other, and so has a tendency to find large cuts.

This may turn out to be a computationally effective technique for finding maximum cuts and

hence solving bisection problems.

• Reference-Free Partitioning. The sequential selection of reference vertex sets required in

our algorithm is undesirable when a large number of partitions is needed. We are exploring

variants of the influence model-based algorithm that do not require selection of reference gen-

erators. One interesting strategy is to initialize the sites in the influence model with different

statuses, and then update the model until the desired number of partitions is identified. This

solution can possibly be selected as the partition, or it can be used as a pre-partition based

on which reference generators are selected influence-model algorithm is applied.

401

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

C
os

ts

Cut susceptance
Generator−load imbalance

Fig. 20.3: We consider partitioning the Standard 14-Bus IEEE Test System, for the purpose of isolating

a disturbance at Bus 6 from the slack bus 1. The upper figure shows the cut susceptance and generator-

load imbalance for a sequence of 250 partitions generated by our influence model algorithm. The lower

figure highlights that the minimum-cost partitions according to these two criteria are different. In the lower

figure, the solid line indicates the minimum susceptance cut while the the dashed line indicates minimum

generator-load imbalance.

402

1

4

5 6

7

2 3

1

−(2 + ε)Δ + 1

−(2 + ε)Δ + 1

1

Δ

−3Δ + 1

ΔΔ

Δ

Δ

Δ

Δ

Δ
ΔΔ

−(2 + ε)Δ + 1

εΔ

εΔ

εΔ

εΔ

−(3 + ε)Δ + 1 Δ

Δ

Fig. 20.4: Seven-node circuit and its influence model: Conductance values of R4 and R5 are ε, and all the

other conductances are 1; all the capacitances are 1; Δ stands for the discretization step.

403

1

4

3

2

5

7

6

1 1

1 1 1

1

1

ε

Fig. 20.5: Example for distributed partitioning

404

21. UNCERTAINTY EVALUATION THROUGH MAPPING IDENTIFICATION IN

INTENSIVE DYNAMIC SIMULATIONS

We study how the dependence of a simulation output on an uncertain parameter can be de-

termined, when simulations are computationally expensive and so can only be run for very few

parameter values. Specifically, the methodology that we develop—known as the probabilistic col-

location method (PCM)—permits selection of these few parameter values, so that the mapping

between the parameter and output can be approximated well over the likely parameter values,

using a low-order polynomial. We give several new analyses concerning the ability of PCM to

predict the mapping structure as well as output statistics. We also develop a holistic methodol-

ogy for the typical case that the uncertain parameter’s probability distribution is unknown, and

instead only depictive moments or sample data (which possibly depend on known regressors) are

available. Finally, we pursue application of PCM to weather-uncertainty evaluation in air traffic

flow management in some detail, and briefly introduce applications in two other domains.

21.1 Introduction

Many large-scale systems (e.g., power systems, air traffic networks, VLSI circuits, and biological

regulatory networks) have complicated parameter-dependent dynamics that can only be examined

in detail using time-consuming simulations. When these parameters are uncertain, it is often critical

to find the dependence of specific simulation outputs on the parameters. However, because these

405

large-system simulations are usually computationally costly, running exhaustive simulations over

the range of potential parameter values is not practical, especially for real-time applications. An

alternative is to approximate the mapping between the parameters and simulation output with a

combination of basis functions, for instance as a polynomial [302, 303, 306]. With this approach,

simulating the system at only a limited number of smartly-chosen sample parameter values is often

sufficient to identify the mapping. In this chapter, we study representation of the mapping between

uncertain parameters—whose statistics may in general need to be inferred from data or may only

be partially known—and outputs from time-intensive simulations, using polynomials.

The problem of characterizing a static nonlinear mapping between parameters and outputs

from data has been extensively studied in both the black-box system identification and statistical

learning communities (though the problem is typically viewed as one of identifying an unknown

system, rather than seeking a simple representation for a computationally-expensive map), see

e.g. [308, 309]. However, the problem that we study differs from the basic problems addressed

in these domains, in several senses. First, we can generate the output for only very few sets of

parameters, but we can select these parameter sets as we wish and can expect high-fidelity outputs

from the simulations. Given the very limited number of available parameter-output pairs and the

high fidelity of these outputs, it is sensible for us to seek a low-order representation of the mapping

that matches the output at the simulation points. That is, our focus here is on reducing error

with barely sufficient data, rather than on more typical statistical learning problem of avoiding

overfitting through e.g. regularization. Specifically, we study how to properly choose simulation

points so that this low-order map is accurate over at least the likely parameter values.

The task of fitting the mapping between simulation parameters and outputs with polynomials is

thus an interpolation task. There is an abundant literature on choosing sample points for polynomial

406

interpolation, see e.g. [310]. It is well known that the equally-spaced sample points cannot avoid

Runge’s phenomenon—the interpolation error may increase without bound near the ends of the

interpolation interval for certain mappings—and so unequally-spaced point selections such as the

Chebyshev nodes are often preferable. For our mapping-identification problem, we further need to

take advantage of the probabilistic description of the parameters, so as to identify the mapping

over the likely parameter values. In this chapter, we advance the Probabilistic Collocation Method

(PCM)—which was originally introduced in the global climate modeling and electric power systems

communities [302–307]—as a technique for choosing simulation points to find a low-order polynomial

mapping, when probabilistic descriptions of the parameters are available.

Specifically, PCM uses such a probabilistic description to intelligently choose simulation points,

and hence to find a low-order polynomial mapping which predicts the average output correctly

even if the actual mapping is a higher-order polynomial [302,303]. Experimental evidence suggests

that in fact PCM can accurately identify polynomial and non-polynomial mappings over the whole

range of likely parameter values (not just the output mean), but the performance has not been

determined analytically. One of our goals here is to further characterize the performance of PCM,

in the process introducing the method as a generic tool for simulation under parametric uncertainty

and clarifying its connection to statistical learning and nonlinear-identification methods (Section

21.2).

In practice, a parameter’s probability distribution is rarely given explicitly. Commonly, we may

only have a set of samples based on the probability distribution (as is typical in statistical learning

problems), which e.g. have been collected from historical records. In other cases, we may only know

some depictive low moments (e.g., mean and standard deviation). For these partial specifications

of the parameter’s probability distribution, how to select a good set of simulations to identify the

407

mapping needs to be explored. This selection is influenced by the fact that the PCM algorithm

uses moments of the uncertain parameter, and hence estimation of these moments is needed when

the distribution is not explicitly given. Here, we give a comprehensive development of PCM, by

examining the cases where the parameter distribution is not fully known (Section 21.3). We also

consider the case that the parameter depends on known regressors (Section 21.4).

PCM is widely applicable to problems where a deterministic mapping between a stochastic pa-

rameter and system output must be found using time-consuming simulations. We introduce three

applications, in the areas of air traffic flow management under uncertainty, power network fault

evaluation, and cell-level simulation in biology (Section 21.5), and pursue the air traffic manage-

ment application in some more detail. We pursue in some detail the air traffic flow management

application, which is concerned with predicting delays due to fog at San Francisco airport, see

e.g., [2, 312] for background. In the interest of space, we only summarize the other applications.

For clarity, we focus on the case with scalar uncertain parameter, output, and regressor. How-

ever, the development readily generalizes to the multivariate case, see [302,303] for background on

the multivariate case.

21.2 PCM for a Known Parameter Probability Distribution

In this section, we review and further characterize PCM, in the nominal case that the probability

distribution for the uncertain parameter is known. Specifically, we first motivate and review the

method and its output-mean prediction property, and then we give several new results concerning

its performance.

Formally, we are concerned with identifying/representing a static deterministic mapping be-

tween a stochastic parameter X with known probability distribution fX(x) and a simulation out-

408

Comput.
Expensive
Simulation
Program

Uncertain

2) Data

Output
of Interest

Goal: to find
mapping between
params and output

Specified With:
1) PDF

Moments
3) Info. on

Params
0 5 10 15 20 25 30

−0.5

0

0.5

1

1.5

2

2.5
x 10

7

x

g(x
)

Actural mapping
PCM mapping based on pdf

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

x

f(x
)

Fig. 21.1: a) PCM finds a polynomial mapping between a stochastic parameter X and a simulation output

g(X). b) Comparison of a degree-5 polynomial mapping with the 2nd-order PCM approximation (obtained

from the true probability distribution); c) The distribution of the stochastic parameter X .

put g(X), using a polynomial basis (Figure 21.1). Simulation of the mapping (computation of

the output for a particular parameter value) is expensive or time-consuming, and so we are only

able to simulate the mapping at n points (parameter values). The purpose of PCM is to choose

the appropriate set of n points for simulation, and so to accurately represent the mapping over

the domain of likely parameter values. In turn, the probability distribution for the output can be

approximated if desired.

For this problem, typically we can only expect to obtain a low-order approximation of the actual

mapping, since the output is available for so few simulation points. Here, we pursue such low-order

representation using a polynomial basis, with the motivation that polynomials can represent many

intricacies of a mapping and yet permit global representation/characterization of the mapping and

hence the output probability distribution. When so few simulations are available, we must carefully

select the simulation points, so that at least the approximate mapping is close to the real one over

the range of likely parameter values. This viewpoint leads us to the following philosophy underlying

PCM: simulation points are selected, and in turn the mapping is approximated, in such a manner

409

that error between the actual mean output and the predicted mean output is small even if the

actual mapping is of higher order than the predicted one. Formally, PCM is able to predict the

expected output exactly using n simulations, whenever the actual mapping is any polynomial of

degree at most 2n-1, i.e. even when the actual mapping is of much higher degree (or in other words

more quickly varying).

The following is the three-step PCM algorithm:

1) Point selection. A set of n simulation points is chosen based on the probability distribution for

the uncertain parameter, fX(x). Specifically, we compute the first n+1 orthogonal polynomials

with respect to the input distribution fX(x) (see, e.g., [302] for an iterative method with low

computational cost). That is, we compute the polynomials h0(x), . . . , hn(x) of degrees 0, . . . , n,

respectively, such that
∫

hi(x)hj(x)fx(x) dx = δij , where δij = 1 if i = j and 0 otherwise. The

n roots of the degree-n orthogonal polynomial hn(x), denoted x0, . . . , xn−1, are chosen as the

simulation points. It is easy to check that these collocation points fall within the the domain

of random variable X, as long as the domain is a continuous set. We also note that computing

h0(x), ..., hn(x) requires use of the first 2n − 1 moments of X. We denote the ith moment of X as

ζi = E(xi) =
∫

fX(x)xidx.

2) Mapping identification. Using simulations at these n points, a degree-(n − 1) interpolating

polynomial approximation g∗(x) for the mapping g(x) is generated. Specifically, we first determine

g(x0), . . . , g(xn−1) through simulation of the mapping. Next, we approximate the mapping with

the polynomial g∗(x) = a0 + a1x + . . . + an−1x
n−1, choosing the n coefficients a0, ..., an−1 so that

g(x0) = g∗(x0), . . . , g(xn−1) = g∗(xn−1). We note that, for typical applications of PCM, the

evaluation of g(x) at the n simulation points is the most expensive step computationally.

3) Output characterization. The probability distribution fg(g) of the output g(X), as well as

410

desired statistics of g(X), are approximated based on the approximate mapping g∗(x). Depending

on the input distribution and the degree of g∗(x), this computation can be done either analytically

or numerically. In our studies, simple numerical computation of the cumulative distribution of g∗(x)

and subsequent computation of the probability distribution has been sufficient: simulation of the

mapping is the computationally-intensive step, so even this simplistic implementation of the output-

distribution calculation does not significantly change the analysis time. More elegant approaches

for computing the output distribution—which are especially valuable when multiple parameters are

uncertain—are based on expressing the input distribution in terms of certain standard distributions,

including Normal and Beta distributions (see, e.g., [313]).

We refer to this algorithm as (n−1)th order PCM, since a degree-(n−1) mapping is generated.

Several types of measures can be used to evaluate the performance of PCM, including those

concerned with 1) errors in the mapping, 2) errors in the output distribution, and 3) errors in

output statistics, see [303]. Here, we shall only introduce a couple measures in the context of the

performance analysis.

Let us begin the performance analysis by reviewing the mean output prediction property of

PCM. It turns out that this mean-prediction property of PCM is identical to a classical result

in the numerical integration or quadrature literature: specifically, it is known that a (weighted)

integral of a degree-(2n−1) polynomial function can be computed as a sum of the function value at

only n properly-chosen arguments∗ (see e.g. [314]). Although the mean-prediction result has been

described both in the numerical integration literature and in previous work on PCM (e.g. [303]),

we include it here because it is central to the methodology.

Theorem 21.1. Consider a mapping g(x) that is a polynomial of degree at most 2n−1, and let g∗(x)
∗ This sparse integration technique is known as Gaussian quadrature integration.

411

be the (n−1)th-order PCM fit for g(x), for an uncertain parameter X. Then E[g(X)] = E[g∗(X)].

Proof: The degree-2n − 1 polynomial mapping g() can always be written (see e.g. [311]) in

terms of the orthogonal polynomials h0(), . . . , hn(), as g(x) = hn(x)(bn−1hn−1(x)+ . . .+ b0h0(x))+

an−1hn−1(x) + . . . + a0h0(x), for appropriately chosen bn−1, . . . , b0, an−1, . . . , a0. Say that we ap-

proximate g(x) by the degree-(n − 1) polynomial g∗(x) = an−1hn−1(x) + . . . + a0h0(x). We

see that g∗(x) is the (unique) degree-(n − 1) polynomial that matches g(x) at the n colloca-

tion points, i.e. g∗(x) is the PCM-generated mapping. Thus, we are interested in comparing

E[g(X)] =
∫
(hn(x)(bn−1hn−1(x) + . . . + b0h0(x)) + an−1hn−1(x) + . . . + a0h0(x))fX(x) dx with

E[g∗(X)] =
∫

(an−1hn−1(x) + . . . + a0h0(x))fX(x) dx. Invoking orthogonality, we immediately ob-

tain that E[g(X)] = E[g∗(X)] = a0. �

The mean-prediction property gives some indication of the capability of PCM as a fitting tool,

since it reflects that PCM captures a feature that reflects the mapping over entire range of likely

parameter values rather than only at a tangent point or over a small range. Here, we aim to

enhance this basic performance analysis, by showing that the PCM can to some extent capture the

structure of the mapping over the likely parameter range.

To this end, we first study the capability of PCM to predict cross-statistics between the pa-

rameter and output, in addition to the output statistics. In fact, we find that PCM can predict

such cross-statistics even when the actual mapping is of higher order, as formalized in the following

theorem:

Theorem 21.2. Assume that we are using (n − 1)th-order PCM to identify a mapping g() that is

actually a polynomial of degree n + m, for some m ∈ 0, . . . , n− 1. Then PCM correctly predicts the

cross-statistics E[Xig(X)] for all i ∈ 0, . . . , n − m − 1. That is, E[Xig(X)] = E[Xig∗(X)], for all

i ∈ 0, . . . , n − m − 1.

412

Proof: Notice that the actual mapping can be written in the form g(x) = hn(x)(bmhm(x) + . . . +

b0h0(x)) + an−1hn−1(x) + . . . + a0h0(x). Thus, we find that E[Xig(X)] =
∫

(hn(x)(bmxihm(x) +

. . . + b0x
ih0(x)) + xi(an−1hn−1(x) + . . . + a0h0(x)))fX(x) dx. For i ∈ 0, 1, . . . , n − m − 1, we

notice that bmxihm(x) + . . . + b0x
ih0(x) is a polynomial of degree less than or equal to n − 1,

and hence
∫

hn(x)(bmxihm(x) + . . . + b0x
ih0(x))fX(x) dx = 0. We thus recover that E[Xig(X)] =∫

xi(an−1hn−1(x)+. . .+a0h0(x))fX(x) dx. Since the PCM fit is g∗(x) = an−1hn−1(x)+. . .+a0h0(x),

we find that E[Xig(X)] = E[Xig∗(X)]. �

As a special case (corresponding to m = n − 2), the theorem guarantees that the correlation

between X and g(X) is predicted correctly by (n− 1)th-order PCM even when the actual mapping

is of much higher order, of at most 2n − 2.

Let us also explore whether the nth-order PCM fit g∗(x) is the minimum mean square error

(MMSE) fit, i.e. whether E[(g(X)−g∗(X))2] is minimized over the class of all polynomials of degree

n even when g(x) is a higher-degree polynomial. Unfortunately, it is too much to hope for that such

an MMSE fit can be obtained for all g(x), using a small number of points. However, interestingly,

we can use nth order PCM to obtain the MMSE estimator for g(x), over a class of lower-degree

(lower than n) polynomials. This notion is formalized in the following:

Theorem 21.3. Consider a mapping g(x) that is actually a polynomial of degree n + m, and

consider using (n− 1)th-order PCM to fit this mapping with the degree-(n− 1) polynomial g∗(x) =

an−1hn−1(x)+ . . .+a0h0(x). The mean square error of this fit cannot be improved through addition

of any polynomial of degree less than or equal to n-1-m. Furthermore, the polynomial g∗r (x) =

an−1−mhn−1−m(x)+ . . .+a0h0(x) is the MMSE fit for the mapping, among the class of polynomials

with maximum degree n-m-1.

Proof: Let us use the notation g(x) for the PCM fit with a degree n − 1 − m polynomial

413

added, i.e. g(x) = g∗(x) + cn−1−mxn−1−m + . . . + c0. We notice that the mean square error

between g(X) and g(X) can be written as follows: E[(g(X) − g(x))2] = E[(g(X) − g∗(X))2] +

E[(g(X) − g∗(X))(g∗(X) − g(X))] + E[(g∗(X) − g(X))2]. Let us consider the second term in

this error expression. Substituting g(x) = hn(x)(bmhm(x) + . . . + b0h0(x)) + an−1hn−1(x) + . . . +

a0h0(x) and g∗(x) = an−1hn−1(x)+ . . .+a0h0(x), we find that E[(g(X)−g∗(X))(g∗(X)−g(X))] =

E[hn(X)(bmhm(X)+ . . . + b0h0(X))(cn−1−mXn−1−m + . . . + c0)]. Finally, noting that (bmhm(X)+

. . . + b0h0(X))(cn−1−mXn−1−m + . . . + c0) is a polynomial of degree at most n − 1, we see that

E[(g(X) − g∗(X))2] ≤ E[(g(X) − g(X))2], and the first part of the theorem is proved. Next, we

prove that g∗r (X) is the MMSE estimate for g(X) among estimators that are polynomials with

maximum degree n-m-1. To do so, it is sufficient to prove that E[Xi(g(X) − g∗r (X)] = 0, for

i ∈ 0, . . . , n−m−1. However, E[Xi(g(X)−g∗r (X)] = E[Xi(g(X)−g∗(X))]+E[Xi(g∗(X)−g∗r (X))].

The first of these two terms is 0, from Theorem 21.1. Meanwhile, notice that the second term can

be written as E[Xi(g∗(X) − g∗r (X))] = E[Xi(an−1hn−1(X) + . . . + an−mhn−m(X)], which equals 0

from orthogonality. Hence, the theorem is proved. �

Conceptually, Theorems 21.2 and 21.3 indicate that PCM optimally predicts certain features

of the mapping as well as certain output statistics, with the orders of the optimally-predicted

statistics/features growing gracefully with the number of points used.

Of course, we are also interested in the performance of PCM when the actual mapping is not

polynomial. Unfortunately, for arbitrary mappings, there is no guarantee that any polynomial fit

will be able to achieve small error (in an expected output or mean-square-error sense), even as

more and more points are used. In fact, the error can become arbitrarily large with more points;

this effect is known as the Runge phenomenon [310]. However, given certain limits on the higher

derivatives of the actual mapping, the polynomial fit can be shown to converge quickly (i.e., with a

414

small number of points) to the mapping. Gaussian quadrature (and hence PCM) are in the class of

optimal algorithms for avoiding the Runge phenomena, in the sense that convergence is guaranteed

given the weakest possible bound on the higher derivatives.

Let us conclude our our characterization of PCM, by noting that it complements methods

for nonlinear black box system identification [308] as well as the polynomial chaos and general

polynomial chaos methods [313]. First, let us consider the connection with non-linear black box

system identification [308]. Such identification fundamentally requires characterizing static nonlin-

ear mappings between inputs and outputs, which can be done through polynomial interpolation

(though local methods such as spline-based techniques are more commonly used). PCM aims to

achieve such identification with very few excitations (simulation or experiment trials at different

parameter/input values), by smartly choosing excitations so as to find mapping accurately for likely

parameter/input values. We note that, as compared to spline-based methods, PCM permits us to

obtain mappings that have globally optimal or guaranteed performance with respect to the specified

uncertain parameter’s PDF. Second, we note that PCM naturally complements Wiener’s classical

polynomial chaos method and more recent work on generalized polynomial chaos (see [313]). These

tools permit fast simulation of known deterministic dynamical models with random parameters and

inputs, through expansion of random processes in terms of polynomials that are orthogonal with

respect to the uncertain parameters’ distributions. PCM uses a similar polynomial decomposition

of the parameter vs. response mapping, but for the complementary task of identifying the mapping.

Example 1 In this simple example, we assume that the mapping between an uncertain parameter

X and a simulation output is the fifth-degree polynomial g(X) = X5 −6X4 +5X3 −4X2 +3X −2,

where X is normally distributed with mean 13 and standard deviation 2.15. We are permitted only

three simulations of the mapping, and require an accurate fit over the likely parameters. Using

415

PCM, we select simulation points and hence obtain a quadratic mapping, that approximates the

actual mapping well over the likely parameter values (see Figure 21.1) and exactly predicts the

mean output. �

21.3 PCM for an Unknown Parameter Probability Distribution

We discuss using PCM to construct a polynomial mapping between a parameter and simulation

output, under the condition that the probability distribution of the parameter is not explicitly or

fully known. We consider two common ways in which information about the distribution may be

specified—1) through a set of sample parameter data, and 2) only through some descriptions of

the low moments. We subsequently study the errors in the PCM points and fit resulting from the

inexact knowledge of the parameter distribution.

Superficially, application of PCM seemingly requires estimation of the uncertain parameter’s

probability distribution. However, considering the PCM algorithm, we note that only some mo-

ments of the uncertain parameter are needed for PCM of a certain order, and so only estimation of

these moments is critical. On the other hand, we expect that the PCM fit may be highly sensitive

to certain errors in the moment estimates; thus, a comprehensive study of moment estimation to-

gether with mapping identification is important. This data-based approach is also in analogy with

statistical learning and system identification techniques.

21.3.1 PCM based on Sample Parameter Data

Because we can often easily collect data on a parameter X from historical records, we often

have available a large set of sample data drawn from the PDF (i.e., enough data that we can ap-

proximate well the cumulative distribution of X). In this case, a good polynomial mapping can

416

be obtained directly from the sample moments calculated from the data. Specifically, recall that

in order to get a nth-degree polynomial mapping through PCM (i.e., apply nth order PCM), we

only need moments of X up to the order of 2n + 1. We call the process of using sample moments

rather than the true moments to come up with a PCM mapping as the sample moment-based

PCM (and refer to the standard PCM algorithm as pdf-based PCM, for clarity). We formalize

in Theorem 21.4 that the sample moment-based PCM mapping approaches the one obtained from

the inherent pdf, as the size of the data set becomes large.

Theorem 21.4. Consider a data set {x1, x2, ..., xn} consisting of independent and identically dis-

tributed samples of a parameter X with distribution fX(x), that has finite moments. The mth-order

sample moment-based PCM mapping approaches the mth-order pdf-based PCM mapping with prob-

ability 1 as n → ∞.

Proof: In order to prove that the polynomial mapping obtained from sample moments converges

with probability 1 to the one obtained from the pdf fX(x), we only need to show the simulation

points calculated from sample moments converge in probability 1 to those calculated from fX(x).

As illustrated in Section 21.2, the determination of the mth order polynomial mapping needs m+1

simulation points that are the roots of the (m + 1)th-degree orthogonal polynomial with respect

to the weight function fX(x). Hence, we only need to show that the coefficients of the (m + 1)th-

degree orthogonal polynomial obtained from sample moments converge with probability 1 to those

obtained from fX(x).

Notice that the (m + 1)th-degree orthogonal polynomial hm+1(x) = xm+1 + am+1,mxm +

am+1,m−1x
m−1 + ... + am+1,0 is orthogonal to all the lower-degree polynomials, and hence orthogo-

nal to 1 , x , ... , xm. Thus, we can calculate the coefficients am+1,m, ...am+1,0 from the following

417

equation.

[
am+1,m am+1,m−1 ... am+1,0

]
= −

[
ζm+1 ζm+2 ... ζ2m+1

]
A−1, (21.1)

where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζm ζm+1 ... ζ2m

ζm−1 ζm ... ζ2m−1

...
...

...
...

1 ζ1 ... ζm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. It can be easily shown that the matrix A is invertible (using

the fact that E
[
(a1X

m + a2X
m−1 + ... + am+1)2

]
is positive for all ai that are not simultaneously

0. Now consider replacing each moment ζi in the coefficient equation by the sample moment ζ̄i,

defined as
∑n

j=1
(xj)

i

n , where n is the size of sample data set. We denote the changed matrix A as Ā.

The law of large numbers tells us that ζ̄1 converges with probability 1 to ζ1, and similarly (based on

applying the law of large numbers to the random variable xi) ζ̄i converges with probability 1 to ζi

for each i, see [107]. Hence, Ā converges with probability 1 to A. This convergence also guarantees

the invertibility of Ā with probability 1 (in the limit of large n). Therefore, the coefficient ām+1,i

obtained by using sample moments converges with probability 1 to am+1,i. �

Theorem 21.4 shows that PCM can be used to identify polynomial mappings even when the

parameter’s probability distribution is unknown, by using sample moments directly calculated

from a data set. We notice that this method does not require computation of the probability

distribution. We also note that stochastic convergence of sample-based PCM is an analog to the

deterministic convergence of discretization-based Gaussian quadrature (used for numerical stability,

see e.g. [315]).

418

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

The size of data set

T
he

 v
al

ue
 o

f t
hr

ee
 r

oo
ts

1st root based on sample moments
2nd root based on sample moments
3rd root based on sample moments
1st root using pdf
2nd root using pdf
3rd root using pdf

9 10 11 12 13 14 15 16 17
0

2

4

6

8

10

12

14
x 10

5

x

g(
x)

Actural mapping
PCM mapping based on pdf
Sample moment PCM, 5 samples
Sample moment PCM, 100 samples
Sample moment PCM, 500 samples

0 100 200 300 400 500
1

2

3

4

5

6

7

8
x 10

5

The size of data set

E
xp

ec
tio

n
of

 s
ys

te
m

 o
ut

pu
t based on 2nd order polynomial mapping using sample moments

based on the original 5th order polynomial mapping

Fig. 21.2: a) The points obtained from sample moment-based PCM converge to those obtained from pdf-

based PCM. b) Comparison of a degree-5 polynomial mapping, its 2nd-order pdf-based PCM approximation,

and approximations obtained from sample moments; c) The output mean obtained from the sample moment-

based PCM converges to the one obtained from pdf-based PCM, and hence in this case to the actual output

mean.

Example 2 We apply sample moment-based PCM to the example from Section 21.2. Specifically,

we assume that the pdf of X is unknown, and we only have a data set comprising independent

samples drawn from the distribution. As seen from Figure 21.2, the PCM points generated by

sample-moment PCM approach those from PDF-based PCM, for large data sets. We can also see

from that the polynomial mapping obtained from sample-moment PCM approaches that obtained

from the pdf-based PCM. Also, the output mean approaches that obtained from pdf-based PCM,

and hence (in this case) approaches the true output mean. �

However, we sometimes have available only a (relatively) small set of parameter samples. In

these limited-data cases, the sample moments are more likely to be away from the actual moments.

In this case, we must thus decide between 1) using sample moment-based PCM, and 2) directly

fitting the data with a typical probability distribution (e.g., uniform, Gaussian, or four-parameter

Beta), and then applying (pdf-based) PCM to find the mapping. Which method to use depends on

the size of the sample set and our a priori knowledge of the parameter’s probability distribution,

419

e.g., if the distribution is a typical one or not, see the classical statistics literature for details [316].

Generally, the second approach prevents overfitting of peculiarities in the data, and so tends to be

more robust to errors when the data set is sufficiently small. The form of the probability distribution

that should be used in the second approach is application-dependent. Gaussian, uniform, and four-

parameter Beta distributions are commonly used, see e.g. [316–318].

In this case, after a type of distribution is selected, we can estimate the parameter(s) of the

distribution (e.g. end points of the uniform distribution, four parameters of the Beta distribution)

by using one of the following classical methods [316]: 1) Maximum Likelihood estimation, 2) method

of matching moments, and 3) least square regression of the cumulative distribution function. The

validity of the assumed distribution form can be determined using hypothesis-testing methods such

as the chi-square test [316].

We note that the intrinsic probability distribution may differ from the form that we have chosen,

and hence we expect some error in fitting the data set with these distributions. Thus, we recommend

sample moment-based PCM when sufficient data is available.

21.3.2 PCM with Knowledge of Only Some Low Moments

In some special cases, we may only know a few descriptive low moments of a random parameter.

For example, operators of the power system may know through experience that a particular load

has average magnitude of 10,000W with a variation 1000W, although no data has been formally

recorded. In this setting, it is natural to fit the low moments with a typical probability distribution.

Then we can use the moments generated from the pdf for finding the PCM mapping, as we have

done in Section 21.3.1. Unfortunately, the typical distribution function with which to match mo-

ments is not easy to choose (in contrast to the small-dataset problem discussed in Section 21.3.1),

420

since without sample data it is impossible to use hypothesis testing methods to determine the ap-

propriateness of the selected pdf form. What we really care about, however, is how the change of

the distribution affects the identified mapping. From this viewpoint, which distribution we choose

affects the higher moments, and hence the locations of PCM points; we refer the reader to Example

3 below for an illustrative example comparing two distributional fits. Also of relevance, we will

systematically study how the PCM points move with the higher moments in Section 21.3.3.

Example 3 For illustration, we compare the PCM points for uniform distribution and Gaussian

distribution with the same mean and variance (Table 21.1). We see that the PCM points based on

the Gaussian distribution are more spread out compared to those based on the Uniform distribution,

which is sensible since the uniform distribution is bounded. This suggests that if we wish to take

into account parameter values far away from the mean (albeit at the cost of less accurate estimates

near the mean), it is better to use the normal distribution. Another advantage is that this mapping

can better eliminate Runge’s Phenomenon over the likely ranges of a parameter compared to the

Uniform distribution-based PCM mapping, supposing the mapping is indeed normal distributed.

Our performance analysis in the next section will make clear these tradeoffs in the choice of higher

moments for PCM. �

21.3.3 Higher Moments’ Impact on PCM

Whatever the methods used to obtain moment estimates, we expect some error in these es-

timates, which in turn will result in errors in the simulation points and hence in the mapping

obtained as compared to pdf-based PCM. The dependence of the zeros of orthogonal polynomi-

als on parameters of the weighting function (in our case, the probability distribution) has been

widely studied [320]. We require extension of these results in the literature, for several reasons: 1)

421

Tab. 21.1: Comparison of PCM points between uniform distribution and Gaussian distribution, both with

mean as 8 and variance as 8.

Roots of 1st or-

der Polynomial

Roots of 2nd

Order Polyno-

mial

Roots of 3rd

Order Polyno-

mial

Roots of 4th

Order Polyno-

mial

Uniform Dis-

tribution

8.000 5.172, 10.828 4.205, 8.000,

11.795

3.781, 6.334,

9.666, 12.219

Gaussian Dis-

tribution

8.000 5.172, 10.828 3.101, 8.000,

12.899

1.397, 5.901,

10.099, 14.603

typically, we do not have a parametrized form for the weighting function; 2) our interest is in the

accuracy of the mapping rather than of the points themselves and so we must consider movement

of all points. With these goals in mind, we have studied the impact of higher-moment variations

on the PCM points and fit in two ways: 1) using root-locus methods and 2) through sensitivity

arguments.

First, by applying the classical root-locus method [321] and generalizations thereof, we are able

to obtain majorizations of PCM points in terms of their moments, and also to characterize the

extremes of the root locations due to variabilities in certain moments. This approach allows us

to study the impact of moment variabilities on PCM points, and hence the range of parameters

for which the fit is accurate, in a sequential fashion: in particular, we find that PCM points

move monotonically to the right toward the roots of a lower-order orthogonal polynomial with

respect to the odd moments, while even-moment changes engender a more complex root movement

with (possibly) a change in direction. Further, we find that the movement of the PCM points

is particularly simple when the pdf is symmetric, i.e. the odd moments are 0. The results are

422

summarized in the following theorems.

Specifically, let us begin by characterizing the dependence of the PCM points on the odd

moments.

Theorem 21.5. Consider that all moments of X up to 2n are fixed. When the moment ζ2n+1

moves from 0 to ∞, the n+1 PCM points that can be computed from these moments (i.e., the roots

of hn+1) all move to the right. The rightmost PCM point approaches infinity, and the remaining n

PCM points converge to the roots of hn.

Proof: Let us show that the movement of the PCM points can be traced using a root locus, and

hence prove the result. According to the recurrence for orthogonal polynomials, we have hn+1 =

(x− (xhn,hn)
(hn,hn))hn− (hn,hn)

h(n−1,n−1)
hn−1, where (hi, hj) denotes the integral

∫
hi(x)hj(x)f(x)dx [311]. Notice

that hn+1 can be written as (x − ζ2n+1+c1
c2

)hn − c2
c3

hn−1, where constants c1 and c2 are determined

by moments up to 2n, and constant c3 is determined by moments up to 2n − 2. We can write

the equation hn+1 = 0 into the root locus form ζ2n+1

−c2
hn(x) +

(
xhn(x) − c1

c2
hn(x) − c2

c3
hn−1(x)

)
= 0,

where ζ2n+1

−c2
is a root locus variable [321]. Hence, the movement of PCM points by changing ζ2n+1

can be studied using a root locus. To continue, we note that the roots of hn+1 are real and simple.

They and those of hn are interleaved [319]. From the root locus, when ζ2n+1 move from 0 to ∞,

the left n roots of hn+1 move to the right starting from the zeros of xhn(x)− c1
c2

hn(x) − c2
c3

hn−1(x)

to the zeros of hn, and the rightmost one moves to ∞. �

Theorem 21.5 shows the ranges of the PCM points with the highest moment flexible to move.

With ζ2n+1 approaching infinity, all of the roots move to the right, with one approaching infinity,

and the rest approaching the n PCM points of the n − 1 degree mapping. Since a large ζ2n+1

indicates a large asymmetry, it makes sense that the PCM points shift toward the most likely taken

ranges. Also, it can be easily seen that when ζ2n+1 moves from 0 to −∞, the rightmost n PCM

423

points move to the left to the zeros of hn, and leftmost one moves to −∞.

Let us next study the dependence on the even moments, when the PDF is assumed even.

Theorem 21.6. Consider that all odd moments up to 2n+1 are 0 and the even moments are fixed

except the highest one, ζ2n. When the moment ζ2n moves from its minimum possible value to ∞,

one of the n + 1 PCM points (roots of hn+1) starts from 0, and the remaining points start from

the roots of hn. The right- and left- most PCM points move toward ±∞ respectively, and the rest

approach the roots of hn−1.

Proof: Similarly to the proof of Theorem 21.5, we can write the expression hn+1 = 0 into a

root locus form. Since all the odd moments are 0, both f(x) and h2
n are even functions, and

hence the equation (xhn,hn)
(hn,hn) = 0 holds. Therefore, hn+1(x) can be written as xhn − ζ2n+c4

c5 hn−1,

where both c4 and c5 are determined only by the moments up to 2n − 2. The root locus form is

thus ζ2n

c5
hn−1(x) + (c4

c5
hn−1(x) − xhn(x)) = 0. The root locus form clearly shows that when ζ2n

approaches infinity, the PCM points approach the roots of hn−1 and ±∞. Now let us consider the

root locations for small ζ2n. To do so, we note that ζ2n has a lower bound, which is determined by

the non-negativity of E
[
(a1x

n + a2x
n−1 + ... + an+1)2

]
for any ai ∈ R. When ζ2n is at this lower

bound, we can find ai �= 0 to make E
[
h′2

n

]
= 0, where h′

n = a1x
n + a2x

n−1 + ...+ an+1. E
[
h′2

n

]
= 0

holds only when h′
n = 0 since h′2

n ≥ 0. Thus, h′
n is the nth order orthogonal polynomial hn, since

(h′
n, xi) = 0, for i = 0, ...n− 1. So when ζ2n is at this lower bound, we have (hn, hn) = 0 and hence

according to the root locus, the roots are those of xhn. Root locus rules yield that the roots move

from those of polynomial xhn to those of hn−1 and ±∞, without changing direction. �

In summary, for an even probability distribution, the root locus allows the study of PCM points’

movement with variations of moments. The PCM points are always symmetric with respect to 0.

Increasing the highest even moment drives the PCM points apart, starting from 0 and those of the

424

n − 1 degree polynomial mapping toward those of the n − 2 degree mapping and ±∞.

Finally, let us study the dependence on even moments for the general case; for convenience,

we set the highest odd moment to zero, with the understanding that Theorem 21.5 allows us to

subsequently characterize the dependence on it.

Theorem 21.7. Consider that all moments up to 2n − 1 are fixed, the (2n + 1)th moment is 0,

and the (2n)th moment ζ2n is flexible to move†. When ζ2n moves from 0 to ∞, the PCM points

change direction at most once. Eventually, the right- and left- most PCM points move toward ±∞

respectively, and the remaining PCM points approach the roots of hn−1.

Proof: Under the condition that the highest moment ζ2n+1 is 0, we can rewrite the recurrence

as hn+1 = (x − qζ2n+c1
ζ2n+c2

)hn(x) − ζ2n+c3
c4

hn−1, where constants ci, i = 1..4 are determined by mo-

ments up to 2n − 1, and q is a constant. Denoting ζ2n + c2 as a new variable ζ ′2n, hn+1 can be

rewritten as hn+1 = fn+1(x) − fn(x)
ζ′2n

− fn−1(x)ζ ′2n, where fn+1(x) = (x − q)hn(x) + c2−c3
c4

hn−1(x),

fn(x) = (c1 − qc2)hn(x), and fn−1(x) = hn−1(x)
c4

. Hence the roots of hn+1(x) are the roots of the

equation fn−1(x)ζ ′22n − fn+1(x)ζ ′2n + fn(x) = 0. From the equation, we can see that each root x

is associated with at most two ζ2n. Hence when ζ2n increases, the movement of the roots may

only change direction only once. The limit of the locations when ζ2n → ∞ can be studied from

hn+1 = (x − qζ2n+c1
ζ2n+c2

)hn(x) − ζ2n+c3
c4

hn−1. When ζ2n → ∞, the second term dominates. Hence the

roots approaches those of hn−1 and ±∞. �

Second, we use sensitivity notions to specify the relationship between moment errors and errors

in the PCM points, fit, and output statistics. Using these sensitivity results together with moment-
† We can make this assumption that the moment is 0 WLOG because Theorem 21.5 can subsequently be used to

study the movement of the PCM points due to changes in the odd moments.

425

estimation error expressions from classical statistics, we can estimate error percentages for PCM

points and/or output characteristics, and hence decide whether PCM of a certain order is viable.

The sensitivity characterization follows naturally from existing work, and so we omit the details.

Briefly, we use a clever description of the PCM points as solutions to an eigenvalue equation, see

e.g. [315]. From this reformulation as an eigenanalysis, we can determine sensitivity of the points

to moment errors using classical eigenvalue sensitivity notions. The moment errors can be related

to the size of the available data set using standard statistics notions, and hence percentage errors

in the PCM points and in the fit can roughly be related to characteristics of the data sets. It is

worth noting that these error expressions often depend on the moments of X themselves, in which

case sample moments must be used to estimate the errors.

21.4 PCM when Parameters Depend on Regressors: Brief Overview

In many applications, an input parameter’s probability distribution is dependent on one or

more known regressors. For example, load values in a power network may depend on the season,

and chemical concentrations in a biological regulatory network may depend on other measured

concentrations. In consequence, the locations of PCM points and hence the PCM mappings are

also dependent on these regressors. In these applications, we need to identify the mapping between

a parameter and the system output for likely parameter values, conditioned on the value(s) of the

particular regressor(s). In this case, we can apply PCM based on the conditional probability distri-

bution of the parameter given the regressors, however these conditional PDFs are typically unknown

and instead must be inferred from data. In this section, we assume that regressor-parameter pair

sample data is available, and suggest strategies for regression and subsequent application of PCM

for data sets of various fidelities. Because our focus in this chapter is on mapping-identification,

426

our discussion of regression here is brief and informal: we wish to expose the strategies for applying

PCM without concerning ourselves with the details of proof regarding regression techniques.

Large Data Set Suppose we have a large data set of randomly sampled regressor-parameter pairs

(i.e., sufficient data at each discrete regressor value or over a small range of continuous regressor

values). Then we can calculate PCM points for a known regressor value in two steps.

1) We collect the parameter samples at or in a small range around the regressor value of interest.

2) We use the sample moment-based PCM method (see Section 21.3.1) to obtain the polynomial

mapping.

When the size of the data set becomes arbitrarily large over small ranges of the regressor, the

PCM mapping obtained using this method approaches the one obtained from the inherent condi-

tional probability distribution with probability 1 (given some weak conditions on the continuity of

the conditional distribution). However, we may in general need a very large data set for accurate

mapping identification.

Moderate-Sized Data Set In most applications, the conditional distribution of the parameters and

hence the parameter moments change smoothly with the regressors. Hence, we can find a low-order

relationship between the regressors and parameter moments, as follows:

1) We use classical regression methods to find the relationship m̂i(r) between the regressor r

and the ith sample moment (or ith power) of the parameter, see [317] for details. Notice that

polynomials or other bases can be used for the fit, and that typically higher moments require more

basis functions.

2) For a particular regressor value rk that we wish to study, we read off all the sample moments

m̂i(rk), and use the sample moment-based PCM methods to come up with the PCM mapping.

427

Small Data Set Let us consider the case where we only have a small set of regressor-parameter

sample data pairs. With such limited information, it is most effective to fit the data assuming

a typical distribution form for each regressor value, and a low-order dependence of the distribu-

tion parameters (typically moments) on the regressor. The typical distribution that we choose is

application-specific.

We use the following procedure to finding the PCM mapping in this case:

1) We choose a typical distribution form that reasonably describes the parameter’s conditional

distribution in this application. Let us assume that the distribution is specified by its first q

moments.

2) We calculate the ith power of the parameter (denoted by mi) for each regressor value rj, for

i = 1, . . . , q.

3) We use regression methods to fit the data from step 2 with basis functions, thus obtain-

ing approximations m̂i(r) for the sample moments. Hence, we can approximate the conditional

distribution of the parameter given the regressor (denoted as f(x|r)).

4) For a particular regressor value rk that we want to study, we calculate all the moments

needed for PCM from the distribution f(x|rk), and use the moment-based PCM methods to obtain

the mapping.

21.5 Applications

In this section, we introduce several applications of PCM in identifying mappings between

uncertain parameters and simulation outputs. In the interest of space, we only pursue the air

traffic management application in some detail, and briefly introduce the other ones.

428

Prediction of Delays in Air Traffic Flow Management There is abundant literature on optimizing

air traffic flow management strategies to minimize traffic delay under capacity constraints (e.g.,

limited controller resources, limited runway resources, etc) [2, 93, 291]. These optimizations are

typically done using highly simplified and deterministic models for traffic flow. Hence, in order to

practically evaluate a strategy, accurately finding the corresponding traffic delay is critical. How-

ever, the prediction of delay under a management strategy is not a easy task, for two reasons. First,

the United States national airspace system is so large and strongly interconnected that the delay

can often only be predicted using a time-consuming simulation tool, e.g., the Future ATM Con-

cepts Evaluation Tool (FACET) [322]. Second, delay is highly dependent on uncertainties such as

weather conditions. Severe weather events (whose timings are often uncertain) can cause significant

delay since capacity constraints fall significantly compared to those under normal weather condi-

tions [312]. Here, we suggest using PCM to find mappings between uncertain weather parameters

and delays, and hence predict the distribution of delays, without running extensive simulations over

all possible weather conditions. We illustrate this approach for delay prediction with a canonical

example concerning congestion at San Francisco International Airport (SFO).

SFO is well known for its morning fog during the summer months. The fog usually settles in

around midnight and remains in place until clearing during the morning or early afternoon. Under

normal weather conditions, aircraft are allowed to land parallel on two close runways, however,

when fog is present, this is considered unsafe and only one runway can be used, causing delay.

Hence the fog clearing time is a key parameter affecting traffic delay. To minimize en route delays

and backups, aircraft are held at their origins (through a mechanism known as a ground delay

program, or GDP). The extent and time of the GDP is typically set based on a prediction of the

fog clearing time, and so understanding the mapping between the actual fog clearing time and the

429

0.06 0.08 0.1 0.12 0.14
0

100

200

300

400

500

600

700

Pressure Difference (In)

F
og

 C
le

ar
in

g
T

im
e

w
ith

 M
ea

n
V

al
ue

 (
M

in
)

5 7 9 11 13 15
−10

0

10

20

30

40

50

60

Fog Clearing Time (hour)

T
ot

al
 D

el
ay

Mapping between Fog Clearing Time and Traffic Delay

Mapping through exhaustive simulation
4th order PCM Mapping through moment regression
4th order PCM Mapping assuming a large data set

Fig. 21.3: a) The dataset showing fog clearing time at SFO versus the pressure difference between SFO and

SAC. Each red point is a data collected. The blue line shows the average of clearing time associated with

each particular pressure difference. b) Mapping between fog clearing time and traffic delay

consequent delay over the range of likely fog-clearing times is valuable.

A crude but effective method for predicting the fog clearing time at SFO on a particular day

is based on the pressure difference between San Francisco and Sacramento (SAC) the day before.

Thus, we can view the pressure difference as a known regressor for the fog-clearing time distribu-

tion‡. Figure 21.3 shows the relationship of clearing time at SFO (the parameter) with the pressure

difference between SFO and SAC (the regressor) on the previous evening. Given that the pressure

difference is 0.09in on a particular evening, we wish to determine the relationship between the fog

clearing time and the resultant delay (the output of interest) for likely clearing times, using only a

small number of simulations.

We have used the regression methods for large- and medium-sized data sets to estimate the

conditional moments, and hence to find a 4th order PCM mapping between fog clearing time and

the delay, when the pressure difference is 0.09in. The PCM-based mappings and the mapping found

through running the simulation algorithm exhaustively are shown in Figure 21.3. PCM identifies
‡ Many other factors can be chosen as regressors, e.g., the outputs of weather forecasting programs. In this

illustration, we choose the pressure difference as a regressor.

430

the mapping quite well over likely parameter values.

Load Uncertainty Evaluation for Power System Fault Dynamics Simulations of electric power

system dynamics are widely used, e.g. for characterizing system responses to faults. The relative

prevalence of various load types (i.e., inductive vs. lighting loads) at the time of a fault is stochastic,

and yet this ratio of load types can significantly impact the dynamic response. Thus, obtaining

the mapping between load-type prevalences and certain features of the dynamic response, such

as the minimum voltage reached at a particular bus during the transient, is very important for

fault-evaluation studies. A complementary use of such mappings is in post-fault analysis, where

the inverse mapping can be used to determine the load-type prevalences at the time of the fault.

Given the computational cost of simulations for electric power system dynamics, we suggest

using PCM to identify the mapping with sparse simulation, albeit at the cost of only obtaining

an accurate mapping at the likely parameter values. Like our other applications, we note that the

probability distributions of the load-type parameters are not well known, and so the data-based

approach developed here is needed.

Integrative Simulation in Cell Biology Detailed system-level simulation in biology (of cells, groups

of cells, or whole organisms) can permit better understanding, and eventually design and control,

of complicated biological behaviors. Such simulations (see, for instance, the E-cell and Virtual Cell

programs [323,324]) are typically very complicated and hence time-consuming. For instance, even

to simulate a single cell’s dynamics, we need to consider gene expression, molecule diffusion, signal

transduction, biochemical reaction, etc [325,326].

Understanding the impact of the many uncertain parameters in a biological system is necessary,

to identify the key factors that modulate its behavior. For instance, in the epidermal growth factor

431

receptor (EGFR) pathway related to tumor formation, the concentration of molecules like Shc,

Sos, Grb2 and EGFR affect the concentration of activated oncogene Ras, and eventually cell

devision [327]. In order to understand the impact (the mapping between the parameters and

critical concentration), we have to rely on simulations at various parameter values, and hence PCM

is a valuable tool. As in the other applications, we note that the concentration parameters’ ranges

must be inferred from data, and so the comprehensive methodology developed here is needed.

432

BIBLIOGRAPHY

[1] Y. Wan, S. Roy, and A. Saberi, “Designing spatially-heterogeneous strategies for control of
virus spread,” IET Systems Biology, vol. 2, No. 4, pp. 184–201, 2008. Short version in Pro-
ceedings of 46th IEEE Conference on Decision and Control, New Orleans, Louisiana, 12-14
December, 2007.

[2] Y. Wan and S. Roy, “A scalable methodology for evaluating and designing coordinated air traf-
fic flow management strategies under uncertainty,” IEEE Transactions on Intelligent Trans-
portation Systems, in press. Short version in Proceedings of AIAA 2007 Guidance, Navigation,
and Control Conference, Hilton Head, South Carolina, 20-23 August, 2007.

[3] Y. Wan and S. Roy, “Sensitivity of national airspace system performance to disturbances:
modeling, identification from data, and use in planning,” in Proceedings of AIAA 2008 Guid-
ance, Navigation, and Control Conference, Honolulu, Hawaii, 18–21 August, 2008.

[4] S. Roy, J. Krueger, D. Rector, and Y. Wan, “A network model for activity-dependent sleep
regulation,” Journal of Theoretical Biology, vol. 253, pp. 462–468, 2008. Short version in Pro-
ceedings of 2008 American Control Conference, pp. 1400–1405, Seattle, Washington, 11-13
June, 2008.

[5] Y. Wan, S. Roy, and A. Saberi, “A new focus in the science of networks: toward methods for
design,” Proceedings of the Royal Society A, vol. 464, pp. 513–535, March, 2008.

[6] Y. Wan, S. Roy, X. Wang, A. Saberi, T. Yang, M. Xue, and B. Malek, “On the structure
of graph edge designs that optimize the algebraic connectivity,” in Proceedings of 47th IEEE
Conference on Decision and Control, Cancun, Mexico, 9–11 December, 2008.

[7] S. Roy, Y. Wan, and A. Saberi, “On time-scale designs for networks,” International Journal
of Control, in press. Short version in Proceedings of 47th IEEE Conference on Decision and
Control, Cancun, Mexico, 9–11 December, 2008.

[8] S. Roy, Y. Wan, and A. Saberi, “Majorizations for the dominant eigenvector of a nonnega-
tive matrix,” in Proceedings of 2008 American Control Conference, pp. 1965–1966, Seattle,
Washington, 11-13, 2008.

[9] S. Roy and Y. Wan, “An explicit formula for differences between laplacian-eigenvector com-
ponents using coalesced graphs,” submitted to Linear Algebra and its Applications.

[10] Y. Wan, S. Roy, A. Saberi, and A. Stoorvogel, “A multiple-derivative and multiple-delay
paradigm for decentralized controller design: introduction using the canonical double-
integrator network,” submitted to Automatica. Short version in Proceedings of AIAA 2008
Guidance, Navigation, and Control Conference, Honolulu, Hawaii, 18-21 August, 2008.

[11] Y. Wan, S. Roy, A. Saberi, and A. Stoorvogel, “The design of multi-lead-compensators for sta-
bilization and pole placement in double-integrator networks,” submitted to IEEE Transactions
on Automatic Control. Short version submitted to 2009 American Control Conference.

[12] Y. Wan, S. Roy, A. Saberi, and A. Stoorvogel, “Semi-global stabilization of double-integrator
networks with actuator saturation,” submitted to 2009 American Control Conference.

[13] S. Roy, A. Saberi, and Y. Wan, “On multiple-delay static output feedback stabilization of
LTI plants,” in Proceedings of 2008 American Control Conference, pp. 419-423, Seattle, Wash-
ington, 11-13 June, 2008, also submitted to International Joournal of Robust and Nonlinear
Control.

[14] Yan Wan, Sandip Roy, Anton Stoorvogel, and Ali Saberi, “On multiple-delay approximations
of multiple-derivative controllers,” submitted to Automatica. Short version submitted to 2009
European Control Conference.

[15] A. Stoorvogel, S. Roy, Y. Wan, and A. Saberi, “A class of neutral-type delay differential equa-
tions that are effectively retarded,” submitted to IEEE Transactions on Automatic Control.
Short version submitted to 2009 American Control Conference.

[16] Y. Wan, S. Roy, and A. Saberi, “Explicit precompensator design for invariant-zero cancella-
tion,” International Journal of Control, in press.

[17] Y. Wan, S. Roy, and A. Saberi, “A pre- + post- + feedforward compensator design for zero
placement,” submitted to International Journal of Control. Short version submitted to 2009
American Control Conference.

[18] S. Roy, Y. Wan, A. Saberi, and B. Malak, “An alternative approach to designing stabilizing
compensators for saturating linear time-invariant plants,” submitted to International Journal
of Robust and Nonlinear Control. Short version in Proceedings of 47th IEEE Conference on
Decision and Control, Cancun, Mexico, 9–11 December, 2008.

[19] Y. Wan, S. Roy, and A. Saberi, “A stochastic automaton-based algorithm for flexible and
distributed network partitioning,” International Journal of Distributed Sensor Networks, vol.
4, no. 3, pp. 223–246, 2008.

[20] S. Roy, Y. Wan, and A. Saberi, “A flexible algorithm for sensor network partitioning and
self-partitioning problems,” 2nd International Workshop on Algorithmic Aspects of Wireless
Sensor Networks, 33th International Colloquium on Automata, Languages, and Programming,
Venice, Italy, 9-16 June 2006. Lecture Notes in Computer Science, vol. 4240, pp.152–163,
Springer, 2006.

[21] Y. Wan, S. Roy, and B. Lesieutre, “Uncertainty evaluation through mapping identifica-
tion in intensive dynamic simulations,” submitted to IEEE Transactions on Systems, Man,
and Cybernetics, Part A. Short version in Proceedings of AIAA 2008 Guidance, Navigation,
and Control Conference, Honolulu, Hawaii, 18–21 August, 2008.

[22] R. Pastor-Satorras and A. Vespignani, “Immunization of complex networks,” Physical Reviews
E, 65(3):036104, 2002.

434

[23] C. Wang, J. C. Knight and M. C. Elder, “On computer viral infection and the effect of
immunization,” in Proceedings of 16th Annual Computer Security Applications Conference,
New Orleans, Louisiana, December, 2000.

[24] S. Riley et al., “Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact
of Public Health Interventions,” Science, vol. 300, pp. 1961-1966, June 20, 2003.

[25] S. Roy, A. Saberi, and K. Herlugson, “Formation and alignment of distributed sensing agents
with double-integrator dynamics,” IEEE Press Monograph on Sensor Network Operations,
April 2006.

[26] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked
multi-agent systems,” in Proceedings of the IEEE, January 2007.

[27] O. Mason and M. Verwoerd, “Graph theory and networks in biology,” IET Systems Biology,
vol. 1(2), pp. 89-119, 2007.

[28] S. Wang and E. J. Davison, “On the stabilization of decentralized control systems,” IEEE
Transactions on Automatic Control, vol. AC-18, pp. 473-478, October 1973.

[29] S. Roy, A. Saberi, and P. Petite,“Scaling: a canonical design problem for networks,” in the
Proceedings of the 50th American Control Conference, Minneapolis,MN, June 2006. Extended
version in the International Journal of Control (by S. Roy and A. Saberi), vol. 80, no. 8,
pp. 1342-1353, 2007.

[30] R. M. Anderson and R. M. May, Infectious Diseases of Humans Dynamics and Control, Oxford
University Press, 1991.

[31] J. Arino and P. van den Driessche, “The Basic Reproduction Number in a Multi-city Com-
partmental Epidemic Model,” Positive Systems, LNCIS, vol. 294, pp. 135-142, 2003.

[32] E. Diaz, A. Urdapilleta, G. Chowell and C. Castillo-Chávez, “Ring Vaccination as a Control
Strategy for Foot-and-Mouth Disease”, in 2005 MTBI Summer Program, Los Alamos, NM,
2005.

[33] M. Lipsitch et al., “Transmission dynamics and control of severe acute respiratory syndrome,”
Science, vol. 300, pp. 1966-1970, June 20, 2003.

[34] D. J. Daley and J. Gani, Epidemic Modeling: An Introduction, Cambridge University Press,
1999.

[35] D. J. Watts, R. Muhamad, D. C. Medina, and P. S. Dodds, “Multiscale, resurgent epidemics
in a hierarchical metapopulation model,” in Proceedings of the National Academy of Science
of the United States, vol. 102, no. 32, pp. 11157-11162, August 9, 2005.

[36] P. van den Driessche, and J. Watmough, “Reproduction numbers and sub-threshold endemic
equilibria for compartmental models for disease transmission,” Mathematical Biosciences, vol.
180, pp. 29-48, 2002.

[37] H. W. Hethcote, “An immunization model for a heterogeneous population,” Theoretical Pop-
ulation Biology, vol. 14, no. 3, December 1978.

435

[38] R. M. May and R. M. Anderson, “Spatial heterogeneity and the design of immunization pro-
grams,” Mathematical Biosciences, vol. 72, pp. 83-111, November 1984.

[39] M. J. Keeling and P. Rohani, “Estimating spatial coupling in epidemiological systems: a
mechanistic approach,” Ecology Letters, 2002(5), pp. 20-29, 2002.

[40] A. L. Llyod and R. M. May, “Spatial heterogeneity in epidemic models,” Journal of Theoretical
Biology, vol. 179, pp. 1-11, 1996.

[41] B. Grenfell and J. harwood, “(Meta)population dynamics of infectious diseases,” Trends in
Ecology and Evolution, vol. 12, no. 10, October 1997.

[42] B. T. Grenfell and B. M. Bolker, “Cities and villages: infection hierarchies in a measles
metapopulation,” Ecology Letters, vol. 1, pp. 63-70, 1998.

[43] N. M. Ferguson, M. J. Keeling, W. J. Edmunds, R. Gani, B. T. Grenfell, R. M. Anderson and
S. Leach, “Planning for smallpox outbreaks,” Nature, vol. 425, October 2003.

[44] L. A. Rvachev, “A mathematical model for the global spread of influenza,” Mathematical
Biosciences, vol. 75, pp. 3-22, July 1985.

[45] R. F. Grais, J. H. Ellis and G. E. Glass, “Assessing the impact of airline travel on the geographic
spread of pandemic influenza,” European Journal of Epidemiology, vol. 18, pp. 1065-1072, 2003.

[46] V. Colizza, A. Barret, M. Barthélemy and A. Vespignani, “The role of the airline transportation
network in the prediction and predictability of global epidemics, ” Proceedings of the National
Academy of Sciences, vol. 103, no. 7, pp. 2015-2020, February 14, 2006.

[47] L. Ufnagel, D. Brockmann and T. Geisel, “Forecast and control of epidemics in a globalized
world,” Proceedings of the National Academy of Sciences, vol. 101, no. 42, October 19, 2004.

[48] V. Colizza, R. Pastor-Satorras and A. Vespignani, “Reaction-diffusion processes and metapop-
ulation models in heterogeneous networks,” Nature Physics, vol. 3, April, 2007.

[49] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the definition and the compu-
tation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous
populations,” Journal of Mathematical Biology, vol. 28, pp. 365-382, 1990.

[50] O. Diekmann, J. A. P. Heesterbeck, Mathematical Epidemiology of Infectious Diseases: Model
Building, Analysis and Interpretation, S. Levin, Ed., Wiley Series in Mathematical and Com-
putational Biology, John Wiley & Sons, New York, 2000.

[51] T. W. Ng, G. Turinici, and A. Danchin, “A double epidemic model for the SARS propagation,”
BMC Infectious Diseases, 3:19, September 10, 2003.

[52] B. Bolker and B. Granfell, “Space, persistence and dynamics of measles epidemics,” Philo-
sophical Transactions of the Royal Society of London. B, vol. 348, pp. 309-320, 1995.

[53] D. J. D. Earn, P. Rohani and B. T. Grenfell, “Persistence, chaos and synchrony in ecology and
epidemiology,” Proceedings of the Royal Society of London. Series B, vol. 265, pp. 7-10, 1998.

436

[54] P. Rohani, D. J. D. Earn and B. T Grenfell, “Opposite pattens of synchrony in sympatric
disease metapopulations,” Science, vol. 286, October 29, 1999.

[55] M. J. Keeling, “Metapopulation moments: coupling, stochasticity and persistence,” Journal
of Animal Ecology, vol. 69, pp. 725-736, 2000.

[56] N. G. Becker, K. Glass, L. Zhengfeng, and G. K. Aldis, Mathematical Biosciences, vol. 193,
pp. 205-221, 2005.

[57] C. Beauchemin, J. Samuel, and J. Tuszynski, “A simple cellular automaton model for influenza
A viral infections,” Journal of Theoretical Biology, vol. 232, pp. 223-234, 2005.

[58] C-Y. Huang et al, “Simulating SARS: small-world epidemiological modeling and public health
policy assessments,” Journal of Artificial Societies and Social Simulation, vol. 7, no. 4, 2004.

[59] J. O. Kephart, S. R. White, “Directed-graph epidemiological models of computer viruses”, in
Proceedings of IEEE Symposium on Security and Privacy, pp. 343-359, Oakland, CA, 1991.

[60] Z. Dezsö and A.-L. Barabási, “Halting viruses in scale-free networks,” Physical Review E,
65:055103(R), 2002.

[61] R. Pastor-Satorras and A. Vespignani, “Epidemic dynamics in finite size scale-free networks,
Physical Review E, 65:035108(R), 2002.

[62] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical
Review Letters, 86(14) pp. 3200-3203, 2001.

[63] M. Boguñá and R. Pastor-Satorras, “Epidemic spreading in correlated complex networks,”
Physical Review E, 66(4):047104, 2002.

[64] A. L. Lloyd and R M. May, “How viruses spread among computers and people,” Sicence,
vol. 292, no. 5520, pp. 1316-1317, May 2001.

[65] Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos, “Epidemic spreading in real networks: an
eigenvalue viewpoint,” in Proceedings of 22nd International Symposium on Reliable Distributed
Systems, Florence, Italy, October, 2003.

[66] D. Siljak, Decentralized Control of Complex Systems, Academic Press: Boston, 1994.

[67] J. P. Corfmat and A. S. Morse, “Decentralized control of linear multivariable systems,” Auto-
matica, vol. 12, pp. 479-495, 1976.

[68] S. Roy, K. Herlugson, and A. Saberi, “A control-theoretic perspective on distributed discrete-
valued decision-making in networks of sensing agents,” IEEE Transactions on Mobile Com-
puting, vol. 5, no. 8, pp. 945-957, pp. 55-62, 2001. 2006.

[69] S. Roy and A. Saberi,“On structural properties of the Lyapunov matrix equation for optimal
diagonal Lyapunov functions,” submitted as a technical correspondence to the IEEE Transac-
tions on Automatic Control.

[70] G. W. Stewart, Introduction to Matrix Computations, Academic Press: New York, 1974.

437

[71] D. P. Bertsekas, Nonlinear Programming (2nd ed.), Athena Scientific: Belmont MA, 1995.

[72] R. G. Gallager, Discrete Stochastic Processes, Kluwer Academic Publishers, Massachusetts,
1996.

[73] F. R. K. Chung, Spectral Graph Theory, American Mathematical Society Press: Providence,
RI, 1997.

[74] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics
in Applied Mathematics Series, SIAM, Philadelphia, 1994.

[75] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkal and
N. Wang, “Modelling disease outbreaks in realistic urban social networks,” Nature, vol. 429,
pp. 180-184, 2004.

[76] A. Ganesh, L. Massoulié and D. Towsley, “The effect of network topology on the spread of
epidemics,” in Proceedings of IEEE Infocom, Miami, FL, March 13-17, 2005.

[77] V. Blondel and J. Tsitsiklis, “NP-hardness of some linear control design problems,” SIAM
Journal of Control and Optimization, vol. 35, no. 6, pp. 2118-2127, 1997.

[78] D. Hershkowitz, “Recent directions in matrix stability,” Linear Algebra and its Applications,
Vol. 171, pp. 161-186, Jul., 1992.

[79] M. E. Fisher and A. T. Fuller,“On the Stability of matrices and the convergence of linear
iterative processes,” Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 417-425,
1958.

[80] S. Boyd, “Convex optimization of graph laplacian eigenvalues,” in Proceedings of the Interna-
tional Congress of Mathematicians, vol. 3, pp. 1311-1319, 2006.

[81] A. S. Lewis and M. L. Overton, “Eigenvalue optimization,” Acta Numerica, vol. 5, pp. 149-190,
1996.

[82] S. Roy, B. Sridhar, and G. C. Verghese,“An Aggregate Dynamic Stochastic Model for an Air
Traffic System,” in Proceedings of the 5th Eurocontrol/Federal Aviation Agency Air Traffic
Management Research and Development Seminar, Budapest, Hungary, June 2003.

[83] S. S. Allan, J. A. Beesley, J. E. Evans and S.G. Gaddy, “Analysis of Delay Causality at Newark
International Airport,” in Proceedings of the 4th USA/Europe Air Traffic Management R&D
Seminar, Santa Fe, New Mexico, December 2001.

[84] D. Long, E. Wingrove, D. Lee, J. Gribko, R. Hemm and P. Kostiuk, “A Method for Evaluating
Air Carrier Operational Strategies and Forecasting Air Traffic with Flight Delay,” Final Report
for National Aeronautics and Space Administration Contract NAS2-14361, 1999.

[85] E. R. Mueller and G. B.Chatterji, “Analysis of aircraft arrival and departure delay charac-
teristics,” Proceedings of the Aircraft Technology Integration and Operations Technical Forum,
Los Angeles, CA, October 2002.

438

[86] D. C. Moreau and S. Roy,“A Stochastic Characterization of En Route Traffic Flow Management
Strategies,” in Proceedings of the 2005 AIAA Guidance, Navigation, and Control Conference,
San Francisco, CA.

[87] J. W. Pepper, K. R. Mills and L. A. Wojoik, “Predictability and Uncertainty in Air Traffic
Flow Management,” 5th USA/Europe Air Traffic Management R&D Seminar, Budapest, June
2003.

[88] D. J. Brudnicki and A. L. McFarland, “User Request Evaluation Tool (URET) Conflict Probe
Performance and Benefits Assessment,” Technical Report for the U. S. Government under
Contract Number DTFA01-93-C-00001, The MITRE Corporation,1997.

[89] T. Hoang, T. Farley and T. Davis, “The Multi-Center TMA System Architecture and Its
Impact on Inter-facility Collaboration,” in Proceedings of the AIAA Aircraft Technology, In-
tegration and Operations (ATIO) Conference, Los Angeles, CA, October 2002.

[90] K. Roy, and C. J. Tomlin, “Enroute Airspace Control and Controller Workload Analysis using
a Novel Slot-based Sector Model,” in Proceedings of the 2006 American Control Conference,
Minneapolis, June 2006.

[91] S. Landry, T. Farley, J. Foster, S. Green, T. Hoang, G. L. Wong, “Distributed Scheduling
Architecture for Multi-Center Time-based Metering,” in Proceedings of the AIAA Aircraft
Technology, Integration and Operations (ATIO) Conference, Denver, CO, November 2003.

[92] T. Farley, J. D. Foster, T. Hoang and K. K. Lee,“A Time-based Approach to Metering Arrival
Traffic to Philadelphia,” in Proceedings of the First FIAA Aircraft Technology, Integration,
and Operations Forum, Los Angeles, California, October 2001.

[93] A. M. Bayen, R. L. Raffard, and C. J. Tomlin, “Adjoint-Based Constrained Control of Eu-
lerian Transportation Networks:Application to Air Traffic Control,” Proceedings of the 2004
American Control Conference, Boston, Massachusetts, June 2004.

[94] A. M. Bayen, R. L. Raffard and C. J. Tomlin,“Eulerian Network Model of Air Traffic Flow
in Congested Areas,” Proceedings of the 2004 American Control Conference, Boston, Mas-
sachusetts, June 2004.

[95] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed., Wiley: New York,
1998.

[96] A. M. Bayen, C. J. Tomlin, Y. Yez and J. Zhang, “An Approximation Algorithm for Scheduling
Aircraft with Holding Time,” In Proceedings of the 43th Aircraft Technology, Integration, and
Operations Forum, Los Angeles, California, October 2001.

[97] D. Bertsimas, and S. Stock, The Air Traffic Flow Management Problem with Enroute Capac-
ities, Working Paper, Sloan School of Management, Massachusetts Institute of Technology,
August 1994.

[98] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict resolution maneuvers,”
IEEE Transactions on Intelligent Transportation Systems, vol. 2, no. 2, pp. 110-120, Jun. 2001.

439

[99] R. O. Hoffman and M. O. Ball, “The rate control index for traffic flow,” IEEE Transactions
of Intelligent Transportation Systems, vol. 2, no. 2,

[100] B. Sridhar, T. Soni, K. S. Sheth, and G.B. Chatterji, “An aggregate flow model for air traffic
management,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference,
Providence, RI, August 2004.

[101] P. van Tulder, M. Berge, B. Repetto, A. Haraldsdottir, and D. Moerdyk, “Airline schedule
recovery in collaborative flow management and weather forecast uncertainty,” in Proceedings
of the 2004 Digital Avionics Systems Conference, Salt Lake City, UT, October, 2004.

[102] M. E. Berge, C. A. Hopperstad, and A. Haraldsdottir, “Airline schedule recovery in collabo-
rative flow management with airport and airspace capacity constraint,” in Proceedings of the
5th US/Europe Air Traffic Management Research and Development Seminar, Budapest, June
2003.

[103] H. Idris, J. P. Clarke, R. Bhuva, and L. Kang, “Queueing model for taxi-out time estimation,”
Traffic Control Quarterly, vol. 10, no. 1, pp. 1-22, 2001.

[104] H. Chen and Y. Zhao, “A new queueing model for aircraft landing process,” in Proceedings
of the AIAA GNC, AFM, and MST Conference and Exhibit, New Orleans, LA, August 1997.

[105] P. B. Mirchandani and N. Zou, “Queueing models for analysis of traffic adaptive signal
control,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no.‘1, Mar. 2007.

[106] C. Wu and Y. Liu, “Queuing network modeling of driver workload and performance,” IEEE
Transactions on Intelligent Transportation Systems, vol. 8, no. 3, Sep. 2007.

[107] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, 2002.

[108] B. Sridhar and P. K. Menon, “Comparison of linear dynamic models for air traffic manage-
ment,” in Proceedings of the 16th International Federation of Automatic Control (IFAC) World
Congress, no. 02187, Prague, July 2005.

[109] B. Sridhar and S. Swei, “Computation of aggregate delay using center-based weather im-
pacted traffic index,” at National Airspace System Performance Workshop, Asilomar Confer-
ence Grounds, Pacific Grove, CA, Sep. 2007.

[110] B. Sridhar, “Modeling, optimization, and software in air traffic management,” Presentation
at Washington State University, Feb. 2007.

[111] J. Krozel, R. Jakobovitz, and S. Penny, “An algorithmic approach for airspace flow programs,”
Air Traffic Control Quarterly, vol. 14, no. 3, 2006.

[112] S. A. Martinez, G. B. Chatterji, D. Sun, A. M. Bayen, “A weighted-graph approach for
dynamic airspace configuration, ” in Proceedings of AIAA Guidance, Navigation and Control
Conference and Exhibit, Hilton Head, South Carolina, 20 - 23 August 2007.

[113] K. Bilimoria, B. Sridhar, and G. Chatterji, “Effects of conflict resolution maneuvers and traffic
density on free flight,” AIAA Guidance, Navigation, and Control Conference, San Diego, CA,
Jul. 1996.

440

[114] A. Klein, R. Jehlen, and D. Liang, “Weather index with queueing component for National
Airspace System performance assessment,” 7th FAA/Eurocontrol ATM Seminar, Barcelona,
Spain, Jul. 2007.

[115] J. Krozel, “Capacity estimation for level flight with convective weather constraints,” submit-
ted to Air Traffic Quarterly.

[116] R. Hoffman, “Probabilistic scenario-based event planning for traffic flow management,” in
Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head,
South Carolina, 20 - 23 August 2007.

[117] J. Krozel, C. Lee, and J. S. B. Mitchell, “Turn-constrained route planning for avoiding haz-
ardous weather,” Air Traffic Control Quarterly, vol. 14, no. 2, pp. 159-182, 2006.

[118] P. Kopardekar, K. Bilimoria, and B. Sridhar, “Initial concepts for dynamic airspace configura-
tion,” in Proceedings of 7th AIAA Aviation Technology, Integration and Operations Conference,
Belfast, Northern Ireland, 18 - 20 September 2007.

[119] R. Ehrmanntraut and S. McMillan, “Airspace design process for dynamic sectorisation, ”
26th DASC, Dallas, Texas, 2007.

[120] J. A. Hadley and R. L. Sollenberger, “Dynamic resectorization of airspace boundaries between
adjacent air route traffic control centers, ” FAA techinical report, 2001.

[121] A. Borbely and D. Schneider, Secrets of Sleep, Basic Books: New York, 1986.

[122] J. M. Krueger and F. Obal Jr., “A neuronal group theory of sleep function,” Journal of Sleep
Research, vol. 2, pp. 63-69, 1993.

[123] S. H. Strogatz, The mathematical structure of the human sleep-wake cycle, Springer-Verlag:
New York, 1986.

[124] A. A. Borbely, “A two process model of sleep regulation,” Human Neurobiol., vol. 1, pp.
195-204, 1982.

[125] P. Achermann and H. Kunz, “Modeling circadian rhythm generation in the suprachiasmatic
nucleus with locally coupled self-sustained oscillators,” Journal of Biological Rhythms, vol. 14,
pp. 460-468, 1999.

[126] J. Krueger and F. Obal Jr., “Sleep function,” Frontiers in Bioscience, vol. 8, pp. 511-519,
2003.

[127] J. Eggert and J. L. van Hemmen, “Modeling neuronal assemblies: theory and implementa-
tion,” Neural Computation, vol. 13, pp. 1923-1974, 2001.

[128] V. S. Manorjan, I. Rajapakse, and J. M. Krueger, “Oscillations in a neuronal assembly—a
phenomenological model,” International Journal of Computational and Applied Mathematics,
vol. 1, no. 1, 2005.

[129] D. L. Wang and D. Terman, “Global competition and local cooperation in a network of neural
oscillators,” Physica D, vol. 81, pp. 148-176, 1995.

441

[130] D. Terman, J. E. Rubin, A. C. Yew, “Activity patterns in a model for subthalamopallidal
network of the basal ganglia,” The Journal of Neuroscience, vol. 22, no. 7, pp. 2963-2976,
2002.

[131] A. Kane, Activity Propagation in Two-Dimensional Neuronal Networks, Ph.D. Dissertation,
Graduate School in Mathematics, The Ohio State University, 2005.

[132] M. Bazhenov, I. Timofeev, M. Steriade, and T. Sejnowski, “Spiking-bursting activity in the
thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks, Jour-
nal of Neurophysiology, vol. 84, pp. 1076-1087, 2000.

[133] S. L. Hill and G. Tononi, “Modeling sleep and wakefulness in the thalamocortical system,”
Journal of Neurophysiology, vol. 4, no. 31, pp. 6862-6870, Aug. 2004.

[134] M. Massimini, F. Ferrarelli, R. Huber, S. K. Esser, H. Singh, and G. Tononi, “Breakdown of
cortical effective connectivity during sleep,” Science, vol. 309, pp. 2228-2232, 2005.

[135] M. T. Wilson, J. W. Sleigh, M. L. Steyn-Ross, and D. A. Steyn-Ross, “Cerebral cortex: using
higher-order statistics in a mean-field model,” presented at the Australian Institute of Physics
Congress, Brisbane, Dec. 2006.

[136] J. J. Wright, P. A. Robinson, C. J. Rennie, and E. Gordon, “Toward an integrated continuum
model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical sta-
bility,” Journal of Biological and Information Processing Sciences, vol. 63, no. 1-3, pp. 71-88,
2001.

[137] A. Borbely and P. Achermann, “Sleep homeostasis and models of sleep regulation,” Journal
of Biological Rhythms, vol. 14, no. 6, pp. 557-568, 1999.

[138] J. Chow, Time-scale modeling of dynamic networks with application to power systems,
Springer-Verlag: New York, 1983.

[139] P. V. Kokotovic, J. O’Reilly, and H. K. Khalil, Singular Perturbation Methods in Control:
Analysis and Design, SIAM Academic Publishing: New York, 1986.

[140] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled biological oscillators,”
SIAM Journal of Applied Mathematics, vol. 50, pp. 1645-1662, 1990.

[141] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle cooperative
control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71-82, 2007.

[142] R. M. Murray, K. J. Astrom, S. P. Boyd, R. W. Brockett, and G. Stein, “Future directions in
control in an information-rich world,” IEEE Control Systems Magazine, pp. 20-33, April 2003.

[143] G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman, “Decentralized control of
vehicle formations,” Systems and Control Letters, vol. 54, no. 9, pp. 899-910, Sep. 2005.

[144] J. J. Hopfield and A. V. M. Herz, “Rapid local synchronization of action-potentials – toward
computation with coupled integrate-and-fire neurons,” Proceedings of the National Academy
of Science, vol. 92, no. 15, pp. 6655-6662, Jul. 18, 1995.

442

[145] S. Bottani, “Pulse-coupled relaxation oscillators – from biological synchronization to self-
organized criticality,” Physical Review Letters, vol. 74, no. 21, pp. 4189-4192, May 1995.

[146] A. Diaz-Guilera, C. J. Perez, and A. Arenas, “Mechanisms of synchronization and pattern
formation in a lattice of pulse-coupled oscillators,” Physical Review E, vol. 57, no. 4, pp. 3820-
3828, Apr. 1998.

[147] S. H. Strogatz, “Coupled Oscillators and Biological Synchronization,” Scientific American,
vol. 269, no. 6, pp. 102-109, Dec. 1993.

[148] G. A. Pratt and J. Nguyen, “Distributed Synchronous Clocking,” IEEE Transactions on
Parallel and Distributed Systems, vol. 6, no. 3, pp. 314-328, Mar. 1995.

[149] J. Slade, Synchronization of Multiple Rotating Systems, Master’s Thesis, School of Electrical
Engineering and Computer Science, Washington State University, July 2007.

[150] S. Strogatz, “From Kuramoto to Crawford: exploring the onset of synchronization in a pop-
ulation of coupled nonlinear oscillators,” Physica D, vol. 143, pp. 1-20, 2000.

[151] A. Jadbabaie, N. Motee, and M. Barahona, “On the stability of the Kuramoto model of
coupled nonlinear oscillators,” Proceedings of the 2004 American Control Conference, Boston,
MA, 2004.

[152] O. Simeone and U. Spagnolini, “Distributed timing synchronization in wireless sensor net-
works with coupled discrete-time oscillators,” EURASIP Journal on Wireless Communications
and Networking, Art. no. 57054, 2007.

[153] A. S. Hu and S. D. Servetto, “On the scalability of cooperative time synchronization in pulse-
connected networks,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2725-2748,
Jun. 2006.

[154] J. M. Krueger, D. M. Rector, S. Roy, G. Belenky, and J. Panksepp, “Brain organization of
sleep,” submitted to Nature Neurosciences Reviews.

[155] L. Ljung, System Identification: Theory for the User, Prentice Hall: Englewood Cliffs NJ,
January, 1999.

[156] C. Asavathiratham, S. Roy, B. C. Lesieutre, and G. C. Verghese, “The influence model,”
IEEE Control Systems Magazine, vol. 21, no. 6, pp. 52-64, 2001.

[157] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,” Nature,
vol. 393, pp. 440-442, 1998.

[158] D. J. Watts, Six Degrees: The Science of a Connected Age, Norton Press: New York, 2003.

[159] D. M. Rector, I. A. Topchiy, K. M. Carter, and M. J. Rojas, “Local functional state differences
between rat cortical columns,” Brain Research, vol. 1047, pp. 45-55, 2005.

[160] F. Obal Jr. and J. M. Krueger, “Humoral mechanisms of sleep,” in The Physiological Nature
of Sleep (P. L. Parmeggiani and R. Velluti, eds.), Imperial College Press: London, pp. 23-44,
2005.

443

[161] Z. Wen, S. Roy, and A. Saberi, “On the disturbance response and external stability of a
saturating static-feedback controlled double integrator,” to appear in Automatica.

[162] R. Albert and A.-L. barabasi, “Topology of evolving networks: local events and universality,”
Physical Review Letters, vol. 85, no. 24, 2000.

[163] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Hoboken, NJ: IEEE
Press Power Engineering Series, 2nd edition, 2003.

[164] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: an explanation of 1/f noise,”
Physical Review Letters, vol. 59, pp. 381-384, July, 1987.

[165] J. M. Carlson and J. C. Doyle, “Highly Optimized Tolerance: A Mechanism for Power Laws
in Designed Systems,” Physical Review E, vol. 60, no. 2, 1999.

[166] B. A. Carreras, V. E. Lynch, I. Dobson, and D. E. Newman, “Dynamics, Criticality and
Self-organization in a Model for Blackouts in Power Transmission Systems,” in Proceedings of
the Hawaii International Conference on Systems Sciences, Hawaii, Jan. 2002.

[167] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron, Can we contain internet worms?
Microsoft Research Technical Report MSR-TR-2004-83.

[168] P. Gevros and G. Crowcroft, “Distributed resource management with heterogeneous linear
controls,” Computer Networks: The International Journal of Computer and Telecommunica-
tions Networking, vol. 45, no. 6, pp. 835-858, 2004.

[169] A. Greenbaum, Iterative Methods for Solving Linear Systems, Society for Industrial and Ap-
plied Mathematics (SIAM) Press: Phiadelphia, 1997.

[170] R. Hekmat, “Ad-hoc networks: fundamental properties and network topologies,” Springer,
Cambridge MA, 2006.

[171] F. Kelly, “Fairness and stability of end-to-end congestion control,” European Journal of Con-
trol, vol. 9, pp. 159-176, 2003.

[172] R. Levins, “Some Demographic and Genetic Consequences of Environmental Heterogeneity
for Biological Control,” Bulletin of the Entomological Society of America, vol. 15, pp. 237-240.

[173] M. A. de Menezes and A.-L. Barabasi, “Fluctuations in network dynamics,” Physics Review
Letters, vol. 92, no. 2, 2004.

[174] M. Newman, D. Watts, and A.-L. Barabasi, The Structure and Dynamics of Networks, Prince-
ton University Press: New Jersey, 2006.

[175] L. J. Perez-Arriaga, G. C. Verghese, F. L. Pagola, J. L. Sancha, and F. C. Schweppe, “De-
velopments in selective modal analysis of small-signal stability in electric power systems,”
Automatica, vol. 26, pp. 215-231, 1990.

[176] H. Wang, H. Xie, L. Qiu, Y. Yang, Z. Zhang, A. Greenberg, “COPE: Traffic Engineering in
Dynamic Networks”, in Proceedings of SIGCOMM 2006, Pisa, Italy, Sep. 2006.

444

[177] D. J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness,
Princeton University Press: New Jersey, 2003.

[178] S. Boyd, P. Diaconis, J. Sun, and L. Xiao, “Fastest mixing markov chain on a path,”The
American Mathematical Monthly, vol. 113, no. 1, pp. 70-74, January 2006.

[179] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a graph,”SIAM Review,
vol. 46, no. 4, pp. 667-689, December 2004.

[180] J. Sun, S. Boyd, L. Xiao, and P. Diaconis, “The fastest mixing markov process on a graph and
a connection to a maximum variance unfolding problem,”SIAM Review, vol. 484, pp. 681-699,
November 2006.

[181] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of a graph,” SIAM Review,
problems and techniques section, vol. 50, no. 1, pp. 37-66, February 2008.

[182] A. Ghosh and S. Boyd, “Upper bounds on algebraic connectivity via convex optimization,”
Linear Algebra and its Applications, vol. 418, pp. 693-707, October 2006.

[183] A. Ghosh and S. Boyd, “Growing well-connected graphs,” in Procedings of 45th IEEE Con-
ference on Decision and Control, pp. 6605-6611, December 2006.

[184] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems and Control
Letters, vol. 53, pp. 65-78, 2004. Shorter version appeared in Proceedings of IEEE Conference
on Decision and Control, pp. 4997-5002, Hawaii, December 2003.

[185] M. Fiedler, “Absolute algebraic connectivity of trees,” Linear and Multilinear Algebra, vol.
423, no. 1, pp. 53-73, May 2007.

[186] N. M. M. de Abreu, “Old and new results on algebraic connectivity of graphs,” Linear Algebra
and Its Applications, vol. 423, no. 1, pp. 53-73, May 2007.

[187] S. Kirkland and S. Pati, “On vertex connectivity and absolute algebraic connectivity for
graphs,” Linear and Multilinear Algebra, vol. 50, no. 3, pp. 253-284, January 2002.

[188] R. B. Ellis III, Chip-firing games with dirichlet eigenvalues and discrete green’s functions,
PhD Thesisin Mathematics, University OF California, San Diego, California, 2002.

[189] F. Göring, C. Helmberg, and M. Wappler, “Embedded in the Shadow of the Separator,”
submitted to SIAM Journal on Optimization, September 2, 2005.

[190] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press: Oxford, 1965.

[191] J. Moro, J. V. Burke, and M. L. Overton, “On the Lidskii-Vishik-Lyusternik perturbation
theory for eigenvalues of matrices with arbitrary Jordan structure,” submitted to the SIAM
Journal on Matrix Analysis and its Applications.

[192] J. Kleinberg, “The small-world phenomenon: an algorithmic perspective,” in Proceedings of
the 32nd ACM Symposium on Theory of Computing, Portland, OR, May 2000.

[193] B. Bollobas and F. R. K. Chung, “The diameter of a cycle plus a random matching,” SIAM
Journal on Discrete Mathematics, vol. 1, pp. 328-333, 1988.

445

[194] I. W. Horowitz, Synthesis of feedback systems, Academic Press: New York, 1963.

[195] A. Saberi and P. Sannuti, “Time-scale structure assignment in linear multivariable systems
with high-gain feedback,” International Journal of Control, vol. 49, no. 6, 1989.

[196] A. Saberi, B. M. Chen, and P. Sannuti, Loop Transfer Recovery: Analysis and Design,
Springer-Verlag, 1993.

[197] H. K. Ozcetin, A. Saberi, and P. Sannuti, “Almost Disturbance Decoupling Problem with
Internal Stability Via State or Measurement Feedback – Singular Perturbation Approach,”
International Journal of Control, vol. 55, no. 4, pp. 901-944, 1992.

[198] Z. Lin and A. Saberi, “Semi-global exponential stabilization on linear systems subject to
“input saturation” via linear feedbacks,” Systems and Control Letters, vol. 21, pp. 225-239,
1993.

[199] G. N. Ramaswamy, G. C. Verghese, L. Rouco, C. Vialas, and C. DeMarco, “Synchrony,
aggregation, and multi-area eigenanalysis,” IEEE Transactions on Power Systems, vol. 10,
no. 4, pp. 1986-1993, Nov. 1995.

[200] C. L. DeMarco and J. Wassner, “A generalized eigenvalue perturbation approach to co-
herency,” Proceedings of the 4th IEEE Conference on Control Applications, pp. 611-617, 1995.

[201] P. Sridhar, T. Kahveci, and S. Ranka, “An iterative algorithm for metabolic network-based
drug target idenficaition,” in Proceedings of the 2007 Pacific Symposium on Biocomputing,
Maui HI, Jan. 2007.

[202] P. Csermely, V. Ágoston, and Sándor Pongor, “The efficiency of multiple-target drugs: the
network approach might help drug design,” TRENDS in Pharmacological Science, Vol. 26, No.
4, April 2005.

[203] D. Colzolari, G. Paternostro, P. L. Harrington, C. Piermarpcchi, P. M. Duxbury, “Selective
control of the poptosis signaling network in heterogeneous cell populations,” PLoS ONE, Issue
6 June 2007.

[204] D. Cheverez-Gonzalez and C. L. DeMarco, “Laplacian structure in power network constraints
and inherent zonal prices regions,” in Proceedings of the 2006 North American Power Sympo-
sium, Carbondale IL, Sep. 2006.

[205] P. Sannuti and A. Saberi, “Special coordinate basis for multivariable linear system-finite
and infinite zero structure, squaring down and decoupling,” International Journal of Control,
vol. 45, No. 5, pp. 1655-1704, 1987.

[206] A. Saberi, P. V. Kokotovic, and H. J. Sussmann, “Global stabilization of partially linear
composite systems,” SIAM Journal on Control and Optimization, vol. 28, no. 6, pp. 1491-
1503, November 1990.

[207] J. Baillieul and P. J. Antsaklis, “Control and communication challenges in networked real-
time systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 9-28, Jan. 2007.

446

[208] S. Roy, A. Saberi, and A. Stoorvogel, “Toward a control theory for networks,” International
Journal of Robust and Nonlinear Control, vol. 17, no. 10-11, p. 897, July 2007.

[209] A. Berman, M. Neuman, and R. J. Stern, Nonnegative Matrices in Dynamic Systems, Pure
and Applied Mathematics Series, Wiley 1989.

[210] D. A. Spielman and S.-H. Teng, “Spectral partitioning works: planar graphs and element
meshes,” in Proceedings of the 37th Annual Symposium on Foundations of Computer Science,
Burlington, VT, Oct. 1996

[211] A. Hagberg and d. A. Schult, “Rewiring networks for synchronization,” Chaos, p. 037105-1,
vol. 18, 2008.

[212] T. Biyikoglu, J. Leydold, and P. Stadler, Laplacian Eigenvectors of Graphs:Perron-Frobenius
and Faber-Krahn Type Theorems, Springer, 2007.

[213] B. Ayazifar, Graph spectra and modal dynamics of oscillatory networks, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 2002.

[214] R. Merris, “Laplacian graph eigenvectors,” Linear Algebra and its Applications, vol. 278, pp.
221-236, 1998.

[215] Y. Wan, S. Roy, A. Saberi, and A. Stoorvogel, “A multiple-derivative and multiple-delay
paradigm for decentralized controller design: uniform rank systems,” submitted to Automatica.

[216] C. L. DeMarco, “Control structures for competitive market-driven power systems,” Proceed-
ings of the 40th IEEE Conference on Decision and Control, Orlando FL, Dec. 2001.

[217] B. D. O. Anderson and J. B. Moore, “Time-varying feedback laws for decentralized control,”
IEEE Transactions on Automatic Control, Vol. 26, No. 5, pp. 1133-1139, October 1981.

[218] J. P. Corfmat and A. S. Morse, “Stabilization with decentralized feedback control,” IEEE
Transactions on Automatic Control, Vol. 21, No. 1, pp. 679-682, Feb. 1976.

[219] J. K. Hale and S. M. V. Lunel, Introduction to Functional Difference Equations, Epring-
Verlag, 1993.

[220] S.-I. Niculescu and W. Michiels, “Stabilizing a chain of integrators using multiple delays,”
IEEE Transactions on Automatic Control, vol. 49, no. 5, pp. 802-807, May 2004.

[221] A. Saberi, A. Stoorvogel, and P. Sannuti, Output Regulation and Control Problems with
Regulation Constraints, Springer-Verlag, 1999.

[222] A. Stoorvogel, A. Saberi, C. Deliu, and P. Sannuti, “Decentralized stabilization of time-
invariant systems subject to actuator saturation,” Advanced Strategies in Control Systems
with Input and Output Constraints, LNCIS series (S. Tarbouriech et al eds.), Springer-Verlag,
June 2006.

[223] E. Kreindler and A. Jameson, “Optimality of linear control systems,” IEEE Transactions on
Automatic Control, vol. 17, no. 3, pp. 349-351, June 1972.

447

[224] W. Michiels and T. Vyhlidal, “An eigenvalue based approach for stabilization of linear time-
delay systems of neutral type,” Automatica, vol. 41, pp. 991-998, 2005.

[225] Z. Lin and H. Fang, “On asymptotic stabilizability of linear systems with delayed input,”
IEEE Transaction n Automatic Control, vol. 52, no. 6, June 2007.

[226] C. W. Wu and L. Chua, “Application of kronecker products to the analysis of systems with
uniform linear coupling, ” IEEE Transactions on Circuits and Systems I, vol. 42, no. 10, pp.
775-779, October 1995.

[227] C. W. Wu and L. Chua, “Application of graph theory to the synchronization in an array of
coupled nonlinear oscillators, ” IEEE Transactions on Circuits and Systems I, vol. 42, no. 8,
pp. 494-497, October 1995.

[228] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,”
IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465-1476, September 2004.

[229] A. Pogromsky and H. Nijmeijer, “Cooperative oscillatory behavior of mutually coupled dy-
namical systems,” IEEE Transactions on Circuits and Systems, Part I, vol. 48, no. 2, Feb.
2001.

[230] S. Roy, A. Saberi, and K. Herlugson, “Control-theoretic perspective on the design of dis-
tributed agreement protocols,” International Journal on Robust and Nonlinear Systems, Spe-
cial Issue on Communicating-Agent Networks, published online in November 2006 (1.108, 6).

[231] Z. Duan, J. Wang, G. Chen, and L. Huang, “Stability analysis and decentralized control of a
class of complex dynamical networks, ” Automatica, vol. 44, pp. 1028-1035, 2008.

[232] W. Ren, “On consensus algorithms for double-integrator dynamics,” IEEE Transactions on
Automatic Control, vol. 53, no. 6, pp. 1503-1509, Jul. 2008.

[233] Z. Lin and A. Saberi, “A semi-global low-and-high gain design technique for linear systems
with input saturation – stabilization and disturbance rejection,” International Journal of Ro-
bust and Nonlinear Control, vol. 5, pp. 381-398, 1995.

[234] J.K. Hale and S.M. Verduyn Lunel, Introduction to functional differential equations,
vol. 99 of Applied Mathematical Sciences, Springer Verlag, New York, 1993.

[235] V. L. Kharitonov, S.-I. Niculescu, J. Moreno, and W. Michiels, “Static output feedback stabi-
lization: necessary conditions for multiple-delay controllers,” IEEE Transactions on Automatic
Control, vol. 50, no. 1, pp. 82-86, Jan. 2005.

[236] A. Ilchmann and C.J. Sangwin, “Output feedback stabilization of minimum phase sys-
tems by delays”, Syst. & Contr. Letters, 52(3-4), pp. 233–245, 2004.

[237] X. Liu, Z. Lin, and B. M. Chen, “Symbolic realization of asymptotic time-scale and eigen-
structure assignment design method in multivariable control,” International Journal of Con-
trol, vol. 79, no. 11, pp. 1471-1484, Nov. 2006.

[238] A. Saberi and P. Sannuti, “Squaring down by static and dynamic compensators,” IEEE
Transactions on Automatic Control, vol 33, no 4, 1988.

448

[239] V. I. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis, “Static output feedback–a
survey,” Automatica, vo. 33, no. 2, pp. 125-137, 1997.

[240] D. C. Youla, D. D. Bongiorno Jr., and C. N. Liu, “Single loop feedback stabilization of linear
multivariable plants,” Automatica, vol. 10, pp. 159-173, 1974.

[241] W. Michiels and D. Roose, Global stabilization of multiple integrators with time-delay and
input constraints, Technical Report TW 325, Department of Computer Science, K.U.Lueven,
May 2001.

[242] A. Papoulis, “Limits on bandlimited signals,” Proceedings of the IEEE, vol. 55, no. 10,
pp. 1677-1686, Oct. 1967.

[243] J.B. Conway, Functions of one complex variable, vol. 11 of Graduate texts in mathematics,
Springer Verlag, New York, 2nd Ed., 1995.

[244] V.L. Kharitonov, S.-I. Niculescu, J. Moreno, and W. Michiels, “Static output feedback stabi-
lization: necessary conditions for multiple delay controllers”, IEEE Trans. Aut. Contr., 50(1),
pp. 82–86, 2005.

[245] H. Kokame, K. Hirata, K. Konishi, and T. Mori, “Difference feedback can stabilize uncertain
steady states”, IEEE Trans. Aut. Contr., 46(12), pp. 1908–1913, 2001.

[246] H. Kokame and T. Mori, “Stability preserving transition from derivative feedback to its
difference counterparts”, in Proceedings of the 15th IFAC World Congress, Barcelona, Spain,
2002.

[247] D.A. O’Connor and T.J. Tarn, “On stabilization by state feedback for neutral differential
difference equations”, IEEE Trans. Aut. Contr., 28(5), pp. 615–619, 1983.

[248] S. Bochner, “Beiträge zur theorie der fastperiodischen funktionen. I. Teil. Funktionen einer
Variablen”, Mathematische Annalen, 96(1), pp. 119–147, 1927. in German.

[249] B.Ja. Levin, Distribution of zeros of entire functions, vol. 5 of Translations of Mathematical
Monographs, American Mathematical Society, Providence, RI, 1964. Translated from Russian.

[250] W. Michiels, Stability and stabilization of time-delay systems, PhD thesis, Katholieke Uni-
versiteit Leuven, Leuven, 2002. Advisors: D. Roose and R. Sepulchre.

[251] J. Douglas and M. Athans, “Multivariable poles, zeros, and pole-zero cancellations,” in The
Control Handbook (W. S. Levine, ed.), IEEE Press: Boca Raton, FL 1996.

[252] A. Saberi, B. M. Chen, and P. Sannuti, “Theory of LTR for non-minimum phase systems,
recoverable target loops, and recover in a subspace part 1. Analysis,” International Journal of
Control, vol 53, no 5, 1067-1115, 1991.

[253] A. S. Morse, “Structural invariants of linear multivariate systems,” SIAM Journal of Control,
vol. 11, no. 3, pp. 446-465, 1973.

[254] A. Saberi, P. V. Kokotovic, and H. J. Sussmann, “Global Stabilization of Partially Linear
Composite Systems,” SIAM Journal on Control and Optimization, vol. 28, no. 6, pp. 1491-
1503, 1990.

449

[255] S. Axler, “Down with Determinants!” American Mathematical Monthly, vol., pp. 139-154,
1995.

[256] A. Saberi, “Simultaneous stabilization with almost disturbance decoupling part I: uniform
rank systems,” in Proceedings of 24th Conference on Decision and Control, 1985.

[257] R. Lozano-Leal, “Robust adaptive regulation without persistent excitation,” IEEE Transac-
tions on Automatic Control, vol. 34, no. 2, pp. 1260-1267, Dec. 1989.

[258] D. S. Bayard and D. Boussalis, “Noncolocated structural vibration supression using zero anni-
hilation periodic control,” in Proceedings of the 2nd IEEE Conference on Control Applications,
Vancouver, Canada, Sep. 1993.

[259] D. S. Bayard, “Extended horizon liftings for stable inversion of nonminimum phase systems,”
IEEE Transactions on Automatic Control, vol. 39. no. 6, pp. 1333-1338, June 1994.

[260] A. Ortega, G. Bartolini, and A. Ferrara, “On zero relocation in adaptive control of plants with
structured uncertainties,” in Proceedings of the 20th International Conference on Industrial
Electronics, Control, and Instrumentation, Bologna, Italy, Sep. 1994.

[261] R. Ortega, “On periodic control of nonminimum phase plants,” in Proceedings of the 29th
IEEE Conference on Decision and Control, Honolulu, Hawaii, Dec. 1990.

[262] B. M. Chen, Z. Lin, and Y. Shamash, Linear Systems Theory: A Structural Decomposition
Approach, Birkhauser: Boston, 2004.

[263] A. R. Teel, “Semi-global stabilizability of linear null controllable systems with input nonlin-
earities,” IEEE Transactions on Autoatic Control, vol. 40, no. 1, January 1995.

[264] Z. Lin, A. A. Stoorvogel and A. Saberi, “Output regulation for linear systems subject to
input saturation”, Automatica, vol. 32, no. 1, pp. 29-47, January 1996.

[265] J. B. Pearson and C. Y. Ding, “Compensator design for multivariable linear system,” IEEE
Transactions on Automatic Control, vol. AC-14, no. 2, Apr. 1969.

[266] J. B. Pearson, “Compensator design for dynamic optimization,” vol. 9, no. 4, pp. 473-482,
Apr. 1969.

[267] H. Qi, S. S. Iyengar, and K. Chakrabarty, “Distributed sensor networks – a review of recent
research”, Journal of the Franklin Institute, vol. 338, pp. 655-668, 2001.

[268] C. Asavathiratham, S. Roy, B. C. Lesieutre and G. C. Verghese. “The influence model,” IEEE
Control Systems Magazine, Dec. 2001.

[269] B. Chamberlain,“Graph partitioning algorithms for distributed workloads of parallel compu-
tations,” Technical Report UW-CSE-98-10-03, University of Washington, Oct. 1998.

[270] R. B. Boppana, “Eigenvalues and graph bisection: an average case analysis,” IEEE FOCS,
pp. 280-285, 1987.

[271] B. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell
Systems Technical J., vol.49, pp 291-307, Feb. 1970.

450

[272] D. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by simulated an-
nealing: an experimental evaluation; part I, graph partitioning,” Operations Research, vol.37,
no. 6, pp. 865–892, November-December 1989.

[273] C. Cordiero, H. Gossain, and D. P. Agrawal, “Multicast over wireless mobile ad hoc networks:
present and future directions,” IEEE Networks Magazine, Jan./Feb. 2003.

[274] R. O. Saber and R. M. Murray, “Consensus problems in networks of agents with switching
topology and time-delays,” IEEE Transactions in Automatic Control, vol. 49, pp. 1520-1533,
Sep. 2004.

[275] B. Krisnamachari and S. S. Iyengar, “Distributed Bayesian algorithms for fault-tolerant event
region detection in wireless sensor networks,” IEEE Transactions on Computers, Vol. 53, No. 3,
Mar. 1, 2004.

[276] S. D. Servetto and G. Barrenechia, “Constrained random walks on random graphs,” in Pro-
ceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applica-
tions, Atlanta, GA, Sep. 2002.

[277] D. Kempe, J. Kleinberg, and A. Demers, “Spatial gossip and resource location protocols,” in
Proceedings of the 33rd ACM Symposium on Theory of Computing, 2001.

[278] T. Liggett, Interacting Particle Systems, Springer-Verlag (Mathematical Reviews Series), New
York, 1985.

[279] G. Grimmett, Percolation, 2nd ed., New York, 1999.

[280] H. You, V. Vittal, and X. Wang, “Slow Coherency-based Islanding,” IEEE Transactions on
Power Systems , Vol. 19, NO. 1, Feb. 2004.

[281] A. Pinar and B. Hendrickson, “Partitioning for complex objectives,” in Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS), 2001.

[282] M. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of NP-
completeness, San Francisco: Freeman, 1979.

[283] “A compendium of NP optimization problems,” http://www.nada.kth.se/
ṽiggo/wwwcompendium/wwwcompendium.html.

[284] M. S. Khan, Sequential and distributed algorithms for fast graph partitioning, Master’s thesis,
University of Victoria, Victoria, B.C., Canada, Aug. 1994.

[285] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Lecture Notes in Computer Science,
vol. 855, pp. 141-147, 1994.

[286] D. Karger and C. Stein, “A new approach to the minimum cut problem,” Journal of the
ACM, vol. 43, no. 4, pp. 601-640, 1996.

[287] P. K. Chan, M. D. Schlag, and J. Y. Zien, “Spectral k-way ratio-cut partitioning and clus-
tering,” 30th ACM/IEEE Design Automation Conference, Dallas Texas, June 1993.

451

[288] C.L. DeMarco and J. Wassner, “A generalized eigenvalue perturbation approach to co-
herency,” Proc. IEEE Conference on Control Applications, pp. 611-617, Sept. 1995.

[289] S. Roy and B. Lesieutre. “Studies in network partitioning based on topological structure,”
32nd Annual North American Power Symposium, Waterloo, Canada, Oct. 2000.

[290] R. D. Williams, “Performance of dynamic load balancing algorithms for unstructured mesh
calculations,” Concurrency: Practice and Experience, 3 , 1991.

[291] F. Cao, J. R. Gilbert, and S. Teng, “Partitioning meshes with lines and planes,” Technical
Report CSL-96-01, Xerox Palo Alto Research Center, Jan. 1996.

[292] M. Fiedler, “A property of eigenvectors of nonnegative symmetric matrices and its application
to graph theory,” Czechoslovak Mathematics Journal, Vol. 25, No. 100, pp. 619-633, 1975.

[293] T. Nguyen Bui and B. R. Moon, “Genetic algorithm and graph partitioning,” IEEE Trans-
actions on Computers, vol. 45, No. 7, July 1996.

[294] D. E. Goldberg,“Genetic algorithms in search,” Optimization and Machine Learning,
Addison-Wesley, New York, 1989.

[295] B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of Operations Re-
search,Vol.13, pp. 311-329, May 1998.

[296] H. D. Simon, S-H. Teng, “How good is recursive bisection,” SIAM Journal on Scientific
Computing, Vol. 18, No. 5, pp. 1436-1445, 1997.

[297] C. K. Cheng and Y. C. Wei, “An improved two way partitioning algorithm with stable
performance,” IEEE Trans. on Computer-Aided Design, 10(12):1502-1511, Dec. 1991.

[298] C. H. Lee and C. I. Park, “An efficient k-way graph partitioning algorithm for task allocation
in parallel computing systems,” Proceedings of the 1st International Conference in System
Integration, pp. 748-751, 1990.

[299] D. H. Wolpert and W. G. Macready, “No free lunch theorems for search,” Technical Report,
Santa Fe Institute, No.. 95-02-010, 1995.

[300] M. Mauve, J. Widmer, and H. Hartenstein, “A survey of position-based routing in mobile ad
hoc networks,” IEEE Networks Magazine, vol. 6, pp. 30-39, Dec. 2001.

[301] A. Jadbabaie, “On geographic routing with location information,” submitted to Proceedings
of the IEEE Conference on Decision and Control, The Bahamas, 2004.

[302] J. R. Hockenberry and B. C. Lesieutre, “Evaluation of uncertainty in dynamic simulations
of power system models: the probabilistic collocation method,” IEEE Transactions on Power
Systems, vol. 19(3), pp. 1483-1491, Aug. 2004.

[303] S. Roy, D. Ramamurthy, and B. C. Lesieutre, “Studies on the probabilistic collocation method
and its application to power system analysis,” in Proceedings of the 36th North American Power
Symposium, Moscow, Idaho 2004.

452

[304] J. R. Hockenberry, Evaluation of Uncertainties in Dynamic, Reduced-Order Power System
Models, Ph.D. Thesis, Massachusetts Institute of Technology, Sep. 2000.

[305] S. S. Isukapalli,Uncertainty Analysis of Transport-Transformation Models, Ph.D. Disserta-
tion, Program in Chemical and Biochemical Engineering, Rutgers University, 1999.

[306] M. A. Tatang, W. Pan, R. G. Prinn, and G. J. McRae, “An efficient method for paramet-
ric uncertainty analysis of numerical geophysical models,” Journal of Geophysical Research–
Atmospheres, vol. 102, no. D18, pp. 21925-21932, 1997.

[307] M. Webster, M. A. Tatang, and G. J. McRae, “Application of the probabilistic collocation
method for an uncertainty analysis of a simple ocean model,” Tech. Rep. 4, Joint Program on
the Science and Policy of Global Change, MIT, Cambridge, MA, Jan. 1996.

[308] J. Sjoberg et. al., “Nonlinear black-box modeling in system identification: a unified overview,”
Automatica, vol. 31(12), pp. 1691-1724, 1995.

[309] V. N. Vapnik, Statistical Learning Theory, John Wiley and Sons: Hoboken, NJ, 1998.

[310] K. Atkinson, An Introduction to Numerical Analysis (2nd ed.), John Wiley and Sons, 1988.

[311] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Harcourt Brace Jovanovich,
Publishers, 1984.

[312] T. R. Inniss and M. O. Ball, “Estimating one-parameter airport arrival capacity distributions
for air traffic flow management,” Air Traffic Control Quarterly, vol. 12, pp. 223-252, Aug. 2002.

[313] D. Xiu, D. Lucor, C.-H. Su, and G. E. Karniadakis, “Stochastic modeling of flow struc-
ture interactions using generalized polynomial chaos,” Journal of Fluids Engineering, vol. 25,
pp. 51-59, Mar. 2002.

[314] H. Brass, J.-W. Fischer, and K. Petras, “The Gaussian quadrature method,” Abh. Braun-
schweig Wiss. Ges., vol. 47, pp. 115-150, 1997.

[315] A. D. Fernandes and W. R. Atchley, “Gaussian quadrature formulae for arbitrary positive
measures,” Evolutionary Bioinformatics Online, vol. 2, pp. 261-269, 2006.

[316] G. W. Snedecor and W. G. Cochran, Statistical Methods, The Iowa State College Press, Ames,
Iowa, 1956.

[317] S. Roy, “Modeling of data sets using a continuum of Beta distributions,” Thesis, MIT, 1999.

[318] T. T. Soong, Probabilistic Modeling, and Analysis in Science and Engineering, New York:
John Wiley and Sons, 1981.

[319] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach Science Pub-
lishers, 1978.

[320] A. Elbert, “Some recent results on the zeros of Bessel functions and orthogonal polynomials,”
Journal of Computational and Applied Mathematics, vol. 133, pp. 65-83, 2001.

453

[321] G. F. Franklin, J. D. Powell, and A Emami-Naeini, Feedback Control of Dynamic Systems,
Prentice Hall, 2005.

[322] K. Bilimoria, B. Sridhar, G. Chatterji, K. Sheth, and S. Grabbe, “FACET: Future ATM
concepts evaluation tool,” in Proceedings of the 3rd USA/Europe ATM 2001 R&D Seminar,
Naples, Italy, June 2001.

[323] K. Takahashi, et. al., “E-Cell 2: multi-platform E-Cell simulation system,” Bioinformatics
vol. 19(13), pp. 1727-1729, 2003.

[324] J. Schaff and L. M. Loew, “The Virtual Cell,” in Proceedings of Pacific Symposium on Bio-
computing ’99, pp. 228-239, 1999.

[325] H. Kitano, “Systems biology: toward system-level understanding of biological systems,” in
Kitano (ed.) Foundations of Systems Biology, Cambrige: The MIT Press, pp. 1-36, 2001.

[326] K. M. Kyoda, M. Muraki and H. Kitano, “Construction of a generalized siulator for multi-
cellular organisms and its application to SMAD signal transduction,” in Pacific Symposium
on Biocomputing, 5, pp. 314-325, 2000.

[327] U. S. Bhalla and R. Iyengar, “Emergent properties of networks of biological signaling path-
ways,” Science, Vol. 283, pp. 381-387, 1999.

454

