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DEVELOPMENT OF A 3D MICROSTRUCTURE SENSITIVE CRYSTAL 
PLASTICITY MODEL FOR ALUMINUM 

Abstract 

 
by Alankar Alankar, Ph.D. 

Washington State University 
May 2010 

 
 
 

Chair:  David P. Field 
 
 

A dislocation density based crystal plasticity finite element model (CPFEM) has been 

developed in which different dislocation densities evolve on all octahedral slip systems in 

aluminum. Based upon the kinematics of crystal deformation and dislocation interaction 

laws, dislocation generation and annihilation are modeled. Dislocation densities evolve in 

form of closed loops and are tracked as state variables in the model, leading to spatially 

inhomogeneous dislocation densities that show patterning in the dislocation structures. A 

generalized Taylor equation is used as the hardening law in which hardening coefficients 

are based on the reactions between dislocations on co-planar and non-planar slip systems. 

The hardening coefficients for reactions involving latent slip systems are determined 

using 3D discrete dislocation dynamics. The model is validated using distinct hardening 

behavior of {100} and {111} single crystals of aluminum. The phenomenon of 

overshooting in aluminum is predicted using the model. Effect of collinear interactions of 

dislocations is shown to enhance the overshooting behavior. 

 Evolution of crystallographic texture during plane strain deformation of 

polycrystalline aluminum is predicted. The crystallographic texture shows characteristic 

texture components observed in the “rolling texture” in the experiments reported in the 
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literature. Description of dislocation densities is presented in form of pole figures along 

with evolution of crystallographic texture which shows increasing heterogeneity in 

microstructure with increasing deformation. 

 Simulations of plane strain deformation on bicrystals are performed which predict 

rotations of crystallites during deformation and orientation spread at the final stage of 

deformation reasonably well as compared with the experimental observation. Similar 

studies are done for more complex grain topology in 2D columnar multicrystals. Overall, 

the model predicts heterogeneous evolution of accumulated plastic strain which is found 

to be consistent with the accumulated dislocation density, shear strain, dislocation density 

evolution rate and the Taylor factor in the corresponding grains. 
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CHAPTER ONE 

INTRODUCTION 

 

G. I. Taylor’s Bakerian Lecture at the Royal Society in 1923 formally started the 

systematic and formal study of finite deformation of cubic single crystals. This work of 

Taylor and Elam [1] primarily concentrated on the changing orientation of the crystal 

lattice. Using X-ray analysis and geometrical measurements, the specific directions of 

deformation in the single crystal were established. Taylor and Elam [1] established the 

milestone for starting the theories on crystallographic slip, lattice deformation and 

continuum plasticity.  The crystal lattice remains invariant after crystallographic slip, as 

compared to elastic distortion which changes both the angles and the spacing of a crystal 

lattice. The effect comes due to the plasticity carriers (Taylor [2]) called dislocations. 

 The theory of plasticity due to dislocation motion also addresses the discrepancy 

between the theoretically determined intrinsic strength and the actually observed strength. 

Theoretical strength of a perfect crystal is two to four orders of magnitude greater than 

the observed strength. As assumed in theory, the shear does not occur because of the slip 

on the whole slip plane but only on a section of it which is associated with the movement 

of the dislocations. Apart from accounting for the plastic deformation in crystalline 

materials, the dislocations are associated with the work hardening behavior by means of 

their multiplication activity due to mutual interactions that hinders the motion of gliding 

dislocations. In 1953, Cottrell [3] mentioned that the strength of Cu and alike materials 

can be increased 20 times by the effect of work hardening. Basinski and Basinski [4], in 

talking about work hardening, quotes Cottrell [3] saying “It was the first problem to be 
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attempted by the dislocation theory of slip and may well prove to be the last to be solved”.  

The crystal plasticity formulations have successfully addressed the problems like 

crystallographic texture using classical hardening models e.g. power laws defining 

crystallographic slip. However, as the research deepens, effects of hardening due to long 

and short range interactions and the effect of interfaces remain as two of the many other 

grueling issues. Even after 30 years once mentioned by Basinski and Basinski [4] 

Cottrell’s statement still stands valid and a lot of research is being done to establish more 

realistic work hardening formulations. The experimental studies are always fundamental 

in terms of the underlying physics. However, the experiments are mostly destructive in 

nature and can not be used for repeating a test on the same specimen for consistency of 

experimental conditions. The experiments are dependent on a number of parameters e.g. 

purity, composition, environmental conditions, temperature and methodological 

perfection etc. Therefore the models which are fundamentally based on the physics of 

microstructure evolution need to be adapted. 

 

1.1 Statistically stored and geometrically stored dislocations 

Materials can be differentiated based on plastically homogeneous and non-homogeneous 

deformation. During plastic deformation dislocations multiply due to two possible 

reasons. First, dislocations are necessary to contain the geometry in the deformed state 

and second they are stored due to trapping one another. The rate of dislocation storage 

depends on the mean free path which a dislocation travels between two consecutive 

obstacles. Stress is generated by two mechanisms namely, cutting of forest dislocations 

and interaction of elastic fields of dislocations. 
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1.1.1 Statistically stored dislocations (SSDs) 

SSDs are generated due to behavior of the material i.e. it is affected by crystal structure, 

shear modulus, stacking fault energy, etc. During homogeneous deformation (i.e. in 

uniaxial tensile test), material is stretched in one direction, and dislocations are stored 

only due to trapping by other dislocations. They are called statistically stored dislocations 

(SSDs). 

 

1.1.2 Geometrically necessary dislocations (GNDs) 

Geometrically necessary dislocations are generated due to non-homogeneous deformation 

in the material or due to a strain gradient generated on application of stress in non-

homogeneous materials [5]. In two phase alloys the extent of deformation in one phase is 

not the same as in the other phase. In processes like bending, indentation and torsion tests, 

deformation is not uniform within the specimen. Zaiser and Aifantis [6] have defined the 

GND density as the minimum density of discrete lattice dislocations that is required to 

accommodate a given mesoscopic strain gradient. This strain gradient depends on the 

extent of deformation or distance from the axis of deformation. This distance is called the 

length scale of the measurement. As the distance from the deformation axis increases the 

extent of deformation increases [5, 7, 8]. Thus a geometrical non-equilibrium condition 

occurs which requires that some dislocations be stored to contain this new geometry of 

the specimen. These dislocations, which are necessary for compatibility of deformation, 

are called geometrically necessary dislocations (GNDs) [5, 7-9]. The state of dislocations 

associated with geometry is defined by a second order tensor called Nye’s tensor, after 
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Nye [10]. GNDs account for crystalline anisotropy as described by Nye’s tensor. 

Strengthening is also caused by local interaction of SSDs with GNDs [9]. Dislocation 

interaction mechanisms like jog formation cause macroscopic isotropic hardening. Due to 

trapping of dislocations long range back stress is generated which causes kinematic 

hardening. Fleck et al. [9] have given one case study which shows that lower plastic 

strains create Orowan loops, GNDs, more kinematic hardening and stronger long range 

back stresses. Whereas higher plastic strains cause prismatic dislocation loops, no long 

range back stresses and no kinematic hardening. In case of particle larger than a certain 

size, dislocation density evolves statistically and no GNDs will be created. At levels of 

plastic strain below a few percent, kinematic hardening is caused by the generation of 

long range elastic stresses generated by strain gradients. However, due to the reaction of 

GNDs and SSDs, the density of GNDs does not change. Thus the total dislocation density, 

given as a sum of the two types of dislocations, is a lower bound of the total dislocation 

density [5, 7, 11]. Arsenlis and Parks [12] showed that due to the crystallographic 

consideration, the actual number of dislocations produced was generally greater than the 

number of GNDs by a factor of  r′  which these researchers called the Nye factor. The 

Nye factor has been defined along the same lines as Nye’s tensor. Nye’s factor describes 

the crystalline anisotropy in the macroscopic measure of GND density. Dislocations tend 

to align themselves along boundary structures that further result in stress shielding which 

is associated with GNDs. 

 A dislocation line present in a volume of crystal can have both statistical and 

geometrical characteristics [12]. Because GND density is the minimum density which 

accounts for a certain strain gradient, the density calculated based on geometric 
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constraints will be the lower limit of the dislocation density.  The remaining dislocations 

will contribute to the statistically stored dislocation density. Using a back scattered X-ray 

technique, the lattice rotation of a plastically bent crystal can be measured [13, 14]. The 

lower limit of excess dislocations (alias GNDs) can be estimated using electron 

backscatter diffraction (EBSD) or orientation imaging microscopy[15] by determination 

of lattice incompatibility [16]. Recently, similar measurements have been performed by 

using X-ray micro-diffraction techniques by Field et al. [17] and the observations are 

compared against the one s observed using EBSD. 

 

1.2 Multiscale modeling 

GNDs cannot be distinguished physically from SSDs at the macroscopic level. Only the 

effects of strain gradient plasticity are observed at mesoscopic or microscopic levels [6, 

18-21]. Therefore while discussing GNDs in crystalline solids, it is needed to define the 

length scale in plastic deformation. The smallest displacement unit of plastic 

displacements is the Burgers vector. Therefore the plastic strain field will be 

discontinuous on a microscopic scale which can be as small as the average spacing 

between two dislocation lines ( 1
Tρ

, where Tρ  is the total dislocation density). The 

response of deformation increases with decreasing scale. Fleck et al. [7] have suggested 

that yield strength depends both on strain and strain gradient where strain will define the 

scale of deformation. In case of torsion the smaller the wire, the larger the strain gradient 

generated. In thin wires of 12 to 170 mμ  diameter, torsional hardening increases as the 

diameter of the wire specimen decreases [7]. Hardening of a beam increases as the 
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thickness of thin beams, ranging from 12.5 to 50 mμ , decreases [22]. Conventional 

crystal plasticity theories, however, do not take into account these effects making them 

fundamentally incapable of predicting scale dependent behavior. The substructures 

formed by dislocations in FCC materials observed directly, point towards the complex 

interactions of dislocations at different length scales. These interactions of dislocations 

drive for the development of simulations such as those performed by Zbib et al. [23] and 

Kubin [24] using the dynamics of dislocations divided into many smaller segments. The 

mesoscopic simulations based on dislocation dynamics are calibrated and are bridged 

with even an lower scale of modeling called atomistic simulations e.g. [25]. 

 

1.3 Microstructure evolution in polycrystalline materials 

The initial concentration on the crystal plasticity simulations was to include the modeling 

of work hardening and mechanical properties in terms of flow stress at different 

temperatures and strain rates. In the past 3 decades, the crystal plasticity models have 

come forward to predict not only the mechanical properties but, crystallographic texture 

and overall microstructure evolution during deformation of polycrystalline materials and 

dislocation densities as well. 

 Involvement of dislocation densities in crystal plasticity finite element method 

(CPFEM) models enables studies on the grain interactions and the neighborhood effect 

on the hardening of grains. For more complex microstructure evolution phenomena, such 

as static recovery and recrystallization, it is important to have information on local stored 

energy in a structure. In CPFEM models which are based on dislocation density evolution, 

the stored energy information is addressed by the spatial distribution of dislocations i.e. 
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dislocation structures. Problems such as recrystallization can not be simply addressed by 

dislocation density based stored energy alone but must include effects of particles, 

particle matrix interface, grain boundaries, and micro-slip bands as well. It is well 

documented by Becker and Panchandeeswaran [26] and others that grain interactions can 

have a first order effect on local texture evolution. It is obvious that the local texture 

evolution affects the local dislocation density evolution since both are dependent upon 

which slip systems are active for a given deformation gradient. Therefore it is worthwhile 

to study the evolution of dislocation density considering the effect of texture evolution. 

The objectives of the current research work are to: 

1. Develop a dislocation density based 3D crystal plasticity model which can 

predict orientation dependence of stress-strain behavior of single crystal 

aluminum. 

2. Predict rotations of crystallites of bicrystals and multicrystals during plane 

strain compression and compare the results with those reported in the 

literature. 

3. Predict the crystallographic texture evolution during planning strain 

compression of a polycrystal 

4. Study of microstructure evolution during plane strain compression of a large 

grain columnar polycrystal. 

 

1.4 Thesis outline 

This research work focuses on the finite strain deformation of pure aluminum. The thesis 

is divided into 7 chapters. Chapter 2 gives an overview of literature available in this area 
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of research. The theories of dislocation density evolution and crystal plasticity modeling 

framework used in the past are reviewed in Chapter 2. Chapter 3 presents a dislocation 

density based model which has been adopted for development of a 3D CPFEM model in 

this work. A time integration scheme for implementing the model in the commercially 

available FEM package ABAQUSTM/Standard is also presented in Chapter 3. The study 

done on the interaction of dislocations using the dislocation dynamics is presented in 

Chapter 4. Chapter 5 presents the study on the anisotropic behavior of aluminum single 

crystals. The simulation results showing stress-strain response of aluminum single 

crystals and their orientation evolution during finite deformation are discussed in this 

chapter. Chapter 5 also presents 4 case studies namely: dislocation density and 

orientation evolution in two bicrystals. For one of the bicrystals only orientation of the 

crystallites is tracked during plane strain compression. A study on the orientation split 

during plane strain compression is done using the other bircrystal. Simulation results 

showing dislocation densities, evolution of Taylor factor and orientations of constituent 

crystallites of a 10 grain multi-crystal are described in case study 3. The predictions of 

orientation evolution of selected crystallites are compared against other simulation 

studies and the experimental observations. Case study 4 discusses the predictions of 

heterogeneous microstructure evolution of an 18 grain polycrystal against the 

experimental observations. The conclusion of the research work and the future work are 

presented in Chapter 6 and Chapter 7 respectively. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

Single crystal models form the basis of polycrystalline models and are used for studies of 

plastic anisotropy and texture evolution in metal deformation e.g. rolling, extrusion etc. 

[1]. In a polycrystalline material, each crystallite deforms according to its individual 

orientation and the local thermomechanical conditions imposed on it (e.g. deformation 

gradient, strain rate, temperature, tractions etc) in the polycrystalline aggregate. For 

correct prediction of overall microstructure evolution, grain boundary structure, 

interaction of constituent grains, and plastic strain heterogeneity should be considered [2-

5]. Micromechanical models used for microstructure evolution studies of polycrystalline 

aggregates are employed as stand alone computer programs e.g. ALAMEL (cf. Van 

Houtte et al. [6], [7]) or are developed as user interface subroutines in commercial finite 

element packages, e.g. [8]. In this chapter the development of crystal plasticity models 

and application for microstructure evolution over the past many decades has been 

reviewed briefly. 

 

2.1 Crystal plasticity formulations 

The systematic study of crystallographic slip started in 1923 by Taylor and Elam [9, 10], 

who truly initiated the development of phenomenological single crystal continuum  

plasticity [cf. Taylor [11]]. The evolution of hardening laws afterwards enabled the 

development of more sophisticated crystal plasticity formulations staring from the 1960s 

until now. These models are shown to predict the stress-strain response for a given 
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loading history, orientation dependent hardening, evolution of lattice orientation during 

uniaxial plastic deformation and evolution of crystallographic texture during deformation 

of polycrystals etc. 

The  continuum crystal kinematics framework adopted in all the crystal plasticity 

formulations comes due to the pioneering work by Hill [12] and Mandel [13]. These 

authors proposed the time independent continuum frameworks for crystallographic slip in 

single crystals at low temperatures. Plastic flow of crystalline solids at low temperature 

has been studied in a time independent continuum framework by many other researchers, 

for example, by Bishop and Hill [14], Hutchinson [15], Havner and Shalaby [16] and 

Asaro and Rice [17], Hill and Rice [18], Hill and Havner [19], and Peirce et al. [20]. A 

detailed review of the aforesaid approaches is presented by Asaro [21]. In these 

formulations the dislocation motion, giving rise to overall plastic deformation, is 

described in terms of continuous crystallographic slips. In these models, a generalized 

Schmid’s law is used and any slip system is considered to be active if the corresponding 

shear stress on that system reaches a critical value (cf. Hill [12]). The critical shear stress 

evolution ατ cr  on a slip system α  is given as a function of the shear rate βγ  on the self 

system or latent system β  (=1, 12 for FCC crystals). This formulation of hardening is 

given by: 

∑
N

α β
cr αβ

β=1
τ = h γ      (2.1) 

where αβh  are the hardening moduli which take into account the effect of all the latent 

slip systems on each individual slip system. N is the total number of slip systems. It is 

shown later in this chapter that this critical shear stress is actually the slip resistance due 
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to the latent system and has been used in a majority of crystal plasticity models. However, 

a varying form of the constitutive equation for the shear strain is found in the literature. 

(cf. e.g. Asaro et al. [22] and Harder et al. [23]). 

 In the framework of time independent plasticity, the hardening laws based upon 

the simplified assumptions do not predict a unique set of active slip systems (cf. Hill [12], 

Hill and Rice [18]). To avoid this indeterminacy Havner and Shalaby [16] propose a 

theory of additional  maximum  work and Asaro [24] proposes a classic time-dependent 

formulation. However these approaches with simple hardening evolution laws have not 

been able to address issues such as stage I to stage II transition and the orientation 

dependence of stress-strain response of single crystals. Wu et al. [25] show that a usually 

considered criterion that the self hardening terms are smaller than the latent hardening 

terms, is not sufficient to describe the experimental findings showing single glide and 

overshoot. The authors later proposed a set of constitutive equations and hardening laws 

which are shown to predict a distinct set of active slip systems, orientation dependence of 

stress-strain response of single crystals, and latent hardening in stage II deformation 

using a time independent framework. (cf. Bassani and Wu [26]). Bassani and Wu [26] 

propose a phenomenological law of latent hardening in multi-slip conditions in FCC 

crystals which was developed in the wake of several macroscopic hardening phenomena 

observed in the experiments [25]. This hardening law shows a high initial hardening on a 

previously latent slip system and the hardening matrix can be chosen in such a way that 

for a time independent formulation it gives a unique set of active slip systems. 

 Apart from being classified as time independent and time dependent models, 

currently available crystal plasticity models using finite element methods (CPFEM) can 
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be distinguished into two major types. In the first type, slip resistances are used as 

internal state variables (e.g. Beaudoin et al. [1], Kalidindi et al. [8], Asaro and Rice [17], 

Anand and Kothari [27], Nemat-Nasser and Okinaka [28, 29], Kumar and Dawson [30], 

Delannay et al. [31]). In these models generally, the slip resistance due to forest (latent) 

system is given by Eq (2.1) and the plasticity flow rate is determined using a power law 

or exponential law or a combination of both forms, coupling the shear strain with the 

shear stress and the slip resistance. Eq (2.2) shows a typical form of this equation. 

⎛ ⎞
⎜ ⎟
⎝ ⎠

1/mα
α

0 α

τγ = γ
S

    (2.2) 

where αγ  is the shear rate on slip system α  due to a resolved shear stress of ατ against 

the slip resistance αS caused by forest dislocations on that slip system. m  is the strain rate 

sensitivity and 0γ  is a reference shear rate, details of which can be read in the review by 

Kocks and Mecking [32]. The exponential form of the flow rule is as shown in Eq (2.3). 

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

qpα
α

0 α

τγ = γ .exp 1-
S

    (2.3) 

where p and q are the exponential factors which define the distribution of the obstacles 

(e.g. forest dislocations, solute particles) on the dislocation glide plane [32]. Other than 

the forms given in Eq (2.2) and Eq (2.3), some researchers use a multiplicative 

combination of the power law and the exponential law. Zhang et al. [33] use a flow 

equation identical to Eq (2.2) coupled with hardening laws proposed by Bassani and Wu 

[26] to simulate necking during a uniaxial tensile test of single crystal Cu. Gerken and 

Dawson [34] use a similar flow equation and also use gradients of slip on each slip 

system to include the non-local effect in the constitutive equations. 
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 A large fraction of CPFEM models use slip resistances as internal state variables 

and such models are able to predict the stress-strain response well.  However, dislocation 

densities are the microstructural variables that govern the evolution of properties and 

would enable a more physical understanding compared to slip resistance. Nevertheless, 

slip resistance based models also have been used to predict local deformation and 

problems like surface roughening with reasonable agreement to experimental 

observations (e.g. predictions of local grain orientations by Zhao et al. [35]). Also the 

CPFEM models that do not use dislocation densities as internal state variables are not 

fully capable of predicting properties of the material beyond the limits of available 

experimental data. 

 In the other type of models, dislocation density/densities are used as internal state 

variables (e.g. Cuitino and Ortiz [36], Tabourot et al. [37], Estrin et al. [38], Ohashi [39], 

Roters et al. [40], Busso et al. [41],  Evers et al. [42], Bortoloni and Cermelli [43], 

Cheong et al. [44], Ma et al. [4], Brinckmann et al. [45], Rezvanian et al. [46], Zhao et al. 

[35]). In the phenomenological (or the empirical) equations such as those shown in Eq 

(2.2) and Eq (2.3), “material constants” are only fitting parameters and do not depend on 

the microstructural state of the material. Since the introduction of dislocations as 

“plasticity carriers” by Taylor in 1934 [47] there have been many advances in the 

understanding of physics of dislocations which has enabled the modeling of dislocation 

density based crystal plasticity. In these models the evolution of dislocation densities is 

incorporated explicitly in the framework of flow rules and slip resistance. The current 

status of the dislocation density based models is due to the contributions on dislocation 

theories of work hardening by Seeger [48], Nabarro, Basinski and Holt [49], Cottrell and 
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Stokes [50], Kulhmann-Wilsford [51, 52], Kocks [53] and Mecking and Kocks [54], 

Estrin and Mecking [55], Kocks, Argon, and Asbhy [56], Gottstein and Argon [57] and 

Nabarro [58]. A pioneering review of the strain hardening in FCC metals can be found in 

the work of Kocks and Mecking [32]. 

 While all the dislocation density based models are based on the scale of slip 

systems, they can be classified in different categories based on the way dislocation 

density is incorporated in the framework. Cuitino and Ortiz [36] use only one (edge and 

screw combined) dislocation density on each slip system. Some other models such as the 

one by Cheong et al. [44] and Zhao et al. [35] determine the dislocation density using 

phenomenological equations which in turn are related to shear strain rate on each slip 

system. Tabourot et al. [37] and Delaire et al. [59] use a power law such as that found in 

Eq (2.2) and use a dislocation density based formulation for slip resistance. In their model, 

dislocation density evolution is given as an additive form of rate of multiplication and 

annihilation which are further related to the mean free path of dislocation glide and the 

shear rate on the corresponding slip system. While Tabourot et al. [37] show the 

evolution of the three stages of hardening during uniaxial tensile deformation of a pure 

Cu single crystal in single glide orientation, Delaire et al. [59] predict the distribution of 

deformation field, dislocation density and activity of slip systems in different crystallites 

of a single layer Cu multicrystal. Kubin et al. [60] propose a similar framework which is 

well informed by 3D dislocation dynamics  simulations [61]. However, in contrast to the 

lone dependence of the mean free path of gliding dislocations on the density of forest 

dislocations, they suggest it to be dependent on (i) stored dislocation segment length, (ii) 

probability of interactions, and (iii) ratio of density of dislocations forming junctions and 



 17

the total dislocation density. Groh et al. [62] also using a multiscale approach propose a 

model for deformation of single crystal aluminum. In their approach molecular dynamics 

and dislocation dynamics are coupled with crystal plasticity in the hierarchy of increasing 

scale to provide with the material constants such as dislocation mobility and hardening 

coefficients. Brinckmann et al. [45] model the SSDs based on the mean free path of 

dislocations and the plastic strain and GNDs based on the gradients of plastic strain. An 

example of flow rule as a combination of a power law and an exponential law can be 

found in the work by Rezvanian et al. [46] who classify dislocation densities into 

statistical, GND, and the grain boundary dislocations. 

 In the current decade, many researchers have started developing constitutive laws 

based on dislocation densities alone. Some of these models define flow rules based on the 

Orowan equation (cf. Ohashi [63]) and hardening rules based on dislocation densities in 

which dislocation density evolution is given by an additive form of accumulation and 

annihilation. Ma et al. [4] and Roters et al. [40] use dislocation densities of mobile, forest 

and dislocations parallel to slip plane and use an Orowan type of equation to define the 

shear rate on each slip system. Arsenlis and Parks [64] proposed a model in which 

dislocation densities evolve in form of loops consisting of right handed and left handed 

edge and screw dislocations. In this model the flow rule is given by an Orowan type of 

equation. The authors report a modified version of the model to including strain gradient 

plasticity (cf. Arsenlis et al. [65]). This model is based on fundamental dislocation 

mechanics (e.g. continuity of dislocation line and conservation of Burgers vector). The 

model is shown to be capable of predicting orientation dependence of tensile stress-strain 

behavior of single crystal aluminum. The dislocation density evolution framework  of 
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Arsenlis and Parks [64] has been adopted in a recently published work by Alankar et al. 

[66] to predict the overall crystallographic texture of polycrystalline aluminum during 

plane strain compression. 

 Strength is directly related to the dislocation density state or dislocation 

substructures in the material. To predict evolution of substructures, dislocation density 

based models incorporating length scale plasticity, are useful (cf. Ma et al. [67, 68]). 

These models have been able to capture the orientation dependence of single crystal 

stress-strain behavior and can be validated against strategic observations by electron 

backscatter diffraction (EBSD), details of which will be given in the latter sections of this 

chapter. CPFEM models based on slip resistance evolution can not be readily validated 

by directly observing slip resistance evolution. 

 

2.2 Single crystal deformation and work hardening 

After Diehl [69], typically, the deformation of a single crystal is differentiated into three 

stages. Stage I depends only on the initial orientation of the single crystal and is called 

the easy glide stage. The regime where dislocations start multiplying rapidly and 

hardening rate is steepest is termed as the stage-II and depends upon the orientation 

through the dependence of shear modulus G. Stage-III is the slower rate regime of 

hardening and is very sensitive to changes in the temperature and the rate of deformation 

[32]. The resolved shear stress or Schmid stress are the driving force for shear on the slip 

systems [12, 17]. The evolution of shear stress and hence accuracy of predictions in 

different stages of work hardening is governed by hardening laws for different slip 
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systems which remains the least explored part of the continuum description of crystal 

plasticity. 

 Experimental investigation of work hardening is not very straightforward. Only 

an indirect measurement of the evolution of hardening is found in the literature. This is 

due to the limitations of simultaneous measurement of small increments of shear strain 

with measurement of shear stress with infinitesimal increments of deformation on 

different slip systems. Assuming single slip and assuming dependence of hardening on 

deformation history, experiments have been reported for indirect latent hardening 

measurements. [cf. Edwards and Washburn [70], Kocks [71], Ramaswami et al. [72], 

Jackson and Basinski [73], Franciosi et al. [74]]. In these experiments successive stress 

measurements are done on primary (single glide, first test) and secondary slip systems 

(second test). The amount of latent hardening is determined based upon the back 

extrapolation of yield stress in the second test; though this back extrapolation does not 

include any detail of the initial hardening. Also, the subsequent hardening determined by 

the secondary slip may not be a good estimate of latent hardening during ‘primary’ slip. 

In a tensile test, the overshooting [75, 76] of the tensile axis across the symmetry line 

between the primary and the conjugate slip systems is a measure of the anisotropy 

between the two slip systems [72] and is an indirect measure of the latent hardening. 

Consistent with the observations of the aforesaid experiments, simplified hardening laws 

have been proposed. Havner and Shalaby [16] proposed a latent hardening law for finite 

distortions of metal crystals which was able to predict the single slip mode in FCC 

crystals in tension having the tensile axis beyond the crystallographic symmetry axis. 

Later, the authors [77] showed that the law was also able to predict the anisotropic 
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hardening in FCC metal crystals. However, at infinitesimal small strains the model 

followed isotropic hardening on all active slip systems as proposed by Taylor [11]. Kocks 

[71] points out that the hardness on the second system is typically 1-1.6 times the 

hardness on the primarily active system and is independent of the strain history. Weng 

[78] also identifies a high initial hardening in the secondary test of the latent hardening 

experiment. The hardening anisotropy measured from the overshoot experiments is based 

on the assumption of single glide. However the experiments elucidate that substantial 

amount of secondary glide starts before the overshoot [79], and the evolution of lattice 

orientation is not consistent with the assumption of single glide (cf. Mitchell and 

Thornton [80] and Joshi and Green [76]). Kuhlmann-Wilsdorf [81] points out that work 

hardening, if related to the increment shear stress for a given increment of shear stress 

and the overall flow stress alone, will not be a true representative of the work hardening. 

Nevertheless, an increment of shear strain is fundamentally related to the glide of 

dislocations. Bassani and Wu [26] develop an analytical form of hardening law for 

general multislip condition. The hardening for each slip system is a function of the 

magnitude of the slip on that system (e.g. self hardening formulation by Pierce  et al. [20]  

and Asaro  [21]) and the latent hardening is given as multiples of slip on the latent system. 

Bassani and Wu [26], for showing a stage I to stage II transformation, use a diagonal 

hardening matrix (no latent hardening) which makes sure that a previously latent system 

hardens only when it is active. An interesting feature of the hardening law developed by 

Bassani and Wu [26] is that the hardening moduli evolves during the deformation and 

therefore can capture the strain path along with the final state. 
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The difference in self-hardening and latent hardening has been identified by many 

researchers (cf. Franciosi and Zaoui [82]). Therefore interactions of latent slip systems 

are of special interest. Various researchers have concluded that overall hardening in a 

single crystal is accounted to the different strength of interactions between dislocations 

on different slip systems. For example, the reader is referred to Saada [83], Zarka [84], 

and Franciosi et al. [74]. Similarly, total accumulated slip due to different slip 

interactions on each glide system has been related to the slip resistance by Zarka [84] 

which enabled the modeling of salient features of stage I and stage II hardening. The high 

rate of hardening in stage II is a consequence of dislocation interactions (or secondary 

slip). With the activation of new slip systems the hardening rate on each system increases 

depending upon the type of dislocation locks formed with the latent systems. The newly 

active systems harden much faster since it faces a larger number of forest dislocations. A 

more detailed review of different dislocation interactions and the numerical determination 

of the hardening coefficients are given in the next section. 

 

2.3 Discrete dislocation dynamics  

As reviewed earlier, in crystal plasticity simulations, hardening on distinct slip systems 

plays a key role in the microstructure evolution during deformation processes. In the 

models which use dislocation densities as state variables, hardening is a function of 

dislocation densities on the slip systems. Even based on dislocation densities, the 

continuum models such as reviewed in section 2.1 are limited to the evolution of stress 

and dislocation densities on an average basis (up to the slip system scale). To understand 

the underlying physics (e.g. short range interactions of dislocations: junctions and multi-
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junctions) at the micro scale, atomistic models [85] and discrete dislocation dynamics 

(DDD) simulations [86-90] have proven to  be of great importance. 

 In DDD simulations, dislocations are considered to be embedded into an isotropic 

elastic medium [86, 88]. More details of different frameworks used for DDD simulations 

can be found in the work of e.g. Kubin et al. [88], Ghoniem and Sun [91], Schwarz [92], 

Bulatov and Kubin [93], Zbib and Rubia [94], Ghoniem et al. [95, 96], Cai et al. [97], 

Martinez et al. [85]. 

 A brief overview of how 3D DDD simulations have been employed for 

determination of strength coefficients for different slip systems is given herein. The shear 

stress on a slip system α  is related to the forest dislocation density ρ  by a classical 

Taylor equation given by: 

ατ = αμb ρ       (2.4) 

where μ  is the shear modulus and b is the magnitude of the Burgers vector. A 

sophisticated form of Eq (2.4) is suggested by Franciosi and Zaoui [82] in which the 

hardening is dependent on the type of interacting slip systems. Eq (2.5) shows a 

generalized form of Eq (2.4) in which βρ  is the forest dislocation density and αβh  is the 

hardening matrix details of which will be given shortly. 

αβ βατ = μb h ρ           (2.5) 

Franciosi et al. [74] suggest that based on the symmetry of FCC crystals and the types of 

interactions, the overall slip resistance evolution is governed by six hardening 

coefficients. Four of these account for the latent hardening caused by the reactions known 

as Hirth junction, glissile junction, Lomer junction and collinear interaction. A Hirth 

junction is formed by two orthogonal burgers vectors which produce a <100> type 
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junction. Lomer junction and Glissile junction both form a ½<110> type junction. In the 

former the junction is sessile and it is glissile in the latter type. Apart from the 

aforementioned non-coplanar interactions, strength also evolves due to (i) parallel 

burgers vectors on parallel slip planes and (ii) non-parallel burgers vectors on parallel slip 

planes [82, 98, 99] which make the  remaining two coefficients of the hardening matrix 

αβh . However those interactions are weaker than the latent interactions. Although the 

gliding dislocations on a slip plane do not pierce the other parallel dislocations, they do 

increase the resistance to slip on parallel planes [100]. It is well documented in the 

literature [83] that these short range interactions mostly govern the flow stress during 

plastic deformation. In earlier studies, Saada [83] and Schoeck and Freyman [101] did 

specific calculations of junctions one by one and then averaged to determine the overall 

strength of the forest dislocation density. 

Recent research on dislocation dynamics simulations for studying the dislocation 

reactions can be found in the work of e.g. Kubin et al. [90], Zbib et al. [87], Shin et al. 

[102], Devincre et al. [103, 104] and Schwarz [105], Madec et al. [106-111] and 

Wickham et al. [112, 113], Bulatov et al. [114], Arsenlis et al. [89], and Martinez et al. 

[115]. Other possible interactions such as repulsive and crossed state reactions are also 

found in the literature [106, 107, 109] but are not discussed due to irrelevance to the topic 

of research under consideration. 

 It is noteworthy that the 3DDD of Kubin et al. [88] and Zbib et al. [86] are 

different in the way dislocation densities are used in their frameworks. The former uses 

straight segments of pure edge, pure screw, 
3
π , and 2

3
π  dislocations [106, 116] which 

form mixed types of dislocations and the latter uses curved dislocations. In the latter, 
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arbitrary curved dislocations are decomposed into piecewise arrays of dislocations. 

Dislocations dynamics simulations have been used extensively for dislocation-dislocation 

interactions, dislocation-interface interactions, for finding materials parameters for larger 

scale continuum models i.e. CPFEM, and for direct coupling with the finite element 

simulations successfully. For example, Akasheh et al. [117] use discrete dislocation 

dynamics (DDD) developed by Zbib et al. [86, 87] to find material parameters for a 

multiscale crystal plasticity model which is coupled with DDD. Liu et al. [118] couple 

the 3DDD with FE simulations such that the macroscopic boundary conditions are 

handled by the FE simulations and the dislocation slip activities are determined by DD. 

However, large number of time steps and therefore large simulation times restrict the use 

of DD simulations for the application into studies on dislocation density patterning, and 

the problems involving larger densities of dislocations. A detailed review of problems 

associated with large DD simulations can be read in Zbib and Rubia [94]. 

 

2.4 Microstructure evolution 

The mechanical behavior of a material in response to the applied deformation conditions 

of a material is not fully understood. Micromechanical simulations are used to explore the 

effects of microstructure on the evolution of mechanical properties. These simulations 

give the freedom for investigation of material behavior at different scales with in the 

mesoscopic limits. For example, the mechanical behavior has been studied at the 

microstructure scale by Becker and Panchanadeeswaran [3], Diard et al. [119], Van 

Houtte et al. [7], Zhao et al [35], Bieler et al. [120]) and at the specimen scale by Dawson 

et al. [121], Delannay et al. [122]; Zamiri et al. [123]). Modern experimental techniques 
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have made the predictions of CPFEM models to be compared against the experimental 

observations. These observations will aid in further enhancing the constitutive laws. 

Applied deformation can be easily mapped using microscopy techniques. Bhattacharya et 

al. [124], Héripré et al. [125] and St-Pierre et al. [126] map the realistic EBSD data on 

finite element mesh to compare the strain field against the ones observed in experiments. 

In these simulations CPFEM models are shown to qualitatively predict the local strain 

field heterogeneity with good agreement. Experimentally observed strain fields were 

studied by comparing CPFEM simulations against experimental results of free surface 

strain maps inside individual grains by Delaire et al. [59] and Raabe et al. [127]. Raabe et 

al. [128] define a macromechanical and micromechanical Taylor factor to distinguish the 

effect of friction coefficient to compare the von Mises strain profiles with the ones 

determined from experimentally determined displacement fields. In-situ studies of plastic 

deformation on the surface (cf. Schroeter and McDowell [129], Musienko et al. [130]) 

and in the bulk (cf. 3D X-ray characterization: Poulsen et al. [131]) have been done to 

explore overall microstructure evolution. Hetem and Zikry [132] map SEM/EBSD data 

onto the FEM mesh using Voronoi tessellations and to predict localized deformation 

bands which are consistent with the slip system activity and accumulation of mobile and 

immobile dislocation density. 

 Microstructure evolution models which are used for studying crystallographic 

texture, plastic anisotropy and grain-to-grain interactions must incorporate local plastic 

strain heterogeneity [133]. The influence of grain boundary and the cooperative 

deformation of adjacent grains is shown by Van Houtte et al. [6] assuming 

inhomogeneous shear in the grains parallel to the grain boundary. Kanjarla et al. [133] 
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report that plastic heterogeneity at the triple junctions causes stress singularities leading 

to the creation of splitting and creation of new grain boundaries with in the grain showing 

the singularity. CPFEM models such as presented in this work and fast Fourier 

transforms (FFT) (cf. Lebensohn et al. [134]) have been used for comparing against 

prediction of experimental observations of evolution of crystallographic orientation. In 

CPFEM simulation studies, typically it is assumed that the grain boundaries are planar 

interfaces between two neighboring grains. (cf. Van Houtte et al. [6, 135], Lee et al. [136], 

Engler et al. [137], Al-Fadhalah et al. [138], Mahesh [139]). Kalidindi et al. [140] 

compared CPFEM simulation predictions against the plane strain experiments carried out 

on a high purity aluminum polycrystal with columnar grains initially oriented close to 

<100>. Erieau and Rey [141] use a dislocation density based CPFEM model to do a 

similar study on the plane strain compression of IF steel. In both studies the predictions 

of overall texture and individual grains orientation from CPFEM models were compared 

against the experimental results. The models are shown to be able to predict the overall 

crystallographic texture but fail to predict local orientation patterns in certain grains. 

Similarly, Mika and Dawson [142] and Zhao et al. [35] report the simulation predictions 

of local grain orientations against the experiments only in a statistical sense. Plane strain 

deformation of aluminum bicrystals with different orientations of tilt boundary was 

studied by Zaefferer et al [143]. The study by Zaefferer et al. [143] shows that 

orientations of individual grains play a rather important role in the microstructure 

evolution as compared to the misorientations between the neighboring grains. 

 If dislocation slip activity is considered in a statistical manner, the grain 

interaction effects may not be captured fully due to the lack of discrete slip activity in the 



 27

neighboring grain which is captured by employment of length scale. The non-local 

effects (i.e. transportation of dislocation slip effect across the grain boundaries) have been 

addressed by a number of researchers. (cf. Ashmawi and Zikry [144], Ma et al. [145], 

Acharya et al. [146]). 

 The CPFEM models are usually able to predict the strain fields and orientations 

inside the grains reasonably well on an average basis but fail to represent the 

experimental observations at each point of the simulated microstructure. The predictions 

of FE simulations depend on the scale of the mesh with respect to the microstructure. 
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CHAPTER THREE 

CRYSTAL PLASTICITY MODEL 

 

The formulation for evolution of dislocation density presented in this section is based on 

the work of Arsenlis and Parks [1]. Dislocation evolution equations are coupled with the 

crystal kinematics. Overall crystal plasticity framework is implemented in the user 

subroutine interface UMAT in ABAQUSTM/Standard using a fully-implicit time 

integration procedure which is discussed later in this chapter. 

 

3.1 Crystal kinematics 

The crystal kinematics briefly reviewed here is based on the work of Asaro and Rice [2]. 

The deformed configuration of the material with respect to the undeformed material or 

reference configuration is given by ∂
=
∂

xF
X

, which can be further decomposed 

multiplicatively into elastic ( eF ) and plastic ( pF ) factors; i.e. 

= e pF F F                                                           (3.1) 

where, pF  maps the neighborhood of the original configuration to an intermediate 

configuration and describes the effects of plastic deformation on an unrotated and 

undeformed lattice, and eF  maps the intermediate neighborhoods to the neighborhood in 

the deformed configuration. pF  evolves as follows: 

=p p pF L F                                                         (3.2) 

where pL  is the plastic flow rate. 
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Figure 3.1 Kinematics of slip system activity showing deformation by slip and distortion 

of the crystal lattice (after Meissonnier et al.[3]) 

 

Fig. 3.1 shows a schematic of the deformation by slip and distortion of the crystal lattice. 

L  is the velocity gradient which gives the slip rate in the current configuration. L  is 

given by: 

1 1 1− − −∂
= = = +
∂

e e e p p exL FF F F F F F F
x

                                   (3.3) 

 where eL  and pL  are the elastic and plastic parts respectively of the velocity gradient L . 

pL  can be written as: 

N

0 0
1

α α α

α

γ
=

= ⊗∑pL m n                                                    (3.4) 

where 0
αm and 0

αn are the unit vectors in the slip direction and in the slip plane normal 

direction for slip system α  in the reference configuration. N is the number of slip 
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systems. The motion of dislocations and their interactions related to the plastic shear rate 

is given by Eq. (3.4). 

Evolution of αm and αn  can be determined by the equations: 

0
1

0

.

.

α α

α α −

=

=

e

e

m F m

n n F
                                                          (3.5) 

αm and αn are considered to be orthogonal so that the plastic deformation of the crystal is 

isochoric. eF  is determined from the equation: 

( ).= −e p eF L L F                                                     (3.6) 

or it can be calculated from Eq. (3.1), where F is known and Fp is obtained from the 

equation: 

 
N

0 0
1

.α α α

α

γ
=

⎛ ⎞= ⊗⎜ ⎟
⎝ ⎠
∑p pF m n F                                               (3.7) 

The elastic Green-Lagrange strain corresponding to the intermediate configuration 

is given by: 

( )2
1
2

= −
Te e eE F F I                                                  (3.8) 

where 2I  is a second order identity tensor. 

The Piola-Kirchhoff stress tensor *T is related to the Cauchy stress, σ  through: 

( ) 1 * Tdetσ
−

= e e eF F T F                                              (3.9) 

The Piola-Kirchhoff stress is related to the strain by: 

  * ⎡ ⎤= ℑ⎣ ⎦
eT E                                                       (3.10) 

where ℑ  is the 4th order stiffness tensor consisting of material elastic moduli. 
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3.2 Dislocation density framework 

Total dislocation density in a plastically deformed material is given by T G Sρ ρ ρ= + ; 

where Sρ is the density of statistically stored dislocations and Gρ  is the density of 

geometrically necessary dislocations. Further dislocation densities can be sub-classified 

as right-handed edge, left-handed edge, right-handed screw, and left-handed screw 

dislocations given by respectively e
αρ + , e

αρ − , s
αρ + , and s

αρ − . where ‘e’ and ‘s’ denote the 

edge and screw dislocation density respectively, and ‘+’ and ‘-‘ signs represent the right-

handed and left-handed dislocation densities in each type. The plastic shear strain rate is 

given by: 

( )α α α α α α α α α αγ ρ ρ ρ ρ+ + − − + + − −= + + +e e e e s s s sv v v v b                          (3.11) 

where xpv α is the average velocity for dislocation density of type ‘x’ and polarity ‘p’ on 

slip system α . b  is the Burgers vector. Dislocation flux is given by xp xpvα αρ such that the 

positive sense of dislocation density increases the dislocation flux and hence the plastic 

shear rate. 

Considering the three process; generation, annihilation (dynamic recovery) and 

accumulation/loss associated with the flux divergence, the evolution of dislocation 

density is given by: 

gen ann flux
α α α αρ ρ ρ ρ= + +                                           (3.12) 

Generation and annihilation terms are statistical in nature and do not affect the 

geometric character of the dislocation density within the volume element. The geometric 

character of dislocations is affected by the flux divergence term flux
αρ . Fig. 3.2 

schematically shows expansion of a dislocation loop lying on the plane of paper when a 
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shear stress in the ‘+’ X direction is applied. t  represents the line sense of a dislocation 

segment. The generation terms for each density type are given by: 

( ) ( )

( ) ( )

s s s s
e gen e gen

s s

e e e e
s gen s gen

e e

v v
l l

v v
l l

α α α α
α α

α α

α α α α
α α

α α

ρ ρ
ρ ρ

ρ ρ
ρ ρ

+ + − −
+ −

+ −

+ + − −
+ −

+ −

= = +

= = +

                             (3.13) 

 

 

Figure 3.2 Schematic of an expanding dislocation loop idealized as a composition of  

discrete edge and screw line segments forming a closed loop (after Arsenlis and Parks 

[1]). 

 

where xpl α  is the average dislocation segment length; subscripts and superscripts have the 

same sense as for average dislocation velocity. Evolution of dislocation density and 
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activity of dislocation sources is mainly affected by the evolution of dislocation segment 

lengths which are given by: 

( )

( )

1

1

1

1

N

e e ee e es s

N

s s se e ss s

l l H H

l l H H

α α αβ β αβ β

β

α α αβ β αβ β

β

ρ ρ

ρ ρ

+ −
=

+ −
=

= = +

= = +

∑

∑
                      (3.14) 

where xyH αβ  are dislocation strength interaction matrices as described in [1]. xyH αβ  

represents interaction of a dislocation of type ‘x’ on slip system α  with a dislocation of 

type ‘y’ on slip system β  (forest ). 

The dislocation density annihilation equations are given by: 

( )
( )

( ) ( )

( ) ( )

e ann e ann e e e e e

s ann s ann s s s s s

R v v

R v v

α α α α α α

α α α α α α

ρ ρ ρ ρ

ρ ρ ρ ρ

+ − + − + −

+ − + − + −

= = − +

= = − +
                            (3.15) 

where eR and sR are the critical capture radii for the edge and screw dislocations. The 

critical capture radii decide the minimum distance to which two parallel Burgers vector 

dislocations can come before they annihilate each other. In a macroscopic view, the 

saturation values of the edge and screw dislocations densities are decided by these critical 

capture radii [1]. A similar argument is given by Kubin et al.[4] about the critical radii of 

the stress field of screw dislocations referring to their annihilation activity. 

The slip system indices are used as described by Schmid and Boas [5] (see also 

English version by Schmid [6]). A, B, C and D represent 4 slip planes namely ( )111 , 

( )111 , ( )111 , and ( )111  respectively. 1, 2, 3, 4, 5, and 6 representing the six directions 

of Burgers vectors in the FCC crystal given by [ ]011 , 011⎡ ⎤⎣ ⎦ , [ ]101 , 101⎡ ⎤⎣ ⎦ , [ ]110 , and 
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110⎡ ⎤⎣ ⎦ . A [100] stereographic projection is presented in Fig. 3.3 which shows 24 

standard triangles with few slip systems. Table A.1 in Appendix A shows the slip 

directions ( 0mα ) and slip plane normal ( 0nα ) in the reference frame for FCC crystals. 

 

 

Figure 3.3 Stereographic project from [100] showing slip systems on 24 standard 

triangles (after Wu et al. [7]). Note that all slip systems are not visible in this projection. 

Slip system notation is after Schmid and Boas [6]. 

 

3.3 Evolution of slip resistance 

Dislocation resistance is modeled primarily by forest dislocation density interactions but 

glide dislocations and dislocations in parallel gliding planes are also taken into account. 

Gliding dislocations increase the slip resistance to slip on parallel slip planes [8]. In the 
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present work dislocation slip resistance is represented in a Taylor type equation of 

hardening given by: 

( )

( )

1

1

N

de ee e es s

N

ds se e ss s

S b G G

S b G G

α αβ β αβ β

β

α αβ β αβ β

β

μ ρ ρ

μ ρ ρ

=

=

= +

= +

∑

∑
                                         (3.16)                               

where deSα  is the slip resistance on edge mobile dislocations on slip system α  due to 

forest dislocations of type edge and screw on slip system β . dsSα  is the slip resistance on 

screw mobile dislocations on slip system α  due to forest dislocations of type edge and 

screw on slip system β . Finally, e
βρ  is the total edge dislocation density on slip system 

β   and s
βρ  is the total screw dislocation density on slip system β  [1] given by: 

β β β

β β β

ρ ρ ρ

ρ ρ ρ

+ −

+ −

= +

= +

e e e

s s s

                                                 (3.17) 

xyGαβ  are dislocation strength interaction matrices as described in [1]. xyGαβ  represents 

interaction of a dislocation of type ‘x’ on slip system α  with a dislocation of type ‘y’ on 

slip system β . 

 Dislocation strength interaction matrices consist of 6 independent coefficients 

namely 0G , 1G , 2G , 3G , 4G , 5G . 0G  represents in-plane interaction of dislocations with 

the same Burgers vectors and 1G  represents interaction of dislocations with different 

Burgers vectors and on the same gliding plane. Coefficients 2 5G G−  represent out of 

plane interactions and are related to four different types of junctions/locks which glide 

dislocations make with forest dislocations. These are called Hirth junction, collinear lock, 

glissile junction, and Lomer junction respectively. A detailed study on hardening and 
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interaction of slip systems has been done by Franciosi and Zaoui [9, 10]. Though it is 

suggested [9] that the hardening matrix should depend on the stress state (dislocation 

density), we do not consider evolution of the matrix during deformation. Constitutive 

behavior equations for the velocity of dislocations have been used as given in reference 

[1] and will be introduced later while we discuss time integration procedure in section 

3.5. 

 

3.4 Crystallographic texture update algorithm 

In this section, three different methods of texture update algorithm are reviewed. 

(i) The first two methods are based on an update of the orientation matrix for 

each grain based on the change in orientation which is determined using polar 

decomposition of the elastic part of the deformation gradient ( eF ). 

' = eR F R       (3.18) 

*' =R R R       (3.19) 

with R  being the initial (Lagrangian) orientation matrix for each grain and 

*R  the orthogonal rotation tensor obtained using polar decomposition of eF  

i.e. 

*=eF R U      (3.20) 

U is the displacement tensor in the intermediate configuration. For small 

elastic strains (e.g. metals) both Eq (3.18) and Eq (3.19) produce the same 

results. In case of large elastic strains the second equation is more accurate 

[11]. 
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(ii) In the third method, R  in the previous configuration is used to calculate R  in 

the next time step. 

                 *=R W R                (3.21) 

where *W  is the elastic part of the spin tensor and is given by * = − pW W W . W  is the 

anti-symmetric part of the velocity gradient tensor and is given by: 

  ( )1
2

= − TW L L     (3.22) 

pW  is the plastic part of the spin tensor and is given by 

α α

α

γ= Ω∑pW         (3.23) 

where αΩ  is the anti-symmetric part of the Schmid matrix in the current configuration 

given by: 

( )1
2

α α α α αΩ = ⊗ − ⊗m n n m        (3.24) 

αm  and αn  are slip direction vectors and slip plane normal vectors respectively in the 

current configuration. The orientation change is then given by: 

                       t tα α

α

γ⎛ ⎞Δ = Δ − Ω Δ⎜ ⎟
⎝ ⎠

∑R W R                   (3.25) 

The results presented in the current work are obtained using the first scheme. The 

orthogonal rotation matrix 'R  obtained here is also called the orientation matrix and is 

used to determine Euler angles for each grain. Orientation matrix is represented in the 

passive convention by the direction cosine matrix of the Euler angles (Bunge’s 

notation) 1ϕ , Φ , and 2ϕ . See section A.2 in Appendix A. 
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3.5 Time integration procedure 

The crystal plasticity framework described in the previous section is numerically 

integrated using a fully-implicit time integration procedure. The crystal kinematics 

framework and the dislocation density framework are implemented using a user interface 

subroutine UMAT in the commercially available FEM package ABAQUSTM/Standard 

[12]. The variables passed as input to the UMAT are total deformation gradient at time t 

( ( )F t ) and the Cauchy stress at time t ( ( )σ t ). The UMAT is implemented with a fully-

implicit Newton-Raphson scheme to give state-dependent variables namely dislocation 

densities, dislocation density evolution rates, and the plastic deformation gradient ( p ( )tF ) 

at time τ = t + Δt . This chapter focuses on the equations which are set up for updating the 

stress and state variables in the new time increment.  

The time integration procedure is inspired by the work of Kalidindi et al.[13] which the 

authors describe as a two-level scheme. In this approach, the stress is determined in the 

first level of the Newton-Raphson method while slip resistance, dislocation density and 

dislocation velocities are updated in the second level. nt  and 1nt + are current time at the 

beginning and end of a time increment given by 1n nt t t+Δ = − . For each iteration, state 

variables (dislocation densities and dislocation evolution rates), state dependent variables 

(slip resistance) diSα , the Cauchy stress (σ ) and material Jacobian matrix σ
ε

∂
∂

 are needed. 

i varies from 1 to 2; 1 being for edge dislocations and 2 being for screw dislocations.  

It is assumed that at time nt , nσ , pFn  , and diSα  are known. 

Applying a fully-implicit time integration of Eq (3.2), pFn+1  is given by: 

( )p p pF 1 L F= + Δn+1 nt                     (3.26) 
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Eq (3.26) can be re-written as given below by using Eq (3.4): 

p p

1
1

N

n+1 n
α α

α

γ
=

⎛ ⎞
= + Δ⎜ ⎟
⎝ ⎠

∑F P F                 (3.27) 

Also, 

p-1 p-1

1
1

N

n+1 n
α α

α

γ
=

⎛ ⎞
= − Δ⎜ ⎟

⎝ ⎠
∑F F P            (3.28) 

where 0 0
α α α= ⊗P m n  is the Schmid tensor. 

Eq (3.11) shows that ( ),vα αγ γ ρ= ; where ρ  is dislocation density and v  is 

dislocation velocity which in turn depend upon the resolved shear stress ( ατ ) and  slip 

resistance ( α
diS ) on each slip system. Also ignoring the small elastic strain in metallic 

materials, the resolved shear stress ( ατ ) is given by: 

* :α ατ ≈ T P          (3.29) 

Therefore αγ  can be written as: 

( )*, diSα α αγ γ= T                                   (3.30)  

The slip increment αγΔ  is defined in terms of the weighted average of the slip rate at nt  

and 1nt + : 

n n+1t t= (1- ). + . tαγ ω γ ω γ⎡ ⎤Δ Δ⎣ ⎦          (3.31) 

where ω  is a weighting factor. 0ω =  corresponds to the Euler forward (explicit) and 

0ω ≠ to the Euler backward (fully-implicit) integration. 0.5ω =  is the trapezoidal rule.  

Using Eq (3.1) and Eq (3.28), the following relation can be established [13]: 

p-T T p-1

1

n

F F F F A B
α

α α

α

γ
=

= − Δ∑n+1 n+1 n+1 n+1                     (3.32) 
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where  

p-T T p-1A F F F F≡ n n+1 n+1 n  and ( )T

B P A APα α α≡ +       (3.33) 

Using Eq (3.32) and the Eq (3.33) *T  is obtained as: 

tr

1

n
* *T T C

α
α α

α

γ
=

≈ − Δ∑      (3.34) 

where 

( )1 2C / Bα α⎡ ⎤≡ ℑ⎣ ⎦                 (3.35) 

( )tr 1
2

*T A 1≡ ℑ −                         (3.36) 

First, Eq (3.34), which is a set of non-linear equations in *T  and αγΔ , is solved 

using a Newton-Raphson type root-finding scheme given by the following equation. 

From now on the symbol ‘ ( )τ ’ will be used for time 1nt +  and the nth iteration of the 

Newton-Raphson will be represented by an ‘n’ in the subscript. 

( ) ( ) [ ]1* *T T Gτ τ κ −= −n+1 n n n          (3.37) 

( ) ( ) ( ) ( )( )tr

1
n n n di k

S
α

α α α

α

τ γ τ τ
=

≡ − + Δ∑
n

* * *G T T T , C         (3.38) 

κn  is the tangent matrix for Newton-Raphson scheme given by: 

( ) ( ) ( )( )
( )1

*n

*

T ,
I C

T

α
α α

α

α

γ τ τ
κ

τ=

∂Δ
≡ + ⊗

∂∑
n i k

n
n

S
                            (3.39) 

and          ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )n di j jk k k
S vα α α α αγ τ τ γ ρ τ τ≡*T , ,      (3.40) 

where j varies from 1 to 4 and denotes the 4 types of dislocation densities as described in 

Eq. (3.11). ( )di k
Sα  is the kth update in diSα  after n+1 iterations of the N-R method. 
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Similarly ( )j k

αρ  and  ( )j k
vα  represent the kth update in the dislocation densities and 

dislocation velocities after n+1 iterations of the N-R method. From Eq. (3.40) it is 

evident that: 

( ) ( )( )( )
( )

( ) ( ) ( ) ( )( )
( )

n di i jk k k

n n

S vα α α α αγ τ τ γ ρ τ τ

τ τ

∂Δ ∂Δ
=

∂ ∂

*

* *

T , ,

T T
        (3.41) 

N-R scheme is applied for a very small increment, and ( ) ( )αρ τj k
 is assumed to be 

constant for determination of 
( ) ( ) ( ) ( )( )

( )
j jk k

n

vα α αγ ρ τ τ

τ

∂Δ

∂ *

,

T
 , viz 

( ) ( ) ( ) ( )( )
( ) ( )

( )( )
( )* *

,

T T

α α α α α

α
γ ρ τ τ γ

ρ
τ τ

∂Δ ∂Δ
=

∂ ∂

j j jk k k
j k

n n

v v
               (3.42) 

Dislocation densities are simply updated using: 

( ) ( ) ( )'

1xp xp xpk k k
tα α αρ ρ ρ

+
= + Δ     (3.43) 

where 'tΔ  is the sub-increment in the N-R scheme. 

Slip resistances are integrated using: 

( ) ( ) ( ){ }1 1 1de ee e es sk k k
S b G Gα αβ β αβ β

β

μ ρ ρ
+ + +
= +∑   (3.44) 

( ) ( ) ( ){ }1 1 1ds se e ss sk k k
S b G Gα αβ β αβ β

β

μ ρ ρ
+ + +
= +∑   (3.45) 

ατ n+1  can be updated using Eq (3.29). Now that we have ατ n+1 , ( )
1de k

Sα

+
, and ( )

1ds k
Sα

+
, 

dislocation velocities can be updated using: 

( ) ( )
10

01
1

exp 1

qp

n
e k

de k

Fv v
kT S

α
α

α

τ +

+
+

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟⎜ ⎟= − −⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

                            (3.46) 
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and 

( ) ( )
10

01
1

exp 1

qp

n
s k

ds k

Fv v
kT S

α
α

α

τ +

+
+

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟⎜ ⎟= − −⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

                   (3.47) 

where, T  is absolute temperature, k  is Boltzmann’s constant, 0F  is the total free energy 

required to overcome the slip resistance, and p, q, and 0v  are exponential and pre-

exponential constants. 

The procedure for determination of  T
E
∂
∂

 is described in the next section which is 

needed for determination of the material Jacobian matrix σ
ε

∂
∂

[3]. T  is the second Piola-

Kirchhoff stress tensor pushed forward to the intermediate configuration. E  is the total 

Green-Lagrange strain tensor defined by ( )T1E = F F - I
2

. 

 

3.5.1 Determination of the tangent matrix T
E
∂
∂

  

The determination of T
E
∂
∂

 is obtained following the work of Meissonnier et al. [3]. 

A two-level update method is used coupled with Newton-Raphson algorithm as 

suggested by Kalidindi et al [13]. Since a two-level update algorithm is used in which slip 

resistance is not determined in a single update along with stress T , it is exclude from the 

procedure employed for determination for T
E
∂
∂

. Hence all the derivatives used for slip 

resistance diSα  are excluded in this procedure and the remainder of the algorithm is the 
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same as given by Meissonnier et al. [3]. All the mathematical operations used here have 

their usual meaning and are listed in Table A.3 in Appendix A. 

( )( ) ( ) ( ) ( )-T
* p1 -1 Tp p p * p p pT pdet : det 1 1 :T T FF F F T F F TF F T

E E E
− ⎛ ⎞∂ ∂ ∂⎡ ⎤⎡ ⎤= ⊗ + ⊗ − ⊗ + ⊗⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦∂ ∂ ∂⎝ ⎠

 

(3.48) 

where 
pF

E
∂
∂

 is given by: 

( )
p

p

1

n

n
F P F
E E

α α

α
α

γ
=

∂ ∂Δ
= ⊗

∂ ∂∑               (3.49) 

and 
*T

E
∂
∂

 is determined using a linear system of equations given by: 

* tr

1
:

nT T C
E E E

α α
α

α

γ
=

∂ ∂ ∂
ℜ = − Δ

∂ ∂ ∂∑       (3.50) 

where ℜ  is given by: 

1
1 1

N α
α

α

γ
=

⎛ ⎞∂Δ
ℜ ≡ ⊗ + ⊗⎜ ⎟∂⎝ ⎠

∑ C
E

    (3.51) 

where 
trT

E
∂
∂

 is given by: 

( )
tr

p-1 p-1:∂
= ℑ ⊗

∂
T F F
E

          (3.52) 

and C
E

α∂
∂

 is given by: 

( ) ( )T Tp-T p-1 p-1 p-T:
α

α α∂ ⎡ ⎤= ℑ ⊗ + ⊗⎢ ⎥⎣ ⎦∂
C F F P F P F
E

  (3.53) 
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CHAPTER FOUR 

DETERMINATION OF AVERAGE DISLOCATION INTERACTION 

STRENGTHS USING DISLOCATION DYNAMICS 

 

As discussed in Chapter two, hardening laws play a key role in predicting the plastic 

anisotropic behavior of single crystals, which in turn sets up the building block for 

prediction of the overall crystallographic texture evolution and microstructure evolution 

(including dislocation patterning). In this chapter determination of hardening coefficients 

used in the current CPFEM model using an application of 3D discrete dislocation 

dynamics is discussed. The determination of these hardening parameters using a 3DDD 

model such as shown herein can be of great importance for obtaining an appropriate 

initial estimate in finding a reasonable set of hardening coefficients. This chapter focuses 

only on the latent hardening coefficients. 

 

4.1 Simulation details 

In the simulation cells, dislocations are populated in such a way that on the application of 

stress only one type of junction is formed. The result is a specific junction of dislocations 

on mobile and forest systems. The strength of these junctions is determined using the 

critical resolved shear stress on the mobile slip system and the forest dislocation density 

which is given by a Taylor equation. 

α αβ β

β

τ μ ρ= ∑c b a      (4.1) 
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Here, ατ c  is the critical resolved shear stress (RSS) on the mobile slip system α , βρ is 

the dislocation density on the forest slip system β . μ is the shear modulus and b is the 

magnitude of the Burgers vector. 

 In the CPFEM model presented here the slip resistance is given by Eqs. (3.16). 

For readability, these equations are again presented here. 

( )

( )

de ee e es s

ds se e ss s

S b G G

S b G G

α αβ β αβ β

β

α αβ β αβ β

β

μ ρ ρ

μ ρ ρ

= +

= +

∑

∑
                                         (4.2) 

where symbols are as described in Chapter Three, Eq (3.16). As used in the above 

equations, the forest dislocation densities are divided into edge and screw type 

dislocations and different hardening coefficients are envisioned for the edge (mobile)-

edge (forest), edge(mobile)-screw(forest), screw(mobile)-edge(forest), and 

screw(mobile)-screw(forest) dislocations. However, for simplicity we consider average 

strength of dislocation interactions and therefore use identical hardening coefficients as 

described in Eq. (4.1). Rather than giving edge and screw dislocations different 

treatments, we determine the hardening coefficients which would be applicable to an 

overall ensemble of mixed types of dislocations. 

 Material constants (e.g. elastic stiffness, stacking fault energy etc.) for pure 

aluminum are used. The shear modulus is 26.1 GPa and the magnitude of the Burgers 

vector is 2.86E-10 m. αβa  is the latent hardening coefficient of interest. In each 

simulation, the mobile system is given by  ½[0 1 1](1 1 -1) and the forest slip system 

varies according to the junction of interest. The forest and mobile slip systems used for 

the simulations are shown in Table 4.1. Each simulation cell is a cubic cell of size 
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(35000b)3 (~ 10 μm )3. All the simulations were done at a constant strain rate of 20 s-1 up 

to a total strain of ~ 1E-03. Cross-slip is disabled for all simulations to avoid reactions by 

cross-slip. 

 

Table 4.1 Forest and mobile slip systems for different junctions. After Devincre et al. [1] 

Junction/Lock Type Mobile system Forest system 

Hirth ½[0 1 1](1 1 -1) ½[0 1 -1](1 1 1) 

½[0 1 -1](-1 1 1) 

Glissile ½[0 1 1](1 1 -1) ½[-1 0 1](1 -1 1) 

½[-1 1 0](1 1 1) 

Lomer-Cottrell ½[0 1 1](1 1 -1) ½[-1 0 1](1 1 1) 

½[1 1 0](-1 1 1) 

Collinear ½[1 0 -1](1 -1 1) ½[1 0 -1](1 1 1) 

 

 The forest dislocation density ( ρ f ) is 1 x 1012 m-2 and the mobile dislocation 

density ( ρm ) is 
5
ρ f . All dislocations on forest and mobile slip systems are sets of 

randomly selected edge and screw type dislocations. On forest slip systems, all screw 

dislocations are aligned in the X direction of the simulation cell and the edge dislocations 

are in the Y direction. Fig. 4.1 shows a typical initial configuration of dislocations in the 

simulation cell (for the Lomer junction in the picture). Resolved shear stress on the forest 

slip system is zero, therefore forest dislocation density does not evolve. Also, the 

interactions between dislocations on the same slip systems are disabled. In an effort to 
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account for junction formation only, we disable attractive or repulsive interactions of 

dislocations (including dipoles) on the same slip systems. To further minimize the change 

to the forest dislocation density during the slip process, periodic boundary conditions are 

employed so that the dislocations remain straight due to line tension. 

 

Figure 4.1 Initial configurations of the dislocations in the simulation cell. Dark colored 

lines represent the forest dislocations and the light colored lines are the mobile 

dislocations. Dark lines along the X direction are screw dislocations and along the Y 

direction are the edge dislocations. 
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(a) 

Figure 4.2 Final configuration of the simulation cells. (a) Hirth junction, (b) glissile 

junction, (c) Lomer junction, (d) collinear interaction. Junctions are represented by the 

green color. Repulsive and crossed states are represented by the pink purple colors 

respectively. 
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(b) 
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(c) 
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(d) 

 

 

4.2 Results and discussion 

Fig. 4.2 shows the final configuration for the simulation cells for glissile junction, Hirth 

junction and Lomer junction.  In Fig 4.2, the legend identifies different planes and 

reactions. Number 1 to 4 represent planes 111( ) , 111( ) , 1 11( ) , 111( )  respectively, and 

number 5, 6, 7, 8 represent the occurrence of a jog, junction, repulsive state, and a 

crossed state respectively. Junctions are potentially formed along the direction defined by 

the line of intersection of two non coplanar dislocation slip planes. Two same line-sense 
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and same Burgers vectors dislocations repel each other. Two same line-sense but 

opposite Burgers vector dislocations interact attractively. Attractive dislocations on the 

latent planes interact to form stable junctions [2]. A typical junction is shown in Fig. 4.3. 

The picture shows a Hirth junction which is formed between a dislocation line with 

Burgers vector 011[ ]  on plane 111( )  i.e. plane 3 (mobile dislocation) and a dislocation 

line with Burgers vector 011[ ]  on plane 111( )  i.e. plane 4 (forest dislocation). 

 Another attractive reaction which could form a junction but does not, is called a 

crossed state. In the crossed state the dislocations are pinned at their point of intersection 

but do not zip further due to higher line tension of dislocation lines than the local force 

required for zipping [3]. Fig. 4.4 shows the final state of dislocations showing the 

formation of locks. The first 3 junctions can be seen physically in the pictures and are 

represented by dark black lines which are encircled for clarity. The fourth interaction 

forms a collinear lock which can not be seen physically because it is created by pinning 

of dislocations which annihilate at the line of intersection of two cross-slip planes. The 

lock, so formed, is a result of a zero Burgers vector junction and can not be seen 

physically. However, the dislocation segments having one part on the forest slip system 

and the other on the mobile slip system can be seen [Fig 4.4(d)]. A 3D view of the 

formation of the collinear lock can be seen in Fig. 4.5 (a), (b), and (c) in serial with 

increasing time. One dislocation on plane 111( )  with Burgers vector 101[ ]  and the other 

on plane 111( )  with the same Burgers vector i.e. 101[ ]  interact to cause a collinear 

annihilation. Since the reaction product is a Burgers vector of “zero” length, it is the 

minimum energy configuration of the reacting dislocations and therefore makes it harder 

to destabilize the pinning. Note that no quantitative analysis is done on repulsive states 
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and crossed states in this work. Pictures shown in Fig. 4.4 are the view of 1 μm thin 

sections cut in the forest plane from the simulation cell. In Fig 4.4, junctions are in the 

[110] direction for glissile junctions and Lomer junctions. Hirth junction are in the [100] 

direction. Mobile segments which are shown in gray color are, in general bigger in the 

Hirth, glissile, and Lomer junction simulations as compared to the collinear interaction 

simulations. This is attributed to the collinear annihilation in the latter which causes the 

mobile segments to break into smaller segments. Forest segments break into smaller 

segments as well, but to a lesser extent.  These segments need higher stress for 

remobilization than before the reaction. This can be visualized in Fig. 4.6 which shows 

the evolution of RSS as a function of plastic strain. RSS curves for the three junctions are 

rather smoother as compared to those for the collinear reactions. Frequent jumps in the 

RSS in the plot for the collinear reaction are attributed to the elastic relaxation after each 

collinear annihilation.  
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Figure 4.3 A smaller simulation cell showing a typical junction. The green color line 

shows a junction of Hirth type. 
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(a) 

Figure 4.4 Views of DD simulations, showing formation of (a) Hirth junctions, (b) 

Glissile junctions, (c) Lomer junctions, and (d) Collinear interactions. Light gray 

(horizontal) lines are forest screw dislocations while the forest edge dislocations are 

perpendicular to the plane of the paper. Dark gray lines are mobile dislocations. Black, 

encircled lines are junctions. 
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(b) 

 

 

  

(c) 
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(d) 
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(a) 

Figure 4.5 Formation of a collinear lock. (a), (b) and (c) are in serial with increasing time. 
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(b) 
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(c) 

 

 



 73

 

Figure 4.6 Evolution of resolved shear stress with respect to plastic strain for Hirth 

junctions, glissile junctions, Lomer junctions, and collinear interaction. 

 

 Junction formation on a segment is a highly stimulating event for further junction 

formation on the same segment. Once a junction is formed, the mobile and forest 

segments are zipped to a small fraction of their length. This causes the unzipped length of 

the segments to curve around the ends of the zipped (junctions) lengths and makes the 

segments more probabilistic for forming a junction (more junction length). An example 

of strength evolution with increasing number of junctions and how the junction forming 

segments cause more lengths to form a junction is shown in Fig. 4.7. Note that in these 

plots the total strains are not necessarily ~ 0.001. 
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(a) 

Figure 4.7 Number of junctions formed for (a) Hirth (b) glissile, (c) Lomer junctions, 

plotted with RSS. The thick black line in each picture represents the number of junctions. 

In (c) the thinner dark line shows the number of jogs. 
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(b) 

 



 76

 

(c) 

 

 For a more reasonable comparison of junction strength, not only stress values, but 

the number of junctions formed at different strain levels should be studied. We compare 

the number of junctions as functions of strains and correlate the stress evolution with 

corresponding junctions. Glissile junctions are formed most easily followed by Hirth and 

Lomer junctions. Glissile junctions are formed at a high frequency as a function of strain 

but the critical resolved shear stress at which they are formed is not higher than that for 

the Lomer junctions. Lomer junctions are similar to glissile junctions except the fact that 

they are sessile, therefore they cause high stress evolution once formed. Fig. 4.7(c) shows 

the number of jogs which were observed in the simulation for Lomer junctions. It is 

evident that junction formation has a much stronger effect on the strength evolution as 

compared with jog formation. This could be justified with the argument that in jog 
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formation, much smaller fractions of the interacting segments come together as compared 

to a junction formation. Also, in junction formation the angles between the interacting 

segments are smaller (< 8o in the present simulation studies) as compared to those in jog 

formations. The smaller angle of interaction causes zipping of the segments, which is 

evidently a much stronger reaction than a jog. The coefficients of hardening are 

determined using Eq (4.1). For determination of the critical RSS in each reaction, the 

RSS value at which the first reaction occurs is used. Forest dislocation density is used for 

the corresponding RSS value. Table 2 shows the hardening coefficients determined using 

these simulations. 

 

Table 4.2 Hardening coefficients for different junctions 

Interaction coefficient   Junction/Lock 

Type Current work* 

Avg (Min, Max) 

Devincre et al. [1] Madec et al. [4] 

Hirth 0.0312 (0.0154, 0.0615) 0.0454+/-0.003 0.051+/-0.012 

Glissile 0.2128 (0.1631, 0.2504) 0.137+/-0.014 0.075+/-0.014 

Lomer 0.2225 (0.1443, 0.2895) 0.122+/-0.012 0.084+/-0.012 

Collinear 0.9968 (0.9347, 1.0489) 0.625+/-0.044 1.265+/-0.125 

*Values are calculated using 4 simulations for each reaction 

 

 The hardening values obtained are of the same order as reported in the literature 

[4] and are justified according to the reasoning given earlier and in the literature e.g. [1, 

4]. However, in reference [1], the hardening coefficient for a glissile junction is reported 
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to be higher than that of a Lomer junction which contradicts the fact that the latter is a 

sessile junction. 

 The other hardening coefficients used in the CPFEM model are the average 

dislocation segment length coefficients described referring to Eq. (3.14) in Chapter Three. 

Determination of these coefficients even using a simplified relation similar to Eq. (4.1) 

will not be straight forward. The average segment length of a mobile dislocation is an 

average length pinned between two immobile points in that dislocation length [5]. This 

immobile point can be a junction with the forest dislocation (in the case of a pure crystal) 

or a solute atom or precipitate in a more complex case. The determination of all segments 

of mobile dislocations (length between junctions with forest dislocations) is not 

performed for this research and can be considered for future work using the above vision. 

 

4.3 Summary  

Strength of junctions in aluminum is studied using discrete dislocation dynamics of 

curved dislocations of mixed character. This simulation is based on aluminum which is 

elastically more isotropic than many other metals. As described by Devincre et al. [1], 

these hardening coefficients are dimensionless parameters therefore they should be the 

same for different materials having the same crystal structure. RSS plotted along with the 

number of junctions formed shows that with every new junction formed, RSS evolves 

further and with each unzipping of a junction, the stress decreases. Calculations of 

hardening coefficients shown here are in order with the ones presented in similar studies 

in the literature. Worth mentioning is the fact that some simulation dependent criteria (e.g. 
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critical angles of the reacting segments, and the minimum length between two reacting 

segments) play significant roles on the reactions. 
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CHAPTER FIVE 

ANISOTROPY OF ALUMINUM SINGLE CRYSTALS, CRYSTALLOGRAPHIC 

TEXTURE AND MICROSTRUCTURE EVOLUTION IN POLYCRYSTALS 

 

The dislocation density evolution framework described in Chapter 3 is integrated 

into the user subroutine interface UMAT in ABAQUSTM/Standard using a fully-implicit 

time integration procedure. In this chapter, applications of the model are discussed in the 

order of increasing complexity of microstructure evolution. Predictions by the model for 

stress-strain evolution and orientation evolution for uniaxial tensile tests of single crystals 

are compared against the experimental results reported in the literature. Crystallographic 

texture and microstructure evolution is discussed referring to dislocation density, 

hardening and orientation evolution in polycrystals. 

 

5.1 Anisotropy of single crystals 

For calibration of the CPFEM model, experimental results for single crystal tensile stress-

strain behavior for aluminum by Hosford et al. [1] were used. For single crystals, the FE 

formulations use a simplified geometry of 0.04 mm x 0.04 mm x 0.04 mm, consisting of 

1 element. C3D8 type elements are used.  This element is an 8 node, 8 integration points 

linear brick element in ABAQUS/Standard element library [2]. The rear face 

perpendicular to Z is restricted for displacement in Z and the front face perpendicular to 

Z is pulled in the Z direction. Strain is caused using a prescribed displacement. Material 

constants and fitting parameters used in the current model are shown in Table 5.1.  
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Table 5.1 Material parameters for single crystal aluminum 

Elastic moduli 11C =108 GPa 

12C =61.3 GPa 

44C =28.5 GPa 

μ =25.0 GPa 

Burgers vector 
b =2.863 

o
A  

Critical radii eR =10.0 nm, sR =90.0 nm 

ov  1.0e-3 m.s-1 

p, q 0.10, 1.41 respectively 

 

Table 5.2. Euler angles used for single crystals 

Single crystal 

Identification 

Single crystal 1ϕ  (o) Φ  (o) 2ϕ  (o) 

A [-1 2 3] 75.0 36.0 333.0 

B [-1 2 5] 47.0 24.0 333.0 

C [-4 2 1] 94.0 77.0 296.0 

D [-2 3 6] 70.0 31.0 326.0 

E [111] 0.0 54.7 45.0 

F [111]* 0.0 54.7356 45.0 

G [-110] 360.0 90.0 315.0 

H [100] 90.0 90.0 90.0 

*With negligible misorientation from the tensile axis. 
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 The Euler’s angles used for simulations of all the single crystals in this work are 

shown in Table 5.2. The stress-strain evolution in aluminum single crystals <111> and 

<100> is presented in Fig. 5.1. The CPFEM model captures the stress evolution fairly 

closely along with the characteristic difference in hardening in <111> and <100> single 

crystals.  The <111> single crystal shows a relatively faster rate of hardening as 

compared to the <100> , even though there are fewer slip systems active as compared to 

the latter. Slip systems A5, A3, D5, D1, C3, and C1 are active in tensile tests of <111> 

single crystals, while in <100> single crystals slip systems B6, B4, A5, A3, D5, D4, C6, 

and C3 are active. A misorientation of less than 1o was given to the <111> single crystal, 

while the <100> single crystal was perfectly oriented along the tensile axis. This can be 

seen clearly in Fig. 5.2 which shows evolution of the resolved shear stress (RSS) in the 

two single crystals. The <111> single crystal shows distinguished evolution of the RSS in 

all active slip systems. See Fig. 5.2(a). However in the <100> single crystal, RSS evolves 

identically on all of the active slip systems. See Fig. 5.2(b). 

 The difference in hardening rate in the two types of single crystals can be seen 

through the evolution of dislocation densities as well, which is shown in Fig. 5.3. Therein, 

the evolution of total edge and total screw type dislocation densities in the single crystals 

is depicted, and the higher stress level in <111> single crystals as compared to <100> is 

justified. Also, the difference in evolution of edge and screw dislocation densities can be 

easily appreciated. 
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Figure 5.1. Stress evolution as a function of strain in single crystal aluminum <111> and 

<100> validated against experimental data obtained from the work of Hosford et al. [1] 
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(a) 

Figure 5.2. Resolved shear stress evolution in aluminum single crystals (a) <111> 

(misorientation <1o) and  (b) <100> (no misorientation included). 
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(b) 
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(a) 

Figure 5.3. Dislocation density evolution in pure aluminum single crystals (a) <111> and 

(b) <100> 
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(b) 
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Figure 5.4. Dislocation density evolution on different slip systems of aluminum single 

crystal <111> with little misorientation (< 1 degree) 

 

Figure 5.4 shows the evolution of dislocation densities for the uniaxial tensile text 

mentioned earlier. In this picture also, the effect of misorientation of the tensile axis from 

the <111> direction can be seen. The edge type dislocations on slip systems A5, C1, and 

D5 show a higher degree of evolution as compared to the other three edge type 

dislocations i.e. on C3, D1, and A3. The screw dislocations show intermediate evolution 

rates between these two sets of edge type dislocations. The sets of edge dislocations and 
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screw dislocations are diverging after the simulation starts but soon after they seem to 

converge in the groups of edge and screw type dislocations. 

 

5.1.1. Overshooting in single crystal aluminum 

Application of overshooting phenomenon in single crystals for study of hardening laws 

was discussed briefly in Chapter 2. The reader is referred to the  experimental study by 

Joshi and Green [3] for a discussion of the occurrence of overshooting in aluminum. On 

the contrary, a theoretical approach (Taylor and Elam [4]) shows that during uniaxial 

tensile deformation of an aluminum single crystal oriented in single glide orientation, the 

tensile axis would reach the symmetry line and then would start moving along it, showing 

double glide behavior. Here, the current CPFEM model is shown to predict the 

overshooting behavior. In this section, the effect of latent hardening parameters on the 

overshooting behavior is discussed emphasizing the role of the collinear interaction 

(cross-slip) of dislocations. The correlations of average segment length and slip resistance 

are given by average dislocation segment length parameters and hardening parameters 

respectively. Since both govern the evolution of hardening, we call both of them 

hardening parameters. 

 For studying the phenomenon of overshooting, simulations of uniaxial tensile test 

are performed on different orientations of single crystals. Simulation set up is identical to 

as described earlier in Section 5.1. A hardening parameter for collinear interaction less 

than that of the Lomer junction, shows overshooting by our CPFEM model. If the 

hardening parameter for collinear interaction is chosen to be higher as compared to the 

other hardening parameters, the extent of overshooting is increased. Henceforth the 
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hardening parameters are treated in two sets; namely, set 1: In which the Lomer junction 

parameter is the strongest hardening parameter, set 2: In which the collinear lock 

parameter is the strongest hardening parameter. The results from these two sets of 

parameters are compared to show the effect of hardening parameters on the evolution of 

the tensile axis orientation. In the forthcoming section are presented the simulation setup, 

results, discussion, and conclusions. The hardening parameters of set 1 and set 2 are 

shown in Table 5.3 and Table 5.4 respectively. 

 

Table 5.3 Dislocation strength interaction parameters 

Parameters 0G  

Parallel 

burgers 

vector on 

same 

planes 

1G  

Parallel 

burgers 

vectors on 

parallel 

planes 

2G  

Collinear 

lock 

3G  

Glissile 

junction 

4G  

Hirth 

junction 

5G  

Lomer 

junction 

Set 1 0.10 0.22 0.30 0.38 0.16 0.45 

Set 2 0.10 1.00 0.30 0.38 0.16 0.45 
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Table 5.4 Average dislocation segment length interaction parameters 

Parameters 0H  

Parallel 

burgers 

vector on 

same 

planes 

1H  

Parallel 

burgers 

vectors on 

parallel 

planes 

2H  

Collinear 

lock 

3H  

Glissile 

junction 

4H  

Hirth 

junction 

5H  

Lomer 

junction 

Set 1 0.0 0.0 0.05 0.12 0.03 0.25 

Set 2 0.0 0.0 1.0 0.12 0.03 0.25 

 

 The phenomenon of overshooting depends on latent hardening. Tabourot et al. [5] 

have shown the occurrence of stage I, stage II, and stage III hardening in pure copper 

using a dislocation density based model which is specifically designed to model single 

glide behavior. However, in their work, the evolution of orientation for a [-125] oriented 

single crystal, is not shown to have any overshooting to the conjugate slip system. On 

reaching the symmetry line for the slip systems considered, the orientation evolution 

starts following the direction of double slip along the symmetry line. This is in contrast to 

the orientation evolution shown by Anand and Kothari [6] for a copper single crystal of [-

236] orientation using a rate dependent CPFEM model employing isotropic latent 

hardening. Basinski and Basinski et al. [7] report that the latent hardening ratio of all 

coplanar systems is unity (except for Cu - Philip [8] ) which means that the ratio of stress 

on system II (orientation in which system II is activated) to the ratio of stress on system I 
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(orientation in which system I is activated) is one. This implies that in a non-hardening 

system, there should be no overshooting. This is well supported by the work of Anand 

and Kothari [6] who show that a CPFEM model employing non-hardening behavior does 

not predict overshooting. In contrast to the commonly used isotropic latent hardening, the 

model which we have used for the present work, uses hardening parameters based on 

distinct dislocation reactions and junction formation [9]. In this CPFEM model, the 

Lomer junction is considered to be the strongest junction. However, it has been recently 

reported [10] that a collinear interaction of dislocations is much stronger than a Lomer 

junction. Two dislocations with a common burgers vector may interact along the line of 

intersection of their glide planes (cross slip planes) to annihilate a part of their segment 

lengths. Such an interaction may be envisioned as a zero Burgers vector segment [10] 

(also see Chapter 2, Chapter 3). 

 The rotations of symmetric orientations of single crystals are shown in the 

standard stereographic unit triangles in Fig. 5.5. A [111] orientation with negligible 

misorientation (orientation ‘F’ in Table 5.2) shows negligible movement of the tensile 

axis inside the unit triangle (see Fig. 5.5a). This is not the case with the behavior of 

crystal ‘E’ in which the crystal axis is slightly misoriented from the [111] tensile axis 

(See Fig. 5.5b). In this orientation there are 6 unequally active slip systems. Similar 

behavior is shown by another symmetrically oriented single crystal [011] and the 

orientations of the tensile axis can be seen coincident on the [011] pole in Fig. 5.5c. 

 Fig. 5.6 shows the rotation of the tensile axis for single glide oriented single 

crystals. The right hand column in Fig. 5.6 is for the simulations which use set 1 of the 

parameters (collinear lock is not the strongest hardening parameter). The left hand 
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column in Fig. 5.6 is for the simulations which use set 2 of the parameters (collinear lock 

is the strongest hardening parameter). Single crystal ‘A’ for which the tensile axis is 

oriented in the [-123] direction, shows a movement of the tensile axis towards the 

symmetry line and overshooting into the conjugate slip system. After overshooting into 

the conjugate slip system it turns suddenly and starts moving parallel to the symmetry 

line of the two slip systems. This is the case with all single crystals oriented for single 

glide. The farther the initial orientation of the tensile axis from the symmetry line into the 

primary slip system, more it travels to reach the symmetry line and beyond to overshoot. 

In all simulations, the single crystal was stretched up to ~ 45 % elongation. 

 

 

 

 

 

 

 

 



 94

(a) (b) 

 

(c) 

 

Figure 5.5. Orientation changes for tensile axes during the deformation of symmetrically 

oriented single crystals. (a) [111] with no misorientation, (b) [111] with misorientation, 

(c) [011] with no misorientation 
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(a) (e) 

(b) (f) 

Figure 5.6. Orientation changes for tensile axes during the deformation of single glide 

oriented single crystals. (a) [-123] (b) [-125] (c) [-421] (d) [-236]. (e), (f), (g) and (h) 

show the counterparts of (a), (b), (c), and (d) respectively using hardening parameters of 

set 2. 
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(c) (g) 

(d) (h) 

 

 

In the simulations which show overshooting, after overshooting the tensile axis 

orientation starts moving parallel to the symmetry line of the primary slip system and the 

conjugate slip system and then turn towards the [111] pole, as seen in Fig. 5.6. Single 



 97

crystal ‘C’ shows slightly different behavior as the tensile axis changes its path even 

before it reaches the line of symmetry [001] – [111]. The tensile axis follows this second 

path and overshoots into the conjugate system. 

It is evident from the above observation that a higher value of the hardening 

parameter for a collinear lock predicts the overshooting behavior better then the case 

when a weak collinear interaction parameter is used. In the latter simulations, the 

transient from single glide to the double glide regime does not seem to occur suddenly as 

it does in the former. The dislocations on the primary and conjugate slip systems work as 

forest dislocations for each other and may interact to form a Lomer junction. Tisone et al. 

[11] suggest a model for describing overshooting in Cu-15% Al based on failure of 

Lomer junctions due to bowing out of mobile dislocations gliding on the conjugate slip 

system. For a given length of Lomer junctions, the bow out of the mobile dislocations on 

conjugate slip system occurs for a critical stress [11]. The smaller the length of the Lomer 

junctions, more stress will be needed for starting dislocations to glide on the conjugate 

slip system. As mentioned earlier in section I and elsewhere (cf. [10]), collinear 

interaction of dislocations causes formation of  smaller dislocation segments on the 

interacting slip systems. Though primary and conjugate slip systems do not mutually 

interact by collinear reactions, these systems may interact with other latent systems which 

cause collinear interactions with these. These separate reactions may further decrease the 

length of the Lomer junctions formed by mutual interactions of primary and conjugate 

slip systems and therefore extending the overshooting. It is also suggested by Tisone et al. 

[11] that more frequent cross-slip causes formation of a random distribution of forest 

dislocation segments and that the dislocation glide is easier through a randomly 
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distributed forest as compared to a planar distribution. As first defined by Franciosi and 

Zaoui [12] and as incorporated in the present CPFEM model, a collinear hardening 

parameter represents interaction of cross-slip systems. A higher value of the collinear 

parameter represents, indirectly, a higher activity of cross-slip interactions. Therefore a 

higher value of the collinear lock parameter causes creation of smaller dislocation 

segment lengths on the interacting planes and a more random distribution of forest 

dislocations. This explanation suits well the observations in the present simulations but 

has scope of further examination. As suggested by Devincre et al. [9], the latent 

hardening parameters are non-dimensional parameters and must be the same for all FCC 

crystals. This offers motivation for a further study for distinguishing the extent of 

overshooting in different crystals [7] (e.g. Cu and Al which are supposed to have the 

same values of the collinear hardening parameter but different extent of cross-slip due to 

a substantial difference in the stacking fault energy). 

 

5.2 Plane strain deformation of bicrystals 

In this section studies on the rotations and split of the crystallite orientations during plane 

strain deformation of bicrystals are presented. The predictions by the CPFEM model are 

compared against the experimental observations. Orientations of the crystallites of the 

bicrystals are given in Table 5.5 and are shown on the crystallographic orientation map in 

Fig. 5.7. Note that {001} and {111} crystallographic pole figures are used for bicrystal 1 

and bicrystal 2 respectively for easy comparison with the results from literature. Bicrystal 

1 and 2 are deformed up to 10% and 30% thickness reductions respectively. 
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Table 5.5 Orientations of the crystallites in bicrystals 1 and 2 

Bicrystal crystal 

Identification 

Crystallite 

Identification

1ϕ  (o) Φ  (o) 2ϕ  (o) 

1 

(cf. Prasannavenkatesan et 

al. [13]) 

A 320.175 50.443 51.813 

 B 318.656 41.024 54.964 

2 

(cf. Field and Alankar [14] 

A 40.3 57.0 57.0 

 B 267.1 20.0 182.8 

 

 

 Fig. 5.8 and Fig, 5.9 show the comparisons of the evolution of orientations for 

crystallite A and crystallite B respectively against the experimental observations and 

predictions by Asaro’s model, a power law model, and Bassani’s model [13]. The 

predictions by the current CPFEM model compare reasonably well against the 

experimental work and the other models. Fig. 5.10 shows the orientation spread in the 

crystallites A and B of bicrystal 2 after a thickness reduction of 30%. The CPFEM model 

is able to capture the orientation evolutions fairly closely. For the simulation of bicrystal 

2, 180 elements of C3D8 type in ABAQUSTM/Standard are used to mesh a geometry of 

0.40 mm x 0.24 mm x 0.12 mm. The interface of the two grains is along the XZ plane. 

The thickness reduction is done along the ‘-‘ Z direction and any dimension changes are 

restricted along the Y direction. 
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(a) 

Figure 5.7 Initial orientations of crystallites in the bicrystals. In each bicrystal crystallite 

A is represented by square symbols and crystallite B is represented by circles (a) 

Bicrystal 1, (b) Bicrystal 2. 
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(b) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 5.8 Change of orientation of crystallite A in bicrystal 1 after a thickness reduction 

of 10 %. (a) Experimental observation [13], (b) Asaro’s hardening model [13], (c) Power 

law [13], (d) Bassani’s model [13], (e) present work 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 5.9 Change of orientation of crystallite B in bicrystal 1 after a thickness reduction 

of 10%. (a) Experimental observation [13], (b) Asaro’s hardening model [13], (c) Power 

law [13], (d) Bassani’s model [13], (e) present work 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.10 Orientation spread crystallite A and crystallite B of bicrystal 2 after a 

thickness reduction of 30 %. (a), and (c) represent crystallite A and (b) and (d) represent 

crystallite B. (a) and (b) are experimental observations [14]. 

 

5.3 Crystallographic texture evolution in a polycrystal 

The FE formulation uses a simplified geometry of 0.2 mm x 0.2 mm x 0.1 mm, consisting 

of 500 elements. C3D8 type elements are used which are 8 node, 8 integration points, 

linear elements in ABAQUSTM/Standard library. The rear face perpendicular to X is 

restricted for displacement in X. Both faces normal to the Y direction are restricted in the 



 105

Y direction. The rear face normal to the Z direction is restricted for Z displacement and 

the front face normal to the Z direction is given a displacement to cause an 80% reduction 

in distance between the two faces normal to the Z direction. Each element is treated as a 

single grain and is assigned a random orientation. Fig. 5.11a represents the random 

arrangement of material point orientations in the FEM mesh. The thickness is reduced 

using the prescribed displacement. In the present study a constant strain rate of 5.33e-05 

s-1 is used. 

 

 

(a) 

Figure 5.11 (a) Initial FEM mesh; 500 C3D8 type 8 node brick elements with random 

orientation. (b) Deformed mesh showing von Mises stress distribution with 80 % 

thickness (Z direction) reduction in plane strain compression of pure aluminum 

polycrystal. 
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(b) 

 

Results presented here are due to homogenous deformation and it is considered 

that the texture evolution in this case is representative of the whole material volume. Von 

Mises stress distribution in the deformed body after a thickness reduction of 80% is 

shown in Fig. 5.11b. Fig. 5.12 shows the “random” initial crystallographic texture in the 

material considered in this study. Fig. 5.13 shows the prediction of texture evolution after 

80% thickness reduction and demonstrates a nominally correct texture prediction by the 

CPFEM model. This texture plot is typical of FCC material deformed under plane strain 

compression and can be validated with a great degree of agreement against an 

experimental observation reported in the literature. Any qualitative or quantitative 

comparison with experimental observation is not being presented here. The forthcoming 

part of this work, discusses various components of texture in plane-strain compression. 
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The strongest texture component seen in this figure is the ‘S’ component 

{ }123 634⎡ ⎤⎣ ⎦ . The high intensity regions in the texture plots are the expected fibers that 

evolved during rolling of FCC metals. α -fiber  { }110 uvw  and β -fibers { }100 uvw  

are the two main fiber components. 
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(a) 

 

(b) 

 

Figure 5.12. Initial random orientation of grains (a) Stereographic projection 111 (b) 

Texture 111 



 109

 

(a) (b) (c) 

 

Figure 5.13 Evolution of texture in plane strain compression of pure aluminum 

polycrystal at 80 % thickness reduction. 

 

Fig. 5.14 shows a comparison of the texture evolution for reductions in thickness 

to 40 %, 70 % and 80 %. While the character of the texture over this range changes little, 

the major texture components increase in intensity. 
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Figure 5.14 Comparison of texture evolution at different thickness reductions. (a) 

40 % (b) 70 % (c) 80 % 

 

Euler space ( 2 constantϕ = ) representation of Fig. 5.13 can be seen in Fig. 5.15. 

Relatively strong ‘brass’ { }110 112⎡ ⎤⎣ ⎦  and ‘copper’ { }112 111⎡ ⎤⎣ ⎦  texture components are 

(a) 

(b) 

(c) 
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present in the simulation and a minor component of cube { }[ ]001 100  texture can be seen. 

Sections 2 0ϕ = o and 2 90ϕ = o  show the presence of a weak α -fiber and the high 

intensity peak running through the constant 2ϕ  sections indicates a strong β -fiber as 

expected for rolled Al [15]. 

  

 

 

Figure 5.15. Rolling texture represented in Euler space showing few texture components 

that are present. 

 

Fig. 5.16 shows evolution of the alpha and beta fibers at different reductions in 

the simulation. The α -fiber connects the ‘brass’ { }110 112⎡ ⎤⎣ ⎦  to ‘Goss’ { }[ ]110 001  

components and can be seen clearly on the 100 texture plot in Fig. 5.13 and in the Euler 

space plot of Fig. 5.15 at section 2 0ϕ = o .  
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(a) 

Figure 5.16 Evolution of (a) α -fiber and (b) β -fiber with increasing deformation 
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(b) 

 

Fig 5.17 presents texture prediction by the model during simple shear of a 500 

grained polycrystal after 80% shear. The initial geometry for this simulation is the same 

as for the simulation of the plane strain compression and initially all 500 grains are 

assigned identical sets of random orientations. These predictions of crystallographic 

evolution compare reasonably well with the results presented in the literature e.g. [15]. 

‘A’ partial fiber – {111}<uvw>, ‘B’ partial fiber – {hkl}<110> and the ‘C’ component – 

{001}<110> are clearly visible. 
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(a) (b) 
(c) 

 

 

Figure 5.17.  Texture evolution after 80% simple shear of pure aluminum. ‘SD’ on the 

texture plots represents the shear direction. 

 

5.4 Dislocation density patterning 

The initial dislocation density in all the above simulations of plane strain compression is 

1 ×  108 m.m-3 which is uniformly distributed in the material volume. As the deformation 

proceeds, the dislocation density evolution varies spatially. Non-uniform spatial 

distribution of dislocation density comes due to varying crystallographic orientation of 

each material point and due to local deformation gradient. The spatial distribution of total 
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dislocation density (i.e. dislocation patterning) is shown in Fig. 5.18 at 40% and 70% 

thickness reduction. Qualitatively the evolving heterogeneity can be observed in Fig. 

5.18a and 5.18b with increasing deformation. A quantitative description of the same is 

presented using a coupling of dislocation densities with the crystallographic orientations 

of different material points. Fig. 5.19 shows the distribution of dislocation density for the 

corresponding orientation of the material point on a stereographic projection. The legends 

in Fig. 5.19 show the dislocation densities in multiples of 1014 m.m-3. The increasing 

degree of heterogeneity of dislocation patterning with proceeding deformation can be 

envisioned using the maximum and minimum values of the dislocation densities. At 40% 

deformation the dislocation density distribution is still more of a random type. Whereas, 

at 70% the stereographic projection shows a definite pattern which is similar to the 

texture plot at 70% and the variation of dislocation density for different orientations of 

crystallites is much higher than what is observed at 40%. 

The hardening behavior of the two crystallites A and B in bicrystal 1 discussed in 

section 5.2 can be compared referring to total dislocation density and initial orientations 

(see Fig. 5.20). Crystallite A is close to the <111> orientation and shows higher 

accumulated dislocation density. Especially, the effect of the interface between the two 

crystallites can be seen clearly as the highest accumulated dislocation density is observed 

in the neighborhood of the interface. However, due to lack of transport of non-local effect 

across the interface, crystallite B does not show any increased dislocation density around 

the interface. A more detailed discussion of hardening is presented referring to Taylor 

factors and dislocation density evolution in a multicrystal later in this chapter. To further 
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study the evolution of dislocation patterning, more complex studies on the deformation of 

polycrystals are considered in the forthcoming sections. 

 

 

 

 

(a) 

Figure 5.18 Dislocation patterns during plane strain deformation. Dislocation density in 

the legend is in multiples of 1 ×  106 m.m-3 (a) 40% deformation, (b) 70% deformation 
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(b) 
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(a)  

 

(b)  

 

 

Figure 5.19. Dislocation density distribution in a polycrystal presented coupled 

with crystallographic orientations. (a) 40 % thickness reduction, (b) 70% thickness 

reduction. The legend shows dislocation density ×  1014 m.m-3. 
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Figure 5.20. Dislocation density distribution in the bicrystal 1 after a thickness 

reduction of 10%. The legend shows dislocation density ×  106 m.m-3. 

 

5.5 Channel die compression of 2D columnar multicrystals 

5.5.1 Grain rotations and hardening in a 2D multicrystal 

The microstructure evolution during plane strain compression of a columnar grained, 

two-dimensional single layer multicrystal of aluminum is investigated using the CPFEM 

model. The multicrystal under consideration here is the one studied by 

Prasannavenkatesan et al. [13] which consists of 10 large grains. The initial orientations 

of the grains are shown in Table B.1 in Appendix B. Initial crystallographic orientations 

of the grains are mapped onto a FEM mesh and the predictions of spatial distribution of 

accumulated strain and dislocation density distribution are compared. Rotations of 

selected grains during the deformation are compared with the experimental study done by 

the above authors in which orientation change was determined by interrupted 

measurements using EBSD technique. 
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The initial orientation map of the real multicrystal and the crystallographic 

orientations determined using electron backscatter diffraction patterns are shown on the 

standard crystallographic unit triangle in Fig. 5.21a and 5.21b respectively. The FE mesh 

for the simulation is generated using idealized mapping of the real microstructure studied 

by Prasannavenkatesan et al. [13]. The actual size of the specimen used in the aforesaid 

study is 20 mm x 3 mm x 3 mm. The FE mesh is formed of 2416, 4 node, 1 integration 

point elements, which are C3D4 type first order tetrahedral elements in 

ABAQUSTM/Standard [2]. Deformation gradient is applied using displacement boundary 

conditions. The rear face perpendicular to the X direction is restricted for displacement in 

X. Both faces normal to the Y direction are restricted in the Y direction. The rear face 

normal to the Z direction is restricted for Z displacement and the front face normal to the 

Z direction is given a displacement to cause 15% reduction in the distance between the 

two faces normal to the Z direction (the thickness direction). In the present study a 

constant strain rate of 8.33e-03 s-1 was used. 

Total meshed geometry is divided into 10 different groups of elements which 

make the crystallites of the multicrystal. These element groups are numbered from 1 to 

10 and are assigned initial crystallographic orientations which are identical to the ones 

reported by the above researchers. Fig 5.22 shows the initial geometry and the FE mesh 

representation of the multicrystal. For the results shown in this section a non-uniform 

mesh was used (see Fig 5.22b) to minimize the simulation time. Relatively finer elements 

were used to mesh the regions of complex geometry and the regions across the grain 

boundaries. Nevertheless, later in this section we show a qualitative comparison of the 

results shown by coarse mesh and a uniformly finer mesh. 
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(a) 

 

(b) 

Figure 5.21. (a) Initial orientation imaging map of the multicrystal (b) Crystallographic 

orientations of the grains in the unit triangle [13]. 
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(a) 

 

(b) 

Figure 5.22 (a) Idealized mapping of the grain structure. (b) Finite element mesh to form 

a microstructure of a 10 columnar grain polycrystal 
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Fig 5.23a shows evolution of maximum principal strain which is remarkably non-

uniform throughout the multicrystal. Noteworthy is that the grains oriented closer to the 

stable orientation <111> (e.g. grain 5) accumulate more strain as compared to the ones 

which are farther from a stable orientation (e.g. grain 3 and single glide oriented grain 1). 

The grains which share more grains in the neighborhood i.e. grains 5, 6, 7, 8, 9, and 10 

and make more complex grain boundary junctions show more accumulated strain. The 

heterogeneous microstructure evolution is reflected due to the dislocation slip activity 

and here it is represented by the total accumulated dislocation density shown in Fig. 

5.23b. The heterogeneous accumulation of strain and dislocation density distribution 

pointed out above is a result of grains interactions, local deformation gradient, and 

orientations of the crystallites. Therefore it is worthwhile to do a quantitative analysis of 

the underlying microstructure evolution in terms of dislocation density evolution, Taylor 

factor and the change of orientation of the grains during deformation. 
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(a) 

 

(b) 

Figure 5.23 (a) Maximum principal strain (b) Total dislocation density distribution after ~ 

15 % thickness reduction. The legend shows dislocation density ×  106 m.m-3. 
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Figure 5.24 Rotation of (a) grain 1, (b) grain 7, (c) grain 8, and (d) grain 10. Pictured on 

the right hand column are experimental observations by Prasannavenkatesan et al. [13]. 
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Rotations of grain 1, grain 7, grain 8, and grain 10 after ~ 15 % thickness 

reduction, are shown in Fig 5.24. These results are compared with the experimental 

results presented in the reference [13]. Crystallographic orientation plots shown along the 

right hand columns in Fig. 5.24 are those reported by Prasannavenkatesan et al. [13].The 

presented CPFEM model predicts rotations of grain 7, 8, and 10 reasonably well. 

However the predictions are slightly off for grain 1. The study by Zaefferer et al. in [16] 

and by Roters in [17] shows that the material behavior within a grain is very much 

affected by the orientation of grain boundaries with respect to the external loading. 

Considering the fact that we do not include the effect of grain boundaries explicitly in our 

CPFEM model, the present results predict the grain orientation evolution in a multicrystal 

reasonably well. 

Fig 5.25 compares evolution of dislocation density in grain 1, 2, 6, 7, 8, 9, and 10 

which is discussed further referring to the geometrical and micromechanical Taylor 

factors. The term ‘micromechanical’ used here is adapted from Raabe et al. [18] who 

distinguish macromechanical Taylor factor from the micromechanical Taylor factor. In 

the former, von Mises strain is determined as a function of global strain components, and 

in the latter as a function of local strain components. Therefore a micromechanical Taylor 

factor is defined as 
locale

α

α

γ∑
. Where α

α

γ∑  is the total accumulated slip on all slip 

systems α  and locale  is the local von Mises strain. The geometrical and micromechanical 

Taylor factors are shown in Table 5.6. The Taylor factor values are in general in the order 

of dislocation density accumulation in the corresponding grains. Grain 1 and grain 10 are 
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exceptions. Grain 10 has a high Taylor factor but not a high accumulated dislocation 

density. 

 

 

Figure 5.25 Dislocation density evolution in grain 1, 2, 6, 7, 8, 9, and 10 as a function of 

engineering strain in the Z direction (thickness) 
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Table 5.6 Taylor factors* for grain 1,2,6,7,8,9, 10 

Grain 

Identification 

No. 

Geometrical 

Taylor Factor 

Micromechanical 

Taylor factor 

locale

α

α

γ∑
 

Grain 1 3.39 3.22 

Grain 2 2.58 2.51 

Grain 6 3.19 3.32 

Grain 7 3.07 3.09 

Grain 8 2.95 2.70 

Grain 9 3.00 3.56 

Grain 10 4.58 3.82 

* e is the equivalent (von Mises) strain 

 

 As mentioned earlier, one of the key factors affecting the microstructure evolution 

and hardening of individual grains in a multicrystal is the effect of grain boundaries 

which is not considered explicitly in the present model. The only way how the effect of 

interfaces such as grain boundaries becomes active here is by the inherent compatibility 

condition used in the finite element method. Apart from the aforesaid, mesh density does 

affect the predictions by the finite element model. As a qualitative measure of the effect 

of mesh density, two different simulation results are compared at the same thickness 

reductions. Fig. 5.26a represents a non-uniform mesh which uses finer mesh around the 

interfaces and in the regions of complex geometries. The element size in this mesh varies 
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from 0.10 mm to 0.40 mm. Fig. 5.26b shows a uniform finer mesh of element size 0.1 

mm. Definitely, a finer mesh shows predictions unaffected by the mesh dependent 

artifacts, for the present research an optimum mesh density was used using selective 

meshing. A mesh thus generated decreased the total simulation time by approximately 10 

times as compared for the mesh shown in Fig. 5.26b. In the next study we use a finer and 

uniform mesh to compare the microstructural evolution against the CPFEM model 

predictions. 
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(a) 

 

 

(b) 

Figure 5.26 Comparison of fine and coarse mesh effects. The evolution of strain along the 

thickness direction is compared. (a) Coarse mesh with selective fine meshing around 

grain boundaries (b) Uniform fine mesh. 
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5.5.2 Microstructure evolution in a 2D multicrystal 

One step further, in this section, a more complex study on the microstructure evolution is 

done. The structure considered is a 2D columnar polycrystal as in the previous section 

but it has larger number of grains overall and more grains in the neighborhood. The 2D 

columnar polycrystal considered here is from the work of Raabe et al. [18], and is a pure 

aluminum polycrystal which contains > 99.999% Al. In the experimental work done by 

these researchers, the orientation map of the polycrystal was determined using interrupted 

measurements by EBSD technique. The orientation image was mapped onto an FEM 

mesh for study by a CPFEM model. However, in the present study an idealized grain 

topology is mapped and not the real microstructure. Idealization here specifically refers 

to the fact that grain boundaries are planar surfaces and therefore the projections of grain 

boundaries on the XY planes are straight lines. Also, the orientations used in this study 

are average orientations of individual grains and no misorientation exists within a grain. 

Such an idealized grain structure is shown in Fig. 5.27a with the orientations of 

individual grains shown on the standard stereographic unit triangle in Fig. 5.27b. A list of 

Euler angles for the 18 constituent grains is given in Table B.2 in Appendix B [19]. 

A map of von Mises strain determined using digital image correlation is shown in 

Fig. 5.28. The image shows the distribution of von Mises strain at ~ 8% determined using 

the data of displacement in the thickness reduction. Evidently, the plastic deformation 

across the polycrystal is very heterogeneous. The regions showing high plastic 

deformation across the grain boundaries and with in single grains are visible. 
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(a) 

 

(b) 

Figure 5.27 Idealized grain structures in the columnar polycrystal containing 18 grains 
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Figure 5.28 Heterogeneity of plastic deformation (von Mises) determined using strain 

map correlation at 8 % thickness reduction [18]. 

 

 

Figure 5.29 Uniform mesh with 19631 tetrahedral elements C3D4 
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The geometry is meshed using 19631, 4 node, 1 integration point elements which are 

C3D4 type elements in the ABAQUSTM/Standard library. To cause plane strain 

deformation, identical boundary conditions that are used in the previous simulation of 

plain strain compression, were employed. Fig. 5.29 shows the mesh used for this 

simulation. The above observation of accumulated plastic deformation is compared 

against the CPFEM model observations using different microstructure parameters (e.g. 

accumulated dislocation density, dislocation evolution rate and accumulated shear). 

 

 

 

Figure 5.30 CPFEM prediction of von Mises strain at ~ 8% thickness reduction. 
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Figure 5.31 Accumulated dislocation density predictions at 8% thickness reduction by 

CPFEM model. The legend shows dislocation density ×  106 m.m-3. 

 

 

 

Figure 5.32 Prediction of dislocation density evolution rate at 8% thickness reduction by 

CPFEM model 
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Figure 5.33 Total plastic shear rate at 8% thickness reduction by CPFEM model 

 

The plastic strain map observed in the experiments does not match point to point 

with that predicted by the CPFEM model. The model is able to predict high and low 

regions of accumulated plastic deformation in some of the grains but in the other the 

predictions are no where close to the experiments. For example, the model shows high 

plastic deformation across the shared boundary of grain 5 and grain 8 but not across the 

shared grain boundary of grain 5 and grain 2. In fact, the model shows a low accumulated 

plastic strain in grain 2 in the neighborhood of grain 5. In the other regions such as grain 

6, grain 7, grain 11, grain 12, grain 17, and grain 18 predictions by the CPFEM model 

compared well. Dislocation density distribution shown in Fig. 5.31, rate of dislocation 

density evolution shown in Fig. 5.32, and total plastic shear rate shown in Fig. 5.33 

compare well with each other and the self validation of the model is justified. 
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(a) 

 

 

(b) 

 

 

Figure 5.34 Heterogeneity of plastic deformation through thickness of (a) Grain 2, (b) 

Grain 6 

 

To emphasize the heterogeneity across the thickness, through thickness views of 

grain 2 and grain 6 are shown in Fig. 5.33a and Fig. 5.33b respectively. Note that the 

distribution of microstructure parameters visible on the surface is not essentially 

consistent through out the volume. Therefore a true validation of microstructure evolution 

done only on the basis of microstructure evolution on the visible surface is not well 
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justified. As reported by Raabe et al. [18] that the real experimental conditions also 

include friction along the contact surfaces of the channel die, a 3D analysis of the 

microstructure evolution becomes even more important. 

 

5.6 Summary 

The dislocation density based framework of crystal plasticity described in Chapter 3 is 

employed to develop a CPFEM model using user interface subroutine UMAT in 

ABAQUSTM. In this chapter it shown that the model is able to predict the anisotropy of 

single crystal aluminum including the overshooting behavior. A more stringent validation 

of the model is done by employing the model for studies on plane strain deformation of 

bicrystals and polycrystals. The model is able to predict evolution of orientations of 

individual grains in bicrystals and polycrystals. The evolution of microstructure variables 

such as dislocation density, and shear rate is consistent with the orientations of the grains. 

However, at the current state the model is sometimes inconsistent in predicting point to 

point material behavior. 
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CHAPTER SIX 

CONCLUSIONS 

 

A 3D CPFEM model based on statistical evolution of dislocation density is introduced in 

this work. The dislocation density evolution framework used in the model is adopted 

from a work presented in the literature (cf. Chapter 3). The following conclusions are 

drawn: 

1. Stress-strain curves of Al single crystals are reasonably simulated with the 

characteristic differences in hardening behavior between {001} and {111} 

oriented crystals being captured by the model.  At this point, only statistical 

evolution of dislocation densities is considered in the model. The evolution of 

edge and screw densities on different slip systems in an aluminum single crystal 

of <111> orientation is presented. 

2. A generalized Taylor equation is used as a hardening law in which hardening 

coefficients are functions of strengths of various reactions, junctions, and locks 

between dislocations on co-planar and no-planar slip systems. Strength of 

junctions between dislocations on non-coplanar slip systems in aluminum is 

studied using 3D discrete dislocation dynamics of curved dislocations of mixed 

character. The hardening coefficients so determined are in the order with the ones 

presented in similar studies in the literature. The Hirth junction, glissile junction, 

Lomer junction, and collinear lock are found to have strengths in  increasing order 

respectively. Resolved shear stress (RSS) plotted along with the number of 

junctions formed shows that with every new junction formed RSS evolves further 
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and with each unzipping of a junction, the stress decreases. Worth mentioning is 

the fact that some simulation dependent criteria (e.g. critical angles of the reacting 

segments, and the minimum length between two reacting segments) do play 

significant roles on the reactions. 

3. It is shown that the CPFEM model is able to show overshooting phenomena in 

pure aluminum which is consistent with the experimental work reported in the 

literature. Collinear interaction coefficient of dislocations larger than that of 

Lomer junction, predicts an enhanced overshooting behavior. The effect of 

collinear interactions on overshooting is proposed to be because of latent 

hardening on the secondary slip system. This disables secondary slip systems for 

dislocation glide therefore dislocations continue to glide on the primary slip 

system and the phenomena of overshooting occurs. 

4. Simulations of plane strain compression (idealized rolling) of polycrystalline 

aluminum having an initially random crystallographic texture also provide some 

validation for the model in the form of crystallographic texture predictions. 

Various texture components known to be present in rolled aluminum are seen in 

the simulated crystallographic texture and the characteristic “rolling texture” is 

observed. Texture prediction during simple shear of an aluminum polycrystal is 

also shown which compared well with experimental results presented in the 

literature. The evolution of α-fiber and β-fiber is shown with increasing thickness 

reduction and compares well with the data from the literature. Evolution of 

dislocation density distribution during plane strain compression of the polycrystal 

is compared at different thickness reductions. Using mapping of dislocation 
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densities coupled with crystallographic orientations of corresponding crystallites, 

it is shown that heterogeneity of accumulated dislocation density in the 

microstructure increases with increasing deformation. 

5. To further investigate the microstructure evolution using numerical data on 

dislocation density, accumulated shear strain, and Taylor factor, simulations are 

performed for channel die compression of bicrystals and a 2D columnar 

polycrystal. The model is able to predict the evolution of crystallite orientations 

fairly closely to that observed in the experiments both in the bicrystals and in a 

2D columnar crystals as well. In the simulations of 2D columnar polycrystals, a 

non-uniform strain field and dislocation density distribution is observed which is 

a result of grain interactions, local deformation gradient, orientation of crystallites 

and orientation of grain boundaries with respect to the external loading. The 

model shows high dislocation density accumulation in the grains which 

accumulate high strains. A further insight into rotation and hardening activities in 

different grains is given referring to the dislocation density accumulation and 

evolution of the Taylor factor using one-on-one correlation of microstructure 

evolution in the grains. The predictions of crystallite rotations match with the 

experimental results of some the crystallites and for the others they do not match 

well. However, the dislocation density evolutions self validate hardening in most 

of the grains when correlated with the Taylor factors of the chosen corresponding 

grains. Provided that the model does not contain any effects of grain boundaries 

and the long range effects from the neighborhood grains, these predictions are 

well justified. 
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Though there are several models which are able to predict texture evolution during 

material deformation, only a few bridge the gap between the physics of dislocation 

activity and crystal plasticity. This model shows a reasonable attempt at incorporating 

microstructural considerations into the model (in the form of predictions of 

dislocation structure evolution) along with the kinematics of crystal plasticity to form 

a more physically realistic prediction. 
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CHAPTER SEVEN 

FUTURE WORK 

 
1. A two step validation of the model is suggested in terms of dislocation density. 

First, dislocation density evolution as a function of strain must be compared with 

the experimental observations and the values of critical radii of the dislocation 

interactions must be determined using the saturation values of dislocation 

densities. A point to point comparison of dislocation density will not be possible 

at this stage. However, overall dislocation density distribution and orientation 

dependent evolution of dislocation densities in different grains in a large grained 

polycrystal may be used for a validation study. Electron channeling contrast 

imaging (ECCI) and dislocation density estimation using electron backscatter 

diffraction data may prove to be useful for a qualitative and quantitative 

validation respectively of dislocation density patterning. 

2. It was shown in Chapter 5 that plastic deformation is heterogeneous even in pure 

aluminum. For the correct prediction of microstructure evolution during 

deformation of polycrystalline materials, and for the problems like fatigue where 

interfaces (e.g. grain boundaries and particle matrix interfaces) play key roles, it is 

of utmost importance to include the strain gradient plasticity. 

3. Strain gradient effects will ensure that the non-local effects across the grain 

boundaries are active in the model. Nevertheless, it is worthwhile to attempt an 

additional constitutive framework which includes the grain boundary effects 

explicitly in the model framework. 
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4. The latent hardening coefficients are reported not to be very much affected by 

strain history. Evolution of hardening coefficients does occur through out the 

deformation history. A dislocation density dependence of the hardening 

coefficients can not be ruled out. Therefore it is suggested to include a functional 

dependence of hardening coefficients on the deformation history. 

5. An improved time integration procedure focused on faster convergence will 

enhance the ability of the model for application to larger polycrystals and in 

general to microstructure having complex topology which could then be adapted 

to FEM mesh directly. This will also enable simulations of rather realistic 

microstructures. 

6. Enriched with a large number of microstructure parameters, this model comes out 

to be an uphill task for specialized problems like fatigue which may prove to be 

unrealistically time consuming if approached directly. Rather then applying direct 

cyclic loading, a condensed form of fatigue loading history which produces the 

same effect may be used. 
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APPENDIX A 

SYMBOLS AND MATHEMATICAL OPERATIONS 

 

A.1 Slip directions ( 0mα ) and slip plane normals ( 0nα ) for FCC crystals 

Slip System Index (α ) Slip System Label 
0mα  0nα  

1 B6 1 110
2
⎡ ⎤⎣ ⎦  [ ]1 111

3
 

2 B4 1 101
2
⎡ ⎤⎣ ⎦  1 111

3
⎡ ⎤⎣ ⎦  

3 B2 1 011
2
⎡ ⎤⎣ ⎦  [ ]1 111

3
 

4 A5 [ ]1 110
2

 1 111
3
⎡ ⎤⎣ ⎦  

5 A3 [ ]1 101
2

 1 111
3
⎡ ⎤⎣ ⎦  

6 A2 1 011
2
⎡ ⎤⎣ ⎦  1 111

3
⎡ ⎤⎣ ⎦  

7 D5 [ ]1 110
2

 1 111
3
⎡ ⎤⎣ ⎦  

8 D4 1 101
2
⎡ ⎤⎣ ⎦  1 111

3
⎡ ⎤⎣ ⎦  

9 D1 [ ]1 011
2

 1 111
3
⎡ ⎤⎣ ⎦  

10 C6 1 110
2
⎡ ⎤⎣ ⎦  1 111

3
⎡ ⎤⎣ ⎦  

11 C3 [ ]1 101
2

 1 111
3
⎡ ⎤⎣ ⎦  

12 C1 [ ]1 011
2

 1 111
3
⎡ ⎤⎣ ⎦  
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A.2 Orientation matrix using Bunge’s convention of Euler angles 

 

1 2 1 2 1 2 1 2 2

1 2 1 2 1 2 1 2 2

1 1

cos cos sin sin cos sin cos cos sin cos sin sin
cos sin sin cos cos sin sin cos cos cos cos sin

sin sin cos sin cos

ϕ ϕ ϕ ϕ Φ ϕ ϕ ϕ ϕ Φ ϕ Φ
ϕ ϕ ϕ ϕ Φ ϕ ϕ ϕ ϕ Φ ϕ Φ

ϕ Φ ϕ Φ Φ

− +⎡ ⎤
⎢ ⎥= − − − +⎢ ⎥
⎢ ⎥−⎣ ⎦

g  

where 1ϕ , Φ , and 2ϕ  are Euler angles defined as: 

10 360oϕ≤ ≤ , 

0 180oΦ≤ ≤ , and 

20 360oϕ≤ ≤ . 

 
 

A.3 Basic mathematical operations on tensors 
 

Inner product AB  ( ) ij jkik
AB A B=  

Double contraction :A B  : ij ijA B A B=  

Tensor product of vectors a b⊗  ( ) i jij
a ba b⊗ =  

Tensor product of matrices A B⊗  ( ) ij klijkl
A B A B⊗ =  

Lower tensor product of matrices A B⊗  ( ) ik jlijkl
A B A B⊗ =  

Upper tensor product of matrices A B⊗  ( ) il jkijkl
A B A B⊗ =  
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APPENDIX B 
 

EULER ANGLES FOR POLYCRYSTALS 
 

Table B.1 Initial crystallographic orientations for the 10 grain polycrystal 

Grain Identification 

No.* 

1ϕ  (o) Φ  (o) 2ϕ  (o) 

1 100.611 23.663 281.838 

2 10.772 19.996 350.421 

3 86.918 20.455 311.001 

4 124.045 42.628 222.709 

5 158.366 22.173 225.287 

6 191.024 33.690 133.155 

7 141.521 23.319 253.018 

8 317.189 17.361 72.307 

9 35.581 29.164 3.151 

10 289.115 39.362 68.526 

* Grain identification numbers shown here are the numbers shown on the real orientation 

imaging map presented in Fig. 5.21a 
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Table B.2 Initial crystallographic orientations for the 18 grain polycrystal 

Grain Identification 

No.* 

1ϕ  (o) Φ  (o) 2ϕ  (o) 

1 88.800 31.100 7.200 

2 -34.400 22.500 55.600 

3 -69.200 53.600 45.100 

4 89.100 29.600 6.900 

5 33.000 16.000 30.900 

6 -58.100 21.300 85.400 

7 -5.000 34.600 0.200 

8 4.500 25.300 60.800 

9 -19.700 41.400 16.000 

10 27.400 33.800 22.900 

11 -16.100 11.800 5.400 

12 -62.900 17.400 86.200 

13 89.500 18.900 23.500 

14 41.900 30.800 56.800 

15 -28.500 11.100 83.500 

16 51.600 37.200 27.900 

17 -59.000 45.300 35.300 

18 -47.000 13.000 59.900 

* Grain identification numbers shown here are corresponding to those shown in Fig. 

5.27a 




