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COMPLEX AVERAGES OF PARTICLE QUANTITIES

AND EQUATIONS OF BALANCE

Abstract

by Andrei Kouznetsov, Ph.D.
Washington State University

May 2010

Chair: Alex Panchenko

We study a new complex continuum quantity Qτη(t;x, z) and its applications for efficient par-

ticle system simulation. Function Qη(t;x, z) is constructed using both velocities and positions

of particles. It carries more information than the standard quantities density, linear momentum,

and kinetic energy, and, therefore, it can give better results in various applications. The standard

quantities can be derived from Qτη(t;x, z).

The proposed quantity and its derivatives are bounded independently of the number of particles,

and can be used for numerical modeling. Several 1D particle systems are studied using Qτη(t;x, z),

and an approximate closure is presented based on the examples.

Research of Qτη(t;x, z) can be continued on a 2D example presented in the last chapter. The

model in the example describes a so called bistable material. Bistable material is represented

by a two-dimensional triangular lattice made of bistable rods. Each rod has two equilibrium

lengths, and thus its energy has two equal minima. A rod undergoes a phase transition when its

elongation exceeds a critical value. The lattice is subject to a homogeneous strain and is periodic

with a sufficiently large period. The effective strain of a periodic element is defined. After phase

transitions, the lattice rods are in two different states and lattice strain is inhomogeneous, the

Cauchy-Born rule is not applicable. We show that the lattice has a number of deformed still states

that carry no stresses. These states densely cover a neutral region in the space of entries of effective

strains. In this region, the minimal energy of the periodic lattice is asymptotically close to zero.

The compatibility of the partially transited lattice is studied. We derive compatibility conditions
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for lattices and demonstrate a family of compatible lattices (strips) that densely covers the flat

bottom region. Under an additional assumption of the small difference of two equilibrium lengths,

we demonstrate that the still structures continuously vary with the effective strain and prove a

linear dependence of the average strain on the concentration of transited rods.
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CHAPTER ONE

INTRODUCTION

1.1 Motivation

Modeling a large array of particles becomes computationally infeasible as the size of the array

increases along with the number of equations that describe inter-particle connections. In a large

array of particles we can not analyze a single particle, but instead we look at certain characteristics

of particles. We consider a large array of particles as a set of smooth functions that describe the

system. If the functions have certain smoothness that does not depend on the number of particles,

then the functions can be approximated by a discrete set of values at nodes of a grid.

In some sense we have two different worlds in our model. The first world is a micro-world

that distinguishes single particles. The second world is a macro-world that does not distinguish

particles, but it has certain laws and constitutive equations. We want to extract those laws and

constitutive equations from the micro-world that is given in terms of particles and their properties.

In the view of the assumptions above, the following question arises. What are the right quantities

that give us all necessary information for modeling and analysis? First of all, we would like to have

such quantities as density, linear momentum, etc. at every node of our grid. Second, we need to

be able to have an evolution law for the system in terms of those quantities.

In this work we propose certain quantities that partially satisfy both requirements: the proposed

quantities can be used to obtain the density and linear momentum, also an approximate closed form

equation is proposed with an algorithm to compute the evolution of the system.

1.2 Discrete mathematical problem

Consider a system of N identical particles of mass mN that have no size. We will assume that during

the observation all particles have no angular momentum and are located in a bounded domain Ω

of the d-dimensional space Rd, d = 1, 2, 3. The number of particles N is assumed to be very large

and our goal is to obtain asymptotic behavior as N →∞. The positions qj(t) and velocities vj(t)
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of particles j = 1, 2, . . . , N satisfy a system of Newton equations

 q̇j(t) = vj(t),

mN v̇j(t) = f j(t) + f (ext)
j (t)

(1.1)

with some given initial values qj(0) and vj(0). Here f (ext)
j denotes external forces, such as gravity

and forces enforcing boundary constraints. The interparticle forces are assumed to be of the form

f j =
N∑
k=1

f jk, f jj = 0 (1.2)

where f jk are pair interaction conservative forces generated by a finite range potential UN :

f jk = −∇UN (qk(t)− qj(t)), for k 6= j (1.3)

System (1.1) describes behavior of an array of particles. This behavior strongly depends on the

initial conditions qj(0), vj(0), and the potential UN .

1.3 Scaling

Since we are interested in the asymptotic behavior of system (1.1), all quantities of the system

should be properly scaled as N → ∞. To define the scaling consider the structure on Figure 1.1.

Particles in this structure are uniformly distributed in the cube and each non-boundary particle

has 6 interacting neighbors.

As N → ∞ the structure on Figure 1.1 should have a constant mass and a potential energy

bounded by a constant independent of N . One way to satisfy these requirements is to define

mN =
M

N

to ensure that the total mass of the whole system is M , and define

UN (x) =
1
N
U(N

1
dx) =

u(N
1
d ‖x‖2)
N

2



Figure 1.1: Particles packed in a cube

for some function u : R → R, suppu ⊂ (0, r), so that if we cut the cube, the normal component

of the total force is proportional to the area of the section. In the definition of the force we can

see that the vector of the force between two interacting particles and the vector connecting the

interacting particles are collinear.

For formal explanation define a parameter ε = N−1/d and suppose that N ≥ N0. Then the

total mass of the system is M
N∑
j=1

mN =
N∑
j=1

M

N
= M

and the potential energy UN of the system is

UN =
1
2

N∑
j=1

N∑
k=1

UN (qj − qk) =
1
2

1
N

N∑
j=1

N∑
k=1

U

(
qj − qk

ε

)
. (1.4)

If we neglect the particles on the edge of the cube, then for the structure on Figure 1.1 the expression

for the potential energy will be

UN =
1
2

1
N

N∑
j=1

6U? =
6U?

2

where U? is the potential of the link between two neighbors (all neighbors in the cube have the

same distance). Hence, the potential energy of the structure does not depend on N . For all other

structures we are going to use the same scaling.
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The force f jk of interaction between particles j and k, acting on qj is

f jk = − 1
Nε
∇xU

(
qj − qk

ε

)
. (1.5)

Scaled as above, system (1.1) becomes


q̇j(t) = vj(t),

M v̇j(t) = −1
ε

N∑
k=1

∇xU
(
qj − qk

ε

) (1.6)

In system 1.6 we are interested in the case when ε→ 0.
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CHAPTER TWO

LITERATURE REVIEW

Throughout the whole history of our civilization people were trying to understand the world around

us. One of the main problems was to explain properties of surrounding objects. People asked

themselves why a rock was solid, but water was liquid. Among many different explanations there

was one that is used today. This explanation is based on the idea that every material consists

of discrete units. The earliest references of this concept date back to ancient India in the 6-th

century BCE. In approximately 450 BCE Democritus introduced the term ”atomos” which meant

the smallest indivisible particle of matter. All those early theories were purely theoretical and were

based on philosophy. People believed that properties of a single particle determined properties of

a material. A mixture of particles may have different properties depending on the proportions and

the nature of the mixing materials.

The question that is still open these days is how we can predict properties of a material using

the properties of its particles. One can ask why we want to predict instead of just conducting an

experiment. The answer is that today it would be faster and cheaper to use a computer to predict

the results if we have a right model that is computationally cheap and accurate.

Many people work on models that can describe behavior and properties of materials. Those

models differ by accuracy, the materials that can be modeled by those models, computational

cost, complexity of implementation, etc. The main two approaches in modeling are discrete and

continuous.

Discrete model assumes that one will work with a system of interacting units. The number of

the units can be very large depending on the scale of the problem. If the system becomes large,

then usually it becomes too hard to solve this system accurately. However, upon solving the system

of equations, one gets information about every unit in his system.

Continuous models employ the fact that in our real life we do not want to know about every

discrete unit (atom, molecule, etc.) in our material. Instead, we need some macro characteristics.

Moreover, usually, it is assumed that these characteristics are continuous functions of time and

space.
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There are two different approaches to construct a continuous models. One approach tries to

use every particle in equations and then simplify the equations using some a priori information

(deterministic mechanics). The other approach does not require information about all particles,

but instead it uses probability distribution for model descriptions (statistical mechanics [16, 11]).

Statistical mechanics provides a framework for relating the microscopic properties of discrete

units to the macroscopic properties of materials. It was born in 1870 with the work of Austrian

physicist Ludwig Boltzmann. The main problem in statistical thermodynamics is to determine the

distribution of a given amount of energy E over N identical systems [16]. The goal of statistical

mechanics is to relate the measurable macroscopic properties of materials to the properties of the

particles. One of the main requirements of the statistical mechanics is having a huge number of

particles in the system.

The first models of continuum deterministic mechanics were formulated by the French math-

ematician Augustin Louis Cauchy in the 19th century, but research in the area continues today.

Modeling an object as a continuum assumes that the substance of the object completely fills the

space that it occupies, therefore, we ignore the fact that matter consists of atoms. However, on

length scales much greater than inter-atomic distances, such models are highly accurate. Funda-

mental physical laws such as the conservation of mass, the conservation of momentum, and the

conservation of energy may be applied to such models to derive differential equations describing

the behavior of such objects, and some information about the particular material studied is added

through a constitutive relation (for example see [23]), a relation between two physical quantities

that is specific to a material or substance, and approximates the response of that material to

external forces.

There are many attempts to derive a closed system of macroscopic characteristics that will

describe the properties of materials based on the properties of the discrete units of the materials.

But so far there is no such theory that can describe all possible cases.

A good example of the work that introduces a continuous structure of a material using the

discrete units of this material was done by A. I. Murdoch and D. Bedeaux [13, 14]. In 1994

authors presented exact continuum forms of balance [13]. All macro quantities were obtained using

weighted averages of microscopic quantities. The weighting function was a continuous function that

determined the smoothness of all macroscopic characteristics. In that paper they also discussed
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the choice of that function. Later, in 2007 A. Ian Murdoch compared different definitions and

derivations of the Cauchy stress tensor and suggested an approach in nanoscale systems [14].

The idea of the current work is to propose some new macro characteristics that carry more

information than the standard averages like the density, linear momentum, energy, etc. These new

averages are the main difference of this work from the previous works. It is shown that using the

new proposed averages one can find a closed form equation for simple systems like ideal gas. The

new averages still do not carry all the information that is needed to construct a closed system for

an arbitrary case, but using some approximate identities we can construct an algorithm that will

be expected to produce better results than using the standard averages.
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CHAPTER THREE

GENERATING FUNCTIONS

3.4 Classical space-time averages

We work with space-time averaging pioneered by Noll [23], and further developed by Hardy [10]

and later Murdoch and Bedeaux [13, 14]. In this section we briefly recall the basic points of the

method and introduce the relevant notation.

Choose smooth functions ψ(x) ≥ 0, x ∈ Rd, and φ(t) ≥ 0, t ∈ R. These functions will be

used to generate spatial and time averages, respectively. We will assume that the functions are

normalized ∫
Rd
ψ(x)dx = 1 and

∫
R
φ(t)dt = 1

and decay sufficiently fast as |x| → ∞ and |t| → ∞. Many choices of ψ and φ are possible, however

for practical use it is reasonable to use smooth functions with bounded support.

Define the following new functions

ψη(x) = η−dψ

(
x

η

)
and φτ (t) =

1
τ
φ

(
t

τ

)

The new functions ψη and φτ form nets (generalized sequences) converging to delta functions as

η → 0 and τ → 0 in the space and time domains, respectively. Using these functions define the

common continuum mechanical quantities:

1. density

ρη(t;x) =
M

N

N∑
j=1

ψη(x− qj(t)), (3.7)

2. linear momentum

pη(t;x) =
M

N

N∑
j=1

vj(t)ψη(x− qj(t)), (3.8)
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3. kinetic energy

Kη(t;x) =
1
2
M

N

N∑
j=1

vj(t) · vj(t)ψη(x− qj(t)). (3.9)

Differentiating ρη(t,x) and pη(t,x) with respect to time and using the system (1.1) one can obtain

the balance equations:

∂tρη(t,x) + divx pη(t,x) = 0, (3.10)

and

∂tpη(t,x) = divx T η(t,x) (3.11)

The stress T η(t,x) can be written as the difference (see [14]):

T η(t,x) = F η(t,x)−Dη(t,x) (3.12)

where

F η(t,x) = −1
2

N∑
j=1

N∑
k=1

f jk ⊗ (qj − qk)
∫ 1

0
ψη(x− sqj − (1− s)qk))ds (3.13)

Dη(t,x) =
M

N

N∑
j=1

vj ⊗ vjψη(qj − x) (3.14)

and symbol “⊗” denotes the tensor product of two vectors:

a⊗ b = abT , (a⊗ b)i,j = aibj

Observe that

Kη(t,x) =
1
2

TrDη(t,x)

9



Next, for spatial averaged quantities we can define time averages:

ρτη(t,x) =
∫

R
ρη(s,x)φτ (t− s)ds (3.15)

pτη(t,x) =
∫

R
pη(s,x)φτ (t− s)ds (3.16)

T τη(t,x) =
∫

R
T η(s,x)φτ (t− s)ds (3.17)

Dτ
η(t,x) =

∫
R
Dη(s,x)φτ (t− s)ds (3.18)

F τ
η(t,x) =

∫
R
F η(s,x)φτ (t− s)ds (3.19)

It is easy to see that equations (3.11) and (3.12) can be written for the time averages as

∂tp
τ
η(t,x) = divx T τη(t,x) (3.20)

T τη(t,x) = F τ
η(t,x)−Dτ

η(t,x) (3.21)

Our goal is to describe the evolution of the time-space averages without description of all particles.

3.5 Generating function

Let us introduce the generating function

Qη(t;x, z) =
M

N

N∑
j=1

eivj(t)·zψη(x− qj(t)) (3.22)

where qj ∈ Ω is the position of particle j and vj is the velocity of particle j (Ω is a bounded subset

of Rd). The new variable z ∈ Rd is an axillary variable that helps extract some certain information

about particle velocities from Qη(t;x, z).

First, observe that the quantities ρη(t,x), pη(t,x), andDη(t,x) can be obtained fromQη(t,x, z)
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through the following equations

ρη(t,x) = Qη(t;x, 0) =
M

N

N∑
j=1

ψ(x− qj(t))

pη(t,x) = −i∇zQη(t;x, 0) =
M

N

N∑
j=1

vj(t)ψη(x− qj(t))

Dη(t,x) = −∇z∇zQη(t;x, 0) =
M

N

N∑
j=1

vj(t)⊗ vj(t)ψη(x− qj(t))

This means that the named above functions can be substituted for the function Qη(t,x, z) in

computations. Next, by direct differentiation we find that

∂tQη(t;x, z) = iz · fη(t;x, z) + i divx∇zQη(t;x, z) (3.23)

where the term fη(t;x, z) is

fη(t;x, z) = M
1
N

N∑
j=1

v̇je
ivj(t)·zψη(x− qj(t)) (3.24)

and can be rewritten using (1.6) as

fη(t;x, z) =
1
N

N∑
j=1

{
−1
ε

N∑
k=1

∇U
(
qj(t)− qk(t)

ε

)}
eivj(t)·zψη(x− qj(t)) (3.25)

Theorem 1. For function Qη(t;x, z) we have the following estimates

1. |Qη(t;x, z)| ≤ ρη(t;x) ≤M‖ψη‖W 0
∞(Rd)

2. ‖∇xQη(t;x, z)‖2 ≤M‖ψη‖W 1
∞(Rd)

3. ‖∇zQη(t;x, z)‖2 ≤ ρη(t;x) + 2Kη(t;x) ≤ (M + 2K(t))‖ψη‖W 0
∞(Rd)

4. |divx∇zQη(t;x, z)| ≤ (M + 2K(t))‖ψη‖W 1
∞(Rd)

where M is the total mass of the system and K(t) is the total kinetic energy of the system:

K(t) =
∫

Rd
K(t;x)dx =

N∑
j=1

M

N

vj(t) · vj(t)
2
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Proof. 1. Indeed, using the triangle inequality

|Qη(t;x, z)| =

∣∣∣∣∣∣MN
N∑
j=1

eivj(t)·zψη(x− qj(t))

∣∣∣∣∣∣ ≤ M

N

N∑
j=1

∣∣∣eivj(t)·z∣∣∣ψη(x− qj(t)) = ρη(t;x)

Observe that

ρη(t;x) =
M

N

N∑
j=1

ψη(x− qj(t)) ≤M‖ψη‖W 0
∞(Rd)

2. Next, using the triangle inequality we get

‖∇xQη(t;x, z)‖2 =

∥∥∥∥∥∥MN
N∑
j=1

eivj(t)·z∇xψη(x− qj(t))

∥∥∥∥∥∥
2

≤ M

N

N∑
j=1

∣∣∣eivj(t)·z∣∣∣ ‖∇xψη(x− qj(t))‖2
≤ M‖ψη‖W 1

∞(Rd)

3. We have

‖∇zQη(t;x, z)‖2 =

∥∥∥∥∥∥MN
N∑
j=1

ivj(t)eivj(t)·zψη(x− qj(t))

∥∥∥∥∥∥
2

≤ M

N

N∑
j=1

‖vj(t)‖2ψη(x− qj(t))

Using the fact that for all a ∈ R

a < 1 + a2

we conclude that

‖∇zQη(t;x, z)‖2 <
M

N

N∑
j=1

(1 + ‖vj(t)‖22)ψη(x− qj(t)) = ρη(t;x) + 2Kη(t;x)

≤ M‖ψη‖W 0
∞(Rd) + 2K(t)‖ψη‖W 0

∞(Rd)

≤ (M + 2K(t))‖ψη‖W 0
∞(Rd)
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4. Consider

| divx∇zQη(t;x, z)| =

∣∣∣∣∣∣MN
N∑
j=1

ieivj(t)·zvj · ∇xψη(x− qj(t))

∣∣∣∣∣∣
≤ M

N

N∑
j=1

‖vj(t)‖2‖∇xψη(x− qj(t))‖2

≤ M

N

N∑
j=1

(1 + ‖vj(t)‖22)‖∇xψη(x− qj(t))‖2

≤ M

N

N∑
j=1

‖∇xψη(x− qj(t))‖2 +
M

N

N∑
j=1

‖vj(t)‖22‖∇xψη(x− qj(t))‖2

≤ M‖ψη‖W 1
∞(Rd) + 2K(t)‖ψη‖W 1

∞(Rd)

≤ (M + 2K(t))‖ψη‖W 1
∞(Rd)

Remark 1. It is possible to find a system that has unbounded force term fη(t;x, z) but bounded

ρη(t;x) and K(t) as N →∞.

Proof. Consider the one dimensional system of N particles with even N (see figure 3.2):

qj =
j + 1

3(−1)j−1

N
, vj =

 0 j is even

π j is odd

In this system we have two groups of particles (white and black on Figure 3.2: one group of particles

is moving right with a constant velocity, another group has zero velocity.

Figure 3.2: Example of a system with unbounded f(x, z).

For this system of particles we have

0 < qj < 1, N(qj+1 − qj) = 1 +
2
3

(−1)j =

 5/3 j is even

1/3 j is odd

Next, pick a smooth function ψ which is equal to a constant A on the interval [−2, 2] (see figure

13



 0

-3 -2 -1  0  1  2  3

Figure 3.3: An example of ψ.

3.3) and a function U such that

supp∇U(x) ⊂
(
−5

3
,
5
3

)
, ∇U(1/3) = B

for some constant B 6= 0. Then,

ρη(x) =
M

N

N∑
j=1

ψ(x− qj) =
M

N

N∑
j=1

A = MA

K =
N∑
j=1

M

N

vj · vj
2

=
M

2
π2

2

f(x, 1) =
1
N

N∑
j=1

{
−N

1
d

N∑
k=1

∇U((qj − qk)N
1
d )

}
eivj ·1ψ(x− qj)

=
1
N

N∑
j=1

{
−N

N∑
k=1

∇U((qj − qk)N)

}
(−1)jA

=
1
N

N∑
j=1

NB(−1)j(−1)jA

= ABN

Therefore, f(x, 1)→∞ as N →∞.

Theorem 2. Define new time averaged quantities

Qτη(t;x, z) =
∫ +∞

−∞
Qη(s;x, z)φτ (t− s)ds, f τη(t;x, z) =

∫ +∞

−∞
fη(s;x, z)φτ (t− s)ds

14



Then the following statements are true

1. Functions Qτη and f τη satisfy differential equation (3.23)

2. |Qτη(x, z)| ≤M‖ψη‖W 0
∞(Rd)

3. ‖∇xQτη(t;x, z)‖2 ≤M‖ψη‖W 1
∞(Rd)

4. ‖∇zQτη(t;x, z)‖2 ≤ (M + 2K(t))‖ψη‖W 0
∞(Rd)

5. |divx∇zQτη(t;x, z)| ≤ (M + 2K(t))‖ψη‖W 1
∞(Rd)

6. |∂tQτη(t;x, z)| ≤M‖ψη‖W 0
∞(Rd)‖φτ‖W 1

1 (Rd)

7. |z · f τη(t;x, z)| ≤ (M + 2K(t))‖ψη‖W 1
∞(Rd) +M‖ψη‖W 0

∞(Rd)‖φτ‖W 1
1 (Rd)

Proof. 1. Consider

∂tQ
τ
η(t;x, z) =

d

dt

∫ +∞

−∞
Qη(s;x, z)φτ (t− s)ds =

∫ +∞

−∞
Qη(s;x, z)Dtφ

τ (t− s)ds

Using the fact that function φ has bounded support, we find

∂tQ
τ
η(t;x, z) =

∫ +∞

−∞

d

ds
{Qη(s;x, z)}φτ (t− s)ds

Since function Qη(t;x, z) satisfies (3.23), we find

∂tQ
τ
η(t;x, z) = iz · f τ (t;x, z) + i divx∇zQτη(t;x, z)

2. By the definition of Qτ we have

|Qτη(t;x, z)| =
∣∣∣∣∫ +∞

−∞
Qη(s;x, z)φτ (t− s)ds

∣∣∣∣ ≤ ∫ +∞

−∞
|Qη(x, z)|φτ (t− s)ds

Using Theorem 1 we find

|Qτη(t;x, z)| ≤M‖ψη‖W 0
∞(Rd)

∫ +∞

−∞
φτ (t− s)ds = M‖ψη‖W 0

∞(Rd)

15



3. By the definition of Qτ we have

‖∇xQτη(t;x, z)‖2 =
∥∥∥∥∫ +∞

−∞
∇xQη(s;x, z)φτ (t− s)ds

∥∥∥∥
2

≤
∫ +∞

−∞
‖∇xQη(s;x, z)‖2φτ (t− s)ds

Using Theorem 1 we find

‖∇xQτη(t;x, z)‖2 ≤M‖ψη‖W 1
∞(Rd)

∫ +∞

−∞
φτ (t− s)ds = M‖ψη‖W 1

∞(Rd)

4. By the definition of Qτ we have

‖∇zQτη(t;x, z)‖2 =
∥∥∥∥∫ +∞

−∞
∇zQη(s;x, z)φτ (t− s)ds

∥∥∥∥
2

≤
∫ +∞

−∞
‖∇zQη(s;x, z)‖2φτ (t− s)ds

Using Theorem 1 we find

‖∇zQτη(t;x, z)‖2 ≤ (M + 2K(t))‖ψη‖W 0
∞(Rd)

∫ +∞

−∞
φτ (t− s)ds

= (M + 2K(t))‖ψη‖W 0
∞(Rd)

5. By the definition of Qτ we have

|divx∇zQτη(t;x, z)| =
∣∣∣∣∫ +∞

−∞
∇zQη(s;x, z)φτ (t− s)ds

∣∣∣∣ ≤ ∫ +∞

−∞
|divx∇zQη(s;x, z)|φτ (t−s)ds

Using Theorem 1 we find

|divx∇xQτη(t;x, z)| ≤ (M + 2K(t))‖ψη‖W 1
∞(Rd)

∫ +∞

−∞
φτ (t− s)ds = (M + 2K(t))‖ψη‖W 1

∞(Rd)

6. By the definition of Qτ we have

|∂tQτη(t;x, z)| =
∣∣∣∣∫ +∞

−∞
Qη(s;x, z)

d

dt
φτ (t− s)ds

∣∣∣∣ ≤ ∫ +∞

−∞
|Qη(s;x, z)||Dtφ

τ (t− s)|ds

≤ M‖ψη‖W 0
∞(Rd)

∫ +∞

−∞
|Dtφ

τ (t− s)|ds ≤M‖ψη‖W 0
∞(Rd)‖φτ‖W 1

1 (Rd)
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7. Rewrite equation (3.23) applied to f τ and Qτ in the form

iz · f τ (t;x, z) = idivx∇zQτη(t;x, z)− ∂tQτη(t;x, z)

and use the triangle inequality

|z · f τ (t;x, z)| ≤ | divx∇zQτη(t;x, z)|+ |∂tQτη(t;x, z)|

Next, apply statements 5 and 6 of this theorem:

|z · f τ (t;x, z)| ≤ (M + 2K(t))‖ψη‖W 1
∞(Rd) +M‖ψη‖W 0

∞(Rd)‖φτ‖W 1
1 (Rd)
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CHAPTER FOUR

APPROXIMATE CLOSURE

4.6 Forcing term

Recall that

fη(t;x, z) =
1
N

N∑
j=1

{
−1
ε

N∑
k=1

∇U
(
qj(t)− qk(t)

ε

)}
eivj(t)·zψη(x− qj(t))

Denote

κj,k(t) =
qj(t)− qk(t)

ε

Using the notation rewrite the formula for fη(t;x, z) in the form

fη(t;x, z) =
1
N

N∑
j=1

{
−1
ε

N∑
k=1

∇U(κj,k(t))

}
eivj(t)·zψη(x− qj(t))

= −1
2

1
N

N∑
k,j=1

1
ε
∇U(κj,k(t)){eivj(t)·zψη(x− qj(t))− eivk(t)·zψη(x− qk(t))}

= −1
2

1
N

N∑
k,j=1

∇U(κj,k(t))
eivj(t)·zψη(x− qj(t))− eivk(t)·zψη(x− qk(t))

ε

Next, consider function g : R2d → R defined by

g(w) = eiw1·zψη(x−w2) (4.26)

where w = (w1,w2) ∈ R2d. Using the Fundamental Theorem of Calculus we can write the integral

representation of the difference:

g(w2)− g(w1) = (w2 −w1) ·
∫ 1

0
∇g(w1 + s(w2 −w1))ds

Using the values

w2 = (vj(t), qj(t)), w1 = (vk(t), qk(t))

18



in the formula above, write

g((vj(t), qj(t)))− g((vk(t), qk(t)))
ε

=
∫ 1

0
{κ̇j,k(t) · ∇1g(A) + κj,k(t) · ∇2g(A)}ds (4.27)

where expresion A is defined by

A = (vk(t) + (vj(t)− vk(t))s, qk(t) + (qj(t)− qk(t))s)

= (vk(t) + εκ̇j,k(t)s, qk(t) + εκj,k(t)s)

Further, using (4.26) we compute ∇1g and ∇2g:

∇1g(w) = izeiw1·zψη(x−w2), ∇2g(w) = −eiw1·z∇ψη(x−w2)

Define

Iεj,k(t;x, z) =
∫ 1

0
eiεκ̇j,k(t)·zsψη(x− qk − εκj,k(t)s)ds

Having computed ∇1g and ∇2g, simplify the right hand side of (4.27):

∫ 1

0
{κ̇j,k(t) · ∇1g(A) + κj,k(t) · ∇2g(A)}ds

= ieivk·zκ̇j,k(t) · zIεj,k(t;x, z)− eivk·zκj,k(t) · ∇xIεj,k(t;x, z)

Therefore,

fη(t;x, z) = −1
2

1
N

N∑
k,j=1

∇U(κj,k(t))ieivk·z{κ̇j,k(t) · z}Iεj,k(t;x, z) (4.28)

+
1
2

1
N

N∑
k,j=1

∇U(κj,k(t))eivk·z
{
κj,k(t) · ∇xIεj,k(t;x, z)

}

Lemma 1. The quantities Iεj,k(t;x, z) and ∇xIεj,k(t;x, z) can be written in the form

Iεj,k(t;x, z) = ϕ(iεκ̇j,k(t) · z)ψη(x− qk) +R1
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and

∇xIεj,k(t;x, z) = ϕ(iεκ̇j,k(t) · z)∇xψη(x− qk) +R2

where ϕ(x) is the continuous function defined by

ϕ(x) =
∫ 1

0
exsds =


ex − 1
x

x 6= 0

1 x = 0

and the terms R1 and R2 are bounded

|R1| ≤ ε‖κj,k(t)‖2‖ψη‖W 1
∞(Rd) ‖R2‖2 ≤ ε‖κj,k(t)‖2‖ψη‖W 2

∞(Rd)

Proof. Recall the definition of Iεj,k(t; z, z)

Iεj,k(t;x, z) =
∫ 1

0
eiεκ̇j,k(t)·zsψη(x− qk − εκj,k(t)s)ds

Consider

R1 = Iεj,k(t;x, z)− ψη(x− qk)
∫ 1

0
eiεκ̇j,k(t)·zsds

=
∫ 1

0
eiεκ̇j,k(t)·zs(ψη(x− qk − εκj,k(t)s)− ψη(x− qk))ds

= −
∫ 1

0
eiεκ̇j,k(t)·zs

{
εκj,k(t)s ·

∫ 1

0
∇xψη(x− qk − σεκj,k(t)s)dσ

}
ds

Therefore,

|R1| ≤ ε‖κj,k(t)‖2‖ψη‖W 1
∞(Rd)

Next, consider

R2 = ∇xIεj,k(t;x, z)−∇xψη(x− qk)
∫ 1

0
eiεκ̇j,k(t)·zsds

=
∫ 1

0
eiεκ̇j,k(t)·zs(∇xψη(x− qk − εκj,k(t)s)−∇xψη(x− qk))ds

= −
∫ 1

0
eiεκ̇j,k(t)·zs

{∫ 1

0
∇x∇xψη(x− qk − σεκj,k(t)s)dσ

}
εκj,k(t)sds
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Hence,

‖R2‖2 ≤ ε‖κj,k(t)‖2‖ψη‖W 2
∞(Rd)

4.7 Restrictions on dynamics

Assume that any two interacting particles have similar velocities:

‖κ̇j,k(t)‖2 ≤ Cv if ∇U(κj,k(t)) 6= 0 (4.29)

for some fixed constant C independent of N . Since the the potential function U has a bounded

support, for any two interracting particles we also have

‖κj,k(t)‖2 ≤ Cκ if ∇U(κj,k(t)) 6= 0 (4.30)

Assume also that for all j, k, t, and N we have

‖κj,k(t)‖2 ≥ cκ

This assumption implies that for all j, k, t, and N we have

‖∇U(κj,k(t))‖2 ≤ Cf (4.31)

Define

f̃η(t;x, z) = −1
2

1
N

N∑
k,j=1

∇U(κj,k(t))ieivk·z{κ̇j,k(t) · z}ψη(x− qk)

+
1
2

1
N

N∑
k,j=1

∇U(κj,k(t))eivk·z {κj,k(t) · ∇ψη(x− qk)}

The following lemma shows that the quantity f̃η(t;x, z) gives an approximation to fη(t;x, z) if

the assumptions hold.
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Lemma 2. Conditions (4.29), (4.30), (4.28), and (4.31) imply

‖fη(t;x, z)− f̃η(t;x, z)‖ ≤ Caε

for some constant Ca independent of N .

Proof. Notice that condition (4.31) and the fact that U has bounded support implies that the

number of neighbors of any particle is bounded by a number independent of N . Indeed, let suppU ⊂

Br(0), where Br(0) is a ball centered at 0 of radius r. Then suppU(x/ε) ⊂ εBr(0). For a fixed

number j we would like to count particles for which

U

(
qj(t)− qk(t)

ε

)
6= 0 or ‖qj(t)− qk(t)‖2 ≤ εr

Since the minimum distance between particles is εcκ, the balls Bεcκ/2(qj(t)) do not intersect. Next,

Volume(Br(0)) = rdB1(0), Volume(Bεcκ/2(qj(t))) =
(εcκ

2

)d
B1(0)

Hence, the number of interacting neighbors is bounded by the quantity

Volume(Br(0))
Volume(Bεcκ/2(qj(t)))

=
rd2d

εdcdκ
= M

which is independent of N .

Next, consider the difference f̃η(t;x, z)− fη(t;x, z):

f̃η(t;x, z)− fη(t;x, z) = −1
2

1
N

N∑
k,j=1

∇U(κj,k(t))ieivk·z{κ̇j,k(t) · z}(Iεj,k(t;x, z)− ψη(x− qk))

+
1
2

1
N

N∑
k,j=1

∇U(κj,k(t))eivk·z
{
κj,k(t) · (∇xIεj,k(t;x, z)−∇ψη(x− qk))

}

Using Lemma 1 we find

‖f̃η(t;x, z)− fη(t;x, z)‖2 ≤ Caε

where Ca is a constant independent of N .
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Further, rearranging summation in (4.32), expression for z · f̃η(t;x, z) can be rewritten as

z · f̃η(t;x, z) = −i1
2

1
N

N∑
k=1


N∑
j=1

(z · ∇U(κj,k(t)))(κ̇j,k(t) · z)

 eivk·zψη(x− qk) (4.32)

+z · divx

{
1
2

1
N

N∑
k=1

{
N∑
k=1

∇U(κj,k(t))⊗ κj,k(t)

}
eivk·zψη(x− qk)

}

4.8 Approximate closure

It appears that function Qη(t;x, z) has no information about distances between interacting par-

ticles. Indeed, consider the examples on Figure 4.4. The periodic structures on the figure have

different densities, however, the distances between interacting particles are the same. If we assume

that the velocities of all particles are 0, then Qη(t;x, z) = ρη(t;x), and we can claim that different

values of Qη(t;x, z) correspond to equal distances between interacting particles. It shows that the

information about the distances of interacting particles cannot be found from Qη(t;x, z) in the

general case.

(a) Rectangular lattice (b) Rectangle

Figure 4.4: Interacting structures

Although we can not find a representation of fη(t;x, z) in terms of Qη(t;x, z) in the general

case, we can use some approximations for particular scenarios.

Assume that in the vicinity of every point x ∈ Ω the distance between interacting particles is

inversely proportional to ρη(t;x)
1
d . Indeed, the more particles we have in a d-dimensional region,

the less distance between every particle should be in that region. Also, assume that the material
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is isotropic. Then approximate

N∑
k=1

∇U(κj,k(t))⊗ κj,k(t) ≈
α1

ρη(t;x)
1
d

u′

(
β1

ρη(t;x)
1
d

)
I

for some fixed constants α1 and β1. To approximate κ̇j,k we will use the quantity

α2

ρη(t;x)
1
d

divx

(
pη(t;x)
ρη(t;x)

)

which represents the relative flow of particles through the boundary of an infinitesimal region, hence

correlates with the rate of change of the average distance between particles. Assuming isotropy, we

approximate

N∑
k=1

∇U(κj,k(t))⊗ κ̇j,k(t) ≈
α2

ρη(t;x)
1
d

divx

(
pη(t;x)
ρη(t;x)

)
u′

(
β2

ρη(t;x)
1
d

)
I

for some fixed constants α2 and β2. Using these approximations our formula (4.32) becomes

z · f̃η(t;x, z) ≈ − iα2

2
divx

(
pη(t;x)
ρη(t;x)

)
z · z

ρη(t;x)
1
d

u′

(
β2

ρη(t;x)
1
d

)
Qη(t;x, z) (4.33)

+ divx

{
α1

2
u′

(
β1

ρη(t;x)
1
d

)
z
Qη(t;x, z)

ρη(t;x)
1
d

}

where, as before,

ρη(t;x) = Qη(t;x, 0), pη(t;x) = −i∇zQ(t;x, 0)

Formula (4.33) is a closure that works at least for the case when the particle system is a discretization

of a PDE (details are given in section 5.12). For all other particle systems this closure may be used

as an approximation of fη(t;x, z). The constants α1, α2, β1, β2 can be obtained experimentally,

they depend on the dynamics of the system.

4.9 Algorithm

In this section we present an algorithm for computing function Qη(t;x, z) using approximation

(4.33). For the sake of argument, in this section we consider the case d = 1. However, everything
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can be generalized to the case of higher dimensions.

Suppose we are given a potential U (ext)(x) that generates an external force on a particle j by

the law

f
(ext)
j = − 1

N
∇U (ext)(qj).

This law can model gravitational forces, electrostatic forces, and many others where the force

is proportional to the mass of particles (for example if we assume that the amount of charge is

proportional to the mass of particles, then electrostatic forces can be described by the model).

Assume that ∇U (ext)(x) is a smooth function.

Suppose that due to the external forces the particles cannot leave some region inside Ω, so there

are no particles within radius η from the boundary of Ω:

qj 6∈
⋃
x∈∂Ω

Bη(x)

Pick a smooth function ψ such that suppψ ⊂ (−1, 1). Then suppψη ⊂ (−η, η) and by the definition

of Qη(t;x, z) we have

Qη(t;x, z) = 0 for all x ∈ ∂Ω and z ∈ Rd (4.34)

Next, because of the external forces the forcing term fη(t;x, z) takes the form

fη(t;x, z) =
1
N

N∑
j=1

{
−1
ε

N∑
k=1

∇U
(
qj(t)− qk(t)

ε

)}
eivj(t)·zψη(x− qj(t)) (4.35)

− 1
N

N∑
j=1

∇U (ext)(qj)e
ivj(t)·zψη(x− qj(t))

Observe that since suppψη(x) ⊂ Bη(0), in (4.35) the sums are over the particles that are in the

ball Bη(x). Using the smoothness of U for ‖qj − x‖2 ≤ η rewrite

∇U (ext)(qj) = ∇U (ext)(x) +R1
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where

‖R1‖2 ≤ ηCU

Hence,
1
N

N∑
j=1

∇U (ext)(qj)e
ivj(t)·zψη(x− qj(t)) =

1
M
∇U (ext)(x)Qη(t;x, z) +R2 (4.36)

where

‖R2‖2 ≤ ηCUρη(t;x)

Using (4.36) approximate z · fη(t;x, z):

z · fη(t;x, z) ≈ − iα2

2
divx

(
pη(t;x)
ρη(t;x)

)
z · z

ρη(t;x)
1
d

u′

(
β2

ρη(t;x)
1
d

)
Qη(t;x, z) (4.37)

+ divx

{
α1

2
u′

(
β1

ρη(t;x)
1
d

)
z
Qη(t;x, z)

ρη(t;x)
1
d

}

−z · ∇U (ext)(x)
Qη(t;x, z)

M

Using approximation (4.37) we can define the algorithm for numerical computation ofQη(t;x, z).

Since we have no boundary conditions in the z space, we can either use one-sided derivative schemes

on the boundary of z region or drop the boundary nodes on every time step (see Figure 4.5). The

later idea is based on the fact that the standard quantities are obtained from Qη at z = 0.

t

x
z

Figure 4.5: Triangular scheme
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CHAPTER FIVE

EXAMPLES

5.10 Ideal gas

The easiest example is the ideal gas. It can be modeled by the equations (3.23) and (3.25), where

the potential function U is taken to be 0 (no interparticle forces). Hence, we get f = 0 in (3.23)

and

∂tQη(t;x, z) = i divx∇zQη(t;x, z) (5.38)

Suppose, we are given an initial condition

Qη(0;x, z) = Q0(x, z) (5.39)

To find solution Qη(t;x, z) of the initial value problem (5.38, 5.39) we will apply Fourier trans-

form to the both sides of (5.38) and use the fact that the derivatives with respect to x turn into

multiplication by iξ:

∂tFx[Qη(t;x, z)](ξ) = −ξ · ∇zFx[Qη(t;x, z)](ξ)

Since function Qη(t;x, z) has bounded support with respect to x and is smooth by definition (3.22),

the Fourier transform exists. Next, solve the obtained equation using the method of characteristics:

Fx[Qη(t;x, z)](ξ) = Fx[Q0(x, z − tξ)](ξ)

Finally, apply the inverse Fourier transform

Qη(t;x, z) = F−1
ξ [Fx[Q0(ξ, z − tξ)](ξ)](x)

Therefore, for the ideal gas an explicit formula can be derived for the evolution of the function

Qη(t;x, z).
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5.11 Lennard-Jones like potential

In this example we use a potential function that is qualitatively close to the Leonard-Jones potential.

This function is better for computational purposes because of its moderate slope. (We have to

perform more operations to evaluate this potential, but we can make wider time steps).

Consider a one dimensional problem governed by the potential

u(x) =

 −1600 + 5568x+
192
x
− 10560x2 + 11840x3 − 7872x4 + 2880x5 − 448x6 x > 0

0 x ≤ 0

with the conditions

• at t = 0 qj < qi+1 for all 0 < i < N

• q1 = 0 and qN = 1 for all t

The graph of this potential and the graph of the corresponding force are given on figure 5.6.

The particles of the system will be always ordered, since u(x)→∞ as x→ 0+. That is

qj < qj if i < j

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

(a) Potential

-6

-4

-2

 0

 2

 0  0.2  0.4  0.6  0.8  1

(b) Force

Figure 5.6: Particle interaction

In this experiment we numerically solved the system of differential equations (1.6). Using the

solution, we computed the quantities Qτη(t;x, z) and f τη(t;x, z) and checked the equations of the
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approximate closure given in (4.33). The results of the numerical experiment are graphed on Figure

5.7.

Although the approximate closure was derived for the quantities without time averages, in this

experiment we use the time averaged quantities in all formulas. This decision is based on the

practical considerations: Without time averaging the quantity fη(t;x, z) can be unbounded.

During the experiment it was possible to find constants α1, α2, β1, β2 such that the approxima-

tion (4.33) becomes close to the original quantities f(t;x, z) (see Figure 5.7).

5.12 Discretization of PDE

In this section we will consider a one dimensional example (d = 1) where particles of the material

will be organized in a certain way. This assumption is a restriction on the initial and boundary

conditions of the original problem and is not implied by other factors.

Define S = [0, 1] and let Ω ⊂ R be a bounded set. Suppose that χ : [0, T ]×S → Ω is a smooth

differentiable function, and for any t ∈ [0, T ] and s ∈ int(S) function χ satisfies

Mχ̈(t, s) =
d

ds
U ′(∂sχ(t, s)) (5.40)

for some potential U .

Next, consider a system of N particles defined by

qj(t) = χ(t, sj), sj =
j

N
= jε

where qj(t) is the position of i-th particle at the moment t (j = 1 . . . N) and ε = N−1. Given

the expression for the position of particles, we can find the representation of the velocities and

accelerations:

vj(t) = q̇j(t) = χ̇(t, sj), ai(t) = q̈j(t) = χ̈(t, sj)

Next, observe that κi,i+1 has the form

κj,j+1 =
qj(t)− qj+1(t)

ε
=
χ(t, sj)− χ(t, sj + ε)

ε
= −∂sχ(t, sj) +Rκ(t, sj , ε)
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Figure 5.7: Results of numerical simulations
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where Rκ(t, sj , ε) is

Rκ(t, sj , ε) = −1
2
∂2
sχ(t, σi)ε, σi ∈ [sj , sj+1]

and, hence, Rκ(t, sj , ε)→ 0 as N →∞ , since ∂2
sχ(t, σi) is bounded. Continuity of U ′ implies

lim
N→∞

U ′(κj,j+1) = U ′( lim
N→∞

κj,j+1) = U ′(−∂sχ(t, sj))

and, therefore, the force between two particles approaches U ′(−∂sχ(t, sj)). Next, assume that

suppU ⊂ (−r, r), and for all j and t we have

r

2
< ∂sχ(t, sj) < r,

then every particle will interact only with its direct neighbors. Indeed,

κj,j+2 =
qj(t)− qj+2(t)

ε
=
qj(t)− qj+1(t)

ε
+
qj+1(t)− qj+2(t)

ε

= −∂sχ(t, sj)− ∂sχ(t, si + ε) +Rκ(t, sj , ε) +Rκ(t, sj+1, ε)

and by continuity of ∂sχ(t, s) we have

lim
N→∞

∂sχ(t, sj + ε) = ∂sχ(t, sj).

Therefore,

lim
N→∞

κj,j+2 = −2∂sχ(t, sj) < −r

and for sufficiently large values of N we have U ′(κj,j+2) = 0.

Consider the definition (3.22) of quantity Qη(t;x, z) applied to this system

Qη(t;x, z) =
M

N

N∑
j=1

eiχ̇(t,sj)·zψη(x− χ(t, sj)) (5.41)

and the definition (3.24) of fη(t;x, z):

fη(t;x, z) =
M

N

N∑
j=1

χ̈(t, sj)eiχ̇(t,sj)·zψη(x− χ(t, sj)) (5.42)
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Observe that (5.41) and (5.42) are Riemann sums, so that as N approaches infinity we have

lim
N→∞

Qη(t;x, z) = M

∫
S
eiχ̇(t,s)·zψη(x− χ(t, s))ds (5.43)

lim
N→∞

fη(t;x, z) = M

∫
S
χ̈(t, s)eiχ̇(t,s)·zψη(x− χ(t, s))ds (5.44)

Let us change the variable of integration in (5.43) and (5.44). Define u = χ(t, s). Then

s = χ−1(t, u), ds = ∂xχ
−1(t, u)du

and

lim
N→∞

Qη(t;x, z) = M

∫
S
eiχ̇(t,χ−1(t,u))·zψη(x− u)∂xχ−1(t, u)du (5.45)

lim
N→∞

fη(t;x, z) = M

∫
S
χ̈(t, s)eiχ̇(t,χ−1(t,u))·zψη(x− u)∂xχ−1(t, u)du (5.46)

Next, consider the limit of (5.45) and (5.46) as η → 0. As η → 0, the integrals in (5.45) and (5.46)

become mollification. Therefore,

Q(t;x, z) = lim
η→0

lim
N→∞

Qη(t;x, z) = Meiχ̇(t,χ−1(t,x))·z∂xχ
−1(t, x), (5.47)

f(t;x, z) = lim
η→0

lim
N→∞

fη(t;x, z) = Mχ̈(t, χ−1(t, x))eiχ̇(t,χ−1(t,x))·z∂xχ
−1(t, x) (5.48)

Simplify the right hand side of (5.40)

d

ds
U ′(∂sχ(t, s)) = U ′′(∂sχ(t, s))∂2

sχ(t, s)

Using (5.40) and the equality above rewrite (5.48) in the form

f(t;x, z) = U ′′(∂sχ(t, χ−1(t, x)))∂2
sχ(t, χ−1(t, x))eiχ̇(t,χ−1(t,x))·z∂xχ

−1(t, x) (5.49)

Observe that

∂sχ(t, χ−1(t,x)) =
1

∂xχ−1(t,x)
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and

Q(t;x, 0) = M∂xχ
−1(t,x)

Further, we have

∂xQ(t;x, 0) = − 1
(∂sχ(t, χ−1(t,x))2

∂2
sχ(t, χ−1(t,x))∂xχ−1(t,x)

= −Q(x, 0)3∂2
sχ(t, χ−1(t,x))

Thus, (5.49) can be rewritten as

f(t;x, z) = −Q(t;x, z)U ′′(MQ(t;x, 0)−1)
∂xQ(t;x, 0)
Q(t;x, 0)3

or

f(t;x, z) =
Q(t;x, z)
ρ(t;x)

d

dx

{
U ′
(

M

ρ(t;x)

)}
(5.50)

Formula (5.50) provides a closure which becomes asymptotically exact as N →∞.

Theorem 3. Closure (4.33) is exactly (5.50) in the context of the current section with the constants

α1 = α2 = 1 and β1 = β2 = M .

Proof. First, observe that in the context of this section

Q(t;x, z) = ρ(t;x)eiz
p(t;x)
ρ(t;x)

and, therefore,
Q(t;x, z)
ρ(t;x)

= e
iz
p(t;x)
ρ(t;x)

Differentiating both sides of the equality, we find

d

dx

{
Q(t;x, z)
ρ(t;x)

}
= e

iz
p(t;x)
ρ(t;x) iz

d

dx

{
p(t;x)
ρ(t;x)

}
= iz

Q(t;x, z)
ρ(t;x)

d

dx

{
p(t;x)
ρ(t;x)

}
(5.51)

Finally, simplifying (4.33) using (5.51) we complete the proof.
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CHAPTER SIX

BI-STABLE MATERIALS

6.13 Introduction

This chapter presents an example of a particle system that can be studied with the method proposed

in the thesis. This example is a simple discrete model of phase transition. We study deformation

of two-dimensional bistable lattices (BL), periodic triangular networks of bistable elastic rods. A

similar network with linearly elastic rods has been used by Cauchy, who formally averaged this

assembly and obtained the first equations of continuum elasticity [12]. We consider a similar

assembly, assuming that the rods are bistable. The bistability models a phase transition: It is

assumed that each rod has two equilibrium lengths l and l(1 + s), respectively. Here, s can vary

between 1
2 and 2, so that the triangle inequality holds and a triangle of transformed rods still

remains a triangle. This bistable lattice model is a simple finite dimensional model for phase

transitions in solids. It allows for detailed description of inhomogeneous deformations and does not

involve any tacit assumptions of the continuum theory. Here, the lattice is considered as a primary

object and not as a discretization of a continuum. Although it does not have all the features of

continuum, it captures most of them.

The considered lattices also model special protective structures. The wire meshes with bistable

waiting links are used for protective structures because they have larger impact resistivity than a

similar standard lattice, see [5, 21]. To achieve bimodality, one uses the links made of two different

rods with welded ends (one rode is slightly longer than the other and, hence, slightly curved). First,

the shorter (basic) rod resists the elongation alone, then a damage or fracture develops in it and

its resistivity decreases, then the second (waiting) rod straightens, starts to resist and the total

resistivity increases again. The resulting force versus elongation curve is non-monotone: First it

increases, then decreases, and then increases again. The corresponding energy is bimodal. The

bimodal link structures can sustain a large impact because a significant portion of its energy is

spent to break the basic links. The lattice recovers the resistivity at a different equilibrium states

due to bimodality. The chapters [8, 7] demonstrate the superior resistivity of the regular triangular
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lattice. In order to rupture it, one must break the basic rods in a large portion of structure spending

much more energy than it is needed to break a similar conventional lattice. The bistable structures

delocalize the damage: the partially broken links are spread over a large area.

One dimensional chains of bistable rods are well investigated [1, 2, 19, 20, 24, 25]. Some

results on the two-dimensional bistable lattices can be found in [17, 18] (explicit construction of

certain special solutions, discrete Green functions), and [6, 7] (direct numerical simulations of time-

dependent impact fracture problems). Other related problems are treated in the book [22] that

also contains additional references.

The partially bistable damaged lattice is composed of short and long links. Its deformation is

inhomogeneous, and it does not satisfy the Cauchy-Born rule, see [9]. However, we assume that

the structure regains periodicity and starts to follow Cauchy-Born rule at a much larger scale. The

continuum limit corresponds to the infinite period. Two scales are introduced: The scale of a single

rod and of the period. The external load is still assumed to be homogeneous in the scale of period.

Implicitly, an even larger scale is assumed to account for inhomogeneity of the load and boundary

conditions.

Section 6.14 contains formulation of the problem and derivation of the compatibility conditions.

We consider compatibility of the “long” and “short” rods in a lattice. The transition of links to a new

state generally leads to an elastic deformation of all rods. For example, one transformed (elongated)

rod does not fit into a triangular lattice of nontransformed (short) links without distorting the

lattice and increasing the energy of the assembly. The partially damaged lattice possesses many

equilibria. Some of equilibria (called here still states) correspond to nonstressed state of the whole

lattice and zero energy. Notice that the resistivity of the structure in a damaged still state is equal

to the resistivity of the undamaged structure, but the energy of an impact is absorbed during

the transition to that state. In Section 6.16 we introduce still states. We show that there exists

a class of still structures that densely cover the neutral region, and describe the corresponding

set of eigenvalues. In Section 6.17, we formulate the linearized problem, assuming that the two

equilibrium lengths are close to each other. A formula for average strain is obtained in Section

6.18, it expresses strain in terms of rod elongations. In Section 6.20, we show that the compatibility

conditions are necessary and sufficient for existence of a lattice deformation realizing a given set

of rod elongations. In Section 6.21, we prove a characterization theorem for the neutral region D.
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This is done by constructing a certain family of still states called stripes. The eigenstrains of the

stripes fill D densely, in the sense that every strain within this set can be approximated by an

average strain of some stripe, with an error of order N−1/2 where N is the number of nodes.

6.14 The problem

6.14.1 Energy of one bistable rod

Consider a bistable elastic rod with the energy Wr(x) that possesses two equal minima Wr(l) =

Wr((1+s)l) = 0. Let us also assume that Wr(x) is convex outside of the interval [l, l(1+s)], and its

second derivative is positive in a proximity of each minima x = l and x = l(1 + s). For definiteness,

we may assume that the dependence of Wr(x) on the length x > 0 is piece-wise quadratic (W q
r ) or

polynomial (W p
r )

W q
r (x) = min

{
1
2

(x− l)2,
1
2
C(x− l(1 + s))2

}
, (6.52)

W p
r (x) = (x− l)2(x− l(1 + s))2, (6.53)

where l is the length of the rod in the reference configuration, l + s is the length in the elongated

mode, and 1
2 < 1 + s < 2.

The rods are elastic and locally stable in a proximity of the equilibria. The elastic force fr in

the rod is

fr(x) =
dWr

dx
.

The rod has two equilibrium states x = l and x = l(1 + s) of equal energy

fr(x) = 0, Wr(x) = 0 if x = l, l(1 + s).

The magnitude of the force monotonically increases with the elongation l in the proximity of

equilibria.

There are several equilibrium lengths xα and xβ for every fr in a proximity of zero. They are

solutions of the equation
dWr

dx
= 0
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Figure 6.8: Energy of a bistable rod

6.14.2 Triangular network

Consider a triangular periodic network made of the links defined above. For each node, there are

six rods joining it with six neighbors. When the rods are of equal lengths, the network is elastically

isotropic. The number of nodes in the period is three times less than the number of rods between

them. There are three families of the parallel rods in the network

When the rods transit to a different state, the network becomes inhomogeneous (each rod can

have a different length). We assume that the transition is periodic. Each period consists of N

nodes where N can be arbitrary large. The network’s energy is the sum of energies stored in all 3N

links. The length of a link can be expressed through the position of its ends, that is the nodes. The

nodes are determined by N pairs of coordinates in a plane, or by 2N parameters. Hence, the links’

lengths can not be arbitrary (for example, see Figure 6.9(a)). We conclude that they are subject

to N compatibility conditions that we derive now.
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Figure 6.9: Compatibility of link lengths

6.15 Compatibility conditions

6.15.1 Necessary condition

There are conditions that constrain the lengths of the rods that can be joined in a hexagonal lattice.

Consider an inner node in the lattice. There are six rods that link the node with its neighbors; let

us denote the lengths of them as a1, . . . a6 (see figure 6.9(b)). Consider also six rods that surround

the node forming a hexagon around it; let us denote the lengths of them as b1, . . . b6. These rods

form six triangles joined at the node. The angles at the node will be denoted by φ1, . . . , φ6 .

The lengths of the listed twelve rods cannot be arbitrary. The sum of angles of the six triangles

should be equal to 2π,
6∑
i=1

φi = 2π. (6.54)

To express this condition in terms of the lengths, we use trigonometry. Cosine of each angle φi is

expressed through the lengths of the links as

cos(φi) =
a2
i + a2

i+1 − b2i
2aiai+1

, i = 1, . . . , 6. (6.55)

Here, a7 = a1. Therefore, the lengths of rods are constrained as follows

6∑
i=1

arccos
(
a2
i + a2

i+1 − b2i
2aiai+1

)
= 2π. (6.56)
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The number of these constraints is equal to the number of inner nodes in the structure.

6.15.2 Linearized compatibility conditions

In a linearized case when the lengths of the rods are close to l, constraints (6.56) are simplified.

Assuming that

ai = l(1 + κai), bi = l(1 + κbi), i = 1, . . . , 6 (6.57)

we write φi as the function of κai , κai+1 , κbi :

φi = arccos
(1 + κai)

2 + (1 + κai+1)2 − (1 + κbi)
2

2(1 + κai)(1 + κai+1)
.

Linearizing near 
κai

κai+1

κbi

 =


0

0

0


we find

6∑
i=1

φi = 2π +
√

3
3

(
6∑
i=1

κai +
6∑
i=1

κai+1 − 2
6∑
i=1

κbi

)

Substituting this expression into (6.54), we obtain an elegant linearized compatibility condition for

lattices
6∑
i=1

κai =
6∑
i=1

κbi (6.58)

It states that the sum of the elongations of the spokes that come out of a node is equal to the

elongation of the hexagonal rim around this node.

6.16 Definitions

In this section we consider still configurations. These are deformed states with zero force in each

rod. Because of the force-elongation dependence, this requires the length of each rod to be either

l or l(1 + s). To simplify presentation, in this section we scale l = 1 and denote l(1 + s) = a.

Given a collection of such rod lengths, we call a configuration still if it is geometrically compatible,

that is the ends of the link of the length one and a can meet in the nodes. The examples of still
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configurations are given below in Figure 6.10. We recall that eigenstrain is a generic name given to

various non-elastic strains, such as strains due to thermal expansion, phase transformation, initial

strains and so on.

Notice that the problem is reduced to a geometric problem of tiling of the plane with triangles

of four types with the lengths of the sides being equal to {1, 1, 1}, {1, 1, a}, {1, a, a}. and {a, a, a},

respectively.

We work with small elongations (a ≈ 1), so it makes sense to linearize rod elongations near the

reference configuration. Linear description allows us to use all tools of linear algebra, so all proofs

become easier and more elegant.

6.17 Linearized elongations

The linearized relative elongation κij of the rod (i, j) can be written as

κij = qij ·
uj − ui

l
, (6.59)

where qij is the unit direction from node i to node j in the reference configuration, ui and uj are

the displacements of nodes i and j, respectively.

Consider a triangular periodic network of N nodes, where N is finite, even though it can be

arbitrary large. We also suppose that the nodes are arranged into a hexagonal shape containing n

nodes along a side (see Figure 5.1 for an example).

Factoring out l2 in (6.52) and using nodal displacements instead of the rod length, we write the

energy of a rod (i, j) as

w(κij) =
Cl2

2
min{κ2

ij , (κij − s)2}, (6.60)

where, s > 0 is a dimensionless parameter characterizing the critical relative elongation. The graph

of the dependence w(κij) is shown on figure 6.11 (Compare with (6.52), where x denotes the actual

rod length).

The displacements uk in the equilibrium state are found by minimizing the total energy of the

40



(a) Step 1 (b) Step 2

(c) Step 3, the structure

Figure 6.10: Hexagon-triangle strips and the assembly
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Figure 6.11: Energy of a single rod

network:

W (u1, . . .uN ) =
∑
(i,j)

w(κij) =
∑
(i,j)

w

(
qij ·

uj − ui
l

)

6.18 Average strain

An effective homogeneous deformation state of the network is characterized by an average (lin-

earized) strain tensor E. In this section we obtain a formula for the average strain in terms of

elongations κij .

Denote the number of nodes in the network by N . Given a set of displacements of nodes

u1, . . .uN we define a continuum deformation u(x) that coincides with ui at each xi. This can be

done by interpolating. In the present case, the lattice forms a triangulation of the physical domain

Ω. Therefore it is easy to construct a piecewise linear interpolant, using finite elements. After this

is done we obtain a continuous function u(x),x ∈ Ω such that

• u(xi) = ui for i = 1, . . . N and xi being the position of node i;

• u(x) is linear on every elementary triangle of the lattice.
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To u(x) we associate strain tensor ε:

ε =
∇u+ (∇u)T

2

Average strain E is defined by the formula

E =
1
|Ω|

∫
Ω
ε(x)dx, (6.61)

where Ω is the domain of u and |Ω| is

|Ω| =
∫

Ω
dx

There exist formulas for E in terms of displacements ui (see [4], [15]). However, for our purposes

it is better to work with the relative elongations κij because we would often prescribe elongations,

rather than displacements. To use standard formulas one would have to solve the system (6.69) (see

the next section) that relates elongations and displacements. We choose a more direct route that

involves relating three average elongations along the lattice directions with the three independent

components of the average strain.

Rewrite (6.61) as

E =
1
|Ω|

∫
Ω
ε(x)dx =

1
|T |

∑
∆∈T

ε∆,

where T is the set of elementary triangles of the network, |T | is the number of elementary triangles

in the network, and ε∆ is the strain tensor on elementary triangle ∆:

ε∆ =
∇u∆ + (∇u∆)T

2
=

1
|Ω∆|

∫
Ω∆

ε(x)dx

Since the average strain tensor E is a 2 × 2 symmetric matrix, it has three independent com-

ponents:

E =

 a b

b c
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Consider three lattice direction vectors q1, q2, and q3 (see figure 6.12(a)):

q1 =
1
2

 2

0

 , q2 =
1
2

 1
√

3

 , q3 =
1
2

 −1
√

3

 ,

q
3

q
2

q
1u

1

u
2

(a) Three lattice directions

i

h j

q
2 q

3

q
1

(b) Definition of vector k∆

Figure 6.12: Lattice directions

We can find the components of E using the values qr · (Eqr), r = 1, 2, 3. Observe that

qr · (Eqr) =
1
|T |

∑
∆∈T

qr · (ε∆qr) =
1
|T |

∑
∆∈T

qr · (∇u∆qr). (6.62)

Using linearity of u on triangle ∆ for edge (i, j) of the triangle we find

qij · (ε∆qij) = qij · (∇u∆qij) = qij ·
uj − ui

l
= κij

Given a triangle ∆ with vertices h, i, j (see figure 6.12(b)) define vector k∆ ∈ R3 as:

k∆ =


κhj

κhi

κij


Using this notation we rewrite (6.62) as a linear system for finding the components a, b, c of E
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given elongations κij :

Q


a

b

c

 =
1
|T |

∑
∆∈T

k∆, (6.63)

where the matrix Q is given by

Q =


q2

1,1 2q1,1q1,2 q2
1,2

q2
2,1 2q2,1q2,2 q2

2,2

q2
3,1 2q3,1q3,2 q2

3,2

 =


1 0 0

1
4

√
3

2
3
4

1
4 −

√
3

2
3
4

 (6.64)

Define function m : R3 → R2×2 by

m(x) = x1

 1 0

0 0

+ x2

 0 1

1 0

+ x3

 0 0

0 1


Function m is simply a linear 1-1 mapping from the space of three dimensional vectors to the space

of 2× 2 symmetric matrices.

Solving (6.63) we find average strain E:

E =
1
|T |

m

(
Q−1

∑
∆∈T

k∆

)
, (6.65)

where

Q−1 =


1 0 0

0
√

3
3 −

√
3

3

−1
3

2
3

2
3


Further, we will rewrite the sum over triangles in (6.65) as the sum over edges (this is just the

change in indexing). Denote all edges of the array by E , all boundary edges of the array by EB and

all non-boundary edges of the array by EI (EI = E\EB). Then

∑
∆∈T

k∆ = 2
∑
e∈E

ke −
∑
e∈EB

ke,
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where vector ke ∈ R3 has the components defined by

(ke)r =

 κe, if edge e is parallel to qr

0, else
, r = 1, 2, 3

Next, equation (6.65) can be rewritten as

E =
2
|T |

m

(
Q−1

∑
e∈E

ke

)
− 1
|T |

m

Q−1
∑
e∈EB

ke

 .

Denote the average elongation by k̄:

k̄ =
1
|E|
∑
e∈E

ke. (6.66)

Then we rewrite (6.65) and obtain the desired formula for the average strain in terms of average

elongations:

E = 2
|E|
|T |

m(Q−1k̄)− 1
|T |

m

Q−1
∑
e∈EB

ke

 . (6.67)

This formula is used extensively in the remainder of the chapter. The first term in the right hand

side contains contributions from all interior edges of the lattice, while the second term contains the

contributions from the boundary edges only. As the number of nodes increases, the second term

becomes small comparing to the first. This becomes clear from the following estimate

∥∥∥∥∥∥m
 1
|T |

Q−1
∑
e∈EB

ke

∥∥∥∥∥∥
F

≤
√

2
|EB|
|T |
||Q−1||2 max

e∈EB
||ke||2. (6.68)

Here ‖ · ‖F denotes the Frobenius norm of a matrix, and ‖ · ‖2 is the Euclidean norm. Note that

the ratio
|EB|
|T |

of the number of the boundary edges to the number of all elementary triangles goes to zero as the

number of nodes approaches infinity.
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6.19 Linearized compatibility conditions

In the next two sections, we study the linearized version of the problem of finding still states.

The linearized formulation is as follows. Equations (6.59) relating node displacements with link

elongations can be concisely written as

RU = κ, (6.69)

where U is a tuple of displacements ui, say (u1, . . .uN ), and κ is a tuple of κij . The number

of unknowns in (6.69) is 2N (since each ui has two independent components). The number of

equations is larger, approximately 3N (see Lemma 5.1 below for the exact count). Therefore, we

have an overdetermined system (the number of unknowns is less than the number of equations). As

a consequence, (6.69) may be unsolvable for some κ. The values of κ for which (6.69) is solvable

are called admissible.

6.20 Compatibility conditions characterize range of R

In this section we show that compatibility conditions (6.58) are necessary and sufficient for solv-

ability of (6.69). Necessity is clear from the derivation of (6.58), so we focus on sufficiency.

Suppose that we have the hexagonal array with a side of n points (see figure 6.13).

Figure 6.13: Example of the network with N = 19, n = 3. A hexagon that forms a hexagonal
equations shown in bold

For every hexagon consisting of 6 vertices we formulate the condition (6.58): the sum of elon-

gations of the outer edges equals to the sum of elongations of the inner edges. For example, for
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figure 6.13 the equation will be

κ12 + κ23 + ...+ κ56 + κ61 = κ71 + κ72 + ...+ κ75 + κ76

The collection of all such equations will be called hexagonal equations.

Next, we need a preliminary result giving the exact count of the number of nodes, edges and

hexagonal equations. The following lemma is used later to carry out proofs by induction.

Lemma 3. The total number of nodes N , the number of edges E, and the number of hexagonal

equations M depend on n as follows.

N(n) = 3n2 − 3n+ 1, E(n) = 9n2 − 15n+ 6, M(n) = 3n2 − 9n+ 7.

Proof. We will prove the lemma using mathematical induction.

For n = 2 we have a hexagon that has 7 vertices, 12 edges, and 1 hexagonal equation. Indeed,

N(2) = 3 · 22 − 3 · 2 + 1 = 7, E(2) = 9 · 22 − 15 · 2 + 6 = 12, M(2) = 3 · 22 − 9 · 2 + 7 = 1

Thus, the formulas are true for n = 2.

Suppose that given formulas are true for n = k. Let’s prove that they are true for n = k + 1.

When we increase n = k by 1 we “wrap” the array by a layer of points. Therefore, we add 6k

vertices, we allow 6(k − 1) new hexagonal equations, and add 6(3k − 1) edges. Thus, the number

of vertices N∗ for the size n = k + 1 is:

N∗ = N(k) + 6k = 3k2 − 3k + 1 + 6k = 3(k + 1− 1)2 + 3k + 1

= 3(k + 1)2 − 6(k + 1) + 3 + 3k + 1 = 3(k + 1)2 − 3(k + 1) + 1,

the number of equations M∗ is

M∗ = M(k) + 6(k − 1) = 3k2 − 9k + 7 + 6(k − 1) = 3(k + 1− 1)2 − 3k + 1

= 3(k + 1)2 − 6(k + 1) + 3− 3k + 1 = 3(k + 1)2 − 9(k + 1) + 7,
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and the number of edges E∗ is

E∗ = E(k) + 6(3k − 1) = 9k2 − 15k + 6 + 18k − 6 = 9(k + 1− 1)2 + 3k

= 9(k + 1)2 − 18(k + 1) + 9 + 3k = 9(k + 1)2 − 15(k + 1) + 6,

Since N∗ = N(k + 1), M∗ = M(k + 1), and E∗ = E(k + 1), the formulas are true.

Observe that

2N − 3 = E −M.

We know that for the mapping R : R2N → RE we have dim(kerR) = 3. This follows from the

well known results on graph rigidity, in particular theorems on the first-order rigidity of triangula-

tions (see e.g. [3] and references therein). Thus,

dim(im R) = 2N − 3

The hexagonal equations can be concisely written in the form

Zκ = 0, (6.70)

where Z is a matrix, Z : RE → RM ; i-th row of this matrix corresponds to i-th equation.

Lemma 4. Matrix Z has full rank M .

Proof. We will restate the lemma in the form: all hexagonal equations are linearly independent.

We will prove the lemma in its new form using mathematical induction on n. For n = 2 we

have M = 1. One equation is linearly independent.

Suppose, the lemma is true for n = k. Let’s prove it for n = k + 1.

Increasing n = k by 1 we wrap a hexagon of side size k with a layer of points. Doing so we add

some number of hexagonal equations to those that we had in the original hexagon. The hexagonal

equations of the original hexagon are linearly independent. Each new hexagonal equation contains

an edge that is present in no other equation. Thus, all equations are linearly independent.
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Since matrix Z has rank M , we find dim(kerZ) = E −M . Thus,

dim(ImR) = dim(kerZ) (6.71)

Necessity of hexagonal equations implies that each admissible κ satisfies them. This fact can

be stated as follows: for any κ ∈ ImR we have Zκ = 0. This in turn implies

im R ⊂ kerZ. (6.72)

Theorem 4. For any vector κ ∈ RE satisfying Zκ = 0 there is a unique (up to translation and

rotation) vector u ∈ R2N satisfying Ru = κ.

Proof. The conditions (6.71) and (6.72) imply

ImR = kerZ.

Thus, for any κ ∈ RE we can find a vector u ∈ R2N . If we neglect rigid rotations and transla-

tions of the whole lattice (they form the null space of R by the well known results on rigidity of

triangulations, ([3] and references therein), then this vector is unique.

6.21 Still states and small deformation eigenstrains

In the small deformation case a still state is a collection of nodal displacements ui satisfying

equations (6.69) with the right hand side κ of special form. The components κij can take only two

values: 0 and s, where s is the critical elongation from (6.60). If κij = 0 we call the corresponding

edge (i, j) short, otherwise the edge is called long. To construct a still state, one could choose a

length for each edge (long or short). The resulting configuration is accepted if the resulting triangles

form a tessellation. Otherwise the configuration is rejected. In the case of small deformations, an

admissible elongation vector κ should lie in the range of the matrix R from (6.69). Equivalently,

such κ must be a solution of the hexagonal equations (6.70).

Denote the set of all still states by U . To characterize U , one needs to solve the following

problem.
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Given κ with κij ∈ {0, s}, find U realizing that κ, that is, find Usuch that RU = κ.

This is possible only if κ satisfies hexagonal equations from Section 6.19. Complete characterization

of U seems very difficult, and is not addressed in this chapter. The reason for the difficulty is the

lack of a convenient structure. It is easily checked that U is not a linear space, or even a convex

set. Therefore, a description of this set cannot be obtained by linear algebra methods.

6.22 An algorithm of adding still states

In this section we characterize the set of strains that can be well approximated by the average

strains of still states. An average strain of a still state can be conveniently described by a triple of

concentrations of long edges parallel to the lattice directions. In this section we propose an explicit

construction that furnishes a large number of still states. Concentrations of these states densely

fill a certain unit cube in the concentration space. Our construction is based on two observations.

First, one needs a binary operation that produces new still states by combining two already known

still states. Second, one needs a simple ”building block”, that is, a still state that could be easily

combined with its slightly modified (e.g. translated and rotated) replicas. In view of the linear

structure of imR, the convenient operation is summation. However, summation of two still states

does not always produce a still state. An additional condition that ensures that the sum of still

states remains a still state is non-overlapping of the long edges (see Lemma 5 below): if a particular

edge is long in the first state, then it should be short in the second state, and visa versa.

From this we deduce that the building block should have low concentrations of long edges, and

the placement of these edges should be localized as highly as possible. If both of these requirements

are satisfied, one can add together shifted copies of the building block to generate new still states

with higher concentrations.

Lemma 5. The sum κ1 + κ2 of two still states κ1 and κ2 is a still state provided κ1 · κ2 = 0.

Proof. Since κ1 and κ2 are still states, their components satisfy

(κ1)ij ∈ {0, s}, (κ2)ij ∈ {0, s}

for all connected nodes i and j. Moreover, the condition of orthogonality κ1 · κ2 = 0 says that for
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each pair (i, j) the values (κ1)ij and (κ2)ij cannot equal s simultaneously. Thus,

(κ1)ij + (κ2)ij ∈ {0, s}

Also, since κ1 and κ2 are still states, we have

Zκ1 = 0, Zκ2 = 0,

where Z is the matrix of the hexagonal system (6.70). By linearity Z,

Z(κ1 + κ2) = Zκ1 + Zκ2 = 0

Since the necessary conditions hold, the sum κ1 + κ2 is a still state.

Notice that Lemma 5 states that sum

κ1 + κ2 + . . .+ κm

is a still state, provided κi, i = 1, . . . ,m have non-overlapping long edges.

For a still state in (6.68) we have ||ke||2 ≤ s. Thus

∥∥∥∥∥∥m

 1
|T |

Q−1
∑
e∈EB

ke

∥∥∥∥∥∥
F

≤
√

2
|EB|
|T |
||Q−1||2s (6.73)

Define concentrations αi, i ∈ {1, 2, 3}, of long edges in a still state as the ratio of the long edges

in i-th direction to the total number of all edges in this direction. Using the concentrations we can

state the main result of this chapter: The set of still states concentrations densely fills a cube in

R3. This result is proved in the following theorem.

Theorem 5. For any αi ∈ [0, 1], i = 1, 2, 3, and any n ≥ 3 there exists a still state κ∗ such that

its concentrations α∗i , i = 1, 2, 3, satisfy

|αi − α∗i | <
1
n
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Proof. To prove the theorem we will use special still states called stripes. These states have κij = 0

everywhere except for one stripe that has non-zero elements in one direction (figure 6.14). We can

see that these stripes are still states because their components are either 0 or s and they satisfy the

hexagonal equations: each hexagon has either all zero elongations or one non-zero inner elongation

and one non-zero outer elongation.

(a) A horizontal stripe, group 1 (b) Rotated stripe, group 2

(c) Rotated stripe, group 3 (d) Compound still state

Figure 6.14: 6.14(a), 6.14(b), and 6.14(b) are “stripe” still states. 6.14(d) is a still state composed
of 6.14(a), 6.14(b), and 6.14(c). Solid line corresponds to κ = s, dotted line is 0.

Observe, that for two different stripes κ1 and κ2 we have κ1 · κ2 = 0. In other words, the long

edges of κ1 do not overlap the long edges of κ2, and thus κ1 + κ2 is a still state (figure 6.14(d)).
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We have 3 different groups of stripes, G1, G2, and G3, one for each direction: one group of

horizontal stripes and two groups of rotated stripes. The number of stripes in each group is

2(n− 1).

Next, define the vectors dr, r ∈ {1, 2, 3} as follows. The dimension of dr is E (the number of

edges), and the components are equal to one if the corresponding edge is parallel to qr (a lattice

direction vector), and equal to zero otherwise. It is easy to see that if κ ∈ Gr for some r ∈ {1, 2, 3}

then κ · dr < 2n, r = 1, 2, 3, since each “stripe” has no more than 2n long edges. Also, since each

stripe has long edges only in r-th direction, we get

κ · dr =
E

3
αr, κ · dt = 0 for t 6= r.

This implies

αr <
6n
E

=
6n

9n2 − 15n+ 6
<

1
n

for n ≥ 3.

First, we explain the main idea of the proof. Consider i-th group (stripes of one certain direc-

tion). If we add all stripes of this group then we’ll get αi = 1. For the still state κ = 0 we have

αi = 0. Therefore, adding stripes one by one we increase αi from 0 to 1 with steps less than n−1.

Hence, for any x ∈ [0, 1] there exists a step when |αi − x| < n−1. Finally, since different directions

are independent from each other, we can run this algorithm for i = 1, 2, 3 and at the end add all

still states together to get what we need. Next, we present the technical details.

For any subset S of set Gi we will define functions κ̂(S) and α̂j(S) by

κ̂(S) =
∑
κ∈S

κ and α̂j(S) =
∑
κ∈S

3
E
κ · dj =

3
E
κ̂(S) · dj

Since κ̂(Gi) = di, we have α̂i(Gi) = 1 and α̂j(Gi) = 0 for j 6= i. Also, we define κ̂(∅) = 0 and

α̂j(∅) = 0, j = 1, 2, 3.

From the corollary of lemma 5 it follows that for any S ⊂ Gi the value of function κ̂(S) is a still

state with concentrations α̂j(S).

Suppose we are given values αi ∈ [0, 1], i = 1, 2, 3. Let’s define sets Hi, i = 1, 2, 3, as

Hi = {S ⊂ Gi : α̂i(S) ≤ αi}
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Having defined Hi we define values S∗i , i = 1, 2, 3, by

S∗i = argmax

S∈Hi

α̂i(S)

Since the sets Gi are finite, the sets Hi are finite and the maximum exists. Therefore, the definition

of S∗i is consistent.

Now if for some i ∈ {1, 2, 3} we have Gi\S∗i = ∅ then S∗i = Gi and α̂(S∗i ) = 1. From the

definition of S∗i we have

α̂i(S∗i ) ≤ αi

Since αi ≤ 1, we get α̂i(S∗i ) = αi.

If for some i ∈ {1, 2, 3} we have Gi\S∗i 6= ∅ then there exists k ∈ Gi\S∗i .

From the definition of function α̂ we get

α̂(S∗i ∪ {k}) = α̂(S∗i ) + α̂({k}) > α̂(S∗i )

And, since S∗i has maximal value in Hi, we have S∗i ∪ {k} 6∈ Hi. Hence,

αi < α̂i(S∗i ∪ {k})

Now using

α̂i(S∗i ) ≤ αi < α̂i(S∗i ∪ {k})

and

α̂i(S∗i ∪ {k})− α̂i(S∗i ) = α̂i({k}) <
1
n

we get

0 ≤ α∗i − α̂i(S∗i ) < α̂i(S∗i ∪ {k})− α̂i(S∗i ) <
1
n

Finally, for the still state κ∗ defined by

κ∗ = κ̂(S∗1 ∪ S∗2 ∪ S∗3 )
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we have

|α∗i − αi| <
1
n

Let us define the set D:

D = {sm(Q−1x) : x ∈ R3, 0 ≤ xr ≤ 1, r = 1, 2, 3}, (6.74)

where Q−1 is the inverse of the matrix given by Eq. (6.64). Set D is a convex polygon in the space of

2×2 symmetric matrices, since it is an image of a cube under a non-singular linear transformation.

The components of the elements of D form a set shown on figure 6.15.

(a) The cube [0, 1]3 (b) Q−1[0, 1]3

1.0

0.5

0.0

−0.5

1.0 1.50.5

L_1

L_2

(c) Eigenvalues of Ē

Figure 6.15: The cube and its image under Q−1

Theorem 6. For any E ∈ D there exists a still state of the hexagonal array with a side of n ≥ 3

points such that average strain E∗ of this still state satisfies

||E∗ −E||F ≤ s||Q−1||2
8

n− 1

Proof. Since E ∈ D, there exists α ∈ R3, 0 ≤ αr ≤ 1, such that

E = sm(Q−1α)

Using theorem 5 we can claim that for n ≥ 3 there is a still state with the concentration values α∗
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such that

||α∗ −α||2 ≤
√

3
n

Using (6.67), for this still state we find the average eigenstrain

E∗ = 2
|E|
|T |

m(Q−1k̄
∗)− 1

|T |
m(Q−1

∑
e∈EB

k∗e).

Then

||E∗ −E||F =

∥∥∥∥∥∥2
|E|
|T |

m(Q−1k̄
∗)− 1

|T |
m(Q−1

∑
e∈EB

k∗e)−E

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥2s
3
|E|
|T |

m(Q−1α∗)− 1
|T |

m(Q−1
∑
e∈EB

k∗e)− sm(Q−1α)

∥∥∥∥∥∥
F

≤
√

2||Q−1||2
∥∥∥∥2s

3
|E|
|T |
α∗ − sα

∥∥∥∥
2

+

∥∥∥∥∥∥m

 1
|T |

Q−1
∑
e∈EB

k∗e

∥∥∥∥∥∥
F

Next,

∥∥∥∥2s
3
|E|
|T |
α∗ − sα

∥∥∥∥
2

≤ s||α∗ −α||2 + s

∣∣∣∣1− 2
3
|E|
|T |

∣∣∣∣ ||α∗||2
≤
√

3
n
s+ s

∣∣∣∣1− 2
3
|E|
|T |

∣∣∣∣√3

Further, using

|T | = 6(n− 1)2, |E| = 9n2 − 15n+ 6, |EB| = 6(n− 1)

and estimation (6.73) we find

||E∗ −E||F ≤
√

2||Q−1||2

(√
3
n
s+ s

∣∣∣∣1− 2
3
|E|
|T |

∣∣∣∣√3

)
+
√

2
|EB|
|T |
||Q−1||2s

=
√

2s||Q−1||2

(√
3
n

+
√

3
3(n− 1)

+
1

n− 1

)
≤ s||Q−1||2

8
n− 1
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Let us now discuss the significance of the Theorem 6.3 for linking the microscopic (lattice-level)

and macroscopic (continuum) models. First, it is of interest to understand how geometry of D

depends on the microstructure. We observe that D is the image of a unit cube under a linear

mapping defined in (6.74). The unit cube and the mapping m are both independent of the lattice

geometry and the microscopic force definition. The two microstructure-dependent quantities in

(6.74) are the relative (non-dimensional) critical elongation s and the matrix Q−1. The actual

critical elongation is sl, where l is the equilibrium edge length. Passing to the limit requires

proper scaling of l with N (a typical scaling is l ∼ N−1/2). It looks natural to define s as a

constant independent of N . If that is the case, then s = O(1) as N → ∞. The set D in that

case is independent of N , and s is a non-dimensional constant of the problem that determines

susceptibility of the material to phase transition. The diameter of D increases linearly with s. The

matrix Q−1 determines orientation of D in the strain space and provides the explicit dependence

of D on the lattice geometry. Indeed, by definition (6.64), Q depends only on the products of

components of the lattice direction vectors qr, r = 1, 2, 3.

If s = O(1), then D is the “flat bottom” of the macroscopic energy density, since by Theorem

6.3 any strain in this set can be approximated by a still state eigenstrain, the energy of every still

state is zero, and D is fixed as N →∞.
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CHAPTER SEVEN

CONCLUSION

A new complex continuum quantity Qτη(t;x, z) was studied in this dissertation. The quantity is a

function with derivatives bounded independently of N , it includes both velocities and positions of

particles, and, hence, carries more information than the standard quantities density ρτη(t;x), linear

momentum pτη(t;x), and kinetic energy Kτ
η (t;x). The standard quantities can be obtained from

Qτη(t;x, z).

Practical usage of Qτη(t;x, z) was studied on several examples. Based on the examples we

proposed a way to turn the evolution equation for Qτη(t;x, z) into a closed form differential equation.

This closure is exact under certain constraints and can be used as an approximation if the constraints

are not satisfied. An algorithm is developed based on the presented closed form differential equation.

In the last chapter we proposed an example for further studies using Qτη(t;x, z). The example

is a bistable material modeled by a triangular lattice with bistable links. The equilibria of this

triangular lattice are considered. We obtain the description of the set of the average strain tensors

corresponding to still states, e.g. deformations that carry no forces and possess zero energy. We

also propose several explicit constructions of such states for small and finite deformations.

The compatibility conditions for rod elongations were derived. In the small deformation case,

these conditions are necessary and sufficient for the existence of a deformation realizing a given set

of elongations. We propose a special class of still states, the strips. The strains of these special

patterns densely cover the neutral region D of all still states strains. We showed that D is a

parallelepiped in 3D space of independent components of the strain tensor. The orientation and

side lengths of D are explicitly described in terms of the parameters of the lattice.

The above results suggest the following properties of the energy density: If a strain is inside

of D, then the energy density is asymptotically close to zero as the number of the lattice nodes

approaches infinity; if the strain is outside of this set, the energy density is proportional to the

square of the distance between the strain and D.
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Appendix A

Mollification

Suppose that we have an expression

E =
1
N

N∑
i=1

g(yj)

for some smooth function g : Rn → R. Let K : Rn → R be a positive valued function with bounded

support:

K(y) ≥ 0 for ∀y ∈ Rn suppK ⊂ Br(0)

where Br(0) is a ball of radius r in ‖·‖2 norm centered at 0 in Rn. Also, assume that ‖K‖L1(Rn) = 1.

Using K define Kδ:

Kδ(y) =
1
δn
K
(y
δ

)
Note that Kδ(y) ≥ 0 and suppKδ ⊂ Brδ(0).

Consider the following approximation of E:

Ẽ =
∫

Rn
g(y)

 1
N

N∑
j=1

Kδ(y − yj)

 dv

63



Let us estimate the error of the approximation |E − Ẽ|:

|E − Ẽ| =

∣∣∣∣∣∣
∫

Rn
g(yj)

 1
N

N∑
j=1

Kδ(y − yj)

 dy −
∫

Rn
g(y)

 1
N

N∑
j=1

Kδ(y − yj)

 dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Rn
(g(y)− g(yj))

 1
N

N∑
j=1

Kδ(y − yj)

 dy

∣∣∣∣∣∣
≤ 1

N

N∑
j=1

∣∣∣∣∫
Rn

(g(y)− g(yj))Kδ(y − yj)dy
∣∣∣∣

=
1
N

N∑
j=1

∣∣∣∣∣
∫
Brδ(yj)

(g(y)− g(yj))Kδ(y − yj)dy

∣∣∣∣∣
≤ 1

N

N∑
j=1

sup
Brδ(yj)

|g(y)− g(yj)|
∫
Brδ(yj)

Kδ(y − yj)dy

=
1
N

N∑
j=1

sup
Brδ(yj)

∣∣∣∣(y − yj) · ∫ 1

0
∇g(sx+ (1− s)yj)ds

∣∣∣∣
≤ 1

N

N∑
j=1

rδ‖g‖W 1
∞

= rδ‖g‖W 1
∞(Rn)

Therefore, ∣∣∣∣∣ 1
N

N∑
i=1

g(yj)−
∫

Rn
g(y)µδ(y)dy

∣∣∣∣∣ ≤ rδ‖g‖W 1
∞(Rn)

where

µδ(y) =
1
N

N∑
j=1

Kδ(y − yj)
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