
EXTENSIONS IN THE THEORY OF LUCAS AND

LEHMER PSEUDOPRIMES

By

ANDREW DAVID LOVELESS

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
Department of Mathematics

AUGUST 2005

c© Copyright by ANDREW DAVID LOVELESS, 2005
All Rights Reserved

c© Copyright by ANDREW DAVID LOVELESS, 2005
All Rights Reserved

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of
ANDREW DAVID LOVELESS find it satisfactory and recommend that it be
accepted.

Chair

ii

ACKNOWLEDGEMENTS

The completion of this dissertation is due in large part to my advisor William

Webb. He always is ready for discussion even when I drop in unexpected. I deeply

thank him for all the direction and advice he has given me over the last several years.

In addition, I owe a special thanks to my other committee members, Matt Hudelson

and Duane DeTemple. I have greatly enjoyed my weekly combinatorial geometry

seminar meetings with these three faculty members. Many of my mathematical

interests stem from Prof. Hudelson. His combinatorics class was one of my favorites.

He always has interesting problems to talk about and I will miss having neighboring

offices. Prof. DeTemple has introduced to me to many interesting problems and proof

techniques. He has a great talent of exposition and I thank him for his help in my

work.

Certainly, many of my achievements can be attributed to the outstanding

faculty and staff at Washington State University. Specifically, thank you to Prof.

Wollkind, Prof. Kent, Prof. McDonald, Prof. Tsatsomeros, Prof. Watkins, Prof.

Schumaker, Prof. Khapalov and Prof. Kucera. You all have been supportive and

helpful in my studies and I have learned a lot about mathematics and the teaching

of mathematics from each of you. I also would like to thank Prof. Ariyawansa, Prof.

Manoranjan, and Prof. Genz for their help in ensuring that I received financial help

by way of scholarships over the last three years.

iii

My quest towards a Ph.D. would never have begun without the pressing of

the amazing professors at the University of Puget Sound. A special thanks to Prof.

Ron VanEnkevort for planting the seed of graduate school in my mind; He was my

best teacher. Also, thank you to Prof. Robert Beezer, Prof. Bryan Smith, and Prof.

Carolyn Smith for their advice and support.

In addition, I would like to thank my office mates Indika Radjapaske and

Christian Ketelson for many helpful discussions. I have been lucky to be surrounded

by such good friends.

A quiet mathematician seems quite a misfit in a social family composed of

workers in business, construction, teaching, advertising, broadcasting and farming.

Yet, I am blessed with overwhelming support from my family. For instilling in me the

importance of education, and paying for it, thank you to my parents. To Matt, Brad,

Cecelia, Tara, Kurt, Katie, Jennifer, Kristina, Samantha, Pryce, Carson, Victoria,

Ethan, Zachary, and Alexandra, I feel lucky to be a part of your lives and I love you

all. To Marilyn and Karl, thank you for welcoming me into your wonderful family

and for your constant support.

I am lucky to have the unwavering support of my wife, Joelle. Without her,

I would never have had the confidence or ambition to pursue this endeavor. She has

made me a better mathematician and a better man. I am truly blessed. Thank you.

iv

EXTENSIONS IN THE THEORY OF LUCAS AND

LEHMER PSEUDOPRIMES

Abstract

by Andrew David Loveless, Ph.D.
Washington State University

August 2005

Chair: William A. Webb

We begin by briefly explaining the applications and history of primality testing.

Chapter 1 surveys the number theory topics that are essential to the study with

motivation where possible. After summarizing the current literature in Chapter

2, the remainder of the dissertation extends known research and investigates new

ideas in probabilistic primality testing based on Lucas and Lehmer sequences by both

theoretical and numerical means.

First, we define Lehmer sequences and give four congruence relations for these

sequences which are satisfied by all primes. For given parameters, each congruence

gives a probabilistic primality test in which all primes pass the test, but some composites,

called pseudoprimes, also pass. For an odd composite integer n with the discriminant

of the sequence fixed, we give the number of parameters that yield n as a pseudoprime

for Congruence 1 of Chapter 3. Using this formula, we deduce a bound on the number

of parameters that yield n as a pseudoprimes. With further results in Chapter 6, we

v

are able to give a count and bound on all parameter sets for all discriminants. In

Chapter 4, we explore ways to systematically reduce the number of pseudoprimes

exhibited by Congruences 1 and 2 of Chapter 3.

Primality testing based on congruence relations with modulus n2 instead of

n are investigated in Chapter 5. We motivate this change and give several such

relations. Extensive numerical tables are given for the number of pseudoprimes up to

x = 10k for various congruences and methods in Chapters 3, 4, and 5.

By analyzing the characteristic roots of Lehmer sequences in Chapter 6, we

are able to give several relationships between parameters sets for congruence relations

of previous chapters. We use these relationships to help explain the effectiveness, or

ineffectiveness, of specific congruences and methods.

In the final chapter, we consider Lucas and Lehmer sequences where the

parameters are taken in the general setting of commutative rings with identity. Much

of the theory and results also hold in this setting. We also look at the special case of

quotient rings.

vi

Table of Contents

Acknowledgements iii

Abstract v

Table of Contents vii

Introduction 1

1 Essential Number Theory Topics 7
1.1 Euler and Carmichael Functions . 7
1.2 Congruences . 9
1.3 Fermat’s Little Theorem . 11
1.4 Quadratic Residues . 12
1.5 Lucas Sequences . 14
1.6 Computational Considerations . 19
1.7 Commutative Rings . 20

2 Classical Probable Primality Tests 23
2.1 Fermat Tests . 23
2.2 Lucas Sequence Tests . 29
2.3 Other Probabilistic Primality Tests 34

3 Lehmer Pseudoprimes 36
3.1 Introduction . 36
3.2 A Formula for the Number of Parameters Yielding a Pseudoprime . . 43
3.3 A Bound on the Number of Parameters Yielding a Pseudoprime . . . 48
3.4 Relations Among The Tests . 51
3.5 Numerical Results . 55
3.6 Conclusions . 61

vii

4 Strong Lehmer Tests 63
4.1 Introduction . 63
4.2 Generalized Strong Lehmer Testing 66
4.3 Congruence 2 Strong Testing . 73
4.4 Numerical Results . 80

5 Lehmer Criteria Modulo Prime Powers 86
5.1 Introduction . 87
5.2 Lehmer Sequences modulo Prime Powers 89
5.3 Combining Tests . 91
5.4 Numerical Data . 93

6 Characteristic Root Analysis 101
6.1 Introduction . 102
6.2 Lehmer Criteria . 103
6.3 Stronger Lehmer Criteria . 110
6.4 Lehmer Squared Criteria . 114
6.5 Combined Lehmer Squared Criteria 117

7 Finite Commutative Ring Lehmer Testing 120
7.1 Introduction . 120
7.2 Lehmer Sequences in Finite Commutative Rings 121
7.3 Characteristic Root Analysis of General Case 124
7.4 Lehmer Sequences in Quotient Rings 127
7.5 Special Types of Quotient Rings . 130
7.6 Testing Sums of Binomial Coefficients 135
7.7 Numerical Results . 139

Bibliography 142

viii

To Joelle.

ix

Introduction

A prime number is a positive integer greater than 1 whose only divisors are 1 and itself.

The structure of the sequence of prime numbers that arise from this definition have

fascinated mathematicians for centuries. Several innocent looking questions about

these numbers remain unanswered even after centuries of inquiry by generations of

mathematicians. The famous mathematician Leonard Euler once wrote:

Mathematicians have tried in vain to this day to discover some order in the se-

quence of prime numbers, and we have reason to believe that it is a mystery into which

the human mind will never penetrate.

With this said, we do know a few facts about the sequence of primes and a great

many of them are due to Euler himself. Some of the major results illustrate how

primes are foundational to all of mathematics while other theorems are concerned

with special types of primes and the growth of the sequence of primes. We investigate

the following question.

QUESTION: Given a large integer, n, can we describe algorithms to quickly determine

if n is prime? In addition, can we articulate the effectiveness of such algorithms?

1

We do not give a rigorous mathematical answers to these questions, but for all

practical purposes we hope you become convinced that the answers are yes. Let

us further clarify these questions. In practice, the “large integer” is roughly 100

digits or more and it is appropriate to think of numbers of this size as we proceed.

The algorithms we describe would also work “quickly” on integers with thousands of

digits. By “quickly determine”, we mean that the algorithm could be implemented on

a computer and would finish checking an integer, n, in O(log(n)) steps. We consider

multiplication as one step for simplicity, some authors consider bit operations instead.

When we use the terms O(log(n)) operations, we will be thinking of the number of

multiplications. For 100 digit numbers, we want the algorithm to finish checking in

fractions of a second on a desktop computer.

We are not the first to investigate this question. Several good algorithms are

known. This work extends known results and explores different approaches to the

problem. In Chapter 2, we give an overview of known methods. Before continuing,

we discuss why this question warrants investigation.

The ability to find large primes efficiently is important in the subject of cryp-

tography and has become an interesting topic in its own right. Many cryptographic

schemes and protocols begin by finding large primes. For instance, the celebrated

RSA cryptosystem is based on finding two large primes, p and q, and then using the

integer n = pq to develop a secure form of communication over the internet.

2

In addition to the practical importance of prime recognition, the characteristics of

primes are fundamental to the whole of mathematics and for this reason alone deserve

to be studied from every angle and approach. In 1801, in the book Disquisitiones

Arithmeticae, the great mathematician Carl Friedrich Gauss wrote:

The problem of distinguishing prime numbers from composite numbers and of re-

solving the latter into their prime factors is known to be one of the most important and

useful in arithmetic... . The dignity of the science itself seems to require that every

possible means be explored for the solution of a problem so elegant and so celebrated.

There are two types of methods for determining if a large integer is prime, deter-

ministic primality testing and probabilistic primality testing. In this work, we only

discuss probabilistic primality tests. When the term primality test is used alone, we

are implying that the test is probabilistic.

A deterministic primality test gives a rigorous proof that a given integer n is

prime. In other words, these algorithms verify, with certainty, that a number is prime.

Sometimes we say that such a test gives a certificate of primality for an integer n.

In August 2002, three computer scientists, Manindra Agrawal, Neeraj Kayal and

Nitin Saxena gave a polynomial time algorithm for proving primality [4]. This was

a major breakthrough and was based on relatively simple ideas. However, these

tests still take too long for cryptographic purposes. The best known algorithms

for primality proving, to date, have running time O(log(n)6) [25]. Cryptographic

3

algorithms, such as the RSA cryptosystem, require faster methods. For this reason,

probabilistic primality tests are used.

Probabilistic primality tests (sometimes called compositeness tests) function in

the following way. Any prime number will pass the test. However, there is the

possibility that some composite numbers will give false positives. These ‘liars’ are

called pseudoprimes. The goal in the theory of probable primality testing is to find

an efficient test which exhibits few pseudoprimes.

Probable primality testing theory is an interesting game. Any theorem that reads,

If n is a prime, then ‘conclusion’, can be used as a primality test. The test is the

‘conclusion’. If the conclusion is false for n, then we know for certain that n is

composite. If the conclusion is true for n, then we know nothing for certain, so we

say n is a probable prime. As we will see, certain theorems work better than others

and some give very high confidence in their results.

The first attempts at probabilistic primality tests were based on variants of Fer-

mat’s little theorem. If n and a are relatively prime integers and an−1 ≡ 1 (mod n),

then we say that n is a probable prime to the base a. Pseudoprimes for this test have

been studied extensively. In the current study, we investigate a class of primality

tests which are based on Lucas sequences.

The fundamental concepts necessary to the study of these tests will be presented in

Chapter 1. In Chapter 2, we survey the classical primality tests focusing on variant’s

4

of Fermat’s Theorem and the use of Lucas sequences. The remaining chapters focus

on new research.

Chapter 3 thoroughly discusses an extension of the theory of Lucas sequences

which was introduced by D.H. Lehmer [33]. These sequences, now known as Lehmer

sequences, can be used in primality testing in much the same way as Lucas sequences.

We explain how Lehmer sequence tests are as efficient as Lucas sequence tests and

have a broader range of parameter choices. We also prove a fundamental result about

the number of ‘bad’ parameters, i.e. parameters which lead to a pseudoprime. We

end the chapter with extensive numerical data which indicates the tests and methods

that give the highest confidence.

The Lehmer sequences of Chapter 3 give a broader range of choices for primality

testing and make the theory more robust. However, the number of pseudoprimes they

exhibit is not a great improvement on the standard Lucas sequence. In Chapter 4, we

explore two ways to systematically reduce the number of pseudoprimes exhibited by

the tests in Chapter 3. The first strengthening technique is known in special cases,

but we develop it into a general theory. The second is not found in the literature.

This technique will lead to a primality test which experimentally is as good as any

known. It has roughly the same efficiency as current methods in use and it is accurate

for many different methods of choosing parameters.

Chapters 3 and 4 only consider congruence properties modulo a prime. Chapter

5

5 is devoted to exploring generalization of Lucas/Lehmer tests modulo prime powers.

We discuss reasons for and against making such a generalization. We give several

congruences and combined congruences and provide tables of data for comparison.

The majority of the tests in this section are very effective, but they are theoretically

difficult to investigate.

In Chapter 6, we restate several of the congruence theorems from previous chapters

in terms of their characteristic roots. This is an important theoretical method and

it allows for ease in comparison between the various tests. Using these techniques

we will prove various results concerning the connections between various parameters

sets. These theorems will give at least partial explanations for why some tests are

better than others.

In the final chapter, we state the properties of Lucas and Lehmer primality testing

in the general setting of commutative rings with unity. The downside is that all of

the computations must be done in the ring, which generally takes more time. If the

ring is chosen to be a finite field, then the computation can be done in a relatively

efficient way and the test are very accurate. Primality tests in finite fields have been

studied before, but no one has investigated Lucas sequences where each parameter is

chosen from an arbitrary ring.

6

Chapter 1

Essential Number Theory Topics

The topics and theorems of number theory that are relevant to the study of primality

testing and pseudoprimes are discussed here. We introduce foundational tools in the

theory of congruences and motivate their use in primality testing. The focus is on

presenting the ideas. We leave proofs for the new material in later chapters. The

majority of the proofs omitted can be found in elementary texts on number theory.

For more detail expositions on these topics see [7], [14], [27], [49], [56].

1.1 Euler and Carmichael Functions

A vast array of integer functions are central to the study of number theory. Here, we

discuss two such functions which are important tools in the study of primality testing.

These functions, the Euler φ-function and the Carmichael λ-function, are often used

in generalizing theorems which concern primes.

The Euler φ-function can be defined strictly in terms of the prime divisors of an

integer, but it also has a combinatorial interpretation. For a positive integer n > 1,

7

the value φ(n) is defined as the number of positive integers less than n that are

relatively prime to n. Several proofs in elementary number theory make use of the

properties of relatively prime integers. The Euler φ-function is a useful notational

convenience in such instances.

For a given integer n, the value φ(n) can be computed in terms of the prime

factorization of n. Most introductory number theory texts include a full derivation

of the following formulas.

Theorem 1.1.1. The Euler φ-function satisfies the following properties

1. If m and n are positive integers with (m,n) = 1, then φ(mn) = φ(m)φ(n).

2. If p is a prime and α is a positive integer, then φ(pα) = pα − pα−1.

3. Thus, if n =
∏k

i=1 pαi
i , then φ(n) =

∏k
i=1 pαi

i − pαi−1
i .

The Carmichael λ-function is less well-known and does not have a similar combina-

torial interpretation. However, it allows for more articulate generalizations of certain

theorems than the Euler φ-function. Although the functions are defined slightly dif-

ferently for powers of two, the most significant difference is in their definition for

products of primes. Note that one involves a product and the other involves the least

common multiple (LCM).

8

Definition 1.1.1. The Carmichael λ-function is defined for all positive integers as

follows:

1. If p is an odd prime and α is a positive integer, then λ(pα) = φ(pα).

2. If α is a positive integer, then

λ(2α) = φ(2α), if α = 0, 1, 2, and λ(2α) =
1

2
φ(2α), if α > 2.

3. If n =
∏k

i=1 pαi
i , then λ(n) = LCM(λ(pα1

1), . . . , λ(pαk
k)).

Both the Euler φ-function and the Carmichael λ-function have been used in the

study of primality tests. We use these functions in the following sections.

1.2 Congruences

Throughout this manuscript, we will be interested in many different types of con-

gruence relations. Primality tests are based on the existence of congruences which

always hold for primes and never, or rarely, hold for composites. One of the most

well-known of these is Wilson’s Theorem.

Theorem 1.2.1. Wilson’s Theorem.

The positive integer p is a prime number if and only if (p− 1)! ≡ −1 (mod p).

This theorem completely characterizes primes, but it is not useful in practice with-

out an efficient way to compute (n−1)! modulo n for large integers n. There are other

9

congruences which characterize, or are conjectured to characterize, primes, yet they

all suffer from the same problem when it comes to implementing them in practice.

The best deterministic algorithms, that is an algorithm implementing a characteri-

zation of primes, requires O(Log(n)6) steps as mentioned in the introduction. The

ultimate goal would be to find a test that completely characterizes primes and is more

efficient to use.

The trick with primality testing is to build a congruence which can be tested

quickly and is somehow based on a characterization of primes. We tend to lose the

prime characterization in the process, but we create a practical test which works

“most” of the time. Clarifying what is meant by “most” occupies a major portion of

the rest of this work. The following characterization of primes is often more useful in

the creation of primality tests in this way.

Theorem 1.2.2. The positive integer p is prime if and only if

(
p
k

)
≡ 0 (mod p), for all k such that 1 ≤ k ≤ p− 1.

This theorem is one of the main tools used in proving congruences for primality

tests. In Chapter 5, we will look at a similar characterization modulo p2. Once again,

this theorem cannot be tested directly, since there is no known way to efficiently

compute these binomial coefficients modulo n. However, we will see ways that sums

of binomial coefficients can be tested. We make use of these ideas in the next section.

10

1.3 Fermat’s Little Theorem

Many of the foundational concepts in primality testing stem from the following theo-

rem. The congruences given in this theorem can be proven from the characterization

of primes using binomial coefficients in Theorem 1.2.2 and we include the proof as an

example of how primality tests are created.

Theorem 1.3.1. Fermat’s Little Theorem.

If p is prime and a is a positive integer, then ap ≡ a (mod p). If, in addition, p - a,

then ap−1 ≡ 1 (mod p).

Proof. Use induction on a. If a = 1, then 1p ≡ 1 (mod p). If the statement is true

for a, then

(a + 1)p =

p∑
k=0

(
p
k

)
ak ≡ a + 1 (mod p).

Thus, the statement is true for all values of a. The second congruences follows

immediately from the first under the conditions p - a.

Note that the last congruence in the proof follows directly from Theorem 1.2.2.

This connection will occur again later.

When we discuss the effectiveness of this primality test, we are interested in com-

posite integers which satisfy the congruence in Fermat’s Little Theorem. Thus, it is

natural to ask about generalizations of this theorem concerning composite integer.

For composite integers, we have the following related theorems.

11

Theorem 1.3.2. Euler’s Theorem.

If n and a are positive integers with (n, a) = 1, then aφ(n) ≡ 1 (mod n).

Euler’s Theorem is well-known, but lesser known is Carmichael’s Theorem. It

should be noted that Carmichael’s Theorem is more general than Euler theorem.

Indeed, for a given integer n, we have λ(n)|φ(n). See [14], for proof of this result.

Theorem 1.3.3. Carmichael’s Theorem.

If n and a are positive integers with (n, a) = 1, then aλ(n) ≡ 1 (mod n).

We discuss these congruences and generalizations of them in Chapter 2.

1.4 Quadratic Residues

We often want to know when an integer is a square modulo a prime p. If p > 2 does

not divide a, and if there exists an integer b such that a ≡ b2 (mod p), then a is called

a quadratic residue modulo p; otherwise, it is a quadratic nonresidue modulo p.

The following notation is standard when discussing quadratic residues.

Definition 1.4.1. Let p be an odd prime and a an integer. The Legendre symbol,

(a|p), is defined as follows:

(
a

p

)
= (a|p) =


+1 , if a is a quadratic residue modulo p
−1 , if a is a quadratic nonresidue modulo p

0 , if p divides a

Here we summarize some of the key properties of the Legendre symbol.

12

Theorem 1.4.1. Let p and q be odd primes.

1. If a ≡ b (mod p), then (a|p) = (b|p).

2. For integers a and b, (ab|p) = (a|p)(b|p).

3. (a|p) ≡ a(p−1)/2 (mod p).

4. (Quadratic Reciprocity) (q|p) = (−1)(p−1)(q−1)/4(p|q).

For composite integers, it is not as easy to characterize the squares. However,

there is a useful generalization of the Legendre symbol that is used frequently in

primality testing. The Jacobi Symbol, (a|b), is an extension of the Legendre symbol,

which is defined for any odd integer b > 1 as follows.

Definition 1.4.2. Let a be an integer and let b be an odd positive integer with b > 1

where b =
∏k

i=1 pαi
i is the prime factorization of b. The Jacobi symbol, (a|b), is defined

as follows: (a

b

)
= (a|b) =

k∏
i=1

(
a

pi

)αi

.

When b is a prime the Jacobi symbol and Legendre symbol are the same. Unlike

the Legendre symbol, the Jacobi symbol does not characterize the squares. However,

they do share many properties as described below.

Theorem 1.4.2. Let b > 1 be a positive odd integer.

1. If a ≡ a′ (mod b), then (a|b) = (a′|b).

13

2. For integers a and a′, (aa′|p) = (a|b)(a′|b).

3. For an odd integer b′ > 1, (a|bb′) = (a|b)(a|b′).

4. (Quadratic Reciprocity) For a and b relatively prime positive odd integers,

(a|b) = (−1)(a−1)(b−1)/4(b|a).

It is important to note that the Jacobi symbol can be computed quickly in practice,

even for large integers. Probabilistic primality tests often call for the computation

of Jacobi symbols. When this is the case, we assume that the computation time is

negligible.

1.5 Lucas Sequences

Given integers P and Q, the Lucas sequences, Uk(P, Q) and Vk(P, Q), are defined by

the following recurrence relations with initial conditions:

Uk(P, Q) = PUk−1(P, Q)−QUk−2(P, Q), U0(P, Q) = 0, U1(P, Q) = 1

Vk(P, Q) = PVk−1(P, Q)−QVk−2(P, Q), V0(P, Q) = 2, V1(P, Q) = P.

Associated with the Lucas sequence is the characteristic polynomial x2 − Px +

Q. Let D = P 2 − 4Q denote the discriminant of this polynomial. We denote the

characteristic roots by α = P+
√

D
2

and β = P−
√

D
2

. Consequently, we have the following

properties.

14

Theorem 1.5.1. The values P , Q, D, α, and β described above satisfy

1. α + β = P .

2. αβ = Q.

3. α− β =
√

D.

4. (Binet Formulas) Uk(P, Q) = αk−βk

α−β
and Vk(P, Q) = αk + βk for k ≥ 0.

The special sequence Uk(1,−1) is called the Fibonacci sequence. This sequence

was first investigated by the thirteenth-century mathematician Leonardo da Pisa as a

model for population growth of rabbits. Various other mathematicians studied special

cases of Lucas sequences throughout the centuries. However, the general theory of

Lucas sequences was not developed until 1878. In this year, Eduard Lucas published

a long exposition [31] in Volume I of the American Journal of Mathematics on the

various properties of Lucas sequences along with their connections with trigonometry,

continued fractions, and primality tests. Since this time, Lucas sequences have become

a topic of great interest in number theory.

Many facts are known about these sequences. We mention only a few here. Specifi-

cally, we touch on the subject of Lucas sequence identities. Lucas sequences are highly

interconnected and satisfy many identities (enough to fill entire books). For our study,

it is only necessary to have a few of these identities at our disposal, see [49] for a more

extensive list. The next two theorems highlight the identities which we use the most.

15

For simplicity, we write Uk = Uk(P, Q) and Vk = Vk(P, Q).

Theorem 1.5.2. If Um and Vm represent the Lucas sequences as defined above, then

1. 2Uk+j = UkVj + VkUj for k, j ≥ 0.

2. 2Vk+j = VkVj + DUkUj for k, j ≥ 0.

3. 2QUk−j = UkVj − VkUj for k, j ≥ 0 and k ≥ j.

4. 2QVk−j = VkVj −DUkUj for k, j ≥ 0 and k ≥ j.

5. V2k = V 2
k − 2Qk for k ≥ 0.

We often take j = ±1 as a special case of Theorem 1.5.3. For this reason, we give

the following corollary.

Corollary 1.5.3. If ε = ±1, then

1. 2Q(1+ε)/2Uk−ε = UkP − εVk for k ≥ 1.

2. 2Q(1+ε)/2Vk−ε = VkP − εDUk for k ≥ 1.

The next theorem is a major tool in the creation of congruences which hold for

primes. We shall make extensive use of it, so we include a proof.

Theorem 1.5.4. If n is a positive integer, then

2n−1Un =
∑
i odd

(
n
i

)
P n−iD(i−1)/2 and 2n−1Vn =

∑
i even

(
n
i

)
P n−iDi/2.

16

Proof. Using the definition of the characteristic roots, the Binet formula gives Un =

αn−βn

α−β
= (P+

√
R)n−(P−

√
R)n

2n
√

D
. Applying the binomial theorem and collecting terms, we

obtain

2nUn =
1√
D

n∑
i=0

(
n
i

)
P n−i

(
(
√

D)i − (−
√

D)i
)

Note (
√

D)i − (−
√

D)i equals 0 when i is even. Hence, we obtain the first formula

by canceling one factor of
√

D and dividing by 2. The second formula is proved the

same way, starting from Vn = αn + βn.

Lucas sequence have found their way into primality testing due to their divisibility

properties. In Chapter 2, we discuss specific congruence properties of Lucas sequences

which always hold for primes and rarely hold for composites. When exploring divisi-

bility of Lucas sequence, we often use the rank of appearance.

Definition 1.5.1. For a positive integer n and integer parameters P and Q, the rank

of appearance of n is the least positive integer k such that n|Uk(P, Q). We denote

this value by ω(n; P, Q).

The rank of appearance is useful in proving theoretical results about divisibility

because of the following, see [49] for a proof.

Theorem 1.5.5. If Uk(P, Q) ≡ 0 (mod n), then ω(n; P, Q)|k.

From Carmichael’s Theorem, we have ak − 1 ≡ 0 (mod n) when k = λ(n). The

value λ(n) may not be the smallest such value, but it is the best we can prove in

17

general. For Lucas Sequences, we have results analogous to Euler’s and Carmichael’s

Theorems concerning divisibility of Uk. First, we need to define the Φ and Λ functions

for the Lucas sequence.

Definition 1.5.2. For a positive integer n =
∏k

i=1 pai
i and a positive integer D with

(D, n) = 1, define the Euler-Lucas Φ-function by

ΦD(n) =
k∏

i=1

pai−1
i (pi − (D|pi))

and the Carmichael-Lucas Λ-function by

ΛD(n) = LCM{pa1−1
1 (p1 − (D|p1)), ..., p

ak−1
k (pk − (D|pk))}.

With these definitions, we have the Euler-Lucas and Carmichael-Lucas Theorems.

A complete development and proof of these theorems can be found in [49].

Theorem 1.5.6. Euler-Lucas and Carmichael-Lucas Theorems.

If n is a positive integer and Uk = Uk(P, Q) has discriminant D with (D, n) = 1, then

UΛD(n) ≡ 0 (mod n) and

UΦD(n) ≡ 0 (mod n).

The previous two theorems combined give the following corollary.

Corollary 1.5.7. If n is a positive integer, then ω(n; P, Q)|ΛD(n) and, consequently,

ω(n; P, Q)|ΦD(n).

Note for prime values we have ω(pa; P, Q)|pa−1(p− (D|p)).

18

1.6 Computational Considerations

In the previous sections, we have described tools for primality testing which either

used (1) exponentiation of integers or (2) values of Lucas sequences. If these opera-

tions could not be done efficiently, then they would be useless in practice. However,

there are efficient, O(log(n)) operation, algorithms for computing (1) and (2).

The standard exponential method for integers is well-known and is accurately

called the method of successive squaring. For Lucas sequences, we use a similar idea.

In fact, by making use of the following theorem, we can use the same algorithm where

multiplication of integers is replace by multiplication of matrices.

Theorem 1.6.1. If P and Q are the parameters for the Lucas sequences Uk and Vk,

then

[
Un+1

Un

]
=

[
P −Q
1 0

]n [
1
0

]
and

[
Vn+1

Vn

]
=

[
P −Q
1 0

]n [
P
2

]
.

Although there are faster implementations for calculating values of the Lucas

sequences, fast exponentiation by successive squaring of a matrix is an efficient method

which is easy to implement on most mathematical software packages.

Exponentiation of integers and calculation of values of Lucas sequences are both

O(log(n)) operations. However, using optimal methods, calculation of values of Lucas

sequences takes about twice as much time as integer exponentiation.

19

1.7 Commutative Rings

Much of the theory concerning Lucas sequences is also true when P and Q are chosen

out of a commutative ring with identity. In Chapter 7, we investigate this idea in

general. We assume the reader has a basic knowledge of the definition of rings. Here

we recall some of the concepts in ring theory that are central to our study. As is

standard, we define the following notations.

Definition 1.7.1. If R is a commutative ring with identity, µ ∈ R and k is a non-

negative integer, then

• kµ = µ + µ + · · ·+ µ︸ ︷︷ ︸
k times

• µk = µ · µ · · ·µ︸ ︷︷ ︸
k times

.

For the study of Lucas sequences in primality testing, the essential property sat-

isfied by commutative rings with identity is the binomial theorem given below.

Theorem 1.7.1. If R is a commutative ring with identity, µ, ν ∈ R and n is a positive

integer, then

(µ + ν)n =
n∑

k=0

(
n
k

)
µkνn−k.

We also discuss finite fields as an important class of commutative rings with iden-

tity. For a prime p, the set {0, 1, 2, . . . , p− 1} with arithmetic modulo p is the finite

field denoted by Fp. This is the simplest type of finite field and is often used without

20

even the mention of the word field. The finite fields which we use in Chapter 7 have

pk elements for p a prime and k a positive integer. The remainder of this section dis-

cusses the creation and representation of finite fields with pk elements. If the prime p

is replaced by an arbitrary positive integer n in the following development, then we

are back in the setting of a commutative ring with identity.

Definition 1.7.2. Given a positive integer n, let f(x) be a polynomial in the ring

Zn[x] of degree k > 0. We define the following quotient ring notation Zn[x]/(f(x)) to

represent

{a0 + a1x + · · ·+ ak−1x
k−1| a0, a1, . . . , ak−1 ∈ Zn where k is the degree of f(x)}

where arithmetic is modulo f(x) and n. If n is a prime and f(x) is irreducible, then

Zn[x]/(f(x)) = Fn[x]/(f(x)) is a field with nk elements.

Quotient rings in general are not commonly discussed in the literature since they

fail to possess many of the useful properties of fields. Nonetheless, the definition for

the quotient ring here is valid. In [19], a brief discussion of this fact can be found in

the section concerning ideals and factor rings.

Most major computer algebra systems contain packages to implement the arith-

metic of the finite quotient rings described above. For ease of implementation, we have

found it convenient to use the following representation of the finite ring Zn[x]/(f(x)).

If we write f(x) = xd + fd−1x
d−1 + · · · + f1x + f0, then it is useful to consider the

21

companion matrix

X =


0 0 · · · 0 −f0

1 0 · · · 0 −f1

0 1 · · · 0 −f2
...

...
. . .

...
...

0 0 · · · 1 −fd−1

 .

Note that f(x) is the characteristic polynomial of X. Thus, by the Cayley-Hamilton

Theorem, f(X) = 0, i.e. Xd = −fd−1X
d−1 − · · · − f1X − f0I.

Using this matrix, we can do arithmetic in the finite ring using matrices modulo

n. We summarize this fact in the following theorem.

Theorem 1.7.2. The mapping a0+a1x+· · ·+an−1x
n−1 7→ a0I+a1X+· · ·+an−1X

n−1

is a ring isomorphism from Zn[x]/(f(x)) onto {a0I+a1X+· · ·+an−1X
n−1| a0, a1, . . . , an−1 ∈

Zn}, where the matrix arithmetic is modulo n.

While implementing finite rings using matrices may not be the fastest technique,

it allows for quick and easy programming. When running many primality tests with

varied methodologies this is a desirable trait. In addition, the matrix viewpoint of

finite rings eliminates the need for reduction modulo a polynomial.

22

Chapter 2

Classical Probable Primality Tests

Over the last several decades, the ability to find large primes quickly has become an

essential part of several cryptographic algorithms. As a result, many methods have

been proposed to solve this problem. Some methods are more than a century hold,

but have been re-energized by the need in cryptography and the speed of computers.

The majority of primality tests in use stem from Fermat’s Little Theorem. Here we

give an overview of these tests, how they work, and the current literature on this topic.

Then we will discuss classical tests based on Lucas sequences. In later chapters, we

will extend the theory of testing based on Lucas sequences.

2.1 Fermat Tests

We stated and proved Fermat’s Little Theorem in Theorem 1.3.1, but we restate it

below for convenience.

23

Theorem 2.1.1. Fermat’s Little Theorem.

If n is a prime and a is a positive integer with (a, n) = 1 , then an−1 ≡ 1 (mod n).

The converse of Fermat’s Little Theorem is false. For example, n = 341 = 11 · 31

is a composite and 2340 ≡ 1 (mod 341). In fact, 341 is the first composite integer

to satisfy this congruence (the next two are 561 and 645). Certainly without the

aid of a computer, we may have conjectured that the converse was true long before

we computed all the integers out to 341. However, the converse is not true and the

numbers occur far too frequently to be disregarded.

A pseudoprime to the base a (or psp(a)) is a composite integer n such that an−1 ≡

1 (mod n). In older publications, the term pseudoprimes is often synonymous with

the psp(2). We use the term broadly. The term pseudoprime in general will refer

to a composite integer which satisfies a given set of congruences with respect to

specific parameters. Here psp(a) refers to a composite integer satisfying Fermat’s

Little Theorem congruence with respect to a.

With any primality test it is useful to get some sort of count on the number of

parameters that yield a specific composite integer as a pseudoprime. For the primality

test based on Fermat’s Little Theorem, we have the following. (For a proof see [13])

Theorem 2.1.2. If n =
∏k

i=0 pαi
i is the prime factorization of the positive integer, n,

then the number of distinct bases a (mod n) for which n is a psp(a) is

k∏
i=0

(n− 1, pi − 1).

24

A logical idea would be to use more than one base, that is run the test with

a = 2, 3, 5, etc. Such attempts are foiled by the existence of positive integers n which

are pseudoprimes to every base satisfying (a, n) = 1. These pseudoprimes are called

Carmichael numbers and have been studied in detail, see [5], [44]. In fact, Carmichael

numbers have been completely characterized by their prime factorization [29].

Theorem 2.1.3. The positive integer n is a Carmichael number if and only if n is a

composite, square-free positive integer satisfying p− 1|n− 1 for every prime divisor p

of n.

In 1994, Alford, Granville, and Pomerance [5] proved that there are infinitely

many Carmichael numbers. This was a long standing question that was conjectured

in 1910 by Carmichael. Given k ≥ 3, it is still an open question as to whether there

are infinitely many Carmichael numbers having exactly k prime factors. It is not

even known if there exist infinitely many Carmichael numbers which are the product

of exactly three prime factors [49]. Several methods for constructing Carmichael

numbers are known, but, for many, it is not known if they can be infinitely extended.

See [44] for a relatively recent discussion on the construction of Carmichael numbers.

Slight modifications of the Fermat based test can eliminate the possibility of

Carmichael numbers. The two standard fixes are the Euler Probable Prime and

the Strong Probable Prime Tests. The Euler Probable Prime test uses the Euler

criterion given here.

25

Theorem 2.1.4. Euler Criterion.

If n is a prime and a is a positive integer such that (n, a) = 1, then

a(n−1)/2 ≡ (a|n) (mod n).

If n is a composite integer and (n, a) = 1 such that a(n−1)/2 ≡ (a|n) (mod n), then

we say n is an Euler pseudoprime with respect to a, epsp(a). The Strong Probable

Prime test uses the following theorem.

Theorem 2.1.5. Strong Criterion.

Let n be a prime and write n− 1 = 2sd where 2 - d. Let a be a positive integer such

that n - a. Then one of the following congruences holds

ad ≡ 1 (mod n) or

a2rd ≡ −1 (mod n), for some r, 0 ≤ r ≤ s.

If n is a composite integer and (n, a) = 1 such that the Strong Criterion is satisfied,

then we say n is a strong pseudoprime with respect to a, spsp(a). For a composite

integer n, it is known (often called the Rabin-Monier theorem) that the number

of bases a for which n is a spsp(a) and 0 < a < n with (a, n) = 1 is less than

φ(n)/4. Thus, for a composite integer n at most one quarter of the bases give n as a

strong pseudoprime. It is also known that this is a tight bound. That is, there exist

composite integers n that have exactly φ(n)/4 bases giving n as a strong pseudoprime.

26

It is not difficult to show that if n is a strong pseudoprime to the base a, then it

is an Euler pseudoprime to the base a. Thus, the strong test is in fact the best of

the above three, as the name suggests. Most probable prime tests implemented on

computers today are simply implementations of the strong probable prime test where

the test is run several times with different bases.

The most commonly implemented primality test is known as the Miller-Rabin

primality test. This test was developed and investigated in [34], [35], and [48]. Here

we give a brief description of this test. Given an integer n to test, an integer b1 is

chosen with 0 < b1 < n. If n satisfies the conclusions of Theorem 2.1.5 with respect to

b1, then another integer base b2 6= b1 is chosen. We continue using the Strong Probable

Prime Test for several bases, either randomly chosen or from a predetermined set of

bases. If the integer n passes the test for several bases, then we have high confidence

that n is a prime. Many implementations simply use the bases 2, 3, 5, 7, and 11.

Some use more prime bases.

The following theorem gives a theoretic count on the number of bases that are

necessary to give a deterministic test based on the Generalized Riemann Hypothesis

(GRH). We do not introduce the GRH here. N. Koblitz [29] gives a longer introduction

to this subject.

Theorem 2.1.6. If the GRH is true, and if n is a composite odd integer, then n fails

the Miller-Rabin test for at least one base b less than 2log2(n).

27

The Miller-Rabin test is widely accepted as an effective form of primality testing.

However, the theory still has many loose ends. In [6], [9], [10], and [28] methods

are given for constructing composite integers that are strong pseudoprimes for many

bases. Generally it is possible to construct composite integers which pass the Miller-

Rabin for any given fixed set of bases [6]. In particular, [9] gives a composite which

is a strong pseudoprimes for all forty-six prime bases up to 200.

Another aspect of research has been the analytical investigation of the distribution

of pseudoprimes. Define θa(x) to be the number of pseudoprimes to the base a not

exceeding x. Note that we are not discussing strong pseudoprimes. C. Pomerance

[45], [46], improving on the results of [32] and [17], proved the following bounds

exp{(log x)15/37} ≤ θa(x) ≤ x · exp{−log x log log log x/log log x}.

Similar bounds are known for Euler pseudoprimes and Strong pseudoprimes.

As the literature shows, Fermat based testing is effective, but has several theoret-

ical flaws. The introduction of Lucas sequences in primality testing seems to open up

more directions in primality testing research. In addition, numerical evidence seems

to suggest that Lucas sequence based testing is more effective in identifying compos-

ites. For the remainder of this text we view primality testing through the eyes of

Lucas sequences.

28

2.2 Lucas Sequence Tests

Edouard Lucas was the first to suggest using the recurrence sequences which now

bear his name to test integers for primality [31]. He was interested in deterministic

tests that worked for specific classes of integers. However, probable primality tests

based on Lucas sequences was not a major research area until the late 1970’s.

In 1980, Baillie and Wagstaff gave a thorough treatment of the use of Lucas

sequences in primality testing [13]. They specifically examined the following four

congruences.

Theorem 2.2.1. Lucas Criteria.

Let n be an odd prime and P and Q be integers. If (n,Q) = 1, then

1. Un−(D|n)(P, Q) ≡ 0 (mod n).

2. Vn−(D|n)(P, Q) ≡ 2Q(1−(D|n))/2 (mod n).

3. Un(P, Q) ≡ (D|n) (mod n).

4. Vn(P, Q) ≡ P (mod n).

A composite integer n which satisfies congruence i in the theorem above is called

a Lucas pseudoprime with respect to the parameters P and Q and congruence i (or

lpspi(P, Q)) for i = 1, 2, 3, or 4. Most results about Lucas pseudoprimes refer to

Congruence 1 which seems to be more approachable theoretically. For this reason, we

29

define lpsp(P, Q) = lpsp1(P, Q). However, numerical evidence seems to suggest that

the other congruences are much better at detecting composite numbers in practice.

We will summarize the results known about lpsp(P, Q).

Lucas pseudoprimes were studied and tabulated by Pomerance, Selfridge and

Wagstaff [46], as well as Baillie and Wagstaff [13]. Various methods for choosing

parameters have been investigated. Theoretically, few explanations are known for the

reason that one method of choosing parameters is better than another, but extensive

numerical data suggests that certain methods allow very few pseudoprimes.

Given a composite integer n, there is some useful information known about the

number of parameters that give n as a pseudoprime. For a fixed D value, the number

of parameter pairs (P, Q) which lead to a pseudoprime for a given composite n is

characterized by the following formula which is similar to Theorem 2.1.2. See [13] for

a proof.

Theorem 2.2.2. Let D be a fixed positive integer and let n =
∏k

i=1 pαi
i be an odd

positive integer with (D, n) = 1. Then the number of distinct values of P modulo n,

for which there is a Q such that P 2−4Q ≡ D (mod n) and Un−(D|n)(P, Q) ≡ 0 (mod n)

is
k∏

i=1

[(n− (D|n), pi − (D|pi))− 1].

It should be noted that if we also require (2DPQ, n) = 1, then we can prove

30

that the formula becomes
∏k

i=1 [(n− (D|n), pi − (D|pi))− 2]. In practical implemen-

tations, if the chosen parameters are not relatively prime to n, then we would imme-

diately discover that n is composite and there would be no need to test. Thus, this

seems to be a more appropriate count. To my knowledge, this fact is not noted in

the literature.

An odd integer n is a Carmichael-Lucas number associated with D if it is a

lpsp(P, Q) for all integers P and Q such that (P, Q) = 1, P 2−4Q = D, and (n, QD) =

1. The concept of Carmichael-Lucas numbers are studied, in [58], as an analog to

the Carmichael numbers of the standard Fermat Test. As with Carmichael numbers,

these numbers possess specific prime factorizations.

Theorem 2.2.3. If n is a Carmichael-Lucas number associated with D, then

(p− (D|p))|(n− (D|n)) for every prime divisor p of n.

The questions of the existence of an infinite number of Carmichael-Lucas numbers

with respect to a fixed D is still an open question. It should be noted that if n is a

Carmichael-Lucas number with respect to D = 1, then it is a Carmichael number.

Thus, any result in this direction would be a generalization of the result concerning

Carmichael numbers in [5] (which in itself took 84 years to prove).

As with the Fermat based tests, the Lucas sequence congruences of Theorem 2.2.1

have been improved to create Euler Lucas and Strong Lucas Tests. We summarize

these tests here.

31

Theorem 2.2.4. Euler Lucas Criterion.

Let P and Q be given and D = P 2− 4Q. If n is an odd prime and (n, QD) = 1, then

U(n−(D|n))/2 ≡ 0 (mod n) when (Q|n) = 1 and

V(n−(D|n))/2 ≡ 0 (mod n) when (Q|n) = −1.

If n is a composite integer with integers P and Q satisfying the conditions of the

Euler Lucas Criterion, then we say n is an Euler Lucas pseudoprime with respect

to (P, Q), elpsp(P, Q). The Strong Lucas Probable Prime test uses the following

theorem.

Theorem 2.2.5. Strong Lucas Criterion.

If n is an odd prime with (n, QD) = 1 and n− (D|n) = 2sd with d odd, then

Ud ≡ 0 (mod n) or

V2rd ≡ 0 (mod n) for some r, 0 ≤ r < s.

As with Fermat based tests, if n is a Strong Lucas pseudoprime, then it is also

an Euler Lucas pseudoprime. If n is a composite integer with integers P and Q

satisfying the conditions of the Strong Lucas Criterion, then we say n is an Strong

Lucas pseudoprime with respect to (P, Q), slpsp(P, Q). For a fixed composite integer

n and an integer D with (D, n) = 1, F. Arnault [8] proved that the number of bases

(P, Q) for which 0 ≤ P, Q < n, P 2 − 4Q ≡ D (mod n), (Q,n) = 1 and n is a

32

slpsp(P, Q) is less than 4
15

n except if n is the product of twin primes. He also proved

that the number of parameters is less than n/2 in any case. This is actual not as good

a bound as the case of the Fermat based probable prime test. However, numerical

evidence suggests that Lucas sequence based tests are better. This is the first of many

instances where the results proved in theory seem to be inadequate compared to the

results seen in experimentation.

Towards this end, we believe that the generalizations given in later chapters will

allow for the proving of better bounds. In particular, we take the first step towards

such bounds in Chapter 3. We actually prove a bound on the parameters of φ(n)/2

for a congruence analogous to Congruence 1. Thus, we get a better bound before we

have even used any sort of strong primality testing.

Concerning the distribution of Lucas pseudoprimes, much less is known. Define

ϑP,Q(x) to be the number of lpsp(P, Q)’s not exceeding x. Note that we are only

discussing Congruence 1. Baillie and Wagstaff [13] and Erdös, Kiss and Sárközy [18]

give the following upper and lower bounds, respectively. For x sufficiently large, there

exist positive constants c1 and c2 such that

exp{(log x)c1} ≤ ϑP,Q(x) ≤ x · exp{−c2(log x log log x)1/2}.

Very little has been proved about the Congruences 2, 3, and 4 of the Lucas Criteria.

In this work, we give these congruences more attention. Numerically we show that

generalizations of these congruences are quite good at identifying composites.

33

It should be noted that several individuals have investigated the idea of using a

Strong Lucas based test and then using a Strong Fermat based test. For appropriate

choices in parameters, there are no known examples of pseudoprimes that satisfy both

of these tests. However, proving that no such number exist has been difficult. We

hope that the extensions made in this work will aid in the exploration of these open

questions.

2.3 Other Probabilistic Primality Tests

In subsequent chapters, we investigate and extend primality tests based on Lucas

sequences. By studying such tests, we will be exposed to the types of problems often

encountered in the theory of pseudoprimes. Here we give a brief overview of other

extensions in primality testing which we will not be discussing.

Lucas sequences are second order linear recurrence sequences with specific initial

conditions. It seems natural to ask if recurrence sequences of higher order may be

effective in primality testing. The articles [1], [2], [11] and [30] study tests based

on specific third order recurrence sequences. These sequences are a generalization

of the so-called Perrin sequence. It is known that certain values of this sequence

satisfy special congruences relations modulo a prime. Although these tests are not

computationally as efficient, experimental evidence suggests they provide extremely

reliable tests. However, it has been shown that their exists an infinite number of

pseudoprimes with respect to the Perrin sequence [24]. Similar primality tests for

34

more general higher order recurrence sequences have been investigated by Gurak [26].

All the tests described so far involve computations with integers. The restriction

to computation with integers is not necessary and the subject of cryptography, and

specifically primality testing, has benefited from computations using finite fields and

rational points on elliptic curves.

J. Grantham [22], [23] makes extensive use of finite fields to give a general testing

method called Frobenius Primality Test. Computations in finite fields can be more

cumbersome, but Grantham offers effective tests which are provably stronger than

many of the known primality testing algorithms. His parameters are polynomials

in a finite field (a finite ring if n is a composite). In particular, he proves that one

such test will allow a composite integer n to pass for less than 1/7710 of the possible

polynomial parameters of a given type. We will be using finite fields in a different

way in Chapter 7. The key disadvantage in any such method is the computation. It

seems desirable to confine the computations to integers when possible.

Rational points on elliptic curves are most well-known for their use as tools in

primality proving and integer factoring. Many of the fastest deterministic algorithms

for both these questions involve elliptic curves. Probabilistic primality testing on

elliptic curves is a relatively new topic with a growing wealth of research. Using elliptic

curves to give probabilistic primality tests and the distribution of pseudoprimes for

such tests is discussed in [20], [21].

35

Chapter 3

Lehmer Pseudoprimes

D.H. Lehmer [33] investigated the properties of Lucas sequences with the parameter

P =
√

R for some integer R. We explore these Lehmer sequences as tools in primality

testing. For an odd composite integer n, we give a formula for the number of para-

meters giving n as a pseudoprime and an upper bound on this formula. We prove

results on connections between different congruences for these sequences, and give ex-

tensive numerical data concerning the number of pseudoprimes for various methods

of choosing parameters. We note that Lehmer sequences allow for a broader range of

parameter choices and a stronger underlying theory than standard Lucas sequences

without any increase in computational time.

3.1 Introduction

As noted in previous chapters, some of the most effective probable prime tests are

based on congruence relations for second order linear recurrence sequences, also called

Lucas sequences. For convenience we recall the definition of Lucas sequences of the

36

first kind as defined in Chapter 2:

U0 = 0, U1 = 1 and Uk = PUk−1 −QUk−2 for k ≥ 2,

where P and Q are integer parameters. Lucas sequences of the second kind, Vk, satisfy

the same recurrence but have initial values V0 = 2 and V1 = P . The discriminant is

D = P 2 − 4Q.

In [33], Lehmer studied extended Lucas sequences where the integer parameter

P is replaced by the parameter
√

R, for an integer R. The discriminant for such

sequences will be denoted by D = R − 4Q. Lehmer proved that these extended

sequences, or Lehmer sequences, possess properties similar to the ordinary sequences

with respect to rank of appearance. In addition, Lehmer sequences satisfy all of the

same identities as given in Section 1.5 for Lucas sequences.

Thus, formally we define Uk = Uk(
√

R,Q) and Vk = Vk(
√

R,D) where R,Q ∈ Z,

by:

U0 = 0, U1 = 1, Uk =
√

RUk−1 −QUk−2 for k ≥ 2

V0 = 2, V1 =
√

R, Vk =
√

RVk−1 −QVk−2 for k ≥ 2.

These sequences satisfy the Binet formulas:

Uk =
αk − βk

α− β
and Vk = αk + βk

where α, β = (
√

R±
√

D)/2.

37

In particular, we shall often choose R to be a non-square, so Uk ∈ Z if and only

if 2 - k, (k > 0), and Vk ∈ Z if and only if 2|k.

We view the symbol
√

R in the following way. We never evaluate
√

R, it formally

represents an object that is equal to R when it is squared. In addition, we define

a
√

R + b ≡ c
√

R + d (mod n) if a ≡ c (mod n) and b ≡ d (mod n).

The key advantages of Lehmer sequences are two-fold. First, the Binet formulas,

(
√

R ±
√

D)/2, have symmetry in R and D, which allows for ease in comparison of

various congruences. Secondly, since D = R − 4Q the values for R, D, and Q can

be chosen in any congruence class modulo 4. In the case D = P 2 − 4Q, we must

have D ≡ 0 or 1 (mod 4). Thus, we get a wider variety in parameter choices and a

sequence which is easier to analyze theoretically. We further clarify these advantages

as the chapter proceeds.

First we will derive congruence relations for these sequences similar to those of

Theorem 2.2.1, which concerned standard Lucas sequences. In fact, by making the

substitution R = P 2, our result is a direct generalization of Theorem 2.2.1. Using the

Binet formulas, if n is an odd prime, one can obtain relations for Un−1, Vn−1, Un, Vn,

Un+1, etc.

Perhaps the easiest way to generate any such formula is to compute Un and Vn

and then use the well known identities given in Theorem 1.5.2. We use this technique

to prove the following congruence relations which are central to much of this study.

38

Theorem 3.1.1. Lehmer Criteria.

If n is an odd prime and (RQ, n) = 1, then

1. Un−(RD|n)(
√

R,Q) ≡ 0 (mod n).

2. Vn−(RD|n)(
√

R,Q) ≡ 2(R|n)Q(1−(RD|n))/2 (mod n).

3. Un(
√

R, Q) ≡ (D|n) (mod n).

4. Vn(
√

R,Q) ≡ (R|n)
√

R (mod n).

Proof. For any integer k, from Theorem 1.5.4, we have the following identities:

2k−1Uk =
∑
i odd

(
k
i

)
R(k−i)/2D(i−1)/2

2k−1Vk =
∑

i even

(
n
i

)
R(k−i)/2Di/2.

Using the characterization of primes via binomial coefficients (Theorem 1.2.1), we

replace k by n in the above sums and eliminate terms congruent to zero modulo n.

This yields Congruences 3 and 4 of the theorem.

Un ≡ 2n−1Un ≡ D(n−1)/2 ≡ (D|n) (mod n)

Vn ≡ 2n−1Vn ≡ Rn/2 ≡ R(n−1)/2
√

R ≡ (R|n)
√

R (mod n).

Recalling the identities of Theorem 1.5.2

2Un+1 = V1Un + U1Vn, 2Vn+1 = V1Vn + DU1Un

39

2QUn−1 = V1Un − U1Vn, 2QVn−1 = V1Vn −DU1Un

and combining them with congruences 3 and 4 we obtain

2Un+1 ≡ [(D|n) + (R|n)]
√

R, 2Vn+1 ≡ [(D|n) + (R|n)]R− 4(D|n)Q (mod n)

2QUn−1 ≡ [(D|n)− (R|n)]
√

R, 2QVn−1 ≡ [(D|n)− (R|n)]R + 4(D|n)Q (mod n).

By examining the separate cases it is not difficult to see that

Un−(RD|n) ≡ 0 (mod n) and

Vn−(RD|n) ≡ 2(R|n)Q(1−(RD|n))/2 (mod n).

A composite integer n which satisfies congruence i in the theorem above is called

a Lehmer pseudoprime with respect to the parameters R and Q and congruence i

(or lehpspi(R,Q)) for i = 1, 2, 3, or 4. Before using these congruences in primality

testing, it is useful in practice to discuss how the terms of this sequence can be

efficiently computed. Even though not all of the terms are integers, we can use

auxiliary integer sequences to compute the terms of Uk and Vk.

Definition 3.1.1. Define the auxiliary sequences Wk, Xk, Yk, and Zk as follows:

Wk = U2k/
√

R, Xk = U2k+1, Yk = V2k, and Zk = V2k+1/
√

R.

Given the definitions above we have the following properties:

40

• Wk = (R− 2Q)Wk−1 −Q2Wk−2, W0 = 0, W1 = 1.

• Xk = (R− 2Q)Xk−1 −Q2Xk−2, X0 = 1, X1 = R−Q.

• Yk = (R− 2Q)Yk−1 −Q2Yk−2, Y0 = 2, Y1 = R− 2Q.

• Zk = (R− 2Q)Zk−1 −Q2Zk−2, Z0 = 1, Z1 = R− 3Q.

Using successive squaring of matrices as discussed in Section 1.6, sequences of

this type can be computed in O(log(n)) operations. To test the congruences in the

Lehmer criteria we use the following corollary.

Corollary 3.1.2. Let Wk, Yk, Xk, and Zk be defined as above. If n is an odd prime

and (RQ, n) = 1, then

1. W(n−(RD|n))/2 ≡ 0 (mod n).

2. X(n−(RD|n))/2 ≡ 2(R|n)Q(1−(RD|n))/2 (mod n).

3. Y(n−1)/2 ≡ (D|n) (mod n).

4. Z(n−1)/2 ≡ (R|n)
√

R (mod n).

As with any of the primality tests so far it is important to note that the relations

above are not sufficient conditions for n being prime.

Various results are known about Lehmer pseudoprimes and can be found in [51],

[52], [53], [54], and [59]. In [54], Rotkiewicz and Wasén investigate composite numbers

41

satisfying a related congruence V 1
2
(n−(RD|n)) ≡ 0 (mod n). In [51] and [52], Rotkiewicz

studied Euler Lehmer Pseudoprimes and Strong Lehmer Pseudoprimes which we will

discuss in Chapter 4. These studies focus mainly on the number of pseudoprimes

in a designated arithmetic progression. In essence, the major results on Lehmer

pseudoprimes all are concerned with proving that there are infinitely many Lehmer

pseudoprimes and Strong Lehmer pseudoprimes under various conditions. These

results are only concerned with Congruence 1 of the Lehmer Criteria. In fact, we

have yet to find any literature that discusses Congruences 2, 3, and 4 of the Lehmer

Criteria.

In this chapter, we add to the theory by:

(1) Counting the parameters that yield a pseudoprime for Congruence 1

and bounding this count.

(2) Articulating connections between the various congruences.

(3) Providing extensive numerical data illustrating the effectiveness of Lehmer

sequences in primality testing.

We make the case that using Lehmer sequences over standard Lucas sequences

allows for a more robust set of probable primality tests.

42

3.2 A Formula for the Number of Parameters Yield-

ing a Pseudoprime

If n is composite, the effectiveness of a test detecting this fact depends on the number

of parameters for which the congruence holds versus the number for which it fails.

Suppose n =
∏

i p
ai
i is odd, and D is chosen such that (D, n) = 1. After Theorem

2.2.2, we stated that the number of distinct values of P (mod n) for which (P, n) = 1

and Un−(D|n)(P, Q) ≡ 0 (mod n) is
∏

i [(n− (D|n), pi − (D|pi)))− 2]. The situation

for Un−(RD|n)(
√

R,Q) is more complicated because of the dependence on the value of

(RD|n), not just (D|n).

We will denote the rank of Uk(A, B) modulo m, that is the lease positive k such

that m|Uk, by ω(m; A, B).

Lemma 3.2.1. If p is an odd prime, (R(R−Q), p) = 1, and 0 < c < p, then

ω(pa;
√

R,Q) = ω(pa; cR, c2QR).

Proof. Let α1, β1 = 1
2
(
√

R ±
√

R− 4Q) so that Uk(
√

R,Q) = (αk
1 − βk

1)/(α1 − β1).

Then Uk(cR, c2QR) = (αk
2 − βk

2)/(α2− β2) where α2, β2 = 1
2
(cR±

√
c2R + 4c2QR) =

c
√

Rα1, c
√

Rβ1.

Then pa|Uk(
√

R,Q) if and only if pa|(αk
1 − βk

1) if and only if pa|(αk
2 − βk

2) if and

only if pa|Uk(cR, c2QR).

Note that the discriminants of the two sequences in Lemmas 3.2.1 are D1 = R−4Q

43

and D2 = c2R2 − 4c2QR = c2RD1. So (D2|p) = (c2RD1|p) = (R|p)(D1|p).

Lemma 3.2.2. If p is an odd prime, a is a positive integer and D is fixed such that

(D, p) = 1, then for 0 < R < pa, (R − D, p) = 1 and 0 < c < pa, (p, cR) = 1,

the sequences Uk(cR, c2QR) represent uniquely, modulo pa, every sequence Uk(A, B)

where (AB(A2 − 4B), p) = 1.

Proof. Given such integers A and B, we need to show that there exists a unique

solution for c (mod pa) of the congruence system below.

cR ≡ A (mod pa)

c2QR ≡ B (mod pa)

Taking the second congruence and dividing by the first gives cQ ≡ B/A (mod pa).

Hence, A− cD ≡ cR− cD ≡ 4cQ ≡ 4B/A (mod pa) and so

c ≡ A2 − 4B

AD
(mod pa) and

R ≡ A

c
≡ A2D

A2 − 4B
(mod pa).

For a fixed D value we will now count the number of distinct values of R modulo

p such that ω(p;
√

R,Q) = d. The cases (R|p) = +1 and (R|p) = −1 are essentially

the same, so suppose (R|p) = +1. Let k be the number of such R. The one to

p− 1 correspondence between U(
√

R,Q) and U(cR, c2RQ), 1 ≤ c ≤ p− 1, in Lemma

44

3.2.2, produces k(p − 1) sequences which constitute all U(A, B) with rank d and all

discriminants D2 = A2 − 4B such that (D2|p) = (D|p) = +1. There are (p − 1)/2

such D2.

By Theorem 2 of [58], there are φ(d) such sequences U(A, B) with a given D2,

and so φ(d)(p− 1)/2 sequences in all. Hence, k(p− 1) = φ(d)(p− 1)/2 or k = φ(d)/2,

independent of D.

Thus, we have proved

Lemma 3.2.3. If p is an odd prime, ε = ±1, and D is fixed with (D, p) = 1, then the

number of distinct R values modulo p such that ω(p;
√

R,Q) = d, where d|p− (RD|p)

with d > 2, and (R|p) = ε is φ(d)/2.

Now we have the tools to prove our main result concerning the number of para-

meters yielding a pseudoprime for a particular positive odd composite integer. Note

Q is uniquely determined by R and D.

Theorem 3.2.4. Parameter Count for lehpsp1(R,Q).

If n =
∏k

i=1 pai
i is odd and D is fixed with (D, n) = 1, then the number of distinct R

and Q values modulo n satisfying R−4Q ≡ D (mod n) for which Un−(RD|n)(
√

R,Q) ≡

0 (mod n) and

1. (R|n) = +1 is
∑∏k

i=1

[
1
2
(n− (D|n), pi − xi(D|pi))− 1

]
.

The sum is over all (x1, . . . , xk) ∈ {−1, +1}k such that
∏k

i=1 xai
i = +1.

45

2. (R|n) = −1 is
∑∏k

i=1

[
1
2
(n + (D|n), pi − xi(D|pi)))− 1

]
.

The sum is over all (x1, . . . , xk) ∈ {−1, +1}k such that
∏k

i=1 xai
i = −1.

3. Both cases together with the definition h(x) =
∏k

i=1 xai
i give

∑
x∈{−1,+1}k

k∏
i=1

[
1

2
(n− h(x)(D|n), pi − xi(D|pi))− 1

]
.

Proof. We will treat the case (R|n) = +1. The case (R|n) = −1 is essentially

identical. Since (R|n) =
∏k

i=1(R|pi)
ai = +1 consider a specific choice of (x1, . . . , xk) ∈

{−1, +1}k such that
∏k

i=1 xai
i = +1 and (R|pi) = xi.

Note that Un−(RD|n)(
√

R,Q) ≡ Un−(D|n)(
√

R,Q) ≡ 0 (mod n) if and only if

Un−(D|n)(
√

R,Q) ≡ 0 (mod pai
i) for 0 < i ≤ k if and only if d = ω(pai

i ;
√

R,Q) divides

n− h(x)(D|n) = n− (D|n). By Theorems 1.6 and 1.9 of [33], d = pb
iω(pi;

√
R, Q) for

some b ≥ 0, which in turn divides pb
i(pi − (RD|pi)) = pb

i(pi − xi(D|pi)).

Now (n− (D|n), pi) = 1 so d divides (n− (D|n), pi − xi(D|pi)).

Let δi = (n − (D|n), pi − xi(D|pi)). Since Un(
√

R,Q) cannot have period 1 or 2

when (RD,n) = 1, summing over all such d > 2 yields

∑
d|δi

d > 2

φ(d)/2 =
1

2
(n− (D|n), pi − xi(D|pi))− 1.

To count the number of R values for which Un−(D|n)(
√

R, Q) ≡ 0 (mod n) with

a specific choice of (x1, . . . , xk), by the Chinese Remainder Theorem, we take the

product of the above formula over these xi. Finally, summing over all the possible

(x1, . . . , xk) such that
∏k

i=1 xai
i = +1, we get the desired result.

46

Of the four gcd quantities (n ± 1, p ± 1) three are divisible by 2, one is divisible

by 2a for a ≥ 2 and one is divisible by 3b for some b ≥ 1. There may or may not be

divisibility by primes greater than 3.

For ordinary Lucas sequences, from Theorem 2.2.2, we see that the number of

parameters P producing a pseudoprime depends on only one of these four values

for each p|n. We do not know whether it will be the largest of these values or not.

However, the estimate in Theorem 3.2.4 uses all four of these numbers. The number

of parameters involves more of an average of these gcd’s. This fact will allow for a

better bound on the number of ‘bad’ parameters.

As mentioned earlier, one benefit of using Lehmer sequences is greater freedom

in choosing parameters. Now, R and D can be chosen arbitrarily in any residue

class modulo 4. Also, we can choose (R|n) and (D|n) to have any desired ±1 values.

Examining the number of pseudoprimes for various choices of both the parameters

and the four congruence relations from Theorem 3.1.1 yields interesting information

about how to create very good prime testing methods. Note that these tests can be

applied using the auxiliary integer sequences mentioned above and so the computa-

tional complexity is essentially the same as previous Lucas testing methods.

Although it is the easiest to analyze, the Congruence 1 used in the preceding

theorem is not, in practice, as strong at detecting composite numbers as the other

three congruences in Theorem 3.1.1. In the final section of this chapter, we will

47

numerically compare the various congruences and illustrate this fact. But first, we

get a bound for the number of ‘bad’ parameters for a composite integer n and we

explore the relationships between the four congruences.

3.3 A Bound on the Number of Parameters Yield-

ing a Pseudoprime

We now use the formulas from the preceding section to get a rough bound on the

number of parameters yielding a pseudoprime for a fixed D value. Thus, running the

test several times with different parameter sets will give a high probability of success

since it would be unlikely to choose a ‘bad’ parameter several times in a row.

Definition 3.3.1. For an odd composite integer, n, and a fixed integer D with

(D, n) = 1, we define ΨD(n) to be the number of distinct R and Q values modulo

n satisfying R − 4Q ≡ D (mod n) such that Un−(RD|n)(
√

R,Q) ≡ 0 (mod n) and

(R, n) = 1.

If the prime factors of n are known, then ΨD(n) is precisely formula 3 of Theorem

3.2.4. In primality testing we are rarely in possession of the prime factors of the

integer n we are testing. Here we give a bound on ΨD(n) in terms of n, but first we

need a lemma concerning gcd values.

Lemma 3.3.1. If n is an odd integer, k is a positive integer and ε = ±1, then

(n− 1, k − ε) + (n + 1, k − ε) ≤ 2 + k − ε

48

Proof. The only common factor of n−1 and n+1 is 2. Thus, (n−1, k−ε)(n+1, k−ε) ≤

2(k − ε) and so (n + 1, k − ε) ≤ 2(k−ε)
(n−1,k−ε)

. Consider the function f(x) = x + 2(k−ε)
x

with domain [2, k− ε]. Taking two derivatives on f(x) easily shows that it is concave

up. Therefore, the maximum is either at x = 2 or x = k − ε. Both give the same

maximum value of f(x) as 2 + k − ε.

Now we have the tools to prove the following bound.

Theorem 3.3.2. Parameter Bound on lehpsp1(R,Q).

If n is an odd composite integer that is not a perfect square, then

ΨD(n) <
φ(n)

2
.

Proof. Write n = p2a1+1
1 . . . p2ar+1

r p
2ar+1

r+1 . . . p2ak
k . We simplify the formula from Theo-

rem 3.2.4 by factoring out the terms involving p1.

Note that (n± (D|n), pi − xi(D|pi))− 2 ≤ pi − 1.

ΨD(n) =
1

2k

∑
x∈{−1,+1}k

k∏
i=1

[(n− h(x)(D|n), pi − xi(D|pi))− 2]

=
1

2k

∑
x∈{−1,+1}k

[(n−h(x)(D|n), p1−x1(D|p1))−2]
k∏

i=2

[(n− h(x)(D|n), pi − xi(D|pi))− 2]

<
1

2k

∑
x∈{−1,+1}k

[(n− h(x)(D|n), p1 − x1(D|p1))− 2]
k∏

i=2

(pi − 1)

=
1

2k

k∏
i=2

(pi − 1)
∑

x∈{−1,+1}k

[(n− h(x)(D|n), p1 − x1(D|p1))− 2].

49

Let ε = ±1 and δ = ±1 and notice that the terms in the sum break into the four

cases h(x)(D|n) = ε and x1(D|p1) = δ. It is easily verified that a fixed choice of ε and

δ corresponds to exactly 2k−2 elements x ∈ {−1, +1}k. Breaking up the sum into the

four cases and using Lemma 3.3.1 yields the following upper bound for ΨD(n):

1

2k

[
k∏

i=2

(pi − 1)

]
2k−2[(n+1, p1−1)+(n−1, p1−1)+(n+1, p1+1)+(n−1, p1+1)−8]

≤ 1

4

[
k∏

i=2

(pi − 1)

]
(2p1 − 4) <

φ(n)

2
.

If n is a perfect square, then note that the parameter bound in Theorem 3.2.4

only depends on the prime factors of n and not on the square of such factors. Thus,

in this case we actually get a much better bound than φ(n)
2

. Therefore, Theorem 3.3.2

actually gives a bound for the worst case.

Hence, for a fixed D value and an odd composite integer, n, the congruence

Un−(RD|n)(
√

R,Q) ≡ 0 (mod n) is satisfied by at most half of the choices for R. This

is a very rough bound, but it shows that one application of this test is accurate at least

fifty percent of the time. Applying the test with k different random values of R, the

chance that n passes the test each time is 1/2k. In Chapter 2, we noted that [8] proves

that the number of Strong Lehmer pseudoprimes is less than n/2 in general. Using

Lehmer sequences, Theorem 3.3.2 shows that this bound can be attained without

appealing to strong versions of the congruences.

50

It should be re-iterated that numerically this congruence appears to be the worst

of the four in accuracy of identifying composites. In the following section we compare

the relationships between the four congruences given in Theorem 3.1.1.

3.4 Relations Among The Tests

Here we explore the four congruences of Theorem 3.1.1 more deeply to give some in-

formation about their relation to each other. We have previously defined the notation

lehpspi(R,Q), but in the following section we are more interested in the parameters R

and D due to their symmetry in the Binet formulas. Since Q = R−D
4

, the parameters

R and D uniquely determine Q. Thus, defining the sequence in terms of R and D is

equivalent. We extend the previously defined notation to include all the parameters

simply to allow for ease in comparison of these parameters.

Definition 3.4.1. For an odd composite integer, n, we say n is a Lehmer pseudoprime

for congruence i with parameters R, D, and Q, or simply n is a lehpspi(R,Q,D), if

n satisfies congruence i of Theorem 3.1.1 for i = 1, 2, 3, or 4 and Q = R−D
4

.

Note lehpspi(R,Q,D) = lehpspi(R,Q) = lehpspi(R, R−D
4

), depending on whether

we know R and Q, or R and D. In addition, we will use the notation Uk

√
R,Q,D

when we are interested in explicitly expressing the parameter D as well. In each of

these instances, the notation is only defined for parameters satisfying D = R− 4Q.

We investigate the relationships of the congruences by examining the characteristic

51

roots of the Lehmer sequences. The characteristic roots of the Lehmer sequences

have a nice symmetry in the quantities R and D. This symmetry makes connections

between congruences more transparent than in the case of standard Lucas sequences.

We further exploit these properties in Chapter 6.

Theorem 3.4.1. Parameter Reciprocity of Congruences 1 and 2.

If n is an odd composite integer, then

i. n is a lehpsp1(R,Q,D) if and only if n is a lehpsp1(D,−Q,R).

ii. n is a lehpsp2(R,Q,D) if and only if n is a lehpsp2(D,−Q,R).

Proof. We prove the first statement only, the second is proved in a similar way. Let

α, β =
√

R±
√

D
2

be the characteristic roots of Uk(
√

R, Q,D). If α̂ and β̂ are the

characteristic roots of Uk(
√

D,−Q, R), then α̂ = α and β̂ = −β.

Since Uk(
√

R,Q,D) = αk−βk
√

D
, we have n is a lehpsp1(R,Q,D) if and only if αn−(RD|n) ≡

βn−(RD|n) (mod n) if and only if α̂n−(DR|n) ≡ β̂n−(DR|n) (mod n) if and only if

n is a lehpsp1(D,−Q,R).

Notice that the statements in the theorem above are only equivalent because

n− (RD|n) is even. In Congruences 3 and 4 the power of the characteristic roots is

odd giving a different scenario. The following theorem illustrates that Congruences

3 and 4 are interconnected.

52

Theorem 3.4.2. Parameter Bi-Reciprocity Between Congruences 3 and 4.

If n is an odd composite integer, then n is a lehpsp3(R,Q,D) if and only if n is a

lehpsp4(D,−Q,R).

Proof. Let α, β =
√

R±
√

D
2

be the characteristic roots of Uk(
√

R,Q,D). If α̂ and β̂

are the characteristic roots of Vk(
√

D,−Q,R), then α̂ = α and β̂ = −β. Thus, we

have n is a lehpsp3(R,Q,D) if and only if αn−βn
√

D
≡ (D|n) (mod n) if and only if

α̂n + β̂n ≡ (D|n)
√

D (mod n) if and only if n is a lehpsp4(D,−Q,R).

If R and D are valid parameters, then D and R are valid parameters. For a given

odd composite integer n, we can use Theorem 3.4.2 to conclude that there will be

the same number of parameters that will give n as a lehpsp3 and a lehpsp4. Roughly

speaking, Congruences 3 and 4 are equally good tests.

Theorem 3.4.1 does not let us make similar connections about Congruences 1 and

2. These congruences appear not to be related. The data will suggest that Congruence

2 is often the best while Congruence 1 is the worst. We can give at least a partial

explanation of why Congruence 1 seems to be the least effective test.

Theorem 3.4.3. Families of Parameters for Congruence 1.

If n is a lehpsp1(R,Q,D), then

i. n is a lehpsp1(cR, cQ, cD) for all c with (n, c) = 1.

ii. n is a lehpsp1(cD,−cQ, cR) for all c with (n, c) = 1.

53

In addition, these families of parameters are different if D 6≡ −R (mod n).

Proof. Let αc, βc =
√

cR±
√

cD
2

=
√

cα1,
√

cβ1. Then α
n−(RD|n)
1 ≡ β

n−(RD|n)
1 (mod n)

if and only if (
√

cα1)
n−(RD|n) ≡ (

√
cβ1)

n−(RD|n) (mod n) if and only if α
n−(c2RD|n)
c ≡

β
n−(c2RD|n)
c (mod n). The second claim follows from Theorem 3.4.1.

The family of parameters (cR, cQ, cD) and (cD,−cQ, cR) with (c, n) = 1 are

equivalent if and only if there exists a particular c1 and c2 with (c1c2, n) = 1 and (1)

c1R ≡ c2D (mod n), (2) c1Q ≡ −c2Q (mod n), and (3) c1D ≡ c2R (mod n). Since

(Q,n) = 1, (2) gives c2 ≡ −c1 (mod n). Substituting this relationship into (1) and

(3), we obtain c1R ≡ −c1D (mod n) and c1D ≡ −c1R (mod n). Since (c1, n) = 1,

either of these give the desired result.

Thus, if we have one ‘bad’ set of parameters for a composite integer n and

D 6≡ −R (mod n), then we also have 2φ(n) ‘bad’ sets of parameters. Even if

D ≡ −R (mod n), then we also have φ(n) ‘bad’ sets of parameters. So we should

avoid these parameters if we run the test more than once. In particular, if one para-

meter yields a pseudoprime using Congruence 1, then the above family of parameters

also yields the pseudoprime using Congruence 1. It appears difficult to prove sim-

ilar results for the other congruences. This at least gives a partial explanation for

why Congruence 1 is the worst in practice. It is useful to keep this in mind as we

numerically compare these congruences in the next section.

54

3.5 Numerical Results

For ordinary Lucas sequences the effectiveness of a probable prime test depends on

which congruence is used, and how the parameters P , Q, and D are chosen. An

experimentally effective way used by Baillie and Wagstaff [13] is to choose D from

a sequence such as {5, 9, 13, 17, . . .} or {5,−7, 9,−11, 13, . . .} such that (D|n) = −1,

then pick an appropriate value of P and let Q = (P 2 −D)/4. Note that D must be

congruent to 0 or 1 (mod 4), usually D ≡ 1 (mod 4). One benefit of using Lehmer

sequences is that we can easily provide similar methods which choose the parameter

D ≡ 2 or 3 (mod 4) as well.

The following tables give the number of pseudoprimes exhibited by each congru-

ence for certain methods. The methods are described below:

METHOD A (1 mod 4) – Let D be the first element in the sequence 5, 9, 13, 17,

21, ..., such that (D|n) has the desired value. Using the same sequence, let R be the

next value such that (R|n) has the desired value. We will either start by checking R

beginning with R = D + 4 or R = D + 8. Note Q = (R−D)/4.

METHOD B (2 mod 4) – Use the sequence 2, 6, 10, 14, 18,

METHOD C (3 mod 4) – Use the sequence 3, 7, 11, 15, 19,

METHOD D (4 mod 4) – Use the sequence 4, 8, 12, 16, 20,

When using any of these methods, if a Jacobi symbol ever is evaluated to be zero,

then we have a divisor of n and we immediately stop the tests and return that n is

55

composite.

In all the following tables: M = Method, C = Congruence, and we designate

whether we have R ≥ D+4 or R ≥ D+8. In addition, we explore the various choices

for (D|n) and (R|n). All tables give the number of pseudoprimes up to x = 10k, that

is, the number of composite integers which satisfy the congruence for given method.

These tables have anomalies that leave unanswered questions, but we can make

some general observations about the effectiveness of each method. Specifically, it is

interesting to observe the differences that occur between R ≥ D + 4 and R ≥ D + 8,

along with the effect of changing the values of (D|n) and (R|n). Note that the table

on the right has been tabulated further than the one on the left.

Table 3.5.1: The number of pseudoprimes up to x = 10k for the four methods and
four congruences of this chapter with (D|n) = (R|n) = −1.

M C 103 104 105 106 107

1 2 13 56 174 530
A 2 0 4 16 34 87

3 0 2 12 30 89
4 0 2 9 20 55
1 3 15 52 164 546

B 2 1 2 6 25 78
3 1 2 7 34 88
4 1 3 5 19 58
1 1 12 45 153 504

C 2 0 4 11 38 87
3 0 4 15 50 104
4 0 2 7 28 65
1 2 16 60 177 568

D 2 0 3 8 22 73
3 1 3 11 29 71
4 0 2 8 21 61

M C 103 104 105 106 107 108

1 3 12 54 174 524 1452
A 2 0 0 2 7 13 24

3 0 0 1 4 12 22
4 0 2 3 6 12 21
1 1 14 47 168 539 1486

B 2 0 0 1 2 20 67
3 3 4 9 15 45 108
4 0 0 2 4 20 66
1 0 8 36 140 499 1359

C 2 0 1 2 3 10 33
3 0 0 1 3 12 33
4 0 0 2 4 11 33
1 3 16 59 191 562 1559

D 2 0 1 3 9 21 49
3 2 3 6 10 22 49
4 0 1 5 10 22 51

(a) R ≥ D + 4 (b) R ≥ D + 8

56

Except for Congruence 1, Table 3.5.1(b) has far fewer pseudoprimes. Since D =

R−4Q, by forcing R ≥ D+8 we are eliminated the case when Q = ±1. As Baillie and

Wagstaff [13] noticed for Lucas pseudoprimes, the cases Q = ±1 tend to give more

pseudoprimes. Secondly, note that Congruences 2, 3, and 4 are drastically better

than Congruence 1, and recall that Theorem 3.2.4 concerned Congruence 1. This is a

fundamental difficulty in the theory of probable primality testing. It is often easier to

prove theorems about weaker tests, while the numerical calculations show drastically

better results than those which are proven.

Now we will create similar tables, but with (D|n) = −1 and (R|n) = +1.

Table 3.5.2: The number of pseudoprimes up to x = 10k for the four methods and
four congruences of this chapter with (D|n) = −1 and (R|n) = +1.

M C 103 104 105 106 107

1 3 15 71 228 693
A 2 3 12 52 168 502

3 3 7 39 124 373
4 3 10 46 164 485
1 4 18 59 201 611

B 2 3 12 40 122 483
3 3 7 24 84 282
4 3 7 26 96 326
1 1 12 42 185 569

C 2 0 5 25 100 313
3 0 5 20 75 232
4 0 6 27 98 299
1 6 28 94 282 829

D 2 4 20 84 260 740
3 4 17 70 190 512
4 4 19 81 248 714

M C 103 104 105 106 107 108

1 3 19 63 208 644 1840
A 2 0 0 0 1 1 1

3 0 0 0 1 3 3
4 0 0 0 2 6 29
1 2 12 62 216 618 1688

B 2 0 0 0 0 0 1
3 3 7 18 44 93 215
4 0 1 2 4 6 21
1 2 15 64 205 625 1666

C 2 0 0 0 1 1 3
3 0 0 0 0 0 0
4 0 1 2 5 5 19
1 6 25 72 233 726 2001

D 2 1 1 1 3 3 4
3 1 1 2 4 7 18
4 0 1 2 3 9 21

(a) R ≥ D + 4 (b) R ≥ D + 8

As the rest of the data will confirm, the cases when (RD|n) = −1 are much

57

better in practice. To illustrate this idea, look at the numbers of pseudoprimes for

Congruences 2, 3, and 4 in Table 3.5.1(b) and compare these results to Congruences

2, 3, and 4 in Table 3.5.2(b). It is one of many anomalies that Table 3.5.2(a) is

actually worse than Table 3.5.1(a). However, after reviewing all the tables it should

be noted that (RD|n) = −1 seems to consistently be the best choice, especially when

R ≥ D + 8.

Now we will create the tables with (D|n) = +1 and (R|n) = ±1. As we have seen

above the case when R ≥ D + 8 tends to be better. For this reason the following

tables only consider this case.

Table 3.5.3: The number of pseudoprimes up to x = 10k for the four methods and
four congruences of this chapter with (D|n) = +1, (R|n) = −1, and R ≥ D + 8.

M C 103 104 105 106 107

1 2 13 51 159 521
A 2 0 0 0 1 2

3 0 0 0 3 12
4 0 1 1 2 3
1 4 13 59 206 575

B 2 0 1 3 3 3
3 0 2 4 7 14
4 0 0 0 3 3
1 2 12 65 208 622

C 2 0 0 0 1 2
3 0 0 4 5 11
4 0 0 0 1 1
1 3 17 70 207 576

D 2 1 1 1 1 2
3 0 0 1 3 9
4 0 0 1 2 4

58

Table 3.5.4: The number of pseudoprimes up to x = 10k for the four methods and
four congruences of this chapter with (D|n) = (R|n) = +1, and R ≥ D + 8.

M C 103 104 105 106 107

1 1 11 44 156 531
A 2 1 4 11 35 91

3 1 4 11 36 96
4 1 4 10 36 98
1 0 3 37 134 477

B 2 0 1 4 13 51
3 0 2 5 17 62
4 0 1 5 17 58
1 0 14 55 163 493

C 2 0 0 3 14 39
3 1 1 4 14 38
4 0 1 4 14 40
1 3 15 65 214 652

D 2 2 15 48 136 384
3 2 12 42 125 340
4 2 13 43 127 346

For Congruence 2, we will look at the overlap in pseudoprimes for the various

methods. Since there are so few pseudoprimes when (RD|n) = −1, looking for

overlap is not practical. Hence, we purposely consider the less effective case (D|n) =

(R|n) = −1, R ≥ D + 8 in Table 3.5.1(b). We look at the number of pseudoprimes

that remain when the test is run on n using two different methods.

Table 3.5.5: The number of pseudoprimes up to x = 10k that simultaneously pass
two different methods of this chapter with (D|n) = (R|n) = −1, and R ≥ D + 8.

Methods 103 104 105 106 107 108

A and B 0 0 0 0 1 4
A and C 0 0 0 0 0 0
A and D 0 0 0 0 0 0
B and C 0 0 0 0 1 1
B and D 0 0 0 0 0 4
C and D 0 0 0 0 0 2

The pseudoprimes for A and B are 9863461, 21306157, 51283501, and 56479897.

59

The pseudoprime for B and C is 3116107. The pseudoprimes for B and D are

42702661, 58980637, 79398901, and 94502701. The pseudoprimes for C and D are

20234341 and 61754941. It should be noted that none of these numbers appears

twice, so that any combinations of three methods will eliminate all pseudoprimes up

to 108.

The number of pseudoprimes that are exhibited by a given test is often highly

dependent on the method for choosing parameters. We have only considered four

simplistic methods, but they all have been successful as our tables illustrate and they

seem to be somewhat independent. Specifically, they seem to be successful if we avoid

the possibility of Q = ±1. In the following tables we experiment with other methods

which avoid the cases Q = ±1. From these tables, it becomes more apparent that

most methods which choose parameters at ‘random’ with (RD|n) = −1 and Q 6= ±1

will lead to few pseudoprimes.

In the following tables we use only Congruence 2 for comparison. These numbers

should be compared to Tables 3.5.1b, 3.5.2b, 3.5.3, and 3.5.4 on the rows concerning

Method C Congruence 2.

METHOD C’: Choose D out of the sequence 3, 7, 11, 15, Then choose R out of

the sequence D2 + 6, D2 + 10, D2 + 14, D2 + 18,....

60

Table 3.5.6: The number of pseudoprimes up to x = 10k for method C’ and
Congruence 2 with with designated Jacobi symbol values.

(D|n) (R|n) 103 104 105 106 107 108

+1 +1 0 2 4 15 51
+1 -1 0 0 0 1 1 1
-1 +1 0 0 0 0 0 1
-1 -1 0 0 4 8 18

METHOD C*: Choose D out of the sequence 3, 7, 11, 15, Then choose R out of

the sequence D3 + 4, D3 + 8, D3 + 12, D3 + 16,....

Table 3.5.7: The number of pseudoprimes up to x = 10k for method C* and
Congruence 2 with with designated Jacobi symbol values.

(D|n) (R|n) 103 104 105 106 107 108

+1 +1 0 0 2 8 20
+1 -1 0 0 0 0 0 4
-1 +1 0 1 1 1 1 1
-1 -1 1 1 4 8 13

These numbers are very similar to previous values when considering Method C

and Congruence 2. This data suggests that Congruence 2 with Method C is indeed a

good test. From our data as a whole, it seems that Congruence 2 is the least sensitive

to change in methods as long as we ensure that (RD|n) = −1 and Q 6= ±1. With

these stipulations, the evidence indicates that we have a very good probable primality

test.

3.6 Conclusions

Congruence relations involving Lehmer sequences lead to effective probabilistic pri-

mality tests. We have illustrated this fact through theoretical and numerical results.

61

In the previous section we describe some methods for choosing parameters which we

believe to be most effective.

The connections between the various tests described in Theorems 3.4.1 through

3.4.3 give some reasons for why one congruence may work better than another. These

theorems were much easier to prove in the setting of Lehmer sequences due to the

special form of the characteristic roots.

62

Chapter 4

Strong Lehmer Tests

The ideas of Euler and Strong testing have been used to provide more effective Fer-

mat based and Lucas based tests. The Lehmer tests described in Chapter 3 are

approachable by the same techniques. Here we investigate the standard techniques

for strengthening primality tests and we give a generalized approach to these strength-

ening methods.

In addition, we produce methods that are strengthened versions of Congruence 2

of Chapter 3. Although such techniques are not difficult, we are not aware of any

exposition of this topic in the current literature. The end of the chapter provides

some numerical evidence concerning the effectiveness of such tests.

4.1 Introduction

Since n is odd, n± 1 is divisible by 2. This simple fact governs the improvements we

are about to develop. Lehmer numbers satisfy useful identities at even values. This

theorem is fundamental to what follows.

63

Theorem 4.1.1. If k is a positive integer, then U2k = UkVk.

Proof. Apply Theorem 1.5.2, with j = k.

If n is an odd prime, then we already know Un−(RD|n) ≡ 0 (mod n). Since there

are no zero divisors modulo a prime n, the identity immediately gives Un−(RD|n)
2

≡

0 (mod n) or Vn−(RD|n)
2

≡ 0 (mod n). If either of these congruences is satisfied, then

the original congruence is satisfied. Thus, testing each of these does indeed give a

stronger criterion for primality. We clarify which of the two congruence must be zero

below according to the Jacobi value (RQ|n).

Theorem 4.1.2. Euler Lehmer Criterion.

If n is a prime and (2DRQ, n) = 1, then

Un−(RD|n)
2

≡ 0 (mod n) if (RQ|n) = +1 and

Vn−(RD|n)
2

≡ 0 (mod n) if (RQ|n) = −1.

Proof. We show that Vn−(RD|n)
2

≡ 0 (mod n) if and only if (RQ|n) = −1. Since

Un−(RD|n)
2

Vn−(RD|n)
2

= Un−(RD|n) ≡ 0 (mod n), this will prove the theorem. For a

positive integer k, we have the double argument identity V 2
k = V2k + 2Qk. Letting

k = n−(RD|n)
2

and using Congruence 2 of Chapter 3, we have Vn−(RD|n)
2

≡ 0 (mod n) if

and only if 2(R|n)Q
1−(RD|n)

2 + 2Q
n−(RD|n)

2 ≡ 0 (mod n).

If (RD|n) = +1, then 2(R|n)+2Q
n−1

2 ≡ 2[(R|n)+(Q|n)] ≡ 0 (mod n) if and only

if (R|n) = −(Q|n). If (RD|n) = −1, then 2(R|n)Q + 2Q
n+1

2 ≡ 2Q[(R|n) + (Q|n)] ≡

64

0 (mod n) if and only if (R|n) = −(Q|n). In either case, (RQ|n) = −1.

If 2|n−(RD|n)
2

, then we can use the identity U2k = UkVk to extend this congruence

even further. Continuing in this way we can develop the Strong Lehmer Test based

on the following criterion.

Theorem 4.1.3. Strong Lehmer Criterion.

If n is a prime, (2RQD, n) = 1, and n− (RD|n) = 2sd with d odd, then

Ud ≡ 0 (mod n) or

V2rd ≡ 0 (mod n) for some i, 0 ≤ i < s.

Using the Strong Lehmer Criterion does in fact lead to a marked improvement in

the reliability of the test without any significant increase in computation time. We

illustrate this fact in Table 4.1.1. Here we fix the values of R = 5,Q = 2, and D = −3.

In Chapter 3, we experimented with various methods of choosing R and D. We fix

the parameters here simply to give a quick comparison between Congruence 1, the

Euler Criterion, and the Strong Criterion.

Table 4.1.1: The number of pseudoprimes up to x = 10k

with R = 5, Q = 2 and D = −3.
Test 103 104 105 106 107

Un−(RD|n) ≡ 0 (mod n) 2 7 41 191 601
Euler Lehmer Criterion 0 4 18 101 306
Strong Lehmer Criterion 0 2 11 67 184

65

These strong tests exploit the fact that n− (RD|n) is divisible by some power of

two. If n− (RD|n) is divisible by some other prime p, then we can exploit this prime

as well. We develop these ideas in the next section.

4.2 Generalized Strong Lehmer Testing

The workhorse of Strong Lehmer Testing is the identity U2k = UkVk as we have

illustrated. Similar, but more complicated, identities hold for Umk and Vmk for any

positive integer m. These identities are well-known.

Theorem 4.2.1. If Ũm = Umk and Ṽm = Vmk, then

Ũm = VkŨm−1 −QkŨm−2 with Ũ0 = 0, Ũ1 = Uk and

Ṽm = VkṼm−1 −QkṼm−2 with Ṽ0 = 2, Ṽ1 = Vk.

Using this theorem, we compute the following identities.

Corollary 4.2.2. For any positive integer k, we have

m Umk Vmk

2 UkVk V 2
k − 2Qk

3 Uk[V
2
k −Qk] Vk[V

2
k − 3Qk]

5 Uk[V
4
k − 3QkV 2

k + Q2k] Vk[V
4
k − 5QkV 2

k + 5Q2k]
7 Uk[V

6
k − 5QkV 4

k + 6Q2kV 2
k −Q3k] Vk[V

6
k − 7QkV 4

k + 14Q2kV 2
k − 7Q3k]

n UkF (n, k) VkG(n, k)

where n is an odd integer and F (n, k) and G(n, k) are n− 1 degree polynomials in Vk

and Qk. We also define F (2, k) = Vk.

Let n − (RD|n) = 2a13a25a3 . . . pak
k d, where pk is the kth prime with (pk!, d) = 1

and ai ≥ 0 for i = 1, 2, 3, . . . , k. If n is a prime, then Un−(RD|n) ≡ 0 (mod n). The

66

standard Strong Lehmer Criterion says either:

(1)U3a25a3 ...p
ak
k d ≡ 0 (mod n) or

(2)F (2, 2c13a25a3 . . . pak
k d) = V2c13a25a3 ...p

ak
k d ≡ 0 (mod n) for some 0 ≤ c1 < a1.

Note that the congruences are stated in terms of the notation of Corollary 4.2.2.

We can break up congruence (1) even further by looking at the factor 3a1 to get:

(1′)U5a3 ...p
ak
k d ≡ 0 (mod n) or

(3)F (3, 3c25a3 . . . pak
k d) ≡ 0 (mod n) for some 0 ≤ c2 < a2.

The same idea will work for the primes 5, 7, . . . , pk. Thus, we have the following

criterion.

Theorem 4.2.3. M-Strong Lehmer Criterion.

If n is prime, M ≥ 2, (2RQD, n) = 1, n − (RD|n) = 2a13a25a3 . . . pak
k d, where pk

is the largest prime less than or equal to M , and ai ≥ 0 for i = 1, 2, 3, . . . , k with

(pk!, d) = 1, then

Ud ≡ 0 (mod n) or

F (2, 2c13a25a3 . . . pak
k d) ≡ 0 (mod n) for some 0 ≤ c1 < a1 or

F (3, 3c25a3 . . . pak
k d) ≡ 0 (mod n) for some 0 ≤ c2 < a2 or

...
...

F (pk, p
ck
k d) ≡ 0 (mod n) for some 0 ≤ ck < ak.

67

By the construction of these strong tests, it is immediately apparent that if n is

a pseudoprime for the M-Strong Criterion with a given set of parameters R and Q,

then it is also a pseudoprime for the M0-Strong Lehmer Criterion for any M0 < M

with the same set of parameters. We summarize this result below:

Theorem 4.2.4. If R and Q are fixed parameters and M0 ≤ M1, then the number of

pseudoprimes up to x for the M1-Strong Lehmer Criterion is less than or equal to the

number of pseudoprimes up to x for the M0-Strong Lehmer Criterion with respect to

the parameters R and Q.

One disadvantage of the M-Strong Criterion is that we are not guaranteed that

n − (RD|n) has a small prime factor other than 2. Yet we do know that if 3 - n,

then either n + 1 or n − 1 has a factor of 3 depending on whether n is congruent

to ±1 modulo 6. At any rate, we can force n − (RD|n) to be divisible by 3 if we

choose (RD|n) = ±1 appropriately. In such an instance, we are guaranteed that

n − (RD|n) = 2a13a2d and ai ≥ 1 for i = 1, 2 with (6, d) = 1. Thus, we suggest the

following 3-Strong Lehmer Algorithm:

Definition 4.2.1. 3-Strong Lehmer Algorithm.

Let n be an odd integer with n ≡ ε (mod 6) where ε = ±1. The 3-Strong Lehmer

Algorithm proceeds as follows:

1. Choose R and D such that (RD|n) = ε and (RDQ, n) = 1. Note Q ≡ (R −

D)/4 (mod n). If (RDQ, n) ever is greater than 1, then return n is composite.

68

2. Write n− (RD|n) = 2a13a2d with (6, d) = 1.

3. If Ud ≡ 0 (mod n), then return that n is a probable prime.

4. If V3c2d ≡ Q3c2d (mod n) for any value of c2 with 0 ≤ c2 < a2, then return that

n is a probable prime. Note that this is precisely the condition F (3, 3c2d) ≡

0 (mod n) from the M-Strong Lehmer Criterion, since F (3, 3c2d) = V3c2d−Q3c2d

by Corollary 4.2.2.

5. If V2c13a2d ≡ 0 (mod n) for any value of c1 with 0 ≤ c1 < a1, then return that

n is a probable prime. Here we have the condition F (2, 2c13a2d) ≡ 0 (mod n)

from the M-Strong Lehmer Criterion, since F (2, 2c13a2d) = V2c13a2d by Corollary

4.2.2.

6. If none of these congruences are satisfied, then return n is a composite.

In the following table we illustrate the improvement achieved by using this algo-

rithm. For a given n with 3 - n, we set D = 5 and we choose R to be the smallest

integer in the set {13, 17, 21, . . . } such that n− (RD|n) is divisible by 6. This is one

possible realization of step one of the algorithm above. Since Q is determined by

R and D, we use these three parameters in the following tests and we compare the

number of pseudoprimes that each test allows.

69

Table 4.2.1: The number of pseudoprimes up to x = 10k for the 3-Strong Lehmer
Algorithm as compared with the Euler and Strong Lehmer Criterion using the

parameter choosing method in the last paragraph.
Test 103 104 105 106 107

Euler Lehmer Criterion 2 9 31 101 343
Strong Lehmer Criterion 2 6 24 73 232

3-Strong Lehmer Criterion 2 6 23 43 106

From Corollary 4.2.2, if m is an odd prime, then a factor of Vk can be taken out in

much the same way as with the M-Strong Criterion above. We explore this situation

now. Consider n− (RD|n) = 2a13a25a3 . . . pak
k d and assume (RQ|n) = −1, so that the

Euler Lehmer Criterion gives

V2a1−13a25a3 ...p
ak
k d ≡ 0 (mod n).

A factor of Vk can be taken out of Vmk of Corollary 4.2.2 if and only if m is odd.

So we group 2a1−1 and d together and remove factors of Vk. The congruence

V3a25a3 ...p
ak
k 2a1−1d ≡ 0 (mod n)

implies the following

V5a3 ...p
ak
k 2a1−1d ≡ 0 (mod n) or

G(3, 3c25a3 . . . pak
k 2a1−1d) ≡ 0 (mod n) for some 0 ≤ c2 < a2.

Continuing in this manner, we arrive at the following.

Theorem 4.2.5. M-V-Strong Lehmer Criterion.

If n is prime, M ≥ 2, (2RQD, n) = 1, n − (RD|n) = 2a13a25a3 . . . pak
k d, where pk is

70

the largest prime less than M , ai ≥ 0 for i = 1, 2, 3, . . . k with (pk!, d) = 1, and, in

addition, (RQ|n) = −1, then

V2a1−1d ≡ 0 (mod n) or

G(3, 3c25a3 . . . pak
k 2a1−1d) ≡ 0 (mod n) for some 0 ≤ c2 < a2 or

G(5, 5c3 . . . pak
k 2a1−1d) ≡ 0 (mod n) for some 0 ≤ c3 < a3 or

...
...

G(pk, p
ck
k 2a1−1d) ≡ 0 (mod n) for some 0 ≤ ck < ak.

Note that the same idea could be used for any of the values of c1 in

F (2, 2c13a25a3 . . . pak
k d) = V2c13a25a3 ...p

ak
k d from the M-Strong Criterion.

The case with only the prime 2 is the Euler Lehmer Criterion. Thus, let us

consider the situation when n − (RD|n) = 2a13a2d. For this case we can note that

F (3, k) = V 2
k −Qk and G(3, k) = V 2

k − 3Qk. So Theorems 4.2.3 and 4.2.4 become:

Theorem 4.2.6. 3-Strong Lehmer and 3-V-Strong Lehmer Combined Criterion.

If n is prime, (2RQD, n) = 1, n − (RD|n) = 2a13a2d and ai ≥ 0 for i = 1, 2 with

(6, d) = 1, then

Ud ≡ 0 (mod n) or

V2c1d ≡ 0 (mod n) for some 0 ≤ c1 < a1 or

V 2
3c2d ≡ Q3c2d (mod n) for some 0 ≤ c2 < a2 or

V 2
3c22c1d ≡ 3Q3c22c1d (mod n) for some 0 ≤ c1 < a1 and 0 ≤ c2 < a2.

Proof. The 3-Strong Criterion gives:

(1)Ud ≡ 0 (mod n) or

71

(2)F (2, 2c13a2d) = V2c13a2d ≡ 0 (mod n) for some 0 ≤ c1 < a1 or

(3)F (3, 3c2d) = V 2
3c2d −Q3c2d ≡ 0 (mod n) for some 0 ≤ c2 < a2.

Now we apply the 3-V-Strong Criterion to (2) and for some 0 ≤ c1 < a1 we obtain:

(2i)V2c1d ≡ 0 (mod n) or

(2ii)G(3, 3c22c1d) = V 2
3c22c1d − 3Q3c22c1d ≡ 0 (mod n) for some 0 ≤ c2 < a2.

This test is a little cumbersome and somewhat more difficult to implement. Still

these generalized techniques illustrate a mechanical way to strengthen the standard

congruences.

We should note that if n−1 or n+1 can be completely factored into small primes,

then there are relatively efficient methods for deterministically proving that n is or is

not a prime. These ideas are not new and are discussed in [49], [59]. Some of these

methods involve variations of Fermat’s Theorem and others use Lucas sequences, but

both make use of the idea of strong testing on all the prime factors of n− 1 or n + 1.

For large integers, it is unlikely that n − 1 or n + 1 can be completely factored.

However, if we can find some small factors, then we can use strong testing and become

fairly confident in the primality of n.

The method we used for choosing R and D in Table 4.2.1 was somewhat arbitrary.

It would be interesting to investigate the effect of different methods for choosing these

72

parameters. Yet even with this limited data, it is somewhat disconcerting that the

3-Strong Lehmer Tests allows 43 pseudoprimes out to 105. For all the work we have

put in we would hope to find a test which exhibits many fewer pseudoprimes.

Part of the reason that these tests are somewhat less effective than we would

hope is their origins. All of these strong tests stem from the congruence Un−(RD|n) ≡

0 (mod n) for a prime n. Recall that this was Congruence 1 of Chapter 3. If we

review the tables from that chapter, we see that Congruence 1 was by far the least

effective in identifying composites.

Although Congruence 1 is the lease effective, it is also the easiest to generalize.

All the generalizations in this section stem from the ability to factor Upk and the

fact that there are no zero divisors modulo a prime. In essence, it is much easier

to work with terms that are congruent to zero. In the next section, we generalize

Congruence 2 of Chapter 3. Although this is a more difficult task, we are rewarded

with an extremely effective test.

4.3 Congruence 2 Strong Testing

Recall from Chapter 3, if n is a prime and (2RQD, n) = 1, then Vn−(RD|n) ≡

2(R|n)Q(1−(RD|n))/2 (mod n). We referred to this relation as Congruence 2. For a

given composite n, little is known about the number of parameters that give n as

a pseudoprime. However, the experimental evidence in Chapter 3 suggests that this

73

test is far more effective than Congruence 1. Of the basic four congruences, this con-

gruence is often the most accurate for a given method of choosing the parameters. In

this section, we strengthen Congruence 2 and arrive at what we believe to be one of

the most effective and efficient known tests.

Hence, our goal is to give congruences such that the set of pseudoprimes for these

new congruences is a subset of the pseudoprimes for Congruence 2. The main tool

we use is the computation of square roots.

Theorem 4.3.1. If n is an odd prime and a is a quadratic residue, then x2 ≡

a (mod n) has exactly 2 incongruent solutions modulo n and, for n ≡ 3, 5, or 7 (mod 8),

they are explicitly given by

x ≡

{
±a

n+1
2 (mod n) , if n ≡ 3 (mod 4)

±a
n+3

8 (mod n) , if n ≡ 5 (mod 8).

Note that the case when n ≡ 1 (mod 8) has no explicit formula. There are

all purpose ways to compute square roots in this case, but they are slightly more

cumbersome. As a result, this case will be more difficult to generalize. We will deal

with this case last.

As with generalizations of Congruence 1, the main tool in decreasing the subscript

of Vm is an identity known as the double argument formula. It was given in Chapter

1, but we repeat it here for convenience.

Theorem 4.3.2. If k is a positive integer, then V 2
k = V2k + 2Qk.

74

Thus, any congruence relation for V2k, can also generate a congruence relation for

V 2
k . In essence, we have the ability to decrease the subscript of Vn by factors of 2.

For a given composite integer n and parameters R, Q, and D with (2RQD, n) = 1,

we write n − (RD|n) = 2sd where 2 - d and we reduce V2sd by factors of 2. To this

end we define the following notation.

Definition 4.3.1. For n a positive integer with n − (RD|n) = 2sd where 2 - d, we

define Ai = Ai(R,Q) = V2s−ik(R,Q) + 2Q2s−i−1d for i = 0, 1, . . . , n− 1.

By Theorem 4.3.2, we see V 2
2s−i−1d = Ai. If n is a prime, then Congruence 2 implies

A0 ≡ 2(R|n)Q
1−(RD|n)

2 + 2Q
n−(RD|n)

2 ≡ 2Q
1−(RD|n)

2 [(R|n) + (Q|n)] (mod n)

Thus, if n is a prime, then A0 ≡ 0, 4Q
1−(RD|n)

2 , or − 4Q
1−(RD|n)

2 (mod n) according

to the values of (R|n) and (Q|n). We keep the notation as we build up the general

case, but in practice we may want to use a method of choosing R and Q that gives

particular cases of Jacobi symbol values.

From the definition, if n is a prime, we have V 2
2s−1d ≡ A0 (mod n). We could use

this congruence for primality testing, but it is equivalent to Congruence 2 because

V 2
2s−1d = A0 whether n is a prime or not. To strengthen the test, we use Theorem

4.3.1 to find a square root. Since this theorem is valid only for a prime, this change

will increase the accuracy of the criterion.

Theorem 4.3.3. Strong Lehmer 2 Criterion for n 6≡ 1 (mod 8).

If n is a prime such that n 6≡ 1 (mod 8), (2RQD, n) = 1, and n − (RD|n) = 2sd

75

where 2 - d, then

V2sd ≡ 2(R|n)Q
1−(RD|n)

2 (mod n) and

V2s−i−1d ≡ ±At
i (mod n) for all i, 0 ≤ i < s− 1 and

Vd ≡ ±At
s−1

Rt

√
R (mod n)

where t is defined by

t =

{
n+1

4
, for n ≡ 3 (mod 4)

n+3
8

, for n ≡ 5 (mod 8).

Proof. The first congruence is precisely Congruence 2. When k is even, Vk is an

integer, so we can apply Theorem 4.3.1 to the cases V 2
2s−i−1d ≡ Ai (mod n) when

s − i − 1 > 0. If s = 1, it should be noted that the middle case does not occur. It

remains to discuss the final case.

Since d is odd, we have Vd = B
√

R for some integer B. By definition B2R = V 2
d ≡

As−1 (mod n). Since (R, n) = 1, we have B2 ≡ As−1

R
(mod n). Now we can apply

Theorem 4.3.1, to obtain Vd√
R

= B ≡ ±At
s−1

Rt (mod n). Multiplying by
√

R yields the

result.

Observe that there are fundamental differences between the Strong Lehmer Cri-

terion and Strong Lehmer 2 Criterion. The former only required that one of the

congruences was satisfied and the latter requires that all the congruences are satis-

fied. In addition, the Strong Lehmer Criterion would be implemented by first testing

Ud, i.e. bottom-up, but the Strong Lehmer 2 Criterion would first test V2sd, i.e.

top-down.

76

However, both tests compute the same number of values of the Lehmer sequence.

The only added computation time is computation of At
i (mod n). Compared to the

computation of the values of the Lehmer sequence, the additional computation time

is negligible. Thus, this criterion is fast in practice.

We will experiment with this test at the end of this chapter, but first we must

consider the case when n ≡ 1 (mod 8). In this case, there is no simple formula for the

computation of square root as a power. However, efficient algorithms for calculating

square roots are known and could be used here. We do not use these techniques here,

but instead we investigate methods that are relatively easy to express in a closed

form.

If n is a prime and n ≡ 1 (mod 8), then we can write n−1 = 2ad1 and n+1 = 2d2

with 2 - d1 and 2 - d2 and a ≥ 3. Since (RD|n) could be +1 or -1, we consider these

cases separately.

If (RD|n) = 1, then we are in the case n− 1 = 2ad1 with 2 - d1 and a ≥ 3. Thus,

Congruence 2 gives V2ad1 ≡ 2(R|n) (mod n). Applying the identity of Theorem 4.3.2,

we get

V 2
2a−1d1

≡ 2[(R|n) + (Q|n)] (mod n).

We summarize this case in the following theorem.

Theorem 4.3.4. Strong Lehmer 2 Criterion for n ≡ 1 (mod 8) and (RD|n) = +1.

If n is a prime such that n ≡ 1 (mod 8), (2RQD, n) = 1, (RD|n) = +1, and

77

n− 1 = 2ad where 2 - d and a ≥ 3, then

V2ad ≡ 2(R|n) (mod n) and

V2a−1d ≡


0 (mod n) , if (RQ|n) = −1
±2 (mod n) , if (R|n) = (Q|n) = +1
±2R(n−1)/4 ≡ ±2Q(n−1)/4 (mod n) , if (R|n) = (Q|n) = −1.

Proof. Since a ≥ 3, we have 2a−1d is even and, therefore, V2a−1d is an integer. The first

case is immediate from the congruence preceding the theorem. If (R|n) = (Q|n) = +1,

then V 2
2a−1d ≡ 4 (mod n). Since n is a prime, there are exactly the two solutions

V2a−1d ≡ ±2 (mod n).

If (R|n) = (Q|n) = −1, then V 2
2a−1d ≡ −4 (mod n). For any integer with (b|n) =

−1 and n prime, the Euler-Criteria gives b(n−1)/2 ≡ −1 (mod n). Since 4|(n − 1),

we have [b(n−1)/4]2 ≡ −1 (mod n). Again, there are exactly 2 solutions so we deduce

V 2
2a−1d ≡ ±2b(n−1)/4 (mod n). Observe that (R|n) = (Q|n) = −1 in this case implies

that b = R or b = Q would be obvious choices for b.

If (RD|n) = −1, then we are in the case n + 1 = 2d2. Thus, Congruence 2 gives

V2d2 ≡ 2(R|n)Q (mod n). Applying the same identity as before we get

V 2
d2
≡ 2Q[(R|n) + (Q|n)] (mod n).

We summarize this case here.

Theorem 4.3.5. Strong Lehmer 2 Criterion for n ≡ 1 (mod 8) and (RD|n) = −1.

If n is a prime such that n ≡ 1 (mod 8), (2RQD, n) = 1, (RD|n) = −1, and

78

n + 1 = 2d where 2 - d, then

V2d ≡ 2(R|n)Q (mod n) and

Vd ≡


0 (mod n) , if (RQ|n) = −1

±2w
√

R (mod n) , if (R|n) = (Q|n) = +1

±2R(n−1)/4w
√

R ≡ ±2Q(n−1)/4w
√

R (mod n) , if (R|n) = (Q|n) = −1

where w2 ≡ Q
R

(mod n).

Proof. Since d is odd, we have Vd = B
√

R for some integer B. The case (RQ|n) = −1

follows from the congruence preceding the theorem. If (R|n) = (Q|n) = +1, then

B2R ≡ 4Q (mod n). Thus, B2 ≡ 4Q
R

(mod n) which implies Vd√
R

= B ≡ ±2w (mod n).

In the case (R|n) = (Q|n) = −1, B2R ≡ −4Q (mod n). Thus, B2 ≡ −4Q
R

(mod n)

which implies Vd√
R

= B ≡ ±2b(n−1)/4w (mod n) for any b with (b|n) = −1. As before

b = R and b = Q are convenient values to choose.

The condition w2 ≡ Q
R

(mod n) seems to require another square root computation.

However, we can choose w in pre-computation. For a given R, we randomly choose

w and compute Q ≡ w2R (mod n).

Using Theorem 4.5.3, 4.5.4, and 4.5.5 in conjunction, we have an algorithm which

we have proved to be stronger than Congruence 2. We summarize the Strong Lehmer

2 Algorithm below:

Definition 4.3.2. Strong Lehmer 2 Algorithm.

Let n be an odd integer and compute n ≡ γ (mod 8) where γ ∈ {1, 3, 5, 7}.

79

1. For γ = 3 or 7, compute t = (n + 1)/4 and use Theorem 4.5.3 with any choice

of parameters.

2. For γ = 5, compute t = (n + 3)/8 and use Theorem 4.5.3 with any choice of

parameters.

3. For γ = 1 and (RD|n) = +1, use Theorem 4.5.4 with any choice of parameters

under the restraint (RD|n) = +1.

4. For γ = 1 and (RD|n) = −1, use Theorem 4.5.5, choose w and compute

Q ≡ w2R (mod n) under the restraint (RD|n) = −1.

5. If any congruence is not satisfied, then n is composite. Otherwise, we say n is

a probable prime with respect to this test.

The remainder of this chapter is devoted to illustrating the effectiveness our algo-

rithm. In addition, we experiment with methods for choosing parameters.

4.4 Numerical Results

Although this algorithm can be quickly implemented in practice, it is slightly more

complicated that previous tests. The complication is due to the different cases modulo

8. Since the only major restrictions occur in the case n ≡ 1 (mod 8), it seems

reasonable that any method we suggest will deal with this case differently. Thus,

each method we describe will have two parts (i) the case when n 6≡ 1 (mod 8) and

80

(ii) the case when n ≡ 1 (mod 8). Whenever possible we will illustrate for which

congruence classes the tests are most effective.

The following tables give the number of pseudoprimes exhibited by each congru-

ence for certain methods. The methods are described below (These are the same

methods from Chapter 3):

METHOD A(i) – Let D be the first element in the sequence 5, 9, 13, 17, 21, ..., to

satisfy the desired Jacobi value, (D|n). Using the same sequence, let R be the next

value to satisfy the desired Jacobi value, (R|n). Then Q = (R−D)/4.

METHOD A(ii)– Let R be the first element in the sequence 5, 9, 13, ..., to satisfy

the desired Jacobi value, (R|n). Using the same sequence, let w be the next value to

satisfy the desired Jacobi value, (R(1− 4w2)|n). Then let D ≡ R(1− 4w2) ≡ R− 4Q

where Q ≡ Rw2. Using this method, we are allowed to choose (R|n) and (D|n) as in

the other case.

METHOD B(i)(ii) – Use the sequence 2, 6, 10, 14, 18,

METHOD C(i)(ii) – Use the sequence 3, 7, 11, 15, 19,

METHOD D(i)(ii) – Use the sequence 4, 8, 12, 16, 20,

In all the following tables: M = Method, and we designate whether we have

R ≥ D + 4 or R ≥ D + 8. In addition, we explore the various choices for (D|n) and

(R|n) as before. All tables give the number of pseudoprimes up to x = 10k, that

is, the number of composite integers which satisfy the test for given method. Since

81

the pseudoprimes for this test are a subset of the pseudoprimes for Congruence 2, it

should be noted that the number of pseudoprimes in each column must be smaller

than those of the corresponding entries in the tables for Congruence 2 in Chapter 3.

Since R = D+4 gives Q = 1, we noted in Chapter 3 that the condition R ≥ D+8

tends to give better results. As a result, we have decided to tabulated part (b) further

out to 107 instead of 106.

Table 4.4.1: The number of pseudoprimes up to x = 10k as separated by congruence
class modulo 8 of the Strong Lehmer 2 Algorithm using the four methods of this

section with (D|n) = (R|n) = −1.
M mod 8 103 104 105 106

3 or 7 0 3 11 20
A 5 0 0 0 0

1 0 0 0 0
3 or 7 1 1 3 9

B 5 0 1 2 8
1 0 0 0 0

3 or 7 0 1 4 18
C 5 0 1 2 5

1 0 0 0 0
3 or 7 0 2 5 14

D 5 0 1 2 5
1 0 0 0 0

M mod 8 103 104 105 106 107

3 or 7 0 0 0 3 6
A 5 0 0 0 0 0

1 0 0 0 0 1
3 or 7 0 0 0 0 8

B 5 0 0 1 2 4
1 0 0 0 0 0

3 or 7 0 0 1 2 7
C 5 0 0 0 0 0

1 0 0 0 0 0
3 or 7 0 0 0 1 2

D 5 0 1 2 5 0
1 0 0 0 1 1

(a) R ≥ D + 4 (b) R ≥ D + 8

The data in this first table illustrates the improvements attained by using the

Strong Lehmer 2 Testing. For instance, using Congruence 2 with Method A and

R ≥ D + 4, we get 34 pseudoprimes up to 106 as stated in Table 3.5.1. Here we

have 20 pseudoprimes up to 106. Similar improvements can be seen by comparing

the other columns against Table 3.5.1. Although these are not major improvements,

82

it is a check on our work that these new tests are stronger versions of Congruence 2.

Notice that Table 4.4.1(b) has fewer pseudoprimes. This is consistent with the

observations made in Chapter 3. Additionally, we see that the case n ≡ 1 (mod 8)

has very few pseudoprimes for any method.

In the following pages, we give all the tables for the various choices in Jacobi

symbol. We will see that with appropriate choices in Jacobi symbols theses stronger

tests give marked improvement.

Table 4.4.2: The number of pseudoprimes up to x = 10k as separated by congruence
class modulo 8 of the Strong Lehmer 2 Algorithm using the four methods of this

section with (D|n) = −1 and (R|n) = +1.
M mod 8 103 104 105 106

3 or 7 0 0 0 0
A 5 0 0 4 20

1 0 0 0 0
3 or 7 0 0 0 0

B 5 1 1 3 9
1 0 0 0 0

3 or 7 0 0 0 0
C 5 0 0 1 3

1 0 0 0 0
3 or 7 0 0 0 0

D 5 0 0 2 2
1 0 0 0 0

M mod 8 103 104 105 106 107

3 or 7 0 0 0 0 0
A 5 0 0 0 0 0

1 0 0 0 0 0
3 or 7 0 0 0 0 0

B 5 0 0 0 0 0
1 0 0 0 0 0

3 or 7 0 0 0 0 0
C 5 0 0 0 0 0

1 0 0 0 0 0
3 or 7 0 0 0 0 0

D 5 0 0 0 0 0
1 0 0 0 0 0

(a) R ≥ D + 4 (b) R ≥ D + 8

Table 3.5.2 of Chapter 3 also looked at the situation where (D|n) = −1 and

(R|n) = +1. In Table 3.5.2, Congruence 2 was extremely effective in identifying com-

posites. In total, Congruence 2 only allowed 5 pseudoprimes up 107 for all methods

with R ≥ D + 8. Here we see that the Strong Lehmer 2 Algorithm eliminates all of

83

these pseudoprimes and identifies all composites up to 107.

It also appears that (D|n) = −1 and (R|n) = +1 is a better choice than (D|n) =

(R|n) = −1. Looking at the next table we will see that (D|n) = +1 and (R|n) = −1

is also a good overall choice. Thus, (RD|n) = −1 seems like an optimal choice as is

consistent with observations in Chapter 3.

Table 4.4.3: The number of pseudoprimes up to x = 10k as separated by congruence
class modulo 8 of the Strong Lehmer 2 Algorithm using the four methods of this

section with (D|n) = +1 and (R|n) = −1.
M mod 8 103 104 105 106

3 or 7 0 0 1 1
A 5 0 0 1 2

1 0 0 0 0
3 or 7 0 2 5 21

B 5 0 2 7 12
1 0 0 0 0

3 or 7 0 0 0 2
C 5 0 0 2 13

1 0 0 0 0
3 or 7 0 1 6 23

D 5 0 1 1 2
1 0 0 0 0

M mod 8 103 104 105 106 107

3 or 7 0 0 0 0 0
A 5 0 0 0 1 1

1 0 0 0 0 0
3 or 7 0 0 0 0 0

B 5 0 1 3 3 3
1 0 0 0 0 0

3 or 7 0 0 0 0 0
C 5 0 0 0 0 0

1 0 0 0 0 0
3 or 7 0 0 0 0 0

D 5 1 1 1 1 1
1 0 0 0 0 0

(a) R ≥ D + 4 (b) R ≥ D + 8

84

Table 4.4.4: The number of pseudoprimes up to x = 10k as separated by congruence
class modulo 8 of the Strong Lehmer 2 Algorithm using the four methods of this

section with (D|n) = (R|n) = +1.
M mod 8 103 104 105 106

3 or 7 0 5 16 46
A 5 0 0 0 0

1 0 0 3 11
3 or 7 0 2 6 10

B 5 0 0 0 0
1 0 1 3 8

3 or 7 1 1 3 8
C 5 0 0 0 0

1 0 1 6 9
3 or 7 1 5 19 52

D 5 0 0 1 7
1 0 0 1 7

M mod 8 103 104 105 106 107

3 or 7 1 4 8 18 42
A 5 0 0 0 0 1

1 0 0 3 8 26
3 or 7 0 1 1 2 6

B 5 0 0 0 0 1
1 0 0 0 3 11

3 or 7 0 0 2 6 8
C 5 0 0 0 1 1

1 0 0 4 7 13
3 or 7 2 10 35 93 249

D 5 0 0 1 7 7
1 0 0 3 11 25

(a) R ≥ D + 4 (b) R ≥ D + 8

These tables suggests that the Strong Lehmer 2 Algorithm gives an probable

prime test with high confidence, especially when the parameters are chosen such that

(RD|n) = −1.

85

Chapter 5

Lehmer Criteria Modulo Prime
Powers

In the previous chapters, we explored congruences which hold modulo a prime and give

efficient primality tests. These congruences stem from a characterization of primes

involving binomial coefficients. If we could test all the binomial coefficients directly,

then we would know for certain that an integer is prime. Since this isn’t practical, we

gave tests which in essence tested sums of binomial coefficients. Thus, a pseudoprime

is an integer in which a sum of binomial coefficients, relative to the test being used,

satisfies the same conditions as a prime, while the individual coefficients do not satisfy

the same conditions as a prime. Making the assumption that this situation occurs

in a random manner, then involving more binomial coefficients should give a more

reliable test. This assumption is not entirely valid, but it gives heuristic reasons to

develop tests which incorporate more binomial coefficients. We accomplish this by

looking at tests modulo prime powers.

86

Once we develop new tests, we combine them with existing ones. These combined

versions are numerically shown to be quite good in practice.

5.1 Introduction

All of the primality test congruences in the previous chapters were proved at least

in part using congruences of binomial coefficients known to hold modulo a prime.

Specifically we used the fact that

(
p
k

)
≡ 0 (mod p) for p prime and 0 < k < p. We

will discuss similar properties of binomial coefficients modulo prime powers.

A fundamental result in the study of divisibility of binomial coefficients is Kum-

mer’s Theorem.

Theorem 5.1.1. Kummer’s Theorem.

If n and k are integers and p is a prime, then the largest power of p dividing

(
n
k

)
is

given by the number of borrows required when subtracting the base p representations

of k from n.

Kummer’s Theorem is useful in situations where the binomial coefficient is di-

visible by a prime power. However, if the binomial coefficient is not congruent to

zero, then the question remains for a way to simplify the expression. In [15], Davis

and Webb give the following result concerning the simplification of such binomial

coefficients.

87

Theorem 5.1.2. If n = atp
t + at−1p

t−1 + · · · + a1p + a0 and k = btp
t + bt−1p

t−1 +

· · ·+ b1p + b0 are written in the base p and s < t, then

(
n
k

)
≡

(
atp

t + at−1p
t−1 + · · ·+ a1p

1 + a0

btp
t + bt−1p

t−1 + · · ·+ b1p
1 + b0

)
≡

(
atp

t−s + · · ·+ at−s

btp
t−s + · · ·+ bt−s

)
. . .

(
asp

t−s + · · ·+ a0

bsp
t−s + · · ·+ b0

)
(

at−1p
t−s−1 + · · ·+ at−s+1

bt−1p
t−s−1 + · · ·+ bt−s+1

)
. . .

(
as−1p

t−s−1 + · · ·+ a0

bs−1p
t−s−1 + · · ·+ b0

) (mod ps).

If m = mrp
r + mr−1p

r−1 + · · ·+ m1p + m0 and l = lrp
r + lr−1p

r−1 + · · ·+ l1p + l0 and

lr > mr, we define

(
mrp

r + mr−1p
r−1 + · · ·+ m0

lrp
r + lr−1p

r−1 + · · ·+ l0

)
= p

(
mr−1p

r−1 + · · ·+ m0

lr−1p
r−1 + · · ·+ l0

)
.

For help in understanding this theorem, we offer the following example:

(
386
154

)
=

(
3 · 112 + 2 · 11 + 1

112 + 3 · 11

)
≡

0
@ 3 · 11 + 2

11 + 3

1
A
0
@ 2 · 11 + 1

3 · 11

1
A

0
@ 2

3

1
A

≡
(

3 · 11 + 2
11 + 3

) (
1
0

)
≡

(
35
14

)
(mod 112).

More importantly, this theorem can be used to simplify general classes of binomial

coefficients. In particular, we can prove the following.

Theorem 5.1.3. If p is a prime and 0 ≤ a0, a1 < p, then

(
pt

k

)
≡


0 (mod pt) , if (k, p) = 1(

pt−1

k/p

)
(mod pt) , if (k, p) > 1.

Proof. If (k, p) = 1, then the number of borrows when subtracting the base p repre-

sentation of k from pt is t. Thus, Kummer’s Theorem gives the first case. If (k, p) > 1,

88

then k = k1p
t + k0p for positive integers k1 and k0 with k0 < pt−1. Thus, Theorem

5.1.2 gives

(
pt

k

)
≡

(
pt−1

k1p
t−1 + k0

) (
0

k0p

)
(

0
k0

) ≡
(

pt−1

k1p
t−1 + k0

)
≡

(
pt−1

k/p

)
(mod pt).

Theorems of a similar nature could be given with

(
n
k

)
where n is a more general

expression in the base p. However, the situation becomes more complicated. We

proved the case above for its simplicity and ease of use in the development of Lehmer

sequence congruences.

5.2 Lehmer Sequences modulo Prime Powers

Given integers R and Q, let Uk = Uk(
√

R,Q) and Vk = Vk(
√

R,Q) as in previous

chapters. Using the binomial coefficient theorems from the last section, we create

congruences for the Lehmer sequences modulo nt. Note that any of these congruences

also hold for the Lucas sequences if the parameter R is replaced by P 2.

Theorem 5.2.1. Lehmer nt Criteria.

Let n be a given odd integer with parameters satisfying (2RQD, n) = 1 and define

Ũk = Uk(
√

Rn, (Rn −Dn)/4) and Ṽk = Vk(
√

Rn, (Rn −Dn)/4). If n is an odd prime

and ε = ±1, then

1. 2Q(1+ε)/2Unt−ε ≡
√

RD(n−1)/2Ũnt−1 − εṼnt−1 (mod nt).

89

2. 2Q(1+ε)/2Vnt−ε1 ≡
√

RṼnt−1 − εD(n+1)/2Ũnt−1 (mod nt).

3. Unt ≡ D(n−1)/2Ũnt−1 (mod nt).

4. Vnt ≡ Ṽnt−1 (mod nt).

Proof. We prove Congruences 3 and 4 first. Using the identity of Theorem 1.4.3 and

applying the congruences of Theorem 5.1.3, we get

2nt−1Unt =
∑

i odd

(
nt

i

)
R(nt−i)/2D(i−1)/2

≡
∑

j odd

(
nt

jn

)
R(nt−jn)/2D(jn−1)/2

≡ D(n−1)/2
∑

j odd

(
nt−1

j

)
(Rn)(nt−1−j)/2(Dn)(j−1)/2

≡ D(n−1)/22nt−1−1Ũn (mod nt).

Thus, 2nt−nt−1
Un2 ≡ D(n−1)/2Ũn (mod nt). Since φ(nt) = nt−nt−1 for n prime, by

Euler’s Theorem, 2nt−nt−1 ≡ 1 (mod nt).

Congruence 4 is proved in an identical way. For ε = ±1, by direct substitution

into the identities of Corollary 1.5.3 we obtain the first two congruences.

A disadvantage of using such a criteria in testing for primality is the size of the

numbers. Thus, any computation will require much more storage than computations

modulo n. It would be interesting to study the general case, but, for the time and

computation issues mentioned here, we will focus on the case when t = 2. With t = 2,

we get the following corollary.

Corollary 5.2.2. Lehmer n2 Criteria.

Let n be a given odd integer with parameters satisfying (2RQD, n) = 1 and define

90

Ũk = Uk(
√

Rn, (Rn −Dn)/4) and Ṽk = Vk(
√

Rn, (Rn −Dn)/4). If n is an odd prime

and ε = ±1, then

1. 2Q(1+ε)/2Un2−ε ≡
√

RD(n−1)/2Ũn − εṼn (mod n2).

2. 2Q(1+ε)/2Vn2−ε1 ≡
√

RṼn − εD(n+1)/2Ũn (mod n2).

3. Un2 ≡ D(n−1)/2Ũn (mod n2).

4. Vn2 ≡ Ṽn (mod n2).

A composite integer n which satisfies Congruence i in the theorem above is called

a Lehmer Squared pseudoprime with respect to the parameters R and Q and Congru-

ence i (or lehpsp2
i (R,Q)) for i = 1, 2, 3, or 4. Notice that this definition is ambiguous

in the case of Congruence 1 and 2, since we do not know if ε = ±1. Our experimental

evidence has shown no obvious advantage between the two cases, so we will always

take ε = −1 as implied by the notation lehpsp2
i (R,Q). If we ever intend ε = +1 we

will make this explicit.

We explore these four congruences in Tables 5.4.1 through 5.4.4 of the numerical

results section at the end of this chapter.

5.3 Combining Tests

The standard Lucas sequences and the Lehmer sequences of Chapter 3 give good tests

for primality. We will also see that the congruences in the last section are effective,

91

but do not eliminate pseudoprimes. By combining ideas from both of these, we can

create a tests which numerical appears to exhibits even fewer pseudoprimes.

By rewriting the Lehmer congruences of Theorem 3.2.1 in terms of n2, instead of

n, we arrive at the following combined congruences. We prove this theorem in terms

of the Lehmer sequences first as they are more general than the standard Lucas

sequences.

Theorem 5.3.1. Combined Lehmer n2 Criteria.

Using the notation of Theorem 5.2.2. If n is an odd prime with parameters satisfying

(2RQD, n) = 1, then

1. 4(RD|n)
√

RQ(1+ε)/2Un2−ε ≡ RD(n−1)/2(R|n)[Ũ2
n +1]−ε(D|n)[Ṽ 2

n +R] (mod n2).

2. 4(RD|n)Q(1+ε)/2Vn2−ε ≡ (D|n)[Ṽ 2
n + R]− ε(R|n)D(n+1)/2[Ũ2

n + 1] (mod n2).

3. 2(D|n)Un2 ≡ D(n−1)/2[Ũ2
n + 1] (mod n2).

4. 2(R|n)
√

RVn2 ≡ Ṽ 2
n + R (mod n2).

Proof. We illustrate the techniques by first proving Congruences 3 and 4. From

Theorem 3.2.1, we have Ũn ≡ (Dn|n) ≡ (D|n) (mod n) and Ṽn ≡ (Rn|n)
√

Rn ≡

(R|n)
√

R (mod n). Note the parameters Rn ≡ R (mod n) by Fermat’s Little Theorem,

so the parameters R and Rn are equivalent for a prime n. We can restate these

congruences modulo n2 by noting n|(Ũn − (D|n)) if and only if n2|(Ũ2
n − 2(D|n)Ũn +

1). Thus, 2(D|n)Ũn ≡ Ũ2
n + 1 (mod n2). Similarly, we find 2(R|n)

√
RṼn ≡ Ṽ 2

n +

92

R (mod n2). Now we take the congruences from Theorem 5.2.2 and replace Ũn and

Ṽn to get the combined congruences.

Thus, Un2 ≡ D(n−1)/2Ũn (mod n2) and Vn2 ≡ Ṽn (mod n2) imply

2(D|n)Un2 ≡ D(n−1)/22(D|n)Ũn ≡ D(n−1)/2[Ũ2
n + 1] (mod n2) and

2(R|n)
√

RVn2 ≡ 2(R|n)
√

RṼn ≡ Ṽ 2
n + R (mod n2).

Replacing the corresponding terms in Congruences 1 and 2 of Theorem 5.2.2 gives

the other two combined congruences.

In the proof, we rewrote the standard Lehmer congruences in terms of n2. That is,

we wrote n|(Ũn−(D|n)) if and only if n2|(Ũ2
n−2(D|n)Ũn+1). Thus, testing this second

fact alone would not give an improvement in identifying composites. However, using

this change allowed for our new approach concerning congruence relations modulo n2

to be combined with standard criteria.

A composite integer n which satisfies Congruence i in the theorem above is called

a Combined Lehmer Squared pseudoprime with respect to the parameters R and Q

and Congruence i (or clehpsp2
i (R,Q)) for i = 1, 2, 3, or 4. Notice that we are only

looking at 2 congruences here. Numerically, we explore only Congruences 3 and 4,

since the first two congruences are somewhat more complicated.

5.4 Numerical Data

In this section we examine the number of Lehmer Squared pseudoprimes and the

number of Combined Lehmer Squared pseudoprimes up to x = 10k. For ease in

93

comparison, we use the same methods as used in the previous chapters. For brevity,

we restate these methods below.

METHOD A (1 mod 4) – Let D be the first element in the sequence 5, 9, 13, 17,

21, ..., such that (D|n) has the desired value. Using the same sequence, let R be the

next value such that (R|n) has the desired value. We will either start by checking

beginning with R = D + 4 or R = D + 8. Note Q = (R−D)/4.

METHOD B (2 mod 4) – Use the sequence 2, 6, 10, 14, 18,

METHOD C (3 mod 4) – Use the sequence 3, 7, 11, 15, 19,

METHOD D (4 mod 4) – Use the sequence 4, 8, 12, 16, 20,

Using the same conventions as the previous chapters, if a Jacobi Symbol ever is

evaluated to be zero, then we have a divisor of n and we immediately stop the tests

and return that n is composite.

In all the following tables: M = Method, C = Congruence and we designate

when we have R ≥ D + 4 or R ≥ D + 8. All of these tables give the number of

pseudoprimes up to x = 10k, that is, the number of composite integers which satisfy

the congruence using the given method. Tables 5.4.1 through 5.4.4 are concerning

Lehmer Squared pseudoprimes and Tables 5.4.5 through 5.4.8 are concerning Com-

bined Lehmer Squared pseudoprimes.

94

Table 5.4.1: The lehpsp2
i up to x = 10k for (D|n) = (R|n) = −1.

M C 103 104 105 106

1 0 0 5 10
A 2 0 0 5 10

3 0 0 5 10
4 0 0 5 10
1 0 0 2 10

B 2 0 0 2 9
3 0 1 5 16
4 1 3 7 16
1 0 0 0 5

C 2 0 0 0 4
3 0 0 1 7
4 1 1 2 10
1 0 0 2 9

D 2 0 0 3 10
3 0 0 3 11
4 0 1 6 15

M C 103 104 105 106

1 0 0 3 7
A 2 0 0 3 8

3 1 1 4 9
4 0 0 3 7
1 0 0 1 10

B 2 0 0 1 11
3 0 1 4 16
4 0 1 5 18
1 0 1 1 3

C 2 0 1 1 4
3 0 1 3 11
4 0 2 3 10
1 0 0 1 8

D 2 0 0 2 9
3 0 0 2 10
4 0 1 5 18

(a) R ≥ D + 4 (b) R ≥ D + 8

Notice several distinctions from the tables of previous chapters. First, there is

not a major distinction between the cases R ≥ D + 4 and R ≥ D + 8. In addition,

no one congruence seems significantly better than any of the others. As we look to

the next tables, these observations are still true. In addition, we will see that no one

table seems better than any of the others.

95

Table 5.4.2: The lehpsp2
i up to x = 10k for (D|n) = −1 and (R|n) = +1.

M C 103 104 105 106

1 0 0 0 4
A 2 0 1 1 4

3 0 1 3 11
4 0 0 1 7
1 0 0 0 2

B 2 1 2 2 5
3 0 0 1 7
4 0 1 2 7
1 0 2 2 4

C 2 0 2 2 4
3 0 2 3 5
4 0 2 4 9
1 0 0 1 5

D 2 0 1 2 6
3 0 2 4 8
4 1 3 6 16

M C 103 104 105 106

1 0 0 0 2
A 2 1 2 2 4

3 0 0 0 2
4 0 1 5 8
1 0 1 1 2

B 2 0 2 2 3
3 0 2 2 5
4 0 2 3 8
1 0 0 0 2

C 2 0 0 0 3
3 0 1 2 6
4 1 1 1 5
1 0 2 3 5

D 2 1 3 5 7
3 0 2 4 10
4 2 5 8 16

(a) R ≥ D + 4 (b) R ≥ D + 8

Table 5.4.3: The lehpsp2
i up to x = 10k for (D|n) = +1, (R|n) = −1, and R ≥ D +8.

M C 103 104 105 106

1 0 0 1 4
A 2 0 2 3 8

3 0 0 4 12
4 0 2 4 13
1 0 0 0 3

B 2 1 1 1 5
3 0 0 0 4
4 0 0 3 8
1 0 0 2 6

C 2 0 1 2 7
3 0 0 4 10
4 0 0 3 12
1 0 0 0 3

D 2 1 1 1 6
3 0 0 0 3
4 0 0 2 6

96

Table 5.4.4: The lehpsp2
i up to x = 10k for (D|n) = +1, (R|n) = +1, and R ≥ D +8.

M C 103 104 105 106

1 0 2 4 10
A 2 0 2 5 13

3 1 4 8 18
4 0 2 6 17
1 0 1 2 9

B 2 0 1 3 12
3 0 1 5 16
4 0 1 3 17
1 0 1 4 11

C 2 0 1 4 12
3 0 1 3 16
4 0 2 4 14
1 0 2 9 22

D 2 0 2 10 23
3 0 2 11 33
4 3 12 30 73

These tables are somewhat discouraging. Comparing the Tables 5.4.1 through

5.4.4 with the standard Lehmer pseudoprime tables of Section 3.5 we see very little

improvement. It could be that composite integers satisfying these criteria also are

likely to satisfy the standard criteria due to some intrinsic nature of the way we

devised our tests. However, one would think that some method of looking at binomial

coefficients modulo prime powers could be advantageous and perhaps we have not used

the correct set of congruences. In any event, we can note that none of these tables

contain the astronomical kinds of numbers that appear in several entries of the tables

of Chapter 3. All the numbers stay relatively small.

Now we try to salvage the situation somewhat. The following tables refer to

97

Combined Lehmer Squared pseudoprimes for Congruences 3 and 4. Recall that Con-

gruences 1 and 2 were of somewhat of a complicated nature. Although Congruences

1 and 2 would not have significantly more computation time, we elect to only exam-

ine Congruences 3 and 4 for simplicity. Notice that all of the following tables are

tabulated out further than the Tables 5.4.1 through 5.4.4.

Table 5.4.5: The clehpsp2
i up to x = 10k for (D|n) = (R|n) = −1.

M C 103 104 105 106 107

A 3 0 0 1 2 8
4 0 0 0 0 0

B 3 0 0 2 6 13
4 0 0 0 0 0

C 3 0 0 0 2 7
4 0 0 0 0 0

D 3 0 0 2 4 10
4 0 0 0 0 0

M C 103 104 105 106 107

A 3 0 0 0 2 7
4 0 0 0 0 0

B 3 0 0 0 3 9
4 0 0 0 0 0

C 3 0 1 1 3 7
4 0 0 0 0 0

D 3 0 0 2 4 9
4 0 0 0 0 0

(a) R ≥ D + 4 (b) R ≥ D + 8

It is quite surprising that Congruence 4 exhibits no pseudoprimes out to 107 for

any of the methods, while Congruence 3 exhibits several. From this data, we might

suspect that Congruence 4 gives a much better test. However, our conjecture would

be disproved by the following table.

98

Table 5.4.6: The clehpsp2
i up to x = 10k for (D|n) = −1 and (R|n) = +1.

M C 103 104 105 106 107

A 3 0 0 0 0 0
4 0 0 0 3 9

B 3 0 0 0 0 0
4 0 0 1 2 5

C 3 0 0 0 0 0
4 0 1 1 3 4

D 3 0 1 2 2 2
4 0 2 5 16 21

M C 103 104 105 106 107

A 3 0 0 0 0 0
4 0 0 0 2 4

B 3 0 0 0 0 0
4 0 0 0 1 2

C 3 0 0 0 0 0
4 0 1 1 3 4

D 3 0 0 0 0 0
4 0 0 3 6 17

(a) R ≥ D + 4 (b) R ≥ D + 8

In this instance, we see that Congruence 3 exhibits fewer pseudoprimes than Con-

gruence 4 out to 107. We see a slight trend that Method D may be a bad choice, but

overall it seems that the method makes little difference. As we look at the next two

tables it is interesting to conjecture on the conditions that cause Congruence 3 to be

better than Congruence 4 and vice versa.

Table 5.4.7: The clehpsp2
i up to x = 10k for (D|n) = +1, (R|n) = −1, and

R ≥ D + 8.
M C 103 104 105 106 107

A 3 0 0 2 5 14
4 0 0 0 0 0

B 3 0 0 0 2 6
4 0 0 0 0 0

C 3 0 0 3 4 8
4 0 0 0 0 0

D 3 0 0 0 2 5
4 0 0 0 0 0

Comparing Table 5.4.5, 5.4.6, and 5.4.7, one might conjecture that Congruence

4 is better in the situations where (R|n) = −1 and Congruence 3 is better in the

situations where (R|n) = +1 and (D|n) = −1. This last table is the case when both

Jacobi symbols are +1 and it appears to be by far the worst.

99

Table 5.4.8: The clehpsp2
i up to x = 10k for (D|n) = +1, (R|n) = +1 and

R ≥ D + 8.
M C 103 104 105 106 107

A 3 1 2 4 10 22
4 1 1 6 16 35

B 3 0 1 2 7 23
4 0 1 3 15 51

C 3 0 0 1 5 21
4 0 2 4 16 40

D 3 0 4 12 31 88
4 2 9 25 65 155

From this data, it would seem wise in practice to either use Congruence 3 and the

methods of Table 5.4.6 or use Congruence 4 and the methods of Table 5.4.7. In these

specific instances our methods have given no pseudoprimes.

All of these tests are somewhat less efficient than the tests of the previous sections.

However, these last few tables raise some interesting theoretical questions. Certainly,

if we could prove that two congruences cannot be simultaneously satisfied by a com-

posite and are always satisfied for a prime, then we would have a deterministic test for

primality. If such a test require only two simultaneous tests using Lehmer sequences,

then it would be a major breakthrough. Further research needs to be done in this

direction.

The standard technique would be to examine these congruences and the types

of parameters that lead to pseudoprimes modulo a composite n when the prime

factorization of n is known. These equations are difficult to analyze, but perhaps

with the data and conjectures set form here some direction can be found towards a

solution. These issues must be studied further.

100

Chapter 6

Characteristic Root Analysis

In the Chapters 3-5 we investigated several probabilistic primality tests using Lehmer

sequences. Since these sequences satisfy the Binet formula, all of the congruences we

discussed can be reformulated in terms of the characteristic roots. Here we make this

reformulation to allow for comparisons between tests and to give some reasons for the

anomalies we have seen in various tables. In [22], various techniques are given which

in essence examine characteristic roots directly in a field extension. These techniques

are effective, but require computations in a finite field. The tests we have presented

have the advantage of staying in the base field for all computations. In this chapter,

we examine the characteristic roots to give some information about our integer based

tests. These methods are not difficult, yet they are rarely used in the literature. In

[8], characteristic roots are partially used to find the number of parameters that give

an odd composite integer n as a pseudoprime for a fixed D using the Strong Lucas

Criterion. We use the characteristic roots in a different way to help give some heuristic

101

reasons why certain criteria are better than others. The reason this type of argument

is not found in the literature perhaps is due to the prevalence of Lucas testing with

the parameter P . Expressed in terms of Lehmer sequences, the characteristic roots

are easier to work with and the methods described become clearer.

6.1 Introduction

The Binet formula allows for comparison of the various tests. First we restate the

congruence relations of previous chapters in terms of the characteristic roots. As the

congruences stand it is difficult to see how they are related, but with the same roots

in similar expressions it will be easier to recognize relationships.

In Chapter 3, 4, and 5, we investigated several different congruences including

the Lehmer, the M-Strong Lehmer, the Strong Lehmer 2, Lehmer Squared, and the

Combined Lehmer Squared Criteria. Anywhere Uk or Vk appears in these congruences,

they can be replaced by the appropriate Binet formula. By doing so we can restate

all of our criteria in terms of the characteristic roots α, β = (
√

R±
√

D)/2.

We already used this technique in Chapter 3 to show that various connections

between the four congruences of Lehmer Criteria. Some of the criteria we have ex-

amined are not as easily studied in terms of these characteristic roots. However, in

certain instances this type of analysis can give special insight.

In the following sections, we summarize several results concerning the criteria from

102

previous chapters all obtained by using this method.

6.2 Lehmer Criteria

Consider the four congruences given in the Lehmer Criteria of Chapter 3. Any prime

must satisfy all of these congruences and we defined a lehpspi(R,Q,D) if n satisfied

Congruence i for i = 1, 2, 3, or 4 under the conditions that (2RQD, n) = 1 and

D = R − 4Q. Although any set of three parameters is completely determined by

knowing only two of them, we gave this definition for convenience as we compared

sets of parameters.

The following theorem is true for any odd integer, but we will be chiefly concerned

with pseudoprimes.

Theorem 6.2.1. Lehmer Criteria via Characteristic Roots.

If n is a positive integer with parameters satisfying (2RQD, n) = 1 and α, β =
√

R±
√

D
2

,

then

1. Un−(RD|n) ≡ 0 (mod n) if and only if αn−(RD|n) ≡ βn−(RD|n) (mod n).

2. Vn−(RD|n) ≡ 2(R|n)Q
1−(RD|n)

2 (mod n). if and only if

αn−(RD|n) + βn−(RD|n) ≡ 2(R|n)(αβ)
1−(RD|n)

2 (mod n).

3. Un ≡ (D|n) (mod n) if and only if αn − βn ≡ (D|n)(α− β) (mod n).

4. Vn ≡ (R|n)
√

R (mod n) if and only if αn + βn ≡ (R|n)(α + β) (modn).

103

Proof. For the first equivalence, we have Un−(RD|n) ≡ 0 (mod n) if and only if

αn−(RD|n)−βn−(RD|n)

α−β
≡ 0 (mod n) if and only if αn−(RD|n) ≡ βn−(RD|n) (mod n). All

of the other congruences are proved in essentially the same way. We replace all of the

parameters and Lehmer sequences using Theorem 1.5.1.

In the proof we used Theorem 1.5.1. As a reminder, we recall some of the essential

relationships,
√

R = α + β,
√

D = α− β, and Q = αβ. Using these restatements we

can see connections between tests and parameters.

The first congruence above can be restated as
(

α
β

)n−(RD|n)

≡ 1 (mod n). Looking

at the congruence this way it is more clear how Lucas and Lehmer sequences generalize

Fermat’s Little Theorem.

Recall in Chapter 3, we made use of these ideas to prove the following 3 theorems.

Theorem 6.2.2. Parameter Reciprocity of Congruences 1 and 2.

If n is an odd composite integer, then

i. n is a lehpsp1(R,Q,D) if and only if n is a lehpsp1(D,−Q,R).

ii. n is a lehpsp2(R,Q,D) if and only if n is a lehpsp2(D,−Q,R).

Theorem 6.2.3. Parameter Bi-Reciprocity Between Congruences 3 and 4.

If n is an odd composite integer, then n is a lehpsp3(R,Q,D) if and only if n is a

lehpsp4(D,−Q,R).

104

Theorem 6.2.4. Families of Parameters for Congruence 1.

If n is a lehpsp1(R,Q,D), then

i. n is a lehpsp1(cR, cQ, cD) for all c with (n, c) = 1.

ii. n is a lehpsp1(cD,−cQ, cR) for all c with (n, c) = 1.

In addition, these families of parameters are different if D 6≡ −R (mod n).

Recall that the Parameter Bi-Reciprocity Between Congruences 3 and 4 allowed

us to deduce that a composite number n was a Lehmer pseudoprimes for Congruence

3 for the same number of parameters as it was a Lehmer pseudoprime for Congruence

4. Thus, they give equally good tests for primality when random parameters are

chosen.

We can use this theorem to give the following corollary:

Corollary 6.2.5. The number n is a lehpsp1(R,Q,D) if and only if n is a

lpsp1(R
2, RQ,RD).

Proof. Take c = R in Theorem 6.2.4. Note that the characteristic roots in this case

become R±
√

RD
2

and so (R2 − RD)/4 = R(R − D)/4 = RQ give the new parameter

value.

This theorem says that Congruence 1 for Lehmer sequences with parameters R,

Q, and D is equivalent to Congruence 1 for Lucas sequences using the parameters

105

P = R2, RQ, and RD. From this we may want to conclude that Lucas and Lehmer

sequences are equivalent tools in testing for primality. In the sense of Corollary 6.2.5,

these test are related, yet the nature of the parameters for Lehmer sequences is in

general different from that of the parameters for Lucas sequences. In particular, we see

that the relationship in Corollary 6.2.5 only allows for P values which are quadratic

residues. For various reason as illustrated in previous and the current chapters, we

believe that the formulation in terms of Lehmer sequences is more theoretically sound.

In addition, the majority of the results in this chapter only hold for the parameters

of the Lehmer sequences.

Continuing with our analysis of Congruence 1 of the Lehmer Criteria, we have the

following.

Theorem 6.2.6. If n is lehpsp1(R,Q,D) , then n is a lehpsp1([(R+D)/2]2, 4Q2, RD)

Proof. By the hypothesis, n satisfies αn−(RD|n) ≡ βn−(RD|n) (mod n) which implies

(α2)n−(RD|n) ≡ (β2)n−(RD|n) (mod n). Expanding the characteristic roots gives α2 =

(R+D)/2+
√

RD
2

and β2 = (R+D)/2−
√

RD
2

, which are precisely the roots given by the pa-

rameters in the conclusion. Note RD = (R2 + 2RD + D2)/4− (R2− 2RD + D2)/4 =

[(R + D)/2]2 − [2(R−D)/4]2, this last term is precisely [2Q]2.

For a composite integer n, we used Theorem 6.2.4 to show that one set of para-

meters giving n as a pseudoprime for Congruence 1 can be used to create several sets

of parameters that give n as a pseudoprime. We can take this idea further to show

106

that two sets of parameters giving n as a pseudoprime can be combined to give even

more sets of parameters giving n as a pseudoprime. Such arguments suggest that

Congruence 1 may have a large number of parameters that give n as a pseudoprime.

Theorem 6.2.7. If n is a lehpsp1(f
2, Q0, g

2D) and n is a lehpsp1(h
2, Q1, j

2D), then

n is a lehpsp1([(fh + gjD)/2]2, Q2, [(fj + gh)/2]2D). The parameter Qi is defined

implicitly by the corresponding R and D values for i = 0, 1, 2.

Proof. Let α = f+g
√

D
2

,β = f−g
√

D
2

,α̂ = h+j
√

D
2

, and β̂ = h−j
√

D
2

. Thus, αn−(D|n) ≡

βn−(D|n) and α̂n−(D|n) ≡ β̂n−(D|n). So (αα̂)n−(D|n) ≡ (ββ̂)n−(D|n). Finally, note αα̂ =

fh+gjD
2

2
+ fj+gh

2

√
D

2
.

Given two sets of parameters of the required form which yield a composite integer

n as a pseudoprime, this theorem gives a method for systematically combining these

parameters to get other ‘bad’ parameters.

In fact, we can prove the following:

Corollary 6.2.8. If n is a lehpsp1(1, (1 −D)/4, D) and n is a lehpsp1(a
2, Q0, b

2D),

where Q0 = (a2 − b2D)/4 and if we define the sequences ak and bk by a0 = a, b0 = b,

ak = ak−1+bk−1D

2
, and bk = ak−1+bk−1

2
for k > 0, then n is a lehpsp1(a

2
k, Qk, b

2
kD) for all

k where Qk = (a2
k − b2

kD)/4.

Proof. For a fixed nonnegative integer k, apply Theorem 6.2.7 with the substitutions

f = g = 1, h = ak and j = bk. The set of parameters in the conclusion of Theorem

107

6.2.7 satisfy ([(fh + gjD)/2]2, Qk+1, [(fj + gh)/2]2D) = ([(ak + bkD)/2]2, Qk+1, [(bk +

ak)/2]2D) = (a2
k+1, Qk+1, b

2
k+1D). By induction, the statement is true for all k ≥ 0.

In order to illustrate the ideas expressed in the theorems of this section let us

consider an example. Let n = 35 = 5 · 7. Here we give all the parameters that yield n

as a pseudoprime for Congruence 1. These were found by exhaustive search. It turns

out that all of the parameters can be classified into 5 families.

Table 6.2.1: The parameters that give n = 35 as a pseudoprime for Congruence 1 of
the Lehmer Criteria separated into distinct families and (c, 35) = 1.

c c(2, 9, 1) c(18, 13, 1) c(23, 23, 1) c(32, 34, 1) c(34, 17, 1)
1 (2, 9, 1) (18, 13, 1) (23, 23, 1) (32, 34, 1) (34, 17, 1)
2 (4, 18, 2) (1, 26, 2) (11, 11, 2) (29, 33, 2) (33, 34, 2)
3 (6, 27, 3) (19, 4, 3) (34, 34, 3) (26, 32, 3) (32, 16, 3)
...

...
...

...
...

...

Using this information, we see that the total number of parameters is 5φ(n) =

5(4)(6) = 120, which is precisely the value found by exhaustive search.

By Theorem 6.2.5, if n were found to satisfy Congruence 1 for any one set of

parameters in one of these families, then n would also satisfy the congruence for all

the parameters in the same column. In addition, the reciprocity of the parameters R

and D would allow us to deduce that two of these columns would be satisfied. For

instance, interchanging R and D in (2, 9, 1) yields (1,−9, 2) ≡ (1, 26, 2) (mod 35)

which appears in column 2.

These observations suggest some methods for choosing parameters. In particular,

108

we would never want to choose parameters in the same family, since they automati-

cally will satisfy the same congruence. These ideas need to be further developed, but

they appear to be promising future research topics.

In Theorem 3.2.4, we gave a parameter count for the number of parameters that

yielded a composite integer n as a pseudoprimes for a given fixed D. As illustrated

in Table 6.2.1, Theorem 6.2.5 allows for the classification of parameters in families.

In particular, we choose a representative of the family of parameters where D = 1.

Thus, by simply counting the parameters that give a pseudoprime when D = 1, we

immediately get a count on all parameters as follows.

Theorem 6.2.9. Total Parameter Count for lehpsp1(R,Q,D).

If n =
∏k

i=1 pai
i is odd, then the number of distinct D, R and Q values modulo n

satisfying R − 4Q ≡ D (mod n) and (RQD, n) = 1 for which Un−(RD|n)(
√

R,Q) ≡

0 (mod n) is given by

φ(n)
∑

x∈{−1,+1}k

s∏
i=1

[
1

2
(n− h(x), pi − xi)− 1

]
,

where h(x) =
∏k

i=1 xai
i .

This theorem gives a count on all ‘bad’ parameters. To my knowledge, there is

no analogous theorem for Lucas sequences. In addition, the bound of Theorem 3.3.2

can be applied to give a bound on the total number of parameters.

109

Theorem 6.2.10. Total Parameter Bound for lehpsp1(R,Q,D).

If n is odd, then the number of distinct D, R and Q values modulo n satisfying

R− 4Q ≡ D (mod n) and (RQD, n) = 1 for which Un−(RD|n)(
√

R, Q) ≡ 0 (mod n) is

bounded by φ(n)2

2
.

In the next section we explore various stronger Lehmer criteria.

6.3 Stronger Lehmer Criteria

We introduced several different stronger Lehmer criteria in Chapter 4. Here we illus-

trate what is happening in terms of the characteristic roots. The essential idea is the

factoring of the expression α2sd− β2sd. If the expression is congruent to zero, then at

least one of the factors is congruence to zero. Using this simple argument we arrive

at the following restatement of the Euler Criterion and the Strong Lehmer Criterion.

Theorem 6.3.1. Euler and Strong Lehmer Criteria via Characteristic Roots.

If n is a positive integer with parameters satisfying (2RQD, n) = 1, then

i. n satisfies the Euler Lehmer Criterion if and only if α
n−(RD|n)

2 ≡ (RD|n)β
n−(RD|n)

2 (mod n).

ii. n satisfies the Strong Lehmer Criterion if and only if

αd ≡ βd (mod n) or α2rd ≡ −β2rd (mod n) for some r with 0 ≤ r < s, where

n− (RD|n) = 2sd with d odd.

By using the formula for factoring x3− y3, we could also reformulate the 3-Strong

Criterion. However, we elect to stay in the simpler case. The techniques used for

110

Congruence 1 of the Lehmer Criteria can be applied almost directly to these congru-

ences.

Theorem 6.3.2. Parameter Reciprocity of the Euler and Strong Lehmer Criteria.

If n be an odd composite integer, then

i. n is a elehpsp(R,Q,D) if and only if n is a elehpsp(D,−Q,R).

ii. n is a slehpsp(R,Q,D) if and only if n is a slehpsp(D,−Q, R).

Proof. We prove the second statement only, the first is proved in a similar way.

Let α, β =
√

R±
√

D
2

be the characteristic roots of U(
√

R,Q,D). If α̃ and β̃ are the

characteristic roots of Uk(
√

D,−Q, R), then α̃ = α and β̃ = −β.

For r > 0, α2rd ≡ −β2rd (mod n) if and only if α̃2rd ≡ −β̃2rd (mod n). For r = 0,

αd ≡ ±βd (mod n) if and only if α̃d ≡ ∓β̃d (mod n). In any event, we have n satisfying

the criteria with (R,Q,D) if and only if n satisfies the criteria with (D,−Q,R).

Theorem 6.3.3. Strong Lehmer Families of Parameters.

If n is a slehpsp1(R,Q,D), then

i. n is a slehpsp1(cR, cQ, cD) for all c with (n, c) = 1.

ii. n is a slehpsp1(cD,−cQ, cR) for all c with (n, c) = 1.

Proof. If n is a slehpsp1(R,Q,D), then define αc, βc =
√

cR±
√

cD
2

=
√

cα1,
√

cβ1. Then

α
n−(RD|n)
1 ≡ β

n−(RD|n)
1 (mod n) if and only if (

√
cα1)

n−(RD|n) ≡ (
√

cβ1)
n−(RD|n) (mod n)

111

if and only if α
n−(c2RD|n)
c ≡ β

n−(c2RD|n)
c (mod n). The second claim follows from

Theorem 3.4.1.

For r > 0, α2rd ≡ −β2rd (mod n) if and only if α2rd
c ≡ −β2rd

c (mod n). For r = 0,

αd ≡ ±βd (mod n) if and only if αd
c ≡ ±βd

c (mod n). Thus, we have n satisfying the

criteria with (R,Q,D) if and only if n satisfies the criteria with (cR, cQ, cD).

The second statement follows from 6.3.2.

A similar statement would be true for Euler-Lehmer pseudoprimes. The last

two results are interesting in that they are identical to the results for the Lehmer

Congruence 1 theorems of the last section. Heuristically, we can argue by the theorems

of this section and the last that if n is a pseudoprime for one parameter then it is a

pseudoprime for many parameters. However, numerical evidence shows that strong

Lehmer testing can significantly decrease the number of pseudoprimes when compared

to Lehmer Congruence 1 testing. Thus, if Strong Lehmer testing eliminates one ‘bad’

parameter set for an odd composite n when compared to Congruence 1 testing, then

Strong Lehmer testing eliminates a whole family of parameters. Actually, since we

have parameter reciprocity, eliminating one parameters with Strong Lehmer testing

implies that 2 families of parameters have been eliminated except in the special case

where reciprocity gives the same family.

Going back to the example of the last section, let us examine the parameters that

give n = 35 = 5 · 7 as a Strong Lehmer pseudoprime. The discussion of the last

112

section makes the claim that the Strong Lehmer Criterion can only eliminate entire

families of parameters. It is not possible for the Strong Lehmer Criterion to eliminate

only part of a family. This is indeed the case in our example.

Table 6.3.1: The parameters that give n = 35 as a pseudoprime for the Strong
Lehmer Criterion separated into distinct families and (c, 35) = 1.

c c(23, 23, 1) c(32, 34, 1) c(34, 17, 1)
1 (23, 23, 1) (32, 34, 1) (34, 17, 1)
2 (11, 11, 2) (29, 33, 2) (33, 34, 2)
3 (34, 34, 3) (26, 32, 3) (32, 16, 3)
...

...
...

...

Notice that the first two columns that appeared in Table 6.2.1 have vanished.

Thus, in this case, Strong Lehmer testing has eliminated exactly two families of

parameters. This lowers the total number of bad parameters from 120 to 120−2φ(n) =

120 − 2(4)(6) = 72. Thus, we see more explicitly the advantages of Strong Lehmer

testing.

We noted earlier that the characteristic root analysis of this section can also be

applied to the M -Strong Lehmer Criteria. In particular, it is interesting to note

that the 3-Strong Lehmer Criteria has families of parameters and these families are

a subset of the families for the Strong Lehmer Criterion. Instead of digressing into a

detailed analysis of this case, we continue with the example n = 35 as an illustration

of these ideas.

113

Table 6.3.2: The parameters that give n = 35 as a pseudoprime for the 3-Strong
Lehmer Criterion separated into distinct families and (c, 35) = 1.

c c(32, 34, 1)
1 (32, 34, 1)
2 (29, 33, 2)
3 (26, 32, 3)
...

...

While the parameters still are separated into families for the 3-Strong Lehmer

Criterion, it should be noted that we no longer have parameter reciprocity. In this

example, if (R, Q,D) = (32, 34, 1), then (D,−Q,R) = (1,−34, 32). Taking c = R−1 =

23, we see that this parameter set belongs to the family (23, 23, 1). From Table 6.3.2,

we see that this family does not give n as a pseudoprime for the 3-Strong Criteria. In

3-Strong Testing, the exponents of the characteristic roots are not necessarily even.

Noting this fact, it is not surprising that reciprocity does not hold.

We do not give a characteristic root analysis of the Strong Lehmer 2 Criterion. It

would require a more detailed treatment.

6.4 Lehmer Squared Criteria

In Chapter 5, we explored criteria for primality modulo n2 using Lehmer sequences.

We were somewhat disappointed in the effectiveness of the Lehmer Squared Criteria.

However, we improved our results by using a Combination of tests. In this section,

we give some partial explanations for these observations.

114

Theorem 6.4.1. Lehmer Squared Criteria via Characteristic Roots.

If n is a positive integer with parameters satisfying (2RQD, n) = 1, α, β =
√

R±
√

D
2

,

and α̃, β̃ =
√

Rn±
√

Dn

2
, then

1. 2Un2+1 ≡
√

RD(n−1)/2Ũn + Ṽn (mod n2) if and only if

αn2+1 − βn2+1 ≡ αα̃n − ββ̃n (mod n2).

2. 2Vn2+1 ≡ D(n+1)/2Ũn +
√

RṼn (mod n2) if and only if

αn2+1 + βn2+1 ≡ αα̃n + ββ̃n (mod n2).

3. Un2 ≡ D(n−1)/2Ũn (mod n2) if and only if

αn2 − βn2 ≡ α̃n − β̃n (mod n2).

4. Vn2 ≡ Ṽn (mod n) if and only if

αn2
+ βn2 ≡ α̃n + β̃n (mod n2).

Proof. The same techniques as before work here, but we prove the third relationship

to illustrate the origins of these statements. Recall α − β =
√

D and α̃ − β̃ =
√

Dn.

Thus, the Binet formulas give Un2 ≡ D(n−1)/2Ũn (mod n2) if and only if αn2−βn2

√
D

≡

D(n−1)/2 eαn−eβn
√

Dn if and only if αn2 − βn2 ≡ α̃n − β̃n (mod n2).

These congruences satisfy many of the same properties as summarized in the next

two theorems.

115

Theorem 6.4.2. Parameter Reciprocity for Congruence 1 and 2.

If n is an odd composite integer, then

i. n is a lehpsp2
1(R,Q,D) if and only if n is a lehpsp2

1(D,−Q,R).

ii. n is a lehpsp2
2(R,Q,D) if and only if n is a lehpsp2

2(D,−Q,R).

Proof. Define α1 =
√

D+
√

R
2

= α, β1 =
√

D−
√

R
2

= −β, α̃1 =
√

Dn+
√

Rn

2
= α̃, and

β̃1 =
√

Dn−
√

Rn

2
= −β̃.

Noting that the key fact is that n is odd, we have αn2+1 − βn2+1 ≡ αα̃n −

ββ̃n (mod n2) if and only if αn2+1
1 −βn2+1

1 ≡ α1α̃
n
1 − (−β1)(−β̃n

1). The same technique

proves the second claim.

Theorem 6.4.3. Parameter Bi-Reciprocity Between Congruences 3 and 4.

If n is an odd composite integer, then n is a lehpsp2
3(R,Q,D) if and only if n is a

lehpsp2
4(D,−Q,R).

Proof. Define α1 =
√

D+
√

R
2

= α, β1 =
√

D−
√

R
2

= −β, α̃1 =
√

Dn+
√

Rn

2
= α̃, and

β̃1 =
√

Dn−
√

Rn

2
= −β̃. Once again, we note that n is odd.

So αn2 −βn2 ≡ α̃n− β̃n (mod n2) if and only if αn2

1 +βn2

1 ≡ α̃n
1 + β̃n

1 (mod n2).

From this theorem, we conclude that Congruences 3 and 4 of the Lehmer Squared

Criteria will always have exactly the same number of parameters yielding a pseudo-

prime. Therefore, in a sense these tests are equally good.

116

Theorem 6.4.4. Lehmer Squared Families of Parameters.

If n is an odd composite integer, then

i. n is a lehpsp2
3(R,Q,D) if and only if n is a lehpsp2

3(cR, cQ, cD) for all c with

(n, c) = 1.

ii. n is a lehpsp2
4(R,Q,D) if and only if n is a lehpsp2

4(cR, cQ, cD) for all c with

(n, c) = 1.

Proof. Define α1 =
√

cD+
√

cR
2

=
√

cα, β1 =
√

cR−
√

cD
2

= −
√

cβ,α̃1 =

√
(cD)n+

√
(cR)n

2
=

√
cnα̃, and β̃1 =

√
(cR)n−

√
(cD)n

2
= −

√
cnβ̃.

Thus, αn2−βn2 ≡ α̃n− β̃n (mod n2) if and only if (
√

cα)n2−(
√

cβ)n2 ≡ (
√

cnα̃)n−

(
√

cnβ̃)n (mod n2) if and only if αn2

1 − βn2

1 ≡ α̃n
1 − β̃n

1 (mod n2). This gives the first

claim. The second is proved in a similar way.

This theorem suggest that we may not be making a marked improvement on the

standard tests, since we are proving exactly the same types of theorems concerning

parameters. By no means have we proved that these congruences should be better or

worse than the standard criteria, but it at least gives a partial explanations for why

the numerical data was not as good as we would have suspected.

6.5 Combined Lehmer Squared Criteria

Finally, in this section we explore the Combined Lehmer Squared Criteria of Chapter

5. We gave 4 congruences for the Combined Lehmer Squared Criteria, however,

117

Congruences 3 and 4 were much simpler than 1 and 2. For simplicity we focus on

Congruences 3 and 4 alone.

Theorem 6.5.1. Combined Lehmer Squared Criteria via Characteristic Roots.

If n is a positive integer with parameters satisfying (2RQD, n) = 1, α, β =
√

R±
√

D
2

,

and α̃, β̃ =
√

Rn±
√

Dn

2
, then

1. 2
(

D
n

)
Un2 ≡ D(n−1)/2[Ũ2

n + 1] (mod n2) if and only if

2
(

D
n

)
(αn2 − βn2

) ≡ (eαn−eβn)2

eα−eβ + α̃− β̃ (mod n2).

2. 2
(

R
n

)√
RVn2 ≡ Ṽ 2

n + R (mod n2) if and only if

2
(

R
n

)
(αn2

+ βn2
) ≡ (eαn+eβn)2

α+β
+ α + β (mod n2).

Proof. We prove the first relationship. The second is proved in a similar way. The Bi-

net formulas give 2
(

D
n

)
Un2 ≡ D(n−1)/2[Ũ2

n +1] (mod n2) if and only if 2
(

D
n

)
αn2−βn2

√
D

≡

D(n−1)/2[(eαn−eβn)2

Dn +1] (mod n2) if and only if 2
(

D
n

)
(αn2−βn2

) ≡ (eαn−eβn)2√
Dn +

√
Dn (mod n2).

Making the replacement
√

Dn = α̃− β̃ gives the result.

In terms of the characteristic roots, these congruences do not possess the same

relationships as the other criteria explored in this chapter. If Rn ≡ R (mod n) and

Dn ≡ D (mod n), then we could say more. However, if we wish to make general

statements relating parameters for an odd composite integer n, then this assumption

is rarely valid.

118

Since the techniques of the previous sections do not give way to relationships

giving many parameters from one, we at least have a heuristic explanation for why

these congruences were numerically more effective in Chapter 5.

119

Chapter 7

Finite Commutative Ring Lehmer
Testing

In [22] and [23], finite rings are effectively used to give strong probable prime tests.

However, there is currently no study where elements of a finite ring are taken as the

coefficients in a Lehmer sequences. This chapter is devoted to this topic. We prove

that even with this generality, many of the parameter properties discussed in Chapter

6 still hold.

7.1 Introduction

Of the various primality tests we have studied none are infallible. They all exhibit

pseudoprimes. We have seen that the number of pseudoprimes can be greatly effected

by the method in which parameters are chosen. By taking a broad look at the nu-

merical results, one might suspect that pseudoprimes occur at random. Even though

there is intrinsic order to the pseudoprimes that occur for each tests, heuristically the

fact that n turns out to be a pseudoprime for a given method could be attributed

120

to some kind of randomness, or “luck”. Using this way of thinking, we might want

to argue that the output of say Un (mod n) is almost random for a composite n and

if it happens to satisfy a congruence which would be true if n were a prime, then

this is due to some sort of luck. Thus, by increasing the possible output values of

Un (mod n), we would make it less likely that n turns out to be a pseudoprime. With

this in mind we turn to larger finite rings to accomplish exactly this task.

7.2 Lehmer Sequences in Finite Commutative Rings

Let R denote a finite commutative ring with identity. In Section 1.7, we discussed

such rings. These ideas where defined as one would expect, but refer to back for more

details.

As with integer Lehmer sequences, if R ∈ R, we define
√

R to be an object that

when squared gives R. We never evaluate
√

R and we define a
√

R + b ≡ c
√

R +

d (mod n) if a ≡ c (mod n) and b ≡ d (mod n).

For R,Q ∈ R, we define the Lehmer sequences

Uk(
√

R,Q) =
√

RUk−1(
√

R,Q)−QUk−2(
√

R,Q), U0(
√

R,Q) = 0, U1(
√

R, Q) = 1

Vk(
√

R,Q) =
√

RVk−1(
√

R,Q)−QVk−2(
√

R,Q), V0(
√

R,Q) = 2, V1(
√

R,Q) =
√

R.

As before D = R − 4Q ∈ R. All computations are done in the ring. Since
√

R is

only defined when it is squared, we can use the companion sequences in Chapter 3 to

compute the terms as coefficients without evaluating the expression
√

R.

121

In the general setting of commutative rings with identity, the characteristic roots

α, β =
√

R±
√

D
2

are in a ring extension. These sequences still satisfy the Binet formulas,

Uk = αk−βk

α−β
and Vk = αk + βk.

Now we are prepared to give the four congruences of the Lehmer Criteria in the

general setting of R. Since we have not defined the Jacobi symbol when D and R are

elements in a general finite ring, we will give the congruences with both subscripts

n− 1 and n + 1.

Theorem 7.2.1. The Commutative Ring Lehmer Criteria.

If n is an odd prime, ε = ±1, R, Q ∈ R where R is a commutative ring with identity,

and D = R− 4Q, then

1. 2Q(1+ε)/2Un−ε(
√

R,Q) ≡ [D(n−1)/2 − εR(n−1)/2]
√

R (mod n).

2. 2Q(1+ε)/2Vn−ε(
√

R,Q) ≡ R(n+1)/2 − εD(n+1)/2 (mod n).

3. Un(
√

R, Q) ≡ D(n−1)/2 (mod n).

4. Vn(
√

R,Q) ≡ R(n−1)/2
√

R (mod n).

Proof. For any integer k, the identity of Theorem 1.5.4 applies, since it only depends

on the binomial expansion of the Binet formulas and the commutativity of the ring:

2k−1Uk =
∑
i odd

(
k
i

)
R(k−i)/2D(i−1)/2

2k−1Vk =
∑

i even

(
n
i

)
R(k−i)/2Di/2.

122

Using the characterization of primes via binomial coefficients (Theorem 1.2.1), we

replace k by n in the above sums and eliminate terms congruent to zero modulo n.

The definition of congruence in the ring and the reduction of the identities above

yields Congruences 3 and 4 of the theorem.

Un ≡ 2n−1Un ≡ D(n−1)/2 (mod n)

Vn ≡ 2n−1Vn ≡ Rn/2 ≡ R(n−1)/2
√

R (mod n).

Using the identities of Corollary 1.5.3 gives the first 2 congruences

2Q(1+ε)/2Un−ε = UnV1 − εVn ≡ [D(n−1)/2 − εR(n−1)/2]
√

R (mod n)

2Q(1+ε)/2Vn−ε = VnV1 − εUn ≡ R(n+1)/2 − εR(n+1)/2 (mod n).

If n is an odd composite integer satisfying Congruence i, then we say n is a Lehmer

pseudoprime with respect to the parameters R, Q, and D in the ring R (denoted

R-lehpspi(R, Q,D)) for i = 3 or 4. In the first two congruence the notation must

distinguish between ε = +1 and ε = −1. We accomplish this by letting i = 1+ or 1−

according to ε = +1 or ε = −1. The same convention is used for i = 2±. Note that

all these definitions are only defined for parameters that satisfy D = R− 4Q.

If n is a prime and R and D are integers with (RD,n) = 1, then R(n−1)/2 ≡

(R|n) (mod n) and D(n−1)/2 ≡ (D|n) (mod n). Thus, if n is a prime, R = Zn, and

123

ε = (RD|n), then each of the congruences above reduce to the standard Lehmer

Criteria of Chapter 2.

In the next section we will examine the characteristic roots of the congruences of

Theorem 7.2.1 in the case of a general commutative ring with identity R. Then we

give realizations of this criteria in quotient rings.

7.3 Characteristic Root Analysis of General Case

Since the characteristic roots have the same form, we can apply the techniques of

Chapter 6 to get relationship between parameters where a given integer satisfies the

congruence. First we reformulate the congruences in Theorem 7.2.1 in terms of the

characteristic roots.

Theorem 7.3.1. The Commutative Ring Lehmer Criteria via Characteristic Roots.

If n is an odd integer, ε = ±1, R,Q ∈ R where R is a commutative ring with identity,

and D = R− 4Q, then

1. 2Q(1+ε)/2Un−ε ≡ [D(n−1)/2 − εR(n−1)/2]
√

R (mod n) if and only if

2(αβ)(1+ε)/2(αn−ε − βn−ε) ≡ [(α− β)n−1 − ε(α + β)n−1](α2 − β2) (mod n).

2. 2Q(1+ε)/2Vn−ε(
√

R,Q) ≡ R(n+1)/2 − εD(n+1)/2 (mod n) if and only if

2(αβ)(1+ε)/2(αn−ε + βn−ε) ≡ (α + β)n+1 − ε(α− β)n+1 (mod n).

3. Un ≡ D(n−1)/2 (mod n) if and only if

αn − βn ≡ (α− β)n (mod n).

124

4. Vn ≡ R(n−1)/2
√

R (mod n) if and only if

αn + βn ≡ (α + β)n (mod n).

Congruences 1 and 2 are not as easy to analyze in this general setting. By exam-

ining, ε = +1 and ε = −1 separately we can prove specific results.

Theorem 7.3.2. Parameter Reciprocity for Congruence 1 and 2 (ε = -1).

If n is an odd composite integer, then

i. n is a R-lehpsp1−(R,Q,D) if and only if n is a R-lehpsp1−(D,−Q, R).

ii. n is a R-lehpsp2−(R,Q,D) if and only if n is a R-lehpsp2−(D,−Q, R).

Proof. Define α , β and α1 , β1 to represent the characteristic roots for the parameter

sets (R,Q,D) and (D,−Q,R) respectively. Note that these roots satisfy α = α1 and

β = −β1. Using the characteristic root reformulation in Theorem 7.3.1, we see that

the Congruences 1 and 2 are satisfied in the case ε = −1 with α and β, if and only if

they are satisfied with α1 and β1.

The case ε = +1 is somewhat more cumbersome, so we elect to focus the remainder

of our analysis on Congruences 3 and 4.

Theorem 7.3.3. Parameter Bi-Reciprocity for Congruences 3 and 4.

If n is an odd composite integer, then n is a R-lehpsp3(R,Q,D) if and only if n is a

R-lehpsp4(D,−Q,R).

125

Proof. We use the same relationships between the characteristic roots of these pa-

rameters as discussed in the last proof. The roots satisfy the characterization of

Congruence 3 in Theorem 7.3.1 if and only if the corresponding roots satisfy Congru-

ence 4 in Theorem 7.3.1.

Thus, in the general case, we can conclude that Congruences 3 and 4 have the

same number of parameters giving n as a pseudoprime. We can also prove quite a bit

more in the case of Congruences 3 and 4.

Theorem 7.3.4. Families of Parameters for Congruences 3 and 4.

If n is an odd composite integer and c is any integer such that (c, n) = 1, then

i. n is a R-lehpsp3(R,Q,D) if and only if n is a R-lehpsp3(cR, cQ, cD).

ii. n is a R-lehpsp4(R,Q,D) if and only if n is a R-lehpsp4(cR, cQ, cD).

Proof. Here we consider the roots αc =
√

cα and βc =
√

cβ where α, β =
√

R±
√

D
2

. For

any c value with (c, n) = 1, we can multiply both sides of Congruences 3 in Theorem

7.3.1 by
√

cn to see that the congruence is satisfied with α and β if and only if it

is satisfied with αc and βc. Finally, noting that these roots are exactly the roots

corresponding to the parameters in the theorem, we see that the first claim is true.

The same technique gives the second claim.

This is a powerful theorem and it is interesting that it holds in the general case.

It allows us to conclude that all of the parameters can be classified into families as

126

we did in the examples in Chapter 6. Also notice that we were unable to prove a

corresponding theorem in the specific case of Congruences 3 and 4 of the standard

Lehmer criteria. This seems like a contradiction. However, in the standard Lehmer

criteria we not only use the congruences here, but we also make use of Jacobi symbols

and the values they should give at primes. Thus, the standard Lehmer criteria we

discussed had extra conditions placed upon it.

All of these theorems apply broadly to Lehmer sequences over any commutative

ring with identity. Until now the only cases discussed in the literature were limited to

the instances when R was Zn for some integer n. For the remainder of this chapter,

we explore the case where R is a quotient ring.

7.4 Lehmer Sequences in Quotient Rings

For a given integer n and a nonzero polynomial f(x), let R and Q be elements of the

finite ring Zn[x]/(f(x)) and consider the same Lehmer sequences as before:

Uk =
√

RUk−1 −QUk−2, U0 = 0, U1 = 1

Vk =
√

RVk−1 −QVk−2, V0 = 2, V1 =
√

R.

All computations are done in the ring.

Most mathematical software packages now come with commands that implement

finite ring and finite field arithmetic. In addition, these computations can be realized

via matrices using the finite ring representation discussed in Chapter 1. The tests we

127

develop here are slower in practice, but have the same order of magnitude. That is,

the tests will still take O(log(n)) time, but the constant multiplier will be larger in

this case.

Notice that Zn[x]/(f(x)) is in general only a ring. However, if n is a prime and f(x)

is an irreducible polynomial, then this set is a field. In this chapter, we first let f(x)

be an arbitrary polynomial of any degree d and consider the resulting congruences.

Then in subsequent sections we will investigate special forms for f(x).

Setting R = Zn[x]/(f(x)) in Theorem 7.2.1 we obtain the following.

Theorem 7.4.1. The Lehmer Criteria in a Quotient Ring.

If n is an odd prime, ε = ±1, R,Q ∈ Zn[x]/(f(x)) where f(x) is a nonzero polynomial,

and D = R− 4Q, then

1. 2Q(1+ε)/2Un−ε ≡ [D(n−1)/2 − εR(n−1)/2]
√

R (mod f(x), n).

2. 2Q(1+ε)/2Vn−ε ≡ R(n+1)/2 − εD(n+1)/2 (mod f(x), n).

3. Un ≡ D(n−1)/2 (mod f(x), n).

4. Vn ≡ R(n−1)/2
√

R (mod f(x), n).

Note that we use the notation (mod f(x), n) as a reminder that reduction in the

quotient ring must be done modulo f(x) and n. See [22] for an elaborate discussion

of this notation and the corresponding operations.

128

These congruences are somewhat less satisfying than those for the integer se-

quences. However, they do not require a great deal more calculation. Computations

take slightly longer since they are all being done in a finite ring and now we have to

exponentiate where we only need to compute a Jacobi symbol before.

Before we consider special polynomials f(x), we first discuss the situations where

R and/or D are in the base field. In these case, the Jacobi Symbol can be used.

Note that these are major restrictions and may greatly hinder the effectiveness of the

resulting primality tests. However, they are interesting for comparison with tests we

have previously examined and they give simpler characterizations.

Corollary 7.4.2. D in the Base Field.

If n is an odd prime, ε = ±1, R,Q ∈ Zn[x]/(f(x)) where f(x) is a nonzero polynomial,

and D = R− 4Q ∈ Zn, then

1. 2Q(1+ε)/2Un−ε ≡ [(D|n)− εR(n−1)/2]
√

R (mod f(x), n).

2. 2Q(1+ε)/2Vn−ε ≡ R(n+1)/2 − ε(D|n)D (mod f(x), n).

3. Un ≡ (D|n) (mod f(x), n).

4. Vn ≡ R(n−1)/2
√

R (mod f(x), n).

Corollary 7.4.3. R in the Base Field.

If n is an odd prime, ε = ±1, Q ∈ Zn[x]/(f(x)) where f(x) is a nonzero polynomial,

R ∈ Zn and D = R− 4Q, then

129

1. 2Q(1+ε)/2Un−ε ≡ [D(n−1)/2 − ε(R|n)]
√

R (mod f(x), n).

2. 2Q(1+ε)/2Vn−ε ≡ (R|n)R− εD(n+1)/2 (mod f(x), n).

3. Un ≡ D(n−1)/2 (mod f(x), n).

4. Vn ≡ (R|n)
√

R (mod f(x), n).

If R and D are in the base field, then Q is automatically in the base field. Thus,

choosing any two parameters in the base field reduces to the standard Lehmer criteria

of Chapter 3. Note that both of these Corollaries could be implemented by choosing

D or R in the base field first and then choosing the second parameter and computing

the third.

Any of these congruences could be tested as they stand. For ease in implementa-

tion and efficiency in testing we will spend the next section looking into special types

of parameters that will lead to tests which involve fewer computations. By simplify-

ing, we may be losing some the effectiveness of the test. Numerical calculations at

the end of this chapter will illustrate the effectiveness of various simplifications.

7.5 Special Types of Quotient Rings

The easiest way to simplify our criteria is by restricting the form of the polynomial

f(x). In this section, we will investigate what happens in Theorem 7.4.1 when f(x)

has the very specific form, xd − f0.

130

Let n be an odd integer. Consider a polynomial of the form f(x) = xd − f0

where f0 ∈ Zn and d|(n − 1). The test will be at its simplest when d = 2, but the

development is essentially the same for any d|(n−1). The elements of this ring satisfy

the following properties.

Theorem 7.5.1. If n is an odd prime and f(x) = xd − f0 such that d|(n− 1), then

i. xd ≡ f0 (mod f(x), n).

ii. xn ≡ f
n−1

d
0 x (mod f(x), n).

iii. (ad−1x
d−1+· · ·+a1x+a0)

n ≡ ad−1f
(n−1)(d−1)

d
0 xd−1+· · ·+a1f

n−1
d

0 x+a0 (mod f(x), n).

Proof. The first claim follows immediately from the definition. Since d|n−1, we have

xn−1 ≡ (xd)
n−1

d ≡ (f0)
n−1

d ≡ f
n−1

d
0 (mod f(x), n).

Thus, xn ≡ f
n−1

d
0 x (mod f(x), n).

For the third claim, the multinomial theorem gives

(
∑d−1

k=0 akx
k)n =

∑
k0+···+kd−1=n

(
n

k0, k1, . . . , kd−1

)
ak0

0 (a1x)k1 . . . (ad−1x
d−1)kd−1

≡
∑d−1

k=0 an
kx

kn ≡
∑d−1

k=0 ak(f
n−1

d
0 x)k (mod f(x), n).

Letting d = 2 yields the following corollary.

131

Corollary 7.5.2. If n is an odd prime and f(x) = x2 − f0, then

i. x2 ≡ f0 (mod f(x), n).

ii. xn ≡ (f0|n)x (mod f(x), n).

iii. (a1x + a0)
n ≡ a1(f0|n)x + a0 (mod f(x), n).

Note that these congruences in themselves could be used as tests for primality.

But we intend to first return to the Lehmer sequences before we examine the testing

effectiveness. Rather than restate each congruence in these special rings we only

restate Congruences 3 and 4. Congruences 1 and 2 can be created from these two

congruences and are somewhat more complicated.

Using the special polynomials of this section, we get the following criteria for

primality.

Theorem 7.5.3. If n is a prime, d|(n− 1), R = Zn[x]/(xd − f0), and

i. if D̄ =
∑d−1

i=0 D̄ix
i ∈ R, D = D̄2, and D = R − 4Q with R,Q ∈ R, then

D̄Un(
√

R,Q) ≡ D̄d−1f
(n−1)(d−1)

d
0 xd−1 + · · ·+ D̄1f

n−1
d

0 x + D̄0 (mod xd − f0, n).

ii. if P =
∑d−1

i=0 Pix
i ∈ R, R = P 2 and Q ∈ R, then

Vn(P, Q) ≡ Pd−1f
(n−1)(d−1)

d
0 xd−1 + · · ·+ P1f

n−1
d

0 x + P0 (mod xd − f0, n).

Proof. Apply Theorem 7.5.1 to expand the right hand sides of Congruences 3 and 4

in Theorem 7.4.1.

132

Note the special case when d = 2. This case will be examined in more detail in

the numerical section. From the general theory, we know that Congruences 3 and 4

give roughly the same accuracy in testing for primality. Thus, we will focus on the

following simplified case of the theorem above.

Corollary 7.5.4. If n is a prime and P, Q ∈ Zn[x]/(x2 − f0) with P = P1x + P0,

then Vn(P, Q) ≡ P1(f0|n)x + P0 (mod x2 − f0, n).

Note that this test contains the standard integer test. If P1 = 0, then we get

Vn ≡ P0 (mod n). Thus, we generally never choose P1 = 0 unless we wish to revert

to integer testing.

So far we have used the special form of f(x) to allow for easy computation of P n

and thus simplify Congruence 4 of Theorem 7.4.1. Before we continue, we look at the

conditions under which we get a more direct generalization of the Standard Lehmer

Criteria. We do this by forcing D to be in the base field. As an aside, if P = P1x+P0

and Q = Q1x + Q0, then D = P 2 − 4Q = [2P0P1 − 4Q1]x + [P 2
1 f0 + P 2

0 − 4Q0].

Thus, the condition for D to be in the base field becomes P0P1 = 2Q1 and we get

D = P 2
1 f0 + P 2

0 − 4Q0.

Theorem 7.5.5. If n is an odd prime, f(x) = x2 − f0 and P = P1x + P0 and

Q = Q1x + Q0 are in Zn[x]/(f(x)) such that D = P 2 − 4Q is in Zn, then

1. 2Q(1+ε)/2Un−ε(P, Q) ≡ [(D|n)− ε(f0|n)]P1x + [(D|n)− ε]P0 (mod f(x), n).

133

2. 2Q(1+ε)/2Vn−ε(P, Q) ≡ [1+(f0|n)]P0P1x+[(f0|n)P 2
1 f0+P 2

0−ε(D|n)D] (mod f(x), n).

3. Un(P, Q) ≡ (D|n) (mod f(x), n).

4. Vn(P, Q) ≡ P1(f0|n)x + P0 (mod f(x), n).

Proof. In Corollary 7.4.2, make the substitutions R = P 2 and P n using Theorem

7.5.1. Then use x2 = f0 and collect like terms.

Finally, we ask under what conditions does this completely reduce to the standard

Lucas Criteria. The required conditions are ε = (D|n) and (f0|n) = +1. Under these

restriction we obtain:

Corollary 7.5.6. If n is an odd prime, f(x) = x2− f0 and P, Q ∈ Zn[x]/(f(x)) such

that D = P 2 − 4Q ∈ Zn and if (f0|n) = +1, then

1. Un−(D|n)(P, Q) ≡ 0 (mod f(x), n).

2. Vn−(D|n)(P, Q) ≡ 2Q(1−(D|n))/2 (mod f(x), n).

3. Un(P, Q) ≡ (D|n) (mod f(x), n).

4. Vn(P, Q) ≡ P (mod f(x), n).

Proof. All of these congruences are immediate except perhaps Congruence 2. From

the previous theorem, 2Q(1+(D|n))/2Vn−(D|n)(P, Q) ≡ [1 + 1]P0P1x + [P 2
1 f0 + P 2

0 −

134

(D|n)(D|n)D] (mod f(x), n). Note the conditions on D discussed before the last theo-

rem give 2Q(1+(D|n))/2Vn−(D|n)(P, Q) ≡ 4Q1x+4Q0 (mod f(x), n). Thus, Vn−(D|n)(P, Q) ≡

2Q(1−(D|n))/2 (mod f(x), n).

These special choices may actually make our primality test worse, but it illustrates

that we are in fact building a more general theory.

7.6 Testing Sums of Binomial Coefficients

When we first introduced primality testing, we discussed the characterization of

primes through binomial coefficients. In particular, n is a prime if and only if(
n
k

)
≡ 0 (mod n) for all value of k with 1 ≤ k ≤ n − 1. For a large integer

n, we commented earlier that these binomial coefficients could not efficiently tested

directly. However, we discovered that we were able to evaluate a sum of binomial

coefficients in an efficient way. With the theory of the previous sections, we will now

be able to evaluate many different types of sums involving binomials coefficients and,

therefore, we should expect to be able to provide better primality tests.

Let us recall how we first were able to incorporate sums into primality testing.

Note in the following theorem we are not assuming that n is a prime.

Theorem 7.6.1. If n and a are positive integers such that (a+1)n ≡ a+1 (mod n),

then
n−1∑
k=1

(
n
k

)
ak ≡ 0 (mod n).

135

Proof. Using the binomial theorem, the result follows from simplifying the congruence

a + 1 ≡ (a + 1)n ≡
n∑

k=0

(
n
k

)
ak (mod n).

Therefore, if n is a pseudoprime for the standard Fermat test, then the equation

above is satisfied. In essence, the main change that was made when we moved from

Fermat based tests to Lucas sequence based test was the sums we were considering.

Recall that the Lucas sequence Un satisfies

2n−1Un =
∑
i odd

(
n
i

)
P n−iD(i−1)/2.

If we use the Lucas sequence above, then we get a similar formula for the sum as

in Theorem 7.6.1. However, now we look at a sum of half the binomial coefficients.

Note that if P = a and Q = (a2 − b)/4, then D = b.

Theorem 7.6.2. If n is an odd positive integer and a is a positive integer such that

Un(a, (a2 − b)/4) ≡ (b|n) (mod n), 2n−1 ≡ 1 (mod n), and b(n−1)/2 ≡ (b|n) (mod n),

then ∑
kodd
k 6= n

(
n
k

)
an−kb(k−1)/2 ≡ 0 (mod n).

Proof. The result follows immediately since

(b|n) ≡ Un(a, (a2 − b)/4) ≡ 2n−1Un ≡ b(n−1)/2 +
∑
kodd
k 6= n

(
n
k

)
P n−kb(k−1)/2 (mod n).

136

Experimental evidence and various theories in the literature suggest that Lucas

sequences provide more accurate primality testing than the Fermat based tests. One

heuristic explanation for this improvement is that the sum for Lucas sequences involve

a more sparse and random sampling of the binomial coefficients.

Now with the use of specific polynomials f(x) = xd−a, we can use Lucas sequences

over finite rings to sample many other sums of binomial coefficients. The following

theorem summaries various sums of binomial coefficients we can now access. Here we

require D = x

Theorem 7.6.3. If n is an odd positive integer, d|(n − 1) and f(x) = xd − b is

irreducible in Zn[x] such that Un(a, (a2 − x)/4) ≡ x(n−1)/2 (mod f(x), n) and 2n−1 ≡

1 (mod n), then

∑
m = 0

2dm + i < n

(
n

2dm + i

)
an−2dm−ibm ≡ 0 (mod n) for all i odd with 1 ≤ i ≤ 2d− 1.

Proof. Since xd ≡ b (mod f(x), n), observe

x
j−1
2 ≡


bm , (j − 1)/2 = dm or j = 2dm + 1
bmx , (j − 1)/2 = dm + 1 or j = 2dm + 3
...

...
bmxd−1 , (j − 1)/2 = dm + (d− 1) or j = 2dm + 2d− 1

Notice that the power of x is simply given by j (mod 2d). From the hypothesis

we have
x(n−1)/2 ≡ Un(a, (a2 − x)/4) ≡ 2n−1Un(a, (a2 − x)/4)

≡
∑

j odd

(
n
j

)
an−jx(j−1)/2 (mod f(x), n).

137

Now we reduce the powers of x in the sum and group like terms. This seems like

a difficult task, but using the fact at the beginning of the proof we can simply look

at odd congruence classes modulo 2d.

x(n−1)/2 ≡ x(n−1)/2 +
∑
i odd

i ≤ 2d− 1

xi
∑
m = 0

2dm + i < n

(
n

2dm + i

)
an−2dm−ibm (mod f(x), n).

Since the sum is congruent to zero and the polynomial f(x) is irreducible, we conclude

that each coefficient of xi must be congruent to zero modulo n. Thus, we get the

result.

Rephrased in terms of arithmetic progressions, we obtain the following.

Corollary 7.6.4. If n is an odd positive integer, d|(n − 1), and f(x) = xd − b is

irreducible in Zn[x] such that Un(a, (a2 − x)/4) ≡ x(n−1)/2 (mod f(x), n) and 2n−1 ≡

1 (mod n), then

∑
j ≡ i (mod 2d)

j 6= n

(
n
j

)
an−jb

j−i
2d ≡ 0 (mod n) for all i odd with 1 ≤ i ≤ 2d− 1.

Thus, we have the tools to test many arithmetic sums of binomial coefficients.

A prime obviously satisfies all of these tests, since the binomial coefficients are all

congruence to zero except the first and last. But a composite must have other binomial

coefficients that are not zero.

138

7.7 Numerical Results

Many different primality testing algorithms could be developed using the congruences

of this chapter. In general, we are no longer in the setting of integers, so the methods

of choosing parameters of Chapters 3 through 5 are no longer applicable. Thus, we

face the two problems of (1) finding algorithms that most effectively use the theory of

this chapter, and (2) developing appropriate methods for choosing parameters. Both

of these problems will take considerable numerical work. In this section, we give

explore numerical data for one specific algorithm from this chapter.

We will consider Corollary 7.5.4 for the remainder of this chapter. That is, for a

given integer n, we let f(x) = x2 − f0 and P, Q ∈ Zn[x]/(f(x)) with P = P1x + P0

and we test the congruence Vn(P, Q) ≡ P1(f0|n)x + P0. Note that we have to choose

all the values f0, P0, P1, Q0, and Q1 in Zn. Note that we could also choose the values

for D and P or D and Q, since any two of the three parameters determines the third.

We give a brief summary of this algorithm here:

Definition 7.7.1. Quadratic Extension Lucas Testing.

For a given odd positive integer n, the algorithm proceeds as follows:

1. Choose f0 ∈ Zn so that (f0|n) has the desired value.

If (f0|n) = 0 is encountered, return n is composite.

2. Choose P1, P0, Q1, Q0, D1, and D0 such that D0 = P0+4Q0 and D1 = P1+4Q1.

139

Let P = P1x + P0, Q = Q1x + Q0, and D = D1x + D0.

3. If n satisfies Vn(P, Q) ≡ P1(f0|n)x + P0 (mod f(x), n), return n is a probable

prime. If n not, return n is a composite.

Before this algorithm can be implemented, we need an effective way to implement

Step 2 of the algorithm above. It seems natural to require that each parameter be

relatively prime to n, or zero, and if this is not true, then return that n is composite.

Note that this still does not give a method for choosing these parameters.

In Chapters 3-5, we choose parameters based on Jacobi symbols involving n.

Fixing the same parameters for all n in the integer test seems to give less effective

primality testing. However, fixing the same parameters for all n in the Quadratic

Extension Lucas Test does not seem to hinder its effectiveness as we will see. Thus,

we will fix a set of parameters and then we will look at the number of pseudoprimes

up to x = 10k.

Table 7.7.1: The number of pseudoprimes up to x = 10k for the Quadratic
Extension Lucas Test with f(x) = x2 − 2 and various fixed choices for P and Q.

P Q 103 104 105 106 107 108

3 2 3 22 78 245 750 2057
x + 1 x + 1 3 27 203
x + 1 2x + 1 0 0 0 0 0 0
x + 2 2x + 1 15 116 888
7x + 5 2x + 3 0 0 0 0 0 5

The parameters in the first row of Table 7.7.1 are in the base field. Thus, the first

row is simply Lucas primality testing. Most random choices for P and Q seem to give

results as in rows three and five. That is, many fixed P and Q give zero pseudoprimes

140

out to 108. This is quite remarkable since Lucas testing in the base field tests to be

most effective when methods are used to dynamically choose parameters. However,

the second and fourth rows raise some questions. All of the pseudoprimes in the

second row are divisible by 7 and all the pseudoprimes in the fourth row are divisible

by 3. The author has yet been unable to predict why this is the case.

Computations in the finite field slows down efficiency of these primality tests.

However, the data shown here suggests that such testing can give extremely accurate

results.

141

Bibliography

[1] Adams, W.W.: Characterizing Pseudoprimes for Third-Order Linear Recur-

rences. Math. Comp. 48, 1-15 (1987).

[2] Adams, W.W., Shanks, D.: Strong primality tests that are not sufficient. Math.

Comp. 39, 255-300 (1982).

[3] Adleman, L.M., Pomerance, C., Rumely, R.S.: On distinguishing prime numbers

from composite numbers. Ann. of Math. 117, 173-206 (1983).

[4] Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P.

http://www.cse.iitk.ac.in/news/primality.pdf. Preprint.

[5] Alford, W.R., Granville, A., Pomerance, C.: There are infinitely many

Carmichael numbers. Ann. of Math. 139, 703-722 (1994).

[6] Alford, W.R., Granville, A., Pomerance, C.: On the difficulty of finding reliable

witnesses, Algorithmic Number Theory (L.M. Adleman and M.-D. Huang, eds.),

Lecture Notes in Comput. Sci. 1-16, Springer-Verlag, New York (1994).

[7] Andrews, G.E.: Number Theory. Dover Publications, Inc. (1971).

[8] Arnault, F.: The Rabin-Monier Theorem for Lucas Pseudoprimes. Math. Comp.

66, 869-881 (1997).

[9] Arnault, F.: Rabin-Miller Primality Test: Composite Numbers which Pass it.

Math. of Comp. 64, 335-361 (1995).

142

[10] Arnault, F.: Constructing Carmichael Numbers which are Strong Pseudoprimes

to Several Bases. J. Symbolic Computation 20, 151-161 (1995).

[11] Arno, S.: A note on Perrin pseudoprimes. Math. Comp. 56, 371-376 (1991).

[12] Atkin, A.O.: Intelligent Primality Test Offer. Computational Perspectives on

Number Theory (D. A. Buell and J. T. Teitelbaum, eds.), Proceedings of a

Congerence in Honor of A. O. L. Atkin 1-11, International Press, (1998).

[13] Baillie, R., Wagstaff, S.S., Jr.: Lucas pseudoprimes. Math. Comp. 35, 1391-1417

(1980).

[14] Carmichael, R.D.: The Theory of Numbers. Mathematical Monographs No. 13.

John Wiley & Sons, Inc., New York (1914).

[15] Davis, K.S., Webb, W.A.: Lucas’ Theorem for prime powers. European J. Com-

bin. 11, 229-233 (1990).

[16] Dummit, D.S., Foote, R.M.: Abstract Algebra. John Wiley and Sons, Inc. (1999).

[17] Erdös, P.: On pseudoprimes and Carmichael numbers. Publ. Math. Debrecen 4,

201-206 (1956).

[18] Erdös, P., Kiss, P., Sárközy, A.: A Lower Bound for the Counting Function of

Lucas Pseudoprimes. Math. Comp. 51, 315-323 (1988).

[19] Gallian, J.A.: Contemporary Abstract Algebra. Houghton Miffline Company,

New York, (1998).

[20] Gordon, D.M.: Pseudoprimes on elliptic curves. Theorie des nombres (J. M.

DeKoninck and C. Levesques, eds.) 290-305, de Gruyter, Berlin (1989).

[21] Gordon, D.M., Pomerance, C.: The distribution of Lucas and elliptic pseudo-

primes. Math. Comp. 57, 825-838 (1991) 60, 877 (1993).

143

[22] Grantham, J.: Frobenius Pseudoprimes. Math. Comp. 70, 873-891 (2000).

[23] Grantham, J.: A probable Prime Test with High Confidence. J. Number Theory

72, 32-47 (1998).

[24] Grantham, J.: There are infinitely many Perrin Pseudoprimes.

http://www.pseudoprime.com/pseudo3.pdf. Preprint.

[25] Granville, A.: It is easy to determine whether a given integer is prime. Bull.

Amer. Math. Soc. 42, 3-38 (2005).

[26] Gurak, S. Pseudoprimes for higher-order linear recurrence sequences. Math.

Comp. 55, 783-813 (1990).

[27] Hardy, G.H., Wright, E.M.: The Theory of Numbers (Fourth Edition). Oxford

University Press, New York (1965).

[28] Jaeschke, G.: On strong pseudoprimes to several bases. Math. Comp. 61, 915-926

(1993).

[29] Koblitz, N.: A Course in Number Theory and Cryptography. Springer-Verlag,

New York (1987).

[30] Kurtz, G.C., Shanks, D., Williams, H.C.: Fast primality tests for numbers less

that 501̇09. Math. Comp. 46, 691-701 (1986).

[31] Lucas, E.: Théorie des fonctions numériques simplement périodiques. Amer. J.

Math. 1, 184-240 and 289-321 (1878).

[32] Lehmer, D.H.: On the converse of Fermat’s theorem. Amer. Math. Monthly. 43,

347-354 (1936).

[33] Lehmer, D.H.: An Extended Theory of Lucas’ Functions, Ann. of Math. 31,

419-448 (1930).

144

[34] Miller, G.: Riemann’s hypothesis and tests for primality. J. Comput. System Sci.

13, 300-317 (1976).

[35] Monier, L. Evaluation and coparison of two efficient probabilistic primality test-

ing algorithms, Theoretical Computer Science 12, 97-108 (1980).

[36] Morrison, M.A.: A note on primality testing using Lucas sequences. Math. Comp.

29, 181-182 (1975).

[37] Muller, S.: A Probable Prime Test with Very High Confidence for n ≡ 3 (mod n).

J. Cryptology 16, 117-139 (2003).

[38] Muller, S.: Some remarks on primality testing based on Lucas functions. In

Number Theory for the Millennium 3, 1-22 (2001).

[39] Muller, S.: On the rank of appearance and the number of zeros of the Lucas

sequences over Fq. In Finite Fields and Applications, 390-408. Springer-Verlag,

Berlin (2001).

[40] Muller, S.: On probable prime testing and the computation of square roots

mod n. In Algorithmic Number Theory (Leiden, 2001), 423-437. Springer-Verlag,

Berlin (2001).

[41] Muller, S.: On the combined Fermat/Lucas probable prime test. In Cryptography

and Coding, 222-235. Springer-Verlag, Berlin (1999).

[42] Muller, S.: A Note on Strong Dickson Psuedoprimes. Applicable Algebra In

Engineering, Communications, and Computing. 247-264. Springer-Verlag (1998).

[43] Muller, S.: On strong Lucas pseudoprimes. In Contributins to General Algebra,

10 (Klagenfurt, 1997), 237-249. Heyn, Klagenfurt, (1998).

[44] Pinch, R.G.E.: The Carmichael numbers up to 1015. Math. Comp. 61, 381-391

(1993).

145

[45] Pomerance, C.: A new lower bound for the pseudoprime counting function. Illi-

nois J. Math. 26, 4-9 (1982).

[46] Pomerance, C.: On the Distribution of Pseudoprimes. Math. Comp. 37, 587-593

(1981).

[47] Pomerance, C., Selfridge, J.L., Wagstaff, S.S.,Jr.: The pseudoprimes up to 25 ·

109. Math. Comp. 39, 1003-1025 (1980).

[48] Rabin, M.O.: Probabilistic Algorithm for Testing Primality. J. Number Theory

12, 128-138 (1980).

[49] Ribenhoim, P.: The Book of Prime Number Records. Berlin: Springer (1988).

[50] Robinson, R. M.: The converse of Fermat’s theorem, Amer. Math. Monthly 64,

703-710 (1957).

[51] Rotkiewicz, A.: On strong Lehmer pseudoprimes in the case of negative discrim-

inant in arithmetic progressions. Acta Arith. 68, 145-151 (1994).

[52] Rotkiewicz. A.: On Euler Lehmer pseudoprimes and Strong Lehmer pseudo-

primes with parameters L, Q in arithmetic progressions. Mathh. Comp. 39, 239-

247. (1982).

[53] Rotkiewicz. A.: On the pseudoprimes of the form ax+b with respect to the

sequence of Lehmer, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 20,

349-354 (1972).

[54] Rotkiewicz, A., Wasén, R.: Lehmer Numbers, Acta Arith. 36, 203-217 (1980).

[55] Szekeres, G.: Higher order pseudoprimes in primality testing. Combinatoric. Paul

Erdos is eighty, Bolyai Soc. Math. Stud. 2, 1996, 451-458, Janos Bolyai Math

Soc., Budapest (1996).

146

[56] Wagstaff, S.S., Jr.: Cryptanalysis of Number Theoretic Ciphers. Chapman &

Hall/CRC (2003).

[57] Williams, H.C.: Edouard Lucas and Primality Testing. volume 22 of Canadian

Mathematics Society Series of Monographs and Advanced Texts. John Wiley &

Sons, New York, (1998).

[58] Williams, H.C.: On numbers analogous to the Carmichael numbers. Canad.

Math. Bull. 20, 133-143 (1977).

[59] Williams,H.C., Judd, J.S. Some algorithms for prime testing using generalized

Lehmer functions, Math. Comp. 30, 867-886 (1976).

147

