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A NONLINEAR STABILITY ANALYSIS OF RHOMBIC OPTICAL

PATTERN FORMATION IN AN ATOMIC SODIUM

VAPOR RING CAVITY

Abstract

by Francisco Javier Alvarado, Ph. D.
Washington State University

August 2005

Chair: David J. Wollkind

This dissertation contributes to the theory of optical pattern formation

in a purely absorptive medium, namely a resonantly excited two-level

atomic sodium vapor system in a ring cavity, by means of a rhombic-

planform weakly nonlinear stability analysis applied to the governing

time-evolution equation for that phenomenon. In this system, under ap-

propriate conditions, diffraction of radiation can induce the onset of tran-

verse patterns consisting of stripes and rhombi, in an initially uniform

plane-wave configuration. This phenomenon is modeled by a Swift-

Hohenberg type-equation describing the intracavity field, and defined

on an unbounded spatial domain. This equation is derived from the

mean-field ring cavity model of optical bi-stability, generalized to in-

clude diffraction. These are complex valued Maxwell-Bloch equations

that, under appropriate conditions, can be reduced to a single nonlin-

ear time-evolution partial differential equation for the intracavity field.
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Steady-state spatially homogeneous (uniform) solutions of this asymp-

totic equation are known. The magnitude of the uniform solution and

the system’s absorption coefficient are the pattern formation parameters.

Linear stability analysis shows that only the real part of the solution

can be unstable when the absorption coefficient exceeds a critical level.

One dimensional analysis shows that supercritical stationary equilibrium

patterns occur for an interval of the magnitude of the uniform solution.

Two dimensional analysis shows that stripes and rhombi occur depend-

ing on the pattern formation parameters. These results are in accord with

relevant experimental evidence and numerical simulations.
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CHAPTER

ONE

Introduction

Rayleigh-Bénard bouyancy-driven convection has to date provided per-

haps the best studied example of nonlinear pattern selection (reviewed

by Koschmieder [5]). One of the methods traditionally used to predict

such pattern selection is a weakly nonlinear stability analysis that, al-

though incorporating the nonlinearities of the relevant model system,

basically pivots a perturbation procedure about the critical point of lin-

ear stability theory (reviewed by Wollkind et al. [13]). The advantage

of such an approach over strictly numerical procedures is that it allows

one to deduce quantitative relationships between system parameters and

stable patterns which are valuable for experimental design and difficult

to accomplish using simulation alone. Recently, there has been consid-

erable interest generated in pattern formation and selection during the

controlled plane-front solidification of a dilute binary alloy under the
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influence of an imposed temperature gradient and during chemical re-

actions occurring in an open gel continuously fed unstirred tank reactor.

In order to predict the sequence of interfacial morphologies and Turing

patterns actually observed during such solidification and chemical re-

actions, respectively, Wollkind et al. [14] and Wollkind and Stephenson

[15] performed the same weakly nonlinear stability analysis as originally

developed by Segel [11] to study Bénard convection cells on the gov-

erning systems of a diffusion equations appropriate for modeling these

phenomena. In particular all those investigations employed a hexagonal-

planform weakly nonlinear stability analysis to determine the relevant

parameter range for the transition between one-dimensional and hexag-

onal pattern formation.

We wish to continue this examination of nonlinear phenomena by

investigating spontaneous pattern formation in a ring cavity containing

atomic sodium vapor as its optical medium into which a laser pump

field is being injected. That passive optical system can be modeled by

a Swift-Hohenberg nonlinear partial differential time-evolution equa-

tion describing the intracavity field and defined on an unbounded two-

dimensional planar domain. The hexagonal-planform weakly nonlinear

stability analysis on that model was performed by Edmeade [2]. We

will perform a rhombic-planform weakly nonlinear stability analysis

and then compare the results obtained with both relevant experimental

evidence and numerical simulations as well as place them in the context

of some recent pattern formation studies. We begin below with a brief
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description of the phenomenon, a sketch of the reduction procedure re-

quired to derive the model equation, and a discussion of the methodology

to be employed.

1.1 Problem Formulation

This problem is concerned with spontaneous pattern formation in an op-

tical ring cavity containing a purely absorptive two-level atomic sodium

vapor medium. Under appropriate conditions, diffraction of radiation

can induce transverse patterns consisting of stripes, squares, and hexag-

onal arrays of bright spots or honeycombs in an initially uniform plane

wave configuration [1, 9]. Pattern formation in this phenomenon can be

studied theoretically by coupling Maxwell’s equation for the intracav-

ity field with the nonlinear Bloch equations for the atomic variables to

obtain the nondimensionalized complex system involving the indepen-

dent variables t ≡ time and (x, y) ≡ traverse Cartesian coordinates with

∇
2
≡ ∂2/∂x2 + ∂2/∂y2:

Xt = −(1 + iθ)X + Y − βP + iχ∇2X, (1.1a)

ε1Pt = f X − (1 + i∆)P, (1.1b)

ε2 ft = 1 − f − (X∗P + XP∗)/2. (1.1c)

This set of coupled Maxwell-Bloch equations is the well studied mean-

field ring cavity model [3, 7, 10]. Here X and Y are the internal cavity

3



and injected pump fields; P and f , the atomic polarization and popula-

tion difference between the upper and lower levels; θ and ∆, the cavity

mistuning and atomic detuning parameters; β and χ, the coefficients of

absorption and diffraction; and ε1,2 = κ/κ1,2 where κ is the dimensional

decay rate associated with X while κ1,2 bear a similar relationship to P

and f , respectively. Further an asterisked quantity denotes its complex

conjugate. Steady state spatially homogeneous solutions exist when the

pump field, Y, is constant and has no transverse variation. Stable equi-

librium patterns arise through instability of these solutions [3]. Should

ε1,2 � 1, as is typically the case, one can employ a steady-state assump-

tion on (1.1b,1.1c) to yield the quasi-equilibrium conditions for the atomic

variables (see [3] and Appendix A)

f = (1 + ∆2)/(1 + ∆2 + |X|2), (1.2a)

P = (1 − ∆2)/(1 + ∆2 + |X|2), (1.2b)

where |X|2 = XX∗, which reduces the system of (1.1) to a single nonlinear

time-evolution equation that describes the intracavity field X:

Xt = −X
[
1 + iθ +

β(1 − i∆)

1 + ∆2 + |X|2

]
+ Y + iχ∇2X. (1.3)

Equation (1.3) is the two-level generalization of the Kerr cavity, gener-

alized to include diffraction [6]. The limits of validity of this approxima-

tion remain a subject of debate; however, for this paper it is assumed that
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θ = O (1) and the limit |∆| → 0 remains regular. Under these conditions

the results for θ finite and ∆ = 0 are robust enough to approximate well

the behavior of a near-resonant ring cavity system [3]. Because the input

field is a plane wave, there exists a steady-state spatially homogeneous

solution, X = X0, to equation (1.3) when Y is a real positive constant

satisfying the steady state equation

Y2 = α[(1 + β/D)2 + (θ − β∆/D)2], (1.4)

where α = |X0|
2 andD = 1 + ∆2 + α. Equation (1.4) is single valued in Y

with respect to α provided 0 < β < βcrit, where βcrit satisfies (see [10] and

Appendix B)

27βcrit(1 + ∆2)(1 + θ2) = (βcrit − 2 + 2∆θ)3. (1.5)

For the particular values of θ = −1 and ∆ = 0, we have that βcrit = 10.2.

Equation (1.4) links the input field intensity Y2 and the transmitted

field intensity α. Graphs of α versus Y2 are shown in figure 1.1 for several

values of β. The shaded region between the vertical lines indicates the

interval where optical patterns may form (see section 2.3). For β > βcrit

the graph yields an S-shaped curve [7], but in our region of interest, it

yields a single valued function.
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Figure 1.1: Graphs of Y2 versusα. The shaded region between the vertical
lines indicates the interval where optical patterns may form
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CHAPTER

TWO

One-Dimensional Analysis

In order to investigate the fate of infinitesimal and finite amplitude dis-

turbances to the uniform state, X0, we introduce X = X0(1 + A) into

equation (1.3) and retain terms through third order in A to obtain

At ∼

3∑
n=1

n∑
i=0

1
(n − l)!l!

∂nF(0, 0)

∂An−l∂A∗l
An−lA∗l + iχ∇2A, (2.1)

where

F(A,A∗) = −(1 + A)
[
1 + iθ +

β(1 − i∆)
1 + ∆2 + α(1 + A)(1 + A∗)

]
, (2.2)

and

A = R + iI.

7



2.1 Linear Stability Analysis

The linear stability of the uniform solution, X0, can be investigated when

n = 1 in equation (2.1) for the one-dimensional situation of ∇2
≡ ∂2/∂x2

or

∂A
∂t
= A

[
−1 −

β(1 + ∆2)
D2 + i

{
β∆(1 + ∆2)
D2 − θ

}]
+ A∗

[
βα(1 − i∆)
D2

]
+ iχ

∂2A
∂x2

∂A∗

∂t
= A∗

[
−1 −

β(1 + ∆2)
D2 − i

{
β∆(1 + ∆2)
D2 − θ

}]
+ A

[
βα(1 + i∆)
D2

]
− iχ

∂2A
∂x2 ,

by employing the following normal mode expansion [6]:

[A,A∗] = [k1, k2] eσt cos(qx), where |k1|
2 + |k2|

2 , 0, (2.3)

which yields the eigenvalue problem

σk1 =

[
−1 −

β(1 + ∆2)
D2 + i

{
β∆(1 + ∆2)
D2 − (θ + χq2)

}]
k1 +

[
βα(1 − i∆)
D2

]
k2

σk2 =

[
−1 −

β(1 + ∆2)
D2 + i

{
β∆(1 + ∆2)
D2 − (θ + χq2)

}]
k2 +

[
βα(1 + i∆)
D2

]
k1,

and results in the quadratic secular equation

σ2 + 2
[
1 +

β(1 + ∆2)
D

]
σ + δ(θ + χq2) = 0, (2.4)

8



where

δ(θ + χq2) =
[
1 +

β(1 + ∆2)
D2

]2

+

[
β∆(1 + ∆2)
D2 − (θ + χq2)

]2

−
β2α2(1 + ∆2)

D4 .

After Firth and Scroggie [3], we will focus on the resonant-excitation

case, ∆ = 0, which reduces equation (2.4) to the following equation in σ:

σ2 + 2
[
1 +

β

(α + 1)2

]
σ +

(β + α + 1)[β(1 − α) + (α + 1)2]
(α + 1)3 + (θ + χq2)2 = 0.

(2.5)

The marginal curve for equation (2.5) on which σ = 0 has its lowest

threshold in (α, β)-space when (θ + χq2) = 0, that is, when q = qc, with

q2
c = −θ/χ. Here q2

c is positive and represents the transverse wave number

of the most unstable mode. It follows that for q = qc, equation (2.5) has

the following roots:

σR(α, β) = −1 +
β(α − 1)
(α + 1)2 (2.6a)

σI(α, β) = −1 −
β

α + 1
, (2.6b)

where σR, the growth rate of the most dominant mode, gives the marginal

stability curve

β = β0(α) =
(α + 1)2

α − 1
, (2.7)

and σI is strongly stabilizing. (See Appendix C for a detailed linear

stability analysis on equation (1.1)).
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Figure 2.1: Marginal Stability Curve in the α-β Plane

The marginal stability curve shows that the system is unstable for

β > β0 and corresponds to
∣∣∣θ + χq2

∣∣∣ , 0. This means that the system

becomes unstable when the cavity is mistuned in such a direction that

the wavelenght of the light is shorter than that of the nearby cavity

mode. These off axis waves can exactly fit the cavity, and it is this fitting

requirement that determines the transverse wave vector, qc, of the most

unstable mode [3, 7].
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2.2 Swift-Hohenberg Equation

In order to analyze the system’s nonlinear behavior we employ the fol-

lowing: substituting A = R + iI into equations (2.1) and (2.2), and sepa-

rating real and imaginary parts we derive equations for Rt and It which

when θ = −χq2
c have growth rates σR and σI respectively. Making use of

these facts to deduce the quasiequilibrium condition

I ∼ −
[
χ/σI(α, β)

] (
∇

2 + q2
c

)
R (2.8)

from the latter and employing this to eliminate I from the former, we

obtain the modified Swift-Hohenberg equation (see Appendix D)

Rt ∼ σR(α, β)R − ω0(α, β)R2
− ω1(α, β)R3 +

[
χ2

σI(α, β)

] (
∇

2 + q2
c

)2
R, (2.9)

where

σR(α, β) = −1 +
β(α − 1)
(α + 1)2 (2.10)

σI(α, β) = −1 −
β

α + 1
(2.11)

χq2
c = −θ = 1 (2.12)

ω0(α, β) =
βα(α − 3)
(α + 1)3 (2.13)

ω1(α, β) =
βα[8α − (α + 1)2]

(α + 1)4 . (2.14)
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According to Firth and Scroggie [3], this equation displays all the essential

features of the system, and qualitatively explains all their numerical

results. Equation (2.9) is valid only where the spatial spectrum of R is

concentrated around q = qc.

12



2.3 Nonlinear Analysis

In order to investigate the stability of the steady state uniform solution,

X0, to one dimensional perturbations we assume the following nonlinear

expansion to the model equation:

R ∼ A1(t) cos(qcx)+A2
1(t)[R20+R22 cos(2qcx)]+A3

1[R31 cos(qcx)+R33 cos(3qcx)].

(2.15)

The amplitude function is given by:

Ȧ1(t) ∼ σA1(t) − a1A3
1(t), (2.16)

where qc is the critical wave number of linear stability theory, σ is the

growth of the most dominant mode, and a1 is the Landau constant [13].

The nontrivial critical point of the amplitude function is given by:

A2
1 =

σ
a1
.

This critical point exists when σ and a1 have the same sign. The system is

subcritically unstable forσ and a1 negative, and the system re-equilibrates

supercritically for σ and a1 positive. The latter corresponds to pattern

formation [13], i.e., finite amplitude perturbations change the system

from the linearly unstable uniform state to a stable nonuniform state.

Substitution of the expansions of equations (2.15) and (2.16) into equa-

tion (2.9) results in a sequence of problems (see Appendix E), one for

13



each pair of values of m and n corresponding to a term of the form

Am
1 (t) cos(nqcx):

• The m = n = 1 problem gives the linear theory result

σ = σR.

• The m = 2 and n = 0 problem yields

R20 =
ω0/2

σ−1
I − σR

.

• The m = 2 and n = 2 problem yields

R22 =
ω0/2

9σ−1
I − σR

.

• The m = 3 and n = 1 problem yields

3σR31 − a1 = σRR31 − ω0(2R20 + R22) −
3ω1

4
.

To evaluate the Landau constant a1 we employ a Fredholm-type solv-

ability condition in the limit as β→ β0. This yields

a1 =
[
ω0(2R20 + R22) +

3ω1

4

] ∣∣∣∣∣
β=β0

14



which implies

a1(α) =
αβ0(α)

(α + 1)4

−19
9

[
α(α − 3)
α − 1

]2

+
3
4

[
8α − (α + 1)2

] .
From the graph of a1 versus α shown in figure 2.2 we see that a1 > 0

when α1 = 2.14306 < α < 4.16712 = α2. Figure 2.1 shows σR > 0 when

β > β0. Since instabilities arise only if β > β0 we can conclude that

the system re-equilibrates supercritically for α ∈ (2.14306, 4.16712). It

follows that stable equilibrium patterns form for this range of α.

2 3 4 5
Α

-1.5

-1

-0.5

0.5

1

1.5

a1

Figure 2.2: Plot of a1 versus α
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CHAPTER

THREE

Two-Dimensional Analysis

One-dimensional analysis reveals that spontaneous pattern formation

occurs in the ring cavity system when α1 = 2.14306 < α < 4.16712 =

α2. That is, the system is supercritically stable for the nondimensional

square of the uniform steady-state intracavity field in this range, and

the nondimensional absorption coefficient such that β > β0. While one-

dimensional analysis reveals the parameter values for which the system

is supercritically stable, and corresponds to pattern formation, we are

interested in the types of patterns that exists for α in this range.
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3.1 Rhombic-Planform Analysis

In order to investigate the possibility of occurrence of rhombic patterns,

we seek a solution of our model equation of the form

R(x, y, t) ∼ A1(t) cos(qcx)+B1(t) cos(qcz)+A2
1(t)R20(x)+A1(t)B1(t)R11(x, z)+

+ B2
1(t)R02(z) + A3

1(t)R30(x) + A2
1(t)B1(t)R21(x, z) +

+ A1(t)B2
1(t)R12(x, z) + B3

1(t)R03(z), (3.1)

where

z = x cos(ψ) + y sin(ψ)

R20(x) = R2000 + R2020 cos(2qcx)

R11(x, z) = R1111 cos[qc(x + z)] + R111(−1) cos[qc(x − z)]

R02(x) = R0200 + R0202 cos(2qcz)

R30(x) = R3010 cos(qcx) + R3030 cos(3qcx)

R21(x, z) = R2101 cos(qcz) + R2121 cos[qc(2x + z)] + R212(−1) cos[qc(2x − z)]

R12(x, z) = R1210 cos(qcx) + R1212 cos[qc(x + 2z)] + R121(−2) cos[qc(x − 2z)]

R03(x) = R0301 cos(qcz) + R0303 cos(3qcz),

17



and A1,B1 satisfy the amplitude equations

dA1

dt
∼ σA1 − A1(a1A2

1 + b1B2
1) (3.2a)

dB1

dt
∼ σB1 − B1(b1A2

1 + a1B2
1). (3.2b)

Here we are employing the notation R jlmn for the coefficient of each

term of (3.1) of the form A j
1Bl

1 cos[qc(mx + nz)].
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3.2 Determination of the Landau Constants

In order to determine the Landau constants, we substitute the expansion

of equation (3.1) into equation (2.9). Solving the resulting sequence of

problems (see Appendix F), we find that

σ = σR = −1 +
β(α − 1)
(α + 1)2

R2000 = −
ω0/2

σR − σ−1
I

R2020 = −
ω0/2

σR − 9σ−1
I

R1111 = −
ω0

σR − σ−1
I [1 + 2 cos(ψ)]2

R111(−1) = −
ω0

σR − σ−1
I [1 − 2 cos(ψ)]2

and that the Landau constants, a1 and b1, satisfy the following:

3σR3010 − a1 = σRR3010 − (2R2000 + R2020)ω0 −
3
4ω1 (3.3a)

3σR2101 − b1 = σRR2101 − (2R2000 + R1111 + R111(−1))ω0 −
3
2ω1. (3.3b)

Taking the limit as β → β0 in equation (3.3) yields the following expres-

sions for the Landau constants:

a1 =
αβ0(α)

(α + 1)4

−19
9

[
α(α − 3)
α − 1

]2

+
3
4

[
8α − (α + 1)2

] (3.4)

b1 =
αβ0(α)

(α + 1)4

−2
[
α(α − 3)
α − 1

]2
 3 + 16 cos4(ψ)(

1 − 4 cos2(ψ)
)2

 + 3
2

[
8α − (α + 1)2

] .
(3.5)
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We can see from these equations that if α = αc = 3, b1 = 2a1, and so b1

does not depend on ψ.
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3.3 Amplitude Equations

Having developed this formulae for the Landau constants, we now turn

our attention to the rhombic planform amplitude equations (3.2) which

possess the following equivalence classes of critical points A1(t) = A0,

B1(t) = B0:

I : A0 = B0 = 0; (3.6a)

II : A2
0 = σ/a1, B0 = 0; (3.6b)

V : A0 = B0, with A2
0 = σ/(a1 + b1). (3.6c)

Equivalence classes III and IV will be dealt with in chapter 4.

Assuming that a1, a1 + b1 > 0 and investigating the stability of these

critical points by seeking a solution of (3.2) of the form

A1(t) = A0+εc1ept+O
(
ε2

)
, B1(t) = B0+εc2ept+O

(
ε2

)
, with |ε| � 1, (3.7)

one finds that the equation satisfied by p has the associated roots (see

Appendix G)

I : p1,2 = σ, (3.8a)

II : p1 = −2σ, p2 = (1 − b1/a1)σ, (3.8b)

V : p1 = −2σ, p2 = 2(b1 − a1)σ/(a1 + b1), (3.8c)

which yield the stability criteria that I is stable for σ < 0; II, for σ > 0,

b1 > a1; and V, for σ > 0, a1 > b1.
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Note that I and II, as in the one-dimensional analysis, represent the

undisturbed and striped states, respectively, while V can be identified

with a rhombic pattern (see section 3.6). Note also that these three states

are mutually exclusive, that is, no two states are stable in the same region

of parameter state.
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3.4 Pattern Formation Predictions

In this section we use the stability criteria above to find α-intervals where

rhombic patterns arise. Toward this end, we examine the signs of a1 + b1

and b1 − a1 for α1 < α < α2 and 0 < ψ ≤ π/2, with π/2 (or equivalently

90◦) representing a square planform.

We first illustrate this procedure for a few fixed values of α by plotting

a1 + b1 and b1 − a1 versus α. We also plot a1 and b1 for the sake of

completeness. In these graphs, the two α-intervals of stable rhombic

patterns, where a1 + b1 > 0 and b1 − a1 < 0, are denoted by shading, while

table 3.1 summarizes our results. Observe that for the α values between

these intervals, a1, b1−a1 > 0 and hence there exist stable stripes, while for

those to the left of the left-hand interval and to the right of the right-hand

one no patterns are predicted by this analysis.

ψ α-intervals
π

6
[2.21497, 2.31534], [3.87633, 4.04226]

π

4
[2.39792, 2.57094], [3.49943, 3.74739]

5π
12

[2.35493, 2.52338], [3.56465, 3.81365]

π

2
[2.21497, 2.31534], [3.87633, 4.04226]

7π
12

[2.35493, 2.52338], [3.56465, 3.81365]

Table 3.1: α-intervals of stable rhombic patterns for different values of ψ

23



2 3 4 5 6
Α

-1

-0.5

0.5

1

1.5

2

2 3 4 5 6
Α

-1

-0.5

0.5

1

1.5

2

b1-a1

b1+a1

b1

a1

Figure 3.1: Plots of a1 and b1, as well as b1 ± a1 versus α for ψ = 30◦
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Figure 3.2: Plots of a1 and b1, as well as b1 ± a1 versus α for ψ = 45◦
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Figure 3.3: Plots of a1 and b1, as well as b1 ± a1 versus α for ψ = 75◦
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Figure 3.4: Plots of a1 and b1, as well as b1 ± a1 versus α for ψ = 90◦
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Figure 3.5: Plots of a1 and b1, as well as b1 ± a1 versus α for ψ = 105◦

Next we plot our Landau constant stability curves for fixed values of

α versus 0 ≤ ψ ≤ π, with the companion table 3.2. Restricting ourselves

to the interval of interest 0 ≤ ψ ≤ π/2, we see that there are two bands of

stable rhombic patterns flanking ψ/3, which have again been designated

by shading, with no pattern between these bands and stable stripes

outside of them. The figures have been drawn for the extended interval

π/2 ≤ ψ ≤ π in order to demonstrate graphically the symmetry about

ψ = π/2 characteristic of rhombic patterns. We also observe from the

figures that there exist no stable rhombic patterns of characteristic angle

π/3 by virtue of the fact that

lim
ψ→π/3

b1(α,ψ) −→ −∞. (3.9)
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α ψ-intervals

2.9 [0.99546, 1.01746], [1.07644, 1.09744],
[2.04415, 2.06516], [2.12413, 2.14613]

3.05 [1.02171, 1.03252, ], [1.06175, 1.07232],
[2.06928, 2.07984], [2.10907, 2.11988]

3.1 [0.99710, 1.01845], [1.07548, 1.09581],
[2.04578, 2.06611], [2.12314, 2.14441]

3.2 [0.94668, 0.98946], [1.10308, 1.14228],
[1.99931, 2.03851], [2.15213, 2.19491]

Table 3.2: ψ-intervals of stable rhombic patterns for different values of α
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Figure 3.6: Plots of a1 and b1, as well as b1 ± a1 versus ψ for α = 2.9
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Figure 3.7: Plots of a1 and b1, as well as b1 ± a1 versus ψ for α = 3.05
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Figure 3.8: Plots of a1 and b1, as well as b1 ± a1 versus ψ for α = 3.1
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Figure 3.9: Plots of a1 and b1, as well as b1 ± a1 versus ψ for α = 3.2

29



3.5 Pattern Formation Predictions:

An Alternate Approach

The analysis performed in the previous section can be done in a different,

and much easier. Motivated by Geddes et al. [4], define the parameter

γ1(α,ψ) =
b1(α,ψ)

a1(α)
.

Then we see that it is sufficient to have −1 < γ1 < 1, since we need

a1, a1 + b1 > 0 and b1 − a1 < 0 for α1 < α < α2 and 0 < ψ ≤ π/2.

Figures 3.10–3.18 give the same results as figures 3.1–3.9, but using γ1

instead of a1 and b1.
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Figure 3.10: Plot of γ1 versus α for ψ = 30◦
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Figure 3.11: Plot of γ1 versus α for ψ = 45◦
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Figure 3.12: Plot of γ1 versus α for ψ = 75◦
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Figure 3.13: Plot of γ1 versus α for ψ = 90◦
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Figure 3.14: Plot of γ1 versus α for ψ = 105◦
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Figure 3.15: Plot of γ1 versus ψ for α = 2.9
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Figure 3.16: Plot of γ1 versus ψ for α = 3.05
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Figure 3.17: Plot of γ1 versus ψ for α = 3.1
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Figure 3.18: Plot of γ1 versus ψ for α = 3.2
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3.6 Contour Plots

We close this chapter with a morphological instability interpretation of

the potentially stable critical points II and V of our amplitude equations

when σ > 0 relative to the optical patterns under investigation. To lowest

order the steady-state equilibrium solution of the governing perturbation

evolution equation satisfies

lim
t→∞

R(x, y, t) ∼ R0(x, y) = A0 cos(2πx/λc) + B0 cos(2πz/λc), (3.10)

where λc = 2π/qc.

We represent the contour and density plots for this function with

A0 > 0 and B0 = 0 relevant to the critical point II in the x-y plane of

figures 3.19 and 3.20. Here the spatial variables are measured in units of

λc, with elevations appearing light and depressions dark. Clearly such

alternating light and dark parallel bands produced by this critical point

should be identified with a striped optical pattern as anticipated above.

In order to make an analogous interpretation of the critical point V we

consider our function R0 with B0 = A0 > 0 and allow ψ to take on both

some of the values on table 3.1. We represent the contour and density

plots for that function with ψ = 90◦ in figures 3.21 and 3.22. From the

checkerboard structure of the latter it is equally clear that this critical

point should be identified with an optical pattern of square planform.
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Figure 3.19: Contour plot for critical point II
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Figure 3.20: Density plot for critical point II
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Figure 3.21: Contour plot for critical point V with ψ = 90◦
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Figure 3.22: Density plot for critical point V with ψ = 90◦
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Finally, in a similar manner we generate the contour plots for other

values of ψ, which form a family of rectangles.

To demonstrate this for any ψ, we first put (3.10) for the critical point

V in the form

R0(x, y) = A0 [cos(2πx/λc) + cos(2πz/λc)] = 2A0 cos(ω1) cos(ω2), (3.11a)

where

ω1 + ω2 = 2πx/λc, ω1 − ω2 = 2πz/λc, (3.11b)

or

ω1 = π(x + z)/λc = (π/λc)
[{

1 + cos(ψ)
}

x + sin(ψ)y
]
, (3.12a)

and

ω2 = π(x − z)/λc = (π/λc)
[{

1 − cos(ψ)
}

x − sin(ψ)y
]
. (3.12b)

From (3.11) and (3.12) we can then deduce that the intersecting level

curves in the associated contour plot are two families of straight lines

possessing slopes of

m1 = −
[
1 + cos(ψ)

]
/ sin(ψ), m2 =

[
1 − cos(ψ)

]
/ sin(ψ), (3.13a)
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respectively, which intersect at right angles since

m1m2 = −
[
1 − cos2(ψ)

]
/ sin2(ψ) = − sin2(ψ)/ sin2(ψ) = −1. (3.13b)

Given that in general this is a rectangular planform we need to explain in

what sense such a critical point can be identified with a rhombic pattern.

To do so we form the quadrilateral depicted by dashed lines in figure 3.23.

Its sides are each composed of two half-diagonals, collectively contained

in the four light rectangles surrounding a dark one. Thus, each side of

that quadrilateral has the length of one of these diagonals

λ = λc/ sin(ψ), (3.14a)

where ψ is its characteristic angle 0 < ψ ≤ π/2, and hence the quadri-

lateral is a rhombus. Further, ψ also plays a role in characterizing the

family of rectangles. Each member of that family has aspect ratio

w/L = tan(ψ/2), (3.14b)

where w and L are its width and length, respectively, while ψ/2 serves as

its angle of inclination as well, an assertation most easily verified by the
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relation

tan(ψ/2) =
{

1 − cos(ψ)
1 + cos(ψ)

}1/2

=

{
[1 − cos(ψ)]2

1 − cos2(ψ)

}1/2

=


[
1 − cos(ψ)

sin(ψ)

]2


1/2

=
1 − cos(ψ)

sin(ψ)
= m2.

(3.14c)

Therefore, we can refer to such an optical pattern as a rhombic array of

rectangles.
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Figure 3.23: Contour plot for critical point V with ψ = 45◦. Here, the
quadrilateral formed by dashed lines depicts the rhombic symmetry of
the rectangular pattern
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Figure 3.24: Density plot for critical point V with ψ = 45◦
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Figure 3.25: Contour plot for critical point V with ψ = 30◦
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Figure 3.26: Density plot for critical point V with ψ = 30◦
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Figure 3.27: Contour plot for critical point V with ψ = 57◦
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Figure 3.28: Density plot for critical point V with ψ = 57◦
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CHAPTER

FOUR

Discussion

In this dissertation the development of spontaneous stationary equilib-

rium optical patterns in an atomic sodium vapor ring cavity was in-

vestigated by means of a rhombic-planform weakly nonlinear stability

analysis applied to equation (2.9), while the hexagonal-planform weakly

nonlinear stability analysis was performed by Edmeade [2].

For the rhombic analysis, we sought weakly nonlinear solutions to

equation (2.9) which to lowest order satisfy

R(x, y, t) ∼ A1(t) cos(qcx) + B1(t) cos(qcz),

z = x cos(ψ) + y sin(ψ)
(4.1a)
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such that

dA1

dt
∼ σA1 − A1(a1A2

1 + b1B2
1),

dB1

dt
∼ σB1 − B1(b1A2

1 + a1B2
1),

(4.1b)

while for the hexagonal one (see [2, 8]), the solution satisfies

R(x, y, t) ∼ A1(t) cos[qcx + φ1(t)] +

+ A2(t) cos
[

1
2qc(x −

√

3y) − φ2(t)
]
+

+ A3(t) cos
[

1
2qc(x +

√

3y) − φ3(t)
]
,

(4.2a)

where

dAi

dt
∼ σAi − 4a0A jAk cos(φi + φ j + φk) − Ai

[
a1A2

i + 2a2(A2
j + A2

k)
]
, (4.2b)

Ai
dφi

dt
∼ 4a0A jAk sin(φi + φ j + φk),

(i, j, k) = even permutation of (1, 2, 3).
(4.2c)

Our analysis of section 3.3 shows that equations (4.1b) possess the fol-

lowing equivalence classes of critical points: I : A0 = B0 = 0;

II : A2
0 = σ/a1, B0 = 0; V : A0 = B0, with A2

0 = σ/(a1 + b1). Assuming

that a1, a1 + b1 > 0, we investigated the stability of these critical points

and found that I is stable for σ < 0; II, for σ > 0, b1 > a1; and V, for σ > 0,

a1 > b1. Equivalence classes I and II represent the undisturbed and striped

states, respectively, while V can be identified with a rhombic array of
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rectangles of characteristic angle ψ (see section 3.6). We used these crite-

ria to find α-intervals where rhombic patterns arise. Toward this end, we

examined the signs of a1 + b1 and b1 − a1 for α1 < α < α2 and 0 < ψ ≤ π/2,

with π/2 (or equivalently 90◦) representing a square planform, using the

explicit formulae for a1 and b1 given by equations (3.4) and (3.5). Ta-

bles 3.1 and 3.2, together with figures 3.1–3.9 summarize our results. We

see in these figures that for a fixed value of alpha there are two narrow

bands of stable rhombic patterns flanking ψ = π/3 with no pattern be-

tween these bands and stable stripes outside them. There exist no stable

rhombic patterns of characteristic angle π/3. Wollkind and Stephenson

[15] conjectured that this angle was reserved for hexagonal arrays.

For the sake of completeness, we include here a summary of the

results of Edmeade [2]. In cataloguing the critical points of (4.2b,c), and

summarizing their orbital stability behaviour it is necessary to employ

the quantities

σ−1 = −4a2
0/(a1 + 4a2), σ1 = 16a1a2

0/(2a2 − a1)2,

σ2 = 32(a1 + a2)a2
0/(2a2 − a1)2.

(4.3)

There exist equivalence classes of (4.2b,c) given by φ1 = φ2 = φ3 = 0 and

I : A1 = A2 = A3 = 0; II : A2
1 = σ/a1, A2 = A3 = 0; III± : A1 = A2 = A3 =

A±0 = {−2a0 ± [4a2
0 + (a1 + 4a2)σ]1/2

}/(a1 + 4a2); IV : A1 = −4a0/(2a2 − a1),

A2
2 = A2

3 = (σ−σ1)/(a1+ 2a2); where it is assumed that a1, a1+ 4a2 > 0. The

orbital stability conditions for these critical points can be posed in terms
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a0 2a2 − a1 Stable Structures
+ −, 0 III− for σ > σ−1

+ + III− for σ−1 < σ < σ2, II for σ > σ1

0 − III± for σ > 0
0 + II for σ > 0
− + III+ for σ−1 < σ < σ2, II for σ > σ1

− −, 0 III+ for σ > σ−1

Table 4.1: Orbital stability behavior of critical points II and III±

of σ. Thus critical point I is stable in this sense for σ < 0 while the stability

behavior of II and III± which depends upon the signs of a0 and 2a2 − a1

as well has been summarized in table 4.1. Here, when stable, II and III±

represent one- and two-dimensional periodic structures, respectively,

the latter pattern exhibiting hexagonal symmetry in the plane such that

A+0 > 0 and A−0 < 0. Finally, critical point IV, which reduces to II for

σ = σ1 and to III± for σ = σ2 and hence called a generalized cell, is

not stable for any value of σ. For our problem (see [2]), critical points

I and II represent the undisturbed state and the supercritical state of

stripe patterns, respectively, while critical point III+ can be identified

with hexagonal arrays of dots or bright spots, and III− with hexagonal

arrays of nets or honeycombs (see figures 4.2–4.5).

In order to compare these theoretical results with experimental obser-

vation and numerical simulations, Edmeade [2] represented the results

of table 4.1 graphically in the α-β plane. There exists a critical value that
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Figure 4.1: Plots of βi versus α, for i = −1, 0, 1, 2. The shaded regions
indicate the α-intervals where square patterns may arise

satisfies the conditions

a0 = 0 for α = αc, (4.4a)

a0 < 0 for α < αc, (4.4b)

a0 > 0 for α > αc. (4.4c)

This value was determined to beαc = 3. In addition, Edmeade [2] defined

the quantities

βi = β0(σi + 1) (4.5)

for i = −1, 0, 1, 2. Graphs of βi(α), for i = −1, 0, 1, 2, are shown in figure 4.1.

As usual, α represents the square of the magnitude of the intracavity
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field and β represents the absorption coefficient. From equations (4.4),

table 4.1 and figure 4.1 we can deduce that stripes form for α = αc = 3,

honeycombs for α < αc, and spots for α > αc, which is consistent with

the results of Firth and Scroggie [3].

In addition, the regions of the α-β plane where stable square patterns

may arise is denoted by shading. According to Edmeade [2], hexagons

and stripes may coexist when β1 < β < β2, and stripes alone exist for

β > β2. Firth and Scroggie [3] did not observe this coexistence with their

numerical simulations. This is because the regions of coexistence fall

in the shaded region where square patterns arise. In this region stripes

cannot exist at all, since they are unstable with respect to squares, unless

α = αc, where β0 attains its minimum. For this value ofαneither hexagons

nor rhombi can exist, but for α ≈ αc, the region where hexagonal patterns

form is very small, and thus rhombic patterns dominate. However for

these values of α (see table 3.1), ψ ≈ π/3, and so the rhombic pattern

resembles a hexagonal one.

Another feature of our stability analysis is that it shows that patterns

saturate at cubic order, even though Geddes et al. [4] insist that these

patterns saturate at quintic order. Their problem is not the same as

ours, but it is similar. They obtained square and hexagonal patterns

with their numerical simulations, although these numerical results do

not agree with their analytic results. We, on the other hand, obtained

such patterns analytically, and our weak solution (3.1) can be used in

numerical simulations to generate rhombic-patterns.
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Figure 4.2: Contour plot for critical point III+
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Figure 4.3: Contour plot for critical point III−
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Figure 4.4: Density plot for critical point III+

-4 -2 0 2 4
-4

-2

0

2

4

Figure 4.5: Density plot for critical point III−
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A Derivation of the Two-Level Kerr-Cavity

Equation

Consider the Maxwel-Bloch equations

Xt = −(1 + iθ)X + Y − βP + iχ∇2X, (A.1)

ε1Pt = f X − (1 + i∆)P, (A.2)

ε2 ft = 1 − f − 1
2 (X∗P + XP∗). (A.3)

Letting ε1,2 → 0 we obtain

P =
f X

1 + i∆
(A.4)

f = 1 − Re(X∗P). (A.5)

Substituting equation (A.4) into equation (A.5) yields

f = 1 −
f |X|2

1 + ∆2 ,

and solving for f we obtain

f =
1 + ∆2

1 + ∆2 + |X|2
. (A.6)

Substituting equation (A.6) into equation (A.4) gives the quasi-equilibrium
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conditions

f =
1 + ∆2

1 + ∆2 + |X|2
(A.7)

P =
(1 − i∆)X

1 + ∆2 + |X|2
, (A.8)

Substituting equations (A.8) into equation (A.1) reduces the system to

the single model equation in X given by

Xt = −X
[
1 + iθ +

β(1 − i∆)

1 + ∆2 + |X|2

]
+ Y + iχ∇2X. (A.9)

54



B Derivation of βcrit

Consider the following

Xt = −X
[
1 + iθ +

β(1 − i∆)

1 + ∆2 + |X|2

]
+ Y + iχ∇2X. (B.1)

Let X ≡ X0 be a constant solution to equation (B.1). We have, then,

Y = X0

[(
1 +

β

1 + ∆2 + |X|2

)
+ i

(
θ −

β∆

1 + ∆2 + |X|2

)]
,

and so |Y|2 = YY∗ yields

Y2 = α

(1 + β

D

)2

+

(
θ −

β∆

D

)2 , (B.2)

where α = |X0|
2,D = 1 + ∆2 + α and assuming Y ∈ R (see [7]).

Multiplying equation (B.2) byD2 we obtain

D
2Y2 = α[(D + β)2 + (θD− β∆)2]

= α[(1 + θ2)D2 + 2β(1 − ∆θ)D + (1 + ∆2)β2],

and hence

Y2 = α

[
(1 + θ2) +

2β(1 − ∆θ)
D

+
β2(1 + ∆2)
D2

]
.
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Making use of the following:

d
dα

(
α
D

)
=
D− αD′

D2

=
1 + ∆2

D2

d
dα

(
α
D2

)
=
D

2
− 2αDD′

D4

=
1 + ∆2

− α
D3

we obtain

dY2

dα
= (1 + θ2) +

2β(1 − ∆θ)(1 + ∆2)
D2 +

β2(1 + ∆2
− α)(1 + ∆2)
D3

or

D
3 dY2

dα
= (1 + θ2)D3 + 2β(1 − ∆θ)(1 + ∆2)D + β2(1 + ∆2

− α)(1 + ∆2).

(B.3)

We now focus on the right-hand side of equation (B.3). Substituting

−α = 1 + ∆2
−D into equation (B.3) we obtain

(1 + θ2)D3 + [2β(1 − ∆θ) − β2](1 + ∆2)D + 2β2(1 + ∆2)2 = 0

for β = βcrit.
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Following the method of Uspensky [12], consider z3 + bz + c = 0 and

4b3 + 27c2 = 0, where

b =
(

1 + ∆2

1 + θ2

)
[2β(1 − ∆θ) − β2],

and

c =
2β2(1 + ∆2)2

1 + θ2 .

Then

4b3 + 27c2 = 4β3

(
1 + ∆2

1 + θ2

)3

[2(1 − ∆θ) − β]3 + 27 ·
4β4(1 + ∆2)4

(1 + θ2)2

= 4β3

(
1 + ∆2

1 + θ2

)3

[27β(1 + ∆2)(1 + θ2) − (β − 2(1 − ∆θ))3].

Therefore,

4b3 + 27c2 = 0

if and only if

27β(1 + ∆2)(1 + θ2) = (β − 2(1 − ∆θ))3,

which is satisfied for β = βcrit. Thus, βcrit is defined implicitly by

27βcrit(1 + ∆2)(1 + θ2) = (βcrit − 2(1 − ∆θ))3.
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C Linear Stability Analysis

Consider the Maxwell-Bloch equations (A.1)–(A.3), and let X ≡ X0, P ≡ P0

and f ≡ f0 be constant solutions. From equation (A.1),

0 = −(1 + iθ)X0 + Y − βP0,

since Xt = ∇
2X = 0. Then

Y0 = (1 + iθ)X0 + βP0. (C.1)

From equations (A.2)–(A.3),

0 = f0X0 − (1 + i∆)P0

0 = 1 − f0 −
1
2 (X∗0P0 + X0P∗0) = 1 − f0 − Re(X∗0P0).

Solving for { f0,P0}:

P0 =
f0X0

1 + i∆
(C.2)

f0 = 1 − Re(X∗0P0). (C.3)
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Substituting (C.2) into (C.3):

f0 = 1 − Re
(
X∗0

f0X0

1 + i∆

)
= 1 − Re

(
f0 |X0|

2 (1 − i∆)
1 + ∆2

)
= 1 −

f0 |X0|
2

1 + ∆2 ,

and solving this equation for f0 we obtain

f0

(
1 +

|X0|
2

1 + ∆2

)
= f0

(
1 + ∆2 + |X0|

2

1 + ∆2

)
= 1

or

f0 =
1 + ∆2

1 + ∆2 + |X0|
2 =

1 + ∆2

D
, whereD = 1 + ∆2 + α, α = |X0|

2,

and substituting into (C.2),

P0 =
(1 + ∆2)X0

(1 + i∆)D
=

(1 + ∆2)X0

(1 + i∆)D
·

1 − i∆
1 − i∆

,

i.e.,

P0 =
(1 − i∆)X0

D
.
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Now, let

X = X0(1 + A), P = P0(1 + B), f = f0(1 + C).

Thus, from (A.1) and (C.1),

X0At = −(1 + iθ)X0(1 + A) + (1 + iθ)X0 + βP0 − βP0(1 + B) + iχX0∇
2A

= −(1 + iθ)X0A − βP0B + iχX0∇
2A

= −(1 + iθ)X0A − β
(1 − i∆)X0

D
B + iχX0∇

2A,

or

At = −(1 + iθ)A − β
(1 − i∆)
D

B + iχ∇2A. (C.4)

From (A.2)

ε1P0Bt = f0(1 + C)X0(1 + A) − (1 + i∆)P0(1 + B)

= (1 + i∆)P0(1 + C)(1 + A) − (1 + i∆)P0(1 + B)

= (1 + i∆)P0(1 + A + C + AC − 1 − B)

or

ε1Bt = (1 + i∆)(A + C + AC − B). (C.5)
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From (A.3)

ε2 f0Ct = 1 − f0(1 + C) − 1
2X∗0P0(1 + A∗)(1 + B) − 1

2X0P∗0(1 + A)(1 + B∗)

= 1 − f0 − f0C − 1
2X∗0

(1 − i∆)
D

X0(1 + A∗)(1 + B) +

−
1
2X0

(1 + i∆)
D

X∗0(1 + A)(1 + B∗)

or

ε2
1 + ∆2

D
Ct =

=
α
D
−

1 + ∆2

D
C−

(1 − i∆)
2D

α(1+A∗+B+A∗B)−
(1 + i∆)

2D
α(1+A+B∗+AB∗),

i.e.,

ε2(1+∆2)Ct = −(1+∆2)C− 1
2 (1−i∆)α(A∗+B+A∗B)− 1

2 (1+i∆)α(A+B∗+AB∗).

(C.6)

We have, then, that

At = −(1 + iθ)A − β
(1 − i∆)
D

B + iχ∇2A

A∗t = −(1 − iθ)A∗ − β
(1 + i∆)
D

B∗ − iχ∇2A∗

ε1Bt = (1 + i∆)(A + C + AC − B)

ε1B∗t = (1 − i∆)(A∗ + C + A∗C − B∗)

ε2(1 + ∆2)Ct = −(1 + ∆2)C − 1
2 (1 − i∆)α(A∗ + B + A∗B) − 1

2 (1 + i∆)α(A + B∗ + AB∗).

61



We seek a solution of the form

[A,A∗,B,B∗,C](x, t) = [k1, k2, k3, k4, k5]eσt cos(qx).

Examine

[
k jeσt cos(qx)

]
t
= σk jeσt cos(qx)

∇
2
[
k jeσt cos(qx)

]
=

[
k jeσt cos(qx)

]
xx
= −q2k jeσt cos(qx).

Thus:

A:

σk1eσt cos(qx) =

= −(1+iθ)k1eσt cos(qx)−β(1−i∆)k3eσt cos(qx)/D−iχq2k1eσt cos(qx)

or σk1 = −(1 + iθ)k1 − β(1 − i∆)k3/D− iχq2k1.

A∗:

σk2eσt cos(qx) =

= −(1−iθ)k2eσt cos(qx)−β(1+i∆)k4eσt cos(qx)/D+iχq2k2eσt cos(qx)

or σk2 = −(1 − iθ)k2 − β(1 + i∆)k4/D + iχq2k2.
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B:

ε1σk3eσt cos(qx) =

= (1+i∆)
(
k1eσt cos(qx) + k5eσt cos(qx) + k1k5e2σt cos2(qx) − k3eσt cos(qx)

)
or ε1σk3 = (1 + i∆)(k1 − k3 + k5) + (1 + i∆)k1k5eσt cos(qx).

B∗:

ε1σk4eσt cos(qx) =

= (1−i∆)
(
k2eσt cos(qx) + k5eσt cos(qx) + k2k5e2σt cos2(qx) − k4eσt cos(qx)

)
or ε1σk4 = (1 − i∆)(k2 − k4 + k5) + (1 − i∆)k2k5eσt cos(qx).

C:

ε2(1 + ∆2)σk5eσt cos(qx) = −(1 + ∆2)k5eσt cos(qx) +

−
1
2 (1 − i∆)α

[
k2eσt cos(qx) + k3eσt cos(qx) + k2k3e2σt cos2(qx)

]
+

−
1
2 (1 + i∆)α

[
k1eσt cos(qx) + k4eσt cos(qx) + k1k4e2σt cos2(qx)

]
or

ε2(1+∆2)σk5 = −(1+∆2)k5−
1
2 (1− i∆)α(k2+k3)− 1

2 (1+ i∆)α(k1+k4)+

−
1
2 (1 − i∆)αk2k3eσt cos(qx) − 1

2 (1 + i∆)αk1k4eσt cos(qx).
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Ignoring terms of O (kpkr), we have an eigenvalue problem of order 5,

which has nontrivial solutions when

p(σ) = det



σ + a 0 βb∗/D 0 0

0 σ + a∗ 0 βb/D 0

−b 0 ε1σ + b 0 −b

0 −b∗ 0 ε1σ + b∗ −b∗

1
2bα 1

2b∗α 1
2b∗α 1

2bα (ε2σ + 1)(1 + ∆2)


= 0,

where

a = 1 + i(θ + χq2),

b = 1 + i∆,

and a star indicates complex conjugation.
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Then

p(σ) = (σ + a) det



σ + a∗ 0 βb/D 0

0 ε1σ + b 0 −b

−b∗ 0 ε1σ + b∗ −b∗

1
2b∗α 1

2b∗α 1
2bα (ε2σ + 1)(1 + ∆2)


+

+
βb∗

D
det



0 σ + a∗ βb/D 0

−b 0 0 −b

0 −b∗ ε1σ + b∗ −b∗

1
2bα 1

2b∗α 1
2bα (ε2σ + 1)(1 + ∆2)


.

Let ∆ = ∆c = 0, q2 = q2
c = −θ/χ. Then

p(σ) = (σ + 1) det



σ + 1 0 β/D 0

0 ε1σ + 1 0 −1

−1 0 ε1σ + 1 −1

α/2 α/2 α/2 ε2σ + 1


+

+
β

D
det



0 σ + 1 β/D 0

−1 0 0 −1

0 −1 ε1σ + 1 −1

α/2 α/2 α/2 ε2σ + 1
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or

p(σ) = (σ + 1)


(σ + 1) det


ε1σ + 1 0 −1

0 ε1σ + 1 −1

α/2 α/2 ε2σ + 1

 +

+
β

D
det


0 ε1σ + 1 −1

−1 0 −1

α/2 α/2 ε2σ + 1




+

+
β

D


−(σ + 1) det


−1 0 −1

0 ε1σ + 1 −1

α/2 α/2 ε2σ + 1

 +

+
β

D
det


−1 0 −1

0 −1 −1

α/2 α/2 ε2σ + 1




,

66



and thus

p(σ) = (σ + 1)2
{(ε1σ + 1)[(ε1σ + 1)(ε2σ + 1) + α/2] + α(ε1σ + 1)/2} +

+ β(σ + 1){−(ε1σ + 1)[α/2 − (ε2σ + 1)] + α/2}/D +

− β(σ + 1){−[(ε1σ + 1)(ε2σ + 1) + α/2] + (ε1σ + 1)α/2}/D +

+ β2
{−[−(ε2σ + 1) + α/2] − α/2}/D2

= (σ + 1)2
{(ε1σ + 1)2(ε2σ + 1) + α(ε1σ + 1)} +

+ β(σ + 1)[2(ε1σ + 1)(ε2σ + 1) − α(ε1σ + 1) + α]/D +

+ β2(ε2σ + 1 − α)/D2.

Assume that σ ∼ 1/ε, σ + 1 ∼ σ, ε1,2 ∼ ε. Then εσ ∼ 1, ε2σ→ 0 as ε→ 0,

and multiplying by ε2,

ε2p(σ) = ε2σ2
{(εσ + 1)2(εσ + 1) + α(εσ + 1)} +

+ βε2σ{2(εσ + 1)(εσ + 1) − αεσ}/D + β2ε2(εσ + 1 − α)/D2

∼ ε2σ2 [(εσ + 1)3 + α(εσ + 1)] as ε→ 0.

This implies that

σ2 [(εσ + 1)3 + α(εσ + 1)] = σ2(εσ + 1)[(εσ + 1)2 + α] = 0,

whose roots are

σ1,2 ∼ 0, σ3 ∼ −1/ε, σ4,5 ∼ (−1 ± iα1/2)/ε.
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The roots σ1,2 correspond to the growth rates σR and σI, while the

remaining roots, σ3,4,5, have negative real part and therefore they are

stabilizing.
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D Derivation of the Modified Swift-Hohenberg

Equation

At ∼

3∑
n=1

n∑
i=0

1
(n − l)! l!

∂nF(0, 0)

∂An−l∂A∗l
An−lA∗l + iχ∇2A, (D.1)

where

F(A,A∗) = −(1 + A)
[
1 + iθ +

β(1 − i∆)
1 + ∆2 + α(1 + A)(1 + A∗)

]
, (D.2)

and

A = R + iI, D = 1 + ∆2 + α.

The first derivatives of equation (D.2)

∂F
∂A

(A,A∗) = −1 −
β(1 + ∆2)

[1 + ∆2 + α(1 + A)(1 + A∗)]2 +

+ i
[

β∆(1 + ∆2)
[1 + ∆2 + α(1 + A)(1 + A∗)]2 − θ

]
∂F
∂A∗

(A,A∗) =
βα(1 − i∆)(1 + A)2

[1 + ∆2 + α(1 + A)(1 + A∗)]2

∂F
∂A

(0, 0) = −1 −
β(1 + ∆2)
D2 + i

[
β∆(1 + ∆2)
D2 − θ

]
∂F
∂A∗

(0, 0) =
βα(1 − i∆)
D2 .
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The second derivatives of equation (D.2)

∂2F
∂A2 (A,A∗) =

2βα(1 + ∆2)(1 − i∆)(1 + A∗)
[1 + ∆2 + α(1 + A)(1 + A∗)]3

1
2
∂2F
∂A2 (0, 0) =

βα(1 + ∆2)(1 − i∆)
D3

∂2F
∂A∗2

(A,A∗) =
−2βα2(1 − i∆)(1 + A∗)3

[1 + ∆2 + α(1 + A)(1 + A∗)]3

1
2
∂2F
∂A∗2

(0, 0) =
−βα2(1 − i∆)

D3

∂2F
∂A ∂A∗

(A,A∗) =
2βα(1 + ∆2)(1 − i∆)(1 + A)

[1 + ∆2 + α(1 + A)(1 + A∗)]3

∂2F
∂A2 (0, 0) =

2βα(1 + ∆2)(1 − i∆)
D3 .
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The third derivatives of equation (D.2)

∂3F
∂A3 (A,A∗) =

−6βα2(1 + ∆2)(1 − i∆)(1 + A∗)2

[1 + ∆2 + α(1 + A)(1 + A∗)]4

1
3!
∂3F
∂A3 (0, 0) =

−βα2(1 + ∆2)(1 − i∆)
D4

∂3F
∂A2 ∂A∗

(A,A∗) =
2βα(1 + ∆2)(1 − i∆)[1 + ∆2

− 2α(1 + A)(1 + A∗)]
[1 + ∆2 + α(1 + A)(1 + A∗)]4

1
2

∂3F
∂A2 ∂A∗

(0, 0) =
βα(1 + ∆2)(1 − i∆)(1 + ∆2

− 2α)
D4

∂3F
∂A ∂A∗2

(A,A∗) =
−6βα2(1 + ∆2)(1 − i∆)(1 + A)2

[1 + ∆2 + α(1 + A)(1 + A∗)]4

1
2

∂3F
∂A ∂A∗2

(0, 0) =
−3βα2(1 + ∆2)(1 − i∆)

D4

∂3F
∂A∗3

(A,A∗) =
6βα3(1 − i∆)(1 + A)4

[1 + ∆2 + α(1 + A)(1 + A∗)]4

1
3!
∂3F
∂A∗3

(0, 0) =
βα3(1 − i∆)
D4 .
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Let ∆ = 0 and A = R + iI. Then equation (D.1) becomes

Rt + iIt =

[
−1 −

β

(1 + α)2 − iθ
]

(R + iI) +

+

[
βα

(1 + α)2

]
(R − iI) +

+

[
βα

(1 + α)3

]
(R2 + 2iRI − I2) +

+

[
2βα

(1 + α)3

]
(R2 + I2) +

+

[
−βα2

(1 + α)3

]
(R2 + 2iRI − I2) +

+ iχ
[
∇

2R + i∇2I
]
+

+

[
−βα2

(1 + α)4

]
(R3 + 3iR2I − 3RI2

− iI3) +

+

[
βα(1 − 2α)

(1 + α)4

]
(R3 + iR2I + RI2 + iI3) +

+

[
−3βα2

(1 + α)4

]
(R3
− iR2I + RI2

− iI3) +

+

[
βα3

(1 + α)4

]
(R3
− 3iR2I − 3RI2 + iI3).

(D.3)
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Examining the real coefficients of equation (D.3), we have

O (R):

−1 +
−β + βα

(1 + α)2 = −1 +
β(α − 1)
(1 + α)2 = σR(α, β).

O (I):

θ = −χq2
c .

Spatial:

−χ∇2I.

O
(
R2):

βα + 2βα − βα2

(1 + α)3 =
βα(3 − α)
(1 + α)3 = −ω0(α, β).

O
(
I2):

−βα + 2βα + βα2

(1 + α)3 =
βα

(1 + α)2 .

O
(
R3):

−βα2 + βα(1 − 2α) − 3βα2 + βα3

(1 + α)4 =
βα

[
(α − 3)2

− 8
]

(1 + α)4 = −ω1(α, β).

O
(
RI2):

3βα2 + βα(1 − 2α) − 3βα2
− 3βα3

(1 + α)4 =
βα(1 − 3α)

(1 + α)3 .
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Examining the imaginary coefficients of equation (D.3), we have

O (R):

−θ = χq2
c .

Spatial:

−χ∇2R.

O (I):

−1 −
β + βα

(1 + α)2 = −

(
1 +

β

1 + α

)
= σI(α, β).

O (RI):
2βα − 2βα2

(1 + α)3 =
2βα(1 − α)

(1 + α)3 .

O
(
R2I

)
:

−3βα2 + βα(1 − 2α) + 3βα2
− 3βα3

(1 + α)4 =
βα(1 − 3α)

(1 + α)3 .

O
(
I3):

βα2 + βα(1 − 2α) + 3βα2 + βα3

(1 + α)4 =
βα

(1 + α)2 .

74



Then

Rt =

[
−1 +

β(α − 1)
(1 + α)2

]
R +

+
βα(3 − α)
(1 + α)3 R2 +

+
βα

[
(α + 1)2

− 8α
]

(1 + α)4 R3 +

− χ(∇2 + q2
c )I +

+
βα

(1 + α)2 I2 +

+
βα(1 − 3α)

(1 + α)3 RI2,

(D.4)

and
It = χ(∇2 + q2

c )R +

+ σI(α, β)I

+
2βα(1 − α)

(1 + α)3 IR +

+
βα(1 − 3α)

(1 + α)3 IR2 +

+
βα

(1 + α)2 I3,

(D.5)

where

I ∼ −
[
χ/σI(α, β)

](
∇

2 + q2
c

)
R. (D.6)
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Upon substituting equation (D.6) into equation (D.4), we obtain

Rt ∼ σR(α, β)R − ω0(α, β)R2
− ω1(α, β)R3 +

[
χ2

σI(α, β)

] (
∇

2 + q2
c

)2
R,

where

σR(α, β) = −1 +
β(α − 1)
(α + 1)2

σI(α, β) = −1 −
β

α + 1

χq2
c = −θ = 1

ω0(α, β) =
βα(α − 3)
(α + 1)3

ω1(α, β) =
βα[8α − (α + 1)2]

(α + 1)4 .
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E One-Dimensional Analysis

According to [15], we seek a solution to (2.9) of the form

R(x, y, t) ∼ A1(t) cos(qcx) + A2
1(t)[R20 + R22 cos(2qcx)] +

+ A3
1(t)[R31 cos(qcx) + R33 cos(3qcx)],

where

Ȧ1(t) ∼ σA1(t) − a1A3
1(t).

Calculation of each term in Eq. (2.9)

Rt ∼ Ȧ1 cos(qcx) + 2A1Ȧ1[R20 + R22 cos(2qcx)] +

+ 3A2
1Ȧ1[R31 cos(qcx) + R33 cos(3qcx)]

∼ σ(A1 − a1A3
1 ) cos(qcx) + 2σA2

1[R20 + R22 cos(2qcx)] +

+ 3σA3
1[R31 cos(qcx) + R33 cos(3qcx)]

= σA1 cos(qcx) + 2σA2
1[R20 + R22 cos(2qcx)] +

+ A3
1[(3σR31 − a1) cos(qcx) + 3σR33 cos(3qcx)].
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R2
∼ A2

1 cos2(qcx) + 2A3
1[R20 cos(qcx) + R22 cos(2qcx)]

= 1
2A2

1[1 + cos(2qcx)] +

+ A3
1[2R20 cos(qcx) + R22{cos(qcx) + cos(3qcx)}]

= 1
2A2

1[1 + cos(2qcx)] +

+ A3
1[(2R20 + R22) cos(qcx) + R22 cos(3qcx)].

R3
∼ A3

1 cos3(qcx) = 1
4A3

1[3 cos(qcx) + cos(3qcx)].

(
∇

2 + q2
c

)2
R ∼ A2

1[q4
cR20 + R22(−4q2

c + q2
c )2 cos(2qcx)] +

+ A3
1R33(−9q2

c + q2
c )2 cos(3qcx)

= q4
c

[
A2

1[R20 + 9R22 cos(2qcx)] + 64A3
1R33 cos(3qcx)

]
.
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Determining the coefficients of R

O
(
A1 cos(qcx)

)
:

σ = σR.

O
(
A2

1

)
:

2σR20 = σRR20 +

(
χ2

σI

)
q4

cR20 −
ω0

2

or

R20 =
ω2/2

σ−1
I − σR

.

O
(
A2

1 cos(2qcx)
)
:

2R22 = σRR22 + 9
(
χ2

σI

)
q4

cR20 −
ω0

2

or

R22 =
ω2/2

9σ−1
I − σR

.

O
(
A3

1 cos(3qcx)
)
:

3σR31 − a1 = σRR31 − ω0(2R20 + R22) −
3ω1

4
.

Applying the Fredholm solvability condition to this last equation

(i.e., taking the limit as β→ β0), we get

a1 =
[
ω0(2R20 + R22) +

3ω1

4

]
β=β0
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where

β0(α) =
(α + 1)2

α − 1
.

for α > 1.

Now,

σR[α, β0(α)] = 0,

σI[α, β0(α)] = −1 −
β0(α)
α + 1

= −1 −
α + 1
α − 1

=
−2α
α − 1

,

R20[α, β0(α)] = 1
2ω0σI[α, β0(α)],

and

R22[α, β0(α)] = 1
18ω0σI[α, β0(α)],

so

a1 =
19
18ω

2
1σI +

3
4ω1

=
−19β2

0α
3(α − 3)2

9(α + 1)6(α − 1)
+

3β0α[8α − (α + 1)2]
4(α + 1)4

=
αβ0

(α + 1)4

−19
9

[
α(α − 3)
α − 1

]2

+
3
4

[8α − (α + 1)2]

 .
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F Two-Dimensional Analysis

According to [15], we seek a solution to (2.9) of the form

R(x, y, t) ∼ A1(t) cos(qcx) + B1(t) cos(qcz) + A2
1(t)R20(x) +

+ A1(t)B1(t)R11(x, z) + B2
1(t)R02(z) + A3

1(t)R30(x) + A2
1(t)B1(t)R21(x, z) +

+ A1(t)B2
1(t)R12(x, z) + B3

1(t)R03(z), (F.1)

where

z = x cos(ψ) + y sin(ψ)

R20(x) = R2000 + R2020 cos(2qcx)

R11(x, z) = R1111 cos[qc(x + z)] + R111(−1) cos[qc(x − z)]

R02(x) = R0200 + R0202 cos(2qcz)

R30(x) = R3010 cos(qcx) + R3030 cos(3qcx)

R21(x, z) = R2101 cos(qcz) + R2121 cos[qc(2x + z)] + R212(−1) cos[qc(2x − z)]

R12(x, z) = R1210 cos(qcx) + R1212 cos[qc(x + 2z)] + R121(−2) cos[qc(x − 2z)]

R03(x) = R0301 cos(qcz) + R0303 cos(3qcz),

and A1,B1 satisfy the Landau Equations

dA1

dt
∼ σA1 − A1(a1A2

1 + b1B2
1) (F.2a)

dB1

dt
∼ σB1 − B1(b1A2

1 + a1B2
1). (F.2b)
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Calculation of each term in Eq. (2.9)

R and its time derivative

R ∼ A1 cos(qcx) + B1 cos(qcz) + A2
1R20(x) + A1B1R11(x, z) + B2

1R02(z) +

+ A3
1[R3010 cos(qcx) + R3030 cos(3qcx)] +

+ A2
1B1{R2101 cos(qcz) + R2121 cos[qc(2x + z)] + R212(−1) cos[qc(2x − z)]} +

+ A1B2
1{R1210 cos(qcx) + R1212 cos[qc(x + 2z)] + R121(−2) cos[qc(x − 2z)]} +

+ B3
1[R0301 cos(qcz) + R0303 cos(3qcz)].
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Rt ∼ Ȧ1 cos(qcx) + Ḃ1 cos(qcz) + 2A1Ȧ1R20(x) + (Ȧ1B1 + A1Ḃ1)R11(x, z) +

+ 2B1Ḃ1R02(z) + 3A2
1Ȧ1R30(x) + (2A1Ȧ1B1 + A2

1Ḃ1)R21(x, z) +

+ (Ȧ1B2
1 + 2A1B1Ḃ1)R12(x, z) + 3B2

1Ḃ1R03(z)

= [σA1 − A1(a1A2
1 + b1B2

1)] cos(qcx) + [σB1 − B1(b1A2
1 + a1B2

1)] cos(qcz) +

+ 2A1[σA1 − A1(a1A2
1 + b1B2

1)]R20(x) +

+
{
[σA1 − A1(a1A2

1 + b1B2
1)]B1 + A1[σB1 − B1(b1A2

1 + a1B2
1)]

}
R11(x, z) +

+ 2B1[σB1 − B1(b1A2
1 + a1B2

1)]R02(z) + 3A2
1[σA1 − A1(a1A2

1 + b1B2
1)]R30(x) +

+
{
2A1B1[σA1 − A1(a1A2

1 + b1B2
1)] + A2

1[σB1 − B1(b1A2
1 + a1B2

1)]
}

R21(x, z) +

+
{
[σA1 − A1(a1A2

1 + b1B2
1)]B2

1 + 2A1B1[σB1 − B1(b1A2
1 + a1B2

1)]
}

R12(x, z) +

+ 3B2
1[σB1 − B1(b1A2

1 + a1B2
1)]R03(z)

= σA1 cos(qcx) + σB1 cos(qcz) + 2σA2
1R20(x) + 2σA1B1R11(x, z) + 2σB2

1R02(z) +

+ A3
1[−a1 cos(qcx) + 3σR30(x)] + A2

1B1[−b1 cos(qcz) + 3σR21(x, z)] +

+ A1B2
1[−b1 cos(qcx) + 3σR12(x, z)] + B3

1[−a1 cos(qcz) + 3σR03(z)]

= σA1 cos(qcx) + σB1 cos(qcz) + 2σA2
1R20(x) + 2σA1B1R11(x, z) + 2σB2

1R02(z) +

+ A3
1[(3σR3010 − a1) cos(qcx) + 3σR3030 cos(3qcx)] +

+ A2
1B1

{
(3σR2101 − b1) cos(qcz) + 3σR2121 cos[qc(2x + z)] +

+ 3σR212(−1) cos[qc(2x − z)]
}
+

+ A1B2
1

{
(3σR1210 − b1) cos(qcx) + 3σR1212 cos[qc(x + 2z)] +

+ 3σR121(−2) cos[qc(x − 2z)]
}
+

+ B3
1[(3σR0301 − a1) cos(qcz) + 3σR0303 cos(3qcz)].
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Powers of R

R2
∼ A2

1 cos2(qcx) + 2A1B1 cos(qcx) cos(qcz) + B2
1 cos2(qcz) +

+ 2A3
1R20 cos(qcx) + 2A2

1B1[R20(x) cos(qcz) + R11(x, z) cos(qcx)]+

+ 2A1B2
1[R02(z) cos(qcx) + R11(x, z) cos(qcz)] + 2B3

1R02 cos(qcz)

= A2
1[1 + cos(2qcx)]/2 + A1B1{cos[qc(x + z)] + cos[qc(x − z)]} +

+ B2
1[1 + cos(2qcz)]/2 + 2A3

1[R2000 + R2020 cos(2qcx)] cos(qcx) +

+ 2A2
1B1

{[
R2000 + R2020 cos(2qcx)

]
cos(qcz) +

+
[
R1111 cos[qc(x + z)] + R111(−1) cos[qc(x − z)]

]
cos(qcx)

}
+

+ 2A1B2
1

{[
R0200 + R0202 cos(2qcz)

]
cos(qcx) +

+
[
R1111 cos[qc(x + z)] + R111(−1) cos[qc(x − z)]

]
cos(qcz)

}
+

+ 2B3
1[R0200 + R0202 cos(2qcz)] cos(qcz)

∼ A2
1[1 + cos(2qcx)]/2 + A1B1{cos[qc(x + z)] + cos[qc(x − z)]} +

+ B2
1[1 + cos(2qcz)]/2 + A3

1
[
(2R2000 + R2020) cos(qcx) + R2020 cos(3qcx)

]
+

+ A2
1B1

{
(2R2000 + R1111 + R111(−1)) cos(qcz) + (R2020 + R1111) cos[qc(2x + z)] +

+ (R2020 + R111(−1)) cos[qc(2x − z)]
}
+

+ A1B2
1

{
(2R0200 + R1111 + R111(−1)) cos(qcx) + (R0202 + R1111) cos[qc(x + 2z)] +

+ (R0202 + R111(−1)) cos[qc(x − 2z)]
}
+

+ B3
1
[
(2R0200 + R0202 cos(qcz) + R0202 cos(3qcz)

]
.
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R3
∼ A3

1 cos3(qcx) + 3A2
1B1 cos2(qcx) cos(qcz) + 3A1B2

1 cos(qcx) cos2(qcz) +

+ B3
1 cos3(qcz)

= 1
4A3

1
[
cos(3qcx) + 3 cos(qcx)

]
+ 3

2A2
1B1

[
1 + cos(2qcx)

]
cos(qcz) +

+ 3
2A1B2

1 cos(qcx)
[
1 + cos(2qcz)

]
+ 1

4B3
1
[
cos(3qcz) + 3 cos(qcz)

]
= 1

4A3
1
[
cos(3qcx) + 3 cos(qcx)

]
+

+ 3
4A2

1B1
{
2 cos(qcz) + cos[qc(2x + z)] + cos[qc(2x − z)]

}
+

+ 3
4A1B2

1
{
2 cos(qcx) + cos[qc(x + 2z)] + cos[qc(x − 2z)]

}
+

+ 1
4B3

1
[
cos(3qcz) + 3 cos(qcz)

]
.

Spatial derivatives

We have that

cos(mx + nz) = cos[(m + n cos(ψ))x + ny sin(ψ)].

Then

∇
2 cos(mx + nz) = −[(m + n cos(ψ))2 + (n sin(ψ))2] cos(mx + nz)

= −[m2 + 2mn cos(ψ) + n2] cos(mx + nz),

∇
4 cos(mx + nz) = [m2 + 2mn cos(ψ) + n2]2 cos(mx + nz).
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∇
2R ∼ −q2

c

{
A1 cos(qcx) + B1 cos(qcz) + 4A2

1R2020 cos(2qcx) +

+ 2A1B1

{
R1111[1 + cos(ψ)] cos[qc(x + z)] +

+ R111(−1)[1 − cos(ψ)] cos[qc(x − z)]
}
+

+ 4B2
1R0202 cos(2qcz) + A3

1[R3010 cos(qcx) + 9R3030 cos(3qcx)] +

+ A2
1B1

{
R2101 cos(qcz) + R2121[5 + 4 cos(ψ)] cos[qc(2x + z)] +

+ R212(−1)[5 − 4 cos(ψ)] cos[qc(2x − z)]
}
+

+ A1B2
1

{
R1210 cos(qcx) + R1212[5 + 4 cos(ψ)] cos[qc(x + 2z)] +

+ R121(−2)[5 − 4 cos(ψ)] cos[qc(x − 2z)]
}
+

+ B3
1[R0301 cos(qcz) + 9R0303 cos(3qcz)]

}
.

∇
4R ∼ q4

c

{
A1 cos(qcx) + B1 cos(qcz) + 16A2

1q4
cR2020 cos(2qcx) +

+ 4A1B1

{
R1111[1 + cos(ψ)]2 cos[qc(x + z)] +

+R111(−1)[1 − cos(ψ)]2 cos[qc(x − z)]
}
+

+ 16B2
1R0202 cos(2qcz) + A3

1[R3010 cos(qcx) + 81R3030 cos(3qcx)] +

+ A2
1B1

{
R2101 cos(qcz) + R2121[5 + 4 cos(ψ)]2 cos[qc(2x + z)] +

+ R212(−1)[5 − 4 cos(ψ)]2 cos[qc(2x − z)]
}
+

+ A1B2
1

{
R1210 cos(qcx) + R1212[5 + 4 cos(ψ)]2 cos[qc(x + 2z)] +

+ R121(−2)[5 − 4 cos(ψ)]2 cos[qc(x − 2z)]
}
+

+ B3
1[R0301 cos(qcz) + 81R0303 cos(3qcz)]

}
.

86



(
∇

2 + q2
c

)2
R =

(
∇

4 + 2q2
c∇

2 + q4
c

)
R

∼ q4
c

{
A2

1
[
R2000 + 9R2020 cos(2qcx)

]
+

+ A1B1

{
R1111[1 + 2 cos(ψ)]2 cos[qc(x + z)] +

+ R111(−1)[1 − 2 cos(ψ)]2 cos[qc(x − z)]
}
+

+ B2
1
[
R0200 + 9R0202 cos(2qcz)

]
+ 64A3

1R3030 cos(3qcx) +

+ A2
1B1

{
R2121[6 + 4 cos(ψ)]2 cos[qc(2x + z)] +

+ R212(−1)[6 − 4 cos(ψ)]2 cos[qc(2x − z)]
}
+

+ A1B2
1

{
R1212[6 + 4 cos(ψ)]2 cos[qc(x + 2z)] +

+ R121(−2)[6 − 4 cos(ψ)]2 cos[qc(x − 2z)]
}
+

+ 64B3
1R0303 cos(3qcz)

}
.
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Determining the coefficients of R

O (A1):

cos(qcx):

σ = σR = −1 +
β(α − 1)
(α + 1)2 .

O (B1):

cos(qcx):

σ = σR.

Nothing new here.

O
(
A2

1

)
:

1:

2σR2000 = σRR2000 −
1
2ω0 + σ

−1
I χ

2q4
cR2000(

σR − σ
−1
I

)
R2000 = −

1
2ω0

or

R2000 = −
ω0/2

σR − σ−1
I

.
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cos(2qcx):

2σR2020 = σRR2020 −
1
2ω0 + 9σ−1

I χ
2q4

cR2020(
σR − 9σ−1

I

)
R2020 = −

1
2ω0

or

R2020 = −
ω0/2

σR − 9σ−1
I

.

O (A1B1):

cos[qc(x + z)]:

2σRR1111 = σRR1111 − ω0 + σ
−1
I χ

2q4
c [1 + 2 cos(ψ)]2R1111(

σR − σ
−1
I [1 + 2 cos(ψ)]2

)
R1111 = −ω0

or

R1111 = −
ω0

σR − σ−1
I [1 + 2 cos(ψ)]2

.

cos[qc(x − z)]:

2σRR111(−1) = σRR111(−1) − ω0 + σ
−1
I χ

2q4
c [1 − 2 cos(ψ)]2R111(−1)(

σR − σ
−1
I [1 − 2 cos(ψ)]2

)
R111(−1) = −ω0

or

R111(−1) = −
ω0

σR − σ−1
I [1 − 2 cos(ψ)]2

.
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O
(
B2

1

)
:

1:

2σR0200 = σRR0200 −
1
2ω0 + σ

−1
I χ

2q4
cR0200(

σR − σ
−1
I

)
R0200 = −

1
2ω0

or

R0200 = −
ω0/2

σR − σ−1
I

= R2000.

cos(2qcz):

2σR0202 = σRR0202 −
1
2ω0 + 9σ−1

I χ
2q4

cR0202(
σR − 9σ−1

I

)
R0202 = −

1
2ω0

or

R0202 = −
ω0/2

σR − 9σ−1
I

= R2020.
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O
(
A3

1

)
:

cos(qcx):

3σR3010 − a1 = σRR3010 − (2R2000 + R2020)ω0 −
3
4ω1

2σRR3010 = a1 − (2R2000 + R2020)ω0 −
3
4ω1

or

R3010 =
a1 − (2R2000 + R2020)ω0 −

3
4ω1

2σR
.

cos(3qcx):

3σR3030 = σRR3030 − R2020ω0 −
1
4ω1 + 64σ−1

I χ
2q4

cR3030(
2σR − 64σ−1

I

)
R3030 = −R2020ω0 −

1
4ω1

or

R3030 = −
R2020ω0 +

1
4ω1

2σR − 64σ−1
I

.
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O
(
A2

1B1

)
:

cos(qcz):

3σR2101 − b1 = σRR2101 − (2R2000 + R1111 + R111(−1))ω0 −
3
2ω1

2σRR2101 = b1 − (2R2000 + R1111 + R111(−1))ω0 −
3
2ω1

or

R2101 =
b1 − (2R2000 + R1111 + R111(−1))ω0 −

3
2ω1

2σR
.

cos[qc(2x + z)]:

3σR2121 = σRR2121 − (R2020 + R1111)ω0 +

−
3
4ω1 + σ

−1
I χ

2q4
c [6 + 4 cos(ψ)]2R2121(

2σR − σ
−1
I [6 + 4 cos(ψ)]2

)
R2121 = −(R2020 + R1111)ω0 −

3
4ω1

or

R2121 = −
(R2020 + R1111)ω0 +

3
4ω1

2σR − σ−1
I [6 + 4 cos(ψ)]2

.
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cos[qc(2x − z)]:

3σR212(−1) = σRR212(−1) − (R2020 + R111(−1))ω0 +

−
3
4ω1 + σ

−1
I χ

2q4
c [6 − 4 cos(ψ)]2R212(−1)(

2σR − σ
−1
I [6 − 4 cos(ψ)]2

)
R212(−1) = −(R2020 + R111(−1))ω0 −

3
4ω1

or

R212(−1) = −
(R2020 + R111(−1))ω0 +

3
4ω1

2σR − σ−1
I [6 − 4 cos(ψ)]2

.

O
(
A1B2

1

)
:

cos(qcx):

3σR1210 − b1 = σRR1210 − (2R0200 + R1111 + R111(−1))ω0 −
3
2ω1

2σRR1210 = b1 − (2R0200 + R1111 + R111(−1))ω0 −
3
2ω1

or

R1210 =
b1 − (2R0200 + R1111 + R111(−1))ω0 −

3
2ω1

2σR
= R2101.
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cos[qc(x + 2z)]:

3σR1212 = σRR1212 − (R0202 + R1111)ω0 +

−
3
4ω1 + σ

−1
I χ

2q4
c [6 + 4 cos(ψ)]2R1212(

2σR − σ
−1
I [6 + 4 cos(ψ)]2

)
R1212 = −(R0202 + R1111)ω0 −

3
4ω1

or

R1212 = −
(R0202 + R1111)ω0 +

3
4ω1

2σR − σ−1
I [6 + 4 cos(ψ)]2

= R2121.

cos[qc(x − 2z)]:

3σR121(−2) = σRR121(−2) − (R0202 + R111(−1))ω0 +

−
3
4ω1 + σ

−1
I χ

2q4
c [6 − 4 cos(ψ)]2R121(−2)(

2σR − σ
−1
I [6 − 4 cos(ψ)]2

)
R121(−2) = −(R0202 + R111(−1))ω0 −

3
4ω1

or

R121(−2) = −
(R0202 + R111(−1))ω0 +

3
4ω1

2σR − σ−1
I [6 − 4 cos(ψ)]2

= R212(−1).
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O
(
B3

1

)
:

cos(qcz):

3σR0301 − a1 = σRR0301 − (2R0200 + R0202)ω0 −
3
4ω1

2σRR0301 = a1 − (2R0200 + R0202)ω0 −
3
4ω1

or

R0301 =
a1 − (2R0200 + R0202)ω0 −

3
4ω1

2σR
= R3010.

cos(3qcz):

3σR0303 = σRR0303 − R0202ω0 −
1
4ω1 + 64σ−1

I χ
2q4

cR0303(
2σR − 64σ−1

I

)
R0303 = −R0202ω0 −

1
4ω1

or

R0303 = −
R0202ω0 +

1
4ω1

2σR − 64σ−1
I

= R3030.
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Landau Constants

Recall that

β0 =
(α + 1)2

α − 1

σR = −1 +
β (α − 1)
(α + 1)2 = −1 +

β

β0

σI = −1 −
β

α + 1
= −1 +

β (α + 1)
β0 (α − 1)

ω0 =
βα (α − 3)
(α + 1)3 =

βα (α − 3)
β0 (α − 1)(α + 1)

ω1 =
βα

[
8α − (α + 1)2

]
(α + 1)4 =

βα [8α − (α + 1)2]
β0 (α − 1)(α + 1)2 .
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Taking the limit as β→ β0, we have

σR[α, β0(α)] = 0

σI[α, β0(α)] = −1 −
α + 1
α − 1

=
−2α
α − 1

ω0[α, β0(α)] =
α (α − 3)

(α − 1)(α + 1)

ω1[α, β0(α)] =
α
[
8α − (α + 1)2

]
(α − 1)(α + 1)2

R2000

∣∣∣
β=β0
=

ω0/2
σ−1

I − σR
= [σIω0/2]

∣∣∣
β=β0

R2020

∣∣∣
β=β0
=

ω0/2
9σ−1

I − σR
= [σIω0/9]

∣∣∣
β=β0

R1111

∣∣∣
β=β0
=

σIω0

[1 + 2 cos(ψ)]2

and

R111(−1)

∣∣∣
β=β0
=

σIω0

[1 − 2 cos(ψ)]2 .
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Finding a1:

3σR3010 − a1 = σRR3010 − (2R2000 + R2020)ω0 −
3
4ω1.

Take β→ β0:

a1 = (2R2000 + R2020)ω0 +
3
4ω1

=
19
9
σIω

2
0 +

3
4
ω1

=
19
9

[
−α
α − 1

] [ α(α − 3)
(α − 1)(α + 1)

]2

+
3α

[
8α − (α + 1)2

]
4(α − 1)(α + 1)2

=
α

(α − 1)(α + 1)2

−19
9

[
α(α − 3)
α − 1

]2

+
3
4

[
8α − (α + 1)2

]
=
αβ0(α)

(α + 1)4

−19
9

[
α(α − 3)
α − 1

]2

+
3
4

[
8α − (α + 1)2

] .
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Finding b1:

3σR2101 − b1 = σRR2101 − (2R2000 + R1111 + R111(−1))ω0 −
3
2ω1.

Take β→ β0:

b1 = (2R2000 + R1111 + R111(−1))ω0 +
3
2ω1

= σIω
2
0

[
1 +

1
[1 + 2 cos(ψ)]2 +

1
[1 − 2 cos(ψ)]2

]
+

3ω1

2

=
[
−2α
α − 1

] [ α(α − 3)
(α − 1)(α + 1)

]2 [ 3 + 16 cos4(ψ)
[1 − 4 cos2(ψ)]2

]
+

3α
[
8α − (α + 1)2

]
2(α − 1)(α + 1)2

=
α

(α − 1)(α + 1)2

−2
[
α(α − 3)
α − 1

]2 [ 3 + 16 cos4(ψ)
[1 − 4 cos2(ψ)]2

]
+

3
2

[
8α − (α + 1)2

]
=
αβ0(α)

(α + 1)4

−2
[
α(α − 3)
α − 1

]2 [ 3 + 16 cos4(ψ)
[1 − 4 cos2(ψ)]2

]
+

3
2

[
8α − (α + 1)2

] .
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The coefficients of R

R2000 = R0200 = −
α(α − 3)(1 + α + β)

2(α + 1)(α(β − 2) − β − 2)

R2020 = R0202 = −
αβ(α − 3)

2(α + 1)3
(
−1 + β(α−1)

(α+1)2 +
9(α+1)
1+α+β

)
R1111 = −

αβ(α − 3)

(1 + α)3
(
−1 + β(α−1)

(α+1)2 +
(α+1)(1+2 cos(ψ))2

α+β+1

)
R111(−1) = −

αβ(α − 3)

(1 + α)3
(
−1 + β(α−1)

(α+1)2 +
(α+1)(1−2 cos(ψ))2

α+β+1

)
R3010 = R0301 =

1

2
(
−1 + β(α−1)

(α+1)2

) ×
×

[
3αβ(1 − 6α + α2)

4(α + 1)4 −
α2β2(α − 3)2

2(α + 1)6

(
2(α + 1)2(1 + α + β)
β(α(β − 2) + β + 2)

+

−
(α + 1)2(1 + α + β)

β(α − 1)(1 + α + β) + 9(α + 1)3 − (α + 1)2(1 + α + β)

)
+ a1

]
.
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G Stability Analysis of the Amplitude

Equations

Equilibrium Points

Consider the amplitude equations

A′ = σA − A(a1A2 + b1B2)

B′ = σB − B(b1A2 + a1B2).

To find the equilibrium solutions of this system, we solve the follow-

ing system of algebraic equations for A,B:

σA − A(a1A2 + b1B2) = 0

σB − B(b1A2 + a1B2) = 0.

(i) Trivial solution: A = B = 0.

(ii) Let B = 0 and A , 0. Then

σ − a1A2 = 0,

that is,

A2 =
σ
a1
.
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(iii) Similarly, another solution is

A = 0, B2 =
σ
a1
.

(iv) Assume A , 0 and B , 0. Then our system takes the form

σ − (a1A2 + b1B2) = 0

σ − (b1A2 + a1B2) = 0,

which implies

a1A2 + b1B2 = b1A2 + a1B2,

and so A2 = B2, if we assume also that a1 , b1. Then,

σ − (a1 + b1)A2 = 0,

and thus

A2 =
σ

a1 + b1
.
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Stability Analysis

Assuming that a1 + b1 > 0, we seek a solution of the form

A1(t) = A0 + εc1ept + O
(
ε2

)
B1(t) = B0 + εc2ept + O

(
ε2

)
.

We have

A′1(t) = εpc1ept + O
(
ε2

)
B′1(t) = εpc2ept + O

(
ε2

)
.

Substituting in our equations:

εpc1ept = σ
[
A0 + εc1ept + O

(
ε2

)]
−

[
A0 + εc1ept + O

(
ε2

)]
·

·

[
a1

(
A0 + εc1ept + O

(
ε2

))2
+ b1

(
B0 + εc2ept + O

(
ε2

))2
]
+ O

(
ε2

)
= σ

(
A0 + εc1ept

)
−

(
A0 + εc1ept

)
·

·

[
a1

(
A2

0 + 2εA0c1ept
)
+ b1

(
B2

0 + 2εB0c2ept
)]
+ O

(
ε2

)
= σA0 − A0(a1A2

0 + b1B2
0) +

+ ε
(
σc1 − 2a1A2

0c1 − a1A2
0c1 − 2b1A0B0c2 − b1B2

0c1

)
ept + O

(
ε2

)
= ε

[(
σ − 3a1A2

0 − b1B2
0

)
c1 − 2b1A0B0c2

]
ept + O

(
ε2

)
,
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and

εpc2ept = σ
[
B0 + εc2ept + O

(
ε2

)]
−

[
B0 + εc2ept + O

(
ε2

)]
·

·

[
a1

(
B0 + εc2ept + O

(
ε2

))2
+ b1

(
A0 + εc1ept + O

(
ε2

))2
]
+ O

(
ε2

)
= σ

(
B0 + εc2ept

)
−

(
B0 + εc2ept

)
·

·

[
a1

(
B2

0 + 2εB0c2ept
)
+ b1

(
A2

0 + 2εA0c1ept
)]
+ O

(
ε2

)
= σB0 − B0(a1B2

0 + b1A2
0) +

+ ε
(
σc2 − 2a1B2

0c2 − a1B2
0c2 − 2b1A0B0c1 − b1A2

0c2

)
ept + O

(
ε2

)
= ε

[(
σ − 3a1B2

0 − b1A2
0

)
c2 − 2b1A0B0c1

]
ept + O

(
ε2

)
.

After neglecting terms of O
(
ε2) and cancelling the common factor ept,

we obtain the following system of linear equations in {c1, c2}:

[
(p − σ) + 3a1A2

0 + b1B2
0

]
c1 + 2b1A0B0c2 = 0[

(p − σ) + 3a1B2
0 + b1A2

0

]
c2 + 2b1A0B0c1 = 0,

which has nontrivial solutions when

det

p − α γ

γ p − β

 = 0,
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with

α = σ − 3a1A2
0 − b1B2

0

β = σ − 3a1B2
0 − b1A2

0

and

γ = 2b1A0B0.

(a) For A0 = B0 = 0, we have α = β = σ and γ = 0, so the solutions are

p1,2 = σ,

and thus the solid pattern I is stable for σ < 0.

(b) For A2
0 = σ/a1, B0 = 0, we have α = −2σ, β = (1− b1/a1)σ and γ = 0, so

the roots are

p1 = α = −2σ,

p2 = β =

(
1 −

b1

a1

)
σ,

which implies that the stripe-type pattern II is stable when σ > 0 and

b1 > a1.
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(c) Finally, for A2
0 = B2

0 = σ/(a1 + b1), we have α = β and γ , 0, so the

solutions are

p1 = α − γ

= σ − (3a1 + b1)A2
0 − 2b1A2

0

= σ − 3(a1 + b1)A2
0

= σ −
3(a1 + b1)σ

a1 + b1

= −2σ

and

p2 = α + γ

= σ − (3a1 + b1)A2
0 + 2b1A2

0

= σ − (3a1 − b1)A2
0

= σ −
(3a1 − b1)σ

a1 + b1

=
[(a1 + b1) − (3a1 − b1)]σ

a1 + b1

=
2(b1 − a1)σ

a1 + b1
,

which implies that the rhombic-type pattern V is stable when σ > 0

and b1 < a1.
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