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MULTIVARIATE COMPOUND POINT PROCESSES

WITH DRIFTS

Abstract

by Huajun Zhou, Ph.D.

Washington State University

August 2006

Chair: Haijun Li

This dissertation focuses on the multivariate compound point processes with drifts

and their applications to reliability modeling and financial risk management.

Consider a system that consists of multiple components. The random shocks arrive at

the system according to a stochastic point process, and each shock incurs several types

of damages, one for each component, that are usually stochastically dependent. As long

as the system is working, it generates some rewards, such as income, that can be used in

maintenance of the system. The cumulative damages on various components over time

can be described by a multivariate compound point process with drifts in which drift rates

represent the reward rates. The performance measures of interests are various multivariate

ruin/failure probabilities. These ruin/failure probabilities are of fundamental importance

to the system operations and management, but there are no closed formulas even in some

simplest cases.

We introduce in this dissertation a general multivariate compound point process with

drifts, and discuss various ruin probabilities. Utilizing stochastic comparison methods,

we analytically compare two such processes with different parameters and obtain some

computable bounds for various ruin/failure probabilities that have no closed form expres-

sions. We also apply the results to reliability and risk modeling and show how ignoring

dependence among various types of damages would result in over-estimating or under-

estimating the ruin/failure probabilities. In addition, We utilize multivariate phase-type
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distributions to model random damages and obtain, via the matrix method, explicit ex-

pressions for certain ruin/failure probabilities. The results we obtained are illustrated by

numerous examples and extensive stochastic simulations.
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Chapter 1

Introduction

This dissertation studies the multivariate compound point processes with drifts, and as-

sociated multivariate ruin probabilities. Utilizing the stochastic comparison methods, the

dependence structure of a multivariate compound point process with drift is analyzed,

and the computable bounds for the ruin probabilities, that are usually intractable, are

obtained. The bounds for the ruin probabilities of multivariate process models with phase

type distributed damage vectors are explicitly derived. The results obtained are illustrated

by numerous examples and extensive stochastic simulations.

Section 1.1 discusses the motivation of our multivariate process models, and reviews

the literature in this field. Section 1.2 outlines the organization of this dissertation, and

summarizes our main results.

1.1 Motivation

The multivariate compound point processes with drifts have a wide variety of interpre-

tations, but our study is mainly motivated from preventive maintenance for a system

operating in a random environment. Consider a system that consists of a single compo-

nent. The random shocks arrive at the system according to a stochastic point process,

and each shock incurs some damage on the component. As long as the system is working,

it generates some rewards, such as income, that can be used in maintenance of the system.

The cumulative damages on the component over time can be described by a univariate

point process with drift.
N(t)∑
n=1

Xn − pt, t ≥ 0, (1.1.1)
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where {N(t), t ≥ 0} is the shock arrival process, Xn is the damage on the component

caused by the n-th shock, and p is the rate of the reward (drift rate). If the cumulative

damage exceeds a certain threshold, say u, then the system fails. Thus the reliability

measure of interest is the ruin or failure probability,

ψ(u) = P




N(t)∑
n=1

Xn − pt > u for some t > 0


 = P


 sup

0≤t<∞




N(t)∑
n=1

Xn − pt


 > u


 .

For example, if N(t) is a Poisson process with rate λ, and the damage sizes Xn’s are

independent and identically distributed (i.i.d.) with common mean 1/β, then one can

calculate ψ(u) explicitly,

ψ(u) =
1

1 + θ
exp

(
− θβ

1 + θ
u

)
, (1.1.2)

where θ = pβ/λ − 1 > 0 is known as the relative security loading parameter. However,

other than (1.1.2), the ruin probability ψ(u) has no closed form expression in most cases.

The reliability applications of univariate compound point processes with drifts (1.1.1)

can be found in Aven and Jensen (1999). Such processes also have extensive applications

in financial risk management (Asmussen 2000). Consider an insurance or investment

portfolio. The claim events occur according to a point process {N(t), t ≥ 0}, and each

event yields a claim with size Xn ≥ 0. Then the claim surplus process of the portfolio

is described by (1.1.1), where p is interpreted as the premium rate. The ruin probability

ψ(u) is of fundamental interest to preventive maintenance and risk management. Since

the ruin probability is intractable in most cases, finding computable bounds for ψ(u) is

of significant importance in reliability modeling and risk management (Aven and Jensen

1999, Asmussen 2000).

Most practical systems consist of more than one component, and so the need to intro-

duce multivariate compound point processes with drifts. Consider a system that consists

of multiple components. The random shocks arrive at the system according to a stochastic

point process {N(t), t ≥ 0}, and each shock incurs several types of damages, one for each

component, that are usually stochastically dependent. As long as the system is working,

it generates some rewards, such as income, that can be used in maintenance of the sys-

tem. The cumulative damage on various components over time can be described by a

2



multivariate point process with drifts.

S(t) =




S1(t)
...

Sm(t)


 =




∑N(t)
n=1 Xn,1 − p1t

...∑N(t)
n=1 Xn,m − pmt


 , t ≥ 0, (1.1.3)

where (Xn,1, . . . , Xn,m) are the damages on various components caused by the n-th shock,

and (p1, . . . , pm) is the vector of the reward (drift) rates. The performance measures of

interest are various multivariate ruin/failure probabilities. For example, if one is interested

in simultaneous failures, then the following ruin probability is of interest,

ψsim(u1, . . . , um) = P ((S1(t), . . . , Sm(t)) > (u1, . . . , um) for some t > 0) ,

where (u1, . . . , um) is the vector of design thresholds. If one is interested in the aggregated

damage accumulated on various components, then this ruin probability is of interest,

ψsum(u) = P

(
sup

0≤t<∞

m∑
j=1

Sj(t) > u

)
.

The various ruin probabilities are of fundamental interest in preventive maintenance for

multi-component systems and in multivariate risk analysis.

For the multivariate compound Poisson risk models, Sundt (1999) studied a recursive

approach for the evaluation of the distribution of the multivariate cumulative process








N(t)∑
n=1

Xn,1, ...,

N(t)∑
n=1

Xn,m


 , t ≥ 0



 .

Li and Xu (2001, 2002) studied the first passage times that this multivariate cumulative

process exceeds various threshold values. Chan et al. (2003) discussed the ruin probabil-

ity of the aggregate claim for the case where the claim sizes Xn,1, ..., Xn,m are independent

for any n ≥ 1. Cai and Li (2005a) established the lower bound of certain ruin probabil-

ities for the positively associated claims, and obtained an explicit expression of the ruin

probability for the aggregate claim in a multivariate compound Poisson risk model whose

claims of various types follow a so called multivariate phase type distribution. In general,

however, the properties and expressions of the multivariate ruin probabilities are largely

unknown. The goal of this dissertation is to present a systematic study on multivariate

3



compound point processes with drifts and associated multivariate ruin probabilities, and

to derive computable bounds for the multivariate ruin probabilities whose expressions are

intractable.

1.2 Main Results and Organization

This dissertation is organized as follows.

1. In Chapter 2, we introduce multivariate compound point processes with drifts, and

define several multivariate ruin probabilities. We also discuss the relations of our

models with other models in the literature.

2. In Chapter 3, we obtain the stochastic comparison results for multivariate compound

point processes with drifts. We show that if the shocks arrive more frequently in

some stochastic sense, and the damages are larger stochastically, then the ruin prob-

abilities become larger. We also obtain the bounds as by-products of our comparison

results.

3. In Chapter 4, we present a dependence analysis for the multivariate ruin probabil-

ities. We show that if the damage vectors are more dependent in some sense, then

the ruin probabilities of common failures and the ruin probability of the aggregated

damage become larger, whereas the ruin probability for at least one failure becomes

smaller. This further illustrates that ignoring dependence among the components

often results in over-estimating or under-estimating the ruin probabilities.

4. In Chapter 5, we derive various computable bounds for the multivariate ruin prob-

abilities. Two approaches are used. First, we derive the bounds using univariate

compound point processes, and second approach utilizes the positive dependence

concepts. All the bounds discussed in this chapter depend on the dependence struc-

ture of damage vectors, and thus the effect of dependence on these bounds are also

discussed.

To facilitate the computations of these bounds, we utilize in this chapter multivariate

phase type distributions. The multivariate phase type distributions include many

well-known distributions, such as Marshall-Olkin distributions, and can be also used

to approximate any multivariate life distributions. The explicit computations of the

bounds for bivariate and trivariate Marshall-Olkin distributions are obtained, and

extensive simulation results are also presented to illustrate the results.
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Throughout this paper, the term ‘increasing’ and ‘decreasing’ mean ‘non-decreasing’

and ‘non-increasing’ respectively, and the measurability of sets and functions as well as

the existence of expectations are often assumed without explicit mention. Any inequality

between two vectors with finite or infinite dimensions means the inequalities component-

wise. A product space of partially ordered sets is equipped with the component-wise

partial ordering. All the random variables are denoted by capital letters, and random

vectors are written in bold face. Any product of matrices and/or vectors are understood

as a product with appropriate sizes.
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Chapter 2

Multivariate Compound Point

Processes with Drifts

This chapter introduces the multivariate compound point processes with drifts, and var-

ious ruin probabilities of interest to our study. The relations of the multivariate process

models and univariate process models are discussed, and two applications from preventive

maintenance and risk management are highlighted.

2.1 Multivariate Cumulative Processes

Consider a system that consists of m components. Random shocks arrive at the system

according to a point process {τn, n ≥ 1}, and each shock incurs several types of damages,

one for each component, that are usually stochastically dependent. Let N(t) denote the

number of shocks occurred prior to time t > 0, that is,

N(t) = max{n : τn ≤ t}. (2.1.1)

Let Xn,j be the damage size of the n-th shock incurred on the j-th component, 1 ≤ j ≤ m,

n ≥ 1, λj(n) the recovery (drift) rate function of the j-th component when the n-th shock

hits the system, 1 ≤ j ≤ m, n ≥ 1. The multivariate compound point process of the m

components with drifts is described by

S(t) =




S1(t)
...

Sm(t)


 =




∑N(t)
n=1 Xn,1 −

∫ t

0
λ1(N(s))ds

...∑N(t)
n=1 Xn,m −

∫ t

0
λm(N(s))ds


 , t ≥ 0, (2.1.2)
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We assume throughout that {(Xn,1, . . . , Xn,m), n ≥ 1} is a sequence of independent and

identically distributed (i.i.d.) non-negative random vectors, which is also independent of

{N(t), t ≥ 0}, but allow Xn,1, . . . , Xn,m to be dependent. We also assume that {N(t), t ≥
0} is non-explosive, that is, that for any fixed t > 0, N(t) is finite almost surely.

The multivariate stochastic process described in (2.1.2) has a variety of interpretations,

but we are mainly interested in the following two applications.

1. Maintenance and Repair Models: Consider a system subjected to random shocks

that occur according to a point process {τn, n ≥ 1}. In response to the damages

incurred by random shocks, corrective repairs are carried out on all components,

and take only a negligible amount of time. Let Xn,j be the cost associated with

the n-th repair on the j-th component, 1 ≤ j ≤ m, n ≥ 1, then the cumulative

maintenance cost at the j-th component by time t is given by

N(t)∑
n=1

Xn,j, 1 ≤ j ≤ m.

As long as the system is working, it generates income with the rate function λ(n)

that depends on the number n of shocks received. Then the cumulative net costs at

various components by time t are given by

S(t) =




S1(t)
...

Sm(t)


 =




∑N(t)
n=1 Xn,1 − θ1

∫ t

0
λ(N(s))ds

...∑N(t)
n=1 Xn,m − θm

∫ t

0
λ(N(s))ds


 , t ≥ 0, (2.1.3)

where θ1 ≥ 0, ..., θm ≥ 0 are the allocation parameters with
∑m

j=1 θj = 1.

2. Insurance Portfolios: Consider an insurance or investment portfolio that consists of

m sub-portfolios. The claim events occur according to a point process, and each

event yields several types of claims, one for each sub-portfolio, that are usually

stochastically dependent. Let N(t) denote the number of claim events by time

t > 0, and Xn,j the type j claim size of the n-th event, 1 ≤ j ≤ m, n ≥ 1. The

multivariate claim surplus process of the m sub-portfolios is described by

S(t) =




S1(t)
...

Sm(t)


 =




∑N(t)
n=1 Xn,1 − p1t

...∑N(t)
n=1 Xn,m − pmt


 , t ≥ 0, (2.1.4)
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where pj > 0 is the premium rate in sub-portfolio j or for type j claim, j = 1, ..., m.

The system performance measures that we are interested in are various kinds of ruin

probabilities. Let uj ≥ 0, j = 1, ..., m, denote the initial capital for component j in such

a multivariate compound process model (2.1.2). A ruin event occurs if the cumulative

costs/damages of some components exceed, in a certain fashion, their corresponding initial

capital reserves. Various ruin probabilities in multivariate compound process models are

of fundamental interest in maintenance and risk management. For example, consider the

following four ruin probabilities.

ψsum(u) = P

(
sup

0≤t<∞

m∑
j=1

Sj(t) > u

)
, (2.1.5)

ψand(u1, . . . , um) = P

(
m⋂

j=1

{
sup

0≤t<∞
(Sj(t)) > uj

})
, (2.1.6)

ψor(u1, . . . , um) = P

(
m⋃

j=1

{
sup

0≤t<∞
(Sj(t)) > uj

})
(2.1.7)

= P

(
sup

0≤t<∞
(max {S1(t)− u1, . . . , Sm(t)− um}) > 0

)
,

ψsim(u1, . . . , um) = P ((S1(t), . . . , Sm(t)) > (u1, . . . , um) for some t > 0) (2.1.8)

= P

(
sup

0≤t<∞
(min {S1(t)− u1, . . . , Sm(t)− um}) > 0

)
.

The ruin probability in (2.1.5) denotes the probability that ruin occurs when the aggregate

damage of all components exceeds a threshold. The ruin probability in (2.1.6) denotes

the probability that ruin occurs, not necessarily at the same time, in all components

eventually, whereas the ruin probability in (2.1.8) denotes the probability that ruin occurs

in all components simultaneously or at the same instant in time. The ruin probability in

(2.1.7) represents the probability that ruin occurs in at least one component. The focus of

this dissertation is on these ruin probabilities for the multivariate compound point process

models.

8



Example 2.1.1. In the univariate case that m = 1, we have

ψ(u) = ψsum(u) = ψand(u) = ψor(u) = ψsim(u) = P

(
sup

0≤t<∞
S1(t) > u

)
, (2.1.9)

where u ≥ 0 is the initial capital. That is, all the ruin probabilities in (2.1.5), (2.1.6),

(2.1.7), and (2.1.8) are the same. In the bivariate case, we have

ψsum(u) = P

(
sup

0≤t<∞
(S1(t) + S2(t)) > u

)
,

ψand(u1, u2) = P

(
sup

0≤t<∞
(S1(t)) > u1, sup

0≤t<∞
(S2(t)) > u2

)
,

ψor(u1, u2) = P

(
sup

0≤t<∞
(S1(t)) > u1, or sup

0≤t<∞
(S2(t)) > u2

)
,

ψsim(u1, u2) = P

(
sup

0≤t<∞
(min {S1(t)− u1, S2(t)− u2}) > 0

)
.

¤

2.2 Processes with Phase-Type

Distributed Damages

In general, these ruin probabilities are intractable. As a matter of fact, even in the

univariate case that m = 1, it is often difficult to obtain the explicit formula for its ruin

probability ψ(u). For the univariate model with the constant drift rate p, the Poisson

arrival process with rate λ and the exponential damage sizes with common mean 1/β,

one can calculate ψ(u) explicitly,

ψ(u) =
1

1 + θ
exp

(
− θβ

1 + θ
u

)
, (2.2.1)

where θ = pβ/λ− 1 > 0 is known as the relative security loading parameter.

A well-known general result in the univariate case is due to Asmussen and Rolski

(1991) who gave an explicit formula of ψ(u) for the compound Poisson process model

when the drift rate is p, the counting process N(t) is Poisson with rate λ, and the damage

size is of phase type in the sense of Neuts (1981). A non-negative random variable X is

said to be of phase type with representation (α, T, d) if X is the time to absorption into

9



the absorbing state 0 in a finite Markov chain with state space {0, 1, . . . , d} and initial

distribution (0, α), and infinitesimal generator,

[
0 0

−Te T

]
,

where 0 is the row vector of zeros of d dimension, and e is the column vector of 1’s, and T

is a d× d non-singular matrix. For a compound Poisson process model with the relative

security loading parameter θ = p
E(Xn,1)λ

− 1 > 0, if the damage size is of phase type

with representation (α, T, d), then ψ(u) in (2.1.9) is the tail probability of the stationary

waiting time in the M/PH/1 queue. Utilizing this fact, Asmussen and Rolski (1991)

showed that for any u ≥ 0,

ψ(u) = −λ

p
αT−1 exp

{(
T − λ

p
t0αT−1

)
u

}
e, (2.2.2)

where t0 = −Te. The phase type distributions enjoy many desirable properties (Neuts

1981), and in particular, any distribution on [0,∞) can be approximated by phase type

distributions. Thus (2.2.2) is versatile in applications.

Ruin theory for the univariate model has been discussed extensively in the literature,

and many results are summarized in Asmussen (2000) and Rolski et al. (1999). For the

multivariate compound Poisson risk models, Sundt (1999) studied a recursive approach

for the evaluation of the distribution of the multivariate cumulative process








N(t)∑
n=1

Xn,1, ...,

N(t)∑
n=1

Xn,m


 , t ≥ 0



 .

Li and Xu (2001, 2002) studied the first passage times that this multivariate cumulative

process exceeds various threshold values. Chan et al. (2003) discussed the ruin proba-

bility of the aggregate claim, ψor(u1, . . . , um) and ψsim(u1, . . . , um) for the case where the

claim sizes Xn,1, ..., Xn,m are independent for any n ≥ 1. Cai and Li (2005a) established

the lower bound of ψand(u1, . . . , um) for the positively associated claims, and obtained

an explicit expression of the ruin probability for the aggregate claim in a multivariate

compound Poisson risk model whose claims of various types follow a multivariate phase

type distribution. In general, however, the properties and expressions of the multivariate

ruin probabilities are largely unknown. In this dissertation, we investigate the depen-

dence properties of the ruin probabilities (2.1.5)-(2.1.8), and establish the sharp upper

10



and lower bounds of (2.1.5)-(2.1.8) whose explicit expressions are intractable even in the

simplest cases, such as multivariate compound Poisson process models with multivariate

exponentially distributed claims.
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Chapter 3

Stochastic Comparisons of

Multivariate Compound Point

Processes with Drifts

This chapter compares stochastically two multivariate compound point processes with

drifts, and studies how changes in the shock arrival process and in damage size vectors

would affect various ruin probabilities. The idea is to order the shock arrival processes and

damage size vectors of two multivariate process models in some ways, and then utilize

the preservation properties of stochastic orders and model structures to establish the

comparison results. The comparison methods of random vectors and of point processes

are reviewed, the comparisons of ruin probabilities for the shock arrival processes and

damage vectors that are stochastically ordered are established. Various examples are

presented to illustrate the results.

3.1 Stochastic Comparisons

There are various ways of comparing stochastically two random vectors. The following

notions of stochastically comparisons can be found in Shaked and Shanthikumar (1994),

and Müller and Stoyan (2002).

Definition 3.1.1. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be two Rm-valued

random vectors. X is said to be larger than Y in stochastic order, denoted by X ≥st Y ,

if Ef(X) ≥ Ef(Y ) for all increasing functions f .
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If X ≥st Y and Y ≥st X, then X and Y have the same distribution, which will be

denoted by X =st Y in this dissertation. It can be shown (see, for example, Shaked and

Shanthikumar 1994) that X ≥st Y if and only if there exist two random vectors X ′ and

Y ′ defined on the same probability space such that

X ′ ≥ Y ′, almost surely, (3.1.1)

and X ′ and X have the same distribution, Y ′ and Y have the same distribution.

Note that the stochastic order implies a variety of inequalities. For example, if X ≥st

Y , then it is easy to verify that

P (X1 > x1, . . . , Xm > xm) ≥ P (Y1 > x1, . . . , Ym > xm), (3.1.2)

P (X1 ≤ x1, . . . , Xm ≤ xm) ≤ P (Y1 ≤ x1, . . . , Ym ≤ xm), (3.1.3)

for any (x1, . . . , xm). If, in addition, both X and Y are non-negative, then we have

E(X i1
1 . . . X im

m ) ≥ E(Y i1
1 . . . Y im

m ),

for any i1 ≥ 0, . . . , im ≥ 0. The stochastic order is closed under increasing transformations,

convolutions and marginalizations.

For the univariate case, the stochastic order reduces the comparison of survival func-

tions. Let X have the distribution function F (x) and Y have the distribution func-

tion G(x). Then X ≤st Y means that F̄ (x) ≤ Ḡ(x), where F̄ (x) = 1 − F (x) and

Ḡ(x) = 1 − G(x), or equivalently, F (x) ≥ G(x). For example, let X have the survival

function F̄ (x) = e−λx and Y have the survival function Ḡ(x) = e−µx, then if λ > µ we

have X ≤st Y .

To compare stochastically two point processes, we express any point process in terms

of its counting process. A point process on R+ can be described as a sequence of random

variables 0 = τ0 < τ1 < · · · on a common probability space. We assume that limn→∞ τn =

∞ almost surely; that is, that the process is non-explosive. An alternative description of

the point process {τn} is through its associated counting process

N(t) = max{n : τn ≤ t}, t ≥ 0. (3.1.4)

Thus, the process N = {N(t), t ≥ 0} can be viewed as a random element of D[0,∞) (the

space of real functions on [0,∞) which are right-continuous with left-hand limits). As is
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mentioned in Shaked and Szekli (1995), (3.1.4) provides us with a “time-dynamic” view

of the point process. Note that D[0,∞) is a Polish space with the partial order defined,

for f, g ∈ D[0,∞), by

f ≤D g, if f(t) ≤ g(t), t ≥ 0.

The description above yields the following type of stochastic comparison of point processes.

Definition 3.1.2. Suppose that N = {N(t)} and N ′ = {N ′(t)} are two counting pro-

cesses. Define N ≤st-D N ′ if Eφ({N(t)}) ≤ Eφ({N ′(t)}) for all ≤D-increasing functions

φ on D[0,∞).

Note that N ≤st-D N ′ implies stochastic comparisons of finite dimensional distributions

of point processes. For example, if N ≤st-D N ′, then N(t) ≤st N ′(t) for any fixed t.

It follows from Szekli (1995) that N ≤st-D N ′ if and only if one can construct two

counting processes

M = {M(t), t ≥ 0} and M ′ = {(M ′(t), t ≥ 0},

on the same probability space, such that M and N have the same distribution, and M ′

and N ′ have the same distribution, and

M(t) ≤ M ′(t), for all t ≥ 0, almost surely. (3.1.5)

If the jump times of N are τ = {τ1, τ2, . . . , }, and the jump times of N ′ are τ ′ =

{τ ′1, τ ′2, . . . , }, then the stochastic comparison N ≤st-D N ′ is equivalent to the compar-

ison

Eφ(τ) ≥ Eφ(τ ′),

for all componentwise increasing functions φ on R∞+ . Equivalently, we can construct two

sequences of non-negative random variables

T = (T1, T2, . . . ) and T ′ = (T ′
1, T

′
2, . . . )

on the same probability space, such that T and τ have the same distribution, and T ′ and

τ ′ have the same distribution, and

Tn ≥ T ′
n for all n ≥ 1. (3.1.6)

The coupling ideas in (3.1.5) and (3.1.6) will be used in this dissertation to facilitate the
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proofs of the comparison results.

For renewal processes, the comparison can be easily established.

Lemma 3.1.3. Let X ∼ F (x) and Y ∼ G(x) denote the interarrival times of two

renewal processes NF = {NF (t)} and NG = {NG(t)} respectively. If X ≤st Y , then

NF ≥st-D NG.

Proof. Two counting processes NF (t) and NG(t) can be written as

NF (t) = max{n :
n∑

i=1

Xi ≤ t},

NG(t) = max{n :
n∑

i=1

Yi ≤ t},

where Xi’s are i.i.d. with distribution F , and Yi’s are i.i.d. with distribution G. Obviously

NF (t) is decreasing in Xi, and NG(t) is decreasing in Yi, for all i ≥ 1. Since Xi ≤st Yi,

then, from (3.1.1), we can constract X ′
i and Y ′

i on the same probability space such that

X ′
i ≤ Yi, for all i, almost surely,

and X ′
i and Xi have the same distribution, and Y ′

i and Yi have the same distribution.

Thus

max{n :
n∑

i=1

X ′
i ≤ t} ≥ max{n :

n∑
i=1

Y ′
i ≤ t} for all t,

almost surely. This implies that NF ≥st-D NG. ¤
If NF and NG are two Poisson processes with rates λ and µ respectively, then Lemma

3.1.3 implies that if λ ≥ µ, then NF ≥st-D NG. For Non-homogeneous Poisson Processes,

the comparison can be also established (Szekli 1995).

Lemma 3.1.4. Let m1(t) and m2(t) be two mean value functions of two nonhomogeneous

Poisson processes N1 = {N1(t)} and N2 = {N2(t)} respectively. If m1(t) ≤ m2(t), then

N1 ≤st-D N2.

Example 3.1.5. Let m(t) be the mean value function of a nonhomogeneous Poisson

process NNHPP = {NNHPP (t)}, and λ be the rate of a Poisson process NPP = {NPP (t)}.
If λ(t) ≤ 1

λ
, then NNHPP ≤st-D NPP . ¤
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3.2 Stochastic Comparisons of Multivariate

Compound Point Processes with Drifts

Let S1(t) and S2(t) be two multivariate compound point processes with the same drift

functions λj(n), 1 ≤ j ≤ m, the same damage sizes (Xn,1, . . . , Xn,m), but different

shock arrival processes N1 = {N1(t)} and N2 = {N2(t)}, respectively. Let ψi
sum(u)

(ψi
or(u1, . . . , um), ψi

and(u1, . . . , um), ψi
sim(u1, . . . , um)) be the ruin probability of type (2.1.5)

((2.1.6), (2.1.7), (2.1.8)) for the process Si(t), i = 1, 2.

Theorem 3.2.1. Assume that the drift functions λj(u) are decreasing in u. If N1 ≥st-D

N2, then

1. ψ1
sum(u) ≥ ψ2

sum(u),

2. ψ1
and(u1, . . . , um) ≥ ψ2

and(u1, . . . , um),

3. ψ1
or(u1, . . . , um) ≥ ψ2

or(u1, . . . , um), and

4. ψ1
sim(u1, . . . , um) ≥ ψ2

sim(u1, . . . , um).

Proof. (1) From (2.1.5), we have

ψ1
sum(u) = P

(
sup

0≤t<∞

m∑
j=1

S1
j (t) > u

)
,

ψ2
sum(u) = P

(
sup

0≤t<∞

m∑
j=1

S2
j (t) > u

)
,

where

S1
j (t) =

N1(t)∑
n=1

Xn,j −
∫ t

0

λj(N1(s))ds, t ≥ 0,

S2
j (t) =

N2(t)∑
n=1

Xn,j −
∫ t

0

λj(N2(s))ds, t ≥ 0,

N1 = {N1(t), t ≥ 0},

N2 = {N2(t), t ≥ 0}.

If N1 ≥st-D N2, one can construct two counting processes on the same probability space

Ñ1 = {Ñ1(t), t ≥ 0},
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Ñ2 = {Ñ2(t), t ≥ 0},

satisfying two conditions:

1. Ñ1(t) ≥ Ñ2(t), ∀t ≥ 0,

2. Ñ1 and N1 have the same distribution, Ñ2 and N2 have the same distribution.

Consider,

S̃1
j (t) =

Ñ1(t)∑
n=1

Xn,j −
∫ t

0

λj(Ñ1(s))ds, t ≥ 0,

S̃2
j (t) =

Ñ2(t)∑
n=1

Xn,j −
∫ t

0

λj(Ñ2(s))ds, t ≥ 0.

Since λj(u) is decreasing in u, then Ñ1 ≥ Ñ2 implies
∫ t

0
λj(Ñ1(s))ds ≤ ∫ t

0
λj(Ñ2(s))ds.

Thus we have

S̃1
j (t) ≥ S̃2

j (t), ∀j = 1, 2, . . . , m. (3.2.1)

This sample path comparison implies that

sup
0≤t<∞

m∑
j=1

S̃1
j (t) ≥ sup

0≤t<∞

m∑
j=1

S̃2
j (t) ⇒ P ( sup

0≤t<∞

m∑
j=1

S̃1
j (t) > u) ≥ P ( sup

0≤t<∞

m∑
j=1

S̃2
j (t) > u).

Since

sup
0≤t<∞

m∑
j=1

S1
j (t) =st sup

0≤t<∞

m∑
j=1

S̃1
j (t)

sup
0≤t<∞

m∑
j=1

S2
j (t) =st sup

0≤t<∞

m∑
j=1

S̃2
j (t)

we have, ψ1
sum(u) ≥ ψ2

sum(u).

(2) From (2.1.6) and the sample path construction in (1),

ψ1
and(u1, . . . , um) = P

(
m⋂

j=1

{
sup

0≤t<∞
(S̃1

j (t)) > uj

})
,

ψ2
and(u1, . . . , um) = P

(
m⋂

j=1

{
sup

0≤t<∞
(S̃2

j (t)) > uj

})
, ,
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where

S̃1
j (t) =

Ñ1(t)∑
n=1

Xn,j −
∫ t

0

λj(Ñ1(s))ds, t ≥ 0,

S̃2
j (t) =

Ñ2(t)∑
n=1

Xn,j −
∫ t

0

λj(Ñ2(s))ds, t ≥ 0.

It follows from (3.2.1) that for each j

{
sup

0≤t<∞
S̃2

j (t) > uj

}
⊆

{
sup

0≤t<∞
S̃1

j (t) > uj

}
,

which implies that

P

(
m⋂

j=1

{
sup

0≤t<∞
(S̃1

j (t)) > uj

})
≥ P

(
m⋂

j=1

{
sup

0≤t<∞
(S̃2

j (t)) > uj

})
.

Therefore, ψ1
and(u1, . . . , um) ≥ ψ2

and(u1, . . . , um).

(3) From (2.1.7) and the sample path construction in (1),

ψ1
or(u1, . . . , um) = P

(
m⋃

j=1

{
sup

0≤t<∞
(S1

j (t)) > uj

})
,

ψ2
or(u1, . . . , um) = P

(
m⋃

j=1

{
sup

0≤t<∞
(S2

j (t)) > uj

})
, ,

where

S̃1
j (t) =

Ñ1(t)∑
n=1

Xn,j −
∫ t

0

λj(Ñ1(s))ds, t ≥ 0,

S̃2
j (t) =

Ñ2(t)∑
n=1

Xn,j −
∫ t

0

λj(Ñ2(s))ds, t ≥ 0.

It follows from (3.2.1) that for each j

{
sup

0≤t<∞
S̃2

j (t) > uj

}
⊆

{
sup

0≤t<∞
S̃1

j (t) > uj

}
,
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which implies that

P

(
m⋃

j=1

{
sup

0≤t<∞
(S̃1

j (t)) > uj

})
≥ P

(
m⋃

j=1

{
sup

0≤t<∞
(S̃2

j (t)) > uj

})
.

Therefore, ψ1
or(u1, . . . , um) ≥ ψ2

or(u1, . . . , um).

(4) From (2.1.8) and the sample path construction in (1),

ψ1
sim(u1, . . . , um) = P

(
(S̃1

1(t), . . . , S̃
1
m(t)) > (u1, . . . , um) for some t > 0

)
,

ψ2
sim(u1, . . . , um) = P

(
(S̃2

1(t), . . . , S̃
2
m(t)) > (u1, . . . , um) for some t > 0

)
,

where

S̃1
j (t) =

Ñ1(t)∑
n=1

Xn,j −
∫ t

0

λj(Ñ1(s))ds, t ≥ 0,

S̃2
j (t) =

Ñ2(t)∑
n=1

Xn,j −
∫ t

0

λj(Ñ2(s))ds, t ≥ 0.

It follows from (3.2.1) that

{(S̃2
1(t), . . . , S̃

2
m(t)) > (u1, . . . , um) for some t > 0}

⊆ {(S̃1
1(t), . . . , S̃

1
m(t)) > (u1, . . . , um) for some t > 0},

which implies that

P
(
(S̃1

1(t), . . . , S̃
1
m(t)) > (u1, . . . , um) for some t > 0

)

≥ P
(
(S̃2

1(t), . . . , S̃
2
m(t)) > (u1, . . . , um) for some t > 0

)
.

Therefore, ψ1
sim(u1, . . . , um) ≥ ψ2

sim(u1, . . . , um). ¤

Example 3.2.2. Consider the ruin probability ψsum(u) in (2.1.5) where the shock arrival

process N = {N(t), t ≥ 0} is a nonhomogenrous Poisson process with rate function λ(t),

and independent and exponentially distributed damage sizes (Xn,1, . . . , Xn,m) with mean

µ. The ruin probability ψsum(u) can not be calculated explicitly. However, if λ(t) is

bounded, then the computable bounds for ψsum(u) can be derived using Theorem 3.2.1.
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Suppose that a ≤ λ(t) ≤ b. It follows from Example 3.1.5 that

Na ≥st-D N ≥st-D Nb,

where Na and Nb are two Poisson processes with rates a and b respectively. From Theorem

3.2.1, we have

ψa
sum(u) ≥ ψsum(u) ≥ ψb

sum(u),

where ψa
sum(u) and ψb

sum(u) are the ruin probabilities of type (2.1.5) with the same drift

functions, same damage sizes as that of ψsum(u), and Poisson shock arrival processes Na

and Nb respectively. ¤

Theorem 3.2.1 illustrates how change in a shock arrival process would affect various

ruin probabilities. To understand the effect of damage sizes on the ruin probabilities,

consider two multivariate compound point processes S1(t) and S2(t) with the same drift

functions, the same shock arrival process, but different damage sizes (Xn,1, . . . , Xn,m)

and (Yn,1, . . . , Yn,m), respectively. Again, let ψi
sum(u) (ψi

or(u1, . . . , um), ψi
and(u1, . . . , um),

ψi
sim(u1, . . . , um)) be the ruin probability of type (2.1.5) ((2.1.6), (2.1.7), (2.1.8)) for the

process Si(t), i = 1, 2.

Theorem 3.2.3. If (Xn,1, . . . , Xn,m) ≥st (Yn,1, . . . , Yn,m) then

1. ψ1
sum(u) ≥ ψ2

sum(u),

2. ψ1
and(u1, . . . , um) ≥ ψ2

and(u1, . . . , um),

3. ψ1
or(u1, . . . , um) ≥ ψ2

or(u1, . . . , um), and

4. ψ1
sim(u1, . . . , um) ≥ ψ2

sim(u1, . . . , um).

Proof. (1) From (2.1.5), we have

ψ1
sum(u) = P

(
sup

0≤t<∞

m∑
j=1

S1
j (t) > u

)
,

ψ2
sum(u) = P

(
sup

0≤t<∞

m∑
j=1

S2
j (t) > u

)
,

where

S1
j (t) =

N(t)∑
n=1

Xn,j −
∫ t

0

λj(N(s))ds, t ≥ 0,
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S2
j (t) =

N(t)∑
n=1

Yn,j −
∫ t

0

λj(N(s))ds, t ≥ 0,

If (Xn,1, . . . , Xn,m) ≥st (Yn,1, . . . , Yn,m), one can construct random vectors on the same

probability space

(X̃n,1, . . . , X̃n,m), (Ỹn,1, . . . , Ỹn,m), n ≥ 1

satisfying two conditions:

1. (X̃n,1, . . . , X̃n,m) ≥ (Ỹn,1, . . . , Ỹn,m), almost surely, for all n ≥ 1,

2. (X̃n,1, . . . , X̃n,m) and (Xn,1, . . . , Xn,m) have the same distribution, (Ỹn,1, . . . , Ỹn,m)

and (Yn,1, . . . , Yn,m) have the same distribution.

Consider,

S̃1
j (t) =

N(t)∑
n=1

X̃n,j −
∫ t

0

λj(N(s))ds, t ≥ 0,

S̃2
j (t) =

N(t)∑
n=1

Ỹn,j −
∫ t

0

λj(N(s))ds, t ≥ 0.

Since (X̃n,1, . . . , X̃n,m) ≥ (Ỹn,1, . . . , Ỹn,m) for all n ≥ 1, we have

S̃1
j (t) ≥ S̃2

j (t), ∀j = 1, 2, . . . , m. (3.2.2)

This sample path comparison implies that

sup
0≤t<∞

m∑
j=1

S̃1
j (t) ≥ sup

0≤t<∞

m∑
j=1

S̃2
j (t) ⇒ P ( sup

0≤t<∞

m∑
j=1

S̃1
j (t) > u) ≥ P ( sup

0≤t<∞

m∑
j=1

S̃2
j (t) > u).

Since

sup
0≤t<∞

m∑
j=1

S1
j (t) =st sup

0≤t<∞

m∑
j=1

S̃1
j (t)

sup
0≤t<∞

m∑
j=1

S2
j (t) =st sup

0≤t<∞

m∑
j=1

S̃2
j (t)
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we have, ψ1
sum(u) ≥ ψ2

sum(u).

(2) From (2.1.6) and the sample path construction in (1),

ψ1
and(u1, . . . , um) = P

(
m⋂

j=1

{
sup

0≤t<∞
(S̃1

j (t)) > uj

})
,

ψ2
and(u1, . . . , um) = P

(
m⋂

j=1

{
sup

0≤t<∞
(S̃2

j (t)) > uj

})
, ,

where

S̃1
j (t) =

N(t)∑
n=1

X̃n,j −
∫ t

0

λj(N(s))ds, t ≥ 0,

S̃2
j (t) =

N(t)∑
n=1

Ỹn,j −
∫ t

0

λj(N(s))ds, t ≥ 0.

It follows from (3.2.2) that for each j

{
sup

0≤t<∞
S̃2

j (t) > uj

}
⊆

{
sup

0≤t<∞
S̃1

j (t) > uj

}
,

which implies that

P

(
m⋂

j=1

{
sup

0≤t<∞
(S̃1

j (t)) > uj

})
≥ P

(
m⋂

j=1

{
sup

0≤t<∞
(S̃2

j (t)) > uj

})
.

Therefore, ψ1
and(u1, . . . , um) ≥ ψ2

and(u1, . . . , um).

(3) From (2.1.7) and the sample path construction in (1),

ψ1
or(u1, . . . , um) = P

(
m⋃

j=1

{
sup

0≤t<∞
(S1

j (t)) > uj

})
,

ψ2
or(u1, . . . , um) = P

(
m⋃

j=1

{
sup

0≤t<∞
(S2

j (t)) > uj

})
, ,
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where

S̃1
j (t) =

N(t)∑
n=1

X̃n,j − λj(N(t))t, t ≥ 0,

S̃2
j (t) =

N(t)∑
n=1

Ỹn,j − λj(N(t))t, t ≥ 0.

It follows from (3.2.2) that for each j

{
sup

0≤t<∞
S̃2

j (t) > uj

}
⊆

{
sup

0≤t<∞
S̃1

j (t) > uj

}
,

which implies that

P

(
m⋃

j=1

{
sup

0≤t<∞
(S̃1

j (t)) > uj

})
≥ P

(
m⋃

j=1

{
sup

0≤t<∞
(S̃2

j (t)) > uj

})
.

Therefore, ψ1
or(u1, . . . , um) ≥ ψ2

or(u1, . . . , um).

(4) From (2.1.8) and the sample path construction in (1),

ψ1
sim(u1, . . . , um) = P

(
(S̃1

1(t), . . . , S̃
1
m(t)) > (u1, . . . , um) for some t > 0

)
,

ψ2
sim(u1, . . . , um) = P

(
(S̃2

1(t), . . . , S̃
2
m(t)) > (u1, . . . , um) for some t > 0

)
,

where

S̃1
j (t) =

N(t)∑
n=1

X̃n,j −
∫ t

0

λj(N(s))ds, t ≥ 0,

S̃2
j (t) =

N(t)∑
n=1

Ỹn,j −
∫ t

0

λj(N(s))ds, t ≥ 0.

It follows from (3.2.2) that

{(S̃2
1(t), . . . , S̃

2
m(t)) > (u1, . . . , um) for some t > 0}

⊆ {(S̃1
1(t), . . . , S̃

1
m(t)) > (u1, . . . , um) for some t > 0},
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which implies that

P
(
(S̃1

1(t), . . . , S̃
1
m(t)) > (u1, . . . , um) for some t > 0

)

≥ P
(
(S̃2

1(t), . . . , S̃
2
m(t)) > (u1, . . . , um) for some t > 0

)
.

Therefore, ψ1
sim(u1, . . . , um) ≥ ψ2

sim(u1, . . . , um). ¤
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Chapter 4

Dependence of Multivariate

Compound Point Processes with

Drifts

This chapter focuses on the dependence comparison of two multivariate compound point

processes with drifts. To achieve this, we fix the marginal distributions of damage size

vectors, increase the dependence of damage size vectors in some sense, and study the

effect on various ruin probabilities. We show that increasing dependence increases the

ruin probabilities of common component failures.

The dependence comparison methods are reviewed, and examples are presented through-

out to illustrate the results.

4.1 Dependence Comparison Methods

Definition 4.1.1. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be two Rm-valued

random vectors.

1. X is said to be more upper-orthant dependent than Y , denoted by X ≥uod Y , if

Xi and Yi have the same distribution for each i, and

P (X1 > x1, . . . , Xm > xm) ≥ P (Y1 > x1, . . . , Ym > xm).

2. X is said to be more lower-orthant dependent than Y , denoted by X ≥lod Y , if Xi
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and Yi have the same distribution for each i, and

P (X1 ≤ x1, . . . , Xm ≤ xm) ≥ P (Y1 ≤ x1, . . . , Ym ≤ xm).

3. X is said to be more dependent than Y in supermodular order, denoted by X ≥sm

Y , if Ef(X) ≥ Ef(Y ) for all supermodular functions f ; that is, functions satisfying

that for all x, y ∈ Rm,

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y),

where x ∨ y denotes the vector of component-wise maximums, and x ∧ y denotes

the vector of component-wise minimums.

If f has second partial derivatives, then the supermodular property of function f is

equivalent to
∂2f

∂xi∂xj

≥ 0,

for all i 6= j. The examples of supermodular functions include the functions of the

following form,

f(x1, . . . , xs) =
s∏

j=1

fj(xj), (4.1.1)

where f1, . . . , fs are monotone in the same directions.

These stochastic orders have many useful properties and applications, and are studied

in details in Marshall and Olkin (1979), Shaked and Shanthikumar (1994), and Müller

and Stoyan (2002), and references therein. The following properties are frequently used

in this and the next sections.

Lemma 4.1.2. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be two Rm-valued random

vectors.

1. If X ≥uod Y , then (f1(X1), . . . , fm(Xm)) ≥uod (f1(Y1), . . . , fm(Ym)) for any func-

tions f1, . . . , fm that are all increasing.

2. If X ≥lod Y , then (f1(X1), . . . , fm(Xm)) ≥lod (f1(Y1), . . . , fm(Ym)) for any func-

tions f1, . . . , fm that are all increasing.

3. If X ≥sm Y , then (f1(X1), . . . , fm(Xm)) ≥sm (f1(Y1), . . . , fm(Ym)) for any func-

tions f1, . . . , fm that are all increasing or all decreasing.
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4. If X ≥sm Y , then Xj and Yj have the same marginal distribution for any j =

1, . . . , m, and

P (X1 > x1, . . . , Xm > xm) ≥ P (Y1 > x1, . . . , Ym > xm), (4.1.2)

P (X1 ≤ x1, . . . , Xm ≤ xm) ≥ P (Y1 ≤ x1, . . . , Ym ≤ xm), (4.1.3)

for any (x1, . . . , xm).

It follows from Lemma 4.1.2 (4) that the supermodular dependence implies both upper

and lower orthant dependence. Note that, if X ≥sm Y , then Cov(Xi, Xj) ≥ Cov(Yi, Yj)

for any i 6= j.

Lemma 4.1.3. Let X = (X1, . . . , Xm), and Y = (Y1, . . . , Ym) be two random vectors.

1. If X ≥uod Y then min{X1, . . . , Xm} ≥st min{Y1, . . . , Ym}.

2. If X ≥lod Y then max{X1, . . . , Xm} ≤st max{Y1, . . . , Ym}.

3. If X ≥uod Y and X ≥lod Y then

E(max{X1, . . . , Xm}−min{X1, . . . , Xm}) ≤ E(max{Y1, . . . , Ym}−min{Y1, . . . , Ym}).

Proof. Note that

P (min{X1, . . . , Xm} > a) = P (X1 > a, . . . , Xm > a)

and

P (min{Y1, . . . , Ym} > a) = P (Y1 > a, . . . , Ym > a).

Thus X ≥uod Y implies that

P (min{X1, . . . , Xm} > a) ≥ P (min{Y1, . . . , Ym} > a),

and (1) follows. (2) can be proved similarly, and (3) follows from (1) and (2). ¤

Example 4.1.4. Let Z be any random variable. The Lorenz inequality (Tchen 1980)

implies that

(Z, . . . , Z︸ ︷︷ ︸
m

) ≥sm (Z1, . . . , Zm)
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where Z1, Z2, . . . , Zm are i.i.d. random variables with the same distribution as that of Z.

¤

Example 4.1.5. Let Z1, . . . , Zs be independent random variables. Let es denote the

vector of 1’s with s dimension, s ≥ 1. It follows from Example 4.1.4 and Lemma 4.1.2 (3)

that

(Z1em1 , . . . , Zsems) ≥sm (Z11, . . . , Z1m1︸ ︷︷ ︸
m1

, . . . , Zs1, . . . , Zsms︸ ︷︷ ︸
ms

),

where Zk1, . . . , Zkmk
are i.i.d. with the same distribution of Zk, k = 1, . . . , s. ¤

Since the supermodular dependence is stronger than upper and lower orthant depen-

dence, Examples 4.1.4 and 4.1.5 also provide examples for the upper and lower orthant

dependence. The following example, due to S̆idák (1968), presents a random vector with

the upper orthant dependence.

Example 4.1.6. Let X = (X1, . . . , Xm) have a normal distribution with a mean vector

of µ and a covariance matrix of Σ = (σij). Then

(|X1|, . . . , |Xm|) ≥uod (Y1, . . . , Ym)

where Y1, . . . , Ym are independent having distributions of |X1|, . . . , |Xm| respectively. ¤

4.2 Dependence Comparisons of Multivariate Pro-

cess Models

Consider two multivariate compound point process models M1 and M2 introduced in

Chapter 1. To compare the effect of the dependence of damage sizes on the ruin probabil-

ities, we suppose thatM1 andM2 have the same claim event arrival process {N(t), t ≥ 0},
same drift functions λj(n), 1 ≤ j ≤ m, and same initial reserves uj, 1 ≤ j ≤ m, but

different damage size vectors Xn = (Xn,1, . . . , Xn,m) and Y n = (Yn,1, . . . , Yn,m), respec-

tively. Let ψX
and(u1, . . . , um) (ψY

and(u1, . . . , um)), ψX
or(u1, . . . , um) (ψY

or(u1, . . . , um)), and

ψX
sim(u1, . . . , um) (ψY

sim(u1, . . . , um)) denote the ruin probabilities of types (2.1.6), (2.1.7),

and (2.1.8), respectively, in model M1 (M2).

Theorem 4.2.1. If Xn ≤sm Y n, then we have, for any nonnegative u1, . . . , um,

1. ψX
and(u1, . . . , um) ≤ ψY

and(u1, . . . , um),
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2. ψX
or(u1, . . . , um) ≥ ψY

or(u1, . . . , um), and

3. ψX
sim(u1, . . . , um) ≤ ψY

sim(u1, . . . , um).

Proof. (1) It suffices to show that given that N(t) = n(t), t ≥ 0,

ψX
and(u1, . . . , um) ≤ ψY

and(u1, . . . , um). (4.2.1)

Without loss of generality, we assume that {Xn, n ≥ 1} and {Y n, n ≥ 1} are independent.

For fixed positive integer k, let

Zn = Y n, n = 1, . . . , k

Zn = Xn, n > k.

Let ψZ
k (u1, . . . , um) denote the ruin probabilities of type (2.1.6) in the multivariate com-

pound point model with the shock arrival process N(t), drift rates λj(N(t)), 1 ≤ j ≤ m,

initial reserves uj, 1 ≤ j ≤ m, and damage size vectors {Zn, n ≥ 1}. Also let

SX
j (t) =

N(t)∑
n=1

Xn,j −
∫ t

0

λj(N(s))ds, j = 1, . . . , m

SY
j (t) =

N(t)∑
n=1

Yn,j −
∫ t

0

λj(N(s))ds, j = 1, . . . , m

Sj(t) =

N(t)∑
n=1

Zn,j −
∫ t

0

λj(N(s))ds, j = 1, . . . , m.

Conditioning on Xn = xn, n > k, sup
0≤t<∞

SX
j (t) is an increasing function of X1,j, . . . , Xk,j,

and sup
0≤t<∞

Sj(t) is an increasing function of Y1,j, . . . , Yk,j, 1 ≤ j ≤ m. Since X1, . . . , Xk

are i.i.d., and Y 1, . . . , Y k are i.i.d, and Xn ≤sm Y n, we invoke Lemma 4.1.2 (3) k times,

and obtain that conditioning on Xn = xn, n > k,

(
sup

0≤t<∞
SX

1 (t), . . . , sup
0≤t<∞

SX
m(t)

)
≤sm

(
sup

0≤t<∞
S1(t), . . . , sup

0≤t<∞
Sm(t)

)
.

It follows from unconditioning and (4.1.2) that for any k

ψX
and(u1, . . . , um) ≤ ψZ

k (u1, . . . , um).
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Observe that as k →∞, ψZ
k (u1, . . . , um) converges to ψY

and(u1, . . . , um) for any u1, . . . , um.

Thus, we establish (4.2.1) conditioning on N(t) = n(t), t ≥ 0.

(2) Note that for any two events A and B, we have P (A or B) = 1 - P ((A or B)′) =

1 - P (A′ and B′). Using a similar idea as in (1) above (using (4.1.3), instead of (4.1.2)),

we can also show that

P

(
sup

0≤t<∞
SX

1 (t) ≤ u1, . . . , sup
0≤t<∞

SX
m(t) ≤ u1

)
≤ P

(
sup

0≤t<∞
SY

1 (t) ≤ u1, . . . , sup
0≤t<∞

SY
m(t) ≤ u1

)
.

Therefore,

ψX
or(u1, . . . , um) = 1− P

(
sup

0≤t<∞
SX

1 (t) ≤ u1, . . . , sup
0≤t<∞

SX
m(t) ≤ u1

)

≥ 1− P

(
sup

0≤t<∞
SY

1 (t) ≤ u1, . . . , sup
0≤t<∞

SY
m(t) ≤ u1

)
= ψY

or(u1, . . . , um).

(3) Notice that ψsim(u1, . . . , um) is the probability that ruin occurs at all the compo-

nents at the same time, and unlike (2.1.6) and (2.1.7), is not a separate functional of the

damage processes of these components. Thus, in this case, we need some extra work.

Let

S̄X
j (t) = SX

j (t)− uj, S̄Y
j (t) = SY

j (t)− uj, 1 ≤ j ≤ m.

Also let

S̄X
(1)(t) = min

{
S̄X

1 (t), . . . , S̄X
m(t)

}
,

S̄Y
(1)(t) = min

{
S̄Y

1 (t), . . . , S̄Y
m(t)

}
.

Since

ψX
sim(u1, . . . , um) = 1− P

(
sup

0≤t<∞
S̄X

(1)(t) ≤ 0

)
= 1− P

(
S̄X

(1)(t) ≤ 0 for all t ≥ 0
)
,

ψY
sim(u1, . . . , um) = 1− P

(
sup

0≤t<∞
S̄Y

(1)(t) ≤ 0

)
= 1− P

(
S̄Y

(1)(t) ≤ 0 for all t ≥ 0
)
,

we need to show that

P
(
S̄X

(1)(t) ≤ 0 for all t ≥ 0
) ≥ P

(
S̄Y

(1)(t) ≤ 0 for all t ≥ 0
)
.

Since the sample paths of the counting process {N(t), t ≥ 0} are right-continuous with
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left-limits, it suffices to show that for any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tl < ∞,

P
(
S̄X

(1)(t1) ≤ 0, . . . , S̄X
(1)(tl) ≤ 0

) ≥ P
(
S̄Y

(1)(t1) ≤ 0, . . . , S̄Y
(1)(tl) ≤ 0

)
,

which can be rephrased as

P

(
l⋂

i=1

m⋃
j=1

{
S̄X

j (ti) ≤ 0
}
)
≥ P

(
l⋂

i=1

m⋃
j=1

{
S̄Y

j (ti) ≤ 0
}
)

. (4.2.2)

We first observe that for any real numbers a1, . . . , al and any n, we have,

P

(
l⋂

i=1

m⋃
j=1

{Xn,j ≤ ai}
)

= P

(
l⋂

i=1

{min {Xn,1, . . . , Xn,m} ≤ ai}
)

= P (min {Xn,1, . . . , Xn,m} ≤ min{a1, . . . , al})
= 1− P (Xn,1 > min{a1, . . . , al}, . . . , Xn,m > min{a1, . . . , al})
≥ 1− P (Yn,1 > min{a1, . . . , al}, . . . , Yn,m > min{a1, . . . , al})

= P

(
l⋂

i=1

m⋃
j=1

{Yn,j ≤ ai}
)

,

where the inequality follows from (4.1.2). Thus, for any strictly increasing functions

g1, . . . , gl and any n, we have

P

(
l⋂

i=1

m⋃
j=1

{gi(Xn,j) ≤ 0}
)

= P

(
l⋂

i=1

m⋃
j=1

{
Xn,j ≤ g−1

i (0)
}
)

≥ P

(
l⋂

i=1

m⋃
j=1

{
Yn,j ≤ g−1

i (0)
}
)

= P

(
l⋂

i=1

m⋃
j=1

{gi(Yn,j) ≤ 0}
)

. (4.2.3)

Conditioning on N(t) = n(t), t ≥ 0, S̄X
j (t1), . . . , S̄

X
j (tl) are strictly increasing functions

of Xn,j, 1 ≤ n ≤ k, for certain k, where k is finite due to the fact that {N(t), t ≥ 0}
is non-explosive. Similarly, S̄Y

j (t1), . . . , S̄
Y
j (tl) are strictly increasing functions of Yn,j,

1 ≤ n ≤ k. Since X1, . . . , Xk are i.i.d., and Y 1, . . . , Y k are i.i.d, and Xn ≤sm Y n, we

invoke (4.2.3) k times, and obtain (4.2.2) conditioning on N(t) = n(t), t ≥ 0. Finally,

unconditioning yields (4.2.2). ¤
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Note that ψX
sim(u1, . . . , um) ≤ ψY

and(u1, . . . , um) ≤ ψX
or(u1, . . . , um) for any u1, . . . , um.

Theorem 4.2.1 shows that, as the damage size vector becomes more correlated in the

sense of supermodular order, both ψX
sim(u1, . . . , um) and ψY

and(u1, . . . , um) increase, and

ψX
or(u1, . . . , um) decreases.

Example 4.2.2. Consider a multivariate compound Poisson model with constant drift

functions λj = p, 1 ≤ j ≤ m, Poisson shock arrival process N = {N(t), t ≥ 0} with rate

λ, and damage size vector (Xn,1, . . . , Xn,m). Assume that (Xn,1, . . . , Xn,m) has a joint

distribution such that all the one dimensional marginals have an exponential distribution

with rate β. Even when we know the dependence structure of (Xn,1, . . . , Xn,m), the ruin

probabilities ψX
and(u1, . . . , um), ψX

or(u1, . . . , um) and ψX
sim(u1, . . . , um) from (2.1.6)-(2.1.8)

still have no closed formulas. To find computable bounds, we utilize Theorem 4.2.1 and

Example 4.1.4. First observe from Example 4.1.4 that

(Xn,1, . . . , Xn,m) ≤sm (Xn,1, . . . , Xn,1︸ ︷︷ ︸
m

).

It follows from Theorem 4.2.1 that

ψX
and(u1, . . . , um) ≤ ψand(u1, . . . , um),

ψX
or(u1, . . . , um) ≥ ψor(u1, . . . , um),

ψX
sim(u1, . . . , um) ≤ ψsim(u1, . . . , um),

where ψand(u1, . . . , um), ψor(u1, . . . , um) and ψsim(u1, . . . , um) are the ruin probabilities of

type (2.1.6), (2.1.7) and (2.1.8), respectively, with damage size vector (Xn,1, . . . , Xn,1).

Obviously, we have

ψand(u1, . . . , um) = ψ(max{u1, . . . , um}),

ψor(u1, . . . , um) = ψ(min{u1, . . . , um}),

ψsim(u1, . . . , um) = ψ(max{u1, . . . , um}),

where ψ(u) is the univariate ruin probability (2.1.9) with Poisson shock arrival process,

and exponential distribution damage size. Note that ψsim = ψand ≤ ψor. This ruin

probability can be calculated explicitly (2.2.1). Thus we have

ψX
and(u1, . . . , um) ≤ 1

1 + θ
exp

(
− θβ

1 + θ
max{u1, . . . , um}

)
,
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ψX
or(u1, . . . , um) ≥ 1

1 + θ
exp

(
− θβ

1 + θ
min{u1, . . . , um}

)
,

ψX
sim(u1, . . . , um) ≤ 1

1 + θ
exp

(
− θβ

1 + θ
max{u1, . . . , um}

)
,

where θ = pβ/λ− 1 > 0 is known as the relative security loading parameter. ¤

For the weaker dependence comparisons ≤uod and ≤lod, the weaker results can be

similarly established.

Theorem 4.2.3. If Xn ≤uod Y n, then we have, for any nonnegative u1, . . . , um,

1. ψX
and(u1, . . . , um) ≤ ψY

and(u1, . . . , um), and

2. ψX
sim(u1, . . . , um) ≤ ψY

sim(u1, . . . , um).

Proof. (1) It suffices to show that given that N(t) = n(t), t ≥ 0,

ψX
and(u1, . . . , um) ≤ ψY

and(u1, . . . , um). (4.2.4)

Without loss of generality, we assume that {Xn, n ≥ 1} and {Y n, n ≥ 1} are independent.

For fixed positive integer k, let

Zn = Y n, n = 1, . . . , k

Zn = Xn, n > k.

Let ψZ
k (u1, . . . , um) denote the ruin probabilities of type (2.1.6) in the multivariate com-

pound point model with the shock arrival process N(t), drift rates λj(N(t)), 1 ≤ j ≤ m,

initial reserves uj, 1 ≤ j ≤ m, and damage size vectors {Zn, n ≥ 1}. Also let

SX
j (t) =

N(t)∑
n=1

Xn,j −
∫ t

0

λj(N(s))ds, j = 1, . . . , m

SY
j (t) =

N(t)∑
n=1

Yn,j −
∫ t

0

λj(N(s))ds, j = 1, . . . , m

Sj(t) =

N(t)∑
n=1

Zn,j −
∫ t

0

λj(N(s))ds, j = 1, . . . , m.

Conditioning on Xn = xn, n > k, sup
0≤t<∞

SX
j (t) is an increasing function of X1,j, . . . , Xk,j,

and sup
0≤t<∞

Sj(t) is an increasing function of Y1,j, . . . , Yk,j, 1 ≤ j ≤ m. Since X1, . . . , Xk
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are i.i.d., and Y 1, . . . , Y k are i.i.d, and Xn ≤sm Y n, we invoke Lemma 4.1.2 (1) k times,

and obtain that conditioning on Xn = xn, n > k,

(
sup

0≤t<∞
SX

1 (t), . . . , sup
0≤t<∞

SX
m(t)

)
≤uod

(
sup

0≤t<∞
S1(t), . . . , sup

0≤t<∞
Sm(t)

)
.

It follows from unconditioning and (4.1.2) that for any k

ψX
and(u1, . . . , um) ≤ ψZ

k (u1, . . . , um).

Observe that as k →∞, ψZ
k (u1, . . . , um) converges to ψY

and(u1, . . . , um) for any u1, . . . , um.

Thus, we establish (4.2.1) conditioning on N(t) = n(t), t ≥ 0.

(2) Let

S̄X
j (t) = SX

j (t)− uj, S̄Y
j (t) = SY

j (t)− uj, 1 ≤ j ≤ m.

Also let

S̄X
(1)(t) = min

{
S̄X

1 (t), . . . , S̄X
m(t)

}
,

S̄Y
(1)(t) = min

{
S̄Y

1 (t), . . . , S̄Y
m(t)

}
.

Since

ψX
sim(u1, . . . , um) = 1− P

(
sup

0≤t<∞
S̄X

(1)(t) ≤ 0

)
= 1− P

(
S̄X

(1)(t) ≤ 0 for all t ≥ 0
)
,

ψY
sim(u1, . . . , um) = 1− P

(
sup

0≤t<∞
S̄Y

(1)(t) ≤ 0

)
= 1− P

(
S̄Y

(1)(t) ≤ 0 for all t ≥ 0
)
,

we need to show that

P
(
S̄X

(1)(t) ≤ 0 for all t ≥ 0
) ≥ P

(
S̄Y

(1)(t) ≤ 0 for all t ≥ 0
)
.

Since the sample paths of the counting process {N(t), t ≥ 0} are right-continuous with

left-limits, it suffices to show that for any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tl < ∞,

P
(
S̄X

(1)(t1) ≤ 0, . . . , S̄X
(1)(tl) ≤ 0

) ≥ P
(
S̄Y

(1)(t1) ≤ 0, . . . , S̄Y
(1)(tl) ≤ 0

)
,

which can be rephrased as

P

(
l⋂

i=1

m⋃
j=1

{
S̄X

j (ti) ≤ 0
}
)
≥ P

(
l⋂

i=1

m⋃
j=1

{
S̄Y

j (ti) ≤ 0
}
)

. (4.2.5)
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We first observe that for any real numbers a1, . . . , al and any n, we have,

P

(
l⋂

i=1

m⋃
j=1

{Xn,j ≤ ai}
)

= P

(
l⋂

i=1

{min {Xn,1, . . . , Xn,m} ≤ ai}
)

= P (min {Xn,1, . . . , Xn,m} ≤ min{a1, . . . , al})
= 1− P (Xn,1 > min{a1, . . . , al}, . . . , Xn,m > min{a1, . . . , al})
≥ 1− P (Yn,1 > min{a1, . . . , al}, . . . , Yn,m > min{a1, . . . , al})

= P

(
l⋂

i=1

m⋃
j=1

{Yn,j ≤ ai}
)

,

where the inequality follows from (4.1.2). Thus, for any strictly increasing functions

g1, . . . , gl and any n, we have

P

(
l⋂

i=1

m⋃
j=1

{gi(Xn,j) ≤ 0}
)

= P

(
l⋂

i=1

m⋃
j=1

{
Xn,j ≤ g−1

i (0)
}
)

≥ P

(
l⋂

i=1

m⋃
j=1

{
Yn,j ≤ g−1

i (0)
}
)

= P

(
l⋂

i=1

m⋃
j=1

{gi(Yn,j) ≤ 0}
)

. (4.2.6)

Conditioning on N(t) = n(t), t ≥ 0, S̄X
j (t1), . . . , S̄

X
j (tl) are strictly increasing functions

of Xn,j, 1 ≤ n ≤ k, for certain k, where k is finite due to the fact that {N(t), t ≥ 0}
is non-explosive. Similarly, S̄Y

j (t1), . . . , S̄
Y
j (tl) are strictly increasing functions of Yn,j,

1 ≤ n ≤ k. Since X1, . . . , Xk are i.i.d., and Y 1, . . . , Y k are i.i.d, and Xn ≤sm Y n, we

invoke (4.2.6) k times, and obtain (4.2.5) conditioning on N(t) = n(t), t ≥ 0. Finally,

unconditioning yields (4.2.5). ¤

Theorem 4.2.4. If Xn ≤lod Y n, then we have, for any nonnegative u1, . . . , um,

ψX
or(u1, . . . , um) ≥ ψY

or(u1, . . . , um).

Proof. It suffices to show that given that N(t) = n(t), t ≥ 0,

ψX
or(u1, . . . , um) ≥ ψY

or(u1, . . . , um). (4.2.7)

Without loss of generality, we assume that {Xn, n ≥ 1} and {Y n, n ≥ 1} are independent.
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For fixed positive integer k, let

Zn = Y n, n = 1, . . . , k

Zn = Xn, n > k.

Let ψZ
k (u1, . . . , um) denote the ruin probabilities of type (2.1.7) in the multivariate com-

pound point model with the shock arrival process N(t), drift rates λj(N(t)), 1 ≤ j ≤ m,

initial reserves uj, 1 ≤ j ≤ m, and damage size vectors {Zn, n ≥ 1}. Also let

SX
j (t) =

N(t)∑
n=1

Xn,j −
∫ t

0

λj(N(s))ds, j = 1, . . . , m

SY
j (t) =

N(t)∑
n=1

Yn,j −
∫ t

0

λj(N(s))ds, j = 1, . . . , m

Sj(t) =

N(t)∑
n=1

Zn,j −
∫ t

0

λj(N(s))ds, j = 1, . . . , m.

Conditioning on Xn = xn, n > k, sup
0≤t<∞

SX
j (t) is an increasing function of X1,j, . . . , Xk,j,

and sup
0≤t<∞

Sj(t) is an increasing function of Y1,j, . . . , Yk,j, 1 ≤ j ≤ m. Since X1, . . . , Xk

are i.i.d., and Y 1, . . . , Y k are i.i.d, and Xn ≤lod Y n, we invoke Lemma 4.1.2 (2) k times,

and obtain that conditioning on Xn = xn, n > k,

(
sup

0≤t<∞
SX

1 (t), . . . , sup
0≤t<∞

SX
m(t)

)
≤lod

(
sup

0≤t<∞
S1(t), . . . , sup

0≤t<∞
Sm(t)

)
.

It follows from unconditioning and (4.1.3) that for any k

P
(
sup0≤t<∞ SX

1 (t) ≤ u1, . . . , sup0≤t<∞ SX
m(t) ≤ u1

)

≤ P
(
sup0≤t<∞ SY

1 (t) ≤ u1, . . . , sup0≤t<∞ SY
m(t) ≤ u1

)
.

(4.2.8)

Let k →∞, (4.2.8) still holds. Therefore,

ψX
or(u1, . . . , um) = 1− P

(
sup

0≤t<∞
SX

1 (t) ≤ u1, . . . , sup
0≤t<∞

SX
m(t) ≤ u1

)

≥ 1− P

(
sup

0≤t<∞
SY

1 (t) ≤ u1, . . . , sup
0≤t<∞

SY
m(t) ≤ u1

)

= ψY
or(u1, . . . , um),
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conditioning on N(t) = n(t), t ≥ 0. Finally, unconditioning yields the inequality. ¤
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Chapter 5

Stochastic Bounds and Simulations

Since the ruin probabilities have no closed formulas, we seek their computable bounds

in this chapter. Two approaches are used. First, we derive the bounds using univariate

compound point processes, and then approach utilizes the positive dependence concepts.

All the bounds discussed in this chapter depend on the dependence structure of damage

vectors, and thus the effect of dependence on these bounds are also discussed.

To facilitate the computations of these bounds, we utilize the multivariate phase type

distributions. The multivariate phase type distributions include many well-known distri-

butions, such as Marshall-Olkin distributions, and can be also used to approximate any

multivariate life distributions. The explicit computations of the bounds for bivariate and

trivariate Marshall-Olkin distributions are obtained, and extensive simulation results are

also presented to illustrate the results.

5.1 Upper and Lower Bounds Using

Univariate Ruin Probabilities

Our bounding strategy is to bound the multivariate ruin probabilities (2.1.5)-(2.1.8) by

some univariate ruin probabilities, which can be calculated under certain conditions for

the phase type distributed damages.

Consider a multivariate compound point model (2.1.2). Let the drift function of the

j-th component λj(n) be bounded, that is, 0 ≤ pj ≤ λj(n) ≤ Pj < ∞ for all n ≥ 1, where
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pj and Pj are constants, 1 ≤ j ≤ m. Let

X(1),n = min{Xn,1, . . . , Xn,m}, X(m),n = max{Xn,1, . . . , Xn,m},
p(1) = min{p1, . . . , pm}, p(m) = max{P1, . . . , Pm},
u(1) = min{u1, . . . , um}, u(m) = max{u1, . . . , um}.

Also let

ψmin(u) = P


 sup

0≤t<∞




N(t)∑
n=1

X(1),n − p(m)t


 > u


 , (5.1.1)

ψmax(u) = P


 sup

0≤t<∞




N(t)∑
n=1

X(m),n − p(1)t


 > u


 . (5.1.2)

Clearly, for any nonnegative (u1, . . . , um),

ψmin(u(m)) ≤ ψsim(u1, . . . , um) ≤ ψor(u1, . . . , um) ≤ ψmax(u(1)).

Consider now the following two ruin probabilities, for any

a ∈ A =

{
(a1, . . . , am) : aj ≥ 0, 1 ≤ j ≤ m, and

m∑
j=1

aj > 0

}
,

let

ψp
a(u) = P


 sup

0≤t<∞





N(t)∑
n=1

(
m∑

j=1

ajXn,j

)
−

(
m∑

j=1

ajpj

)
t



 > u


 , (5.1.3)

ψP
a (u) = P


 sup

0≤t<∞





N(t)∑
n=1

(
m∑

j=1

ajXn,j

)
−

(
m∑

j=1

ajPj

)
t



 > u


 , (5.1.4)

ψp
sum(u) = P


 sup

0≤t<∞





N(t)∑
n=1

(
m∑

j=1

Xn,j

)
−

(
m∑

j=1

pj

)
t



 > u


 , (5.1.5)

ψP
sum(u) = P


 sup

0≤t<∞





N(t)∑
n=1

(
m∑

j=1

Xn,j

)
−

(
m∑

j=1

Pj

)
t



 > u


 . (5.1.6)
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Using the notations in (2.1.2), we observe that

ψp
a

(
m∑

j=1

ajuj

)
= P


 sup

0≤t<∞





m∑
j=1

aj




N(t)∑
n=1

Xn,j − pjt− uj






 > 0


 , (5.1.7)

ψP
a

(
m∑

j=1

ajuj

)
= P


 sup

0≤t<∞





m∑
j=1

aj




N(t)∑
n=1

Xn,j − Pjt− uj






 > 0


 . (5.1.8)

We point that for any a ∈ A if pj > 0, µj ≥ 0, and t pj > E(N(t)) E(Xj,1) > 0

for all j = 1, ..., m and t > 0, then
∑m

j=1 ajpj > 0,
∑m

j=1 ajuj ≥ 0, and t
∑m

j=1 ajpj >

E(N(t))
∑m

j=1 aj E(Xj,1) > 0. Hence, there are positive drift rates, nonnegative initial

capitals, and positive relative security loadings in the ruin probabilities (5.1.3)-(5.1.8).

On one hand, for any (a1, . . . , am) ∈ A and some t > 0, the event {S1(t) > u1, ..., Sm(t) >

um} implies the event
{∑m

j=1 aj(Sj(t)− uj) > 0
}

holds. Hence,

ψsim(u1, . . . , um) ≤ ψp
a

(
m∑

j=1

ajuj

)
(5.1.9)

for any (a1, . . . , am) ∈ A.

On the other hand, for any (a1, . . . , am) ∈ A and some t > 0, the event {∑m
j=1 aj(Sj(t)−

uj) > 0} implies that the event {Sj(t)− uj > 0} for at least one j holds. Thus, we also

have

ψP
a

(
m∑

j=1

ajuj

)
≤ ψor(u1, . . . , um) (5.1.10)

for any (a1, . . . , am) ∈ A. We summarize all these results in the following proposition.

Proposition 5.1.1. Let A =
{

(a1, . . . , am) : aj ≥ 0, 1 ≤ j ≤ m, and
∑m

j=1 aj > 0
}

.

1. ψmin(u(m)) ≤ ψsim(u1, . . . , um) ≤ infa∈A ψp
a

(∑m
j=1 ajuj

)
.

2. supa∈A ψP
a

(∑m
j=1 ajuj

)
≤ ψor(u1, . . . , um) ≤ ψmax(u(1)).

3. In particular,

ψmin(u(m)) ≤ ψsim(u1, . . . , um) ≤ ψp
sum

(
m∑

j=1

uj

)
.
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ψP
sum

(
m∑

j=1

uj

)
≤ ψor(u1, . . . , um) ≤ ψmax(u(1)).

The upper bound in (1) and the lower bound in (2) of Proposition 5.1.1 have been

discussed in Chan et al. (2003) for the models with constant drift functions. The bounds

presented in Proposition 5.1.1 are the ruin probabilities of univariate risk processes, but

depend on the dependence structure of the underlying multivariate compound point pro-

cess. To see this, consider two multivariate compound point process models M1 and

M2 introduced in Chapter 2. Suppose that M1 and M2 have the same shock arrival

process {N(t), t ≥ 0}, same drift rate functions λj(n), 1 ≤ j ≤ m, and same ini-

tial reserves uj, 1 ≤ j ≤ m, but different damage size vectors Xn = (Xn,1, . . . , Xn,m)

and Y n = (Yn,1, . . . , Yn,m), respectively. Let ψX
min(u) (ψY

min(u)), ψX
max(u) (ψY

max(u)), and

ψpX
sum(u) and ψPX

sum(u) (ψpY
sum(u) and ψPY

sum(u)) denote the ruin probabilities of types (5.1.1),

(5.1.2), and (5.1.5) and (5.1.6), respectively, in model M1 (M2).

Proposition 5.1.2. If Xn ≥uod Y n, then we have, for any nonnegative u, ψX
min(u) ≥

ψY
min(u).

Proof. Clearly, Xn ≥uod Y n implies that

X(1),n ≥st Y(1),n.

Thus, result follows from the fact that ψX
min(u) is the increasing function of X(1),n, n ≥ 1.

¤

Proposition 5.1.3. If Xn ≥lod Y n, then we have, for any nonnegative u, ψX
max(u) ≤

ψY
max(u).

Proof. Clearly, Xn ≥lod Y n implies that

X(m),n ≤st Y(m),n.

Thus, result follows from the fact that ψX
max(u) is the increasing function of X(m),n, n ≥ 1.

¤

Proposition 5.1.4. If Xn ≥sm Y n, then we have, for any nonnegative u,

1. ψX
min(u) ≥ ψY

min(u),
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2. ψX
max(u) ≤ ψY

max(u), and

3. ψpX
sum(u) ≥ ψpY

sum(u) and ψPX
sum(u) ≥ ψPY

sum(u).

Proof. Clearly, Xn ≥sm Y n implies that

X(1),n ≥st Y(1),n, X(m),n ≤st Y(m),n.

Thus, (1) and (2) follow from the fact that ψX
min(u) (ψX

max(u)) is the increasing function

of X(1),n (X(m),n), n ≥ 1. The proof of (3) can be found in Cai and Li (2005a). ¤

Example 5.1.5. Consider a multivariate compound Poisson model with constant drift

functions λj = p, 1 ≤ j ≤ m, Poisson shock arrival process N = {N(t), t ≥ 0} with rate

λ, and damage size vector (Xn,1, . . . , Xn,m). Assume that (Xn,1, . . . , Xn,m) has a joint

distribution such that all the one dimensional marginals have an exponential distribution

with rate β. Even we know the dependence structure of (Xn,1, . . . , Xn,m), the ruin proba-

bilities ψX
min(u), ψX

max(u) and ψX
sum(u) from (5.1.1), (5.1.2) and (5.1.5) still have no closed

formulas. To find computable bounds, we utilize Proposition 5.1.4 and Example 4.1.4.

First observe from Example 4.1.4 that

(Xn,1, . . . , Xn,m) ≤sm (Xn,1, . . . , Xn,1︸ ︷︷ ︸
m

),

where Xn,1 has an exponential distribution with rate β. It follows from Proposition 5.1.4

that

ψX
min(u) ≤ ψmin(u),

ψX
max(u) ≥ ψmax(u),

ψX
sum(u) ≤ ψsum(u),

where ψmin(u), ψmax(u) and ψsum(u) are the ruin probabilities of type (5.1.1), (5.1.2) and

(5.1.5), respectively, with damage size vector (Xn,1, . . . , Xn,1). Obviously, we have

ψmin(u) = ψmax(u) = ψ(u),

ψsum(u) = ψ(u/m),

where ψ(u) is the univariate ruin probability (2.1.9) with Poisson shock arrival process,

and exponential distribution damage size. This ruin probability can be calculated explic-
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itly (2.2.1). Thus we have

ψX
min(u) ≤ 1

1 + θ
exp

(
− θβ

1 + θ
u

)
,

ψX
max(u) ≥ 1

1 + θ
exp

(
− θβ

1 + θ
u

)
,

ψX
sum(u) ≤ 1

1 + θ
exp

(
− θβ

1 + θ

u

m

)
,

where θ = pβ/λ− 1 > 0 is known as the relative security loading parameter. ¤

5.2 Supermodular Dependence

The univariate bounds established in Proposition 5.1.1 hold for any damage size vector

Xn. If the damage size vector satisfies some positive dependence property, then the

product type bounds can be also established. We first review the notion of supermodular

dependence, which can be found, for example, in Tong (1980) and in Müller and Stoyan

(2002).

Definition 5.2.1. Let X = (X1, . . . , Xm) be a real random vector.

1. X is said to be positively upper orthant dependent if

P (X1 > x1, . . . , Xm > xm) ≥
m∏

i=1

P (Xi > xi).

2. X is said to be positively lower orthant dependent if

P (X1 ≤ x1, . . . , Xm ≤ xm) ≥
m∏

i=1

P (Xi ≤ xi).

3. X is said to be supermodular dependent if

(X1, . . . , Xm) ≥sm (XI
1 , . . . , XI

m), (5.2.1)

where XI
1 , . . . , XI

m are independent, and XI
j and Xj, 1 ≤ j ≤ m, have the same

marginal distribution.
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Note that the supermodular dependence yields both upper and lower orthant depen-

dence, that is, if X is supermodular dependent, then the following lower bounds of product

type hold for the joint distribution and survival functions.

P (X1 ≤ x1, . . . , Xm ≤ xm) ≥
m∏

j=1

P (Xj ≤ xj) ,

P (X1 > x1, . . . , Xm > xm) ≥
m∏

j=1

P (Xj > xj) .

Example 5.2.2. Let Z1, . . . , Zs be independent random variables. Let ek denote the vec-

tor of 1’s with k dimension, k ≥ 1. It follows from Example 4.1.5 that (Z1em1 , . . . , Zsems)

is supermodular dependent.

Let X = (X1, . . . , Xm) have a normal distribution with a mean vector of µ and a

covariance matrix of Σ = (σij). Then it follows from Example 4.1.6 that (|X1|, . . . , |Xm|)
is positively upper orthant dependent. ¤

Assuming that the event arrival process N(t) is a Poisson process, Cai and Li (2005a)

established the product type lower bound for ψand(u1, . . . , um), by showing that if the

damage size vector Xn is associated, then

(
sup

0≤t<∞
S1(t), . . . , sup

0≤t<∞
Sm(t)

)
(5.2.2)

is also associated. This result also yields the product type upper bound for ψor(u1, . . . , um).

If the damage size vector possesses the supermodular dependence, the following bounds

will hold.

Theorem 5.2.3. For the multivariate compound Poisson model with a Poisson event

arrival process, constant drift functions λj and supermodular dependent claim vector, we

have
m∏

j=1

ψj(uj) ≤ ψand(u1, . . . , um) ≤ ψor(u1, . . . , um) ≤ 1−
m∏

j=1

(1− ψj(uj))

for any non-negative u1, . . . , um, where ψj(uj) = P
(
sup0≤t<∞ Sj(t) > uj

)
, 1 ≤ j ≤ m.

Proof. Consider (2.1.2) and (2.1.6) with a Poisson event arrival process N(t).

For each damage size vector Xn = (Xn,1, . . . , Xn,m), let XI
n = (XI

n,1, . . . , X
I
n,m) be

the vector in which XI
n,1, . . . , X

I
n,m are independent, and XI

n,j and Xn,j have the same
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marginal distribution, 1 ≤ j ≤ m. Also let

ψI
and(u1, . . . , um) = P

(
m⋂

j=1

{
sup

0≤t<∞

(
SI

j (t)
)

> uj

})
,

where SI
j (t) =

∑N(t)
n=1 XI

n,j − λjt, 1 ≤ j ≤ m. Since Xn is supermodular dependent, we

have Xn ≥sm XI
n. Thus, from Theorem 4.2.1, we have

ψand(u1, . . . , um) ≥ ψI
and(u1, . . . , um).

We need to show that ψI
and(u1, . . . , um) ≥ ∏m

j=1 ψj(uj). Since N(t) is a Poisson process,

then

N(t) = max

{
n :

n∑
i=1

Ei ≤ t

}
,

where Ei’s are i.i.d. exponential random variables with a mean of 1/λ. From the Lorentz’s

inequality (see, for example, Müller and Stoyan 2002), we have, for any i ≥ 1,

(Ei, . . . , Ei︸ ︷︷ ︸
m

) ≥sm (Ei,1, . . . , Ei,m) , (5.2.3)

where Ei,j’s are i.i.d. exponential random variables with a mean of 1/λ. For any 1 ≤ j ≤
m, let Nj(t) denote a Poisson process with inter-event arrival times Ei,j, i ≥ 1. Obviously,

Poisson processes {Nj(t), t ≥ 0}, 1 ≤ j ≤ m, are independent. Let, for each 1 ≤ j ≤ m,

Nk
j (t) = Nj(t) given that Ei,j = zi, i ≥ k + 1.

Conditioning on XI
n = (xn,1, . . . , xn,m), n ≥ 1, and Ei = zi, i ≥ k + 1, sup0≤t<∞ Sj(t),

1 ≤ j ≤ m, is a decreasing function of E1, . . . , Ek. Because of (5.2.3), we invoke Lemma

4.1.2 (3) k times, and obtain that

ψI
and(u1, . . . , um) ≥ P




m⋂
j=1



 sup

0≤t<∞




Nk
j (t)∑

n=1

xn,j − λjt


 > uj






 .

As k →∞, we obtain that

ψI
and(u1, . . . , um) ≥ P




m⋂
j=1



 sup

0≤t<∞




Nj(t)∑
n=1

xn,j − λjt


 > uj






 .
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Unconditioning on XI
n, n ≥ 1, we have

ψI
and(u1, . . . , um) ≥ P




m⋂
j=1



 sup

0≤t<∞




Nj(t)∑
n=1

XI
n,j − λjt


 > uj








=
m∏

j=1

P






 sup

0≤t<∞




Nj(t)∑
n=1

XI
n,j − λjt


 > uj






 =

m∏
j=1

ψj(uj).

Hence ψand(u1, . . . , um) ≥ ∏m
j=1 ψj(uj).

To establish the third inequality, we consider

ψor(u1, . . . , um) = 1− P

(
sup

0≤t<∞
S1(t) ≤ u1, . . . , sup

0≤t<∞
Sm(t) ≤ um

)
. (5.2.4)

Since Xn ≥sm XI
n, thus, from Theorem 4.2.1, we have

ψor(u1, . . . , um) ≤ ψI
or(u1, . . . , um),

where

ψI
or(u1, . . . , um) = P

(
m⋃

j=1

{
sup

0≤t<∞

(
SI

j (t)
)

> uj

})
.

Thus we have

P

(
m⋂

j=1

{
sup

0≤t<∞
(Sj(t)) ≤ uj

})
≥ P

(
m⋂

j=1

{
sup

0≤t<∞

(
SI

j (t)
) ≤ uj

})
.

We need to show that

P

(
m⋂

j=1

{
sup

0≤t<∞

(
SI

j (t)
) ≤ uj

})
≥

m∏
j=1

(1− ψj(uj)).

Since N(t) is a Poisson process, then

N(t) = max

{
n :

n∑
i=1

Ei ≤ t

}
,

where Ei’s are i.i.d. exponential random variables with a mean of 1/λ. From the Lorentz’s
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inequality (see, for example, Müller and Stoyan 2002), we have, for any i ≥ 1,

(Ei, . . . , Ei︸ ︷︷ ︸
m

) ≥sm (Ei,1, . . . , Ei,m) , (5.2.5)

where Ei,j’s are i.i.d. exponential random variables with a mean of 1/λ. For any 1 ≤ j ≤
m, let Nj(t) denote a Poisson process with inter-event arrival times Ei,j, i ≥ 1. Obviously,

Poisson processes {Nj(t), t ≥ 0}, 1 ≤ j ≤ m, are independent. Let, for each 1 ≤ j ≤ m,

Nk
j (t) = Nj(t) given that Ei,j = zi, i ≥ k + 1.

Conditioning on XI
n = (xn,1, . . . , xn,m), n ≥ 1, and Ei = zi, i ≥ k + 1, sup0≤t<∞ Sj(t),

1 ≤ j ≤ m, is a decreasing function of E1, . . . , Ek. Because of (5.2.5), we invoke Lemma

4.1.2 (3) k times, and obtain that

P

(
m⋂

j=1

{
sup

0≤t<∞

(
SI

j (t)
) ≤ uj

})
≥ P




m⋂
j=1



 sup

0≤t<∞




Nk
j (t)∑

n=1

xn,j − λjt


 ≤ uj






 .

As k →∞, we obtain that

P

(
m⋂

j=1

{
sup

0≤t<∞

(
SI

j (t)
) ≤ uj

})
≥ P




m⋂
j=1



 sup

0≤t<∞




Nj(t)∑
n=1

xn,j − λjt


 ≤ uj






 .

Unconditioning on XI
n, n ≥ 1, we have

P

(
m⋂

j=1

{
sup

0≤t<∞

(
SI

j (t)
) ≤ uj

})
≥ P




m⋂
j=1



 sup

0≤t<∞




Nj(t)∑
n=1

XI
n,j − λjt


 ≤ uj








=
m∏

j=1

P






 sup

0≤t<∞




Nj(t)∑
n=1

XI
n,j − λjt


 ≤ uj








=
m∏

j=1

(1− ψj(uj)).

Hence ψor(u1, . . . , um) ≤ ∏m
j=1(1− ψj(uj)). ¤

Example 5.2.4. Consider a multivariate compound Poisson model with constant drift

functions λj, 1 ≤ j ≤ m, Poisson shock arrival process N = {N(t), t ≥ 0} with rate λ,

and damage size vector (Xn,1, . . . , Xn,m) that is supermodular dependent. Assume that

(Xn,1, . . . , Xn,m) has a joint distribution such that all the one dimensional marginals have
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an exponential distribution with rate β. Even though we know that (Xn,1, . . . , Xn,m)

is supermodular dependent, the ruin probabilities ψX
and(u1, . . . , um), and ψX

or(u1, . . . , um)

from (2.1.6), and (2.1.7) have no closed formulas. To find computable bounds, it follows

from Theorem 5.2.3 and (2.2.1) that we have

m∏
j=1

1

1 + θj

exp

(
− θjβ

1 + θj

uj

)
≤ ψand(u1, . . . , um)

≤ ψor(u1, . . . , um) ≤ 1−
m∏

j=1

(
1− 1

1 + θj

exp

(
− θjβ

1 + θj

uj

))
,

where θj = λjβ/λ− 1 > 0, 1 ≤ j ≤ m, are the relative security loading parameter. ¤

5.3 Multivariate Phase Type Distribution

To calculate these bounds explicitly, we utilize the multivariate phase type distribution to

model the damage size vector. Let {X(t), t ≥ 0} be a right-continuous, continuous-time

Markov chain on a finite state space E with generator Q. Let Ei, i = 1, . . . , m, be m

nonempty stochastically closed subsets of E such that ∩m
i=1Ei is a proper subset of E (A

subset of the state space is said to be stochastically closed if once the process {X(t), t ≥ 0}
enters it, {X(t), t ≥ 0} never leaves). We assume that absorption into ∩m

i=1Ei is certain.

Since we are interested in the process only until it is absorbed into ∩m
i=1Ei, we may assume,

without loss of generality, that ∩m
i=1Ei consists of one state, which we shall denote by ∆.

Thus, without loss of generality, we may write E = (∪m
i=1Ei) ∪ E0 for some subset E0 ⊂ E

with E0 ∩ Ej = ∅ for 1 ≤ j ≤ m. The states in E are enumerated in such a way that ∆ is

the first element of E . Thus, the generator of the chain has the form

Q =

[
0 0

−Ae A

]
, (5.3.1)

where 0 = (0, ..., 0) is the d-dimensional row vector of zeros, e = (1, ..., 1)T is the d-

dimensional column vector of 1’s, sub-generator A is a d × d nonsingular matrix, and

d = |E| − 1. Let β = (0,α) be an initial probability vector on E such that β(∆) = 0.

We define

Xi = inf{t ≥ 0 : X(t) ∈ Ei}, i = 1, . . . , m. (5.3.2)

As in Assaf et al. (1984), for simplicity, we shall assume that P (X1 > 0, . . . , Xm >
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0) = 1, which means that the underlying Markov chain {X(t), t ≥ 0} starts within E0

almost surely. The joint distribution of (X1, . . . , Xm) is called a multivariate phase type

distribution (MPH) with representation (α, A, E , E1, . . . , Em), and (X1, . . . , Xm) is called

a phase type random vector.

When m = 1, the distribution of (5.3.2) reduces to the univariate PH distribution

introduced in Neuts (1981) (See Chapter 1). Examples of MPH distributions include,

among many others, the well-known Marshall-Olkin distribution (Marshall and Olkin

1967). Another example involves multivariate extensions of the Freund distribution (Fre-

und 1961).

Example 5.3.1. Consider a system of s components, C1, . . . , Cs, subjected to a shock

environment. Let Ti denote the lifetime of component Ci, i = 1, . . . , s. A component fails

when it receives a fatal shock from the random environment. As long as all the components

are functioning, the shock arrival process to component Ci is a Poisson process with rate

α
(0)
i , i = 1, . . . , s, and these shock arrival processes are independent. Upon the first

component failure, say Ck, the shock arrival processes to the functioning components Ci,

i 6= k, change to independent Poisson processes with rates α
(1)
i , respectively. Upon the j-

th component failure, j ≥ 1, the shock arrival processes to the remaining components that

are still functioning change to independent Poisson processes with rates α
(j)
i , 1 ≤ i ≤ s,

respectively. Clearly, the lifetime vector (T1, . . . , Ts) is dependent. When s = 2, the

joint distribution of the lifetime vector is a bivariate extension of exponential distribution

introduced by Freund (1961).

Let E = {eK , K ⊆ E} where E = {1, . . . , s} is the index set of the components and

eK denotes the s-dimensional vector with the i-th component being 1 if i ∈ K and zero

otherwise. Let X = {X(t), t ≥ 0} be a Markov chain with state space E , starting at e∅,

such that eE is the absorbing state and the transition rates are given by:

QeK ,eL =

{
α

(k)
j if |K| = k and eL = eK + e{j} where j ∈ Kc

0 otherwise

Let Ei = {eK : i ∈ K}, i = 1, . . . , s. Since eE is the absorbing state, Ei, i = 1, . . . , s, are

all stochastically closed. Clearly the lifetimes of components,

Ti = inf{t ≥ 0 : X(t) ∈ Ei}, i = 1, . . . , s.

Thus (T1, . . . , Ts) has a multivariate phase type distribution. ¤
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The next example deals with a multivariate extension of the Gamma distribution

introduced by Becker and Roux (1981). For the sake of simplifying notations, we discuss

only the bivariate case.

Example 5.3.2. Let T1 and T2 denote the lifetimes of the components C1 and C2 in a

two component system where C1 fails after receiving h shocks and C2 fails after receiving l

shocks, and while both components are still functioning these shocks are governed by two

independent Poisson processes with rates α and β respectively. But when one fails, the

changed load on the remaining component results in a change of the rate of the Poisson

process governing the shocks to the still functioning component; that is, α (β) changes to

α′ (β′) when C2 (C1) fails first.

Let E = {(i, j) : 0 ≤ i ≤ h, 0 ≤ j ≤ l, and both i and j are integers}. Let X =

{X(t), t ≥ 0} be a Markov chain with state space E , starting at (0, 0), such that (h, l) is

the absorbing state and the transition rates are given by:

Q(i,j),(i,j+1) = β for 0 ≤ i < h, 0 ≤ j < l, and Q(h,j),(h,j+1) = β′ for 0 ≤ j < l, and

Q(i,j),(i+1,j) = α for 0 ≤ i < h, 0 ≤ j < l, and Q(i,l),(i+1,l) = α′ for 0 ≤ i < h,

and zero otherwise. Let E1 = {(h, j), 0 ≤ j ≤ l}, and E2 = {(i, l), 0 ≤ i ≤ h}. Since (h, l)

is the absorbing state, both E1 and E2 are stochastically closed. Clearly, the lifetimes

Ti = inf{t ≥ 0 : X(t) ∈ Ei}, i = 1, 2.

Thus (T1, T2) has a bivariate phase type distribution. ¤

The MPH distributions, their properties, and some related applications in reliability

theory were discussed in Assaf et al. (1984). As in the univariate case, those MPH

distributions (and their densities, Laplace transforms and moments) can be written in

a closed form. The set of m-dimensional MPH distributions is dense in the set of all

distributions on [0,∞)m. It is also shown in Assaf et al. (1984) and in Kulkarni (1989)

that MPH distributions are closed under marginalization, finite mixture, convolution, and

the formation of coherent systems. The following lemma, taken from Cai and Li (2005b),

presents the phase type representations of some closure properties.

Lemma 5.3.3. Let (X1, . . . , Xm) be of phase type with representation (α, A, E , E1, . . . , Em),

where A = (ai,j). For any S ⊆ E − {∆}, let AS denote the sub-matrix of A consisting
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of all the transition rates from S to S, and αS is the sub-vector of α consisting all the

probability entries on S. Then

1. Xj is of phase type with representation
(

αE−Ej

αE−Ej
e
, AE−Ej

, |E − Ej|
)
.

2. X(1) = min{X1, . . . , Xm} is of phase type with representation
(

αE0
αE0e

, AE0 , |E0|
)
.

3. X(n) = max{X1, . . . , Xm} is of phase type with representation (α, A, |E| − 1).

4.
∑n

i=1 Xi has a phase type distribution with representation (α, T, |E| − 1), where

T = (ti,j) is given by,

ti,j =
ai,j

k(i)
, (5.3.3)

and k(i) = number of indexes in {j : i /∈ Ej, 1 ≤ j ≤ m}.

With help from Lemma 5.3.3 and (2.2.2), we obtain the explicit expressions of all the

bounds in Propositions 5.1.1 and 5.2.3 as follows.

Proposition 5.3.4. Consider the multivariate compound Poisson model (2.1.2) with

constant drift rates pj, a Poisson event arrival process of rate λ, and phase type distributed

damage size vectors with representation (α, A, E , E1, . . . , Em), where A = (ai,j).

1. ψj(uj) = − λ
pj

αE−Ej

αE−Ej
e
A−1
E−Ej

exp
{(

AE−Ej
− λ

pj
t0

αE−Ej

αE−Ej
e
A−1
E−Ej

)
uj

}
e, where t0 = −AE−Ej

e.

2. ψmin(u(m)) = − λ
p(m)

αE0
αE0e

A−1
E0 exp

{(
AE0 − λ

p(m)
t0

αE0
αE0e

A−1
E0

)
u(m)

}
e, where t0 = −AE0e

and p(m) = max{p1, . . . , pm}.

3. ψmax(u(1)) = − λ
p(1)

αA−1 exp
{(

A− λ
p(1)

t0αA−1
)

u(1)

}
e, where t0 = −Ae and p(1) =

min{p1, . . . , pm}.

4. ψsum(
∑m

j=1 uj) = − λPm
j=1 pj

αT−1 exp
{(

T − λPm
j=1 pj

t0αT−1
) (∑m

j=1 uj

)}
e, where

t0 = −Te, and T is defined as in (5.3.3).

5.4 Multivariate Compound Poisson Process Models

with Marshall-Olkin Distributed Damages

In this section, we illustrate our results using the multivariate Marshall-Olkin distribution,

and also show some interesting effects of different parameters on the bounds.
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Let {ES, S ⊆ {1, . . . , m}} be a sequence of independent, exponentially distributed

random variables, with ES having mean 1/λS. Let

Xj = min{ES : S 3 j}, j = 1, . . . ,m. (5.4.1)

The joint distribution of (X1, . . . , Xm) is called the Marshall-Olkin distribution with pa-

rameters {λS, S ⊆ {1, . . . , m}} (Marshall and Olkin 1967). In the reliability context,

X1, . . . , Xm can be viewed as the lifetimes of m components operating in a random shock

environment where a fatal shock governed by Poisson process {NS(t), t ≥ 0} with rate λS

destroys all the components with indexes in S ⊆ {1, . . . , m} simultaneously. Assume that

these Poisson shock arrival processes are independent, then,

Xj = inf{t : NS(t) ≥ 1, S 3 j}, j = 1, . . . , m. (5.4.2)

Let {MS(t), t ≥ 0}, S ⊆ {1, . . . ,m}, be independent Markov chains with absorbing

state ∆S, each representing the exponential distribution with parameter λS. It follows

from (5.4.2) that (X1, . . . , Xm) is of phase type with the underlying Markov chain on the

product space of these independent Markov chains with absorbing classes Ej = {(eS) :

eS = ∆S for some S 3 j}, 1 ≤ j ≤ m. It is also easy to verify that the marginal

distribution of the j-th component of the Marshall-Olkin distributed random vector is

exponential with mean 1/
∑

S:S3j λS.

Consider a multivariate compound Poisson model with constant drift functions λj(n) =

pj, 1 ≤ j ≤ m, Poisson shock arrival process N = {N(t), t ≥ 0} with rate λ, and dam-

age size vector (Xn,1, . . . , Xn,m) that has a Marshall-Olkin distribution with parameters

{λS, S ⊆ {1, . . . , m}}. It follows from (5.4.1) that any Marshall-Olkin distribution is

supermodular dependent. Thus, from Proposition 5.2.3, we have

(
m∏

j=1

1

1 + θj

)
exp

(
−

m∑
j=1

{
θj

1 + θj

( ∑
S:S3j

λS

)
uj

})
≤ ψand(u1, . . . , um),

ψor(u1, . . . , um) ≤ 1−
m∏

j=1

[
1− 1

1 + θj

exp

(
−

{
θj

1 + θj

( ∑
S:S3j

λS

)
uj

})]
,

for any non-negative u1, . . . , um, where the relative security loading θj =
(∑

S:S3j λS

)
pj/λ−

1, 1 ≤ j ≤ m.

To calculate the other bounds, we need to simplify the underlying Markov chain for the
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Marshall-Olkin distribution and obtain its phase type representation. Let {X(t), t ≥ 0} be

a Markov chain with state space E = {S : S ⊆ {1, . . . , m}} = {∆, e1, ..., ed}, and starting

at ∅ almost surely. The index set {1, . . . , m} is the absorbing state ∆, and E0 = {∅},
Ej = {S : S 3 j}, j = 1, . . . , m.

It follows from (5.4.2) that its sub-generator is given by A = (ai,j), where

ai,j =
∑

L: L⊆S∗, L∪S=S∗
λL, if i = S, j = S∗ and S ⊂ S∗,

ai,i =
∑

L: L⊆S

λL − Λ, if i = S and Λ =
∑

S

λS,

and zero otherwise. Using the results in Chapters 3-4 and these parameters, we can

calculate the bounds. To illustrate the results, we consider the bivariate and trivariate

cases.

5.4.1 Bivariate Case

When m = 2, the state space E = {12, 2, 1, ∅} and Ej = {12, j}, j = 1, 2, where 12 is the

absorbing state. The initial probability vector is (0, 0, 0, 1), and its sub-generator is given

by

A =



−λ12 − λ1 0 0

0 −λ12 − λ2 0

λ2 λ1 −Λ + λ∅


 , (5.4.3)

where Λ = λ12 + λ2 + λ1 + λ∅. The matrix T in Proposition 5.3.4 is given by

T =



−λ1 − λ12 0 0

0 −λ2 − λ12 0
λ2

2

λ1

2
−Λ0

2


 , (5.4.4)

where Λ0 = λ1 + λ2 + λ12 = Λ− λ∅. Since E − E1 = {2, ∅} and E − E1 = {1, ∅}, then we

have

AE−E1 =

[
−λ12 − λ1 0

λ2 −Λ + λ∅

]
, (5.4.5)
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and

AE−E2 =

[
−λ12 − λ2 0

λ1 −Λ + λ∅

]
. (5.4.6)

To study the effect of dependence on the bounds, we calculate ψmin(u(m)), ψmax(u(1)),

ψsum(u1+u2) and the product type bounds in Proposition 5.2.3, respectively, under several

different sets of model parameters in the following example.

Example 5.4.1. Assume that λ = 1.6 and p1 = p2 = 3. Let ρ be the correlation

coefficient between the damage vector (Xn,1, Xn,2). Then, it is not hard to find that

ρ =
λ12

λ1 + λ2 + λ12

. (5.4.7)

Note that none of ρ and the matrix A in (5.4.4) involves λ∅. We introduce λ∅ in the model

because we want to change the model parameters in a systematic fashion according to

supermodular order, so that the effect of claim dependence on the ruin probabilities can

be investigated.

We consider the following three cases of the damage vector (Xn,1, Xn,2). The correla-

tion coefficients in the three cases are increasing, which indicates the increasing (linear)

dependence of the damage vector in the three cases. In fact, it follows from Li and Xu

(2000) that the damage size vector in Case 1 is less dependent than that in Case 2, which,

in turn, is less dependent than that in Case 3, all in supermodular order. The analytic

forms of these bounds in the three cases and the numerical values in Tables 5.1 and 5.2

were easily produced by Mathematica by using the formulas given in Proposition 5.3.4.

The first column of the Tables lists several values of u1 and u2, and the next several

columns list values of these bounds in the following three cases.

Case 1 - independent damage vector: Let λ12 = 0, λ1 = 1.15, λ2 = 1.17, λ∅ = 0.

Then the damage vector (Xn,1, Xn,2) is independent with ρ = 0 and

ψmin(u) = 0.229885 e−1.7866u,

ψsum(2u) = 0.516615 e−0.909286u − 0.0568111 e−3.19738u,

ψmax(u) = 0.712874 e−0.31756u + 0.0000250601 e−1.16014u − 0.0231758 e−2.62897u,

ψ1(u) = 0.463768 e−0.616667u, ψ2(u) = 0.455840 e−0.636667u.

Note that even the damage sizes are independent, but the damage processes are still

54



positively dependent.

Case 2 - slightly dependent damage vector: Let λ12 = 0.18, λ1 = 0.97,

λ2 = 0.99, λ∅ = 0.18. Then the damage vector (Xn,1, Xn,2) is slightly dependent

with ρ = 0.0841. and

ψmin(u) = 0.249221 e−1.60667u,

ψsum(2u) = 0.513675 e−0.880331u − 0.0000160242 e−2.31993u − 0.0538543 e−3.0464u,

ψmax(u) = 0.694215 e−0.336674u + 0.0000266203 e−1.16014u − 0.0238541 e−2.42985u,

ψ1(u) = 0.463768 e−0.616667u, ψ2(u) = 0.455840 e−0.636667u.

Case 3 - highly dependent vector: Let λ12 = 1.1, λ1 = 0.05, λ2 = 0.07, λ∅ = 1.1.

Then the damage vector (Xn,1, Xn,2) is highly dependent with ρ = 0.9016 and

ψmin(u) = 0.437158 e−0.686667u,

ψsum(2u) = 0.465657 e−0.6483u − 0.00111286 e−2.31406u − 0.0047396 e−2.36431u,

ψmax(u) = 0.485566 e−0.576616u + 0.000041294 e−1.16093u − 0.00315671 e−1.26912u,

ψ1(u) = 0.463768 e−0.616667u, ψ2(u) = 0.455840 e−0.636667u.

In all the three cases, the marginal distributions of Xn,1 and Xn,2 are the same. Indeed,

Xn,1 and Xn,2 have exponential distributions with means 1/(λ1 + λ12) = 1/1.15 and

1/(λ2 + λ12) = 1/1.17, respectively.

The product type bounds in Proposition 5.2.3 are the functions of the ruin probabilities

ψ1(u) and ψ2(u), which do not depend on the dependence structure of the damage vector

(Xn,1, Xn,2). Since these bounds are obtained for independent damage processes, the

bounds in Proposition 5.2.3 should out-perform (under-perform) those in Proposition 5.1.1

when the damage vector (Xn,1, Xn,2) is slightly (highly) dependent. Indeed, the tables

show that the bounds in Proposition 5.2.3 are better than those in Proposition 5.1.1 in

Cases 1 and 2 for slightly dependent damage vectors while the bounds in Proposition 5.1.1

are better than those in Proposition 5.2.3 in Case 3 for highly dependent damage vectors.

Note, however, that the bounds in Proposition 5.2.3 are not sharp for independent damage

vectors.

The tables also show that, serving as lower and upper bounds for ψsim(u1, u2), the

lower bound ψmin(u(2)) and the upper bound ψsum(u1 + u2) are tighter in Case 3 than

in Cases 1 and 2. Similarly, serving as lower and upper bounds for ψor(u1, u2), the lower

55



bound ψsum(u1 + u2) and the upper bound ψmax(u(1)) are tighter in Case 3 than in Cases

1 and 2. Indeed, in the extremal case or the comonotone case where Xn,1 = Xn,2, we have

ψmin(u(2)) = ψsim(u1, u2) = ψsum(u1 +u2) = ψand(u1, u2) = ψor(u1, u2) = ψmax(u(1)). This

further indicates that the bounds in Proposition 5.1.1 are better for highly dependent

damage vectors.

In addition, as proved in Proposition 5.1.4, the tables display that ψmin(u) (ψsum(u))

and ψmax(u) have opposite monotonicity properties when dependence among the damage

sizes increases. ¤

Table 5.1: Effects of dependence on the bounds for ψsim(u1, u2).

ψmin(u(2))
2∏

j=1

ψj(uj) ψsum(u1 + u2)

u1 u2 Case 1 Case 2 Case 3 Cases 1-3 Case 1 Case 2 Case 3
0.5 0.5 0.09409 0.11161 0.31012 0.11297 0.31640 0.31903 0.33493
1.0 1.0 0.03851 0.04998 0.22000 0.06037 0.20578 0.21043 0.24295
1.5 1.5 0.01576 0.02238 0.15607 0.03226 0.13161 0.13659 0.17592
2.0 2.0 0.00645 0.01002 0.11072 0.01724 0.08373 0.08819 0.12729
2.5 2.5 0.00264 0.00449 0.07854 0.00921 0.05318 0.05684 0.09207
3.0 3.0 0.00108 0.00201 0.05572 0.00492 0.03376 0.03661 0.06658
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Table 5.2: Effects of dependence on the bounds for ψor(u1, u2).

ψsum(u1 + u2) 1−
2∏

j=1

(1− ψj(uj)) ψmax(u(1))

u1 u2 Case 1 Case 2 Case 3 Cases 1-3 Case 1 Case 2 Case 3
0.5 0.5 0.31640 0.31903 0.33493 0.55931 0.60200 0.57960 0.36230
1.0 1.0 0.20578 0.21043 0.24295 0.43111 0.51725 0.49368 0.27192
1.5 1.5 0.13161 0.13659 0.17592 0.32705 0.44229 0.41834 0.20400
2.0 2.0 0.08373 0.08819 0.12729 0.24546 0.37761 0.35387 0.15301
2.5 2.5 0.05318 0.05684 0.09207 0.18285 0.32224 0.29914 0.11474
3.0 3.0 0.03376 0.03661 0.06658 0.13550 0.27495 0.25283 0.08603

5.4.2 Trivariate Case

The trivariate case exhibits more interesting patterns. When m = 3, the state space

E = {123, 23, 13, 12, 3, 2, 1, ∅} with the absorbing state ∆ = 123 and stochastically closed

subsets

E1 = {123, 13, 12, 1}, E2 = {123, 23, 12, 2}, E3 = {123, 23, 13, 3}, (5.4.8)

and

E − E1 = {23, 3, 2, ∅}, E − E2 = {13, 3, 1, ∅}, E − E3 = {12, 2, 1, ∅}. (5.4.9)

The initial probability vector is (0, 0, 0, 0, 0, 0, 0, 1), and its sub-generator is given by

A =




Λ̄1 0 0 0 0 0 0

0 Λ̄2 0 0 0 0 0

0 0 Λ̄3 0 0 0 0

λ23 + λ2 λ13 + λ1 0 Λ̄4 0 0 0

λ23 + λ3 0 λ12 + λ1 0 Λ̄5 0 0

0 λ13 + λ3 λ12 + λ2 0 0 Λ̄6 0

λ23 λ13 λ12 λ3 λ2 λ1 Λ̄7




;

the matrix T in Proposition 5.3.4 is given by
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T =




Λ̄1 0 0 0 0 0 0

0 Λ̄2 0 0 0 0 0

0 0 Λ̄3 0 0 0 0

λ23 + λ2

2

λ13 + λ1

2
0

Λ̄4

2
0 0 0

λ23 + λ3

2
0

λ12 + λ1

2
0

Λ̄5

2
0 0

0
λ13 + λ3

2

λ12 + λ2

2
0 0

Λ̄6

2
0

λ23

3

λ13

3

λ12

3

λ3

3

λ2

3

λ1

3

Λ̄7

3




;

the sub-matrix AE−E1 is given by:

AE−E1 =




Λ̄1 0 0 0

λ23 + λ2 Λ̄4 0 0

λ23 + λ3 0 Λ̄5 0

λ23 λ3 λ2 Λ̄7




;

the sub-matrix AE−E2 is given by:

AE−E2 =




Λ̄2 0 0 0

λ13 + λ1 Λ̄4 0 0

λ13 + λ3 0 Λ̄6 0

λ13 λ3 λ1 Λ̄7




;

and the sub-matrix AE−E3 is given by:

AE−E3 =




Λ̄3 0 0 0

λ12 + λ1 Λ̄5 0 0

λ12 + λ2 0 Λ̄6 0

λ12 λ2 λ1 Λ̄7




.

where Λ = λ123 + λ23 + λ13 + λ12 + λ3 + λ2 + λ1 + λ∅, Λ̄1 = −Λ + λ23 + λ3 + λ2 + λ∅,

Λ̄2 = −Λ + λ13 + λ3 + λ1 + λ∅, Λ̄3 = −Λ + λ12 + λ2 + λ1 + λ∅, Λ̄4 = −Λ + λ3 + λ∅,

Λ̄5 = −Λ + λ2 + λ∅, Λ̄6 = −Λ + λ1 + λ∅, Λ̄7 = −Λ + λ∅.

To study the effect of dependence on the bounds, we calculate ψmin(u(m)), ψmax(u(1)),
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ψsum(u1 + u2 + u3) and the product type bounds in Proposition 5.2.3, respectively, under

several different sets of model parameters in the following example.

Example 5.4.2. Assume that λ = 6.6 and p1 = p2 = p3 = 3. Again, we introduce λ∅
in the model because we want to change the model parameters in a systematic fashion

according to supermodular order, so that the effect of damage dependence on the ruin

probabilities can be investigated.

We consider the following three cases of the damage vector (Xn,1, Xn,2, X3,n).

Case 1: Let λ123 = 1, λ23 = 0.5, λ13 = 1, λ12 = 1, λ3 = 1.5, λ2 = 1.5, λ1 = 1, λ∅ = 0.5.

Case 2: Let λ123 = 1, λ23 = 1, λ13 = 1, λ12 = 1, λ3 = 1, λ2 = 1, λ1 = 1, λ∅ = 1.

Case 3: Let λ123 = 1.5, λ23 = 1, λ13 = 0.5, λ12 = 0.5, λ3 = 1, λ2 = 1, λ1 = 1.5, λ∅ = 1.

In all the three cases, the marginal distributions of Xn,1, Xn,2 and X3,n are the same.

Indeed, Xn,1, Xn,2 and X3,n have exponential distributions with means 1/(λ1 + λ12 +

λ13 + λ123) = 1/4, 1/(λ2 + λ12 + λ23 + λ123) = 1/4, and 1/(λ3 + λ23 + λ13 + λ123) = 1/4

respectively. It follows from Li and Xu (2000) that the damage size vector in Case 1 is

less dependent than that in Case 2, which, in turn, is less dependent than that in Case 3,

all in supermodular order.

The first column of the Tables 5.3-5.5 lists several values of u1, u2, and u3 and the

next several columns list values of these bounds in the three cases.

The product type bounds in Proposition 5.2.3 are the functions of the ruin probabilities

ψ1(u), ψ2(u) and ψ3(u), which do not depend on the dependence structure of the damage

vector (Xn,1, Xn,2, X3,n).

In addition, as proved in Proposition 5.1.4, the tables display that ψmin(u) (ψsum(u))

and ψmax(u) have opposite monotonicity properties when dependence among the claim

sizes increases.
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Table 5.3: Effects of dependence on the bounds for ψsim(u1, u2, u3).

ψmin(u(3))
3∏

j=1

ψj(uj)

u1 u2 u3 Case 1 Case 2 Case 3 Cases 1-3
0.5 0.5 0.5 0.020724355831 0.028511356748 0.028511356748 0.011181317182
1.0 1.0 1.0 0.001464200879 0.002586491930 0.002586491930 0.000751446154
1.5 1.5 1.5 0.000103447568 0.000234641254 0.000234641254 0.000050501324
2.0 2.0 2.0 0.000007308696 0.000021286174 0.000021286174 0.000003393967
2.5 2.5 2.5 0.000000516368 0.000001931038 0.000001931038 0.000000228093
3.0 3.0 3.0 0.000000036482 0.000000175180 0.000000175180 0.000000015329

Table 5.4: Effects of dependence on the bounds for ψsum(u1, u2, u3).

ψsum(u1 + u2 + u3) 1−
3∏

j=1

(1− ψj(uj))

u1 u2 u3 Case 1 Case 2 Case 3 Cases 1-3
0.5 0.5 0.5 0.17067593469 0.17374829838 0.17750744640 0.53201251469
1.0 1.0 1.0 0.04859281746 0.05075942339 0.05297176874 0.24869833360
1.5 1.5 1.5 0.01382231106 0.01481379823 0.01578906700 0.10684080014
2.0 2.0 2.0 0.00393177170 0.00432327251 0.00470613137 0.04441000938
2.5 2.5 2.5 0.00111839686 0.00126170780 0.00140272195 0.01821807798
3.0 3.0 3.0 0.00031812924 0.00036821796 0.00041809901 0.00743386134
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Table 5.5: Effects of dependence on the bounds for ψmax(u(1)).

1−
3∏

j=1

(1− ψj(uj)) ψmax(u(1))

u1 u2 u3 Case 1-3 Case 1 Case 2 Cases 3
0.5 0.5 0.5 0.53201251469 0.71981348939 0.70534396690 0.64350538069
1.0 1.0 1.0 0.24869833360 0.58698719541 0.56814126151 0.49074741143
1.5 1.5 1.5 0.10684080014 0.47844155130 0.45738687847 0.37395699468
2.0 2.0 2.0 0.04441000938 0.38996320438 0.36821708707 0.28495229335
2.5 2.5 2.5 0.01821807798 0.31784711420 0.29643126781 0.21713121803
3.0 3.0 3.0 0.00743386134 0.25906748834 0.23864046326 0.16545213408

5.5 Simulation Results

In this section, we develop a simulation procedure for the multivariate compound point

process with drifts in which the shock arrival process is not Poisson. We mainly consider

the case where the shock arrival process has certain Markov dependence; that is, any

interarrival time interval depends on the past only through its prior interarrival time

interval. The bivariate exponential and Weibull distributions are used to model such a

Markov dependence, and the damage sizes are modeled via Marshall-Olkin distributions.

In each case under our study, 5000 independent sample paths are simulated, and various

ruin probabilities are estimated. These simulation results well illustrate the monotonicity

properties we obtained in Chapter 4.

5.5.1 Generating Point Processes

To generate a point process with bounded conditional intensity, we have used the Shedler-

Lewis thinning technique (Daley and Vere-Jones 1988). The Shedler-Lewis thinning tech-

nique is one of several techniques that can be carried over to the point process context

when the conditional intensity λ∗ is known explicitly as a function of past variables. The

thinning technique is particularly useful when λ∗ is conditionally bounded, by which we

mean that for every n = 1, 2, . . . and all sequences t1, . . . , tn−1 with t1 < · · · < tn−1 < t,

the hazard function hn(· | ·) satisfies

hn(t + u | t1, . . . , tn−1) ≤ M∗(t) all u > 0,
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for some M∗(t) = M∗(t; t1, . . . , tn−1) < ∞. The Algorithm is as follows:

(1) set t = 0, i = 1;

(2) calculate M∗(t);

(3) generate an exponential random variable T with mean 1/M∗(t) and

a random variable U uniformly distributed on (0,1);

(4) if λ∗(t + T )/M∗(t) > U , replace t by t + T and return to step (2); while otherwise,

(5) set ti = t + T , advance i by 1, replace t by ti, and return to step (2).

We have done two cases: one is based on the Bivariate Marshall-Olkin Exponential

Distribution(BVE) and the other one is on the Bivariate Weibull Distribution(BVW).

1. The Bivariate Exponential Distribution

The Bivariate Exponential Distribution has a joint survival probability function of

two random variables T1 and T2,

F̄ (t1, t2) = P [T1 > t1, T2 > t2] = e−λ1t1−λ2t2−λ12max(t1,t2) for t1 ≥ 0, t2 ≥ 0.

The BVE has exponential marginal distributions with survival functions given by:

F̄ (t1) = P [T1 > t1] = e−(λ1+λ12)t1 for t1 ≥ 0,

F̄ (t2) = P [T2 > t2] = e−(λ2+λ12)t2 for t2 ≥ 0.

Given that T1 and T2 have the BVE distribution, then the conditional survival

probability P [T2 > t2 | T1 = t1] is given by

P [T2 > t2 | T1 = t1] =

{
e−λ2t2 for t1 > t2;

λ1

λ1+λ12
e−λ12(t2−t1)−λ2t2 for t1 ≤ t2.

The conditional hazard function h(t2 | T1 = t1) is given by

h(t2 | T1 = t1) =

{
λ2 for t1 > t2;

λ12 + λ2 for t1 ≤ t2.

2. The Bivariate Weibull Distribution

The Bivariate Weibull Distribution has a joint survival probability function of two

random variables T1 and T2

F̄ (t1, t2) = P [T1 > t1, T2 > t2] = e−λ1tβ1−λ2tβ2−λ12max(tβ1 ,tβ2 ) for t1 ≥ 0, t2 ≥ 0.

The BVW has weibull marginal distributions with survival functions given by:

F̄ (t1) = P [T1 > t1] = e−(λ1+λ12)tβ1 for t1 ≥ 0,
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F̄ (t2) = P [T2 > t2] = e−(λ2+λ12)tβ2 for t2 ≥ 0.

Given that T1 and T2 have the BVW distribution, then the conditional survival

probability P [T2 > t2 | T1 = t1] is given by

P [T2 > t2 | T1 = t1] =

{
e−λ2tβ2 for t1 > t2;

λ1

λ1+λ12
e−λ12(t

β
2−tβ1 )−λ2tβ2 for t1 ≤ t2.

The conditional hazard function h(t2 | T1 = t1) is given by

h(t2 | T1 = t1) =

{
βλ2t

β−1
2 for t1 > t2;

β(λ12 + λ2)t
β−1
2 for t1 ≤ t2.

5.5.2 Generating Damage vectors

The algorithm that has been used to generate damage vectors is as follows:

(1) Generate i.i.d random variables Yi ∼ exp(λi) respectively, where i ∈ {1, 2, 3, 12, 13, 23, 123};
(2) Set Xj = min{Yεj

}, where j = 1, 2, 3, ε1 = {1, 12, 13, 123}, ε2 = {2, 12, 23, 123}, ε3 =

{3, 13, 23, 123}.

5.5.3 Simulation Results and Comparisons

The following tables are the results of our simulation. To generate the point processes,

we have used two distributions, one is the bivariate exponential distribution, the other

is the bivariate Weibull distribution. To generate the damage vectors, we have used the

trivariate exponential distribution for all the point processes. The parameters we used

are explained as follows: For Table 5.4 to Table 5.7, p1, p2, p3 are the parameters of the

bivariate exponential distribution for two consecutive interarrival intervals, u1, u2, u3 are

the initial reserves, n is the sample size. For Table 5.8 to Table 5.11, p1, p2, p3, β are the

parameters of the bivariate Weibull distribution for two consecutive interarrival intervals,

u1, u2, u3 are the initial reserves, n is the sample size. For all the tables, the sample size

n is 5000, the parameters of the damage vectors in case 1 and 2 are as follows:

Case 1: λ123 = 0.5, λ23 = 1, λ13 = 1, λ12 = 1, λ3 = 1, λ2 = 1, λ1 = 1.

Case 2: λ123 = 0.5, λ23 = 1, λ13 = 1, λ12 = 0.5, λ3 = 1, λ2 = 1.5, λ1 = 1.5.

Theorem 4.2.1 are vindicated by the simulation results.
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Table 5.6: ψsim for the Bivariate Exponential Point Processes 1
Duplicate 1 Duplicate 2

Case 1 Case2 Case 1 Case 2
ψsim 0.0628 0.0458 0.0556 0.0516

p1 = 1.05, p2 = 1.05, p12 = 0.05; u1 = 1, u2 = 1, u3 = 1

Table 5.7: ψsim for the Bivariate Exponential Point Processes 2
Duplicate 1 Duplicate 2

Case 1 Case2 Case 1 Case 2
ψsim 0.0540 0.0444 0.0608 0.0470

p1 = 1, p2 = 1, p12 = 0.1; u1 = 1, u2 = 1, u3 = 1

Table 5.8: ψand and ψor for the Bivariate Exponential Point Processes 1
Duplicate 1 Duplicate 2

Case 1 Case2 Case 1 Case 2
ψand 0.0774 0.0672 0.0810 0.0694
ψor 0.5344 0.5364 0.5368 0.5486

p1 = 1.05, p2 = 1.05, p12 = 0.05; u1 = 3.5, u2 = 3.5, u3 = 3.5
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Table 5.9: ψand and ψor for the Bivariate Exponential Point Processes 2
Duplicate 1 Duplicate 2

Case 1 Case2 Case 1 Case 2
ψand 0.0764 0.0612 0.0630 0.0616
ψor 0.5154 0.5234 0.5150 0.5228

p1 = 1, p2 = 1, p12 = 0.1; u1 = 3.5, u2 = 3.5, u3 = 3.5

Table 5.10: ψsim for the Bivariate Weibull Point Processes 1
Duplicate 1 Duplicate 2

Case 1 Case2 Case 1 Case 2
ψsim 0.0518 0.0438 0.0570 0.0446

p1 = 1.05, p2 = 1.05, p12 = 0.05, β = 1.1; u1 = 1, u2 = 1, u3 = 1

Table 5.11: ψsim for the Bivariate Weibull Point Processes 2
Duplicate 1 Duplicate 2

Case 1 Case2 Case 1 Case 2
ψsim 0.0592 0.0496 0.0564 0.0458

p1 = 1, p2 = 1, p12 = 0.1, β = 1.1; u1 = 1, u2 = 1, u3 = 1
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Table 5.12: ψand and ψor for the Bivariate Weibull Point Processes 1
Duplicate 1 Duplicate 2

Case 1 Case2 Case 1 Case 2
ψand 0.0362 0.0256 0.0294 0.0268
ψor 0.3672 0.3706 0.3494 0.3596

p1 = 1.05, p2 = 1.05, p12 = 0.05, β = 1.1; u1 = 3.5, u2 = 3.5, u3 = 3.5

Table 5.13: ψand and ψor for the Bivariate Weibull Point Processes 2
Duplicate 1 Duplicate 2

Case 1 Case2 Case 1 Case 2
ψand 0.0370 0.0322 0.0318 0.0312
ψor 0.3920 0.3942 0.3790 0.3942

p1 = 1, p2 = 1, p12 = 0.1, β = 1.1; u1 = 3.5, u2 = 3.5, u3 = 3.5
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Appendix A

BOUNDS.M

CODES

#---------------------------------------------------------#

# MATLAB codes for the computation of the upper and lower #

# bounds using ruin probabilities. #

# Codes written by Huajun Zhou, October 2005. #

# #

# REQUIRES MATLAB VERSION 5.1 OR LATER. #

#---------------------------------------------------------#

# This function is to find Stochstic Bounds

# Input: u are initial m reserves

# Output: Phi1:Phi1(u1),Phi2:Phi2(u2),Phimin:Phimin(u(m)),

# Phimax: Phimax(u(1)),Phisum

function results=bounds2(u,lambda123,lambda23,lambda13,lambda12,

lambda3,lambda2,lambda1,lambda0)

# lambda is the Poisson event arrival process of rate

# p1,p2,p3 are constants

lambda=1.6;

p=[3 3 3];
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pmi=min(p);

pma=max(p);

umi=min(u);

uma=max(u);

Lambda=lambda123+lambda23+lambda13+lambda12+

lambda3+lambda2+lambda1+lambda0;

A=[-Lambda+lambda23+lambda3+lambda2+lambda0 0 0 0 0 0 0;

0 -Lambda+lambda13+lambda3+lambda1+lambda0 0 0 0 0 0;

0 0 -Lambda+lambda12+lambda2+lambda1+lamdba0 0 0 0 0;

lambda23+lambda2 lambda13+lambda1 0 -Lambda+lambda3+lambda0 0 0 0;

lambda23+lambda3 0 lambda12+lambda1 0 -Lambda+lambda2+lambda0 0 0;

0 lambda13+lambda3 lambda12+lambda2 0 0 -Lambda+lambda1+lambda0 0;

lambda23 lambda13 lambda12 lambda3 lambda2 lambda1 -Lambda+lambda0];

Ainv=inv(A);

# E={12,2,1,0}, E1={12,1},E2={12,2}, A1 is the matrix of A(E-E1),

# A2 is the matrix of A(E-E2), A0 is -Lambda+lambda0

A1=[-Lambda+lambda23+lambda3+lambda2+lambda0 0 0 0;

lambda23+lambda2 -Lambda+lambda3+lambda0 0 0;

lambda23+lambda3 0 -Lambda+lambda2+lambda0 0;

lambda23 lambda3 lambda2 -Lambda+lambda0];

A1inv=inv(A1); A2=[-Lambda+lambda13+lambda3+lambda1+lambda0 0 0 0;

lambda13+lambda1 -Lambda+lambda3+lambda0 0 0;

lambda13+lambda3 0 -Lambda+lambda1+lambda0 0;

lambda13 lambda3 lambda1 -Lambda+lambda0];

A2inv=inv(A2); A3=[-Lambda+lambda12+lambda2+lambda1+lambda0 0 0 0;

lambda12+lambda1 -Lambda+lambda2+lambda0 0 0;

lambda12+lambda2 0 -Lambda+lambda1+lambda0 0;

lambda12 lambda2 lambda1 -Lambda+lambda0];

A3inv=inv(A3);

A0=-Lambda+lambda0;

TT=[-Lambda+lambda23+lambda3+lambda2+lambda0 0 0 0 0 0 0;

0 -Lambda+lambda13+lambda3+lambda1+lambda0 0 0 0 0 0;

0 0 -Lambda+lambda12+lambda2+lambda1+lambda0 0 0 0 0;
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(lambda23+lambda2)/2 (lambda13+lambda1)/2 0

(-Lambda+lambda3+lambda0)/2 0 0 0;

(lambda23+lambda3)/2 0 (lambda12+lambda1)/2 0

(-Lambda+lambda2+lambda0)/2 0 0;

0 (lambda13+lambda3)/2 (lambda12+lambda2)/2 0 0

(-Lambda+lambda1+lambda0)/2 0;

lambda23/3 lambda13/3 lambda12/3 lambda3/3 lambda2/3 lambda1/3

(-Lambda+lambda0)/3];

TTinv=inv(TT);

e=[1;1;1;1;1;1;1];

e1=[1;1;1;1];

e0=1;

alpha=[0 0 0 0 0 0 1];

alpha1=[0 0 0 1];

alpha2=[0 0 0 1];

alpha3=[0 0 0 1];

alpha0=1;

t1=-A1*e1;

t2=-A2*e1;

t3=-A3*e1;

tmin=-alpha0*e0;

tmax=-A*e;

tsum=-TT*e;

Phi1=-(lambda/p(1))*(alpha1*A1inv*expm((A1-(lambda/p(1))*

(t1*alpha1*A1inv))*u(1))*e1);

Phi2=-(lambda/p(2))*(alpha2*A2inv*expm((A2-(lambda/p(2))*

(t2*alpha2*A2inv))*u(2))*e1);

Phi3=-(lambda/p(3))*(alpha3*A3inv*expm((A3-(lambda/p(3))*

(t3*alpha3*A3inv))*u(3))*e1);

Phimin=-lambda/(pma*A0)*exp((A0+lambda/pma)*uma);

Phimax=-(lambda/pmi)*(alpha*Ainv*expm((A-(lambda/pmi)*

(tmax*alpha*Ainv))*umi)*e);

Phisum=-(lambda/sum(p))*(alpha*TTinv*expm((TT-(lambda/sum(p))*

(tsum*alpha*TTinv))*sum(u))*e);

format long
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results=[Phimin Phi1*Phi2*Phi3 Phisum Phisum

1-(1-Phi1)*(1-Phi2)*(1-Phi3) Phimax];
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Appendix B

TRI-EXP-SIM.SSC

CODES

#------------------------------------------------------------#

# S-PLUS codes for the simulation of the multivariate #

# compound point process with drifts in which the shock #

# arrival process is bivariate exponential distribution. #

# This programming will compute the simultaneous ruin #

# probability for the trivariate exponential damage vectors. #

# Codes written by Huajun Zhou, December 2005. #

# #

# REQUIRES S-PLUS VERSION 4.5 OR LATER. #

#------------------------------------------------------------#

Exponential-simulation(Tri-variate Case)

# Given a vector, ssum is to output a vector of sums

# if a=[a1 a2 a3], then ssum=[ a1 a1+a2 a1+a2+a3]

ssum_function(a){

b_vector(length=length(a))

b[1]_a[1]

for (i in 2:length(a)){

b[i]_a[i]+b[i-1]
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}

b

}

# Given a vector, index0 is to output the index of

# first value of the vector whish is geater or equal to 0

# if all values are less than 0, then output 0

#

# Input: a vector;

# Output: an integer

indexgt_function(a){

if (max(a) < 0) i_0

else

{i_1

while(a[i] < 0 ){

i_i+1

}

}

i

}

# Simulation point process based on the previous point

# Bivariate Exponential Distribution

#

# Input: p1,p2,p12

# Output: x - the point processes

BiExp_function(p1,p2,p12){

total_100

t_0

i_1

x_vector()

Mt_p1+p2+p12

X_rexp(1,Mt)
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T1_X U_runif(1,0,1)

lamdat_p2

while (t <= total) {

if (lamdat/Mt > U)

t_t+X

else {x[i]_t+X;i_i+1; t_x[i-1]}

X_rexp(1,Mt)

U_runif(1,0,1)

if (X > T1)

lamdat_p2

else lamdat_p12+p2

T1_X

}

x[1:i-1]

}

now_proc.time()

# Input: lambda1,lambda2,lambda3,lambda12,lambda13,lambda23,lambda123,

# u1,u2,u3

# Output: counter1

# Counter1 is for PHI_sim

counter1_c(0,0)

N_5000

for (j in 1:N) {

x_BiExp(1.0,1.0,0.1)

n_length(x)

point_c(1:n)

# Below are the inputs

lambda1_c(1,1.5)
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lambda2_c(1,1.5)

lambda3_c(1,1)

lambda12_c(1,0.5)

lambda13_c(1,1)

lambda23_c(1,1)

lambda123_c(0.5,0.5)

u1_1.0 u2_1.0 u3_1.0

Y1_rexp(n,lambda1[1])

Y2_rexp(n,lambda2[1])

Y3_rexp(n,lambda3[1])

Y12_rexp(n,lambda12[1])

Y13_rexp(n,lambda13[1])

Y23_rexp(n,lambda23[1])

Y123_rexp(n,lambda123[1])

X1_pmin(Y1,Y12,Y13,Y123)

X2_pmin(Y2,Y12,Y23,Y123)

X3_pmin(Y3,Y13,Y23,Y123)

S1_ssum(X1)-x*point/100-u1

S2_ssum(X2)-x*point/100-u2

S3_ssum(X3)-x*point/100-u3

if (indexgt(S1) > 0 && indexgt(S1) == indexgt(S2) && indexgt(S2) ==

indexgt(S3))

counter1[1]_counter1[1]+1

else

counter1[1]_counter1[1]

#********************************

Z1_rexp(n,lambda1[2])

Z2_rexp(n,lambda2[2])

Z3_rexp(n,lambda3[2])

Z12_rexp(n,lambda12[2])

Z13_rexp(n,lambda13[2])

Z23_rexp(n,lambda23[2])
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Z123_rexp(n,lambda123[2])

W1_pmin(Z1,Z12,Z13,Z123)

W2_pmin(Z2,Z12,Z23,Z123)

W3_pmin(Z3,Z13,Z23,Z123)

V1_ssum(W1)-x*point/100-u1

V2_ssum(W2)-x*point/100-u2

V3_ssum(W3)-x*point/100-u3

if (indexgt(V1) > 0 && indexgt(V1) == indexgt(V2) && indexgt(V2)

== indexgt(V3))

counter1[2]_counter1[2]+1

else

counter1[2]_counter1[2]

}

SS1_(counter1*(1-(counter1/N))^2+(N-counter1)*(counter1/N)^2)/(N-1)

counter1/N

SS1

proc.time()-now
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Appendix C

TRI-EXP-AND-OR.SSC

CODES

#------------------------------------------------------------#

# S-PLUS codes for the simulation of the multivariate #

# compound point process with drifts in which the shock #

# arrival process is bivariate exponential distribution. #

# This programming will compute the and/or ruin #

# probability for the trivariate exponential damage vectors. #

# Codes written by Huajun Zhou, December 2005. #

# #

# REQUIRES S-PLUS VERSION 4.5 OR LATER. #

#------------------------------------------------------------#

# Exponential-simulation(Tri-variate Case)

# Given a vector, ssum is to output a vector of sums

# if a=[a1 a2 a3], then ssum=[ a1 a1+a2 a1+a2+a3]

ssum_function(a){

b_vector(length=length(a))

b[1]_a[1]

for (i in 2:length(a)) {
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b[i]_a[i]+b[i-1]

}

b

}

# Given a vector, index0 is to output the index of

# first value of the vector whish is geater or equal to 0

# if all values are less than 0, then output 0

# Input: a vector

# Output: an integer

indexgt_function(a){

if (max(a) < 0) i_0

else

{i_1

while(a[i] < 0 ){

i_i+1

}

}

i

}

# Simulation point process based on the previous point

# Bivariate Exponential Distribution

# Input: p1,p2,p12

# Output: x: are the point processes

BiExp_function(p1,p2,p12){

total_100

t_0

i_1

x_vector()

Mt_p1+p2+p12

X_rexp(1,Mt)

T1_X
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U_runif(1,0,1)

lamdat_p2

while (t <= total) {

if (lamdat/Mt > U) t_t+X

else {x[i]_t+X;i_i+1; t_x[i-1]}

X_rexp(1,Mt)

U_runif(1,0,1)

if (X > T1) lamdat_p2

else lamdat_p12+p2

T1_X

}

x[1:i-1]

}

now_proc.time()

# Input: lamda1,lamda2,lamda3,lamda12,lamda13,lamda23,lamda123,

# u1,u2,u3

# Output: counter1,counter2,counter3,

# Counter2 is for PHI_and, counter3 is for PHI_or

counter2_c(0,0)

counter3_c(0,0)

N_5000

for (j in 1:N) {

x_BiExp(1.05,1.05,0.05)

n_length(x)

point_c(1:n)

# Below are the inputs

lamda1_c(1,1.5)

lamda2_c(1,1.5)

lamda3_c(1,1)
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lamda12_c(1,0.5)

lamda13_c(1,1)

lamda23_c(1,1)

lamda123_c(0.5,0.5)

u1_3.5

u2_3.5

u3_3.5

Y1_rexp(n,lamda1[1])

Y2_rexp(n,lamda2[1])

Y3_rexp(n,lamda3[1])

Y12_rexp(n,lamda12[1])

Y13_rexp(n,lamda13[1])

Y23_rexp(n,lamda23[1])

Y123_rexp(n,lamda123[1])

X1_pmin(Y1,Y12,Y13,Y123)

X2_pmin(Y2,Y12,Y23,Y123)

X3_pmin(Y3,Y13,Y23,Y123)

S1_ssum(X1)-x*point/100-u1

S2_ssum(X2)-x*point/100-u2

S3_ssum(X3)-x*point/100-u3

if (max(S1) >= 0 && max(S2) >= 0 && max(S3) >= 0 )

counter2[1]_counter2[1] + 1

else

counter2[1]_counter2[1]

if (max(S1,S2) >= 0 || max(S1,S3) >= 0)

counter3[1]_counter3[1] + 1

else

counter3[1]_counter3[1]

#********************************

Z1_rexp(n,lamda1[2])

Z2_rexp(n,lamda2[2])

Z3_rexp(n,lamda3[2])

Z12_rexp(n,lamda12[2])
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Z13_rexp(n,lamda13[2])

Z23_rexp(n,lamda23[2])

Z123_rexp(n,lamda123[2])

W1_pmin(Z1,Z12,Z13,Z123)

W2_pmin(Z2,Z12,Z23,Z123)

W3_pmin(Z3,Z13,Z23,Z123)

V1_ssum(W1)-x*point/100-u1

V2_ssum(W2)-x*point/100-u2

V3_ssum(W3)-x*point/100-u3

if (max(V1) >= 0 && max(V2) >= 0 && max(V3) >= 0 )

counter2[2]_counter2[2] + 1

else

counter2[2]_counter2[2]

if (max(V1,V2) >= 0 || max(V1,V3) >= 0)

counter3[2]_counter3[2] + 1

else

counter3[2]_counter3[2]

}

SS2_(counter2*(1-(counter2/N))^2+(N-counter2)*(counter2/N)^2)/(N-1)

SS3_(counter3*(1-(counter3/N))^2+(N-counter3)*(counter3/N)^2)/(N-1)

counter2/N

counter3/N

SS2

SS3

proc.time()-now
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Appendix D

TRI-WEI-SIM.SSC

CODES

#------------------------------------------------------------#

# S-PLUS codes for the simulation of the multivariate #

# compound point process with drifts in which the shock #

# arrival process is bivariate weibull distribution. #

# This programming will compute the simultaneous ruin #

# probability for the trivariate exponential damage vectors. #

# Codes written by Huajun Zhou, December 2005. #

# #

# REQUIRES S-PLUS VERSION 4.5 OR LATER. #

#------------------------------------------------------------#

# Weibull-simulation-sim(Tri-variate Case)

# Given a vector, ssum is to output a vector of sums

# if a=[a1 a2 a3], then ssum=[ a1 a1+a2 a1+a2+a3]

ssum_function(a){

b_vector(length=length(a))

b[1]_a[1]

for (i in 2:length(a)) {

b[i]_a[i]+b[i-1]

}
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b

}

# Given a vector, index0 is to output the index of

# first value of the vector whish is geater or equal to 0

# if all values are less than 0, then output 0

# Input: a vector

# output: an integer

indexgt_function(a){

if (max(a) < 0) i_0

else

{i_1

while(a[i] < 0 ){

i_i+1

}

}

i

}

# Simulation point process based on the previous point

# Bivariate Weibull Distribution

# Input: p1,p2,p12,beta

# Output: x: are the point processes

BiWei_function(p1,p2,p12,beta){

total_100

t_0

i_1

x_vector()

Mt_beta*(p2+p12)*100^(beta-1)

X_rexp(1,Mt)

T1_X

U_runif(1,0,1)

lamdat_beta*p2*X^(beta-1)
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while (t <= total) {

if (lamdat/Mt > U) t_t+X

else {x[i]_t+X;i_i+1; t_x[i-1]}

X_rexp(1,Mt)

U_runif(1,0,1)

if (X > T1) lamdat_beta*p2*X^(beta-1)

else lamdat_beta*(p2+p12)*X^(beta-1)

T1_X

}

x[1:i-1]

}

now_proc.time()

# Input: lamda1,lamda2,lamda3,lamda12,lamda13,lamda23,lamda123,

# u1,u2,u3

# Output: counter1

# Counter1 is for PHI_sim, counter2 is for PHI_and,

# counter3 is for PHI_or

counter1_c(0,0)

N_5000

for (j in 1:N) {

x_BiWei(1.05,1.05,0.05,1.1)

n_length(x)

point_c(1:n)

# Below are the inputs

lamda1_c(1,1.5)

lamda2_c(1,1.5)

lamda3_c(1,1)

lamda12_c(1,0.5)

lamda13_c(1,1)

lamda23_c(1,1)
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lamda123_c(0.5,0.5)

u1_1

u2_1

u3_1

Y1_rexp(n,lamda1[1])

Y2_rexp(n,lamda2[1])

Y3_rexp(n,lamda3[1])

Y12_rexp(n,lamda12[1])

Y13_rexp(n,lamda13[1])

Y23_rexp(n,lamda23[1])

Y123_rexp(n,lamda123[1])

X1_pmin(Y1,Y12,Y13,Y123)

X2_pmin(Y2,Y12,Y23,Y123)

X3_pmin(Y3,Y13,Y23,Y123)

S1_ssum(X1)-x*point/100-u1

S2_ssum(X2)-x*point/100-u2

S3_ssum(X3)-x*point/100-u3

if (indexgt(S1) > 0 && indexgt(S1) == indexgt(S2) &&

indexgt(S2) == indexgt(S3))

counter1[1]_counter1[1]+1

else

counter1[1]_counter1[1]

#********************************

Z1_rexp(n,lamda1[2])

Z2_rexp(n,lamda2[2])

Z3_rexp(n,lamda3[2])

Z12_rexp(n,lamda12[2])

Z13_rexp(n,lamda13[2])

Z23_rexp(n,lamda23[2])

Z123_rexp(n,lamda123[2])

W1_pmin(Z1,Z12,Z13,Z123)

W2_pmin(Z2,Z12,Z23,Z123)

W3_pmin(Z3,Z13,Z23,Z123)
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V1_ssum(W1)-x*point/100-u1

V2_ssum(W2)-x*point/100-u2

V3_ssum(W3)-x*point/100-u3

if (indexgt(V1) > 0 && indexgt(V1) == indexgt(V2)

&& indexgt(V2) == indexgt(V3))

counter1[2]_counter1[2]+1

else

counter1[2]_counter1[2]

}

SS1_(counter1*(1-(counter1/N))^2+(N-counter1)*(counter1/N)^2)/(N-1)

counter1/N

SS1

proc.time()-now
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Appendix E

TRI-WEI-AND-OR.SSC

CODES

#------------------------------------------------------------#

# S-PLUS codes for the simulation of the multivariate #

# compound point process with drifts in which the shock #

# arrival process is bivariate weibull distribution. #

# This programming will compute the and/or ruin #

# probability for the trivariate exponential damage vectors. #

# Codes written by Huajun Zhou, December 2005. #

# #

# REQUIRES S-PLUS VERSION 4.5 OR LATER. #

#------------------------------------------------------------#

# Weibull-simulation-and-or(Tri-variate Case)

# Given a vector, ssum is to output a vector of sums

# if a=[a1 a2 a3], then ssum=[ a1 a1+a2 a1+a2+a3]

ssum_function(a){

b_vector(length=length(a))

b[1]_a[1]

for (i in 2:length(a)) {

b[i]_a[i]+b[i-1]
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}

b

}

# Given a vector, index0 is to output the index of

# first value of the vector whish is geater or equal to 0

# if all values are less than 0, then output 0

# Input: a vector

# Output: an integer

indexgt_function(a){

if (max(a) < 0) i_0

else

{i_1

while(a[i] < 0 ){

i_i+1

}

}

i

}

# Simulation point process based on the previous point

# Bivariate Weibull Distribution

# Input: p1,p2,p12,beta

# Output: x: are the point processes

BiWei_function(p1,p2,p12,beta){

total_100

t_0

i_1

x_vector()

Mt_beta*(p2+p12)*100^(beta-1)

X_rexp(1,Mt)

T1_X

U_runif(1,0,1)
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lamdat_beta*p2*X^(beta-1)

while (t <= total) {

if (lamdat/Mt > U) t_t+X

else {x[i]_t+X;i_i+1; t_x[i-1]}

X_rexp(1,Mt)

U_runif(1,0,1)

if (X > T1) lamdat_beta*p2*X^(beta-1)

else lamdat_beta*(p2+p12)*X^(beta-1)

T1_X

}

x[1:i-1]

}

now_proc.time()

# Input: lamda1,lamda2,lamda3,lamda12,lamda13,lamda23,lamda123,

# u1,u2,u3

# Output: counter1,counter2,counter3,

# Counter1 is for PHI_sim,counter2 is for PHI_and,

# counter3 is for PHI_or

counter2_c(0,0)

counter3_c(0,0)

N_5000

for (j in 1:N) {

x_BiWei(1,1,0.1,1.1)

n_length(x)

point_c(1:n)

# Below are the inputs

lamda1_c(1,1.5)

lamda2_c(1,1.5)

lamda3_c(1,1)

lamda12_c(1,0.5)

lamda13_c(1,1)

lamda23_c(1,1)

90



lamda123_c(0.5,0.5)

u1_3.5

u2_3.5

u3_3.5

Y1_rexp(n,lamda1[1])

Y2_rexp(n,lamda2[1])

Y3_rexp(n,lamda3[1])

Y12_rexp(n,lamda12[1])

Y13_rexp(n,lamda13[1])

Y23_rexp(n,lamda23[1])

Y123_rexp(n,lamda123[1])

X1_pmin(Y1,Y12,Y13,Y123)

X2_pmin(Y2,Y12,Y23,Y123)

X3_pmin(Y3,Y13,Y23,Y123)

S1_ssum(X1)-x*point/100-u1

S2_ssum(X2)-x*point/100-u2

S3_ssum(X3)-x*point/100-u3

if (max(S1) >= 0 && max(S2) >= 0 && max(S3) >= 0 )

counter2[1]_counter2[1] + 1

else

counter2[1]_counter2[1]

if (max(S1,S2) >= 0 || max(S1,S3) >= 0)

counter3[1]_counter3[1] + 1

else

counter3[1]_counter3[1]

#********************************

Z1_rexp(n,lamda1[2])

Z2_rexp(n,lamda2[2])

Z3_rexp(n,lamda3[2])

Z12_rexp(n,lamda12[2])

Z13_rexp(n,lamda13[2])

Z23_rexp(n,lamda23[2])

Z123_rexp(n,lamda123[2])
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W1_pmin(Z1,Z12,Z13,Z123)

W2_pmin(Z2,Z12,Z23,Z123)

W3_pmin(Z3,Z13,Z23,Z123)

V1_ssum(W1)-x*point/100-u1

V2_ssum(W2)-x*point/100-u2

V3_ssum(W3)-x*point/100-u3

if (max(V1) >= 0 && max(V2) >= 0 && max(V3) >= 0 )

counter2[2]_counter2[2] + 1

else

counter2[2]_counter2[2]

if (max(V1,V2) >= 0 || max(V1,V3) >= 0)

counter3[2]_counter3[2] + 1

else

counter3[2]_counter3[2]

}

SS2_(counter2*(1-(counter2/N))^2+(N-counter2)*(counter2/N)^2)/(N-1)

SS3_(counter3*(1-(counter3/N))^2+(N-counter3)*(counter3/N)^2)/(N-1)

counter2/N

counter3/N

SS2

SS3

proc.time()-now
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