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LEARNING FROM PERTURBED DATA FOR 

PRIVACY-PRESERVING DATA MINING 
 

Abstract 

 
by Jianjie Ma, Ph.D. 

Washington State University 
August 2006 

 
 
 
Chair:  Krishnamoorthy Sivakumar  
 

     In this dissertation, we concentrate on privacy-preserving data mining (PPDM) 

using post randomization (PRAM) techniques from distributed data. PRAM provides a 

general framework for randomization of categorical data. We estimate frequency counts 

from the randomized data by using moment estimation method or maximum likelihood 

estimation method. Normal approximation for the distribution of the estimator is also 

given. The variance of each estimator of frequency count is inversely proportional to the 

sample size in order.  

Privacy preserved by using PRAM is quantified by γ -amplification and 

probabilistic K-anonymity. Randomization causes some information loss, which can be 

quantified by metrics like distance between two distributions. Another important aspect 

of information loss is independence loss, which is also discussed in this dissertation. 

The proposed method is applied to Bayesian network learning. We consider both 

structure and parameter learning. For structure learning, we face the familiar extra-link 

problem since estimation errors tend to break the conditional independence among the 

variables. We propose modifications to score functions used for Bayesian network 

learning, to solve this problem.  
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For continuous-valued data, an MGAS (Modified Agglomerative Scheme) 

discretization technique based on Hierarchical Clustering is proposed in this dissertation. 

MGAS technique discretizes numerical variables and indirectly enhances privacy. This 

technique has been applied to learn linear classifiers from randomized data for privacy 

consideration. Linear classifier is a model based on cost optimization. Instead of using 

the original cost function, the expectation of the cost based on the randomized data is 

optimized.  

Finally, the proposed technique is applied to both association rule mining and 

decision tree learning. The supports of the K-itemsets in association rule mining can be 

estimated from the randomized data. By randomizing several items simultaneously, more 

simultaneous privacy breaches are limited by reducing simultaneous γ -amplification. 

Privacy-preserving decision tree learning is accomplished by estimating frequency counts 

necessary for calculating information gain from randomized data.  

Our experiments show that post randomization is an efficient, flexible and 

easy-to-use method to do Privacy-preserving data mining.  Experimental results with 

different levels of randomization and different sample sizes show that this method 

produces an accurate model, even with a large level of randomization.  
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CHAPTER ONE 

INTRODUCTION 

 

 Explosive growth in network, storage, and processor technologies has led to the 

creation of ultra large databases that record unprecedented amount of transactional 

information.  In tandem with this dramatic increase in digital data, concerns about 

informational privacy have emerged globally. Privacy issues are further exacerbated now 

that the World Wide Web makes it easy for the new data to be automatically collected 

and added to databases. Data mining, with its promise to efficiently discover valuable 

non-obvious information from large databases, is particularly sensitive to privacy 

concerns. In recent years, data mining has also endeavored to become compatible with 

privacy. Fruitful research has been produced by different researchers on the topic of 

privacy-preserving data mining (PPDM). PPDM deals with the problem of learning 

accurate models over aggregate data, while protecting privacy at the level of individual 

records.  

 In this dissertation, we propose to use post randomization (PRAM) techniques for 

PPDM. PRAM was originally proposed as a statistical disclosure control technique and is 

closely related to randomized response techniques in collecting private or confidential 

data from individuals. We explore the possibility of using PRAM techniques for PPDM. 

The analysis of the proposed techniques and the proposed algorithm can be directly 

applied to analysis or mining from data collected using randomized response techniques.  

         Before we describe our proposed work, we first offer some background information 

in the following sections. In section 1.1, we briefly introduce distributed data mining, 

which forms the basis for some of our proposed methods. Different aspects of privacy are 

introduced in section 1.2. Some methods for PPDM proposed in literature are reviewed in 

section 1.3.  
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1.1 Distributed Data Mining 
 
 

Distributed data mining deals with the problem of finding patterns in an environment 

where the data and/or computational units are distributed. A typical application domain 

of distributed data mining either has inherently distributed data sources or a centralized 

data partitioned into different blocks. The data may be distributed in the following three 

ways:  

a. Homogeneously distributed databases   

In this setting, the database is horizontally distributed into several parties. Every party 

has records with the same set of features. One extreme case is a “fully” homogeneously 

distributed database in which each individual record is held by its owner.  

b. Heterogeneously distributed databases  

In this setting, the database is vertically partitioned. Every party owns a vertical piece 

of every record in the database; i.e., it holds records for a subset of the features.  

c. Arbitrarily partitioned databases  

In this setting, different features of different items can be owned by any party.  

The above three distributed cases are illustrated in figure 1.1, where a database is 

distributed into two partitions. 

The problem of learning from distributed data can be summarized as follows: 

Given a data set D, which is distributed, a hypothesis class H, and a performance criterion 

C, the learning algorithm L outputs a hypothesis h∈H that optimizes C. For example, in 

pattern classification applications, h is a classifier (e.g., a decision tree, a support vector 

machine, etc.). In clustering, h is a set of clusters. The data D typically consists of a set of 

training examples. Each training example is an ordered tuple of attribute values, where 
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one of the attributes corresponds to a class label (if classification is involved) and the 

remaining attributes represent inputs. The goal of learning is to produce a hypothesis that 

optimizes the performance criterion of minimizing some function of the error (on the 

training data) and the complexity of the hypothesis. 

 

Figure 1.1: Distributed Databases 

Some illustrative examples of distributed data mining applications are as follows:  

Example 1: Consider an epidemiologist, studying the spread of hepatitis-C in the 

US. She is interested in detecting any underlying relation of the emergence of hepatitis-C 

in the US with weather pattern.  
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# 
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Example 2:  Two major financial organizations want to cooperate for preventing 

fraudulent intrusion into their computing system. They need to share data patterns 

relevant to fraudulent intrusion. 

Example 3: Several large corporations want to analyze customer transaction 

records for developing a successful business strategy for mutual benefits.  

Example 4: A research center wants to find the correlation of DNA sequence and 

specific diseases. They have DNA sequences of a group of people while personal medical 

histories are stored in databases of hospitals. 

Many distributed data mining techniques have been developed to save 

communication overhead and offer better scalability, with minimal communication of 

possibly private data.  

Mining from heterogeneous data constitutes an important class of distributed data 

mining problems. This issue is discussed in [PB95] from the perspective of inductive bias. 

The WoRLD system [AKPB97] addressed the problem of concept learning from 

heterogeneous sites by developing an “activation spreading” approach that is based on a 

first order statistical estimation of the underlying distribution. A novel approach to learn 

association rules from heterogeneous tables is proposed in [CS99]. This approach 

exploits the foreign key relationships for the case of a star schema to develop 

decentralized algorithms that execute concurrently on the separate tables, and 

subsequently merge the results. An order statistics-based technique for combining high-

variance models generated from heterogeneous sites is proposed in [TG00a]. In particular, 

Kargupta and his colleagues [KPHJ00] also considered the heterogeneous case and 

proposed the collective framework to address data analysis for heterogeneous 
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environments. Chen et al. [CSK03, CSK04] proposed collective Bayesian network 

learning from heterogeneous data. 

Our work and other works in PPDM are an attempt to solve another important 

problem in the distributed data mining, which is the privacy issue. The algorithms 

discussed above in distributed data mining might be very efficient both in computation 

and communication, but obviously they were not designed with privacy in mind.  

 

1.2 Privacy Issues in Data Mining 
 
 

As introduced in previous section, data mining technology has been developed 

with the goal of providing tools for automatically and intelligently transforming large 

amount of data into knowledge relevant to users. The extracted knowledge, often 

expressed in the form of e.g., association rule, Bayesian networks, classification rules, 

decision tree or clustering, allows people to find interesting patterns and rules buried in 

the data, which can be used to help decision making process. When a complete data set is 

available, various statistical, machine learning and modeling techniques can be applied to 

analyze the data. In many contexts, data are distributed across different sites. 

Traditionally, the data warehousing approach has been used to mine distributed databases. 

It requires that data from all the participating sites are collected at a centralized 

warehouse. However, many data owners may be reluctant to share their data with others 

due to privacy and confidentiality concerns, which impedes performing mutually 

beneficial data mining tasks. Also in many contexts, data owners are often not data 

miners and data owners will often be unwilling to disclose their data to the data miner 
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due to privacy concerns.  For examples, consider the distributed data mining examples 

given in section 1.1 further: 

Example 1: The epidemiologist has access to a large environmental and weather 

database and the center for disease control (CDC) has a large hepatitis-C database. 

However, CDC may not be able to provide their databases to her due to privacy 

consideration. 

Example 2: The companies may not be willing to share their data due to 

proprietary reasons.  

Example 3: Though there are mutual benefits, those corporations will be 

unwilling to share their customer information with others since it involves commercial 

competition. 

Example 4:  Though the research center has DNA sequences of a group of people, 

personal medical histories are often stored in databases of hospitals. Hospitals cannot 

provide any information about individual medical history to the research center due to 

privacy regulations.  

In many situations, individual variables are inherently sensitive and people are 

reluctant to divulge them to a data miner. In some cases, although the variables 

themselves are not sensitive, it will help identify confidential information through links 

between databases. Those variables that can help identify confidential information should 

also be paid attention to. Re-identification of confidential information through links is 

widely discussed in [Swe02a, Swe02b]. The following is the example directly from 

[Swe02a] to illustrate re-identification by linking: 
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The National Association of Health Data Organizations (NAHDO) reported that 

37 states in the USA have legislative mandates to collect hospital level data and that 17 

states have started collecting ambulatory care data from hospitals, physicians offices, 

clinics, and so forth. The leftmost circle in Figure 1.2 contains a subset of the fields of 

information, or attributes, that NAHDO recommends these states collect; these attributes 

include the patient’s ZIP code, birth date, gender, and ethnicity. In Massachusetts, the 

Group Insurance Commission (GIC) is responsible for purchasing health insurance for 

state employees. GIC collected patients’ specific data with nearly one hundred attributes 

per encounter along the lines of those shown in the leftmost circle of Figure 1.2 for 

approximately 135,000 state employees and their families. Because the data were 

believed to be anonymous, GIC gave a copy of the data to researchers and sold a copy to 

industry. For twenty dollars, the author of [Swe02a] purchased the voter registration list 

for Cambridge Massachusetts and received the information on two diskettes. The 

rightmost circle in Figure 1.2 shows that these data included the name, address, ZIP code, 

birth date, and gender of each voter. This information can be linked using ZIP code, birth 

date and gender to the medical information, thereby linking diagnosis, procedures, and 

medications to particular named individuals. For example, William Weld was governor 

of Massachusetts at that time and his medical records were in the GIC data. Governor 

Weld lived in Cambridge Massachusetts. According to the Cambridge Voter list, six 

people had his particular birth date; only three of them were men; and, he was the only 

one in his 5-digit ZIP code. 

The example above provides a demonstration of re-identification by directly 

linking (or “matching”) on shared attributes.  Though the problem is not so dramatic in 
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most cases, the above example gives us an idea of how privacy breaches can happen if 

only those inherent sensitive variables are considered and that privacy problem is far 

from solved by only removing personal identification numbers of data records.  

 

Figure 1.2 : Example of re-identification by links 

Due to privacy and confidentiality concerns discussed above, application of data 

mining technologies is largely constrained. PPDM has emerged to address the privacy 

issues in data mining. Embedding privacy into data mining has been an active and fruitful 

research area. Several data mining techniques, incorporating privacy protection 

mechanisms, have been proposed based on different approaches. 

Another privacy issue concerning data mining is from the release of databases. 

Recent advances in data mining techniques and related applications have, on the other 

hand, increased the security risks that one may incur when releasing data. The elicitation 

of knowledge that can be obtained using such techniques has been the focus of the 

knowledge discovery in databases researcher’s effort for years and by now, it is a well 

understood problem. However the impact on information confidentiality originated by 

these techniques has not been considered until recently. The process of uncovering 
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hidden patterns from large databases has been already indicated as a threat to database 

security. One aspect of PPDM has been focused on preventing data mining techniques 

from discovering sensitive knowledge which is not even known to the database owners 

before they are released. This aspect of PPDM has also been called rule hiding. 

 

1.3 PPDM  
 
 

Recent research in the area of PPDM has devoted much effort to determine a 

trade-off between privacy and the need for knowledge discovery, which is crucial in 

order to improve decision-making processes and other human activities. In this section, 

we first present a taxonomy of the PPDM algorithms that have been proposed based on a 

classification presented in Verykios et al. [VBFP04, BN05]. We then present a brief 

review of the major work in this area. Verykios et al. [VBFP04] analyze the state-of-the-

art in the area of PPDM, classifying the proposed privacy preservation techniques 

according to five different dimensions: (i) data distribution (centralized or distributed); (ii) 

the modification applied to the data (encryption, perturbation, generalization, and so on) 

in order to sanitize them; (iii) the data mining algorithm which the privacy preservation 

technique is designed for; (iv) the data type (single data items or complex data 

correlations) that needs to be protected from disclosure; (v) the approach adopted for 

preserving privacy (heuristic, reconstruction or cryptography-based approaches). Figure 

1.3 shows a taxonomy of the existing PPDM algorithms according to those dimensions 

[BN05]. Obviously, it represents a first organization in this new area and does not cover 

all the possible PPDM algorithms. However, it gives one overview of the algorithms that 
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have been proposed so far, focusing on their main features. While heuristics are mainly 

 

Figure 1.3 Taxonomy of PPDM methods 

conceived for centralized datasets and cryptography based algorithms are designed for 

protecting privacy in a distributed scenario by using encryption techniques, 

reconstruction-based algorithms can be applied to both centralized and distributed 

datasets depending on specific application environments. In the following, 

reconstruction-based methods and cryptography-based methods for PPDM are briefly 

PPDM algorithms 

Reconstruction-based Cryptography-basedHeuristic-based 

Centralized-DB Centralized/Distributed-DB Distributed-DB 

Raw data Aggregated dataRaw data Raw data Aggregated data 
(discrete/continuous) (discrete/continuous) 

Classification

Association 
Rule Mining

Clustering

Perturbation 
(Statistical 

Distribution 
Based) 

Classification 

Association 
Rule Mining 

Clustering

Encryption  
Technique 

Classification 
Association 
Rule Mining 

Clustering

Hiding  
Technique 

Hiding Technique 
= {perturbation, blocking, swapping, aggregation, generalization, sampling} 



 11  

introduced in section 1.3.1 and 1.3.2 respectively. In section 1.3.3, we introduce the 

possible privacy breaches that have been discussed in the literature using reconstruction-

based and cryptography-based algorithms.  

 

1.3.1 Reconstruction-based Methods 

 A number of recently proposed techniques address the issue of privacy 

preservation by perturbing the data and reconstructing the distributions at an aggregate 

level in order to perform the mining. This approach was first introduced by Agrawal and 

Srikant [AS00].  The work presented in [AS00] addresses the problem of building a 

decision tree classifier from training data in which the values of individual records have 

been perturbed. While it is not possible to accurately estimate original values in 

individual data records, the authors propose a reconstruction procedure to accurately 

estimate the distribution of original data values. By using the reconstructed distributions, 

they are able to build classifiers whose accuracy is comparable to the accuracy of 

classifiers built with the original data. For the distortion of values, the authors have 

considered a discretization approach and a value distortion approach. For reconstructing 

the original distribution, they have considered a Bayesian approach and they proposed 

three algorithms for building accurate decision trees that rely on reconstructed 

distributions. The work presented in [AA01] proposes an improvement over the 

Bayesian-based reconstruction procedure by using an Expectation Maximization (EM) 

algorithm for distribution reconstruction. More specifically, the authors prove that the 

EM algorithm converges to the maximum likelihood estimate of the original distribution 

based on the perturbed data. They also show that when a large amount of data is available, 
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the EM algorithm provides robust estimates of the original distribution. It is also shown, 

that the privacy estimates of [AS00] had to be lowered when additional knowledge that 

the miner obtains from the reconstructed aggregate distribution was included in the 

problem formulation. Reconstruction-based techniques for binary and categorical data 

include works presented in [ESAG02], [RH02] and [DZ03].  [ESAG02] and [RH02] deal 

with binary and categorical data in the context of association rule mining. Both papers 

consider randomization techniques that offer privacy while they maintain high utility for 

the data set. Evfiemievski et. al. [ESAG02] proposed a select-a-size randomization 

technique for privacy preserving mining of association rules. Du et. al. [DZ03] suggested 

using randomized response techniques for PPDM and constructed decision trees from 

randomized data. Other Reconstruction-Based works include [LKR06, MS05, MS06a, 

MS06b, MS06C, Wu03]. 

 

1.3.2 Cryptography-based Methods 

 A number of cryptography-based approaches have also been developed in the 

context of PPDM algorithms, to solve problems of the following nature. Two or more 

parties want to conduct a computation based on their private inputs, but neither party is 

willing to disclose its own input to anybody else. The issue here is how to conduct such a 

computation while preserving the privacy of the inputs. This problem is referred to as the 

secure multiparty computation (SMC) problem. Secure computation was first introduced 

by Yao [Yao86]. Secure computation works in this way: the function to be computed is 

first represented as a combinatorial circuit, and then the parties run a short protocol for 

every gate in the circuit. Secure multiparty computations are closely related to the 
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problem of secret sharing, and more specifically verifiable secret sharing; every multi-

party computation protocol uses verifiable secret sharing. This approach was first 

introduced into PPDM by Lindell and Pinkas [LP00]. Du et al. [DHC04] proposed a 

transformation framework that allows systematic transformation of normal computations 

to secure multiparty computations. Among other information items, a discussion on 

transformation of various data mining problems to a secure multiparty computation is 

demonstrated. The data mining applications which are described in this framework 

include data classification, data clustering, association rule mining, data generalization, 

data summarization, and data characterization. Clifton et al. [CKV03] present four secure 

multiparty computation based methods that support PPDM. The methods described 

include secure sum, secure set union, secure size of set intersection, and scalar product.  

In the following, we present secure sum as a simple example of secure multiparty 

computation. Assume that the value 
1

s

l
l

u u
=

= ∑  is to be computed and is known to lie in 

the range[0, ]n . One site is designated as the master site and is given the identity 1. The 

remaining sites are numbered 2, , s" . Site 1 generates a random number R, uniformly 

chosen from[0, ]n .  Site1 adds this number to its local value u1 and sends the sum R + u1 

mod n to site 2. Since the value of R is chosen uniformly from[0, ]n , the number R + u1 

mod n is also distributed uniformly in this range and site 2 learns nothing about the actual 

value of u1. For the remaining sites 2, , 1l s= −" , the algorithm is as follows. Site l  

receives 
1

1

l

j
j

V R u
−

=

= +∑  mod n. Since this value is uniformly distributed in [0, n], l  learns 

nothing. Site l  then computes 
1

l

j
j

R u
=

+∑  and passes it to site 1l + . Site s performs the 
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above step, and sends the result to site 1. Site 1, by knowing R, can subtract R to get the 

actual result. Below we present the approaches which have been developed by using the 

solution framework for secure multiparty computation. Because of the nature of this 

solution methodology, the data in all of the cases for which this solution is adopted is 

distributed among two or more sites. 

Though secure multiparty computation is appealing in its generality and 

simplicity, specific and efficient protocol have to be developed for data mining purpose 

since it is apparently inefficient for data mining applications. Clifton et al. [CKV03, 

JW05, VC02, VC03] have developed efficient secure computation techniques for 

association rules, decision tree with vertically partitioned data, clustering, and k-nearest 

neighbor classification. Wright et al. [WY04, YW05] discuss privacy-preserving 

Bayesian network structure computation and parameter learning on distributed 

heterogeneous data while Meng et al. [MSK04] have considered the privacy-sensitive 

Bayesian network parameter learning problem. The underlying method used in both 

works is to convert the computations required for Bayesian network learning into a series 

of inner product computations and then to use a secure inner product computation method 

proposed elsewhere. All these techniques are based on a semi-honest model, where each 

party is curious about other parties’ data but follows the protocol exactly.   

Though SMC method is good at preserving privacy, it still has the following two 

drawbacks: (1) It assumes semi-honest models, which is often unrealistic in the real 

world. (2) It requires large volumes of synchronized computations among participating 

parties. Most of the computations are the overheads due to privacy requirement. 
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1.3.3 Privacy Breaches  

Agrawal and Srikant [AS00] proposed using additive noise to solve PPDM 

problem. In their randomization scheme, a random number is added to the value of a 

sensitive attribute. For example, if ix  is the value of a sensitive attribute, ix r+  rather 

than ix  will appear in the perturbed database, where r  is a random value drawn from 

some distribution. It is shown that given the distribution of random noises, recovering the 

distribution of the original data is possible. Kargupta et al. [KDWS03] challenged the 

additive noise schemes, and pointed out that additive noise might not be secure. They 

proposed a random matrix-based spectral filtering technique to recover the original data 

from the perturbed data. Their results have shown that the recovered data can be 

reasonably close to the original data. The results indicate that for certain types of data, 

additive noise might not preserve privacy as much as we require for PPDM. Motivated by 

Kargupta et al’s work, Huang and Du [HDC05] further suggested that the key factor for 

those kind of privacy breaches is the correlation among attributes. They propose two data 

reconstruction methods that are based on data correlations. One method uses the principal 

component analysis (PCA) and the other method uses Bayes estimate technique. They 

conducted theoretical and experimental analysis on the relationship between data 

correlations and the amount of private information that can be disclosed based on the data 

reconstruction method based on PCA and Bayes estimation technique. Their studies have 

shown that when the correlation between the attributes is high, the original data can be 

reconstructed more accurately, i.e., more privacy breaches will happen.   

Possible privacy breaches have been also discussed by [AA00, EGS03]. [AA00] 

suggests by an example that the method in [AS00] does not take into account the 
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distribution of original data, which is reconstructed during PPDM. This kind of 

reconstruction of the distribution also provides a certain level of knowledge of sensitive 

attributes, which can be used to guess the value of a sensitive attribute to a high level of 

accuracy. Another possible privacy breach using randomization scheme is proposed by 

[EGS03].  It is not enough to simply concentrate on randomization and recovery of the 

model. We must also ensure that the randomization is sufficient for preserving privacy, as 

we randomized in the first place to achieve privacy.  The following two examples by 

[EGS03] explain this kind of privacy breach.  

Example 1: Suppose we randomize age ix  by adding a random number ir  drawn 

uniformly from an interval say[ 50,50]− . Assuming the server receives age 120 from a 

user, privacy is somewhat compromised, as the server can conclude that the age of the 

user cannot be less than 70 (otherwise 120 will not result). Thus the server has learned a 

potentially valuable piece of information about the user. 

Example 2: Suppose we randomize a small set of items (a transaction) by 

replacing each item by a random item with probability80% . If the transaction contains a 

subset A  of three items that has a support of 1% , it has 3(0.2) 0.008 0.8%= =  chance to 

retain the same set of three items after the randomization. Thus whenever the server sees 

A  in the randomized transaction, it learns with high probability of the presence of A  in 

the original transaction as well. Indeed there are 1%*0.8 0.008%=  randomized 

transactions that have A both before and after randomization, while the probability that A 

occurs in 10 randomly inserted items (out of, say, 10,000 possible items) is less than 

710 %− .  
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1.3.4 PPDM using PRAM 

 Gouweleeuw et al. [GKW98] introduced PRAM for statistical databases for 

information disclosure control. Disclosure control in statistical database is to preserve the 

privacy of individual records when the database is released for simple public use. PPDM 

is a more challenging problem than disclosure control in statistical database. The PPDM 

technique has proved to be effective in disclosure control. We explored the possibility of 

using PRAM in PPDM. PRAM is so called because the randomization happens after the 

data has been collected. The proposed algorithm applies both to uniform and non-uniform 

randomization in order to meet the different privacy requirement of different variables. 

We compute estimators for frequency counts for data used in data mining and estimators 

of their covariance, based on the randomized data. PRAM is an efficient, flexible and 

easy-to-use method to learn from privacy sensitive data. Using PRAM in PPDM 

overcomes the inherent drawbacks of SMC method and provides  reasonable privacy and 

accuracy. Using PRAM for PPDM provides a general framework for randomization of 

variables in PPDM. We can also apply PRAM to numerical variables by proper 

discretization and then reconstruct their probability distribution during data mining.  The 

main problem is to design the PRAM intelligently according to different applications. 

Select-a-size randomization can be considered as a special and intelligently designed 

PRAM.  MASK in [RH02] is a PRAM implemented to binary variables. We can even 

view the randomization of numerical data using  additive noise [AS00] as a special 

design of PRAM since the numerical values are also discretized into intervals and the 

distribution of the variables are also recovered using the frequency counts of the records 

in the interval. One difference between our schemes of implementing PRAM to 
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discretized numerical variable and implementing additive noise is that our framework 

provides a more flexible way to control those privacy breaches discussed in the previous 

section by controlling γ -amplification, a privacy measure for limiting those kind of 

privacy breach, which will be introduced in detail in chapter 3. This important difference 

will be also further discussed in chapter 3. Works in [ESAG02, EGS03, DZ03] 

randomized the data by records, which actually implements simultaneous randomization 

to all variables. Simultaneous randomization to all variables introduces unnecessary 

randomization. However, simultaneous randomization can reduce simultaneous γ -

amplification.  PRAM provides a more flexible way to handle variables with different 

privacy requirement by using non-uniform randomization; for example, a group of 

variables can be randomized simultaneously and others can be randomized independently. 

Our framework for PPDM using PRAM can be applied for two different cases in 

distributed data mining environments discussed in section 1.1.  

a. There is a data miner in addition to the parties that own the database. Every party 

who owns a part of the data simply sends the data miner a randomized version of their 

data, which are randomized according to their privacy requirements. The probability 

transition matrices (used to perform the randomization) are also sent to the data miner. 

The data miner does all the learning using randomized data and probability transition 

matrices from those parties.    

b.  No data miner exists. All parties who own the database have to cooperate and 

take part in mining. This setting is quite similar to the multi-party model of SMC, where 

every party takes part in the computation and has to have some ability to perform 

computations.  
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In homogeneously distributed data environment, PPDM is relatively easy for learning 

models that only depend on sufficient statistics of the data set, for example, the frequency 

counts of each feature. Each party can share sufficient statistics from their part of the 

database without compromising privacy of individual records.  However, special care still 

has to be given to the fully homogeneously distributed data set since the sufficient 

statistics for each customer might be the individual record itself. Our framework for 

PPDM using PRAM can be applied in the fully homogeneously distributed environment. 

In fully homogeneously distributed environment, we consider the above case (a) only, 

since case (b) will require every customer holding a single record take part in the learning, 

which is quite impractical.  Figure 1.4 graphically illustrates PPDM using PRAM in fully 

homogeneously distributed environment. Every customer in the fully homogeneously 

distributed environment sends a randomized version of its record using pre-defined 

randomization schemes known to the data miner. 

 

Figure 1.4 PPDM in fully homogeneously distributed environment 

         A challenging task for PPDM in heterogeneously distributed data set is to preserve 

the correlation or joint distribution of all features without accessing the original data. 

Figure 1.5(a) and 1.5(b) graphically illustrate PPDM using PRAM techniques in 

heterogeneously distributed environment and under the above case (a) and (b) 
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respectively. In case (b), every party sends to every other party their randomized data 

when they are necessary for that party’s computation. In case (a), every party simply  

sends their randomized data to the data miner. In general, there is less randomized data in 

case (a) than case (b) since variables owned by the party who is doing computation do not 

need to be randomized for his own computation. Simulation results of case (a) are in 

general better than case (b).  While the learning and analysis from randomized data is 

almost the same in these two cases, case (b) needs cooperation and synchronization 

between the participating parties. Cooperation and synchronization requirements are 

similar to those in PPDM using SMC method. However, SMC method relies on the semi-

honest model. It is quite easy for a malicious party in SMC to get other party’s private 

information by not obeying the protocols while those parties can only get randomized 

information from other parties if they do not obey the protocols deliberately. 

When there is a data miner, PPDM algorithm used in the above case (a) in 

heterogeneously distributed environment can be directly used in the arbitrarily distributed 

environment since every party in arbitrarily distributed environment also simply sends 

their randomized data to the data miner using pre-defined randomization schemes and 

thus they are exactly the same from the data miner’s perspective. If there is no data miner, 

case (b) can also be used in the arbitrarily distributed environment with a protocol 

depending on application and how the data set is distributed. 

This dissertation for the first time proposed to use PRAM for PPDM in research 

of PPDM. The privacy preserved by PRAM schemes are measured by a metric called γ -

amplification. The concept of γ -amplification was proposed by [EGS03]. We proposed 

originally to use γ -amplification as a privacy metric for PRAM. Privacy preserved by 
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different PRAM schemes and techniques is originally analyzed by using γ -amplification.  

 

 

Figure 1.5: PPDM in heterogeneously distributed environment 
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CHAPTER TWO 

PRAM TECHNIQUES 

 

In this chapter, PRAM techniques are introduced. PRAM is introduced in section 

2.1. Problems in applying PRAM in practice are discussed in section 2.2. PRAM is 

initially implemented for randomizing categorical variables. In section 2.3, we discuss 

implementing PRAM to discretized numerical variables. Frequency counts estimation 

methods are discussed in section 2.4. Finally, experimental results are provided in section 

2.5. 

   

2.1 PRAM 

 
Consider a data set D  with a set U  of variables 1 2 … nX X X, , , , where iX  

( 1, , )i n= "  takes discrete values from a set iS  whose cardinality is iK . 

1 2{ ; ; ; }ND y y y= " , where 1 2{ , , , }i i i iny y y y= " is a 1 n×  vector such 

that 1 1 2 2, , ,i i in ny S y S y S∈ ∈ ∈" . The PRAM for variable iX  is a (random) 

mapping i i iR S S: → , based on a set of probabilities ( )i
ilm m i lp p k X kX= = | =�  , where 

m l ik k S, ∈  and iX�  denotes the (randomized) variable value corresponding to variable iX . 

The transition probability i
lmp  is the probability that a variable with original value lk  is 

randomized to the value mk . Let { }i i
lmP p=  denote the i iK K×  dimensional matrix that 

has i
lmp  as its ( )l m, th entry. The randomized data set is 21{ ; }ND yy y= ,� �� �"  , where iy�  is a 

randomized vector corresponding to iy . Theoretically, we can choose any randomization 

scheme. However, the condition that iP  is nonsingular has to be imposed if we want to 
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estimate the frequency distribution of variable iX  from the randomized data set D� . Note 

that PRAM is also applied independently to each record in the dataset.  

 PRAM is applied to each variable independently and a transition matrix is 

released per variable. PRAM can also be applied on several variables simultaneously. 

Consider the case when we want to apply PRAM simultaneously to two variables iX  and 

jX  who take discrete values from set iS  and jS  with cardinalities iK  and jK  

respectively. Simultaneous PRAM for variables iX  and jX  is a (random) 

mapping ij i j i jR S S S S: × → × , based on a set of transition 

probabilities
1 2 1 2 1 2 1 2

( )ij
i jl l k k m m i l j lp p k k X k X kX X= = , = | = , =� � . Let the corresponding 

probability transition matrix 
1 2 1 2

{ }ij ij
l l m mP p= , which is now a ( ) ( )i j i jK K K K× × ×  matrix. 

Simultaneous PRAM is also applied independently to each record in the data set. We can 

see that there is no essential difference between applying PRAM to variables 

independently and applying PRAM simultaneously to two (or more) variables. If we had 

applied the PRAM independently to the two variables iX  and jX , the probability 

transition matrix would be 
1 2 1 2

ij i j
l l m mP P P= ⊗ , where ⊗  denotes the Kronecker product. 

Kronecker product of a 1 1K K× matrix P and a 2 2K K× matrixQ , is a 1 2 1 2K K K K× matrix 

such that 
11 1

1

n

n nn

p Q p Q
P Q

p Q p Q

 
 ⊗ =  
  

"
# % #

"
. Application of PRAM simultaneously to more 

than two variables is straightforward. The extreme case is applying PRAM 

simultaneously to all the variables in the data set. Applying PRAM independently to each 

variable or applying PRAM simultaneously to some of the variables is a matter of design 
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choice. We can apply the same randomization schemes independently to all of the 

variables: uniform randomization to the data set. Alternatively, we can use a non-uniform 

randomization where different PRAM schemes are applied to different variables, 

independently. The non-uniform randomization is effective when different variables have 

different sensitivity levels. For example, we can choose different randomization 

parameters 1p  and 2p  to different binary variables for non-uniform randomization if the 

privacy requirement of the two variables are different. The non-uniform randomization 

includes the special case when there is no privacy requirement for some of the variables. 

In the following, we provide some simple but effective PRAM schemes on which most of 

our experiments are based.  If variable iX  takes binary values, we can use binary 

randomization as shown in Figure 2.1(a). Implementing different randomization with 

1 2p p≠ to different values of a binary variable can be used in the case when one value of 

the binary variable is more sensitive than the other.   If the variable iX  is ternary, a 

ternary symmetric randomization as shown in Figure 2.1(b) can be used.   

 

Figure 2.1:  Randomization Schemes: 

Another PRAM scheme we frequently used for multi-category variable iX  is as follows: 
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K

− =
= = | = =  ≠ −

�  

3

11 p− 211 pp −−

1

2 2

1 1

3

2

1

2

(a) (b)

1p 1p
2p

21 p−

2p
iX  iX�

iX�iX



 25  

In the sequel, we will call this randomization scheme as multi-category randomization.  

 

2.2 Problems when Applying PRAM in Practice 

 

 The implementation of PRAM to data in practice involves several aspects. We 

discuss those aspects in this section.  

 First of all, it has to be decided which variables will be perturbed. If PRAM is 

applied to (some of the) identifying variables in the data, then as a result it becomes more 

difficult for an intruder to recognize a record corresponding to some individual in the 

population. PRAM can also be applied to sensitive variables in the data. In that case, an 

intruder may recognize the record of an individual, but he or she can not be sure as to 

whether the sensitive information obtained from the data is correct. From a statistical 

viewpoint, it does not matter whether PRAM is applied to identifying or sensitive 

variables. 

 There are usually many variables in a data set, which are candidates for applying 

PRAM. A choice has to be made whether it is preferable to perturb only a few variables a 

lot or to mildly perturb many variables. For the same privacy requirement, it is preferable 

to choose the one which will produce more accurate frequency counts estimation by 

choosing smaller variance of the estimator (we will discuss estimators in section 2.4). 

The other thing is to decide whether applying randomization to all the variables 

independently or apply randomization to some of the variables simultaneously. 

Simultaneous randomization will usually prevent the inconsistency of the randomized 

data, which is often a problem with independent randomization.  Also, simultaneous 
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randomization can cause unnecessary randomization to some of the variables but it will 

usually have lower simultaneous γ -amplification, a privacy measure defined in chapter 3.  

 After it has been decided to which variables PRAM should be applied, the next 

step is to decide which category can be replaced by which category and what 

randomization schemes should be used. From the above, we can see that if variable iX  

takes iK  values (or categories), the dimension of iP  will be i iK K× . With larger iK  , 

more randomization is introduced into variable iX  in general. This is good from a 

privacy point of view. However, the variances of the estimator of frequency counts will 

also be larger for a given size of training data. One solution to this problem is to partition 

the iK  categories of variable iX  into several groups such that a value in one group can 

only be randomized to a value in the same group. If grouping of the categories is used, 

how to group those categories should also be decided. The grouping structure determines 

the structure of the probability transition matrix P. For categories 1, , K"  grouped into 

G groups, the matrix can be written as
1 0 0
0

0
0 0 G

P

P

 
 
 
 
 
  

"
% #

# % %
"

. If the grouping of the categories is 

used, a privacy measure we define in chapter 4, probabilistic K-anonymity PK , will be 

lower, which means worse privacy (using this measure). However, grouping of the 

categories will usually produce lower amplificationγ − , another privacy measure defined 

in chapter 3, which means better privacy (using this measure).  

 After all of the above, the remaining item is to decide the values of i
lmp . The 

choice of the values of i
lmp  is not a trivial task in practice. It has to be decided according 

to the trade-off between accuracy and privacy. Different choices of randomization 
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schemes will affect the specific probability transition matrix used in learning but will not 

affect the learning algorithm used for learning from randomized data.  

2.3 Implementing PRAM to Discretized Quantitative Data 

 
 In many cases, actual data are numerical. PRAM was originally developed for 

categorical data. Some techniques have been proposed in the literature to reduce the 

number of values for a given continuous attribute, by dividing the range of the attribute 

into intervals. All those techniques are introduced in the framework for data 

preprocessing. However, we propose discretization in the framework for PPDM. Though 

we can directly borrow many existing ideas, many algorithms have to be modified to suit 

privacy. Reducing the number of values for a given continuous attribute is quite 

beneficial for many models to be learned since over-fitting can be greatly reduced though 

details are lost. From a privacy point of view, it provides some ambiguity (privacy) to the 

actual data by certain intervals. Many techniques can provide a hierarchical or multi-

resolution partitioning of features known as a concept hierarchy. Data owner can disclose 

appropriate level of the hierarchy to the data miner or other parties according to their 

privacy requirements.  

Privacy requirements usually have two aspects.  

a. Minimum granularity requirement g: Larger g provides more ambiguity (privacy) 

but loses more details. For univariate case, the minimum granularity is equivalent to the 

minimum interval.  

b. The minimum number of records K in the transformed categories. This K provides 

a level of K-anonymity to possible identification.  
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 The existing methods for discretization of numerical variables usually emphasize 

one of the above but ignore the other. A clustering algorithm can be applied to partition 

data into clusters or groups. Using a clustering algorithm to transform the numerical data 

into categories is suitable for both univariate and multivariate cases. However, any 

clustering algorithm has to be modified since the object of a clustering algorithm is to 

maximize the in-group similarity and between-group dissimilarity without any constraints 

on group size and granularity. Privacy requirements, however, do not specifically require 

optimization of in-group similarity and between-group dissimilarity as an objective. The 

hierarchical clustering algorithm produces a hierarchy of clusterings and is easier to 

modify to meet the two privacy requirements. We propose a Modified Agglomerative 

Scheme (MGAS) to discretize the numerical variables in favor of the two privacy 

requirements. MGAS is similar to the heuristic method proposed for data-oriented 

microaggregation for statistical disclosure control in [DM02]. However, the method 

proposed in [DM02] constrains both the minimal and maximal size of groups while 

MGAS constrains the minimal number of records in a cluster and the minimal granularity. 

Constraining both minimal and maximal is appropriate for the scenario of re-

identification disclosure. However, imposing this kind of constraint could still result in 

possibly disclosing the individual value of a data since the numerical differences between 

some groups are very likely to be negligible.  In the framework for privacy of individual 

value of the data, controlling the minimal granularity as done by MGAS is more 

reasonable.  

 The following is the Modified Agglomerative Scheme (MGAS). The similarity 

and dissimilarity we consider here are Euclidean Distances. 
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 (a) Initialization 

i. Choose { }0 { }, 1i iR C x i N= = = "  as the initial clusterings. 

ii. t = 0; 

(b) Repeat 

i. t = t + 1 

ii. Among all possible pairs of clusters ( , )r sC C  in 1tR − , find the one, say ( , )i jC C  

such that ,( , ) min ( , )i j r s r sg C C g C C= if g is a dissimilarity function and  

,( , ) max ( , )i j r s r sg C C g C C=  if g is a similarity function. 

iii. Define q i jC C C= ∪  and produce the new clustering 

 1{ { , }} { }t t i j qR R C C C−= − ∪  

(c) Checking the Granularity and the number of records in each cluster. Let KR  be a 

subset of tR  and every cluster in KR  has met the minimum requirement of Granularity 

and minimum requirement number of records.  f f kR R R= ∪  and t t kR R R= −  

(d) Until all clusters meet the two requirements. The final set of clusters is fR  

 After the numerical data is grouped using the MGAS algorithm, we can do the 

following according to the different models to be learned.  

a. If the data models to be learned require the numerical properties of the data, e.g. 

generalized linear regressions, linear classifier and models based on optimizing empirical 

risk minimization, the original values of variables are replaced by group means they 

belong to.  

b. If the data models to be learned require only the summaries or sufficient statistics 

of the data, e.g. association rules, decision tree, Bayesian network, we can replace 
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individual values of the variables by general concepts or simply the assigned orders of the 

groups they belong to. PRAM can now be applied to the transformed numerical variables 

which are now discretized. PRAM provides another level of privacy for the data besides 

the anonymity introduced by discretization using MGAS. The implementation of PRAM 

to discretized numerical variables is the same as that for categorical variables.  

           γ -amplification can be controlled more effectively by using discretization first 

followed by PRAM as compared with additive noise method, where discretization 

happens after the noise is added and during the estimation of frequency counts of 

intervals. The additive noise method usually has a very large γ -amplification, which is 

usually near infinite. We will discuss this issue further in Chapter 3. 

 

2.4 Frequency Counts Estimation 

 
 Frequency counts estimation is the key part of PPDM using PRAM. PPDM using 

PRAM is made possible because we can reasonably estimate frequency counts. The 

estimated frequency counts are used in the subsequent learning algorithm. Two kinds of 

estimation methods can be used in estimating the frequency counts: moment estimation 

and maximum likelihood estimation. Moment estimation is introduced in section 2.4.1 

and the maximum likelihood estimation is introduced in section 2.4.2. 

 

2. 4.1 Moment Estimation 

 We consider a general case, where n variables 1 …, nX X,  of a database are 

randomized independently of each other. Each record is also randomized independently. 
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Suppose the probability transition matrices of 1, , nX X"  are 1 …, nP P,  respectively. The 

probability transition matrix for non-randomized variable is an identity matrix. Suppose 

1 … nX X, ,  take values from sets 1 … nS S, ,  respectively and the cardinalities of sets 

1 … nS S, ,  are 1 … nK K, ,  respectively. The problem here is to estimate a 
1

n
ii

J K
=

=∏  

dimensional vector of frequency counts XN  from the randomized data. Each element 

of XN , say jN  for
1

1 n
ii

j K
=

= , ,∏" , is the number of records such that 

11 …
nj n jX k X k= , , = , where 

1 1 …
nj j nk S k S∈ , , ∈ . The order of arrangement of elements 

jN  in the vector XN  is such that the change of variable 1X  is the fastest and nX  is the 

slowest. These variables can be arbitrary vertically partitioned. The variables can also be 

combined variables. The randomization can also be done by grouping the categories of 

the variables into groups.  How partitioning, combining and grouping are done does not 

affect our discussion below since they only affect the structure and value of specific 

probability transition matrix entries.  The following are some notations used in the sequel: 

∼  denote the variables or vectors after randomization and ∧  denote the estimate of the 

corresponding vectors or variables. Given a training data set D  with N  records for n 

variables 1 … nX X, , and a randomization scheme characterized by probability transition 

matrices 1 … nP P, , , we have the following theorems.  

 

Theorem 1  

a. [ ] t
X XE D P NN | =�  , where 1 … nP P P= ⊗ ,⊗  , ⊗  denotes Kronecker matrix 

product and t denotes transpose.  
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b. Let mlY  denote a binomial random variable that gives the number of records such 

that 1{ }nX X, ,� �"  takes value corresponds to lN , lth element of XN , for 1l J= ," , while 

1{ }nX X, ,"  takes value corresponds to 1mN m J, = , ," , i.e., the number of records such 

that they take values corresponds to mN th configuration and are randomized to the value 

corresponds to lN th configuration. We have ( )i
ml mY B N π,∼ , where ( )P m lπ = , , the 

( )m l, th element of the probability matrix P defined in Theorem 1(a) and B denotes 

Binomial distribution. Moreover, 
1 2

{ }i i
ml nlCov Y Y, =   

 
1 1 1 2

1 2 1 2

{ } ( )(1 ( )) if
( ) ( ) if

0 if

i
ml m

m

var Y N P m l P m l n m l l
N P m l P m l n m l l

n m

 = , − , = , =
 − , , = , ≠
 ≠

 

c. For 1 2l J= , ," , 
1

J
l mlm

YN =
= ∑� . Moreover, 

1
{ } J

X l ll
Cov N D N V

=
| = ∑ , where lV  is 

a J J×  covariance matrix such that its 1 2( )l l, th element  

1 2( )lV l l, =  1 1 1 2

1 2 1 2

( )(1 ( )) if
( ) ( ) if

P l l P l l l l
P l l P l l l l
, − , = ,

 − , , ≠ .
 

Proof: All the probabilities in the proof are conditional on the training data D . We skip 

the notation of " D"|  in the proof for simplicity.   

(a) 
1 21 2{ } ( , )

nj j j n jE N Np X k X k X k= = = =� � � �"   

1 2

1 2 1 2
1 2

1 2 1 2
1 1 1

( , , , )
n

n n
n

KK K

l l n l j j n j
l l l

N p X k X k X k X k X k X k
= = =

= = = = = = =∑∑ ∑ � � �" " "  

1 2

1 2 1 2 1 2
1 2

1 2 1 2 1 2
1 1 1

( , ) ( , | , )
n

n n n
n

KK K

l l n l j j n j l l n l
l l l

Np X k X k X k p X k X k X k X k X k X k
= = =

= = = = = = = = = =∑∑ ∑ � � �" " " "  

1 1 2 21 1 2 2
1

( | ) ( | ) ( | )
n n

J

l j l l j n j n l
l

N p X k X k p X k X k p X k X k
=

= = = = = = =∑ � � �"  
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Total probability, Bayes theorem, and independent randomization of each variable are 

used in the above proof. We also used in the above proof the fact that 

1 21 2( , )
nl l n l lNP X k X k X k N= = = ="  (the prior probabilities for the dataset D ). 

Therefore,
1 1 2 21 1 2 2

1
{ } ( | ) ( | ) ( | )

n n

J

j l j l l j n j n l
l

E N N p X k X k p X k X k p X k X k
=

= = = = = = =∑� � � �" . 

This can be written in matrix form as [ ] t
X XE D P NN | =� , where 

iPaiP P P= ⊗ and 1 2 … nP P P P= ⊗ ⊗ ⊗  . 

(b) Data records for which 1 2{ , , , }nX X X"  are in the m th configuration (we have mN  

such records in the dataset) are randomized independently of each other. They are 

randomized to the configuration such that 1 2{ , , , }nX X X" is in l th configuration with 

probability ( )P m l,  and to other configurations with probability1 ( )P m l− , . It is obvious 

that it is a binomial variable with distribution ( ( ) ( ))i
ml iY B N m P m l, ,∼ , since there are 

totally ( )iN m  records with 1 2{ , , , }nX X X"  in the m th configuration for a given data set 

D . Hence [ ] ( ) ( )i
ml iE Y N m P m l= ,  and [ ] ( ) ( )(1 ( ))i

ml iVar Y N m P m l P m l= , − ,  . Because the 

randomization is applied independently to each record, the randomization of record with 

1 2{ , }nX X X"  in m th configuration is independent of the randomization of record that 

1 2{ , }nX X X"  in n th configuration when n m≠  . Hence,
1

i
mlY  is independent of 

2

i
nlY  

when m n≠  , i.e. 
1 2

{ } 0i i
ml nlCov Y Y, = . When m n=  and 

1 2l l= ,
2 1 1 1{ } { } ( ) ( )(1 ( ))i

ml nl ml iCov Y Y Var Y N m P m l P m l, = = , − , . When m n=  and 1 2l l≠ , 

1 2 1 2 1 2
{ } { } { } { }i i i i i i

ml nl ml ml ml mlCov Y Y E Y Y E Y E Y, = − . It is not difficult to show that 
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1 2 1 2{ } ( ) ( ) ( )i i
ml nl iCov Y Y N m P m l P m l, = − , ,  by using two indicator functions.  When m n=  

and 1 2l l≠ , 
1 2 1 2 1 2

{ , } { } { } { }i i i i i i
ml nl ml ml ml mlCov Y Y E Y Y E Y E Y= − . 

For each data instance that has mth configuration, we assign it two indicators: 

11 1
0

l
k

if randomized to l th configuration
I

otherwise


= 


  

and 2 21
0 .

l
k

if randomized to l th configuration
I

otherwise


= 


. 

Clearly, 
( )

1
1 1

N mi li
ml k

k
Y I

=
= ∑  and 2

2

( )

1

iN m
li

ml k
k

Y I
=

= ∑ . We have 1 2

1 2
{ } 0l l

k kE I I =  for 1 2k k=  and 1 2l l≠  

since one record cannot be randomized into two different configurations. 

Therefore, 1 2 1 2

1 2

( ) ( ) ( ) ( )

1 2 1 2
1 1 2 1 1 1 2 1, 2 1

{ } { ) { }
i i i iN m N m N m N m

l l l li i
ml ml k k k k

k k k k k k
E Y Y E I I E I I

= = = = ≠

= =∑ ∑ ∑ ∑  when 1 2l l≠ . 

1 2

1 2

2 1

( ) ( )

1 2
1 1 2 1,

{ } { } { }
i iN m N m

l li i
ml ml k k

k k k k
E Y Y E I E I

= = ≠

= ∑ ∑ , since 1
1

l
kI , and 2

2

l
kI are independent when 1 2k k≠ . 

Therefore, 

1 2

1 2 1 2 1 2

( )

1 1
1 1

{ , } { } { } { } { } { }
iN m

l li i i i i i
ml nl ml ml ml ml k k

k

Cov Y Y E Y Y E Y E Y E I E I
=

= − = −∑ . It is clear that 

1
1 1{ } ( , )l

kE I P m l=  and 2
1 2{ } ( , )l

kE I P m l=  

Hence 
1 2 1 2{ , } ( ) ( , ) ( , )i i

ml nl iCov Y Y N m P m l P m l= −  when m n=  and 1 2l l≠ . 

(c)  From part (b), 
1

i iJ K
i

l ml
m

N Y
=

= ∑� , where ~ ( ( ), ( , ))i
ml iY B N m P m l . 

1

i
m lY and 

2

i
m lY  are 

independent of each other when 1 2m m≠ . Therefore, 

1 1

{ } { } ( ) ( , )(1 ( , ))
i i i iJ K J K

i
l ml i

m m

Var N Var Y N m P m l P m l
= =

= = −∑ ∑�  and 
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1 2 1 2 1 2
1 1 1

{ , )} { , } { , }
i i i i i iJ K J K J K

i i i i
l l ml nl ml ml

m n m

Cov N N Cov Y Y Cov Y Y
= = =

= =∑ ∑ ∑� �  because 
1 2

{ , } 0i i
ml nlCov Y Y =  for 

m n≠ . So, 1 2 1 2
1

{ ( ), ( )} ( , ) ( , )
i iJ K

i i m
m

Cov N l N l N P m l P m l
=

= −∑� �  by (b) when 21 ll ≠ . This shows 

(c).  

 The following theorem establishes the bias and variance of the 

estimator 1ˆ ( )t
i iN P N−= � . Its proof is straight-forward and is omitted.  

Theorem 2  

1ˆ ( )t
XX P NN

−= �  is an unbiased estimator for XN  and 

1 1ˆ{ } ( ) { }t
XXCov D P Cov D PNN

− −| = |� , where P  and { }XCov DN |�  are given in Theorem 

1.  

 In order to illustrate the above theorems, we consider an example, where two 

variables 1X , and 2X  have been randomized. Variable 1X   has 1K  categories and 

randomization scheme used to randomize 1X  has probability transition matrix 1P . 

Variable 2X   has 2K  categories and randomization scheme used to randomize 2X  has 

probability transition matrix 2P . 1 2[ , ]t
X JN N N N= "  and 1 2[ , ]t

X JN N N N=� � � �" , where 

1 2J K K= . By definition, 1N  is the number of records such that 1 1X =  and 2 1X = . JN  is 

the number of records such that 1 1X K=  and 2 2X K= . The order of elements of XN  is 

such that values of 1X  changes slower than that of 2X . By theorem 1(a), we 

have [ ] t
X XE D P NN | =� . P is a 1 2 1 2K K K K×  transition matrix as 
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follows:
1

1 1 1

1 1 1
11 2 12 2 1 2

1 2
1 1

1 2 2

K

K K K

p P p P p P

P P P
p P p P

 
 

= ⊗ =  
 
 

"

# % % #
" "

, where 1
ijp  is the ( , )i j th element of 

matrix 1P  and each 1
2ijp P  for 1, {1, }i j K∈ "  is a 2 2K K×  matrix. By theorem 2, 

1ˆ ( )t
XX P NN

−= �  is an unbiased estimator of XN . 

 In order to simplify the distribution of the estimator, we can use the normal 

approximation of the distribution of estimators. The DeMoivre-Laplace Theorem tells us 

that a Binomial distribution ( , )B N p  can be approximated by a normal distribution 

( , (1 ))Normal Np Np p− , when N is large. Since in data mining we usually have a 

relatively large sample size, the distribution of XN�  can be well approximated by a 

summation of J   normally distributed random variables. The distribution of lN�  can also 

be approximated by a normal distribution. XN�  and ˆ
XN  can be approximated by a J -

dimensional joint normal random variable since ˆ
XN  is a linear transformation of XN� . In 

particular, ˆ ˆ~ ( , { | })X X XN Normal N Cov N D , i.e. ˆ
XN is a J-dimensional normal variable 

with covariance matrix ˆ( | )XCov N D  where 1 1

1

ˆ{ | } ( ) [ ]( )
J

t
X l l

l

Cov N D P N V P− −

=

= ∑  and lV  is a 

J J×  covariance matrix such that 1 1 1 2
1 2

1 2 1 2

( , )(1 ( , ))
( , )

( , ) ( , )l

P l l P l l if l l
V l l

P l l P l l if l l
− =

=  − ≠
, where 

1( , )P l l  is the 1( , )l l th entry of the matrix P. 

 One observation we can make for the moment estimate
ˆ

XN
N

θ =
�

 for XN
N

θ =  is 

that it will provide a zero-error estimate if the sample size N of the data set D is very 
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large since it is unbiased  and 1 1
2 2

1

1 1ˆ ˆ{ } { | } ( ) [ ]( )
J

t
X l l

l
Cov D Cov N D P N V P

N N
θ − −

=

| = = ∑  is 

inversely proportional to the sample size N in order. 

2.4.2. Maximum Likelihood Estimation 

 One problem with the above moment estimator is that it can yield estimates 

outside of the parameter space, for example, negative frequency counts, which is 

awkward. In order to avoid such kind of negative frequency, we can use the maximum 

likelihood estimator, which is not unbiased but has many other desirable properties. 

Negative frequency counts occur more often when the number of records in some 

categories are small, which is usually true when PRAM is applied to discretized 

continuous variables since large interval discretization will lead to poor model accuracy.  

As in moment estimation, we assume the data is fixed and ignore the sampling error. 

Let 1= { , , , } = X
j J

N
N

θ θ θ θ… " , where = 1, ,j J…  and jθ  is equivalent to the probability 

such that variable X  is in the j th configuration since we ignore sampling errors. The 

loglikelihood of the randomized data D�  is 

1 1 2 2( | ) ( ) ( ) ( )j JLL D N Log N Log N Logθ θ θ θ∝ + + +� � �� � � �… , where 1= { , , } =J Pθ θ θ θ� � �… . Since 

matrix P  is known, ( | )LL D θ��  can be denoted as ( | )LL D θ� . The objective is to find θ  

that maximizes ( | )LL D θ� . Analytical solution exists for simple cases, however iterative 

algorithm, eg., Expectation Maximization algorithm (EM), is more convenient in 

complex cases when the dimension J  is very large.  

EM algorithm proceeds as if a more comprehensive data, say =DC d  is observable 

and maximizes ( | )LL DC θ  over all values of θ  (M-Step). Since =DC d  is not available, 
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( | )LL DC θ  is replaced by its conditional expected value given D�  and the current 

estimate of θ  (E-Step). The complete data DC  can be chosen to make the E-step easy to 

compute. We can choose data D  as the the complete data. Define a Q  function as 

follows: ( , ) = [ ( | ) | ; ]t tQ E LL D Dθ θ θ θ� , the expected value of ( )LL D  with respect to 

( | , )tf D D θ� . The essence of the EM algorithm is that maximizing ( , )tQ θ θ  leads to an 

increase in the logliklihood ( | )LL D θ�  of the observed data. After initialization of θ  to a 

initial value 0θ , the EM algorithm will iterate over the following two steps:   

     • E-Step Compute ( , )tQ θ θ   

     • M-Step Update 1 = ( , )t tArgmax Qθθ θ θ+ .  

 The above provides the general framework for EM algorithms; the actual details of 

the E-steps and M-steps require a derivation which is problem specific. The E-step and 

M-step of maximum liklihood estimates of frequency counts from randomized data are as 

the following:   

     • E-Step 
=1

( | ) = ( )J
j jj

LL D N logθ θ∑  

1 2
1 1

( , ) [ ( | ) | ; ] [ | ; ]log( ) [ | , , , ; ]log( )
J J

t t t t
j j j J j

j j
Q E LL D D E N D E N N N Nθ θ θ θ θ θ θ θ

= =

= = =∑ ∑� � � � �"

 

1 2
1

1

[ | , , , ; ] log( )
tJ
j jkt

j J jJ
tk
m mk

m

P
E N N N N

P

θ
θ θ

θ=

=

=∑
∑

� � �"  

 

so,
=1 =1

=1

( , ) = ( )
t

J J j jkt
jJj k t

m mkm

P
Q log

P

θ
θ θ θ

θ
∑ ∑

∑
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     • M-step Let ( ; ) = 0
t

j

Q θ θ
θ

∂
∂

 for = 1, ,j J… . Together with 
=1

= 1J
jj

θ∑  and 

=1 =1
=1

=
t

J J j jk
Jj k t

m mkm

P
N

P

θ

θ
∑ ∑

∑
. We have 

=1
=1

1=
t

J j jk
j kJk t

m mkm

P
T

N P

θ
θ

θ
∑

∑
� . 

Specific EM Algorithm is as the following:   

         - Initialize 0 = XN
N

θ
�

  

         - Update θ  as 1
=1

=1

1=
t

J j jkt
j kJk t

m mkm

P
N

N P

θ
θ

θ
+ ∑

∑
�  for 1, ,j J= "  

         - = 1t t +   

         - If termination condition has not been met, return to the update step.  

 The termination criterion for the EM algorithm is based on how much tθ  has 

changed since the last iteration. The termination criterion used in our simulation is 

1t tθ θ ε−− ≤ , where ε  is an application-dependent threshold. 

 The EM algorithm proposed here is similar to the EM reconstruction algorithm in 

[AA01]. However, their data is perturbed by additive noise while data in our framework 

is discretized and then post randomized.  The convergence property of the above EM 

algorithm can be proved in a similar fashion [AA01].  

 It has been proved in [HH02, HH04], that the log-likelihood ( )LL D θ|�  is from a 

regular exponential model. The log likelihood is therefore strictly concave; so finding the 

maximum should not pose any difficulties when the starting point is chosen in the interior 

of the parameter space and the maximum is also achieved in the interior. 
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 The Maximum likelihood estimation produces estimates that are asymptotically 

Gaussian with covariance matrix 11 M
N

− , i.e., 11ˆ ~ ( , )N M
N

θ θ −  in which M  is the 

Fisher information matrix
2

{ ( | )}E LL D θ
θ
∂

−
∂

� . The Maximum likelihood estimator is also 

consistent. From the asymptotic normality and consistency of maximum likelihood 

estimator, we can also conclude that maximum likelihood estimator of XN
N

θ =  provide 

zero-error estimate if the sample size N of the data set D is large enough.  

  The moment estimation and the maximum likelihood estimation are related. 

Using the property that the log likelihood is from a regular exponential family, the 

following relation between these two estimates hold:  

a. The maximum of ( )LL D θ|�  is unique when it is in the interior of the parameter 

space.  

b. The maximum likelihood estimate and moment estimate are equal when both are 

found in the interior of the parameter space.  

The proofs are provided in [HH02, Lucy74]. [HH02] proved the above relationship 

between maximum likelihood estimator and moment estimator in the framework for 

analyzing misclassified data while [Lucy74] proved it in framework for measurement 

error with known error distribution.  

 

2. 5 Experimental Results 

 
The following two simulations are performed and the results are shown in figures 
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2.2 and 2.3 respectively.   

     (1) Generate 5000 samples from two categorical random variables with joint 

probability as shown in table 2.1. Both of the categorical variables can take 5 different 

categories. Each categorical value is randomized to every other categorical value with 

probability 
4
p , where = 0.5p  is used. The randomization is done independently and 

uniformly to the two variables. The frequency counts are estimated using both moment 

estimation and maximum liklihood estimation. Number 1 to 25  on horizontal axis of 

figure 2.2 correspond to the 25 possible joint categories while the numbers on the vertical 

axis are frequency counts of the categories. 

X  1 2 3 4 5 
1 1

40
3

10  0 1
60  0 

2 3
40 0 1

30
1
20  1

20  
3 0 1

10  1
30 0 0 

4 1
20 0 0 1

60  1
10  

5 1
20 0 1

30
1
60  0 

 

Table 2.1: Joint PMF of 1 2{ , }X X X=  

     (2) Generate 100,000 random samples from a two-triangle distribution. MGAS 

algorithm is used to discretize the variable with minimum number of records 1,500 and 

minimum granularity 0.25. 39 groups result from the MGAS algorithm. Every sample is 

replaced by the mean of the group it belongs to. Each sample is then randomized to other 

categories (mean of other groups) with probability 1
38

p− , where = 0.3p  is used. Moment 

estimator and maximum likelihood estimator are used to estimate the number of records 

in each group, i.e. a set of frequency counts. The distribution after MGAS and 
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distribution reconstructed using maximum likelihood estimation are shown in figure 2.3.  

  From the above two simulation, we can see that both moment estimator and 

maximum liklihood estimator accurately estimates the probability mass function and 

probability distribution function. Moment estimator may produce negative frequency 

counts estimate. We can use the estimated frequency counts to learn models without 

accesing the original data.  
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Figure 2.2 Frquency counts estimation 
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Figure 2.3 Distributions after MGAS discretization, randomization and 

reconstruction 
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CHAPTER THREE 
 

QUANTIFICATION OF PRIVACY AND ACCURACY 
 
 

 In this chapter, quantification of privacy and accuracy is discussed. Quantification 

of privacy of PRAM is discussed in section 3.1 and quantification of accuracy is 

discussed in section 3.2.  There exists trade off between privacy and accuracy in PPDM 

using PRAM. Simulation results are provided in section 3.3 to illustrate the trade off 

between privacy and accuracy.  

 
 
3.1 Quantification of Privacy  
 
 
 Recently researchers have found that it is difficult to use a single measure to 

quantify the different aspects of privacy. We have to use several measures to quantify 

privacy. Good privacy in one measure may not be as good under a different measure. For 

example, individual privacy breaches will happen even if the privacy is good under an 

entropy-based measure. Different privacy quantification methods are proposed in the 

literature. In [AS00], the privacy provided by a reconstruction-based technique is 

measured by evaluating how closely the original values of a modified attribute can be 

determined. If one can estimate with %c  confidence that a value lies in an interval, then 

the width of such interval defines the amount of privacy with a %c  confidence level. 

Privacy metrics proposed by [AA01] take into account the fact that the perturbed 

individual record, the reconstructed distribution and the perturbing distribution are 

available to the user. The privacy metric they proposed is based on mutual information 

between original and perturbed records. The average conditional privacy of an attribute A 
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given some other information, modeled by a random variable B, is defined as ( | )2H A B , 

where ( | )H A B  is the conditional entropy of A given B. Evfimievski et al.[EGS03] 

provide a formal definition of privacy breaches and a concept of γ − amplification to 

limit the privacy braches. We discuss in this chapter privacy quantification of PRAM 

using entropy-based metrics, γ − amplification, and probabilistic K-anonymity. 

 

3. 1.1 Conditional Entropy-based Metrics 

 Conditional entropy provides a measure of privacy preserved on average using 

PRAM; more specifically it gives a measure of how much information we have about the 

original variable iX  given the knowledge of the randomized variable iX�  and the 

probability transition matrix P . The conditional entropy-based privacy measure of 

PRAM schemes is defined as 

1

( ) ( )
21 1 ( ) ( )

( ) ( ) ( )i i i
Ki

ik

K K p X k P k k
ii ik k p X k P k k

H X p X k P k k logX
′=

′ ′= ,
′= = ′ ′= ,

′ ′| = − = ,
∑∑ ∑� , where ( )ip X k ′=  is the 

prior probability that iX  takes k ′ th category and ( )P k k′,  is the transition probability 

that k ′ th category is randomized to k th category. The larger the conditional entropy-

based privacy measurement, better the privacy is preserved on average. The metric of 

privacy using conditional entropy depends on the prior distribution of the variable of iX , 

i.e. ( )ip X k ′= .  Figure 3.1(a) gives the conditional entropy-based privacy measure 

( )i iH X X| �  versus the randomization parameter p  for a binary variable iX  (assuming 

uniform prior distribution), which is randomized to iX�  by using binary symmetric 

randomization scheme with parameter p . Figure 3.1(b) gives the conditional entropy-
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based privacy measure ( )H X X| �  versus the randomization parameter p  for a 

variable iX  with cardinality 6 (assuming uniform prior distribution), where iX  is 

randomized to iX�  by using multi-category randomization scheme with parameter p .  

Figure 3.1(b) also shows the entropy-based privacy measure ( )H X X| �  when 6 categories 

of iX  are grouped into two groups with 3 categories each and each group is randomized 

using multi-category randomization scheme with parameter p .  From Figure 3.1(b), we 

can see less privacy is preserved on average by PRAM with grouping of categories than 

by PRAM without grouping the categories.  
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                                (a)                                                      (b) 

Figure 3.1:  Conditional-entropy based privacy measurement versus randomization 

parameter p  

3.1.2 γ - Amplification 

           We consider the notion of privacy introduced by [EGS03] in terms of an 

amplification factor γ . The γ -amplification in [EGS03] is proposed in the framework 

that every data record should be randomized with a factor less than γ , to limit the 

privacy breach, before the data are sent to the data miner. However, we use the 
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amplification γ  purely as a worst-case quantification of privacy for a designed PRAM. A 

PRAM operator for variable iX  with transition probability iP  is at most γ -amplifying 

for i kX =�  if 1

2

( )
1 2 ( )

i

i
P k k
P k k

k k γ,

,
∀ , ≤  , where 1 2 ik k k S, , ∈  and i iS K= . A PRAM operator is at 

most γ -amplifying for variable iX  if it is at most γ -amplifying for any ik S∈ . An 

upward 1ρ -to- 2ρ  privacy breach occurs when the posterior belief 

2( )iip X k kX ρ′= | = ≥� , while the prior belief 1( )ip X k ρ′= ≤ . A downward 2ρ -to- 1ρ  

privacy breach occurs when the posterior belief 1( )iip X k kX ρ′≠ | = ≥� , while the prior 

belief 2( ) 1ip X k ρ′≠ ≤ −  . If the randomization operator is at most γ -amplifying for iX , 

revealing iX�  will cause neither an upward 1ρ -to- 2ρ  privacy breach nor a downward 2ρ -

to- 1ρ  privacy breach if 2 1

1 2

(1 )
(1 )

ρ ρ
ρ ρ γ−

− > . For details of γ -amplification, readers can refer to 

[EGS03].  Clearly, the smaller the value of γ , the better the worst case privacy. Ideally 

we would like to have 1γ =  since by definition 1γ ≥ . For binary symmetric 

randomization introduced in Chapter 2, if 1 20 0.5p p≤ = < , then it is easy to see that it is 

at most γ -amplifying for 
p

p−
=γ

1 . For the ternary symmetric randomization introduced in 

Chapter 2, if 1 2 1 21 p p p p− − ≥ ≥ , then amplification is at most 1 2

2

1 p p
p

γ − −
= . For the 

multi-category randomization scheme, the amplification is at most 1
/( 1)

p
p X

γ −
=

−
 if 

1
1

pp
X

− ≥
−

. For the variable with 6 category we take for example in figure 3.1, the 

randomization scheme without grouping has 5(1 )p
p

γ −
= if 1

5
pp− ≥ and the 
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randomization scheme with grouping has 2(1 )p
p

γ −
= if 1

2
pp− ≥ . We can see that the 

randomization with grouping have smaller γ  (better privacy in worst-case sense) than 

that without grouping though the conditional entropy is also smaller (worse privacy on 

average). 

 The γ -amplification provides a worst case quantification of privacy which is a 

privacy measure that does not depend on the prior distribution of the data. γ  -

amplification privacy metric does not provide any information of privacy preserved on 

average. For a given γ  and prior belief 1ρ , we can get a 2ρ
∗  such that 2 1

1 2

(1 )
(1 )

ρ ρ
ρ ρ

γ
∗

∗

−

−
=  and we 

will not have a privacy breach with posterior belief 2 2ρ ρ∗> .  Figure 3.2 below gives the 

*
2 1( , )ρ ρ  pair for several values ofγ .  
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Figure 3.2: *
1 2( , )ρ ρ pair 

 We mentioned in chapter 1 that the randomization scheme using discretization 

first followed by PRAM to numerical variables usually has smaller γ -amplification than 

randomization using additive noise. Discretization and then PRAM also provides a 
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flexible way to control γ -amplification. Value distortion using additive noise adds a 

random value r  drawn from some distribution to the original value ix . In [AS00], 

uniformly distributed additive noise and Gaussian additive noise are considered. The data 

values 1 Nx x"  can be viewed as realizations of N independent identically distributed 

random variables X . We denote the randomized variable as X X R= +� . We denote M1 

as the number of intervals the support (domain) of variable X�  is divided into during the 

subsequent discretization in reconstruction of the distribution and M2 as the number of 

intervals that are also support (domain) of the original variable X  among M1 intervals. 

Obviously 1 2M M> . We can calculate a 1 1M M× probability transition matrix from the 

distribution of R . The γ -amplification for those intervals in the margin of the support of 

variables X�  will inevitably be very large and usually be infinite.  For example, the γ -

amplification for the last interval, which corresponds to the interval with the largest 

values of X� , will be usually be infinite, since it usually can be got only by randomizing 

the value in the largest intervals of X  and adding the largest possible values of the 

random variable R . This actually is the reason why privacy breaches discussed in section 

1.3.3 occurs. If discretization and then PRAM is used instead, we can discretize variable 

X  into 2M  intervals and then use PRAM with a 2 2M M×  probability transition matrix. 

In this way, the above problem regarding additive noise will not exist. The reconstruction 

method is similar to that for additive noise randomization method. Hence, we can say that 

discretization followed by PRAM has a smaller γ -amplification and can limit more 

privacy breaches for the same reconstruction accuracy. Furthermore, PRAM provides a 

way to control the γ -amplification and thus control possible privacy breaches by design 
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of the 2 2M M×  probability transition matrix, for example, implementation of PRAM by 

grouping the 2M  intervals into several groups. 

 

3.1.3. Probabilistic K-anonymity 

  The γ -amplification does not provide any information of privacy preserved in 

general for a PRAM scheme and is independent of the prior distribution. However, in 

heterogeneously distributed data sets, it is not difficult for the party who owns the vertical 

part of the data corresponding to a variable to have some idea about the prior distribution 

of the variable. It turns out that γ -amplification provides a very conservative measure of 

privacy if the knowledge of prior distribution is available. Entropy-based metric only 

provides an average measure of privacy and does not pay attention to privacy breaches to 

individual values of a variable.  

 Besides γ -amplification, we can use a probabilistic K-anonymity pair 

( , )p KK Dist  to quantify privacy preserved by PRAM schemes.  The definition of the 

probabilistic K-anonymity pair is as follows: 

 Let X  be a (possibly combined) variable with J categories, X is randomized to 

X�  by using a PRAM scheme. We say privacy preserved by the PRAM scheme is at 

least ( , )p KK Dist  if min { ( ) 0}p k
K # k p X k X k

′
′= | = | = >�  and 

min ( ( ), ( ))K k
Dist KL p X k X k Unif X

′
′= = | =� , where { ( ) 0}# k p X k X k′| = | = >�  is the 

number of  source categories k such that ( ) 0p X k X k′= | = >� , i.e. the posterior 

probability of  X k=  given X k′=�  is greater than 0 for a designed PRAM and 

( ( ), ( ))KL p X k X k Unif X′= | =�  is the Kullback-Leibler Distance between posterior 
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distribution ( )p X k X k′= | =�  and a discrete uniform distribution over pK categories.   

Definition of pK  is similar to the K  defined in K -anonymity in [Swe02a], however, our 

definition of pK  extends the definition of K -anonymity into probabilistic cases. KDist  

here gives a measure of  the degree of probabilistic  K -anonymity. 

 

3.2 Information Loss Analysis  

 
There is always some information loss introduced due to the randomization. 

Information loss has two aspects. One is related to dependence between variables, which 

can be measured on average by distance between estimated and original distributions. 

The other information loss is related to the independence between variables. 

Independence between variables is also important in data mining.  

 

3.2.1 Distance between Two Sets of Counts 
 

 Given the post randomized data, it is usually not possible to estimate frequency 

counts with an arbitrary precision. The more randomization introduced, the lower is the 

precision of the estimation  of frequency counts. The frequency counts and their estimates 

are naturally two distributions of the corresponding variables. We can use the Kullback-

Leibler distance as a measure of information loss. This information loss measure does not 

include the information loss caused by discretization. If we want to include the 

information loss due to discretization, we can use the ˆ( ) ( )X X
X

f x f x
Ω

−∫ to quantify the 

information loss, where ( )Xf x  is the original density function of X  and 
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=1

1ˆ ˆ( ) = ( ) ( )J
X Xi i

f x T i I x
N Ω∑ , where 

1
0i

x ith interval
I

otherwiseΩ

∈
= 


.  

 

3.2.2 Independence Loss Analysis 
 

 One important information loss due to PRAM is the independence loss of two 

originally independent variables. We use two independent binary categorical variables 

1X  and 2X  to explain this kind of loss. Suppose 1X  and 2X  takes value in {1,2}, the 

independence of the two variables implies that 2 1 2 1( = 1| = 1) = ( = 1| = 2)P X X P X X  and 

2 1 2 1( = 2 | = 1) = ( = 2 | = 2)P X X P X X . One traditional measure of this kind of 

association (independence) is odds ratio r , which is the ratio between 2 1

2 1

( = 1; = 2)
( = 1; = 1)

P X X
P X X

 

and 2 1

2 1

( = 2; = 2)
( = 2; = 1)

P X X
P X X

. A sample odds ratio is 11 22

12 21

= n nr
n n

, where ijn is the number of 

samples such that 1X i= and 2X j=  for , 1, 2i j = . If the two variables are independent, 

the odds ratio should be 1. So, the sample odds ratio should be close to 1 when there are 

enough samples. If the data are randomized and the frequency counts are estimated from 

the randomized data, the sample odds ratio using those estimated frequency counts 

becomes 11 22

12 21

ˆ ˆˆ =
ˆ ˆ
n nr
n n

, where ˆijn is the estimate of ijn . 

We used Monte Carlo simulation to see the variance of estimated odds ratio. 10,000 

samples of two independent binary variables are generated. We applied PRAM to the 

samples using binary symmetric randomization with parameter 0.4p = . We calculated 

the sample odds ratio r  and the sample odds ratio r̂  using estimated frequency counts.  

The above randomization and calculation is repeated 2,000 times independently. Figure 
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3.3 (a) and (b) shows the histogram of r  and r̂  obtained from the 2,000 independent runs 

respectively. 

  From the simulation, we can see that the sample odds ratio using  the estimated 

frequency counts is more widely spread. This suggests that the original independent 

random varibles will be judged as dependent variables with high probability if the same 

independence testing is used. In other words, independence relationship is sensitive to 

randomization while the dependence relationship is more robust to the randomization. 

Special care has to be given to this kind of independence loss. This kind of independence 

loss is further discussed in Chapter 5, where independence loss causes many extra links 

in learning Bayesian network using estimated sufficient statistics.   
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Figure 3.3 Histogram of Odds Ratio 

3.3. Trade off between Accuracy and Privacy 

 
There is a trade off between accuracy and privacy for a given size of sample  
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dataset. Training sample size is key in the trade off between accuracy and privacy. The 

goal of PPDM using PRAM is to achieve reasonable privacy with reasonable accuracy. 

Simulations are done to the two joint categorical variables discussed in Chapter 2 using 

M-category randomization with parameter 1 p−  from 0 .25 to 0.95 (Each category is 

randomized to other categories with probability 
4
p )  and sample size N from 1000  to 

32000 . The K-L distance between the estimated joint PMF using estimated frequency 

counts (maximum liklihood estimation using EM algorithm) and the original PMF is 

shown in figure 3.4 (a). Simulations are also done to the two triangle distribution in 

section 2.5 using M-category randomization with parameter 1 p−  from 0.1  to 1 (Each 

category is randomized to other categories with probability 
1

p
X −

, where X  is the 

number of intervals the variable is discretized by MGAS algorithm) and sample size N 

from 25000  to 400000 . The distance ˆ
X X

X
f f

Ω
−∫ , the distance between the estimated 

distribution (reconstructed using MLE of frequency counts which are got by using EM 

algorithm) and the original distribution is used. The simulation results are shown in 

Figure 3.4 (b).  

        From the above simulation, we can see that sample size is key in the trade off 

between accuracy and privacy. If sample size is large enough, both accuracy and privacy 

can be achieved.  
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Figure 3.4: Trade Off between Accuracy and Privacy 
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CHAPTER FOUR 
 

FRAMEWORK FOR PPDM USING PRAM TECHNIQUE 

  

 In this Chapter, the framework for PPDM using PRAM is introduced. This 

framework can be applied in learning different kinds of models from randomized data for 

PPDM. We introduce the framework for learning models that depends on summary of 

data in section 4.1. Learning models depending on optimization of a cost function is 

introduced in section 4.2. Specific data mining models/applications of PPDM using 

PRAM are introduced in subsequent chapters. 

 

4.1Framework for Learning Models Based on Summary 

 
 For many models, the information required from data is often a summary of the 

data, which is usually a function of the frequency counts, say ( )Xg N . When the data are 

post randomized, the data miner can use ˆ( )Xg N  instead of ( )Xg N  in the learning 

process. If ˆ XN  is a maximum likelihood estimator of XN , ˆ( )Xg N  is also a maximum 

likelihood estimation of ( )Xg N . In Bayesian network learning, the score function in 

structure learning depends on a set of frequency counts for each candidate structure and 

the parameter learning depends on the set of frequency counts of the learned structure. 

Privacy-preserving Bayesian network learning using PRAM is discussed in chapter 5.  

The main task in building a decision tree is to identify an attribute for the splitting point 

based on information gain. The information gain is usually computed using entropy. The 

computations of entropy are based on the frequency counts of split data sets. The key part 

of association rule mining is to find the frequent item sets. Finding frequent item set 
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depends solely on computation of frequency counts. Privacy-preserving decision tree 

learning and association rule mining are discussed in chapter 7.  

 

4.2 Framework for Learning Models Based on Cost Minimization 

 
In many other learning problems, the objective is to find some parameter w  that 

minimizes a specified cost function or maximizes some likelihood function. Suppose 

1 1 11 12 1 1 2= = { , , , }, , = = { , , , }m N n N N NmY y y y y Y y y y y… … …  are N samples of 

1 2= { , , , }mX X X X… . The joint distribution of X is denoted as ( )XP x  and 

1 1 11 12 1 1 ,2= = { , , , }, , = = { , , , }m n n N N NmY y y y y Y y y y y� �� � � � � � � �… … …  are  post randomized values of 

1 1 11 12 1 1 2= = { , , , }, , = = { , , , }m N n N N NmY y y y y Y y y y y… … … . X�  denotes the corresponding 

randomized variable of X . The cost-based learning problem is to find parameters w  

such that [ ( , )]E J X w  is minimized. The sample version of the problem is to find w  

which minimize 
=1

( , )N
ii

J y w∑ . Because [ ( , )] = { [ ( , ) | ]}E J X w E E J X w X� , it is reasonable 

to use 
=1

[ ( , ) | ]N
i ii

E J Y w y∑ � , which is a sample version of { [ ( , ) | ]}E E J X w X� , instead of 

=1
( , )N

ii
J y w∑  as an objective function since 1, , iy y…  is not available to the data miner 

but 1, , Ny y� �…  is. Suppose the variable X  has been discretized into J intervals and post 

randomized by the data owner. We have 

=1 =1 =1
[ ( , ) | ] = { [ ( , ) ( | )]}N N J

i i j i j i ii i j
E J Y w y J m w P Y m y m= =∑ ∑ ∑� � , where jm  is the mean 

value of each interval and ( | )i j i iP Y m y m= =� is the posterior probability that i jY m=  

given the observed data is i iy m=� . ( | )i j i iP Y m y m= =� can be estimated using the 
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estimated frequency counts, i.e. 

1

ˆ ( , )
( | )

ˆ ( , )

j
i j i i J

m
m

T P j i
P Y m y m

T P m i
=

= = =

∑
�  where and ˆ

jT  is the 

estimator of the frequency counts of interval j and ( , )P j i  is the ( , )j i th  element of 

probablity transition matrix P used to randomize the discretized variable. The problem 

now is to get w  such that 
=1 =1 =1

ˆ ( , )
{ [ ( , ) ]}ˆ ( , )

N J J j
ji j m

m

T P j i
J m w

T P m i∑ ∑ ∑  is minimized. It may be 

easy to get analytical solution for simple cases, for example , trivial cost functions, low 

dimensions of variables, and when variables take values from a small set. However, it is 

not a trivial task in most cases. Iterative method can be used to obtain a solution. The 

iterative method can be implemented simultaneously with a maximum likelihood 

estimator of frequency counts. We can also implement the estimation of frequency counts 

and optimization of the cost function sequentially. In chapter 6, this learning framewrok 

is applied to learn linear classifier from randomized data. 

 
 



 59  

CHAPTER FIVE 

PRIVACY-PRESERVING BAYESIAN NETWORK LEARNING 

USING PRAM 

 

 
In this chapter, we discuss privacy-preserving Bayesian network learning from 

heterogeneously distributed database using PRAM. Both the case when there is a data 

miner and the case when there is not a data miner is discussed.  

 

5.1 Introduction to Bayesian Network Learning 

 

A Bayesian network is an annotated directed acyclic graph that encodes a joint 

probability distribution of a set of random variables 1 2{ , }nU X X X= " . Formally, a 

Bayesian Network for U  is a pair B G θ=< , > , where G  is a directed acyclic graph and 

θ  represents the set of conditional probabilities of the variables. Vertices of graph G  

correspond to variables and edges of G  represent direct dependencies between the 

variables 1 … nX X, , . We consider discrete variables, that is, each variable iX  takes 

values from a finite set iS . The problem of Bayesian network learning is to find a 

network G  that best matches the given training data set 1 2{ }ND y y y= , , ," , where each 

record iy  is an instance of variables 1 2{ }nX X X, , ," . We consider a heterogeneously 

distributed database, where each observation is distributed among two or more parties, 

with each party observing a subset of the variables 1 2{ }nX X X, , ,"  (vertically partitioned 

database). Learning Bayesian network has two parts: Bayesian network structure learning 
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and Bayesian network parameter learning. For parameter learning, the structure of the 

network is assumed known. We discuss both parameter and structure learning. Parameter 

learning problem can be stated as follows: Given a data set D , compute the posterior 

distribution ( | )p G Dθ , , where G  is the known structure. Two widely used algorithms to 

estimate the parameters from data D  (and prior knowledge if available) are maximum 

likelihood (ML) and maximum a posterior (MAP) method. The ML estimator of θ , 

which maximizes the sample likelihood ( | )p D θ  with respect to θ , is: ijk

ij

NML
ijk Nθ = , where 

ijkN  is the number of records such that variable iX  is in its k th configuration and its 

parents ( )iPa X  are in the j th configuration and 
1

iK
ij ijkk

N N
=

= ∑ , where iK  is the 

cardinality of variable iX . The MAP estimator is: ijk ijk

ij ij

N
ijk N

α
αθ

+
+= , where we assume the 

prior distribution of ijθ  is Dirichlet with parameters 1 2{ }
iij ij ijKα α α, , ," . The Dirichlet 

distribution is the conjugate prior of the parameters of the multinomial distribution. A 

popular approach to learning Bayesian network structure is to introduce a scoring 

function that evaluates the “fitness” of the structure to the sample data. The two 

commonly used score functions are the Bayesian score and the one based on the principle 

of minimum description length (MDL). These scoring functions depend only on the 

sufficient statistics ijkN s of each candidate structure. All the required information for the 

parameter and structure learning are contained in the sufficient statistics ijkN s of each 

candidate structure (the fixed structure G  only for parameter learning) from the training 

data D . Therefore, the problem of (privacy-sensitive) Bayesian network learning is 

equivalent to the problem of calculating the sufficient statistics (in a privacy-sensitive 

manner). In our method, we estimate those sufficient statistics from the randomized data.  
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5.2 A Framework for Privacy-preserving Bayesian Network Learning Using PRAM 

 

In this section, we introduce the framework for privacy-preserving Bayesian 

network learning using PRAM. A framework for parameter learning is introduced in 

section 5.2.1. A framework for structure learning is introduced in section 5.2.2, which is 

based on the framework for parameter learning. 

 

5.2.1 Parameter Learning 

For parameter learning, the structure G  is assumed fixed and known to every 

party. For the case when there is no data miner, we need the following two definitions 

from [CSK04]:  

• Definition 1: (Cross Variable) If a variable X  and some of its parents are with 

different parties, then X  is called a cross variable; otherwise it is called a local variable.  

• Definition 2: (Cross parent of site ia  for site ja ) A variable with party ia  who is 

a parent of some cross variable of party ja  is called a cross parent of party ia  for party 

ja .  

We can see that sensitive cross parents are the only variables that need to be randomized 

in this case. Learning Bayesian network parameters for this case can be done as follows:   

For each party ia ,  

(1)  Randomize cross parents belonging to its own party according to their respective 

privacy requirements using PRAM as described in Chapter 2. Randomizations are done 

independently for each (combined) variable and each record.  
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(2)  Send randomized cross parents of party ia  for party ja  to party ja  together with the 

probability transition matrix used.  

(3)  Learn parameters for local variables of party ia . This step does not involve 

randomized data.  

(4)  Estimate the sufficient statistics ijkN s for each cross variable at same site ia  using the 

local data and randomized parent data from other parties.  

(5)  Estimate the parameters for cross variables using the estimated sufficient 

statistics ˆ
ijkN .  

(6)  Share the parameters with all other parties.  

Parameter learning for the case when there is a data miner can be done as 

described in the following:  

For each party ia ,  

(1)  Randomize all its sensitive variables according to their respective privacy 

requirements using PRAM as described in Chapter 2. Randomizations are done 

independently for each (combined) variable and each record.  

(2)  Send randomized data and their corresponding probability transition matrices to the 

data miner.  

For the data miner, 

(1)  Estimate the sufficient statistics ijkN s for each node iX  using the randomized data 

and probability transition matrices.  

(2)  Estimate the parameters using the estimated sufficient statistics ˆ
ijkN s.  

(3)  Broadcast the parameters to all parties.  
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The details of estimation of sufficient statistics ijkN  and parameter learning using 

estimated sufficient statistics ˆ
ijkN  (step 4 and 5 above in the case when there is not a data 

miner, step 1 and 2 for the data miner in the case when there is a data miner) are 

described in sections 5.3 and 5.4 respectively.  

 

5.2.2 Structure Learning 

During the search of a DAG (Structure) that best fit the data, perform 

randomization and estimation of sufficient statistics as described in section 5.2.1 for each 

candidate structure as a fixed structureG . The randomization should be done in a way 

that prevents multiple versions of randomized data since multiple versions of randomized 

data will degrade privacy preserved by PRAM. Use those estimated sufficient statistics to 

calculate the score of the candidate structureG . Then, we can choose a structure with 

maximum score. We use K-2 algorithm to search for a DAG that approximately has the 

maximum score. The details of structure learning from randomized data using K-2 

algorithm are given in section 5.5.  

 

5.3. Estimation of Sufficient Statistics from Randomized Data 

 

The problem of privacy-preserving Bayesian network learning can be 

decomposed into a series of estimation of ijkN s for each node iX  and each candidate 

structure, which can be seen from section 5.2. The parents ( )iPa X  of Node iX  are given 

by a (candidate) structure G .  
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 Consider the following general case: The cardinality of Node iX  is iK  and it has 

Q  parent nodes (1) (2) ( )i i iPa Pa Pa Q, , ,"  in the candidate structure. The cardinality of 

each parent ( )iPa q  is ( )iPa qK . These variables can be arbitrarily vertically partitioned to 

different parties in both setups. The randomization of each (combined) variable can also 

be done by grouping the categories of the variable into groups. Our discussion below is 

independent of the specific partitioning and grouping of the variables.  

 We have the following different cases for estimating ijkN s from the randomized 

data D�  due to simultaneous randomization. Note that only the variables in the same party 

can be randomized simultaneously.  

(a)  Node iX  and all of its parents are randomized independently to each other.  

(b)  Some parents of Node iX  are randomized simultaneously.  

(c)  Node iX  is randomized simultaneously with some of its parents.  

(d)  Node iX  is randomized simultaneously with other (not its parent) nodes.  

For cases (b) and (c), we can consider the simultaneously randomized variables as a 

combined variable. For example, if node iX  is randomized simultaneously with one of its 

parents (1)iPa , ijkN  is equal to the number of records such 

that 1 2( (1)) ( ) (2) ( ) Q
i i i iX Pa k j Pa j Pa Q j; = ; , = , , =" , where ( (1))i iX Pa;  is a combined 

variable. Thus, we can estimate the ijkN s from the randomized data by treating 

( (1))i iX Pa;  as a single variable with cardinality (1)ii PaK K× . For case (d), since the 

current ijkN  does not involve the variable randomized simultaneously with iX , we can get 

the marginal probability transition matrix from the given probability transition matrix, 
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which is for the combined variable. Hence, without loss of generality, we can consider 

case (a) only, that is Node iX  and its parents (1) (2) ( )i i iPa Pa Pa Q, , ,"  are randomized 

independently to each other.  

 Suppose the probability transition matrices of iX  and its parents 

are (1) ( )…i iPa Pa QiP P P, , ,  respectively. The probability transition matrix for non-

randomized variable is an identity matrix. The problem here is to estimate the sufficient 

statistics ijkN  from the randomized data. We denote by ( )iPa X  as a compound variable 

for all the parents of Node iX . Hence ( )iPa X  takes ( )1 i

Q
i Pa qq

J K
=

=∏  different values. 

The result of estimating frequency counts introduce in chapter 2 can be directly used here. 

ijkN  and ijN  are as defined in section 5.1.  iN  is the i iJ K  dimensional vector of ijkN  

values, that is 11 12 1 21( )
i i i

t
i i i i K i iJ KN N N N N N= , , , , , ," " , where superscript t  denotes 

matrix transpose and ijkN  is the ( ( 1) )iK j k− + th element of iN . ( )iN l  for 1 i il J K≤ ≤  is 

the number of records that { ( )}i iX Pa X,  have the l th configuration, where 

( 1)il K j k= − +  for some j  and k  such that iX  is in k th configuration while ( )iPa X  in 

j th configuration. ( )iN l  is actually one of the ijkN s .  ijkN� , ijN�  and iN�  are defined in a 

same way as ijkN , ijN  and iN  are defined except that they are defined on the randomized 

data D� .  ˆ ijkN , ˆ ijN , and ˆ iN  are the estimates of ijkN , ijN , and iN  respectively.  

 Given the training data set D  with N  records, a candidate structure G  and a 

randomization scheme characterized by probability transition 

matrices (1) ( )…i iPa Pa QiP P P, , , , the theorems of estimating frequency counts introduced in 

chapter 2 directly applies. We have the following theorems for estimation of sufficient 
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statistics ijkN for learning Bayesian Network. These theorems are a specific version of 

theorems we proved in Chapter 2.  

Theorem 5.1 

(a) [ | ] t
i iE N D P N=�  , where

ii paP P P= ⊗ and (1) ( 2) ( )i ii ipa papa pa QP P P P= ⊗ ⊗ ⊗" , 

⊗ denotes Kronecker matrix product. 

(b) For 1, 2, , i il J K= " , ( )iN l�  is a random variable which is the sum of i iJ K  independent 

Binomial random variables, that is,
1

( )
i iJ K

i
i ml

m
N l Y

=

= ∑� , where i
mlY is a binomial random 

variable that gives the number of records that is randomized to the configuration 

corresponding to ( )iN l� (the same as configuration corresponds to ( )iN m )from the 

configuration corresponding to mth element of ( )iN m . Furthermore, ~ ( ( ), )i
ml iY B N m π , 

where ( , )P m lπ = , the (m, l)th element of the matrix P and B denotes Binomial. 

Moreover, 
1

1 2

1 1 1 2

1 2 1 2

var{ } ( ) ( , )(1 ( , )) ,

{ , } ( ) ( , ) ( , ) ,
0

i
ml i

i i
ml nl i

Y N m P m l P m l if n m l l

Cov Y Y N m p m l p m l if n m l l
if n m

 = − = =


= − = ≠
 ≠

 

(c) The covariance matrix
1

[ | ] ( )
i iJ K

i i l
l

Cov N D N l V
=

= ∑� , where lV is a i i i iK J K J× covariance 

matrix such that its 1 2( , )l l th element 1 1 1 2
1 2

1 2 1 2

( , )(1 ( , ))
( , )

( , ) ( , )l

P l l P l l if l l
V l l

P l l P l l if l l
− =

=  − ≠
. 

The following theorem establishes the bias and variance of the estimator 1ˆ ( )t
i iN P N−= � .  
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Theorem5.2 

1ˆ ( )t
i iN P N−= �  is an unbiased estimator for iN  and 1 1ˆ{ | } ( ) { | }( )t

i iCov N D P Cov N D P− −= � . 

 Besides the two above theorems that directly follow from theorems in chapter 2, 

ˆ
ijkN can also be well approximated by a normal variable for the same reason we can 

approximate ˆ
XN in chapter 2. 

 

5.4 Bayesian Network Parameter Learning From Randomized Data 

 
 The ML estimate of the parameter using the estimated sufficient statistics ijkN  is 

1

ˆ ˆ
ˆ ˆ

ˆ ijk ijk
Kiij

ijkk

ML N N
ijk N N

θ
=

= =
∑

 and the MAP estimate of the parameter using the estimated sufficient 

statistics is ˆ
ˆˆ ijk ijk

i ij

N
jijk N

α
αθ

+

+= . Here, we use the ML estimation and analyze its performance. 

Results for MAP estimation can be obtained in a similar fashion. We discuss the 

distribution of estimator ˆML
ijkθ in this section.  

 

5.4.1 Ratio of Two Dependent Normal Random Variables 

 The estimated parameter is a ratio of two dependent (well approximated) normal 

random variables with non-zero mean. The exact distribution of the ratio of two normal 

variables 1

2

X
XW =  with 2 2

1 2 1 2 1 2( ) ( )X X N µ µ σ σ ρ, , , , ,∼  for arbitrary mean, variance, and 

correlation is well-known [Hin69]. However, the general distribution is quite complicated. 
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An approximation to the exact distribution, when the probability 2( 0) 1P X > →  or when 

2

2

µ
σ  is large is also given in [Hin69]. The probability density function (p.d.f.) of 1

2

X
XW =  

can be well approximated by
3

1 2

( ) ( )

2 ( )
( ) b w d w

a w
f w

πσ σ
= , where 2

2 21 21 2

2 1( ) wwa w ρ
σ σσ σ

= − + , 

1 1 2 2
2 21 21 2

( )( ) w w mub w µ ρ µ µ
σ σσ σ
+= − + , and 

2 2

2 2
( ) ( )

2(1 ) ( )
( ) { }b w ca w

a w
d w exp

ρ
−

−
= , when 2

2

µ
σ  is large. Furthermore, 

2 1

1 2 ( )
w

a wZ µ µ
σ σ

−=  is approximately a standard normal distribution if 2

2

µ
σ  is large. A Taylor series 

expansion of Z  around 1

2

µ
µ  shows that 2 1

2 221 1 1
1 2 2 2 21 2 21 2 2

( )Z w
µ ρµ

σ σ µσ µ σ

µ µ
µ

σ σ − +
≈ − . It follows that the 

distribution of W  can be approximated by a normal distribution with mean 1

2

µ
µ  and 

variance
2 2 2
1 2 1 1

2 2 2 21 2 22 1 2 2

2 1( )σ σ µ ρµ
σ σ µµ σ µ σ

− + .  

 

5.4.2 Distribution of the Estimator of Parameters 

 We have
1

ˆ ˆ
ˆ ˆ

ˆ ijk ijk
Kiij

ijkk

ML N N
ijk N N

θ
=

= =
∑

. The estimator of parameters can be approximated by 

the ratio of two dependent jointly normal variables with non-zero means. The jointly 

normal variable ˆ ˆ( )ijk ijN N,  has (approximate) distribution 2 2
1 2 1 2( )N µ µ σ σ ρ, , , , , 

where 1 ijkNµ =  , 2 ijNµ =  and 2 2
1 2σ σ ρ, ,  can be obtained from Theorem 5.2 and 5.1.  From 

Theorem 5.2 and 5.1, we can see 2

2

µ
σ  is of the order of ijN  for a given data set and a 

transition probability matrix P . So 2

2

µ
σ  is large even for relatively small sample sizes. 

Hence, the approximation of the distribution of ratio of two normal random variables 

with the simpler form in section 5.4.1 works well for us. On the other hand, the normal 
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approximation using Taylor expansion is also feasible in our case since 0 1ijk

ij

N
N≤ ≤ . Hence, 

for a given Data set D  and a probability transition matrix P , the p.d.f. of ˆ
ˆ

ˆ ijk

ij

NML
ijk N

θ =  can 

be approximated by a normal distribution with mean ijk

ij

N
ijk Nθ =  and 

variance
2 22 2 2 2

1 2 1 2
2 2 2 2 2 2 21 2 1 21 2 1 2

2 21 1( ) ( )ijk ijk ijk ijk

ijijk ij ijk

N N
NN N N

ρ θ ρθσ σ σ σ
σ σ σ σσ σ σ σ

− + = − + . We can see the variance is in the 

order of 1
N  since 2σ s are in the order of N  from above theorems.  

 

5.4.3 a Simple Example 

 In this section, we give a simple example to quantitatively assess the estimation 

error using approximated normal distribution. Suppose Node 2X  is the only parent of 1X  

and they are at different sites, where both 2X  and 1X  are binary valued. The values of 

2X  and 1X  are randomized independently and uniformly by a binary symmetric 

randomization scheme with parameter p . Suppose 111 112 121 122N N N N= = = ; that is the 

true parameters are all 0 5. . Figure 5.1 (a) gives the approximate distribution of 111θ  as a 

function of p , when 8000N = . From Figure 5.1(a) we can see that the variance of the 

estimator increases as p  increases. Figure 5.1(b) gives the approximate distribution of 

111θ  for different N  values, when 0 25p = . . From Figure 5.1(b) we can see that the 

estimator variance decreases as the sample size increases.   

 

5.5 Structure Learning from Randomized Data 
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 In this section, we discuss structure learning from randomized data. Learning 

algorithms for structure learning from randomized data are introduced in section 5.5.1. 

An extra-link problem is discussed in section 5.5.2. 

5.5.1 Structure Learning 

 The problem of learning Bayesian network structure from sample data D  is to 

find a network structure G′  that best matches the sample data D . Our problem here is to 

learn the network structure from the randomized data D�  . We use K-2 algorithm [CH92] 

for structure learning. K-2 is a greedy search algorithm that searches for a DAG G′  that 

(approximately) maximizes a score function ( )Score D G, .  
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                                  (a)                                                                   (b) 

Figure 5.1 Approximate distributions of estimator of parameter (a) Different p  with 

8000N =  and (b) Different N  with 0 25p = .  
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 The two score functions we discuss are Bayesian score and BIC/MDL score. The 

Bayesian score for a node is ( ) ( )
( ) ( )1 1

( ( )) i iij ijk ijk

ij ij ij

J K N
i i i Nj k

Score X Pa X α α
α α
Γ Γ +

Γ + Γ= =
, =∏ ∏  , where 

ijkα  is from the assumption of prior Dirichlet distribution for ijθ , that is 

1( ) ( )
iij ij ijKP G Dirichletθ α α| = ," . The BIC/MDL score for a node is given by 

21 1
( ( )) ( ) ( ( ))i iK J N

i i ijk ijk i ik j
Score X Pa X N log # X Pa Xθ

= =
, = − ,∑ ∑ , where ( ( ))i i# X Pa X,  is 

the number of parameters we need to represent ( ( ))i ip X Pa X| .These score functions 

have the property of decomposability, that is ( ) ( ( ))i i ii
Score D G Score X Pa X, = ,∑ , 

which makes a single operation in K-2 algorithm as the addition of a parent to a variable. 

The addition of a parent corresponds to two different candidate structures 1G  and 2G . By 

comparing ( ( ))old i iP score D X Pa X= , ,  and ( ( ) { })new i iP score D X Pa X Z= , , ∪ , where Z  

is a new candidate parent for variable iX , K-2 algorithm decide if there is a link between 

candidate parent Z  and node iX  . We use the two sets of estimated sufficient statistics 

ˆ ijkN s to calculate oldP  and newP . The estimation of sufficient statistics is done as described 

in section 5.3 for each variable and the difference between oldP  and newP  is caused only 

by the sufficient statistics associated with node iX . The estimation of sufficient statistics 

is done as section 5.3 for both structures 1G  and 2G . The framework for structure learning 

was discussed in section 5.2.  

The pseudo code for the K-2 algorithm is given below: 

Problem: Find a DAG G′  that approximately maximizes ( , )Score D G . 

Inputs: an ordered set of m nodes, an upper bound u on the number of parents for a node, 

and a sample data D containing n variables. 
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Output:  parents iPa  for each node iX , where 0 i n≤ ≤ , in a DAG that approximately 

maximizes ( , )Score D G . 

For i=1; i<=n; i++{ 

{};
( , , );

;

i

old i i

Pa
P score D X Pa
findmore true

=
=

=
 

While ( & & ifindmore Pa u< { 

// Pr ( )ied X denotes those nodes who precede node iX  in the given order 

Z=node in Pr ( )i ied X Pa− that maximizes ( , , { })i iScore D X Pa Z∪ ; 

( , , { });new i iP Score D X Pa Z= ∪  

if new oldP P>  

;
{ };

old new

i i

P P
Pa Pa Z

=
= ∪

 

else 

findmore false= ;} 

} 

 

5.5.2 Extra-link Problem in Structure Learning 

 One problem with structure learning is that estimation errors of the sufficient 

statistics tend to cause extra links, which are links that appear in the structure learned 

from randomized data D�  but not in the structure learned from original data D . Missing 

links happen only when the randomization is relatively large. Missing links are those 

links that are learned from the original data D  but are not learned from the randomized 
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data D� . This extra links problem caused by estimation error can not be explained directly 

by analyzing the score function since the score function is a complicated nonlinear 

function. However, it is not difficult to understand from the sensitivity of independence 

to randomization as discussed in chapter 3, where we used odds ratio to explain this 

phenomenon. This kind of sensitivity to randomization holds for conditional 

independence which is encoded by the BN structure. It is also not difficult to understand 

from the statistical definition of independence. For example, if we have a sample data 

from two independent discrete random variables A  and B , we can conclude statistically 

that A  and B  are independent if we have ( ) ( ) ( )p A i B j p A i p B j i jε= , = = = = ± ∀ , , 

where ( )p A i B j= , = , ( )p A i=  and ( )p B j=  are estimated from their respective relative 

frequency in the sample set and ε  depends on the specific independence testing method 

used. If the data samples of A  and B  are post-randomized, the relative frequencies can 

only be estimated using the available randomized samples. The estimation errors tend to 

cause ( ) ( ) ( )p A i B j p A i p B j ε= , = > = = +  or ( ) ( ) ( )p A i B j p A i p B j ε= , = < = = −  

for some i  and j . If the same independence testing is used, we tend to conclude that A  

and B  are dependent. Similar argument holds for conditional independence which is 

encoded by the Bayesian network structure. Of course, if the relative frequency is 

estimated precisely, the extra links problem will not exist. Our experiments show that the 

extra links exist even for relatively small estimation errors. This kind of effect of 

estimation error on independence testing usually causes ( { }) ( { })Score C AB Score C A, > ,  

although C  is actually independent of B  given A . Thus an extra link B C→  will 

usually result. The above discussion suggests that if we want to learn correct structures 

from the randomized data, we should penalize complex structures. For Bayesian score, 
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we propose adding a parent only when new oldP Pη > , where η  is a suitable threshold. For 

BIC/MDL score, we propose modifying the score function by increasing the penalty term 

(description length); that 

is, 21 1
( ( )) ( ) ( ( ))i iK J N

B i i ijk ijk i ik j
Score X Pa X N log C # X Pa Xθ ∗

= =
, = − ,∑ ∑  for some 1C∗ >  . 

 Experiments show that the threshold η  and C∗  depend on the level of 

randomization. The more randomization, the larger threshold η  and C∗  should be. The 

underlying relationship between the threshold η  (or C∗ ) and randomization under the 

available samples can be a further research topic. We believe there are optimal values for 

threshold η  and C∗  for a designed randomization scheme.  

 

5.6 Experimental Results 

 
 In this section, we present some experimental results that demonstrate the 

accuracy of the Bayesian Network learning for different levels of randomization.  

 

5.6.1 Experiment 1  Parameter learning: non-uniform randomization 

In this experiment, we use the Bayesian Network shown in Figure 5.2, where the 

variables are distributed over three sites. All variables are binary except variables L and B 

which are ternary. The conditional probabilities of the different nodes are also shown. 

The conditional probability table of a Bayesian Network is shown in the way that 

conditional probabilities of the node given the combinations of its parents are in one row. 

For example, the conditional probabilities of node L are in the row denoted by L in figure 
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5.2. The conditional probabilities in one row are ordered in the way that the probabilities 

of one possible value of the node given combinations of its parents are followed by the 

probabilities of other values of the node given combinations of its parents. For example, 

the conditional probabilities of node L are ordered as the following: ( 1/ 1) 0.3p L S= = = , 

( 1/ 2) 0.7p L S= = = , ( 2 / 1) 0.4p L S= = = , ( 2 / 2) 0.15p L S= = = , 

( 3 / 1) 0.3p L S= = =   and ( 3 / 2) 0.15p L S= = = . 20,000 samples were generated from 

this Bayesian Network to form the dataset D. This data was then randomized according to 

the scheme described in Table 5.1, where variables T, S, and G were considered not 

sensitive and hence not randomized. Note that we use a non-uniform randomization with 

different levels of randomization for different variables. The corresponding at most 

γ amplification is also shown in Table 5.1. Table 5.2 shows the parameter of all nodes 

learnt from the randomized data using the algorithm  

 
 
 
 
 
 
 
 
 
 
 
 
 

A 0.7    0.3 S 0.5   0.5 
T 0.1    0.9   0.9    0.1 L 0.3    0.7    0.4    0.15   0.3   0.15 
B 0.8    0.15  0.1    0.5     0.1   0.35 
E 0.25  0.8    0.15  0.5     0.3   0.4    0.75  0.2  0.85  0.5   0.7  0.6 
D 0.7    0.65  0.1    0.4     0.8   0.35  0.3    0.35  0.9   0.6  0.2  0.65 
X 0.2    0.6    0.8    0.4 
C 0.9    0.4    0.6    0.25    0.1   0.6   0.4    0.75 
F 0.25  0.9    0.75  0.1 G 0.2    0.4    0.8    0.6 

 
 

Figure 5.2 A Bayesian Network for Experiment 1 
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A Binary symmetric randomization 25.021 == pp , 3=γ  
T Not randomized 
S Not randomized 
L Ternary symmetric randomization 15.021 == pp 67.4=γ  
B Ternary symmetric randomization 15.021 == pp 67.4=γ  
E Binary symmetric randomization 2.021 == pp    4=γ  
D Binary symmetric randomization 25.021 == pp 3=γ  
X Binary symmetric randomization 2.021 == pp   4=γ  
C Binary randomization 1.01 =p  25.02 =p 9=γ  
F Binary randomization 1.01 =p  25.02 =p 9=γ  
G Not randomized 

 

Table 5.1  Randomization performed to the variables 

 
A 0.70(0.70)  0.30(0.70) 
T 0.10(0.50)  0.90(0.77)   0.90(0.50)    0.097(0.77) 
S 0.50(0.00)  0.49(0.00) 
L 0.30(0.49)  0.71(0.57)   0.39(0.64)    0.14(0.55)         0.31(0.93)  

0.15(0.45) 
B 0.80(0.77)  0.16(0.41)   0.094(0.71)  0.49(0.73)         0.10(0.11)  

0.36(0.65) 
E 0.25(0.20)  0.81(0.90)   0.14(2.7)   0.51 (1.2)  0.31 (2.6)       0.41(2.34)  

0.75(2.0)    0.19(0.90)   0.86(2.7)   0.50(1.2)   0.69(2.64)      0.59(2.3) 
D 0.69 (2.2)   0.65(1.3)     0.11(3.3)   0.38(0.77)  0.79(1.7)         0.39(5.65)  

0.31(2.3)     0.35(1.3)   0.89(3.34)  0.62(0.77)  0.21(1.7)         0.61(5.7) 
X 0.20(0.80)  0.60(1.1)     0.81(0.80)  0.40(1.1) 
C 0.90(2.0)    0.38(1.6)     0.61(2.6)    0.25(2.1)     

0.10(2.0)    0.62(1.6)     0.39(2.6)    0.75(2.1) 
F 0.24(0.73)  0.91(1.1)     0.77(0.73)  0.092(1.1) 
G 0.20 (0.30) 0.40(0.29)   0.80(0.30)  0.60(0.29) 

 

Table 5.2 Mean and standard deviation ( 210−× ) over 5 runs of parameters learned from 
the randomized data  

 
described in section 5.2 for the case when there is a data miner(The results of the other 

case are always better than this case). All the values in the Table are average over 5 runs, 

with the corresponding standard deviation indicated in parenthesis. It is clear from the 
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Table that the proposed algorithms can accurately learn the BN parameters for both cases, 

even for moderate levels of randomization.  

 
5.6.2 Experiment 2 Parameter learning: Uniform randomization 

 In this experiment, we use a uniform randomization and test the accuracy of the 

BN parameters as a function of the randomization parameter p.  We used the Bayesian 

Network shown in Figure 5.3, where variables A, B, and C belong to Site 1 whereas 

variables D, E, and F belong to Site 2. All nodes are binary.  

 We consider the parameters of node D, which has parents in a different site. 5,000 

samples were generated from the above Bayesian network. Binary symmetric 

randomization with parameter p was used to randomize the variables. Figure 5.4 shows a 

graph of the parameters as a function of p (mean of the estimated parameters over 10 runs 

is plotted; plot of mean plus one standard deviation is also included). 

.   
A 0.5  0.5 
B 0.45 0.3 0.55 0.7 
C 0.0.25 0.1 0.75 0.9 
D 0.80 0.4 0.1 0.25 0.2 0.6 0.9 0.75 
E 0.9 0.3  0.1  0.7 
F 0.75 0.15 0.25 0.85 

 
 

Figure 5.3  A Bayesian Network for experiment 2 
 

It is clear from the figure 5.4 that for randomization parameter 0.25p ≤ , we can estimate 

the BN parameters with almost no error. Even for p values up to 0.3, we get reasonably 

good parameter estimates. From a privacy perspective, this corresponds to an 

amplification factor of 1 0.25 3
0.25

γ −
= = . We have to point out that this is done in 5000 
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C B

D
FE

Site 1 

Site 2 
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samples. Under the same accuracy requirement, it is obvious that the p value can be 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2
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1

randomization parameter p
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)

P(D=1|B=1,C=1)
P(D=1|B=1,C=2)
P(D=1|B=2,C=1)
P(D=1|B=2,C=2)
+ standard deviation

 

Figure 5.4 Estimated Parameters for Node D 

 
closer to 0.5 if more samples are available.  The closer p is to 0.5, the closer γ  to 1. 

Another way to assess the performance of the algorithms is to determine the maximum 

level of randomization p that we can use for a given accuracy. Towards that end, for a 

given level of required estimation accuracy, defined in terms of an absolute error 

threshold c, let *p  be the smallest value of p (obtained by averaging over ten runs) for 

which the absolute value of the estimation error exceeds c. Figures 5.5 (a) and 5.5(b) 

show the variation of *p as a function of the size N, for two different values of c = 2% 

and c = 4%.  

5.6.3 Experiment 3: Trade off between Privacy and Accuracy 

 In this experiment, we use the Bayesian network shown in figure 5.6, where 

variables are distributed over two sites. All Variables are binary. We generated 10,000 

samples from this Bayesian Network. In order to see the trade off between privacy and 
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accuracy, we randomize the samples using binary symmetric randomization with 
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(b) 

 
Figure 5.5 *p versus sample size (a) 2%c = (b) 4%c = different levels of 1 2p p p= =  

and learn parameters from randomized samples using the method discussed in Section 5.4. 

As in previous experiments, we only present the results using the case when there is a 

data miner. Every variable is randomized using the symmetric binary randomization with 

the same randomization level p. Since parameters associated with a node is nothing but 

the conditional probability given its parents, the accuracy of parameters associated with a 

node can be measured by conditional Kullback-Leibler (CKL) distance between the 
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parameters learned from randomized data and those learnt from non-randomized data. 

The CKL distance for node i in our case is 

(0) ( )

1
( , ) ( ) ( ( | ), ( | ))

iJ
p

i i KL i i i i
j

D X p P pa j D P X pa j P X pa j
=

= = = =∑ ,  

where (0) ( | )i iP X pa j= and ( ) ( | )p
i iP X pa j= are the parameters learnt from non-

randomized data and those learnt from randomized data with randomization level p 

respectively and KLD  denotes the ordinary KL distance between two distributions. We 

present those distances associated with node C, node D and node F in figure 5.7. Those 

nodes are typical nodes for the given Bayesian network. The averages are over 10 

independent runs. Average plus one standard deviation of 10 runs is also depicted (with 

dotted line). From the figure 5.7, we can clearly see the trade off between accuracy and 

privacy. Since we use the symmetric binary randomization, more privacy is preserved 

with bigger p when 5.0<p . With 10,000 training samples, the method still gets good 

accuracy when p=0.3. 

 

 

 

 

Figure 5.6: A Bayesian Network for experiment 3 

A 0.5  0.5 G 0.3  0.7 
B 0.8 0.2 0.2 0.8 E 0.8 0.2 0.2 0.8
C 0.5 0.9 0.7 0.35 0.5 0.1 0.3 0.65 
D 0.95 0.15 0.75 0.1 0.05 0.85 0.25 0.9 
F 0.8 0.2 0.2 0.8 
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Fig. 5.7 CKL distance vs. randomization level p 

 As pointed out in Section 5.4, the variance of the estimator of parameter ijkθ  is of 

the order of one over the sample size N. Thus, under the same accuracy requirement, 



 82  

more privacy can be preserved if there are more training samples. This experiment is 

performed to illustrate the effect of training sample size. We generated 822500× training 

samples using Bayesian network in figure 5.6. The proposed method in Section 5.4 is 

used to learn the Bayesian parameters from randomized data with randomization 

levels 0.1p = , 0.2p = , 0.3p = , and 0.4p =  with training sample size 

2500 2k× ( 1 8k = " ) respectively. The experiment results are shown in figure 5.8. The 

average is over 10 independent runs and the average plus one standard deviation is also 

shown. The experiment results for randomization level 0.4p =  are shown separately. 

Those conditional distances out of the scale of vertical axis are not shown in the figures. 

From this experiment, we can clearly see that training sample size plays a key role in the 

trade off between accuracy and privacy. We can see that when the training sample size is 

very large, we can have both good privacy and good accuracy.  
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Figure. 5.8: CKL distance vs. training sample size 
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5.6.4 Experiment 4 Structure learning 
 
 In this experiment, we test the accuracy of BN structure learning from 

randomized data. 10,000 samples from the BN in figure 5.3 were used. The data was 

randomized using a binary symmetric randomization with parameter p. The K-2 

algorithm with threshold η for Bayesian score or penalty term *C  for BIC/MDL score 
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(b) 
Figure 5.9: Structure Learning using Bayesian Score 

was used to learn the BN structure from the randomized data. Node ordering {A, B, C, D, 

E, F} was assumed and the maximum number of parents was set to 3. We quantify the 

error in structure learning with two different measures: (a) Sum of missing links and extra 
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links and (b) KL-distance between the joint probability of the learnt BN and the true BN. 
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Figure 5.10: Structure learning using  BIC/MDL Score 
 

The latter actually incorporates errors in the structure as well as the parameters and might 

be better. Figure 5.9 (a) shows the number of links in error (sum of missing links and 

extra links) as a function of the randomization parameter p, for the case of Bayesian 

scores. Figure 5.9 (b) depicts a similar graph for KL-distance. Three different choices of 

the threshold η were considered: η = 1, η = 0.99 and a variable η value depending on the 



 86  

randomization parameter value p as
0.99 0 0.15
0.98 0.15 0.25
0.97 0.25 0.3.

p
p
p

η
< ≤

= < ≤
 < ≤

. Figure 5.10 (a), (b) 

are similar results using BIC/MDL score. Again three different values for the penalty 

term *C  were considered: *C  = 1, *C  = 4, and *C  = 8. We would like to add that the 

structure error was always contributed by extra links, with just one exception (when 

Bayesian score with variable η is used) where we had one missing link.  
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 CHAPTER SIX 
 

PRIVACY-PRESERVING LINEAR CLASSIFIER LEARNING FROM 
RANDOMIZED DATA 

 
 

 In this chapter, we will introduce learning linear classifier from randomized data 

for PPDM. Linear classifier learning is based on cost minimization. The general 

framework for learning models based on cost optimization was discussed in chapter 4. 

A linear classifier uses a decision hyperplane in an m-dimensional feature space to 

classify samples. The hyperplane can be represented as 0( ) = = 0Tg x w x w+ , where 

1 2= [ , , , ]nw w w w…  is known as the weight vector, 0w  as the threshold and 1[ , ]nx x x= "  

is the feature vector. Classes of instances are decided based on the sign of ( )g x . The 

primary problem in the design of a linear classifier is finding the weights iw , = 0, ,i n… , 

defining the decision hyperplane. Conceptually, multiple class problem can be convert to 

a series of binary classification problems. Several algorithms have been proposed to learn 

a linear classifier. The cost function usually used by those algorithms are perceptron cost 

functions. We will discuss linear classifier learning from randomized data using 

perceptron cost in section 6.2 . Other cost functions used in learning linear clsssifier can 

similarly be adjusted for learning from randomized data. 

6.1 Randomization 

            Let D be a data set represented by the following ( 1)N n× + matrix: 

11 1 1 1 1

1

n

N Nn N N N

x x c x c
D

x x c x c

   
   = =   
      

"
# " # # # #

"
 

Each column of the data set represents an attribute, so there are 1n + variables 
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1 , j nX X X" " and C . 1 Nc c"  are class labels of corresponding instances. The above 

data set D  is assumed heterogeneosly distributed among several parties.  Those parties 

who own a vertical partition of the data set D  are interested in collaboration and they 

want to benefit from a joint classifier based on their joint data. For example, they might 

want to derive a prediction model based on the joint data set. However, they are not 

willing to fully share their sensitive data with other parties. Each party first randomizes 

its data and sends the randomized data to the data miner together with the probablity 

transition matrix used in randomization. The data used for linear classifier are often 

numerical. Before randomization, the numerical variables are discretized using 

techniques such as MGAS we introduced in chapter 2. We assume that all variables are 

numerical except the class variable. After discretization, each data entry is replaced by 

the mean value of the interval it belongs to. Let ijm  be the mean value of the interval to 

which ijx  belongs. Let 1{ , , , , }
j

j j jk j S
S s s s= " "  be a set of means of all intervals of 

attribute jX  where 1 jk S≤ ≤ . For any 1 i N≤ ≤  and 1 j n≤ ≤ ,  there alwasys exists 

some k  such that ij jkm s=  and 1 jk S≤ ≤ . After discretization, the above Data set D  is 

represented as  

11 1 1 1 1

1

n

d

N Nn N N N

m m c m c
D

m m c m c

   
   = =   
      

"
# " # # # #

"
. 

The jth column of dD  represents discretized variable jM  corresponding to jX . In order 

to preserve privacy of each individual value, data owners can randomize their part of data 

by using PRAM schemes we discussed in chapter 2. The randomized variables 
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corresponding to 1 j nM M M" "  are denoted by 1 j nM M M� � �" "  respectively. For 

example, we can apply multi- category randomization to jM , which takes values from 

set jS . The randomization scheme used for jM  can be characterized by a probablity 

transition matrix
1 2

{ }j j
k kP p= , where 

1 2 2 1
( | )j

k k j jk j jkp p M s M s= = =�  and 1 21 , jk k S≤ ≤ . 

The randomization can be implemented simultaneously to several variables. Without loss 

of generality, we discuss the case when all variables 1 j nM M M" "  are randomized 

independently . We can also group values in set jS  into several groups and values in one 

group can only be randomized to the values in the same group. Simultaneous 

randomization and grouping will not affect our discussion of learning linear classifier 

from randomized data since they only affect the specific probablity transition matrix. The 

class variable can also be randomized using PRAM characterized by a transition matrix 

1 2,{ }C c cP p=  where 
1 2, 2 1( | )c cp p C c C c= = =�  and 1 21 , cc c S≤ ≤  where cS  is the set of all 

possible classes. After PRAM, we obtain a randomized version of dD , which is denoted 

by 
11 1 1

1

n

d

N Nn N

m m c
D

m m c

 
 =  
  

� � �"
� # " # #

� � �"
, ijm�  and ic�  ( 1 i N≤ ≤  and 1 j n≤ ≤ ) denote the 

randomized value corresponding to ijm  and ic  respectively. The objective of the data 

miner is to find the unknown parameters iw , = 0, ,i n…  using this randomized data set 

dD�  and the probablity transition matrices 1 nP P"  and CP . The usual way to learn linear 

classifier is to introduce a cost function and then the weight vector is obtained by 

optimizing the cost function. In the following section, we discuss learning the weight 

vector from the randomized data using perceptron cost function.  
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6.2Learning Linear Classifier from Randomized Data 

          Since multi-class problem can be decomposed to a set of binary classification 

problem, without loss of generality, we discuss binary linear classification problems in 

this section. Let the two classes be denoted by 1 2{ , }cS c c= . 

 The perceptron cost is 
=1

( ) = ( )N T
i ii

J w w w mδ∑  where 1 2{ , }i i i inm m m m= "  and 

( ) = 0i wδ  if ith   record is correctly classified, ( ) = 1
i

wδ −  if 1ic c=  and misclassified (i.e. 

0T
iw m < ), ( ) 1i wδ =  if 2ic c=  and misclassified (ie. 0T

iw m > ). Perceptron learning 

algorithm is usually used for separable classes and Pocket algorithm is usually used in 

nonseparable classes where contradictory class labels of samples may exist. Pocket 

algorithm is a variant of perceptron algorithm suggested by [Gal90]. Using the 

framework proposed in chapter 4, we can minimize the following cost function instead of 

the original cost function to learn the parameters from the randomized data: 

1 2 11 1 2 2=1
1

( ) = ( ( ) | ) = ( ( ) | , , )
n n

N
N T T

M i M i k i k in nk i ki
i

J w E w w M m E w w M m s m s m s c cδ δ
+

=

= = = =∑ ∑� � � � �" , 

where 1 2{ , , }nM M M M= " , ( )M wδ  denotes a variable that depends on M  and C  

(when M m=  and C c= , Mδ takes the value according to the definition we give to iδ  

depending on im  and ic  at the beginning of this section) and 
11 1 nk nk ns S s S∈ ∈"  and 

1nk Cc S
+
∈ . Furthermore,  we have  

1 2 1

1

1 1 2 11
1 1

1 1 2 2=1
1

1 1 2 2
1 1 1 1

( ( ) | ) = ( ( ) | , , )

( ) ( , | , , )

n n

n C

l n n nn
n n

N
N T T

M i M i k i k in nk i ki
i

S SSN
T

sc l i k i k in nk i k
i l l l

E w w M m E w w M m s m s m s c c

w w sp M s C c m s m s m s c c

δ δ

δ

+

+ ++
+

=

= = = =

= = = =

= = = = = = =

∑ ∑

∑∑ ∑∑

� � � � �"

� � � �" "
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where 
1 21 2{ , , }

nl l nls s s s= " , 
11 1 nl nl ns S s S∈ ∈"  and 

1
( ) ( )

lnsc MCw wδ δ
+

=  when M s=  and 

1nl
C c

+
= . By ordering the values of 1 2{ , , }nV M M M C= "  in such a way that 1M  

changes the slowest and  C  changes the fastest, we can denote lV v=  if 

1 2 11 2{ , , , }
n nl l nl ls s s c

+
"  is the lth  value of V for 

1

1
n

i
i

l L C S
=

≤ ≤ = ∏  and similar notations 

apply to 1 2{ , , }nV M M M C= �� � � �" . We denote by ( )l wδ  the corresponding ( )MC wδ  

associated with lv . The cost function then becomes 

1 1
( ) ( ) ( | )

N L
T

l l l i
i l

J w w w v p V v V vδ
= =

= = =∑∑ � . 

Let lT , lT� , l̂T  respectively be the frequency counts of samples such that { , }i i lm c v=  in 

discretized data set dD , frequency counts of samples such that { , }i i lm c v=� �  in the 

randomized data set dD�  and the estimate of lT  . Let ,T T�  and T̂  respectively be the L  

dimensional vectors of lT , lT�  and l̂T . We can use the moment estimator or maximum 

likelihood estimator to get l̂T . For moment estimation, we have the unbiased estimator 

1T̂ P T−= � , where 1 2 n CP P P P P= ⊗ ⊗ ⊗" . 

       For the pocket algorithm, it is convenient to define a new data set with NL  samples 

as follows:  

 
1 1 ( )

( )

i i

i i
L L

v w

v w

δ

δ
# #  

for any 1 i N≤ ≤  and ( ) ( | )i
l l l iw p V v V vδ δ= = =� .  

We can directly use the pocket algorithm with the above defined NL  data samples 
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i
lv  and i

lδ  for 1 i N≤ ≤  and 1 l L≤ ≤ . The basic idea of the pocket algorithm is to run 

perceptron learning while keeping an extra set of weights “in your pocket”. Whenever the 

perceptron weights have a longest run of consecutive correct classification of randomly 

selected training examples, these perceptron weights replace the pocket weights. Finally, 

the pocket weights are the outputs of the algorithm, i.e., the learned weight vector. The 

differences between implementation of the algorithm using randomized and original 

(nonrandomized) data lies in calculating wrun , number of consecutive correct 

classifications, and _ Wnum ok , the total number of training example that w  correctly 

classifies. When i
lv  is correctly classified, wrun  increases by i

lδ  instead of increasing by 

1 during implementation of the pocket algorithm. Similarly, when i
lv  is correctly 

classified while checking all training samples, _ wnum ok  increases by i
lδ  instead of 

increasing by 1 . 

 

6.3 Experimental Results 

 

We used our linear classifier learning algorithm on a standard dataset from the UCI 

repository[UCI]. Since learning from randomized data usually requires more samples 

than regular learning, we generated a bigger dataset (by resampling) for our simulation 

based on the data set from UCI data repository. The two data sets we used are the Lenses 

dataset and Iris Plant dataset. 

Two simulations using data sets generated based on Lenses database and Iris Plant 

database are described below. The results are shown respectively in Figures 6.1 and 6.2. 
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(1) We generated independently 6,000 samples of four categorical variables 

1 2 3 4{ , , , }X X X X  independently with the PMF shown in Table 6.1.  For each generated 

data sample 1 1 2 2 3 3 4 4{ , , , }X x X x X x X x= = = = , the class label are assigned according to 

the class label assigned to the four variables in the Lens database. Class 1 and class 2 in 

lens database are combined into a single class, with class 3 being a separate class. These 

yield the two classes in our (binary) linear classification problem.  

Variables 1 2 3 
1X  0.5 0.3 0.2 

2X  0.9 0.1 0 

3X  0.2 0.8 0 

4X  0.2 0.8 0 
 

Table 6.1 Probabilities of Variables 1 2 3 4{ , , , }X X X X X=  

Since the variables are categorical, discretization is not needed. The randomization 

applied to the four variables are as shown in Table 6.2.  

Variables Randomization Schemes Used 
1X  Ternary symmetric randomization with parameter p 

2X  Binary symmetric randomization with parameter p 

3X  Binary symmetric randomization with parameter p 

4X  Binary symmetric randomization with parameter p 
 

Table 6.2 Randomization to the variables 

The proposed algorithm (modified pocket algorithm described in section 6.2) was used to 

learn the weight vector. The original (non randomized data) was used to test the 

classification accuracy. Different values of randomization parameter p  (from 0 to 0.5) 

were used in the simulation. Each value of randomization parameter is simulated 5 times. 

The simulation results are shown in Figure 6.1. The average classification accuracy of 5 
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simulation runs and averge minus one standard deviation are shown. For the purpose of 

comparison, the simulation results for classification accuracy using weight vector learned 

directly from the randomized data by using pocket algorithm are also shown in Figure 6.1. 
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Figure 6.1 Classification Accuracy vs. randomization parameter p for data set 

generated from the Lens data set 

(2) Iris plant dataset has 4 numerical variables 1 4{ }X X"  and a class variable C. We 

generate a data set D by repeating Iris plant database 100 times. A random noise with 

uniform distribution in [ 0.2 0.2]−  was added to each variable (except the class label) in 

D. MGAS was applied to numerical values in D  for discretization and PRAM was 

applied to each discretized numerical variable. The PRAM scheme used was M-category 

randomization with parameter p, i.e., each category of the variable is randomized to all 

other categories with probability 
1i

p
X −

, where iX  is the number of categories 

resulting from MGAS discretization. The reconstructed distribution from the discretized 

variables and the original histogram are shown in Figure 6.3. Class 1 and class 2 are 

combined into a single class and class 3 is another separate class. The proposed algorithm 
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(modified pocket algorithm in section 6.2) was used to learn the weight vector. The 

original (non randomized data) was used to test the classification accuracy. Different 

values of randomization parameter p  (from 0.1 to 0.6) were used in the simulation. Each 

value of randomization parameter is simulated 5 times. The simulation results are shown 

in Figure 6.2. The average classification accuracy of 5 simulation runs and average minus 

one standard deviation are shown. For the purpose of comparison, the simulation results 

for classification accuracy using weights learned directly from the randomized data using 

pocket algorithm are also shown in Figure 6.2. 

              From the above two simulation, we can see that the classification accuracies of 

the weight vector learned from randomized data are reasonable. Especially for the second 

simulation, the classification accuracy is almost as good as the weighting vector learned 

from the original data even with large randomization.  

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

directly from randomized data
+one standard deviation
Using proposed algorithm
+one standard deviation

 
Figure 6.2 Classification Accuracy vs. randomization parameter p for data set 

generated from Iris data set 
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CHAPTER SEVEN 
 

PRIVACY-PRESERVING ASSOCIATION RULE MINING AND DECISION 
TREE INDUCTION 

 

            In this chapter, privacy-preserving association rule mining and decision tree 

induction using PRAM are discussed. Association rule and decision tree are both models 

based on summaries of data sets. The framework for learning these kinds of models was 

discussed in chapter 4. Privacy-preserving association rule mining using PRAM is 

discussed in section 7.1 whereas privacy-preserving decision tree induction using PRAM 

is discussed in section 7.2. 

 

7.1 Association Rule Mining 

 

The core computation in association rule mining is to find frequent itemsets, that 

is, a set of items whose support in a data set is larger than a specified threshold minsup . 

Frequency counts estimation methods in chapter 2 can be directly used to estimate the 

support of itemsets from post randomized data set. In Mask algorithm proposed by 

[RH02], the randomization is done independently to each item of each record by using a 

simple binary randomization. PRAM provides a more flexible framework for mining 

association rule in a privacy-preserving fashion. Data owners have more choices in 

randomizing their data and can choose a randomization scheme according to their 

specific privacy concerns. Although mask algorithm is convenient to implement, 

however, it usually results in large simultaneous amplificationγ −  for a group of items. 

Instead of applying binary randomization to all items in a group independently, a group 
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of items can be randomized simultaneously in our framework. Simultaneous 

randomization will reduce amplificationγ −  for a group of items and help limit more 

privacy breaches. In section 7.1.1, Apriori algorithm for association rule mining and its 

efficient implementation are briefly introduced. Association rule mining from 

randomized data is presented in section 7.1.2, where we deal with estimation of support 

of candidate frequent itemsets and corresponding implementation of Apriori algorithm, 

which have to be adapted to learning from the randomized data. The simultaneous 

γ − amplification for a group of items by simultaneous randomization is compared with 

γ − amplification for a group of items by applying binary randomization independently to 

each item of the group in section 7.1.3. Experimental results are provided in section 7.1.4. 

 

7.1.1 Association Rule Mining and its Implementation  

Association rules, proposed by Agarwal et al. [AIS93], are a class of simple but 

powerful regularities in binary data. An association rule is an expression of the form X ⇒ 

Y, where X and Y are sets of items. The intuitive meaning of such a rule is that in the rows 

of the database where the attributes in X have value true, attribute Y also has value true 

(with high probability) [AS94]. There may be hundreds of association rules in a given 

data set depending on its size and complexity.  The process of mining for such rules is 

called association rule mining. 

There are primarily two measures of quality for each rule, support and confidence. 

The rule X ⇒  Y has support s% in the transaction set D if s% of transactions in D 

contains both X and Y. The rule has confidence a% if a% of transactions in D that contain 
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X also contain Y. The goal of association rule mining is to find all the rules with support 

and confidence exceeding some user specified thresholds. 

The most common approach to finding association rules is to break up the problem 

into two parts: 

a. Find frequent itemsets, 

b. Generate rules from frequent itemsets. 

A frequent item set is an itemset whose number of occurrences is above a threshold minsup . 

We use the notation L  to indicate the complete set of frequent itemsets and l L∈  to 

indicate a specific frequent itemset. Finding frequent itemsets generally is conceptually 

quite easy but computationally very costly. The naïve approach would be to count all 

itemsets that appear in any transaction t . Given a set of itemsets of size k, there are 2k  

subsets. Because of the explosive growth of this number, the challenge of solving the 

association rule mining problem is often viewed as how to efficiently determine all 

frequent itemsets. Most association rule mining algorithms are based on smart ways to 

reduce the number of itemsets to be counted. These potentially frequent itemsets c are 

called candidates, and the set of all counted (potentially frequent) itemsets are called 

candidate set C. One performance measure used for association rule algorithms is the size 

of C. Another problem to be solved by association rule algorithms is what data structure 

to use during the counting process. A trie or hash tree is commonly used. When all 

frequent itemsets are found, generating the association rule is straightforward. In the 

sequel, we only discuss finding the frequent itemsets.  

Apriori algorithm is the most well known association rule algorithm and is used in 

most commercial products. The basic idea of the Apriori algorithm is to generate 
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candidate itemsets of a particular size and then scan the database to count these to see if 

they are frequent. During scan k of the data set, the supports of all kc C∈  are counted. 

Only those candidates that are frequent are used to generate candidates for next pass. 

That is kL  are used to generate 1kC + . An itemset is considered a candidate only if all its 

subsets are also frequent. To generate candidates of size 1k + , joins are made of frequent 

itemsets found in the previous pass.  An algorithm called Priori-Gen is used to generate 

the candidate itemsets for each pass after the first. All singleton itemsets are used as 

candidates in the first pass. Here the set of large itemsets of the previous pass 1kL −  is 

joined with itself to determine the candidates. Individual itemsets must have all but one 

item in common in order to be combined.  The Apriori-Gen and Apriori algorithm itself 

are show below. cSup  is used to denote the count for candidate itemset c C∈ .  

Apriori-Gen Algorithm: 

 Input : 1kL −  // frequent itemsets of size k-1 
 Output: kC  //Candidates of size k 
 Apriori-gen algorithm 

 kC φ=  
 for each 1kI L −∈  do 
   for each 1kJ I L −≠ ∈  do 
   if 2k − of the elements in I and J are equal then 
    { }k kC C I J= ∪ ∪ ;  
 
Apriori Algorithm 

Input: min, ,supI D // Itemsets, Database of transactions and minimum support respectively 
Output: L   //frequent Itemsets 
Apriori algorithm 

0i = ;   //i is used as a scan number 
L φ= ; 

1C I= ;  //initial candidates are set to be the items. 
repeat  

1i i= + ; 
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iL φ= ; 
for each k iI C∈  do 

0
kISup =   //Initial counts for each itemset are 0. 

for each jt D∈ do 
for each k iI C∈ do 

         if k jI t∈  then 
1

k kI ISup Sup= + ; 
for each k iI C∈ do  

 if min(sup )
kISup D≥ × do 

       i i kL L I= ∪ ; 
 iL L L= ∪ ; 
 1 ( )i iC Apriori Gen L+ = −  

 until 1iC φ+ =  
 

  One efficient implementation was introduced by [Bor03] using data structure trie. 

We use a simple example with a transaction database with five items 1 2 3 4 5{ , , , , }I I I I I I=  

to explain how trie data structure is used in the association rule mining.  

Figure 7.1 presents the trie that stores the 

candidates 1 2 4{ , , }I I I , 2 3 4{ , , }I I I , 2 3 5{ , , }I I I , and 2 4 5{ , , }I I I , where 2-itemsets 1 2{ , }I I , 

1 4{ , }I I , 2 3{ , }I I , 2 4{ , }I I , 2 5{ , }I I , and 4 5{ , }I I  have been found frequent and 1 3{ , }I I , 

1 5{ , }I I , 3 4{ , }I I , and 3 5{ , }I I  are found not frequent and pruned from the tree. Labels 1 to 

5 of the links in figure 7.1 correspond to items 1 2 3 4 5, , , ,I I I I I . The problem now is to 

count the supports of those frequent 3-itemsets candidates. d  in figure 7.1 denotes the 

depth of a trie. 

In counting the support, the transactions from the database are taken one by one. 

For a transaction t, we consider all ordered k-subsets X  of t  (the items of t has been 

ordered) and search for them in the trie structure. If X is found as a candidate in the tree, 
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the support of the node corresponding to the candidate k-itemsets is increased by 1. One 

optimization that can be  

 

Figure 7.1 A trie Data Structure for Association Rule Mining 

done is that it is not necessary to generate all k-subsets of t. If we are at a node at depth d  

by following the link labeled by the item with index j of transaction t (the first item of t is 

indexed as 0), moving forward on links labeled by items of t with index greater than j but 

less than 1t k d− + +  is enough.  For the above example, we can do the following when 

we are counting the supports for candidate 3-itemsets and if the transaction t 

is 2 3 4 5{ , , , }I I I I  :  (1) if we are at the node following links labeled 2 at depth 1 ( 2I ’s index 

is 0 in t), it is only necessary to move forward from links that have label 3 ( 3I ’s index is 

1 in t) to links that have label 4 (index 2 in t, 1 4 3 1 1 3t k d− + + = − + + = ).    (2) if we 

are at the node following links labeled 3 (index 1 in t) at depth 2, it is only necessary  to 

move forward from links that have label 4 to links that have label 5 (index 3 in t, 

1 4 3 2 1 4t k d− + + = − + + = ). After the whole database is read, the supports of the 

candidates of k-itemsets are known. If the support of a candidate of k-itemsets does not 

meet the minimum support requirement, it is removed from the tree. For the above 

example, if it is found that item sets 1 2 4{ , , }I I I  and 2 4 5{ , , }I I I  do not have enough 

1
2

3 4 5
2 

43
5

4 5

4 4 5 5

d=0 

d=1 

d=2 

d=3 
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supports, then they are removed.   Figure 7.2 (a) denotes the trie after the two candidates 

are pruned. 

 

(a) (b) 

Figure 7.2 A trie (a) after Pruning (b) After generating new candidate 

After the frequent k-itemsets are found, we can generate the candidates for 

frequent (k+1)-itemsets. Generating candidates for frequent (k+1)-itemsets is completed 

by simply copying the sibling nodes following links labeled with items (which are later in 

the given item order) as child nodes of the nodes following links labeled with items 

(which are earlier in the order). For the previous example, only one candidate 

2 3 4 5{ , , , }I I I I  can be generated by copying the node following the link labeled by 5 as the 

child node of the node following the link labeled by 4. Figure 7.2(b) illustrates the trie 

after a new candidate is generated.  

 

7.1.2 Mining Association Rules from Randomized data 

Mining association rules from randomized data is discussed in this section. First, 

we introduce how to implement PRAM simultaneously to a group of items in section 

7.1.2.1. In section 7.1.2.2, estimator for support of candidate itemsets is provided. Finally, 
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implementation of finding frequent itemsets from randomized data set using data 

structure trie is discussed.  

 

7.1.2.1 Randomization 

Let D be a dataset over a set of items I. Every row in D  represents a record, 

which is an instance of the items. To protect the specific values in D , we apply a 

randomization process on D, and output a randomized version 'D  of D.  

The randomization is done as follows: 

(1) The items are divided into several groups. How to group the items is a matter of 

design choice, which depends largely on the specific privacy concerns for the different 

items. Only those items that are owned by a single owner can be grouped together. For 

example, if 1 2 3 4 5{ , , , , }I I I I I I⊂ , 1 2 3 4 5{ , , , , }I I I I I  can be divided into two groups, 

1 2 4{ , , }I I I  and 3 5{ , }I I . 

(2) Apply PRAM independently to each record and each group. A set GSG  of all 

possible combination of items in one group G is randomized using PRAM schemes 

discussed in chapter 2. The randomization is characterized by a 2 2G G×  probability 

transition matrix { }G klP p= , where klp  is the probability with which combination 

l Gs SG∈  is randomized to k Gs SG∈ . We discuss only the symmetric M-categorical 

randomization in the sequel.  

Taking the above example: 

(a) The set of all possible combination of items in group   1 2 4{ , , }G I I I=  is 

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4{ , , , , , , , }GSG I I I I I I I I I I I I I I I I I I I I I I I I= ,   where ‘ − ’ denotes the 
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transaction does not contain the given item. The randomization of any 
1 2 4{ , , }i I I Is SG∈  

( 1 8i = " ) in a transaction t can be done by the randomization scheme characterized by a 

8 8×  probability transition matrix { }G ijP p= , where 

 
( | ) (1 )

( | )
7

ii i i

ij i j

p p G s G s p
pp p G s G s i j

 = = = = −



= = = = ≠

�

�    for 1 , 8i j≤ ≤  and G� denote the 

randomized item group. 

(b) The set of all possible combination of the item group 3 5{ , }G I I=  

is 3 5 3 5 3 5 3 5{ , , , }GSG I I I I I I I I= . The randomization of any i Gs SG∈  ( 1 4i = " ) in a 

transaction t can be done by the randomization schemes characterized by a 4 4×  

probability transition matrix { }G ijP p= , where 
( | ) (1 )

( | )
3

ii i i

ij i j

p p G s G s p
pp p G s G s i j

 = = = = −



= = = = ≠

�

�   

for 1 , 4i j≤ ≤ . 

 

7.1.2.2 Estimating Support of k-itemsets 

After partitions of a data set D are randomized by their respective owners, they 

are sent to a data miner. How the items are grouped and each group’s probability 

transition matrix is also sent to the data miner. The task of the data miner is to estimate 

supports of candidate k-itemsets, learn all frequent k-itemsets from the randomized data 

D�  and then generate the association rules from all frequent itemsets.  The main 

difference between mining association rules from D�  and D  lies in estimating supports of 

candidate k-itemsets.  

(a)  Estimation of supports of single itemsets  
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From the probability transition matrix GP  of a group of items G, we can get the 

marginal transition probability matrix 
iIP  for any item iI G∈ , where 1i G= "  and 

( | ) ( | )
( | ) ( | )i

i i i i
I

i i i i

p I I p I I
P

p I I p I I
 

=  
 

.  We have the following proposition regarding
iIP . 

 

Proposition 7.1: 

If the set of all possible combinations of items in a group 1 2{ , , }GG I I I= "  is 

randomized by using symmetric M-categorical randomization with parameter p, then the 

marginal transition probability matrix 
iIP  has two properties:  

(1) 
( 1)
2( | ) ( | ) 1

1i i i i

Jp
p I I p I I p

J

−
= = − +

−
 and ( | ) ( | )

2( 1)i i i i
pJp I I p I I
J

= =
−

 , where 

2 GJ = . 

 (2) Denote by sT ,  sT� , and ŝT , supports of Gs SG∈  in D, D�  and estimate of sT , 

respectively. In this case, { , }G i iSG I I= . 1
ˆ

ˆ
i i

i
ii

I I
I

II

T T
P

TT
−

   
   =
     

�

�  is an unbiased estimator of 

i

i

I

I

T

T

 
 
  

.  This case is a special case of case (b) below, where proofs are provided. The 

estimate of support of item iI  is ˆ
iIT . For example (a) in section 7.1.2.1, 
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4 41
7 7

4 41
7 7

iI

p p
P

p p

 − 
=  
 −  

for 1, 2, 4i =  and for example (b) in section 7.1.2.1, 

2 21
3 3

2 21
3 3

iI

p p
P

p p

 − 
=  
 −  

for 3,5i = . 

(b) Estimation of supports of   k- itemsets for 1k >  

The general case of estimating support of a candidate k-itemsets is discussed 

below. Suppose there are N records in a data set D  of a set of items I  with size m and 

the m items are grouped into g groups, 1 2, gG G G" .  Let CT  be a vector of supports of all 

possible combinations CSG  of items in a candidate k-itemset C, CT�  be the corresponding 

vector of supports in D�  and ĈT  be an estimator of CT .  We have the following two cases 

for obtaining ĈT . 

Case (1) All items of the candidate k-itemsets C  are from a single group 

In this case, we have C G⊂ . From the probability transition matrix GP  of the 

group G, we can get the probability transition matrix CP , which is the marginal 

probability transition matrix for items in C. We have the following proposition. 

Proposition 7.2 

(1)
11 1

1

J

C

J JJ

p p
P

p p

 
 =  
  

"
# % #

"
, where 2CJ = , | | | |(1 ) (2 1)

2 1
G C

ii G

pp p −= − + −
−

 for 1i J= "  and 

2
2 1

G C
ij G

pp −=
−

 for i j≠  and , 1i j J= " . 
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(2) 1
Ĉ C CT P T−=  is an unbiased estimator of CT . 

Proof:  i Cs SG∈ ( 1, 2 )Ci = "  is one of the possible itemsets. In the following, we denote 

by cC  the items that belong to G but not C. 

2 2

1 1

2

1

( , , , )
( , )( | )

( )
( , )

C Cc c

C

i c k i c j
k ji i

i i
i

i c j
j

p C s C w C s C w
p C s C sp C s C s

p C s
p C s C w

= =

=

= = = =
= =

= = = =
=

= =

∑ ∑

∑

� �
��

 

2 2

1 1

2

1

( , | , ) ( , )

( , )

C Cc c

Cc

i c k i c j i c k
k j

i c j
j

p C s C w C s C w p C s C w

p C s C w

= =

=

= = = = = =
=

= =

∑ ∑

∑

� �

 

From GP , 
1

( , | , )
2 1

i c k i c j
G

p k j
p C s C w C s C w p k j

− =
= = = = =  ≠ −

� � . 

2 2

1 1

2

1

2

1

( , | , ) ( , )

2 1 2 1[ ( , )(1 )] (1 )
2 1 2 1

2 1(1 ) ( , )
2 1

C Cc c

Cc c c

Ccc

i c k i c j i c j
k j

C C

i c j G G
j

C

i c jG
j

p C s C w C s C w p C s C w

p C s C w p p p p

p p p C s C w

= =

=

=

= = = = = =

− −
= = = − + = − +

− −

−
= − + = =

−

∑ ∑

∑

∑

� �

 

So, ( | )i ip C s C s= =� = 2 1 2 1(1 ) 1
2 1 2 1

cC G C

G Gp p p p
−− −

− + = − +
− −

. Also, 

2 2

1 1

2

1

( , , , )
( , )( | )

( )
( , )

C Cc c

C

m c k i c j
k jm i

m i
i

i c j
j

p C s C w C s C w
p C s C sp C s C s

p C s
p C s C w

= =

=

= = = =
= =

= = = =
=

= =

∑ ∑

∑

� �
��

 . 
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From GP , ( , , , )
2 1m c k i c j G

pp C s C w C s C w= = = = =
−

� � . 

So, 2( | ) 2
2 1 2 1

c

G C
C

m i G G

p pp C s C s
−

= = = =
− −

� . 

Hence,
11 1

1

J

C

J JJ

p p
P

p p

 
 =  
  

"
# % #

"
, where 2CJ = , | | | |(1 ) (2 1)

2 1
G C

ii G

pp p −= − + −
−

 for 1i J= "  

and 2
2 1

G C
ij G

pp −=
−

 for i j≠  and , 1i j J= " . 

Part (2) of proposition 7.2 directly follows from Theorem 2 of chapter 2 for estimation of 

frequency counts. 

Case (2) Items of the candidate C are from several groups 

Suppose items of the candidate C are from m 

groups, 1 1 , , m mC G C C G C= ∩ = ∩" . We can get the marginal probability transition 

matrices 
1 mC CP P"  from 

1 2
, ,G GP P" , respectively, as in case (1). We have the following 

proposition. 

Proposition 7.3 

1
Ĉ C CT P T−= �  is an unbiased estimator of CT  and 

1 2 mC C C CP P P P= ⊗ " , where elements of 

CT  are arranged in the order such that items in 1C  change the slowest and items in mC  

change the fastest. 

Proposition 7.3 also follows directly from Theorem 2 in chapter 2. The last 

element of ĈT , i.e. ˆ (2 )C
CT  is the estimate of support of the k-itemsets and is denoted as 

msupC . 
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7.1.2.3 Implementation of Apriori Algorithm in Mining from Randomized Data  

From the previous section 7.1.2.2, every k-itemset candidate C is associated with 

a probability transition matrix CP , which can be computed from 
1
, ,

gG GP P" .  

A trie-based data structure can be used but it needs some modification. The main 

adaptation is adding an estimation step that estimates the support of candidate k-itemsets 

before non-frequent candidate k-itemsets are pruned from the tree. Differences between 

mining association rules from randomized data and from (non randomized) data directly 

are (1) Reference to supports of nodes that are in higher levels is necessary (2) Supports 

of itemsets jsupC  are counted from D�  using trie data structure, where jsupC  is the vector 

of supports of all possible itemsets formed by the items in C. Let CIS denote a set of all 

possible itemsets formed by the items in C. CIS  is related to but different from CGS .  For 

example, if 1 2{ }C I I= , 1 2 1 2 1 2 1 2{ , , , }CGS I I I I I I I I=  whereas 1 2 1 2{ , , }CIS I I I I= . jsupC  is 

counted using the trie data structure. However, CT�  is not directly counted but can be 

calculated from jsupC . The inclusion/exclusion principle from set theory can be used to 

get CT�  from the supports of itemsets jsupC  that includes the supports of nodes in higher 

level.  

Proposition 7.4 

(1) For any i Cs SG∈ , is  can be written as 2 1C C , where 1 2, CC C IS∈ , 

iST� = j3 2

3

2 3

( 1) supC C
C

C C C

−

⊆ ⊆

−∑ . Thus, CT� can be calculated from jsupC . 
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(2) 1
Ĉ C CT P T−= �  is an unbiased estimator of CT  and ˆ (2 )C

CT , i.e. the 2C th element of 

vector ĉT  is an estimator for CSup , i.e., nupCS .  

If  nupCS minsup D< , then the itemsets C is not frequent and will be pruned.  

We use the previous example with a transaction database of five items 

1 2 3 4 5{ , , , , }I I I I I I=  to explain how association rule mining from randomized data is 

implemented. The following steps are used. 

(1) In depth 1 of the tree level, the whole database is traversed once and jsup
iI  for 

1, ,5i = "  are obtained. 
iIP  for 1, ,5i = "  can be calculated from group probability 

transition matrices given by the data owners. We have 
k

k
up

up
i

i

i

I
I

I

N S
T

S

 −
 =
  

� ,  where N is the 

number of records in D. 
n

n
upˆ

up
i

i

i

I
I

I

N S
T

S

 −
 =
 
 

 and 1ˆ
i i iI I IT P T−= �  for 1, ,5i = " . ˆ (2)

iIT  is nup
iIS . 

Ifnup
iIS  minsupD≥ , 1-itemsets { }iI  are frequent and otherwise not. Generate candidates 

of 2-itemsets from a set 1L  of all frequent 1-itemsets. If only 3{ }I  is not frequent, 

1 1 2 4 5{{ },{ },{ },{ }}L I I I I=  and a set of all candidate frequent 2-itemset generated from 1L  

is 2 1 2 1 4 1 5 2 4 4 5{{ , },{ , },{ , },{ , },{ , }}C I I I I I I I I I I= .   

(2)  The randomized database is read once again. We get jsupC  for any 2C R∈ . Take a 

candidate 1 2 2{ , }C I I R= ∈ , for example 1 2 1 2 1 2 1 2{ , , , }CSG I I I I I I I I= . FromjsupC , j
1

supI  and 
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j
2

supI  (from last step), 

j j j

j j

j j

j

2 1

2

1

sup sup sup

sup sup

sup sup

sup

I I C

I C
C

I C

C

N

T

 − − +
 
 −

=  
 −
 
  

� . CP  can be computed from the 

group probability transition matrices given by data owners. 1
Ĉ C CT P T−= �  and ˆ (4)CT  is 

msupC , which is the estimate of the support of candidate itemset C. If nupCS minsup D≥  

then 1 2{ , }I I  is a frequent 2-itemsets. In this way, we can get 2L , a set of all frequent 2-

itemsets. From 2L , a set 3C of all candidate 3-itemsets can be generated. 

(3) Estimate the support of those candidate 3-itemsets and then obtain 3L  and 

generate 4C . The above steps are repeated similarly until all frequent itemsets are found. 

 

7.1.3 Comparing γ -amplification  

As we have pointed out at the beginning of section 7.1, simultaneous 

randomization will reduce simultaneous amplificationγ −  for the items and help limit 

more privacy breaches to a group of items simultaneously (compared with using the 

same amplificationγ −  for each individual item). Simultaneous γ − amplification is 

defined similar to γ − amplification but the amplification is defined on a set of variables. 

A PRAM operator for a set of variables 1{ , }nX X"  with transition probability matrix P  

is at most simultaneous γ -amplifying for 1 1{ , , }n nk kX X= =� �"  if 1 2,l l∀ ,…  and 

1, , nm m∀ " , 11 11

11 11

, , | , , )(
, , | , , )(

nn n n

nn n n

k k l lp X X XX
k k m mp X X XX

= = = =
= = = =

� �" "
� �" "

, where 

1 1 1 1, , , , ,n n n nk l m X k l m X< <" . A PRAM operator is at most γ -amplifying for variable 
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1{ , , }nX X X= "  if it is at most γ -amplifying for 1, , nk k∀ " . As we proved in section 

7.1.2, if the symmetric M-categorical randomization with parameter p is applied to a set 

of items, we can get the marginal probability matrix for each item. By the definition of 

simultaneous   γ -amplification, the symmetric M-categorical randomization has 

simultaneous 1 (2 1)G
s

p
p

γ −
= −  if 1

2 1G

pp− >
−

. The marginal probability transition 

matrix for each item is 
( | ) ( | )
( | ) ( | )i

i i i i
I

i i i i

p I I p I I
P

p I I p I I
 

=  
 

, where 

1(2 1)( | ) ( | ) 1
2 1

G

i i i i G
pp I I p I I p

− −
= = − +

−
 and  2( | ) ( | )

2(2 1)

G

i i i i G
pp I I p I I= =

−
 . If we had 

applied randomization schemes with probability transition matrix 
iIP  independently to 

G  items, then simultaneous amplificationγ −  will be ( )G
indγ  

where

1(2 1)1
2 1

2
2(2 1)

G

G

ind G

G

pp

p
γ

− −
− +

−=

−

 if 
1(2 1) 21

2 1 2(2 1)

G G

G G

p pp
− −

− + >
− −

. 

If 2G = , 3(1 )
s

p
p

γ −
=  whereas 2

21
3( ) ( )2

3

G
ind

p

p
γ

−
= . If 3G = , 7(1 )

s
p

p
γ −

=  

whereas 3

41
7( ) ( )4

7

G
ind

p

p
γ

−
= . The following figure 7.3 gives sγ  and ( ) G

indγ  versus p . 

From the graphs, we can see that simultaneous randomization significantly reduces 

simultaneous amplificationγ − . 
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(a)                                                                  (b) 

Figure 7.3 comparison of simultaneous amplificationγ −  

 

7.1.4 Experimental Results 

We applied association rule mining to datasets from the UCI repository [UCI]. 

Since learning from randomized data usually requires more samples than regular learning, 

we generated a larger data set for our simulation based on the data set from UCI data 

repository. The two data sets we used are the Mushroom database and Adult database. 

The results are shown respetively in figure 7.4 and figure 7.5.  

Experiment 1: 

We selected 9 variables from Mushroom database. Each category of those variables 

is converted into an Item. Totally there are 23 items. We generated a dataset D by 

repeating the above data set 30 times. The 23 items are grouped into 13 
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Figure 7.4 Simulation results for data set based on Mushroom database 

groups (four 3-item groups, two 2-item groups and seven 1-item groups). The database 

was randomized by implementing symmetric M-category randomization, independently 

for each group. The parameter of the symmetric M-categoy randomization p  was varied 

from 0.1 to 0.5. The simulation results are shown in figure 7.4, where the four graphs are 
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respectivly plots of Number of frequent itemsets learned, Average support error of the 

frequent itemsets, the Percentage of false positive and Percentage of false negative versus 

the randomization parameter p. minsup 0.05=  was used in the simulations. 

Experiment 2: 

          We selected 11 variables from the Adult dataset. Those variables were transformed 

into variables with respective cardinalities 4,3,3,3,2,3,2,3,2,3,2 by combining categories. 

Each category is converted into an item. Totally there are 30 items. We generated a 

dataset D by repeating the above data set 30 times. The 30 items are grouped into 17 

groups (four 3- item groups, five 2-item groups, and eight 1-item groups). The dataset 

was randomized by implementing symmetric M-category randomization, independently 

to each group. The parameter of the symmetric M-categoy randomization p  was varied 

from 0.1 to 0.45. The simulation results are shown in figure 7.5, where the four graphs 

are respectivly plots of Number of frequent itemsets learned, Average support error of the 

frequent itemsets, the Percentage of false positive and Percentage of false negative versus 

the randomization parameter p. minsup 0.05=  was used in simulations. 

From the graphs, we can see that the results are reasonable when randomization 

parameter is less than 0.4. With higher randomization parameter, the worst error is the 

percentage of false positive, which is the ratio between the number of frequent itemsets 

found in the randomized data but are actually not frequent and the number of frequent 

itemsets found from the original non-randomized data set.  
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Figure 7.5 Simulation Results for data set based on Adult database 

 

7.2 Decision Tree Induction 

 

In this section, decision tree induction from randomized data for PPDM is 

discussed. A brief introduction to decision trees and ID3 algorithm for decision tree 
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learning is provided in section 7.2.1. Building a decision tree from randomized data is 

discussed in section 7.2.2. Simulation results are provided in section 7.2.3. 

 

7.2.1 Introduction to Decision Tree and ID3 algorithm 

A decision tree is a predictive modeling technique used in classification, 

clustering and prediction tasks. Decision trees use a “divide and conquer” technique to 

split the problem search space into subsets. Formally, a decision tree is a tree where the 

root and each internal node is labeled with a question, the arcs emanating from each node 

represent each possible answer to the associated question. Each leaf represents a 

prediction of a solution to the problem under consideration. In general, decision trees 

represent a disjunction of conjunctions of constraints on the attribute values of instances. 

Each path from the root to a leaf corresponds to a conjunction of attribute tests and the 

tree itself corresponds to a disjunction of these conjunctions. An example of a decision 

tree is illustrated in figure 7.6 [Qui93].  This decision tree classifies “Saturday mornings” 

according to whether they are suitable for playing tennis.  

 

Figure 7.6 Decision Tree 
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The decision tree is most useful in classification problems. Once a tree is built, it is 

applied to each tuple in the database and results in a classification for that tuple. We 

discuss only learning decision tree from randomized data for preserving privacy of each 

individual record.  

ID3 algorithms [Qui93] are among some of the most widely used algorithms for 

building decision trees from data. Their popularity is due in part to their ability to: select 

from all attributes used to describe the data, a subset of attributes that are relevant for 

classification; identify complex predictive relations among attributes; and produce 

classifiers that are easy to comprehend for humans. The ID3 (Iterative Dichotomizer 3) 

algorithm proposed by Quinlan [Qui93] and its more recent variants represent a widely 

used family of decision tree learning algorithms. The ID3 algorithm searches in a greedy 

fashion, for attributes that yield the maximum amount of information for determining the 

class membership of instances in a training set D of labeled instances. The result is a 

decision tree that correctly assigns each instance in D its respective class. The 

construction of the decision tree is accomplished by recursively partitioning D into 

subsets based on values of the chosen attribute until each resulting subset has instances 

that belong to exactly one of the m classes. The selection of an attribute at each stage of 

construction of the decision tree maximizes the estimated expected information gained 

from knowing the value of the attribute in question. 

Consider a set of instances D  which is partitioned into m  disjoint subsets (classes) 

1 mD D"  such that 
1

m

i
i

D D
=

=∪  and i jD D φ∩ =  if i j≠ , where 1 ,i j m≤ ≤ . The 

probability that a randomly chosen instance x D∈  belongs to the class jD  is j
j

D
p

D
= , 
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where denotes the cardinality of a set. The entropy of a set D measures the expected 

information needed to identify the class membership of instances in D, and is defined as 

follows: 

2( ) log ( )j j

j

D D
entropy D

D D
= −∑ . 

We can define the estimated information gain for an attribute A, relative to a collection of 

instances D as follows: 

( )
( , ) ( ) ( )v

k
k V A

D
IGain D A entropy D entropy D

D∈

= − ∑ , 

where ( )V A  is the set of all possible values of attribute A, kD  is a subset of D for which 

attribute A has value k. 

Thus, the information requirements of ID3-like decision tree learning algorithms 

can be expressed in terms of relative frequencies computed from the relevant instances at 

each node. Different algorithms for decision tree induction differ from each other in 

terms of the criterion that is used to evaluate the splits that correspond to tests on 

different candidate attributes. The choice of the attribute at each node of the decision tree 

greedily maximizes (or minimizes) the chosen splitting criterion. The ID3 algorithm is 

described below where D  represents the training samples and AL  represents the 

attributes list: 

3( , )ID D AL  

1. Create a nodeV . 

2. If D consists of samples with all the same class C  then return V  as a leaf node labeled 

with class C . 
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3. If AL  is empty, then return V  as a leaf-node with the majority class in D . 

4. Select test attributes (TA ) among the AL with the highest information gain. 

5. Label node V with TA  

6. For each know value k  of TA  

 (a) Grow a branch from node V  for the conditionTA k= . 

 (b) Let kD  be the set of samples in D  for which TA k=  

 (c) If kD  is empty then attaches a leaf labeled with the majority class in D . 

  (d) Else attach the node returned by 3( , ).kID D AL TA−  

7.2.2 Building Decision Tree from Randomized Data 

If the data set is horizontally distributed among several parties, every party can 

directly send sufficient statistics of their part to the data miner (or other parties) during 

construction of a decision tree, i.e., send kD s and D s to the data miner which are 

necessary in computing the information gain and entropy. Disclosing kD s and D s will 

not disclose the individual value of each instance. For the analysis and learning algorithm, 

there are no essential differences between the heterogeneously distributed dataset and the 

randomized version D�  of the dataset D, where each attribute has been randomized using 

some PRAM scheme known to the data miner. Every party who owns part of the data set 

simply randomizes their data according to their privacy concerns. To keep things simple, 

we assume that all the attributes are discrete or categorical. However, all the discussion 

below can be easily generalized to numerical attributes by using proper discretization. 

Often, decision tree algorithms also include a pruning phase to alleviate the problem of 

over fitting the training data. We limit our discussion to decision tree construction 
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without pruning. The proposed algorithm is similar to [DZ03]. Every attribute in [DZ03] 

is assumed to be binary. The randomization used in [DZ03] is a randomized response 

technique, where the randomization is done by the customer who is surveyed. The 

customer, either (1) tells the truth for all attributes or (2) tells the opposite for all 

attributes. In this randomization scheme, if one attribute value of a record happened to be 

known to other parties, the whole record will be known to those parties. So, the 

probability of privacy breach is quite high since the knowledge of one attribute will result 

in knowledge of all other attributes. We provide a more general and flexible framework 

to deal with privacy-preserving decision tree induction using PRAM, where the 

undesirable properties of randomization mentioned above can be prevented easily. 

Assume that given a partially constructed decision tree, we want to choose the 

best attribute for the next split. Let ( )ja π  denote the attribute at the j th node along a 

path π  starting from the attribute 1( )a π  that corresponds to the root of the decision tree, 

leading up to the node in question ( )la π  at depth l . Let ( )jk π  be the value of the 

attribute ( )ja π  along the path π  and the cardinality of the set of all possible values of 

( )ja π be jK . Let C be the class attribute, which can take m values 1, , mC C" . If the data 

are not randomized, the samples to be considered for adding a node below ( )la π  have the 

constraints of the values of attributes 1 1( ) ( ), , ( )l la k a kπ π π= =" . It is straightforward to 

calculate the information gains for a candidate attribute A (for node at level 1l + ) if the 

data is not randomized. When the data are randomized, we have to estimate the 

information gain through an estimation of a set of frequency counts. We use entropy to 

get the information gain. It is obvious that ( )entropy D  and ( )kentropy D  in the 
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information can be computed by using the same operator, where ( )kentropy D  has further 

constraints on the value of candidate attributes a k= . Without loss of generality, we only 

consider an estimator of ( )entropy D , where we need to estimate the frequency counts of 

the dataset such that 1 1( ) ( ), , ( )l la k a kπ π π= ="  and iC C=  for 1, ,i m= " . Estimation of 

( )kentropy D  can be computed by estimating the frequency counts of the dataset such 

that 1 1( ) ( ), , ( ),l la k a k a kπ π π= = ="  and iC C=  for 1, ,i m= " . The samples to be 

considered in estimating the information gain will be the values of those attributes of all 

the records if M-category randomization has been implemented to every attribute through 

the link 1( ), , ( )la aπ π" . Suppose the probability transition matrices associated with 

attributes 1( ), , ( )la aπ π"  and the class attribute are 1, , lP P"  and CP ,  respectively. Let 

T  be a vector of frequency counts from original data set D with dimension 
1

1
l

i
i

m K
=

×∏ , 

i.e. each element of vector T is the number of records in D such that 

1 1( ) ( ), , ( )l la k a kπ π π= ="  and jC C= , where 1 11 ( ) 1 ( )l lk K k Kπ π≤ ≤ ≤ ≤"  and 

1 j m≤ ≤  . The order of the elements in T is such that C changes the fastest and 1( )a π  the 

slowest. Let T�  be the corresponding vector in D�  and T̂  be an estimate of T . 

 By the theorem 2 in chapter 2 for estimation of frequency counts, 1T̂ P T−= �  is an 

unbiased estimator of T . From T̂ , we can get an estimator 

n( )Entropy D =
m

m

m

m2

1 1

log ( )j j
m m

j
j j

j j

D D

D D
= =

−∑
∑ ∑

 of ( )Entropy D , where mjD  is the estimated 

number of samples such that 1 1( ) ( ), , ( )l la k a kπ π π= ="  and jC C= . m ˆ( )jD T Index= , 
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where Index  is the element order of T̂  and
1

1 1

( ( ) 1)( )
ll

l m
i m

Index k m K jπ
−

= =

= − +∑ ∏ . Similarly, 

let T  be a vector of frequency counts from original data set D with dimension 

1

1
l

i
i

mK K
=

×∏ , i.e. each element of vector T is the number of records in D such that , 

1 1( ) ( ), , ( )l la k a kπ π π= =" , a k=  and jC C= , where 1 11 ( ) , ,1 ( )l lk K k Kπ π≤ ≤ ≤ ≤" , 

1 k K≤ ≤  and 1 j m≤ ≤ . Estimate of ( )kentropy D  can be computed from this T̂  

for 1, ,k K= "  . n( )kEntropy D =
m

m

m

m2

1 1

.log ( )j j
m m

j
j j

j j

D D

D D
= =

−∑
∑ ∑

, where mjD is the estimated 

number of samples such that 1 1( ) ( ), , ( )l la k a kπ π π= =" , a k= and jC C= . 

m ˆ( )jD T Index= , where Index  is the element order of T̂  and 

1

1 1

( ( ) 1)( ) ( 1)
ll

l q
i q

Index k MK K m M jπ
−

= =

= − + − +∑ ∏ . With n( )kEntropy D and n( )Entropy D , 

we can get ( , )IGain D A . 

 

In the following, an example is provided to illustrate the method. We assume 

that a decision tree has been partially constructed as shown in Figure 7.7. The splitting 

node is to be decided following the link 1 3a =  and 2 1a =  (The cardinalities of 1a  and 2a  

are 1 3K =  and 2 2K = ). Suppose 3a  with cardinality 3 3K =  is the candidate splitting  
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Figure 7.7 A Partially Constructed Decision Tree 

attribute being considered. Let the probability transition matrices of attributes 1 2 3, ,a a a  be 

1 2 3, ,P P P  respectively. The class attribute has cardinality 2 and its probability transition 

matrix is CP . Using unbiased estimator 1T̂ P T−= � , where 1 2 CP P P P= ⊗ ⊗ , we can calculate 

Entropy as follows: 

n
m

m m

m

m m

m

m m

m

m m
1 1 2 2

2 2

1 2 1 2 1 2 1 2

( ) log ( ) log ( )
D D D D

Entropy D
D D D D D D D D

= − −
+ + + +

, where m1D  and 

m
2D  are ˆ(9)T  and ˆ(10)T  respectively since (3 1) 2 2 (1 1) 2 1(2) 9(10)− × × + − × + = . 

For estimation of ( )kEntropy D , we use 1T̂ P T−= �  , where 1 2 3 CP P P P P= ⊗ ⊗ ⊗  . 

n
m

m m

m

m m

m

m m

m

m m
1 1 2 2

2 2

1 2 1 2 1 2 1 2

( ) log ( ) log ( )k

D D D D
Entropy D

D D D D D D D D
= − −

+ + + +
, where m1D  and 

m
2D  are ˆ(25)T  and ˆ(26)T  if 1k = , m1D  and m2D  are ˆ(27)T  and ˆ(28)T  if 2k = , m1D  

and m2D  are ˆ(29)T  and ˆ(30)T  if 3k = . With n( )Entropy D and n( )kEntropy D , we can get 

3( , )IGain D a . 

 

7.2.3 Experimental Results 

1a

3 ??A a=

3
21

1 2

2a
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We applied decision tree induction to a dataset from the UCI data repository[UCI]. 

Since learning from randomized data usually requires more samples than regular learning, 

we generated a larger dataset for our simulation based on the data set from UCI data 

repository. The two data sets we used are the Adult dataset and Breast Cancer dataset. 

Experiment 1:  

        We used the data set generated for experiment 2 in section 7.1.4, ie. a data set 

generated based on the Adult database. We used those variables without treating each 

category of a variable as an item. The cardinality of those variables are  

4,3,3,3,2,3,2,3,2,3,2  respectively. The dataset was randomized by implementing 

symmetric M-category randomization independently to each variable. The parameter of 

the symmetric M-categoy randomization p  was varied from 0.1 to 0.45. The simulation 

results are shown in Figure 7.8, where the graph represents classification accuracy using 

the constructed decision tree versus the randomization parameter p.  Average from five 

independent simulation runs and the average plus one standard deviation are shown in 

figure 7.8. 

Experiment 2: 

      A dataset was generated by repeating the Breast Cancer dataset [UCI] five times. The 

cardinality of variables are  3 2 3 2 3 2 3 2 3 2 respectively. The dataset was randomized 

by implementing symmetric M-category randomization independently to each variable. 

The parameter of the symmetric M-categoy randomization p  was varied from 0.1 to 0.45. 

The simulation results are shown in Figure 7.9, where the graph shows classification 

accuracy using the constructed decision tree versus the randomization parameter p. 

Average from five independent simulation runs and the average plus one standard 
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deviation are shown in figure 7.9.  
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Figure 7.8:  Classification Accuracy versus p for Data Set Based on Adult Database 
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Figure 7.9:  Classification Accuracy versus p for Data Set Based on Breast Cancer 

Database 

 From the above simulation results, we can see that there is a trade off between 

classification accuracy and privacy. As randomization parameter p increases from 0 to 

0.5, more privacy is preserved. The standard deviation of simulations becomes larger 

when p increases from 0 to 0.5. The variance is caused by two factors. One is sample size 
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and the other is the randomization. Since the same sample size is used for simulation in 

each experiment, the variances for the classification accuracy are mainly due to different 

levels of randomization. From both experiments, we can see that the results are still 

reasonable when 0.3p = .  
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CHAPTER EIGHT 

CONCLUSIONS AND FUTURE WORK 
 
 

We have introduced a framework for PPDM using PRAM. Our method estimates 

frequency counts from the randomized data, which are subsequently used to learn or mine 

the database.  

We quantified the privacy of our randomization scheme using the concept of γ -

amplification and probablistic K-anonymity. Information loss due to randomization was 

quantified using two aspects. One is the loss of accuracy, which can be quantified by the 

distance between two distributions. The other aspect is independence loss. 

 Randomization of the dataset can be implemented independently to individual 

variables and can also be implemented simultaneously to a group of variables. 

Implementing the randomization simultaneously to a group of variables ignores the 

possibility of different privacy requirement for different variables. Randomizing non-

sensitive variables or providing more randomization to some not so highly sensitive 

variables usually  degrades the accuracy of data mining. However, implementing 

randomization simultaneously to a group of variables can also reduce the simultaneous 

γ -amplification, which means higher ability to limit simultaneous privacy breaches. 

PRAM provide a flexible framework for handling different privacy requirements. Data 

owners have flexibility in choosing a randomization scheme that meet their privacy 

conerns. Choice of different post  randomization schemes only affects the specific 

probability transition matrix but does not affect learning algorithms.  
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PRAM was traditionally designed for categorical variable. Numerical variables 

can be discretized for the benefit of privacy using MGAS and can then be randomized 

using PRAM schemes.    

Different data mining models like linear classifier, association rule mining, 

decision tree and Bayesian networks were considered. We showed that we obtain a fairly 

good level of privacy and reasonable accuracy in almost all cases. Our experiments show 

that the PRAM is an efficient, flexible and easy-to-use method in PPDM. There is a trade 

off between accuracy and privacy  and sample size is key in this tradeoff.  

 We now discuss some directions for future work and some problems that need to 

be addressed. 

(a) We discussed the learning of linear classifier from randomized data using 

perceptron cost. The same method can also be used to linear classifier learning by 

minimizing mean square error. Maximum likelihood estimation of model parameters is a 

widely used method in data mining. Our proposed method can further be extended to 

learn models based on maximum likelihood parameter estimation.  

(b) Further research in Probabilistic K-Anonymity to get a better privacy quantification. 

In our defined K-Anonymity, any possible category that can be randomized to the given 

category contributes to the PK  even if this probability is extremely low. This problem 

can be remedied by adding reasonable threshold to this probability.  

(c) There is trade off between privacy and accuracy in our method. A natural further 

problem is to choose optimized randomization parameters to increase privacy under the 

same accuracy or increase accuracy under the same privacy.  

(d) In Bayesian network structure learning, we modified the score function by 
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introducing some penalty parameter in order to cope with the extra-link problems. It will 

be beneficial to do further research in how to choose those penalty parameters according 

to different levels of randomization. 

(e) Another research direction is theoretical analysis of the perturbation method in 

PPDM, for example, the theoretical limit of the randomization method in PPDM. 
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