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AN ONTOLOGY-BASED APPROACH  

FOR SEMANTIC LEVEL INFORMATION EXCHANGE AND INTEGRATION 

IN APPLICATIONS FOR PRODUCT LIFECYCLE MANAGEMENT  

Abstract 
 

By Pei Zhan, Ph.d 
Washington State University 

August 2007 
 
 
Chair: Uma Jayaram 

During product lifecycle management (PLM), product information from 

CAD/CAE applications regularly needs to be exchanged and shared between the various 

applications. However, these applications often have different product data semantics and 

corresponding representations. The interoperability problem caused by the heterogeneous 

semantics and data representation is critical and needs to be addressed and automated. 

Recent research has focused on integration frameworks for CAD/CAE applications in 

order to improve interoperability. There are fundamental problems that still need to be 

addressed.  

We identified the following important roadblocks and sought to address these 

specifically in our work: 1) The need for an adequate product knowledge representation 

of engineering design/analysis, which is easily expandable, and customizable for 

traditional and non-traditional (e.g. virtual prototyping) design information systems that 

also allows the sharing of product data semantics across all these heterogeneous systems 

to support distributed, collaborative engineering capabilities; 2) The need for a way to 

generate product data semantics by using engineering design/analysis knowledge to 

interpret actual product data 3) The need for a way to reconcile the differences in the 
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different product semantics by finding underlying similarities between different 

knowledge representations that are from different viewports and reconcile, and use these 

similarities to then translate product data semantics correctly. 

This dissertation proposes an ontology-based approach for a semantic level 

exchange and integration to improve interoperability, which includes an ontology 

building tool, ontology mapping tools and custom tools to associate ontologies to prduct 

data. For the purpose of semantic level integration, a way of representing engineering 

design/analysis knowledge using an engineering ontology is proposed. A layered 

structure is used for building knowledge into engineering ontologies so as to improve the 

scalability and composition adaptivity. Based on the knowledge, a semantic layer is built 

upon product data to use concepts/relations in ontologies to describe actual product data, 

which can be used to represent understandings about a product design from different 

perspectives. To enable translating different understandings (product data semantics) 

using different ontologies, an ontology mapping method is proposed to find matching 

concepts between different ontologies, based on three basic relation types between 

concepts: composition, inheritance and attribute.  

A scenario is explained to describe the working mechanism of the system and to 

demonstrate the concept of semantic level integration framework for a simple example. A 

sample assembly is designed and simulated in different software packages and an 

integrated process is made to exchange information between them. The scenario 

successfully demonstrates the ontology based approach. 
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Chapter One -  Introduction 
 

Computer Aided Design (CAD), Computer Aided Manufacturing (CAM) and 

Computer Aided Engineering (CAE) are important technologies that have now become 

mainstream in the product cycle. Over the last decade, tremendous progress has been 

made in the development of software tools in these three areas. This has resulted in 

greatly expediting the product development process.  

However, there often arises the problem of interoperability between different 

solutions involved in design, manufacturing, and analysis. The information generated in 

one domain can sometimes not be recognized in another program. Furthermore, the 

communication between engineers working in different domains is limited; a person 

working as a design engineer may sometimes have difficulty in understanding the 

comments and terms used by an analysis engineer, though they may both refer to the 

same product. There are several issues that contribute to this problem. In addition, people 

working in the design and analysis domains sometimes tend to view a product from 

different perspectives, and they may use different terminologies to describe the same 

product data, which makes communication more difficult. To make the information 

compatible, there may be a need to convert the data to a neutral format for use in the 

various applications by engineers. A lot of important design information including intent 

and rationale usually gets lost during the data conversion process..  

To solve this problem, there are several critical challenges that need to be 

acknowledged in the CAD/CAM/CAE integration: 
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1. The challenge of multiple representations of a product from different 

perspectives: Since CAD/CAM/CAE are relevant to many different domains in 

engineering, each perspective within a domain represents specific knowledge of a given 

product. There is no uniform format or terminology to represent certain kinds of 

information, since people use different informal tools to present thoughts, such as word 

documents, voice, video, etc. This sometimes makes the exchange of information 

difficult. 

2. The challenge of integrating programs working in different domains: Whether a 

representation is useful or not depends on what activities are being performed with the 

product data. For example, design features that are useful to a CAD user are not 

necessarily useful to an analysis engineer, and vice versa, though both sets of engineers 

are referring to the same product data. Furthermore, there is no simple way of mapping 

from one representation to another.  

Ontology is a form of knowledge representation that uses a set of concepts in a 

domain and the relationships between them. Axioms and rules can also be used to 

enhance the expressiveness. 

In this dissertation, an architectural framework with an ontology-based knowledge 

system is proposed to integrate different CAD/CAE programs. In this framework, a 

semantic level integration can be achieved by building representations of a product from 

different perspectives using ontologies and translating different representations from one 

perspective to another using ontology mapping.  This dissertation will also demonstrate 

how to improve the interoperability, reusability and scalability of an integration 

framework.  
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Chapter Two -  Literature Review  

 
There has been much research, relevant to the integration of CAD/CAE 

applications, which focuses on integration frameworks, product information modeling, 

and the methodology of integrating applications. Ontology applications have been an 

active research area in which researchers try to solve the interoperability problem using 

ontology mapping.  Also ontology is used to capture rich semantics during the design 

process. 

 

2.1 Integration Framework 

An integration framework coordinates heterogeneous tools and product models in 

a unified and streamlined manner and provides an infrastructure for explicitly capturing 

information flow and engineers’ rationales in the product design and analysis processes. 

An integration framework gives engineers more flexibility in choosing suitable tools and 

enables them to focus on accomplishing their goals without having to construct a 

complex unified model. There have been many frameworks proposed for integration of 

applications in Product Lifecycle Management (PLM), mostly focused on solving the 

problem of interoperability. Several technologies have been developed in two key 

categories: 

1) Middleware has been developed using CORBA, DCOM, and Java RMI to 

serve the whole system architecture and improve the communication between 

applications. All applications must obey certain protocols in order to communicate with 
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each other. In a distributed design simulation marketplace[1], an object model 

representation is presented, and the object-oriented service object serves as a middleware 

to communicate with the individual components and to manage information, data, or 

relations between user-defined data and the CAD model. Application middleware has 

been developed using Java RMI to integrate distributed applications such as the common 

manufacturing application middleware[2]. 

2) Standard exchange formats, such as STEP, IGES, etc. have pre-built concepts 

and relations to promote interoperability. In this approach, all the data exchanged in one 

framework must use the same format. Usually, CAD models in a standard format are 

stored in a central or distributed database and shared with different applications[3]. Some 

existing projects using these standard exchange formats include a web-based integrated 

product development platform for concurrent design manufacturing of sheet metal[4]. 

This design is based upon an information integration framework using STEP files and a 

STEP-based method and system for concurrent integrated design and assembly 

planning[5].  

 

2.2 Product Information Model 

In a design/analysis integration framework, different applications working on the 

same product design need to exchange information based on the product information 

model. Current research activities focused on the integration of engineering applications 

have identified product data representation as a key issue for design research and 

development[6-9], especially for solving the problem of interoperability. In the era of 
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PLM, this problem is becoming even more important; PLM requires that a product be 

managed throughout its whole lifecycle. Therefore, one of the fundamental problems in 

an integration framework that supports PLM is that of representing all the information 

about a product from different phases and in different perspectives, and thus translating 

product data from one representation to another. 

For some integration frameworks where only certain types of products are involved, 

customized model templates can be used to translate product models[10].  However, the 

scope of this kind of product model is limited; only those products that can share the 

same template can be used in the integration. 

In addressing the issue of interoperability, feature-based product design 

representation[11] is used as one of the most important technologies for 

CAD/CAM/CAPP integration. A feature can be regarded as a meaningful geometric 

construct that contains both geometry and manufacturing information[12-14]. However, 

there still remain several problems for integration using feature-based technology.  

Firstly, there is the issue of semantics. What this means is that for the same product, there 

can be different feature representations in different domains. There are often problems 

related to how to extract features from different perspectives and translate them to other 

representations. Secondly, it is often hard to use the concept of features in certain 

domains beyond design and manufacturing, such as ergonomics evaluation or assembly 

simulation. In these domains where some parameters and structures (e.g. ergonomics 

rating) cannot be described using only features, this concept lacks the necessary 

information for those domains and is also difficult to extend. Thirdly, from some 
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perspectives, feature is not used to describe the design/analysis and is not a relevant tool 

at all. 

Several other important and effective product information models have been 

proposed to address the issue of product lifecycle management and some models have 

been considered using knowledge representation to address terminological and semantic 

issues [15-18]. Along with the product information model, an elegant design information 

flow model in design is also presented[19]. Requirements of a next-generation product 

development system is proposed as a system “that can collaborate using a heterogeneous 

set of software tools, and still exchange information meaningfully and pass knowledge 

between various phases in the process” [15]. In order to achieve the above goal, a formal 

knowledge representation with the following features has been identified: 1. Not tied to a 

single vendor software solution; 2. Open and non-proprietary; 3. Simple and generic; 4. 

Extensible by allowing augmentation of the core with additional concepts to create a 

broader engineering context; 5. Independent of any one product development process; 6. 

Capable of capturing that portion of the engineering context that is most commonly 

shared in product development activities[14]. 

 

2.3 Product Data Format 

Even for the same product information model, the format that the data uses could be 

different. As an international standard, STEP-ISO 10303[20] was adopted as a core data 

model in many integration frameworks[21-25]. STEP is a standard for computer-

interpretable representation and exchange of product data through out the whole product 
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lifecycle. Primarily, EXPRESS is used to describe the data model. Several data formats 

are provided for application data to be exchanged, including STEP-XML, STEP-file, or a 

shared database. Some of the shortcomings of STEP include its lack of model-reusability 

and extensibility and the fact that, if it is not self-describable, it is difficult to use in 

product data semantics. 

2.4 Capturing Product Data Semantics 

Although product data semantics can be represented in some product information 

models, it is still difficult to actually capture this information. The primary obstacles are 

the technical challenges of organizing and managing knowledge and the design 

challenges of a human-centered approach to building a useful and usable product data 

semantics recording system[7].  

A team of designers model a 3-D layout and semantically-grounded behavioral 

description of a product or device[26]. The device’s key features include integration of 

functional modeling with sketch-based conceptual design; and group authoring of design 

semantics. In MUG, a Multi-Session Distributed Conceptual CAD Environment, a user 

can annotate a design using a pre-defined ontology that has a function-behavior-structure 

form. DAML is used as the ontology language. Some design primitives are used to 

describe structure. 
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2.5 Ontology 

“In both computer science and information science, an ontology is a data model 

that represents a domain and is used to reason about the objects in that domain and 

relations between them” [27].  

As an important technology in Artificial Intelligence to share and reuse 

knowledge, ontology was proposed as a solution to a lack of interoperability. Ontology 

can be regarded as “an explicit specification of conceptualization”[28], or defined as 

“domain theories that specify a domain-specific vocabulary of entities, classes, 

properties, predicates, and functions, and a set of relationships that necessarily hold 

among those vocabulary items. Ontologies provide a vocabulary for representing 

knowledge about a domain and for describing specific situations in a domain” [29]. For 

example, a wine ontology[30] can define taxonomy of wine and classify Wine as type of 

WhiteWine, Loire, WhiteLoire etc. and in the wine ontology the relations between types 

of wine can also be defined such as WhiteLoire is an intersection of Loire and 

WhiteWine which means an instance of WhiteLoire is both Loire and WhiteWine. 

 

2.5.1 Design Ontology 

 A general ontology for design concepts is proposed to describe the interactions 

between design concepts[31]. An extended device ontology is proposed to describe 

artifacts based on intended use as a composite of devices that processes input and 

produces output[32]. 
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Process Specification Language (PSL)[33] has been developed at NIST and is 

written in Knowledge Interchange Format (KIF) as an interlingua for different 

manufacturing process applications to exchange information. The focus of PSL is to 

represent and capture manufacturing process-specific data only. Concepts that need to be 

represented in product data, such as design rationale, function, behavior, and interpart 

relationships, cannot be represented using PSL. 

A Product Semantic Representation Language (PSRL) [34] based on formal 

description logic (DAML+OIL) is used to encode semantics. Mathematical logic and 

corresponding reasoning are used to determine semantic equivalences between an 

application ontology and PSRL. In the project, only exact equivalences between two 

ontologies are considered.  This is significant but limits ontology mapping on the feature 

level. Also, it is not discussed that how to automatically find equivalences between two 

ontologies.  

Ontologies have been and are currently being used in several projects to represent 

conceptualizations of products and capture product data semantics [35-39]. Furthermore, 

in the integration of engineering applications, ontologies have been used in many projects 

to solve interoperability problems including semantic clashes and multiple translators. 

Approaches were developed in those projects can be categorized into two types: 1) using 

a shared, common ontology; and 2) using ontology as an interlingua[39]. As an 

integration framework consisting of existing heterogeneous applications that use different 

languages to represent data, the latter approach seems to be a better choice. For example, 

PSL[40;41] is used to represent ontologies in the manufacturing process, which works as 

an interlingua to integrate a process modeling tool and scheduling tool. However, in this 
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integration process, it is always supposed that the semantics have already been built and 

that the ontology merely acts as a translator. Inference support is being added and 

improved. In a concurrent distributed design environment for exchanging product data 

semantics, it is important for an integration process to be able to capture the product data 

semantics during the information exchange and use an inference tool to make further 

assertions. 

A “car seat” ontology is built to provide a shared conceptualization of the product 

requirement, which encapsulates the required functionalities, design parameters, 

performance criteria, structure and geometry[42].  

 

2.5.2 Supporting Technologies for Developing Ontology  

Recently, several ontology definition languages have been created during the 

development of the semantic web[43;44] such as RDF, RDFS[45-47], and OWL[48], and 

are widely accepted as important ontology languages. Some other ontology languages 

were developed based on these for the purpose of engineering integration, such as PSRL, 

developed at the University of Michigan[34].  

OWL is already used extensively in describing product family modeling since it 

can store the structure of the product family as well as the evolution of different 

components of the product family. There are several other development tools supported 

globally by different research groups such as Jena[49] and Protégé [50]. Jena, a Java 

framework for building Semantic Web application, provides a programmatic environment 

for RDF, RDFS and OWL, and also includes a rule-based inference engine. Protégé is an 
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ontology editor that also supports ontology building using RDF, RDFS and OWL. 

Similarly, OilEd also provides this kind of functionality. Reasoners such as RACER and 

FaCT also support reasoning for RDF, RDFS and OWL. 

 

2.5.3 Ontology Mapping 

 Even in describing the same subject, different ontologies can use different 

concepts/terminologies. Using ontology in integration itself doesn’t solve interoperability 

problem, it just raises heterogeneity from data level to a semantic level. To solve the 

interoperability problem, ontology Mapping is one of the critical techniques in 

reconciling differences between ontologies thus enabling semantic information exchange. 

Ontology Mapping is used to find relationships between entities, given two ontologies 

that describe each in a set of discrete entities. It is sometimes referred to as “Ontology 

Alignment”.  

 The main issue in Ontology Mapping is finding what entity in one ontology 

corresponds to that in another. Basically, there are two ways of discovering mapping: 

either by using a shared ontology; or by using a heuristic-based approach. A general top 

level ontology is normally built to describe some commonly accepted concepts such as 

time and space. Other domain-specific ontologies are built upon the general top level 

ontology so that all the concepts in it can be used as standards for calculating similarities 

between them. This method may be difficult for semantic web integration since it is 

impossible for all ontologies developed globally to follow one general ontology. 

However, it is ideal for a specific domain, which has many sub-domains, as a core 

ontology for the domain can be built and other sub-domain ontologies can be built upon 
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that. Examples include SUMO[51] and DOLCE[52]. An integration framework was 

developed using PSL for the purpose of integrating manufacturing processes[53]. 

 Compared to the method of shared ontology, the other method tends to use a 

heuristic-based approach, such as data analysis, machine learning, statistics, or 

knowledge representation. For example, PROMPT[54] regards ontology as a graph, and 

finds similar nodes by comparing nodes in similar paths with the same start and end 

nodes.  Other methods include  combining weighted similarities in different definitions in 

OWL, such as domain, range, and properties[55]; and a method of finding class 

equivalence in two ontologies that share instances using formal concept analysis[56]. 

Recently a framework for integration based on ontologies has been proposed and a 

mapping algorithm is developed based on a whole set of mapping axioms[57]. The 

proposed framework uses a common upper level engineering ontology to represent 

semantics, and the ontology mapping is limited in the local level ontology which is used 

to represent each specific design model. 
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Chapter Three -  Problem Statement, Proposed Solution, 
And Scope of Work 

 

This chapter identifies some of the higher-level limitations of the current 

CAD/CAE integration frameworks and seeks to identify certain specific limitations that 

are a sub-set of these higher-level limitations and will be addressed in this dissertation.. 

Also included is a brief description of the approach used to address these issues that is 

followed by a description of the scope of work and an organization of the disseratation. 

 

3.1 Problems of CAD/CAE Integration Framework 

A product is considered from different viewpoints and perspectives, and different 

representations and terminologies may be used by each viewpoint. For example, consider 

an automobile interior design evaluation. One viewpoint may focus on ergonomic 

comfort and accommodation while another may focus on assembly simulation for the 

dashboard. The representation of the product, the terminology used, and the 

communication of the results of these analyses vary greatly despite the fact that the 

underlying product is the same. 

Unfortunately, most ensembles of engineering software tools only understand 

their own knowledge representations are not adaptable to others; furthermore, there are 

few general frameworks and approaches for enabling this adaptability.  Although each 

engineering software tool can solve a problem within its scope in an effective manner, 

when there is a task requiring collaboration between people with different expertise and 
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tools, these tools do not talk to each other effectively.  The data formats for these tools 

vary greatly and, more importantly, the results generated in one system based on its own 

knowledge representation cannot be understood in another. Product data semantics 

generated throughout the design process cannot be collected efficiently and are almost 

always discarded.  This impacts the efficiency and survivability of the ensembles that are 

cobbled together. There are several critical barriers:  

• A lack of an approach to build knowledge representation of engineering 

design/analysis, in a manner that is a) easily expandable, b) customizable 

for traditional and non-traditional (e.g. virtual prototyping) design 

information systems. c) capable of sharing of product data semantics 

across all these heterogeneous systems to support distributed, 

collaborative engineering capabilities  

• A lack of a way to capture the product data semantics and record design 

intent and design history 

• A lack of a way to translate product data based on one knowledge 

representation to one based on knowledge representation. 

Thus, it is becoming increasingly important for people to share their product data 

semantics and rationale in such a way that there exists a true integration of the product 

model data and support for diverse compositions with engineering application ensembles 

and diverse viewpoints. Although engineering firms are using a number of software tools 

in the product development cycle, these tools do not talk to each other very effectively. 

The knowledge representations behind the data vary greatly and the results generated in 

one system cannot be understood in another system. This miscommunication has led to a 
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significant focus in recent years on PDM and PLM. Most traditional integration efforts 

have focused on pure data exchange, but there is a lack of effort in attempting to translate 

data at a semantic level.   

 

3.2 Problem Statement 

Relatively new software technologies, such as tools for developing ontology, are 

now making feasible the exchange of semantic information among engineering 

applications. For example, through proper integration of software tools, a user of 

commercial ergonomics software should be able to exchange product data semantics with 

a commercial CAD software user to communicate what needs to be modified and why. In 

addition to providing a common thread for communication, the use of ontology will also 

ensure that this information becomes part of the product model and the development 

process. This level of integration is referred to as “integration at a semantic level”.   

In order to focus our investigation, we concentrate on the representation of 

product data semantics information and methods for the exchange of product data 

semantics. The specific objective is: To model an approach based on ontology 

engineering for the semantic level integration of software tools for CAD/CAE 

applications, after identifying fundamental issues of interoperability problem in 

integrating these tools.  

Specifically, the following research questions are investigated: 

1) How to build knowledge representation, such that different engineering 

applications can have their terminologies/knowledge easily represented and reused. 
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2) How to represent an engineer’s understanding (product data semantics) about a 

product design by associating CAD data to knowledge in engineering design and 

analysis. 

3) How to find the similarities between different knowledge representations that 

are from different viewports, and use these similarities to translate product data semantics 

that is based on them.  

 

3.3 Proposed Solution 

The proposed approach is to build an ontology-based knowledge system in an 

integration framework. The requirements, specifications, parameters, description, data, 

and model (collectively referred to here as “concept”) of a design vary vastly depending 

on the viewpoint of the engineer or design activity.  From different viewpoints, different 

concepts can be applied to a design. By building these concepts into ontologies, different 

viewpoints of a design can be represented through domain-specific concepts and 

terminology. This provides an environment for the variety of applications involved in the 

design process to describe a design/simulation decision in their own languages. By 

mapping the ontology of the concepts of one viewpoint to concepts in other ontologies, 

representations of a design from different viewpoints can be interconnected and 

exchanged.  
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3.4 Scope of Work 

 The research described in this dissertation focuses on realizing the solution 

proposed above through design and integration of the following: 1) An integration 

framework prototype that would allow applications in engineering design/analysis 

domains to exchange design semantic information; 2) An ontology architecture to capture 

and describe the product data semantics during the design and analysis processes; 3) A 

method to translate product data semantics used in one ontology to semantics used to 

describe concepts in another– specifically, how to discover mapping information between 

different semantic information; and, 4) A method of representing the mapping 

information between semantics in different domains/applications so that the information 

generated in the translation process  can be retrieved during the 

integration/communication process.  

Among the above tasks, the most important aspect of enabling semantic 

integration is that of discovering the relationship between different entities in different 

ontologies in order to translate semantics.   

 

3.5 Organization of the dissertation 

The dissertation is organized as follows: 

Chapter 4 describes the overall architecture of the framework, including a description 

about the working mechanism of the framework. 

Chapter 5, 6 describe how knowledge of engineering design and analysis in different 

domains is built into ontologies in a layered structure. Chapter 5 discusses the knowledge 

in the domain and application level. Chapter 6 discusses the knowledge in a general level. 
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Chapter 7 describes how product data semantics is captured using the knowledge 

acquired in chapter 5 and 6. 

Chapter 8 describes how to calculate similarities between ontologies so to translate 

product data semantics described by the concepts in different ontologies. 

Chapter 9 shows how the mapping information between different product data semantics 

is represented 

Chapter 10 shows an example scenario in which a sample assembly is designed and 

simulated in different software packages and an integrated process is made to exchange 

information between them. 

Chapter 11 discusses conclusion and future work 
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Chapter Four -  Architecture of CAD/CAE Integration 
Framework  

 

This chapter discusses in detail the architecture of the proposed integration 

framework, which supports integrating design and analysis applications at the semantic 

level. The essential components of the proposed system are as follows: 1) Ontology 

builder; 2) Ontology mapping tool; 3) Custom tools. The requirements and details of each 

of these components are discussed. 

 

4.1 Requirements of Integration Framework  

The requirement of the proposed integration framework is to support an approach 

for integrating engineering software systems in a manner that can adapt to varying tools 

and points of view. There is a collection of design activities, which usually focuses on 

different aspects of a product and is performed by people with different areas of expertise 

using a variety of engineering applications tools. Opportunities for adaptive design 

analyses have been classified into two categories: 

 1) Composition adaptability:  The software world today is one of great diversity.  

Thousands of software products are available to users today, providing a wide variety of 

information and services in many different domains.  A diverse array of design and 

analysis tools and software systems are available to compose an ensemble that supports 

collaboration for any design analysis. Although a number of methods have been proposed 

and implemented by various researchers in an effort to integrate engineering applications, 
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these methods all propose to integrate the data for a fixed set of applications. However, 

different design analyses require different combinations of tools. In addition, new 

systems may be added after the initial integration in order to provide enhanced support 

for a particular analysis. For example, an evaluation scenario may consist of the design 

engineer at one location using an immersive application to communicate with an 

agronomist using a human factors analysis application at a different location.  This 

collaboration must allow the two designers to work on the same product using the 

application of their choice, while the software tools communicate. Getting programs to 

work together often necessitates extensive work by users and developers. 

 2) Viewpoint adaptability: A product is considered from different viewpoints and 

perspectives, and different representations and terminologies may be used in each 

viewpoint. For example, consider an automobile interior design evaluation. One 

viewpoint may focus on ergonomic comfort and accommodation while another may 

focus on assembly simulation for the dashboard.  The representation of the product, the 

terminologies used, and the communication of the results of these analyses vary greatly, 

though the underlying product is the same. 
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4.2 Integration Framework Overview 
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Figure 4 - 1 Structure of Integration Framework 

 

In the framework, there exist the following components: 

 
1) Ontology Builder, used to build ontologies for different engineering 

applications. Viewpoint-specific knowledge including concepts and their relationships 

are captured using an Ontology Builder. 

2) Ontology mapping tool, used to translate knowledge associated in one specific 

domain to knowledge in another.  

3) Custom tools, used to connect the engineering applications to the knowledge 

by creating an instance layer (product data semantics) to link actual data to the concepts 

in ontology.  



 22

The framework also contains an ontology implementation, which contains 

concepts about the knowledge in various areas, including design ontology and other 

viewpoint-specific ontologies. Product ontology defines the concepts of a product design 

which mainly includes the definitions of functions, behaviors and forms, and properties 

that necessarily describe the product. Viewpoint-specific ontology defines the concepts 

from specific viewpoints (e.g. ergonomics; assembly simulation). Relations between 

these ontologies exist so one ontology can be mapped to another. We focus on Product 

Design and Product Analysis in this dissertation, with the former being the source and the 

latter being the target. 

 

4.3 Working Mechanism of Integration Framework  

In the design process, product information can be described in terms of product 

concepts and product data. For example, an automobile dashboard can be described using 

concepts of Panels and Gadgets and their product data such as geometry, sizes, positions 

etc. Our overall solution for exchanging product data semantics is to use ontology to 

interpret product data, and then use ontology mapping to translate concepts into other 

viewpoints (different terminologies), so that the interpretation of product data can be 

semantically translated. 

Heterogeneous applications implicitly use different knowledge bases to interpret 

product data. To improve the interoperability, this knowledge needs to be explicitly built 

into engineering ontologies as concepts and their relations. To associate the knowledge in 

engineering ontologies to product design, instances of concepts are instantiated with the 

product data. Since in different knowledge bases the concepts and relations vary 
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significantly, through mapping between ontologies, the concepts used in a source 

ontology can be translated into a target ontology, and then a new instance can be created 

that corresponds to the translated concept in the target ontology. Thus, the product data 

representation in one application can be translated into another. 

The procedures are as follows: 

• Capturing Product Data Semantics by defining relevant engineering ontology 

concepts and instantiating these concepts with specific product data 

1) Define Product data semantics by building engineering ontologies for both 

product design and product analysis 

 General Design Ontology (GDO) is used as a shared upper-level 

ontology. The commonly accepted concepts used by all the design, 

analysis and other domains to describe a product design are 

collected into this ontology. For example, to describe a design, 

three types of attributes, function, behavior, and form are used in 

the ontology. For example, in the function layer, functions of a 

dashboard can be described as providing dynamic feedback, 

control, and storage, and each function can have several sub-

functions: providing visual feedback, scale plate to display text, 

and scale. 

 For the product design (source), a Product Design Ontology (PDO) 

that includes a domain-specific ontology layer for assembly design 

domain and an application-specific ontology layer for 

Pro/Engineer is created. For example, if an assembly is designed 
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by using Pro/Engineer, based on GDO, PDO uses concepts and 

terminology used assembly design domain and also the specific 

concepts that only used in Pro/Engineer to describe the design 

process, such as concepts of constraint and specific constraint 

types.  

 On the other hand, for the design analysis (target), a design 

analysis ontology is built to describe the concepts; for example, an 

Assembly Simulation Ontology (ASO) defines the concepts of 

assembly simulation and their relations, such as Assembly 

constraint, joint, assembly hierarchy, etc.  

2)   Associate product data semantics to real product data by instantiating 

concepts in source ontology 

A product is first defined using the concepts in PDO, and, according to the 

concepts, parametric product data is extracted from the product database. A file consists 

of ontology instances in OWL is created as product data semantics, which instantiates the 

design concepts with the actual data. 

• Translate Product Data Semantics by defining Ontology Mapping 

In both the domain of 3-D parametric feature-based design and the constraint-

based assembly simulation domain, different concepts are used to describe a product 

design from different perspectives. However, these concepts can be translated as they 

eventually relate to the same information of a product design; certain concepts of a 

product design (for example, information in feature about geometry) in PDO can be 

related into concepts in ASO (geometry, material, etc.). A method is developed to 
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calculate the similarities between these concepts, thus helping to map one concept in 

product design ontology to a similar concept in assembly simulation ontology. 

By identifying and translating concepts that refer to the same product design 

information between the two ontologies, instances of concepts in PDO and their attributes 

are extracted from the previous product data semantics and translated into new product 

data semantics which consists of instances of new concepts and attributes in ASO Tthe 

new product data semantics described by concepts in ASO can be easily understood by 

assembly simulation tool and eventually will help original product data to be converted 

into a data representation that assembly simulation tool can read. An intermediate file is 

used to record the mapping information. 

The process is illustrated in Figure 4-

2:

 

Figure 4 - 2 Working Mechanism of Semantic Level Integration 
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4.4 Benefits of the Framework 

o 1) Interoperability:  By defining ontologies from different viewpoints and 

building mapping between them, a product design including design intent and history can 

be captured and translated to different applications. A design/analysis result described 

using terminology of a certain viewpoint can be translated into terminology of another. 

Further, interoperability is enhanced by defining ontology as an intermediate data model, 

so that product data may be translated into or from the data model before it is exchanged 

between CAD/CAE applications. 

o 2) Reusability: A product data model is built into concepts and product data 

semantics files separately. This representation, particularly the concepts, can be reused 

and shared. 

o 3) Scalability: the layered structure of engineering ontology makes it easy to add 

new ontologies to the existing framework for new integration, allowing for adaptability in 

composition. 
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Chapter Five -  Defining Product Data Semantics Using 
Engineering Ontologies 

 

5.1 Introduction 

During CAD/CAE integration, heterogeneous applications use different 

knowledge to represent product data. Different terminologies and data types are used. As 

a result, the product data semantics generated in one application in a certain domain 

cannot be understood in other applications.  

Product data semantics is defined here as an “understanding about the data of a 

product design based on certain engineering design/analysis knowledge”. A product is 

considered from different viewpoints and perspectives, and different representations and 

terminologies may be used in these different viewpoints. Hence there are different 

product data semantics. For example, consider an automobile interior design; one 

viewpoint may focus on ergonomic comfort and accommodation while another may 

focus on assembly simulation for the dashboard. The representation of the product, the 

terminologies used, and the communication of the results of these analyses vary greatly, 

though the underlying product is the same.  

This chapter presents an overall method of capturing product data semantics to be 

utilized in a CAD/CAE integration framework. In contrast to traditional integration 

framework where information exchange is primarily limited to a pure data level, our 

process deals with both concepts and instance data.  It allows the discovery of mapped 

concepts between source and target, and then the translation of instance data from the 
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source, which is originally in terms of the source concepts, to instance data in the target, 

now in terms of the target concepts that were discovered and specified in the mapping.   

In this dissertation, a method of capturing product data semantics is created in two 

steps:  

1) Build engineering ontologies for each specific application, which includes 

three layers: general design ontology layer, domain-specific layer and application-

specific ontology layer; and  

2) Create interpretation about product data by associating instantiating concepts 

with product data 

 

5.2 Methodology of Building Engineering Ontologies 

 Methods of building engineering ontologies have been explored by many 

researchers. In this dissertation, in addition to the existing process of building engineering 

ontologies summarized [58], the following steps are used: 

 1) Specify the required taxonomies for general design; 

 2) Specify axioms for general design; 

 3) Specify the required taxonomies for specific engineering design/analysis 

domain;  

 4) Specify axioms in the specific design/analysis domain; 

 5) Specify the required taxonomies for specific application; 

 6) Specify axioms for specific application; 

 7) Identify existing taxonomies that can be used to fulfill the specifications; 

 8) Create new taxonomies if none exist. 
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5.3 Define the classes and their relations     

 As a powerful ontology editor and knowledge acquisition system, Protégé is used 

to define knowledge in ontologies. Figure 5-1 shows an example of classes and class 

hierarchies for product design in Protégé.  

Based on concept definitions, relations between concepts are defined by using a 

basic expression in ontology that described in OWL/RDF as a Subject-Property-Object 

triplet form, which means a subject concept has an object concept as its property. 

 

Figure 5 - 1 Class Hierarchy in Protégé  
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5.4 Layered Structure of the Ontology in Semantic Web 

 In this dissertation, methods from semantic web technologies are used to model 

engineering ontologies. The general structure of the semantic web layer structure 

developed by Tim Berners-Lee, as shown in Figure 5-2 [59], presents the fundamentals 

of the system. It consists of new web languages such as metadata languages (XML/RDF 

etc.) and logic languages, which can be used to describe rules, proofs and logic[60].  In 

this dissertation, we have built an infrastructure of ontology that is similar to Figure 5-2, 

but simplified.  It has the layers shown in Figure 5-3.  Each layer is incrementally built on 

the previous layer and incorporates more specific value into the whole architecture.  A 

description of the individual layers is as follows:  

1)  The Unique Resource Identifier (URI) layer provides the capability to identify 

resources uniquely and globally. 

2)  The XML layer enables the data interoperability and the syntactic interoperability 

by defining the data format. It provides syntax for formatting and tagging data. XML 

documents are more flexible and easier to understand compared to other existing formats, 

such as HTML. Together with XML schema and other tools, data exchange is made 

much easier. 

3)  The RDF/RDFS layer uses the triplet concept of Subject-Property-Object as the 

foundation of the engineering ontology to describe the basic object relationships. 

4)  The OWL layer provides semantic interoperability by further enabling describing 

objects and their relations, and reasoning on them. 
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5)  The RULE layer overcomes the expressive restriction of OWL and describes more 

complex relationships. In this dissertation, Semantic Web Rule Language (SWRL) is 

used as the RULE language. 

 

 

Figure 5 - 2 W3C Semantic Web Layer Cake 
 

 

Figure 5 - 3 Structure of Engineering Ontology 
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5.5 Layered Structure of Engineering Ontology 

In our integration method, product data semantics is built upon product data. 

Product data semantics is represented in two parts: knowledge base consisting of 

ontology concepts and their relationships; and instances of concepts that instantiated from 

the product data. The knowledge base describes the general and basic knowledge in 

different domains using concepts, relations, properties and axioms in engineering 

ontologies. Instance layer consists of instances which instantiate concepts in engineering 

ontologies, which then represent each piece of the design information in real product 

data. Instance layer plays as a role linking the knowledge to the actual product data. Their 

relationship is depicted in Figure 5-4. 

An ontology is composed of the following:  

 1) Knowledge Representation using concepts 

 2) Instance data based on instantiation of concepts 

Within knowledge representation are contained: 

 1) Axioms to state the facts in an ontology 

 2) Inference Rules 

 3) Concepts/Classes 

 4) Relations 

 5) Slots/Roles/Properties 

 6) Facets 
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Figure 5 - 4 Relationship between Ontology and Product data 
 
 

A layered structure of ontology as shown in Figure 5-5 is used to build 

engineering ontologies in the product design/analysis domain: The three-tier ontology 

structure includes general design ontology, domain-specific ontology, and application-

specific ontology.  Each layer is built upon the previous one.  

 

General Design Ontology 

Domain-Specific Ontology 

Application-Specific Ontology 

 

Figure 5 - 5 Engineering Ontology Layered Structure 
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1) General design ontology describes basic elements that represent commonalities 

in the product, which can be applied to any domain in design/design analysis. It includes 

the following commonly accepted concepts: 1) Basic attributes to describe a design, such 

as form-function-behavior triple concepts. 2) International standards about products, such 

as material names, properties, etc. 3) Common terminology, such as geometry primitives, 

mathematical terms, etc. 

In Subject-Property-Object triplet expression, property is used to describe the 

relations between concepts, in general design ontology, basic properties are defined in 

this layer: is-a, part-of; attribute-of; external-reference, which can be used as base 

properties so other more specific properties can be inherited from, for example, 

is_geometry_attribute_of property is based on attribute-of property And 

has_feature/is_feature_of are inherited from part-of basic property to indicate the relation 

between concepts feature and component 

 • Is-a reflects the relation that one concept is a sub-concept of another, which is a 

common relation existing in ontology concepts definition and is a built-in type in 

RDF/OWL. 

 • Part-of , as a non-predefined relationship in RDF/OWL, defines ownership and 

is introduced  as a basic property because in CAD/CAE product data, part-of is a very  

common relation. In this dissertation, we use has_Child/has_Parent to represent this basic 

property..  

 • Attribute-of defines the relations between an object and its attributes. Attribute-

of property can have further sub-properties, such as hasFunctionAttribute, 
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hasBehaviorAttribute, and hasFormAttribute, which describe the relations between a 

ProductDesign and its three basic attributes.  

Regarding attribute-of and part-of relations, we define that the attribute-of relation 

can be transitive based on part-of relation, which means if A is part of B, then B will also 

have all the attributes that A has. A rule can be defined:  

Rule 5.5.1 for three concepts C1 and C2 and C3, if C1 has_Child C2 and C2 

has_Attribute C3, then it can be deducted that C1 has_Attribute C3.  

For example, according to the rule, if a component C has a feature F, and 

geometry attribute A is an attribute of feature F, then attribute A is also an attribute of 

component C. 

 • External-reference defines the relation in which one instance is related to 

another other than is-a, part-of and attribute-of relations. For example, Part A is 

constrained to Part B in an assembly, the constrained_to relation is an external-reference 

relation type which doesn’t fall under is-a, part-of and attribute-of relations   

Figure 5-6 is part of RDF/OWL sample code that defines concepts and relations. 

 

 

<owl:Class rdf:ID="Function"/> 
   <owl:Class rdf:ID="ProductDesign"/> 
   <owl:Class rdf:ID="Behavior"/> 
   <owl:Class rdf:ID="Geometry"/> 
   <owl:ObjectProperty rdf:ID="hasBehaviorAttribute"> 
     <rdfs:domain rdf:resource="#ProductDesign"/> 
   </owl:ObjectProperty> 
   <owl:ObjectProperty rdf:ID="hasFunctionAttribute"> 
     <rdfs:domain rdf:resource="#ProductDesign"/> 
   </owl:ObjectProperty> 
   <owl:ObjectProperty rdf:ID="hasGeometryAttribute"> 
     <rdfs:domain rdf:resource="#ProductDesign"/> 
   </owl:ObjectProperty> 
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Figure 5 - 6 OWL/RDF Sample Code of  Concepts and Relations 
 

2) Domain-specific ontology describes elements in a particular domain. 

Examples of domains include 3-D parametric feature-based geometric modeling, 

constraint-based assembly simulation, and product design ergonomics analysis. Each 

domain has concepts and relations described in this layer that are widely accepted by 

those work in this domain, but those concepts might not be recognized in other domain-

specific ontologies. Even if two domain-specific ontologies use the same terminologies, 

they may have different meanings. For example, in a 3-D parametric feature-based 

geometric modeling domain, the concept of feature is commonly understood and used by 

designers, regardless of what kind of specific feature-based CAD tools are used. 

However, in Computer Aided Manufacturing domain, the concept “feature” connotes 

different information than the concept “feature” in the design domain, since the latter is 

targeted at the manufacturing process and may imply manufacturing information. 

3) Application-specific ontology describes knowledge in a specific application. 

Even though in the same domain, different applications use different terminologies and 

concepts and their ways of representing the structure of design are also different. For 

example, some feature concepts being used to describe the structure of a product in CAD 

applications such as Pro/Engineer are different from concepts and terminologies used in 

other CAD applications, like Catia, Solidworks and Unigraphics. For example, the 

concepts BaseExtrude and BossExtrude in Solidworks correspond to the concept 

Extrusion in Unigraphics[34]. Another example is the fact that every system has its own 

way of defining a constraint; for the same type of constraint, Pro/Engineer uses Mate 

while Catia uses Contact. 
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5.6 Benefits of Layered Ontology Structure 

 The layered structure of the ontology structure ensures the extensibility of the 

framework. For any new applications being included in the framework, the ontology that 

describes its knowledge base can be easily created and plugged into the ontology 

framework since there is a mechanism for considerable reuse and also openness to bring 

in the unique and different elemnts of the new application. For example, an ontology to 

represent knowledge of product design based on application Solidworks can reuse 

structures from the existing general design ontology layer and domain ontology layer of 

3d feature based design that could have been created for an application using 

Pro/Engineer. 

 Additionally, the layered structure of ontology has the powerful advantage of 

limiting the ontology mapping effort to a local level and thus, improves its efficiency. For 

two different applications that fall under the same domain and share the same domain 

ontology, the ontology mapping only needs to happen on the application level. Sharing 

same concepts in upper-level ontologies also makes it easier to discover similar concepts 

in the lower-level ontologies. 
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Chapter Six -  Key Concepts in General Design Ontology 

 

In this dissertation, we create a general design ontology and build the 

fundamentals of product design that is acknowledged in design/analysis domains. In 

addition to the concepts about the final product design, such as product form and 

materials, additional ontology concepts are developed to capture the design intent and 

design history in order to improve communication between design and other analysis 

processes. 

This chapter discusses key concepts in a General Design Ontology with a focus 

on necessary concepts that will allow later for the integration of sample 

applications/domain-specific ontologies for a CAD system,Pro/Engineer, and an 

Assemby Simulation Environment. 

 

6.1 Basic Design Entity 
 

A design process can be defined as a process of collecting information related to 

product data, and the information collected can be divided into many units; each unit can 

have its own attribute and can be independent of the other units. In this dissertation, we 

define the basic element of design information that an engineer uses to describe a product 

design as Basic Design Entity (BDE). BDE can have following characteristics: 

1) A BDE normally has three basic attributes: form attribute, behavior attribute 

and function attribute. In most of the cases a BDE has at least a form attribute that relate 

to the geometry. 
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2) A BDE is used as a basic information unit during design/analysis. 

3) A BDE is independent of other BDEs, but there are normally interactions 

between them.  

Examples of BDE include the Feature concept in 3-D feature-based design and 

feature-based manufacturing, concepts of part, assembly, and joint in assembly 

design/simulation.  As we can see, in different design/analysis domains, design entities 

could differ and have different attribute definitions.  

 

6.2 Attributes of a Basic Design Entity 

In general design ontology, function-behavior-form triplet concepts are used to 

describe a product design process. All attributes of a Basic Design Entity are categorized 

as 1) FormAttribute; 2) BehaviorAttribute; and 3) FunctionAttribute.  

It is commonly accepted to use form-behavior-function to describe a product 

design attribute. For a design artifact, form is used to represent physical properties such 

as structure, geometric shape, and material, and behavior is used to specify the response 

under certain input conditions[18]. However, the use of these definitions is limited to the 

final result of a product design. As a result, much information generated during the 

design process cannot be represented by the attributes, such as design intent and design 

history.  

In our semantic integration, in order to enhance communication between 

applications at the semantic level, it is desirable to be able to exchange the information 

about how design/analysis is completed and why it is designed/analyzed in that way. 
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Further, if this information is captured, it can be also used for ontology mapping to 

discover matching concepts, as discussed in later chapters.  

To represent design process information in design ontology, in addition to being 

used to describe attributes of a final product design result, function-behavior-form 

concepts are extended to describe the information generated during product 

design/analysis process, specifically by extending behavior and form attributes. For 

example, information generated during design process such as how a product is created, 

the creation/manufacturing order etc. 

 

6.2.1 Form Attribute 

In General Design Ontology (GDO), a geometry ontology is built as a subset of 

form attribute ontology to represent geometry information of product design, where 

geometry is divided into the following categories: 1) Point; 2) Curve; 3) Surface; and 4) 

Solid. 

In this dissertation, we extend form attribute to describe any form attributes that 

are used during the design process. In other words, even those that do not become part of 

the final design and are only used as intermediate information in the design process are 

built into ontology, such as 2d profile and datum plane which are used as auxiliary 

information during 3d feature creation. 

According to its use, geometry can be also categorized into functional geometry 

and auxiliary geometry. Functional geometry is used to describe geometry that supports 

functionality of design, for example, the shape of a shaft to support the function of a 

transmitting torque. Auxiliary Geometry is used to describe the geometry used during the 
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design process that may not be part of the functional geometry and is only used as 

auxiliary information, such as datum plane, datum axis, feature profile, etc. 

 

6.2.2 Behavior Attribute  

Normally, a behavior attribute is closely associated with the final function of a 

design unit. Simply put, a behavior attribute is used to describe the behaviors of a product 

design in order to accomplish certain functions. There are different kinds of behavior, 

such as motions, deformation, etc.  

In this dissertation, this traditional description of behavior, as described above, is 

defined as functional behavior. For example, Assembly Constraint Behavior is used when 

two parts (or components) are combined to form an assembly, which could be described 

using terms of motion (or degree of freedom): Translation in x, y, z directions, and 

Rotation in x,y,z directions. 

However, in addition to functional behavior, we also want to capture those 

behaviors that occur during the design process, which can be used to present information 

such as design intent and history.  

Under the design behaviors, we identified at least the following two sub-classes: 

1) Design Constraint, Behavior such as parametric constraint, to describe the 

mathematical relationships between parameters; and 2) Design Creation Behavior to 

describe the way a 3-D feature is created,  such as by extruding or revolving a 2-D 

profile. 

 For example, in Pro/Engineer, a 3-D feature is usually created by a design 

creation behavior in a 2-D geometry (profile).  A geometric shape, such as a cylinder, can 
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be created in one of two ways: 1) A rectangle profile revolve around an axis; or 2) A 

circle profile extruded in the direction of the normal of the circle profile, as depicted in 

Figure 6-1 and Figure 6-2. 

 
Figure 6 - 1 Feature created using Extrude behavior      

 
 

 
Figure 6 - 2 Feature created using Revolve behavior 

 
 To represent the design intent captured in the design process, design creation 

behaviors are used along with Profile concepts; code in Figure 6-3 depicts the 

representation of a feature created in Figure 6-1, in which  an extrude behavior is used on 

a circular profile.  
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Figure 6 - 3 OWL/RDF Code of Extrude Feature  
 

Code in Figure 6-4 depicts the representation of the feature created in Figure 6-2, 

a rotate behavior on a rectangular profile. 

 

 

Figure 6 - 4 OWL/RDF Code of Revolve Feature 
 
                   

Function attribute is another important attribute.  However, in this dissertation it is 

not considered and is not the focus of this work. 

<Axis rdf:ID="axis_1"> 
  <has_start_point rdf:resource="#point_2" 
  <has_end_point rdf:resource="#point_3" 
</Axis> 
<Rectangle rdf:ID="rectangle_1"> 
  <has_width=5.0> 
  <has_height=10.0> 
</Rectangle> 
< Profile rdf:ID="Profile_2"> 
  <has_geometry_attribute 
rdf:resource="#rectangle_1"> 
</Profile> 
<RevolveFeature rdf:ID="revolve_1"> 
  <has_design_creation_behavior 
rdf:resource=Revolve_z> 
  <has_profile="#Profile_2"/> 
  <has_axis=10.0/> 
</RevolveFeature> 

<Circle rdf:ID="circle_1"> 
    <has_center="#point_1"> 
    <has_diameter=5.0> 
</Circle> 
< Profile rdf:ID="Profile_1"> 
  <has_geometry_attribute rdf:resource="#circle_1"> 
</Profile> 
<ExtrudeFeature rdf:ID="extrude_1"> 
  <has_design_creation_behavior 
rdf:resource=Extrude_z> 
  <has_profile="#Profile_1"/> 
  <has_extrude_depth=10.0/> 
</ExtrudeFeature> 
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Chapter Seven -  Building Application-Specific 
Ontologies  

 

This chapter discusses in detail the methods of building application specifc 

ontologies for the product design/assembly simulation based on the engineering ontology 

structure and the General Design Ontology concepts discussed in the previous chapters. . 

Specifically, it will focus on building two ontologies: one to support Product Design 

using Pro/Engineer, and the second to support Assembly Simulation using a virtual 

assembly environment called VADE.  Later sections discuss in detail how product data 

semantics are captured using these ontologies. 

7.1 Product Design Ontology  

7.1.1 Foundational Domain-specific Ontologies 

As a commercial product design package, Pro/Engineer covers different 

engineering domains.  Its functionality in geometric modeling is based on the technology 

of feature-based parametric design, and it also facilitates assembly design using spatial 

constraints. To build ontology for Pro/Engineer, we first need to build domain ontologies 

for parametric feature-based design and assembly design, which are the common 

concepts used in these domains, so the concepts specific to Pro/Engineer can be built 

upon them. An investigation was performed to find some of the most common and 

fundamental general concepts in feature based parametric design.  

 In the parametric feature-based design domain, we identify the following 

concepts: 1) Feature; 2) Parameter; 3) Design Constraint; 4) Feature_Tree 5) Feature 
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element; Figure7-1 shows the relations between the above concepts. Each link indicates 

ownership relationships. 

 

Figure 7 - 1 Composition Relations in feature based parametric design domain ontology  
 

 In the assembly design domain, we identify the following concepts: 1) 

Assembly_Hierarchy, an orderly hierarchy of the subassemblies in an assembly; 2) 

Assembly; 3) Component; 4) Component Constraint; and 5) Degree of Freedom. Their 

relations are illustrated in Figure 7-2. 
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Figure 7 - 2 Composition Relations in assembly design domain ontology  

7.1.2 Application-specific Ontology for Pro/Engineer 

In the application-specific ontology for Pro/Engineer, we build upon 

concepts/terminologies that are used in parametric feature-based design and assembly 

design.  

  

Extending Concepts from Parametric Feature Based Design Domain 

Extending the feature concept in the Parametric Feature Based Design Domain, 

we identified two basic types in the application-specifc ontology for Pro/Engineer: 

Datum and Solid; Datum has the following sub-types: 1) Datum_Coordinate_System; 2) 

Datum_Curve; 3) Datum_Plane; and 4) Datum_Point. For a solid feature, there exist the 

following sub-types: 1) Chamfer; 2) Extrude; 3) Fillet; 4) Hole; 5) Revolve; 6) sweep and 

7) Round. 
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In Pro/Engineer, a feature is defined to consist of feature elements, such as Edge, 

Surface , Point, and Axis, which can be regarded as its form attribute. Also behavior 

attribute based on concepts in GDO can be defined for each feature type. 

 

Extending Concepts from the Assembly Design Domain 

Since, as mentioned before, the Pro/Engineer application is also based on the 

Assembly Design Domain, concepts in the Assembly Design domain are now similarly 

extended for the application specific ontology.  For example, in the domain of Assembly 

Design, Pro/Engineer uses concept of component constraint to restrain the degree of 

freedom of each part in an assembly. Specifically, following component constraint types 

are used: 1) Align; 2) Align_Offset (align with offset); 3) Coord_Sys; 4) Edge_On_Srf; 5) 

Insert; 6) Mate; 7) Mate_Offset (Mate with Offset); 8) Pnt_On_Line; 9) Pnt_On_Srf; and 

10) Tangent. Each component constraint may have one of the following parameters: 

coincident (Boolean), offset (float point), or angle (float point). Figure 7-4 shows the 

taxonomy of Component Constraint defined in Pro/Engineer. 

 

Figure 7 - 3 PDO Component_constraint Taxonomy 
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In addition to the concept definitions, there is knowledge regarding some facts 

about the component constraint.  For example, when a constraint type is specified, it is 

required to specify on which geometry the component constraint is implemented. The 

user is asked to select a model item of a part; the valid model item types are plane, axis, 

point, edge, etc. According to the type of component constraint, the valid model item type 

could vary. The model item of the base part is defined as assembly reference, and the 

model item of the part that is to be assembled is defined as component reference. 

.  For example, in a component constraint with a type of Pnt_On_Line, the 

restriction of the selected model item of one part should be a point, and the selected 

model item of the other part should be a line. This information can be represented using 

axioms in Product Design Ontology: 

Axiom1: An instance of Component_Constraint has at least one 

assembly_reference and one component_reference, which can be represented in the 

following restriction: 

≥  has_assembly_reference min 1 

≥  has_component_reference min 1 

 

 Axiom2: An instance of Component_Constraint with type PNT_ON_LINE, must 

have an assembly_reference and a component_reference, being one Point and one Line-

type model item such as Axis and Edge, which can be represented in the following 

restrictions: 

∀ has_component_reference only (Axis or Edge or Point) 
∀ has_assembly_reference only (Axis or Edge or Point) 
 
The OWL source code to describe the axiom is as shown in Figure 7-3: 
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Figure 7 - 4 Sample OWL/RDF Code of Axioms  

 

Similarly, we have following the axioms for other constraints: 

Axiom3: An instance of Component_Constraint with Type INSERT must have an 

assembly_reference and a component_reference, being cylindrical surface, which can be 

represented in the following ways: 

∀ has_component_reference only (cylindrical_surface) 
∀ has_assembly_reference only (cylindrical_surface) 
 

      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="has_component_reference"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class> 
            <owl:unionOf rdf:parseType="Collection"> 
              <owl:Class rdf:about="#Axis"/> 
              <owl:Class rdf:about="#Edge"/> 
              <owl:Class rdf:about="#Point"/> 
            </owl:unionOf> 
          </owl:Class> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#Insert"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Mate"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="has_assembly_reference"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class> 
            <owl:unionOf rdf:parseType="Collection"> 
              <owl:Class rdf:about="#Axis"/> 
              <owl:Class rdf:about="#Edge"/> 
              <owl:Class rdf:about="#Point"/> 
            </owl:unionOf> 
          </owl:Class> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
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Axiom4: An instance of Component_Constraint with Type of ALIGN must have 

an assembly_reference and a component_reference being Axis, Edge or Surface, which 

can be represented in the following ways: 

∀ has_component_reference only (Axis or Edge or Point) 

∀ has_assembly_reference only (Axis or Edge or Point) 

And more similar axioms can be written for other types of constraint.  

7.2 Assembly Simulation Ontology  
After we choose an assembly simulation tool, an Assembly Simulation Ontology 

is built based on its knowledge. In this dissertation, we use Virtual Design Assembly 

Environment (VADE) developed in VRCIM Lab, Washington State University as our 

assembly simulation tool. 

7.2.1 Domain-Specific Ontology for VADE 

As VADE belongs to constraint-based assembly simulation domain, we identify 

the following concepts in this domain: 1) Assembly; 2) subassembly 3) Part; 4) Joint; and 

5) Assembly Constraint. 

Concepts Assembly, Subassembly and Part are used to represent the basic 

components in assembly simulation. 

Joint is defined as an aggregation of all Assembly constraints between two parts 

which represent total interfaces between two parts that interact with each other in an 

assembly.  

Assembly constraint is used to represent the concept of interface between two 

assembled parts in our Assembly Simulation Ontology (ASO). In an assembly, one part 

interacts with another through assembly constraint, and each assembly constraint is 



 51

implemented based on assembly features to reduce the degree of freedom of each part. 

The information about each interface, including the Assembly Feature, Assembly 

Parameter, Behavior Attribute (Degree of Freedom), is defined as Assembly_Constraint.  

1) Assembly Constraint  

Assembly constraint is the spatial constraint that limits the motion of a part in an 

assembly.  

2) Assembly Features 

As a sub-property of Form Attribute, Assembly features refer to those geometric 

features involved in assembly interaction, or those features on which assembly constraint 

is implemented.  In our Assembly Simulation Ontology (ASO), assembly features can be 

one of the following basic types 1) Point; 2) Curve; 3) Surface;  

3) Assembly Parameters  

Assembly parameters in Assembly Simulation Ontology refer to those key 

parameters that must be satisfied in order to meet the assembly constraint specification, 

for example, Offset and Angle.  

4) Behavior Attribute of Assembly Constraint 

In the previos chapters, we use function-behavior-structure triple concepts to 

describe Basic Design Entity. As an important BDE in assembly design/simulation 

ontology, assembly constraint uses Degree of Freedom as its function behavior.  

7.2.1 Application-Specific Ontology for VADE 

In the application level, specific types of assembly constraints are defined: 1) 

Align; 2) Coincidence; 3) Contact; 4) Fix; and 5) Offset. Figure 7-5 shows the taxonomy 

of the assembly constraint 
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Figure 7 - 5 ASO Assembly_Constraint Taxonomy  
 

Also, axioms are defined in the application-specific ontology level to specify 

restrictions and conditions that need to be satisfied for each of the constraint types, for 

example, for certain assembly constraints, following restrictions must be followed: 

Axiom5: Assembly_Constraint has at least two assembly_feature, which can be 

expressed as following restriction: 

≥  has_assembly_feature min 2 

 

Axiom 6 Contact constraint must have planes as its assembly features, which can 

be expressed as follows: 

∀ has_assembly_feature only (plane) 
 

Axiom 7 Align constraint must have either lines or planes.as its assembly features, 

which can be expressed as follows: 
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∀ has_assembly_feature only (line ∪  plane) 
 

7.3. Capturing Product Data Semantics for product data  

In relation to product data, product data semantics refers to the “meaning” of data. 

After concepts are built into the engineering ontologies, these concepts need to be 

instantiated with data from the actual product.  Product data semantics is generated by 

associating each product data to its “meaning” and this is done by instantiating concepts 

with product data. 

 
 

7.3.1 Methodology of Capturing Product Data Semantics 

The process of capturing product data semantics can be regarded as a process of 

instantiating concepts with instances. To capture product data semantics, according to the 

concepts from a viewpoint, and based on the pre-defined concepts and their relations in 

engineering ontology, instances are created to represent the product data..  

Since most of the commercial CAD/CAE applications provide open API to access 

information from the application, information about the product structure can be obtained 

by calling the API to build the instances. After the pre-built ontology is created, based on 

the existing concepts, an application is built to automatically extract the product 

information from the CAD database for instances.  



 54

 
Figure 7 - 6 Programming API to link ontology to product data  
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7.3.2 Interpreting Product Data Using Product Data Semantics 

Product data semantics describes the structure of product data using predefined 

concepts, instances, and their relations. Instances of concepts are used as main 

components in product data semantics to link product data to the concepts in the ontology 

layers. Figure 7-7 shows a simple part created in Pro/Engineer which consists of two 

features: an extrusion feature and a hole feature, including their key dimensions. Code in 

Figure 7-8 is generated in custom tools based on Pro/Engineer APIs and ontology toolkit 

Jena to represent product data semantics of the part 

 

 

Figure 7 - 7 Features created in Pro/Engineer  
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Figure 7 - 8 Instances of a Simple Part 
 
 

In this product data semantics, the following concepts in Pro/Engineer application 

ontology are used: Hole, Extrusion, which are two types of features; Hole_Depth, 

property of Hole, which is used to describe the depth of the hole;Hole_Diameter, 

property of Hole,which is used to describe the diameter of Hole; Extrusion_Depth, 

property of Extrusion, which is used to describe the diameter of extrusion. and Instances 

created for the concepts respectively: Hole1, Block1, Hole1_Depth, Hole1_diameter, 

Block1_Depth 

  <Hole rdf:ID="Hole1"> 
    <has_dimension> 
      <Hole_depth rdf:ID="Hole1_depth"> 
        <dimension_value 
rdf:datatype="http://www.w3.org/2001/XMLSchema#float" 
        >50.0</dimension_value> 
      </Hole_depth> 
    </has_dimension> 
    <has_dimension> 
      <Hole_diameter rdf:ID="Hole1_diameter"> 
        <dimension_value 
rdf:datatype="http://www.w3.org/2001/XMLSchema#float" 
        >100.0</dimension_value> 
      </Hole_diameter> 
    </has_dimension> 
  </Hole> 
  <Extrusion rdf:ID="Block1"> 
    <has_dimension> 
      <Extrusion_depth rdf:ID="Block1_Depth"> 
        <dimension_value 
rdf:datatype="http://www.w3.org/2001/XMLSchema#float" 
        >100.0</dimension_value> 
      </Extrusion_depth> 
    </has_dimension> 
  </ Extrusion > 
  <Component rdf:ID="Component1"> 
    <has_feature rdf:resource="#Hole1"/> 
    <has_feature rdf:resource="#Block1"/> 
  </Component> 
 



 57

In addition, the relations between instances are also described in the product data 

semantics, such as: has_feature property to describe the ownership between Component1 

and Hole1, Block1; has_dimentions property to describe the composition relation 

between Hole1 and Hole1_diameter and Hole1_Depth. 

In this CAD/CAE integration framework, the differences between the product 

semantics and other traditional product metadata is the data is not described using data 

types, but instead using ontology concepts and their relations. Thus, the product 

semantics can contain rich semantic information and can be easily understood. Further, 

the ontology makes it easier to describe the relations between data sets.  
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Chapter Eight -  Ontology Mapping Methods for 
Design/Analysis 

 

This chapter introduces method of ontology mapping between design/analysis 

ontologies. Pproduct data semantics are based on different ontologies, where different 

concepts and relations are defined. To make product data semantics translatable between 

different representations, it is critical to map different concepts and relations.  

Ontology mapping can be implemented in two ways: 1) Finding mapping 

information based on definitions; and 2) Performing similarity calculations, which 

calculate similarities between different concepts using heuristics method. 

 

8.1 Introduction 
 

Ontology mapping (also called Ontology alignment) is a process to find mapping 

relationships between entities, including concepts, properties, and instances. This 

process is one of the critical tasks necessary to achieve interoperability between 

engineering applications that use heterogeneous ontologies.  

In a CAD/CAE integration framework, heterogeneous applications focus on the 

same product design and use different ontologies to describe their views of product data 

(product data semantics). To translate product data semantics described in heterogeneous 

ontologies, an important step is to align the heterogeneous ontologies. As in CAD/CAE 

integration, we mainly focus on product design.  Hence, in this chapter, we will limit the 
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ontology mapping to the scope of entities related to product design/analysis, defined as 

Basic Design Entity in this dissertation.  

In a CAD/CAE integration framework, we need to translate product semantics 

associated with product data. So, we are looking to find mapping concepts in different 

engineering domains about a given product.  

 

8.2 Definitions 
 

As the focus of this work is on integration and conversion, the following 

definitions are made based broadly on data integration/conversion issues related to 

instances and their corresponding concepts: 

Definition 8.1: Mutual Information: Mutual information refers to the 

information shared by two instances.  

Definition 8.2: Instance Similarity:  

)( BAI ∩ : Mutual information of instance A and B 

)( BAI ∪ : Union of information of instance A and B 

Instance Similarity between A and B is:
)(
)(),(

BAI
BAIBASim

∪
∩

=  

Definition 8.3: Matching Instances: In CAD/CAE integration, information about 

product design is exchanged between instances when common information exists. A pair 

of instances that have mutual information and also have the highest similarity are defined 

as Matching Instances, and during translation, the matching instances can be translated 

from one to another. 

Assumption: In this dissertation, for simplicity, we assume the exclusiveness of 

the Matching Instances in two product data semantics; if Instances A and B are Matching 



 60

Instances which belong to different product data semantics P1 and P2, then there cannot 

exist a third Instance C that belongs to the same product data semantics P2 as B and is 

also a matching instance of A. 

Definition 8.4: Convertible Instance: If Instance A and Instance B are Matching 

Instances, during CAD/CAE integration, and information in Instance A can be translated 

to information in Instance B, then we call Instance B a convertible instance of B 

( ),( ABeConvertibl ). As in CAD/CAE integration, data flow is usually one-directional, 

and convertible instance is irreversible: B is a convertible instance of A but does not 

guarantee that A is a convertible instance of B ( ),(),( BAeConvertiblABeConvertibl ⇒/ ). 

Definition 8.5: Matching Concepts: For two Matching Instances, their 

corresponding concepts are defined as Matching Concepts. 

Definition 8.6: Concept Similarity: Among all the instances iI1 of concepts C1 

and iI 2 of C2, the highest instance similarity between two instances ),(( 21 ii IISimMax is 

defined as the concept similarity of C1 and C2. 

Definition 8.7: Convertible Concept: For two instances, A and B, which belong 

to concept AC  and BC  respectively, if A is a convertible instance of B, then the concept 

AC  is a convertible concept of BC . 

Definition 8.8: Mismatching Instances: Mismatching Instances do not share 

mutual information. 

Definition 8.9: Mismatching Concepts: Mismatching Concepts do not have any 

instances that have concept similarity > 0. 

During the integration process, one of the most important tasks is to find the 

matching instances/concepts to ensure that product data semantics are translated 
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correctly. In the following sections, we will discuss how to find matching 

instances/concepts. 

 

8.3 Finding Matching Information Based on Definitions  
 

Before we look further to use heuristic method to calculate mapping information, 

some matching concepts can be found based on the definitions and some information that 

defined in ontologies. The information includes predefined explicit equivalence of classes 

and instances, also, since our integration is based on traditional integration framework, 

information generated during data conversion process of traditional integration method 

can also be used for ontology mapping process later.  

In this dissertation the information that is used together with definitions to find 

matching concepts is categorized into following three types: 

8.3.1 Ontology Mapping by Explicit Equivalent Classes 

During the process of building engineering design/analysis knowledge into 

ontologies, some of the concepts can be readily identified to be equivalent and the 

information is explicitly expressed in the ontology. This is one of the simplest and most 

trivial cases. A rule is defined to find matching concepts according to the equivalence 

information that was previously built in the ontology:  

Rule 8.3.1.1 If two concepts are equivalent, then they are matching concepts.  

In OWL, equivalences can be expressed using the predefined constructs, 

owl:samePropertyAs and owl:sameClassAs, to indicate that two properties/classes are 

equivalent.. 
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For example, in lower level ontology, common concepts are defined so that they 

can be reused in upper level ontologies, and it is also possible that concepts defined in 

upper level ontology are the actually equivalent to some of the common concepts defined 

in the lower level ontology. We use the predefined expression owl:sameClassAs to 

represent this relationship of equivalence. Code in Figure 8-1 can be used to indicate that 

the concept of “Srf” in PDO is actually refers to the same concept “Surface” as indicated 

in General Design Ontology: 

 

Figure 8 - 1 OWL/RDF Code of Explicit Equivalence  
 

 Similarly, we can use constructs owl:samePropertyAs and owl:sameIndividualAs 

to represent the relationships between two properties or two instances that are the same. 

Also with the same constructs, more complex equivalence relations between two 

concepts can be represented. 

For example, in Product Design Ontology for Pro/Engineer, according to the 

definition in Pro/Engineer, a constraint with type of Align is the same as the type 

“Align_Offset” when the offset property is set to be “coincidence”. So in the PDO, it has 

the following assertion: 

If a component_constraint with property “has_assembly_constraint_type” being 

“Align_Offset” and property has_Offset being zero, or property is_coincident being true, 

then the component_constraint is the same as component_constraint with a property 

“has_assembly_constraint_type” with value of “Align”. Following assertion in OWL can 

be made as shown in Figure 8-2. 

<owl:Class rdf:ID=“Srf”> 
  <owl:sameClassAs rdf:resource=”&GDO;Surface”/> 
</owl:Class> 
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Figure 8 - 2 OWL/RDF code of Complex Equivalence  
 

 

8.3.2 Mapping Concepts based on Explicitly Equivalent Instances 

At the beginning of the integration process, equivalences between existing 

instances can be defined to indicate the data flow information. For example, between an 

assembly design tool and an assembly simulation tool, data flow information is defined as 

from an instance of assembly in assembly design to an instance of assembly in assembly 

simulation. To indicate the equivalence, each instance uses an URI (Unique Resource 

Identifier) for the purpose of identification, when different instances share the same 

identifier, or the two URIs eventually redirects to the same URI, they are assumed to be 

equivalent.  

Based on the information of instances equivalence, based on the definitions of 

matching instances and matching concepts, since two equivalent instances are obviously 

two matching instances, we can conclude that: 

Rule 8.3.2.1 If two concepts share the equivalent instance, then the two 

concepts are two matching concepts.  

<owl:Class rdf:ID=“Align_Offset”> 
  <owl:sameClassAs> 
    <owl:Restriction> 
    <owl:onProperty rdf:resource=“is_coincident” /> 
    <owl:hasValue true /> 
    </owl:Restriction> 
  </owl:sameClassAs> 
</owl:Class> 
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For example, during an integration process between assembly design and 

assembly simulation applications, an URI of 

http://www.wsu.edu/~peizhan/example/#bracket_assembly is used to indicate the 

resource of the assembly that is being designed and simulated. In PDO, an instance of 

PDO:Assembly is instantiated to represent the assembly that is designed in the design 

tool, and it is assigned this URI [Figure 8-3] 

 

Figure 8 - 3 OWL/RDF Code of Assembly Instance in PDO 
 

During the assembly simulation, an instance of concept Assembly in ASO is 

created to represent the assembly that is simulated, which also has the same URI [Figure 

8-4] 

 

Figure 8 - 4 OWL/RDF Code of Assembly Instance in ASO 
 

Based on this information,, we can conclude that both the instances use the same 

URI. Hence they are equivalent, and according to the rule mentioned earlier, their 

concepts PDO:assembly and ASO:assembly are equivalent. 

 

<ASO:Assembly rdf:ID="asm001"> 
    <has_URI 
rdf:resource="http://www.wsu.edu/~peizhan/example/#bracket_ass
embly"/> 
</ASO:Assembly> 

<PDO:Assembly rdf:ID="asm001"> 
    <has_URI 
rdf:resource="http://www.wsu.edu/~peizhan/example/#bracket_ass
embly"/> 
</PDO:Assembly> 
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8.3.3 Mapping Information Generated through Data Conversion 

In the traditional integration which is based on data exchanging, standard neutral 

formats are defined and used as a bridge format, source data is first converted to neutral 

format and then convert to the target data.  In our approach of semantic level integration , 

product data semantics is first translated and data is converted based on the mapping of 

product data semantics, however, the existing procedure of data conversion in traditional 

integration still can be used and some information generated during the data conversion 

can be used to help ontology mapping. for example, if it is known that one data types can 

be converted to another data type, the information can be used to find the matching 

concepts that used to interpret the two data types.  

In this dissertation we regard the data conversion in CAD/CAE integration as a 

process of converting one type of Basic Design Entity (BDE) to another type of Basic 

Design Entity. During the data conversion process, if we know two sets of product data 

can be converted from one to the other, this information can be represented by building 

relationships between concepts and instances that are described in product data 

semantics. The following rule is defined to reflect this phenomenon:  

Rule 8.3.3.1 During data conversion, if the attribute of an instance of a BDE 

is converted to be the attribute of an instance of another BDE, then both Basic 

Design Entities share the same attribute. 

For example, when the data of a component in Pro/Engineer is converted from 

Pro/Engineer native format to a neutral format, like *.iv or * iges format, geometry 

attribute is involved in the conversion. When one instance of ASO:Part is converted from 
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an instance of PDO:Component, according to Rule 8.3.3.1, the new instance will have the 

same geometry attribute as the original.  

In Figure 8-5, both PDO:Component and ASO:Part are connected to a file that 

contains its geometry attribute, and since file Bracket.iv is converted from Bracket.prt so 

it can be regarded that both the files have the same geometry attribute. Hence 

PDO:Component and ASO:Part have the same geometry attribute. 

As through data conversion, it is certain that there is common information being 

shared between the instances of the two concepts hence they are matching instances, so 

here we conclude that the two concepts are matching concepts. 

ASOPDO

Component Part

has_geometry_attribute

convertBracket.prt

has_geometry_attribute

Bracket.iv

 

Figure 8 - 5 Mapping Information through Data Conversion 

 

8.4 Ontology Mapping by Heuristics Method 

Heuristic method is used to find matching concepts based on the calculation of 

similarity and concepts that have the highest similarity are used as matching concepts. 



 67

Since it is difficult to use definition 8.5 in section 8.3 to calculate similarity, and 

Concept Similarity can also be regarded as the relevance between two concepts, instead 

of using definition 8.2, we measure similarities based on different types of relationships 

between concepts using heuristics method. 

There are several types of relationships that exist between concepts. We limit 

similarity calculation to the following three types: 1. Attribute (attribute_of relationship) 

2. Composition (part_of relationship) 3. Inheritance (is_a relationship) 

8.4.1 Attribute Similarity 

Attribute relationship refers to the relation between an object and its attributes. In 

this dissertation, the object is limited to a Basic Design Entity (BDE) 

 Attribute Similarity is used to measure the similarity by calculating whether there 

are any common attributes that two concepts share. 

 For the two concepts A and B, which have attributes AiT , BiT from, assume 

similarity between two attributes as ),( BiAii TTSim , the attribute similarity is the 

aggregation of all attribute similarities. If we use ),(1 BASim  to represent overall attribute 

similarity between A and B, we can have following equation: 

∑
=

×=
n

i
BiAiii TTSimWBASim

1
1 ),(),(  

iW  = Weight for each attribute 

 Note: when calculating attribute similarity, if a concept is an abstract concept 

which lacks a specific attribute, then an attribute similarity cannot be calculated. For 

example, the root concept owl:Thing is an abstract concept for all the other concepts, and 
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concept is too general to have any attribute so it cannot be used to calculate attribute 

similarity 

8.4.2 Composition Similarity 

Composition similarity is to consider the similarity according to the part_of 

relationship, which has the following characteristics: 

1) has_parent/has_child properties are the two basic relations defined for the 

composition (part_of) relationship  

2) has_parent/has_child properties are inverse to each other, meaning that if A 

has_parent B, then B has_child A 

3) has_parent/has_child are transitive properties, meaning that if A has_parent/has_child 

B and B has_parent/has_child C, then A has_parent/has_child C. 

Transitive relation between Composition and Attribute 

As we defined in Rule 5.5.1, the attribute-of relation is transitive to part-of 

relation. If concept A’ in target ontology is found to have the certain attribute similarity, 

all the concepts that has ownership relations over A’ will also have the same attribute 

similarity, since they also have the same attributes. This can be described as following 

rule: 

Rule 8.4.2.1 For a given source concept A, if a target concept A’ has attribute 

similarity )',(1 AASim  , and if a Concept C’ has_Child A’, then Concept C’ and A 

have the same attribute similarity )',()',( 11 AASimCASim =  

According to this, if two concepts A and A’ have attribute similarity, all their 

owners will have the same attribute similarity. So we will have two composition paths 

with A and A’ at the tail of the each of the path, all the concepts that has ownership over 
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A could have the same attribute similarity to a concept that has ownership over A’. In this 

case, composition similarity can be used to further differentiate the similarities. 

 

Definition 8.10: Composition Path: Path that only consists of composition relations  

Definition 8.11: Similar Composition Path for two composition paths: If all the nodes 

in one composition path have the same attribute similarity to all the nodes in the other 

composition path, then we define the two paths as similar composition paths. For 

example, in Figure 8-6, for two paths  PDO:Assembly->PDO:Component-

>PDO:Component_feature->PDO:Model_item, and ASO:Assembly->ASO:Part-

>ASO:Assembly_feature, if two nodes at the tail have the same attribute similarity and 

based on transitivity of attribute-of relation over part-of relation, all the nodes in the first 

path have the same attribute similarity to the second path, then the two paths are similar 

composition paths.  

After setting the equivalence and filtering out the class hierarchies due to 

inheritance(is-a) relationship, the following graph can be drawn for PDO and ASO 

considering only composition(part-of) relationship and the concepts limited at design 

entity level [Figure 8-5 and Figure 8-6]. Each of the paths in the graph is a composition 

path. 
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Figure 8 - 6 Similar Composition Paths 
 

In a CAD/CAE integration framework, it is always easier to identify data 

translation from a higher composition level and to find matching concepts at the top level 

(e.g. both the assembly concepts in PDO and ASO). After we discover concepts that have 

attribute similarity in a lower composition level, plus the matching concepts that 

previously found at the top composition level, the concepts between them will share the 

attribute similarity and can be differentiated in composition similarity. So in this 

dissertation we always calculate the composition similarity between concepts that are in 

two similar composition paths.  

We define the composition similarity between two concepts in similar 

composition paths based on the distance measure: 

Distance nBAD =),(   
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n – Number of edges in the shortest path between two nodes A and B if only 

considers part-of  relation, for two matching concepts, the distance is 0 

In two similar composition paths, if we have two nodes A and B in each of the 

path which has H1, T1 and H2 and T2 as head and tail nodes respectively as shown in 

figure 8-7, the composition similarity is the similarity of their relative position in each of 

the path, and if we use ),(2 BASim  to represent composition similarity, then an it can be 

calculated as ( )
)2,2(
),2(

)1,1(
),1(1,2 THD

BHD
THD
AHDBASim −−=  

 

Figure 8 - 7 Composition Similarity of Nodes in Two Paths 
 

For example, in Figure 8-6, if it is known that  PDO:Assembly and ASO:Assembly 

are matching concepts, composition similarities factor between PDO:Component and 

ASO:Part can be calculated as: 

( )

83.0
2
1

3
11

):,:(
)_:,:(

)_:,:(
):,:(1

:,:2

=−−=

−−

=

PartASOAssemblyASOD
FeatureAssemblyASOAssemblyASOD

itemModelPDOAssemblyPDOD
ComponentPDOAssemblyPDOD

PartASOComponentPDOSim
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8.4.3 Similarity based on Inheritance Relation 

Definition 8.12 Inheritance Hierarchy: Concept hierarchy that consists of is-a 

relation only. 

In this dissertation, we assume the transitivity of attribute similarity and 

composition similarity over inheritance relation, which means all the concepts in a 

concept inheritance hierarchy will share the same attribute similarity and composition 

similarity.  

A rule can be used to describe this assumption:  

Rule 8.4.3.1 For two matching concepts A and B, if each of which belongs to 

the two different hierarchies, then all the concepts Ai and Bi that are sub-concepts 

of A and B will have the same attribute similarity and composition 

similarity: ),(),( 11 BASimBASim ii =  and ),(),( 22 BASimBASim ii =  

For example, Figure 8-8 shows a concept inheritance hierarchy for 

assembly_constraint in ASO, compared with inheritance hierarchy in figure 7-4, all the 

sub-concepts of PDO:Component_constraint and ASO:Assembly_constraint share the 

same attribute similarity and composition similarity as PDO:Component_constraint and 

ASO:Assembly_constraint has. 
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Figure 8 - 8 Assembly_Constraint Inheritance Hierarchy 
 

 
 

 

8.4.4 A General Method of Finding Matching Concepts 

 The process of finding matching concepts can be regarded as a repetitive process: 

after a pair of matching concepts is found, the new matching information will be used for 

the next round of similarity calculations. 

As it is always easier to identify the matching concepts at a higher composition 

level, the whole sequence flows in a top-down direction. 

To find all the matching concepts between two ontologies, we use following 

steps: 

 1) Start with a matching process based on definitions. Find explicit 

equivalences based on definitions and define them as matching concepts.  

 2) Create composition graph and inheritance hierarchies. Create composition 

graph for composition relations and class hierarchies for inheritance relations. In a 

composition graph, only the root class in an inheritance hierarchy is used, all the sub-



 74

classes are excluded from the composition graph. And as it is always easier to identify 

matching concepts at the top level, it is expected that two root concepts in the 

composition graph are matching concepts. For example, in Figure 8-9, a two composition 

graphs that belong to different ontologies are created, with root node A0 and B0 as 

matching concepts. Figure 8-10 and Figure 8-11 show two inheritance hierarchies which 

use A21 and B22 as base class. 

A0

A11

A21 A22

A12

A23

has has

hashashas

B0

B11

B21 B22

B12

B23

has has

hashashas

Matching Concept

 

Figure 8 - 9 Two Composition Graphs in Source and Target Ontology 
 

A21

A21,2A21,1 A21,3 A21,4

is-a is-a is-ais-a

 
Figure 8 - 10 Inheritance Hierarchy of Node A21 in Source Ontology  
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Figure 8 - 11 Inheritance Hierarchy of Node B22 in Target Ontology 

 
 3) Calculate Attribute Similarity. Among two composition graphs from two 

different ontologies, for each given source concept, calculate attribute similarity between 

the source concept and other concepts in target ontology and find all the nodes that have 

similar attribute. For example, for concept A21, iterate all the concepts in the right 

composition graph of Figure 8-9 and calculate the attribute similarity between them and 

concept A21 to find the one has highest overall attribute similarity. 

4). Find Similar Composition Paths. After a target concept is found to have 

highest attribute similarity with the given source concept, for example, A21 and B22, 

since the attribute is transitive over composition relation, all the classes that has owner 

relations over the target concept will have at least the same attribute similarity, and two 

similar composition paths can be created between two root nodes A0, B0 and the source 

concept A21 and target concept B22, as shown in Figure 8-12 
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A0

A11

A21

has

has

B0

B22

B12

has

has

Matching Concept

 
Figure 8 - 12 Two Similar Composition Path in Source and Target Ontology 

 
 5) Calculate Composition Similarity. Calculate composition similarity and 

choose the one with the highest composition similarity and attribute similarity as 

matching concept. In Figure 8-12, we can see A11 and B12, A21 and B22 have the 

highest composition similarity, so we can conclude that A11 and B12, A21 and B22 are 

matching concepts 

6) Calculate attribute similarity and composition similarity based on 

inheritance relation. Composition similarity and attribute similarity can be transitive 

over inheritance relation, after two base concepts are found to be matching concepts, all 

their sub-concepts are set to have the same attribute similarity and composition similarity. 

For example, we can conclude that all the sub-classes of A21 and B22 as shown in Figure 

8-10 and Figure 8-11 have same attribute similarity and composition similarity as A21 

and B22 has.  

 7) Go to 3) until all the candidate concepts are calculated 

8) Human intervention, if no similarity information can be used to find matching 

concept, human interference has to be used. 
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8.5 Tailoring the Method for Mapping using Basic Design Entity 
 In the previous section we discussed the method of calculating mapping similarity 

for concepts. In this dissertation the focus is to translate product information between 

different representations that have design entities as the basic elements. Hence it is of the 

highest interest to find the similarities between design entities in two different ontologies.  

 As discussed in 6.1 and 6.2 about specific attribute of BDE, to calculate similarity 

between Basic Design Entities, similarity for each of the specific attribute is calculated, 

they are form attribute similarity, behavior attribute similarity respectively, function 

attribute is not considered in this dissertation. 

8.5.1 Form Attribute 
Form attribute includes information about design such as material, geometry etc. 

In this dissertation we will focus on the geometry of form attribute since it contains the 

most important information in a design that most design/analysis activities are focused 

on. Geometry attribute is always the common currency during CAD/CAE integration.  

To represent geometry attribute, a geometry inheritance hierarchy is defined in 

General Design Ontology. To simplify the calculation of geometry similarity, geometry 

information is categorized into four basic types: Point, Curve, Surface, and Solid, which 

can be further categorized such as plane and cylindrical_surface under Surface. We can 

see that the lower the level that a geometry type falls under, the more specific is the 

geometry information that it has.  
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Figure 8 - 13 Geometry Information Model 
 

With the simplified model, the following rules are used to determine geometry 

similarity: 

Rule 8.5.1.1 If two geometry attributes fall under the same immediate 

geometry attribute category, then the geometry similarity of two geometry 

attributes is proportional to the depth of the geometry category from the top level. 

For example, a Line and Circle have the common type of Curve, so their geometry 

similarity is proportional to the depth of the level Curve in the hierarchy. If we define a 

function F to be positive proportional to the depth, the geometry similarity between two 

geometry types can be expressed as )1())((),( FCurvedepthFCircleLineSim == . And 

the geometry similarity between Point and Line is 

)0())((),( FGeometrydepthFCircleLineSim ==  since concept Geometry is the common 

category of Point and Line which has a depth of 0. We can also conclude that 

)int,(),( LinePoSimCircleLineSim >  since )0()1( FF >  
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Rule 8.5.1.2 If a concept can have different geometry types as its geometry 

attribute, the common geometry category at the lowest level in the hierarchy is used 

to calculate geometry attribute similarity.  For example, concept PDO:Feature can 

have geometry types such as Point, Curve, Surface, Solid as its geometry attribute, hence 

their common geometry category at the lowest level GDO:Geometry is used to calculate 

geometry attribute similarity. 

 

 

8.5.2 Behavior Attributes 
 Various behaviors focus on different aspects of product design which are defined 

and used across engineering design/analysis domains. In order to find similar behavior 

attribute that are shared by both the applications in ontology mapping, rules are defined 

to identify common behavior attribute between engineering design/analysis applications 

so it can be used for calculating behavior attribute similarity: 

Rule 8.5.2.3  If both applications are in the realm of 3-D feature-based product 

design for example, such as Pro/Engineer, Solidworks, or CATIA, then 

designCreationBehavior can be used as common behavior attribute. 

Rule 8.5.2.4 If both applications share a common definition in 

functionalBehavior, then that definition may be used as behavior attribute. For example, 

in the Assembly Design and Assembly Simulation domains, for the concepts 

PDO:component_constraint and ASO:Assembly_constraint, both of them have 

FunctionalBehaviorAttribute as degree of freedom, so degree of freedom can be used as 

behavior attribute to calculate behavior attribute similarity. 
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8.5.3 Example of Calculating Similarity for BDEs Based on Their 

Attributes 

With the algorithm of calculating attribute similarity introduced previously, we 

use an example to show how to find a matching concept for a given BDE concept based 

on similarity calculation. 

In an integration between an assembly design and assembly simulation, the 

knowledge of assembly design and assembly simulation are built into  two ontologies: 

PDO (Product Design Ontology) and ASO (Assembly Simulation Ontology), both of 

them use their own knowledge to describe product assembly information. To help 

product assembly information to be translated from assembly design tool to assembly 

simulation tool, it is important to find corresponding matching concepts in target 

ontology (ASO) for a given concept in source ontology (PDO) that are used to describe 

product assembly data.  

Following steps are used for finding matching information: 

1) Matching process based on definitions.  

Based on the existing data flow information, assuming data is exchanged between 

assembly design unit – an instance of PDO:Assembly in product design to an instance of 

ASO:Assembly, and we define they are equivalent instances, and based on definition in 

8.3, concepts PDO:Assembly and ASO:Assembly are a pair of matching concepts.  

2) Create composition graph and inheritance hierarchies  

After step 1 of finding matching concepts based on definitions, first we need to 

create composition graph. After filtering out inheritance relations, we have two 

composition graphs for each of the ontology as in Figure 8-14 and Figure 8-15 
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Figure 8 - 14 PDO composition graph 
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Figure 8 - 15 ASO composition graph 
 

3) Calculate Attribute Similarity 

In two composition graphs, for source concept PDO:component_constraint, we 

found it has following attributes: 

1. Geometry Attribute: PDO:component_constraint has two relations  

has_component_reference and has_assembly_reference, which are sub-properties of 

composition relation (part_of), the object of has_component_reference and 

has_assembly_reference, which are  both PDO:Model_Item, has GDO:Geometry as its 

geometry attribute. According to rule 8.4.2.1 about the transitivity of attribute-of relation 

over part-of relation, geometry attribute of PDO:Model_Item is also the geometry 

attribute of  PDO:component_constraint  

2. Functional Behavior Attribute, PDO:component_constraint has 

GDO:Degree_of_Freedom as its functional behavior attribute. 

4). Find Similar Composition Paths 
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In target ontology ASO, after iterating all the concepts in the composition graph 

in figure 8-15, based on the information that GDO:Geometry is geometry attribute of 

ASO:Assembly_feature, and the composition relation has_assembly_feature between 

ASO:assembly_constraint and ASO:Assembly_feature, accordint to rule 8.4.2.1 about the 

transitivity of composition relation, we found ASO:assembly_constraint has 

GDO:Geometry as its geometry attribute. Also ASO:assembly_constraint has 

GDO:Degree_of_Freedom as its functional behavior attribute. Hence we can conclude 

that PDO:component_constraint and ASO:assembly_constraint has highest attribute 

similarity. 

Since it is known that PDO:Assembly and ASO:Assembly are a pair of matching 

concepts, from all the BDE concepts in ASO composition graph as in Figure 8-14 and 8-

15,  two similar composition paths can be drawn in Figure 8 - 16,  

PDO:
Assembly

PDO:
Component
_Constraint

has_component_
constraint

ASO:Asse
mbly

ASO:
Assembly_
Constraint

has-subassembly

ASO:
Joint

has-assembly_constraint

Similar 
Concepts

ASO:
Subassem

bly

has-joint

Similar 
Concepts

 

Figure 8 - 16 Similar Composition Paths between PDO and ASO 
 

5) Calculate Composition Similarity. 
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Considering the composition similarity factor in figure 8-16, the composition 

similarities are: 

Sim(PDO:Component_Constraint, ASO:Joint) = 5.0
2
1

1
11 =−−  

Sim(PDO:Component_Constraint, ASO: Assembly_constraint) = 1
2
2

1
11 =−−  

We can see that ASO: Assembly_constraint has a higher composition similarity 

with PDO:Component_Constraint, so it can be concluded that ASO: Assembly_constraint 

has the highest similarity to PDO:Component_Constraint and hence they are matching 

concepts.  

6) Calculate attribute similarity and composition similarity based on inheritance 

relation 

After calculating similarities between Basic Design Entities, if a match between 

two BDEs is found, e.g. PDO:Component_Constraint and ASO: Assembly_constraint, 

according to the RULE 8.4.3.1 about transitivity of attribute and composition attribute 

over inheritance relation, all subclasses of these two concepts also have the same 

inheritance similarity. At this level, we cannot differentiate the similarities between any 

two subclasses, and we will introduce how to depend on the exact properties of each 

instance to find matching concepts for each specific instance in the next section.  

 

8.5.4 Calculating Concept Similarity Based on Instances  

After finding matching concepts between two base concepts, for example,  

PDO:Component_constraint and ASO:Assembly_constraint in Figure 8-14 and Figure 8-
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15 respectively, according to RULE 8.4.3.1 their sub-concepts share the same attribute 

similarity and composition similarity. In an inheritance hierarchy, compared to concepts 

in a higher level which usually has general information about attributes, concepts in 

lower level have more specific attribute information, and similarity between two concepts 

can be different when their attributes have different specific value(type), in order to 

further calculate similarity between their sub-concepts in their inheritance hierarchies as 

shown in Figure 7-4 and Figure 7-5, specific attribute information that depend on the 

actual instance of the concepts needs to be collected to calculate similarity. 

For example, based on its definition, ASO:Contact can have following different 

assembly features and corresponding behaviors: 

 
Geometry Attribute from 

ASO:has_assembly_feature 

Geometry Attribute from 

ASO:has_assembly_feature 

Behavior Attribute 

GDO:Cylindrical_surface GDO:Cylindrical_surface GDO:Translate_z, 

GDO:Rotate_z 

GDO:Plane GDO:Plane GDO:Translate_x, 

GDO:Translate_y, 

GDO:Rotate_z 

GDO:Line GDO:Plane GDO:Translate_x 

GDO:Translate_z 

GDO:Rotate_z 

GDO:Rotate_y 

Table 8 - 1 Possible Attributes of concept ASO:Contact 
 

Depends on the actual instance in the product data semantics, if an instance 

Contact1 of class ASO:Contact is found to have the following attributes:  

has_assembly_feature Plane1, which is an instance of concept GDO:Plane 
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has_assembly_feature Plane2, which is an instance of concept GDO:Plane 

has_functional_behavior: ASO:Translate_x 

has_functional_behavior: ASO:Translate_y 

has_functional_behavior: ASO:Translate_z 

has_functional_behavior: ASO:Rotate_z 

OWL/RDF code to represent the above attributes is shown in Figure 8-17. 

 

Figure 8 - 17 OWL/RDF Code of Contact Constraint   
 

In order to find the corresponding matching concept for ASO:Contact so that 

instance Contact_1 can be converted to, attribute similarity between subconcepts of 

PDO:Component_Constraint and ASO:Contact are calculated to find which subconcept 

can have highest attribute similarity with ASO:Contact with the specific attribute 

information according to Contact_1.  

For example, according to the restriction and axiom built in the PDO, PDO:Mate 

can have exactly the same geometry attribute and behavior attribute as ASO:Contact has 

for instance Contact_1: 

 
Geometry Attribute from 

PDO:has_assembly_reference 

Geometry Attribute from 

PDO:has_component_feature 

Behavior Attribute 

GDO:Plane GDO:Plane GDO:Translate_x, 

< Contact rdf:ID=" Contact_1"> 
    <has_assembly_feature rdf:resource="#Plane_1"/> 
    <has_assembly_feature rdf:resource="#Plane_2"/> 
    <has_functional_behavior rdf:resource="#Translate_x"/> 
    <has_functional_behavior rdf:resource="#Translate_y"/> 
    <has_functional_behavior rdf:resource="#Translate_z"/> 
    <has_functional_behavior rdf:resource="#Rotate_z"/> 
  </ Contact> 
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GDO:Translate_y, 

GDO:Rotate_z 

Table 8 - 2 Attribute of Concept PDO:Mate 
 
 

From the above information, we can conclude that PDO:Mate .is the matching 

concept of ASO:Contact for instance Contact_1. Please note that, the matching concept 

that is found based on this method is dynamic and depends on the actual instance 

information, so it is not fixed and has to be determined every time for each of the specific 

instances. 
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Chapter Nine -  Representing Ontology Mapping 
Information 

 

9.1 Introduction 

After finding the mapping information between two ontologies, it is necessary to 

store the information in a certain format so that it can be reused. In order to represent the 

mapping information between different product data semantics,  a bridge ontology is used 

to describe the mapping information between two different ontologies. 

In this chapter, the mapping informaiotn is categorized and discussed as 

following: 

1. Concept mapping 

2. Instance mapping  

 

9.2 Bridge Ontology 

In ontology mapping, bridge ontology represents the mapping information 

between the two ontologies. If two different ontologies are regarded as two islands, 

bridge ontology acts as a bridge between the two ontologies – with the bridge ontology, a 

match of a concept or an instance in source ontology can be found in the target ontology. 

Bridge ontology is an ontology which identifies concepts and instances from both 

the source ontology and target ontology and represents their mapping relations. Once a 

bridge ontology is built, it can be reused for a new integration process that involves the 

same source and target ontologies 
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9.3 Concept Mapping Representation 
Concept mapping is to represent the mapping relations between concepts in 

different ontologies. In this dissertation, we only consider one to one concept mapping, 

which is identified to have following types: 

1. Unconditional Mapping: Concept is unconditionally a matching concept of 

another concept; 

2. Conditional mapping: Only under certain conditions can one concept be a 

matching concept of another concept 

9.3.1 Unconditional Mapping 
Unconditional mapping is for two concepts that are unconditionally pair of 

matching concepts, for example, PDO:Assembly and ASO:Assembly 

To describe unconditional mapping, predefined owl expression owl:sameClassAs 

can be used to describe the explicit equivalence if two concepts are found to be matching 

concepts during the building ontology process. For matching concepts that are found later 

in ontology mapping process, in this dissertation we use concept of ConceptMatch to 

describe the matching concept relation between two concepts in bridge ontology. To 

describe which concepts are involved in the matching concepts, property has_concept is 

used to describe the which concepts are being mapped from one to another. 

 

Figure 9 -  1 OWL/RDF Code of Unconditional Mapping 

<ConceptMatch rdf:ID="Match_1"> 
    <has_concept rdf:resource="#PDO:Component"/> 
    <has_concept rdf:resource="#ASO:Part"/> 
</ConceptMatch> 
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9.3.2 Conditional Mapping 
For some classes, only under certain circumstances will they be matching 

concepts, these circumstances are described using concept Condition, for example, some 

classes can be matching concepts only under a condition that a concept has given specific 

values of attribute. For a concept match, there could be more than one conditions. 

For instance, concept PDO:Model_item is a general concept and only some of its 

subtypes can be a matching concept to ASO:Assembly_feature. The condition for 

PDO:Model_item to be a matching concept of ASO:Assembly_feature is when 

PDO:Model_item has a geometry attribute. The condition can be described using the 

following OWL/RDF code: 

 

Figure 9 -  2 OWL/RDF Code of  Mapping Condition  

 

9.4 Instance Mapping Representation 
In our semantic level integration, instances in product data semantics act as a link 

between concepts and product data, instance mapping links instances between different 

product data semantics so product data in one representation can be eventually linked to 

another representation.  

In this dissertation, we use following concept of InstanceMatch together with 

their properties to describe the relation between two mapped instances:  

<Condition rdf:ID="condition1"> 
    <MappingAttribute rdf:resource="#has_geometry_attribute"/> 
</ Condition > 
  
 <ConditionalConceptMatch rdf:ID="Match_1"> 
    <has_concept rdf:resource="#PDO:Model_item"/> 
    <has_condition rdf:resource="#condition1"/> 
    <has_concept rdf:resource="#ASO:Assembly_feature"/> 
  </ConceptMatch> 
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1) SourceInstance indicates the instance in source product data semantics 

2) TargetInstance indicates the instance in target product data semantics that is 

linked to the source instance. 

Bellow is some sample code in OWL which describes the mapping relationship 

between two instances PDO:asm001 and ASO:asm001 

 

Figure 9 -  3 OWL/RDF Code of InstanceMatch  
  

 

  <InstanceMatch rdf:ID="instancematch1"> 
    <sourceInstance rdf:resource="#PDO:asm001"/> 
    <targetInstance rdf:resource="#ASO:asm001"/> 
  </InstanceMatch > 
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Chapter Ten -  Example Scenario 

 
This chapter introduces an example scenario and shows the benefit of new 

semantic level integration compared to the traditional data level integration. In the 

example scenario, a product assembly is designed in one application that focus on the 

assembly design domain and the assembly process of the assembly design is simulated in 

another application that focus on assembly simulation domain. The interoperability 

problem that happens in the process of integrating different applications is addressed, 

specifically, problem about how information about assembly design is described and 

exchanged between the two heterogeneous applications. 

To show how the new integration mechanism proposed in this dissertation works, 

based on the knowledge built in ontologies and the product data created in product 

assembly design, results and processes in different stages are discussed, such as result of 

original product data semantics about product design that captured in assembly design, 

result and process of translating product data semantics from original representation to a 

targeted different representation, and the mapping information between the original and 

converted product data semantics. And at last it is discussed that how these processes and 

results could come together and benefit us in converting heterogeneous product data from 

one presentation to another presentation.  



 93

 

10.1 Motivating Scenario 

The motivation of the example is to show how CAD/CAE applications can be 

integrated at a new “semantic level”. Two parts, Screw and Plate, are designed in a 3d 

feature based geometric modeling tool as shown in Figure 10-1 and Figure 10-2. An 

assembly asm001 which consists of the two parts is then designed in the assembly design 

tool in Pro/Engineer as shown in Figure 10-3, by using knowledge of constraints and 

features that are defined specifically for Pro/Engineer users.  

To simulate the assembly process, assembly data needs to be imported into a 

virtual environment that can be used to simulate the real assembly environment so user 

can verify that the two parts can be assembled into the final assembly. In the virtual 

assembly environment, the assembly process is simulated based on its own knowledge 

model, and it also has its own data format and ways of representing geometry and 

assembly information. 

 

 



 94

 
 

Figure 10 - 1 Part Screw in a Test Assembly 
  

 

 
Figure 10 - 2 Part Plate in a Test Assembly 
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Figure 10 - 3 Test Assembly asm001 

 

10.2 Integration in a Traditional Integration Framework 

Previously in a traditional integration framework, the information exchange is 

limited to a pure data level. The information flow is as follows:  

In order to allow the assembly simulation tool to recognize the assembly data that 

was originally designed in Pro/Engineer, the assembly design data in Pro/Engineer needs 

to be converted to another representation that can be understood by assembly simulation 

tool. Since Pro/Engineer and the Assembly simulation tool use different knowledge to 

describe constraints between parts in the assembly, for example Align concept is used in 

Pro/Engineer to describe the relationship of two planes which have the same position and 

are parallel to each other, whereas in the assembly simulation tool the concept Contact is 

used to describe the same relationship, during the conversion process, in a traditional 

integration framework, the data that is described by the original knowledge model of 

Pro/Eingineer cannot be understood by assembly simulation tool which is based on the 
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other knowledge model. To reconcile the differences, normally in a traditional integration 

framework the original data has to be converted to a neutral knowledge representation 

and then converted to the target representation again. However, in an integration 

framework that focuses on product lifecycle management, there could be large number of 

different applications that co-exist and need to communicate with each other. Data is 

interpreted from different viewports and its representation varies so significantly that 

there is no common knowledge representation can cover all the different knowledge 

bases. This leads to information getting lost during the conversion simply because it is 

not able to be recognized by other applications that use a different knowledge 

representation. 

In the next a few sections, we will discuss how to overcome the interoperability 

problem by using our new semantic integration approach that has been designed and 

implemented in this dissertation. 

10.3 Building Ontologies for Assembly Design/Assembly Simulation 

As discussed in chapter 5, 6 and 7, knowledge in assembly design using 

Pro/Engineer and assembly simulation is investigated and built into ontologies as Product 

Design Ontology (PDO) and Assembly Simulation Ontology (ASO). Using Protégé as 

ontology editor and OWL/RDF as ontology language, concepts and relations are 

represented in ontology using subject-property-object triplet expression. Figure 10-4 and 

Figure 10-5 show a small sample of defined classes and relations of PDO in protégé. 

Similarly ASO is defined. 
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Figure 10 - 4 Define PDO Classes in Protégé  
 

 
Figure 10 - 5 Define PDO Relations in Protégé  

 
 

10.4 Capturing Product Data Semantics from Original Design  

Based on the knowledge of assembly design in Pro/Engineer that is built into 

Product Design Ontology (PDO), product data semantics need to be created based on 

steps introduced in chapter 7. Since same knowledge is used to describe product data 

semantics and also to create original product assembly data, we can easily identify the 

concepts and relations from PDO and use them to interpret the product assembly data by 

creating instances.  
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For example, the following concepts in PDO are instantiated according to the 

assembly data: instance Asm001 is instantiated from concept PDO:Assembly, instance 

Plate is instantiated from concept PDO:Component, and instance Screw is instantiated 

from concept PDO:Component, Figure 10-6 shows the actual OWL/RDF source code. 

 

Figure 10 - 6 OWL/RDF Code of Specific Assembly and Component in PDO 
 

Also, constraints information in the assembly is described using predefined 

concepts in PDO, and the following instances are created: 

Mate_1 is created as an instance of concept PDO:Mate and Insert_1 is created as 

an instance of concept PDO:Insert. Figure 10-7 shows the actual OWL/RDF source code 

 

Figure 10 - 7 OWL/RDF Code of Specific Constraints in PDO 
 

According to the product design in Pro/Engineer, the relations between instances 

can be represented as shown in Table 10-1 in form of Subject-Property-Object,. For 

example, as indicated in the first row, assembly Asm001 has Plate as its 

PDO:has_component property, meaning Plate is a component of Asm001. RDF/OWL 

source code in Figure 10-8 uses rdf:Description and predefined properties to describe 

these relations in supplement of the definition of instance asm001 that described in 

Figure 10-4. 

Subject Property Object 

  < Mate rdf:ID="Mate_1"/> 
  < Insert rdf:ID="Insert_1"/> 

  < Assembly rdf:ID="asm001"/> 
  < Component rdf:ID="Plate"/> 
  < Component rdf:ID="Screw"/> 
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Asm001 PDO:has_component Plate 

Asm001 PDO:has_component Screw 

Asm001 PDO:has_component_constraint Mate_1 

Asm001 PDO:has_component_constraint Insert_1 

Table 10 -  1 Relations between Instances 
 

 

Figure 10 - 8 OWL/RDF code of Assembly Relations 
 

In original assembly design, detailed information about each component 

constraint between two parts is captured and described using PDO concepts. As defined 

in PDO, each instance of concept component_constraint should have at least one instance 

of model_item as attribute of has_assembly_reference, and at least one instance of 

model_item as attribute of has_component_reference. By inquiring the product data 

model, we found following information that can be used to reflect this information: 

Plate has Surface1 and Surface2 as two model items. Screw also has two model 

items named Surface1 and Surface2. The Mate_1 constraint between Plate and Screw 

uses Surface1 of Plate and Surface2 of Screw as component reference and assembly 

reference respectively, and the insert_1 constraint between the same parts uses Surface2 

of Plate and Surface1 of Screw as component reference and assembly reference. To 

describe above information, we have following instances and properties in PDO: 

  < rdf:Description rdf:about="asm001"> 
    <has_component rdf:resource="#plate"/> 
    <has_component rdf:resource="#screw"/> 
    <has_assembly_constraint rdf:resource="#Align_1"/> 
    <has_assembly_constraint rdf:resource="#Insert_1"/> 
  </rdf:Description> 
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Previously two instances of concept PDO:Component_Constraints, Mate_1 and 

Insert_1, are already created for the component constraint information. Another four 

instances Plate:Surface1, Plate:Surface2, Screw:Surface1, Screw:Surface2 are created for 

each of the model items. (Note: namespace Plate and Screw are added to the instance 

name to indicate the component that these model items belong to) 

To reflect the relations between model items and component constraint, properties 

are used to link instances and we have the following subject-property-object relations as 

shown in Table 10-2. Figure 10 – 9 and Figure 10 – 10 shows the corresponding 

OWL/RDF source code. 

 

 
Subject Property Object 

Mate_1 PDO:has_component_reference Plate:Surface2 

Mate_1 PDO:has_assembly_reference Screw:Surface1 

Insert_1 PDO:has_component_reference Plate:Surface1 

Insert_1 PDO:has_assembly_reference Screw:Surface2 

Table 10 -  2 Relations between Component Constraints and Model Items  
 

 

Figure 10 - 9 OWL/RDF Code of Mate_1  
 

  < rdf:Description rdf:about="Align_1"> 
    <has_component_reference  
rdf:resource="#Plate:Surface2"/> 
    <has_assembly_reference 
rdf:resource="#Screw:Surface1"/> 
  </rdf:Description> 
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Figure 10 - 10 OWL/RDF Code of Insert_1 

 

10.5 Ontology Mapping for PDO and ASO 

Now we have product data semantics which describes product data using 

knowledge in PDO. Before translating it to another knowledge representation, we need to 

find the matching concepts by using the ontology mapping algorithm described in 

Chapter 8. The process can be analogized to translating an article from one human 

language to another human language. Before we translate product data semantics, it is 

important to find the matching concepts in two knowledge bases, similar to finding the 

corresponding word in the target language that has the same meaning as the one in source 

language in the given context.  

In this example we will reuse some result from chapter 8. By using methods 

introduced in chapter 8, we have identified PDO:Assembly and ASO:Assembly as 

matching concepts based on definitions of matching concepts and equivalent instances 

and Rule 8.3.2.1 as discussed in Chapter 8.3.2. Also PDO:Component and ASO:Part are 

identified as matching concepts according to Rule 8.3.3.1  as discussed in Chapter 8.3.3.  

PDO:Component_Constraint and ASO:Assembly_Constraint are identified as 

matching concepts according to similarity calculation using heuristics method as 

discussed in chapter 8.4 

  < rdf:Description rdf:about="Insert_1"> 
    <has_component_reference 
rdf:resource="#Plate:Surface1"/> 
    <has_assembly_reference 
rdf:resource="#Screw:Surface2"/> 
  </rdf:Description> 
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Concept in Source Ontology (PDO) Concept in Target Ontology (ASO) 

PDO:Assembly ASO:Assembly 

PDO:Component ASO:Part 

PDO:Component_constraint ASO:Assembly_constraint 

Table 10 -  3 Matching Concepts between PDO and ASO 
 

Based on information of existing instance Insert_1 and its concept PDO:Insert, 

we need to find the matching concept that Insert_1 can be converted to.  

As we already identified ASO:Assembly_constraint and 

PDO:Component_constraint in 8.3.2 as matching concepts, all the sub-concepts of 

ASO:Assembly_constraint will have inheritance similarity to PDO:Insert. To find which 

concept is the most appropriate concept that instance Insert_1 can be converted to, all the 

sub-concepts of ASO:Assembly_constraint are enumerated to find the one can have the 

highest attribute similarity with Insert_1. 

Based on existing information about instances Insert_1, its geometry attribute and 

behavior attribute are listed in Table 10-4. 

Note: according to axiom1 in chapter 7, an instance of 

PDO:component_constraint has at least one instance of PDO:Model_item as 

PDO:has_component_reference property and one instance of PDO:Model_item as 

PDO:has_assembly_reference property, both the properties are derived from “part-of” 

relation, according to the transitivity of “attribute-of” relation over “part-of” relation, 

geometry attributes of PDO:Model_item instances are also geometry attribute of Insert_1. 

 
Instance Geometry Attribute From 

PDO:has_component_reference 

Geometry Attribute From 

PDO:has_assembly_reference 

Behavior Attribute 
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Insert_1 GDO:Cylindrical_Surface GDO:Cylindrical_Surface GDO:Translate_z 

GDO:Rotate_z 

Table 10 -  4 Instance of Insert component constraint  
 

According to definitions and restrictions in ASO, subtypes of 

ASO:Assembly_constraint can have attributes as shown in Table 10-5 

 
Concept Geometry Attribute from 

ASO:has_assembly_feature 

Geometry Attribute From 

ASO:has_assembly_feature 

Behavior Attribute 

ASO:Coincidence GDO:Point GDO:Point GDO:Rotate_x, 

GDO:Rotate_y, 

GDO:Rotate_z 

GDO:Line GDO:Line GDO:Translate_z, 

GDO:Rotate_z 

GDO:Plane GDO:Plane GDO:Translate_x, 

GDO:Translate_y, 

GDO:Rotate_z 

ASO:Offset GDO:Plane GDO:Plane GDO:Translate_x, 

GDO:Translate_y, 

GDO:Rotate_z 

ASO:Contact GDO:Cylindrical_surface GDO:Cylindrical_surface GDO:Translate_z, 

GDO:Rotate_z 

GDO:Plane GDO:Plane GDO:Translate_x, 

GDO:Translate_y, 

GDO:Rotate_z 

Table 10 -  5 ASO:Assembly_constraint Attributes 
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From Table 10-4 and Table 10-5, we can see that ASO:Contact can have similar 

attributes in both geometry and behavior attributes, so it can be concluded that 

ASO:Contact is the matching concept of PDO:Insert for instance Insert_1. 

Similarly, it can be found that ASO:Coincidence can have the similar geometry 

attribute and behavior attributes as PDO:Mate so it is the matching concept of PDO:Mate 

for instance Mate_1. 

 

10.6 Translated Product Data Semantics and Instance Mapping 

During the translation process, after finding the matching concept in ASO for 

each of the source concept in PDO, instances in PDO are translated into their counterpart 

instances of ASO concepts. Table 10-6 and 10-7 list the new instances and the mapping 

between new instances and old instances. Table 10-8 lists the new relations between the 

new instances. Figure 10 –9 through Figure 10-16 show the sample OWL/RDF source 

code. 

Concept Instance 

ASO:Assembly ASO:Asm001 

ASO:Part ASO:Plate, ASO:Screw 

ASO:Assembly_feature ASO:Plate:Surface1, ASO:Plate:Surface2, 

ASO:Screw:Surface1, ASO:Screw:Surface2 

ASO:Assembly_constraint ASO:Contact_1, ASO:Coincidence_1 

Table 10 -  6 New Instances in ASO 
 
 
Source Instance Target Instance 

PDO:Asm001 ASO:Asm001 
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PDO:Plate ASO:Plate 

PDO:Screw ASO:Screw 

PDO:Plate:Surface1 ASO:Plate:Surface1 

PDO:Plate:Surface2 ASO:Plate:Surface2 

PDO:Screw:Surface1 ASO:Screw:Surface1 

PDO:Screw:Surface2 ASO:Screw:Surface2 

PDO:Insert_1 ASO:Contact_1 

PDO:Mate_1 ASO:Coincidence_1 

Table 10 -  7 Instance Mapping between PDO and ASO 
 

 

Subject Property Object 

ASO:Asm001 ASO:has_part ASO:Plate 

 

ASO:Asm001 ASO:has_part ASO:Screw 

ASO:Coincidence_1 ASO:has_assembly_feature ASO:Plate:Surface1 

ASO:Contact_1 PDO:has_assembly_feature ASO:Screw:Surface2 

ASO:Coincidence_1 ASO:has_assembly_feature ASO:Screw:Surface1 

ASO:Contact_1 ASO:has_assembly_feature ASO:Plate:Surface2 

Table 10 -  8 New Instance Relations 
 

 

Figure 10 - 11 OWL/RDF Code of New Instances 
 

  <ASO:Assembly rdf:ID="Asm001"> 
  </Assembly_feature > 
  <ASO:Part rdf:ID="Plate"> 
  </Part> 
  <ASO:Part rdf:ID="Screw"> 
  </Part> 
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Figure 10 - 12 OWL/RDF Code Of Instance Mapping  
 

 

Figure 10 - 13 OWL/RDF Code of New Part Instance  
 

 

Figure 10 - 14 OWL/RDF Code Instance Coincidence_1  
 

 

Figure 10 - 15 OWL/RDF Code of Instance Contact_1  
 

  <InstanceMatch rdf:ID="im1"> 
    <sourceInstance rdf:resource="#PDO:asm001"/> 
    <targetInstance rdf:resource="#ASO:asm001"/> 
  </InstanceMatch> 
  <InstanceMatch rdf:ID="im1"> 
    <sourceInstance rdf:resource="#PDO:Plate"/> 
    <targetInstance rdf:resource="#ASO:Plate"/> 
  </InstanceMatch> 
  <InstanceMatch rdf:ID="im1"> 
    <sourceInstance rdf:resource="#PDO:Screw"/> 
    <targetInstance rdf:resource="#ASO:Screw"/> 
  </InstanceMatch> 

  < rdf:Description rdf:about="Contact_1"> 
    <has_assembly_feature rdf:resource="#ASO:Plate:Surface2"/> 
    <has_assembly_feature rdf:resource="#ASO:Screw:Surface1"/> 
  </rdf:Description> 

 

  < rdf:Description rdf:about="Coincidence_1"> 
    <has_assembly_feature rdf:resource="#Plate_Surface1"/> 
    <has_assembly_feature rdf:resource="#Screw_Surface2"/> 
  </rdf:Description> 

 

  <ASO:Assembly_feature rdf:ID="ASO:Plate:Surface1"> 
  </Assembly_feature > 
  <ASO: Assembly_feature rdf:ID="ASO:Plate:Surface2"> 
  </Assembly_feature > 
   
  <ASO:Part rdf:ID="plate"> 
    <has_assembly_feature rdf:resource="#ASO:Plate:Surface1"/> 
    <has_assembly_feature rdf:resource="#ASO:Plate:Surface2"/> 
  </Part> 
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Figure 10 - 16 OWL/RDF Code of Instance asm001  

 

10.7 Summary 

The example illustrates a new semantic integration process. In the new semantic 

integration, product data semantics is captured to represent an engineer’s understanding 

about a product design, which is based on existing CAD data model and pre-built 

knowledge base in engineering ontologies.  

Using method of ontology mapping developed in this dissertation, product data 

semantics can be translated to another knowledge representation.. In this example, one 

product data semantics based on the knowledge representation of assembly design is 

translated into another product data semantics based on knowledge representation of 

assembly simulation. 

One advantage of the new integration framework is the improved interoperability. 

Because different applications usually describe a product design using different 

knowledge representations, which lead to big difference in data type and data structure, in 

a traditional integration framework where information is exchanged purely in a data 

level, this results in the problem of heterogeneous data. Using the method proposed in 

this dissertation, based on the knowledge of the application that the data is generated 

from, data is first interpreted into product data semantic, and then it is translated into 

  < rdf:Description rdf:about="asm001"> 
    <has_part rdf:resource="#plate"/> 
    <has_part rdf:resource="#screw"/> 
    <has_assembly_constraint rdf:resource="#Coincidence_1"/> 
    <has_assembly_constraint rdf:resource="#Contact_1"/> 
  </ rdf:Description > 
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another product data semantics based on knowledge of the application that converted data 

will be used, by using ontology mapping. In the example presented in this chapter, data 

about assembly design is interpreted in product data semantics using assembly design 

knowledge, then the original product data semantics is translated into another product 

data semantics which interpret data based on assembly simulation knowledge, according 

to the mapping information between these two product data semantics, we know what 

data types can be converted from one to the other. During the process, no common 

knowledge is required to cover all the knowledge representations, and tasks that used to 

require human intervention now can be accomplished automatically, which will 

significantly improve the efficiency of integration. 
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Chapter Eleven -  Summary and Future Work 

 

This dissertation seeks to improve the interoperability of CAD/CAE applications 

during PLM. In a CAD/CAE integration, we think the interoperability problem caused 

by heterogeneous data types in various applications, is rooted from the fact that 

different knowledge representations are used to interpret product data,. In order to solve 

the problem, and also improve composition adaptivity and viewport adaptivity of an 

integration framework, our proposed solution is to build knowledge to interpret product 

data as product data semantics and translate between different product data semantics. 

The following research questions are investigated: 

1. How to represent knowledge in engineering design and analysis in a 

consistent, scalable manner. 

2. How to generate product data semantics by associating the engineering 

design/analysis knowledge to the actual product data. 

3. How to reconcile the differences in different product semantics and 

make the semantics translations, and eventually lead to data being 

translated correctly.  

In order to answer the above questions, Chapter 5 shows how an engineer’s 

understanding about a product design (product data semantics) is represented using the 

ontologies. Chapters 6 and 7 define the structure and syntax of engineering ontologies to 

represent the knowledge in engineering design and analysis. Chapter 8 and 9 discuss the 

method of translating different product data semantics based on different knowledge. A 
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use case is introduced in Chapter 10 to show how different product data semantics are 

translated between assembly design and simulation tools. 

 

11.1 Summary 

To address the interoperability problem in CAD/CAE integration, one solution is 

to explicitly build engineering knowledge that is used during different design/analysis 

process into ontologies, and use the knowledge to interpret the product data. Using this 

method, some of the interoperability problem can be improved by automatically 

translating the interpretation from one representation to other representations so that 

applications in the integration framework can understand.  

With the automatic translation process and layer structured ontology based on 

consistent, scalable ontology language, new knowledge representation can be easily built 

based on existing ontologies so to improve scalability and reusability. By mapping to 

other knowledge, interpretation of data based on one knowledge representation can be 

translated into interpretation based on other knowledge representation, and eventually 

help the data to be converted to the correct type.  

 In our solution, knowledge representation, product data semantics creation and 

translation are the key issues. 

11.1.1 Knowledge Representation 
Ontology is a consistent and scalable way to represent knowledge in engineering 

design and analysis. We use a three layered structure to model engineering ontology: 

general ontology, domain ontology and application ontology. In an ontology, concepts 

are related to other concepts by different types of relations. In this dissertation, three 
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basic relations are considered: 1) part-of, which represents the composition relationship; 

2) is-a, which represents the inheritance relationships; and 3) attribute-of, which 

represents the object-attribute relationship. In addition, axioms supplement the 

knowledge by defining the restrictions on the concepts and their relations. 

As one of the most commonly accepted ontology languages and also an actual 

industrial standard, RDF/OWL is a powerful ontology language to model engineering 

design and analysis ontologies. The capability of serializing OWL/RDF in XML format 

makes it easier to be accepted by different applications. The wide availability of toolkits 

such as Protégé and Jena makes it possible to develop new functionalities. 

 

11.1.2 Product Data Semantics Creation in Source 
Product Data Semantics is used to describe product data using the concepts and 

relations defined in engineering ontologies.  

To capture product data semantics, firstly concepts and relations that are used 

during the design/analysis are built into engineering ontologies. In this dissertation we 

use two ontologies PDO and ASO as examples to show how knowledge of different 

domain (assembly design and assembly simulation) are built into ontologies.  

Secondly, to associate the product data to concepts, instances are created by using 

CAD/CAE APIs and ontology toolkits to instantiate concepts in an ontology with the 

actual product data. 
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11.1.3 Product Data Semantics Translation To Target 
One of the most challenging problems in solving heterogeneous data is finding the 

correct target data representation for source data. To improve interoperability, our 

approach is to use built-in knowledge to interpret product data into product data 

semantics, and then by translating different product data semantics based on ontology 

mapping, so that source data that is interpreted in original product data semantics can be 

found its matching data interpretation, and eventually to help the source data to be 

converted to the correct target data representation. 

To translate product data semantics, one of the most critical steps is ontology 

mapping, which is to map different concepts and relations in two ontologies. In this 

dissertation, mostly focused on integration of CAD/CAE applications, we propose a 

method of finding matching concepts for engineering ontologies in product design and 

analysis domains, two steps are used: explicit matching by definitions and matching 

based on heuristics method of similarity calculation. For the first step, definitions are 

given based on information exchange in a CAD/CAE integration process. In the latter 

step, compared to other heuristics method of ontology mapping which don’t differentiate 

relation types, based on the characteristics of product data, three basic types of relations 

are used to calculate similarities so to find matching concepts: similarity based on “part-

of” relationship, similarity based on “is-a” relationship, and similarity based on 

“attribute-of” relationship, and similarity based on specific attributes of product design 

are also discussed. An algorithm is developed for this purpose. 

11.1.4 Key Contributions 
In summary, compared to traditional data leve integration, our proposed semantic 

level integration has following  features: 
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1) Ontologies with layered structure to represent engineering knowledge using 

semantic web technologies.  

2) Product Data Semantics as interpretation of product data based on knowledge 

represented in ontologies, which can be captured by instantiating concepts in 

ontologies using product data. 

3) An algorithm of systematically finding mapping information in two steps: 1. 

Finding matching information based on definitions and 2. Finding matching 

information based on heuristics method. In step 2, a new algorithm is 

developed to calculate similarity based on different types of relations between 

concepts. 

In the example scenario we used integration between an assembly design tool and 

an assembly simulation tool to show the new semantic integration method. Theoretically, 

semantic level integration can be used for any applications in CAD/CAE that is focused 

on product data, including design/analysis/simulation, to integrate different applications, 

different attributes especially behavior attributes may need to be defined for similarity 

calculation. 

11.2 Future Work 
The proposed solution in this dissertation tries to address the interoperability 

problem in a CAD/CAE framework and improves the communications process between 

different applications. However, there are still many problems need to be addressed and 

further investigated: 

1) Deployment adaptivity. As the engineering application in a CAD/CAE 

framework can be very different. For example, one application may require real-time 
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collaboration, whereas another may require a strict, well-defined, procedure-based 

communication. Also in some cases the deployment is based on sharing just the product 

data (PDM model) whereas others require the complete integration of the engineering, 

manufacturing, and business processes (ERP model).  Any resulting system based on 

current integration methods is very rigid in terms of deployment: deployment strategies 

often cannot be modified or replaced without subsequent rounds of negotiation and 

programming. There is an increasing demand for flexible deployment strategy that can 

support multiple deployment possibilities. 

2) Representation of difference in ontology mapping for complex concepts. In this 

dissertation we mainly focus on finding the mapping between basic design entities, and it 

is also very important to find the difference between the two similar concepts so to help 

the translation. For example, the difference in part/sub-assembly order information 

between an assembly design hierarchy (as designed) and an assembly simulation 

hierarchy (as manufactured). 

Overall, semantic level integration improves interoperability and adaptivity of 

integration in several aspects. There remains more ongoing research to make further 

improvement. 
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Appendix – Acronyms 

 

ASO: Assembly Simulation Ontology 

BDE: Basic Design Entity 

CAD: Computer Aided Design 

CAE: Computer Aided Engineering 

DOF: Degree of Freedom 

GDO: General Design Ontology 

PDM: Product Data Management 

PDO: Product Design Ontology 

PLM: Product Lifecycle Management 
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Appendix – RULES for Ontology Mapping 
 

Rule 5.5.1 for three concepts C1 and C2 and C3, if C1 has_Child C2 and C2 

has_Attribute C3, then it can be deducted that C1 has_Attribute C3.  

Rule 8.3.1.1 If two concepts are equivalent, then they are matching concepts.  

Rule 8.3.2.1 if two concepts share the equivalent instance, then the two 

concepts are two matching concepts.  

Rule 8.3.3.1 During data conversion, if the attribute of an instance of a BDE 

is converted to be the attribute of an instance of another BDE, then both Basic 

Design Entities share the same attribute. 

Rule 8.4.2.1 For a given source concept A, if a target concept A’ has attribute 

similarity )',(1 AASim  , and if a Concept C’ has_Child A’, then Concept C’ and A 

have the same attribute similarity )',()',( 11 AASimCASim =  

Rule 8.4.3.1 if there are two matching concepts A and B which belong to each 

one of the hierarchies, then all the concepts Ai and Bi that are sub-concepts of A and 

B will have inheritance similarity ),(),( 11 BASimBASim ii =  and 

),(),( 22 BASimBASim ii =  

Rule 8.5.1.1 If two geometry attributes fall under the same immediate 

geometry attribute category, then the geometry similarity of two geometry 

attributes is proportional to the depth of the geometry category from the top level.  

Rule 8.5.1.2 If a concept can have different geometry types as its geometry 

attribute, the common geometry category at the lowest level in the hierarchy is used 

to calculate geometry attribute similarity 
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Rule 8.5.2.3  If both applications are regarding 3-D feature-based product 

design, then designCreationBehavior can be used as common behavior attribute. 

Rule 8.5.2.4 If both applications share a common definition in 

functionalBehavior, then that definition may be used as behavior attribute. 
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 Appendix – Definitions 
 
 

Definition 8.1: Mutual Information: Mutual information refers to the 

information shared by two instances.  

Definition 8.2: Instance Similarity:  

)( BAI ∩ : Mutual information of instance A and B 

)( BAI ∪ : Union of information of instance A and B 

Instance Similarity between A and B is:
)(
)(),(

BAI
BAIBASim

∪
∩

=  

Definition 8.3: Matching Instances: A pair of instances that have mutual 

information and also have the highest similarity are defined as Matching Instances, and 

during translation, the matching instances can be translated from one to another. 

Definition 8.4: Convertible Instance: If Instance A and Instance B are Matching 

Instances, during CAD/CAE integration, and information in Instance A can be translated 

to information in Instance B, then we call Instance B a convertible instance of B 

( ),( ABeConvertibl ).  

Definition 8.5: Matching Concepts: For two Matching Instances, their 

corresponding concepts are defined as Matching Concepts. 

Definition 8.6: Concept Similarity: among all the instances iI1 of concepts C1 

and iI 2 of C2, the highest instance similarity between two instances ),(( 21 ii IISimMax is 

defined as concept similarity of C1 and C2. 
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Definition 8.7: Convertible Concept: For two instances, A and B, which belong 

to concept AC  and BC  respectively, if A is a convertible instance of B, then the concept 

AC  is a convertible concept of BC . 

Definition 8.8: Mismatching Instances: Mismatching Instances do not share 

mutual information. 

Definition 8.9: Mismatching Concepts: Mismatching Concepts do not have any 

instances that have concept similarity > 0. 

Definition 8.10: Composition Path is a path that only consists of composition 

relations  

Definition 8.11: Similar Composition Path for two composition paths, if all the 

nodes in one composition path have the same attribute similarity to all the nodes in the 

other composition path, then we define the two paths as similar composition paths.  
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