
 i

AN ONTOLOGY-BASED APPROACH

FOR SEMANTIC LEVEL INFORMATION EXCHANGE AND INTEGRATION

IN APPLICATIONS FOR PRODUCT LIFECYCLE MANAGEMENT

By

PEI ZHAN

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY

School of Mechanical and Materials Engineering

August 2007

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the dissertation of PEI

ZHAN find it satisfactory and recommend that it be accepted.

 Chair

 iii

ACKNOWLEDGMENTS

I would like to give special thanks to my wife, Xiangling, who is continually the

love and inspiration of my life. To my parents, their love and encouragement that

enabled me to achieve my goals. Thanks to my friends and fellow members in VRCIM

Laboratory I’ve worked with: YoungJun, Okjoon, Lijuan, Gareth, Hrishi. Finally, special

thanks to my committee, Dr. Uma Jayaram, Dr. Sankar Jayaram, and Dr. Hakan Gurocak,

whose mentoring, wisdom, and friendship have been gratefully received.

 iv

AN ONTOLOGY-BASED APPROACH

FOR SEMANTIC LEVEL INFORMATION EXCHANGE AND INTEGRATION

IN APPLICATIONS FOR PRODUCT LIFECYCLE MANAGEMENT

Abstract

By Pei Zhan, Ph.d
Washington State University

August 2007

Chair: Uma Jayaram

During product lifecycle management (PLM), product information from

CAD/CAE applications regularly needs to be exchanged and shared between the various

applications. However, these applications often have different product data semantics and

corresponding representations. The interoperability problem caused by the heterogeneous

semantics and data representation is critical and needs to be addressed and automated.

Recent research has focused on integration frameworks for CAD/CAE applications in

order to improve interoperability. There are fundamental problems that still need to be

addressed.

We identified the following important roadblocks and sought to address these

specifically in our work: 1) The need for an adequate product knowledge representation

of engineering design/analysis, which is easily expandable, and customizable for

traditional and non-traditional (e.g. virtual prototyping) design information systems that

also allows the sharing of product data semantics across all these heterogeneous systems

to support distributed, collaborative engineering capabilities; 2) The need for a way to

generate product data semantics by using engineering design/analysis knowledge to

interpret actual product data 3) The need for a way to reconcile the differences in the

 v

different product semantics by finding underlying similarities between different

knowledge representations that are from different viewports and reconcile, and use these

similarities to then translate product data semantics correctly.

This dissertation proposes an ontology-based approach for a semantic level

exchange and integration to improve interoperability, which includes an ontology

building tool, ontology mapping tools and custom tools to associate ontologies to prduct

data. For the purpose of semantic level integration, a way of representing engineering

design/analysis knowledge using an engineering ontology is proposed. A layered

structure is used for building knowledge into engineering ontologies so as to improve the

scalability and composition adaptivity. Based on the knowledge, a semantic layer is built

upon product data to use concepts/relations in ontologies to describe actual product data,

which can be used to represent understandings about a product design from different

perspectives. To enable translating different understandings (product data semantics)

using different ontologies, an ontology mapping method is proposed to find matching

concepts between different ontologies, based on three basic relation types between

concepts: composition, inheritance and attribute.

A scenario is explained to describe the working mechanism of the system and to

demonstrate the concept of semantic level integration framework for a simple example. A

sample assembly is designed and simulated in different software packages and an

integrated process is made to exchange information between them. The scenario

successfully demonstrates the ontology based approach.

 vi

TABLE OF CONTENTS

CHAPTER ONE - INTRODUCTION .. 1
CHAPTER TWO - LITERATURE REVIEW ... 3
2.1 INTEGRATION FRAMEWORK ... 3
2.2 PRODUCT INFORMATION MODEL .. 4
2.3 PRODUCT DATA FORMAT ... 6
2.4 CAPTURING PRODUCT DATA SEMANTICS .. 7
2.5 ONTOLOGY .. 8

2.5.1 DESIGN ONTOLOGY ... 8
2.5.2 SUPPORTING TECHNOLOGIES FOR DEVELOPING ONTOLOGY ... 10
2.5.3 ONTOLOGY MAPPING .. 11

CHAPTER THREE - PROBLEM STATEMENT, PROPOSED SOLUTION, AND SCOPE OF
WORK ... 13
3.1 PROBLEMS OF CAD/CAE INTEGRATION FRAMEWORK .. 13
3.2 PROBLEM STATEMENT .. 15
3.3 PROPOSED SOLUTION .. 16
3.4 SCOPE OF WORK .. 17
3.5 ORGANIZATION OF THE DISSERTATION ... 17
CHAPTER FOUR - ARCHITECTURE OF CAD/CAE INTEGRATION FRAMEWORK 19
4.1 REQUIREMENTS OF INTEGRATION FRAMEWORK .. 19
4.2 INTEGRATION FRAMEWORK OVERVIEW ... 21
4.3 WORKING MECHANISM OF INTEGRATION FRAMEWORK .. 22
4.4 BENEFITS OF THE FRAMEWORK .. 26
CHAPTER FIVE - DEFINING PRODUCT DATA SEMANTICS USING ENGINEERING
ONTOLOGIES ... 27
5.1 INTRODUCTION .. 27
5.2 METHODOLOGY OF BUILDING ENGINEERING ONTOLOGIES .. 28
5.3 DEFINE THE CLASSES AND THEIR RELATIONS ... 29
5.4 LAYERED STRUCTURE OF THE ONTOLOGY IN SEMANTIC WEB 30
5.5 LAYERED STRUCTURE OF ENGINEERING ONTOLOGY .. 32
5.6 BENEFITS OF LAYERED ONTOLOGY STRUCTURE ... 37
CHAPTER SIX - KEY CONCEPTS IN GENERAL DESIGN ONTOLOGY 38
6.1 BASIC DESIGN ENTITY ... 38
6.2 ATTRIBUTES OF A BASIC DESIGN ENTITY .. 39

6.2.1 FORM ATTRIBUTE .. 40
6.2.2 BEHAVIOR ATTRIBUTE .. 41

 vii

CHAPTER SEVEN - BUILDING APPLICATION-SPECIFIC ONTOLOGIES 44
7.1 PRODUCT DESIGN ONTOLOGY .. 44

7.1.1 FOUNDATIONAL DOMAIN-SPECIFIC ONTOLOGIES .. 44
7.1.2 APPLICATION-SPECIFIC ONTOLOGY FOR PRO/ENGINEER ... 46

7.2 ASSEMBLY SIMULATION ONTOLOGY .. 50
7.2.1 DOMAIN-SPECIFIC ONTOLOGY FOR VADE .. 50
7.2.1 APPLICATION-SPECIFIC ONTOLOGY FOR VADE .. 51

7.3. CAPTURING PRODUCT DATA SEMANTICS FOR PRODUCT DATA 53
7.3.1 METHODOLOGY OF CAPTURING PRODUCT DATA SEMANTICS ... 53
7.3.2 INTERPRETING PRODUCT DATA USING PRODUCT DATA SEMANTICS... 55

CHAPTER EIGHT - ONTOLOGY MAPPING FOR DESIGN/ANALYSIS 58
8.1 INTRODUCTION .. 58
8.2 DEFINITIONS .. 59
8.3 FINDING MATCHING INFORMATION BASED ON DEFINITIONS .. 61

8.3.1 ONTOLOGY MAPPING BY EXPLICIT EQUIVALENT CLASSES ... 61
8.3.2 MAPPING CONCEPTS BASED ON EXPLICITLY EQUIVALENT INSTANCES ... 63
8.3.3 MAPPING INFORMATION GENERATED THROUGH DATA CONVERSION ... 65

8.4 ONTOLOGY MAPPING BY HEURISTICS METHOD ... 66
8.4.1 ATTRIBUTE SIMILARITY ... 67
8.4.2 COMPOSITION SIMILARITY .. 68
8.4.3 SIMILARITY BASED ON INHERITANCE RELATION ... 72
8.4.4 METHOD OF FINDING MATCHING CONCEPTS ... 73

8.5 TAILORING THE METHOD FOR MAPPING USING BASIC DESIGN ENTITY 77
8.5.1 FORM ATTRIBUTE .. 77
8.5.2 BEHAVIOR ATTRIBUTES ... 79
8.5.3 EXAMPLE OF CALCULATING SIMILARITY FOR BDES BASED ON THEIR ATTRIBUTES 80
8.5.4 CALCULATING CONCEPT SIMILARITY BASED ON INSTANCES .. 84

CHAPTER NINE - REPRESENTING ONTOLOGY MAPPING INFORMATION 88
9.1 INTRODUCTION .. 88
9.2 BRIDGE ONTOLOGY .. 88
9.3 CONCEPT MAPPING REPRESENTATION ... 89

9.3.1 UNCONDITIONAL MAPPING ... 89
9.3.2 CONDITIONAL MAPPING .. 90

9.4 INSTANCE MAPPING REPRESENTATION .. 90
CHAPTER TEN - EXAMPLE SCENARIO .. 92
10.1 MOTIVATING SCENARIO ... 93
10.2 INTEGRATION IN A TRADITIONAL INTEGRATION FRAMEWORK 95
10.3 BUILDING ONTOLOGIES FOR ASSEMBLY DESIGN/ASSEMBLY SIMULATION 96
10.4 CAPTURING PRODUCT DATA SEMANTICS FROM ORIGINAL DESIGN 97
10.5 ONTOLOGY MAPPING FOR PDO AND ASO ..101
10.6 TRANSLATED PRODUCT DATA SEMANTICS AND INSTANCE MAPPING104

 viii

10.7 SUMMARY ..107
CHAPTER ELEVEN - SUMMARY AND FUTURE WORK ...109
11.1 SUMMARY ..110

11.1.1 KNOWLEDGE REPRESENTATION ...110
11.1.2 PRODUCT DATA SEMANTICS CREATION IN SOURCE ...111
11.1.3 PRODUCT DATA SEMANTICS TRANSLATION TO TARGET ..112
11.1.4 KEY CONTRIBUTIONS ...112

11.2 FUTURE WORK ...113

 ix

TABLE OF FIGURES
Figure 4 - 1 Structure of Integration Framework .. 21
Figure 4 - 2 Working Mechanism of Semantic Level Integration 25
Figure 5 - 1 Class Hierarchy in Protégé .. 29
Figure 5 - 2 W3C Semantic Web Layer Cake .. 31
Figure 5 - 3 Structure of Engineering Ontology ... 31
Figure 5 - 4 Relationship between Ontology and Product data .. 33
Figure 5 - 5 Engineering Ontology Layered Structure ... 33
Figure 5 - 6 OWL/RDF Sample Code of Concepts and Relations 36
Figure 6 - 1 Feature created using Extrude behavior ... 42
Figure 6 - 2 Feature created using Revolve behavior ... 42
Figure 6 - 3 OWL/RDF Code of Extrude Feature .. 43
Figure 6 - 4 OWL/RDF Code of Revolve Feature .. 43
Figure 7 - 1 Composition Relations in feature based parametric design domain ontology
... 45
Figure 7 - 2 Composition Relations in assembly design domain ontology 46
Figure 7 - 3 PDO Component_constraint Taxonomy ... 47
Figure 7 - 4 Sample OWL/RDF Code of Axioms .. 49
Figure 7 - 5 ASO Assembly_Constraint Taxonomy ... 52
Figure 7 - 6 Programming API to link ontology to product data 54
Figure 7 - 7 Features created in Pro/Engineer .. 55
Figure 7 - 8 Instances of a Simple Part ... 56
Figure 8 - 1 OWL/RDF Code of Explicit Equivalence ... 62
Figure 8 - 2 OWL/RDF code of Complex Equivalence ... 63
Figure 8 - 3 OWL/RDF Code of Assembly Instance in PDO... 64
Figure 8 - 4 OWL/RDF Code of Assembly Instance in ASO... 64
Figure 8 - 5 Mapping Information through Data Conversion ... 66
Figure 8 - 6 Similar Composition Paths .. 70
Figure 8 - 7 Composition Similarity of Nodes in Two Paths ... 71
Figure 8 - 8 Assembly_Constraint Inheritance Hierarchy .. 73
Figure 8 - 9 Two Composition Graphs in Source and Target Ontology 74
Figure 8 - 10 Inheritance Hierarchy of Node A21 in Source Ontology 74
Figure 8 - 11 Inheritance Hierarchy of Node B22 in Target Ontology 75
Figure 8 - 12 Two Similar Composition Path in Source and Target Ontology 76
Figure 8 - 13 Geometry Information Model ... 78
Figure 8 - 14 PDO composition graph .. 81
Figure 8 - 15 ASO composition graph .. 82
Figure 8 - 16 Similar Composition Paths between PDO and ASO 83
Figure 8 - 17 OWL/RDF Code of Contact Constraint .. 86
Figure 10 - 1 Part Screw in a Test Assembly 94
Figure 10 - 2 Part Plate in a Test Assembly.. 94
Figure 10 - 3 Test Assembly asm001 ... 95
Figure 10 - 4 Define PDO Classes in Protégé... 97
Figure 10 - 5 Define PDO Relations in Protégé ... 97
Figure 10 - 6 OWL/RDF Code of Specific Assembly and Component in PDO 98
Figure 10 - 7 OWL/RDF Code of Specific Constraints in PDO 98

 x

Figure 10 - 8 OWL/RDF code of Assembly Relations ... 99
Figure 10 - 9 OWL/RDF Code of Mate_1 .. 100
Figure 10 - 10 OWL/RDF Code of Insert_1 ... 101
Figure 10 - 11 OWL/RDF Code of New Instances ... 105
Figure 10 - 12 OWL/RDF Code Of Instance Mapping .. 106
Figure 10 - 13 OWL/RDF Code of New Part Instance ... 106
Figure 10 - 14 OWL/RDF Code Instance Coincidence_1 .. 106
Figure 10 - 15 OWL/RDF Code of Instance Contact_1 ... 106
Figure 10 - 16 OWL/RDF Code of Instance asm001 ... 107

Table 10 - 1 Relations between Instances .. 99
Table 10 - 2 Relations between Component Constraints and Model Items 100
Table 10 - 3 Matching Concepts between PDO and ASO ... 102
Table 10 - 4 Instance of Insert component constraint .. 103
Table 10 - 5 ASO:Assembly_constraint Attributes ... 103
Table 10 - 6 New Instances in ASO ... 104
Table 10 - 7 Instance Mapping between PDO and ASO ... 105
Table 10 - 8 New Instance Relations ... 105

 1

Chapter One - Introduction

Computer Aided Design (CAD), Computer Aided Manufacturing (CAM) and

Computer Aided Engineering (CAE) are important technologies that have now become

mainstream in the product cycle. Over the last decade, tremendous progress has been

made in the development of software tools in these three areas. This has resulted in

greatly expediting the product development process.

However, there often arises the problem of interoperability between different

solutions involved in design, manufacturing, and analysis. The information generated in

one domain can sometimes not be recognized in another program. Furthermore, the

communication between engineers working in different domains is limited; a person

working as a design engineer may sometimes have difficulty in understanding the

comments and terms used by an analysis engineer, though they may both refer to the

same product. There are several issues that contribute to this problem. In addition, people

working in the design and analysis domains sometimes tend to view a product from

different perspectives, and they may use different terminologies to describe the same

product data, which makes communication more difficult. To make the information

compatible, there may be a need to convert the data to a neutral format for use in the

various applications by engineers. A lot of important design information including intent

and rationale usually gets lost during the data conversion process..

To solve this problem, there are several critical challenges that need to be

acknowledged in the CAD/CAM/CAE integration:

 2

1. The challenge of multiple representations of a product from different

perspectives: Since CAD/CAM/CAE are relevant to many different domains in

engineering, each perspective within a domain represents specific knowledge of a given

product. There is no uniform format or terminology to represent certain kinds of

information, since people use different informal tools to present thoughts, such as word

documents, voice, video, etc. This sometimes makes the exchange of information

difficult.

2. The challenge of integrating programs working in different domains: Whether a

representation is useful or not depends on what activities are being performed with the

product data. For example, design features that are useful to a CAD user are not

necessarily useful to an analysis engineer, and vice versa, though both sets of engineers

are referring to the same product data. Furthermore, there is no simple way of mapping

from one representation to another.

Ontology is a form of knowledge representation that uses a set of concepts in a

domain and the relationships between them. Axioms and rules can also be used to

enhance the expressiveness.

In this dissertation, an architectural framework with an ontology-based knowledge

system is proposed to integrate different CAD/CAE programs. In this framework, a

semantic level integration can be achieved by building representations of a product from

different perspectives using ontologies and translating different representations from one

perspective to another using ontology mapping. This dissertation will also demonstrate

how to improve the interoperability, reusability and scalability of an integration

framework.

 3

Chapter Two - Literature Review

There has been much research, relevant to the integration of CAD/CAE

applications, which focuses on integration frameworks, product information modeling,

and the methodology of integrating applications. Ontology applications have been an

active research area in which researchers try to solve the interoperability problem using

ontology mapping. Also ontology is used to capture rich semantics during the design

process.

2.1 Integration Framework

An integration framework coordinates heterogeneous tools and product models in

a unified and streamlined manner and provides an infrastructure for explicitly capturing

information flow and engineers’ rationales in the product design and analysis processes.

An integration framework gives engineers more flexibility in choosing suitable tools and

enables them to focus on accomplishing their goals without having to construct a

complex unified model. There have been many frameworks proposed for integration of

applications in Product Lifecycle Management (PLM), mostly focused on solving the

problem of interoperability. Several technologies have been developed in two key

categories:

1) Middleware has been developed using CORBA, DCOM, and Java RMI to

serve the whole system architecture and improve the communication between

applications. All applications must obey certain protocols in order to communicate with

 4

each other. In a distributed design simulation marketplace[1], an object model

representation is presented, and the object-oriented service object serves as a middleware

to communicate with the individual components and to manage information, data, or

relations between user-defined data and the CAD model. Application middleware has

been developed using Java RMI to integrate distributed applications such as the common

manufacturing application middleware[2].

2) Standard exchange formats, such as STEP, IGES, etc. have pre-built concepts

and relations to promote interoperability. In this approach, all the data exchanged in one

framework must use the same format. Usually, CAD models in a standard format are

stored in a central or distributed database and shared with different applications[3]. Some

existing projects using these standard exchange formats include a web-based integrated

product development platform for concurrent design manufacturing of sheet metal[4].

This design is based upon an information integration framework using STEP files and a

STEP-based method and system for concurrent integrated design and assembly

planning[5].

2.2 Product Information Model

In a design/analysis integration framework, different applications working on the

same product design need to exchange information based on the product information

model. Current research activities focused on the integration of engineering applications

have identified product data representation as a key issue for design research and

development[6-9], especially for solving the problem of interoperability. In the era of

 5

PLM, this problem is becoming even more important; PLM requires that a product be

managed throughout its whole lifecycle. Therefore, one of the fundamental problems in

an integration framework that supports PLM is that of representing all the information

about a product from different phases and in different perspectives, and thus translating

product data from one representation to another.

For some integration frameworks where only certain types of products are involved,

customized model templates can be used to translate product models[10]. However, the

scope of this kind of product model is limited; only those products that can share the

same template can be used in the integration.

In addressing the issue of interoperability, feature-based product design

representation[11] is used as one of the most important technologies for

CAD/CAM/CAPP integration. A feature can be regarded as a meaningful geometric

construct that contains both geometry and manufacturing information[12-14]. However,

there still remain several problems for integration using feature-based technology.

Firstly, there is the issue of semantics. What this means is that for the same product, there

can be different feature representations in different domains. There are often problems

related to how to extract features from different perspectives and translate them to other

representations. Secondly, it is often hard to use the concept of features in certain

domains beyond design and manufacturing, such as ergonomics evaluation or assembly

simulation. In these domains where some parameters and structures (e.g. ergonomics

rating) cannot be described using only features, this concept lacks the necessary

information for those domains and is also difficult to extend. Thirdly, from some

 6

perspectives, feature is not used to describe the design/analysis and is not a relevant tool

at all.

Several other important and effective product information models have been

proposed to address the issue of product lifecycle management and some models have

been considered using knowledge representation to address terminological and semantic

issues [15-18]. Along with the product information model, an elegant design information

flow model in design is also presented[19]. Requirements of a next-generation product

development system is proposed as a system “that can collaborate using a heterogeneous

set of software tools, and still exchange information meaningfully and pass knowledge

between various phases in the process” [15]. In order to achieve the above goal, a formal

knowledge representation with the following features has been identified: 1. Not tied to a

single vendor software solution; 2. Open and non-proprietary; 3. Simple and generic; 4.

Extensible by allowing augmentation of the core with additional concepts to create a

broader engineering context; 5. Independent of any one product development process; 6.

Capable of capturing that portion of the engineering context that is most commonly

shared in product development activities[14].

2.3 Product Data Format

Even for the same product information model, the format that the data uses could be

different. As an international standard, STEP-ISO 10303[20] was adopted as a core data

model in many integration frameworks[21-25]. STEP is a standard for computer-

interpretable representation and exchange of product data through out the whole product

 7

lifecycle. Primarily, EXPRESS is used to describe the data model. Several data formats

are provided for application data to be exchanged, including STEP-XML, STEP-file, or a

shared database. Some of the shortcomings of STEP include its lack of model-reusability

and extensibility and the fact that, if it is not self-describable, it is difficult to use in

product data semantics.

2.4 Capturing Product Data Semantics

Although product data semantics can be represented in some product information

models, it is still difficult to actually capture this information. The primary obstacles are

the technical challenges of organizing and managing knowledge and the design

challenges of a human-centered approach to building a useful and usable product data

semantics recording system[7].

A team of designers model a 3-D layout and semantically-grounded behavioral

description of a product or device[26]. The device’s key features include integration of

functional modeling with sketch-based conceptual design; and group authoring of design

semantics. In MUG, a Multi-Session Distributed Conceptual CAD Environment, a user

can annotate a design using a pre-defined ontology that has a function-behavior-structure

form. DAML is used as the ontology language. Some design primitives are used to

describe structure.

 8

2.5 Ontology

“In both computer science and information science, an ontology is a data model

that represents a domain and is used to reason about the objects in that domain and

relations between them” [27].

As an important technology in Artificial Intelligence to share and reuse

knowledge, ontology was proposed as a solution to a lack of interoperability. Ontology

can be regarded as “an explicit specification of conceptualization”[28], or defined as

“domain theories that specify a domain-specific vocabulary of entities, classes,

properties, predicates, and functions, and a set of relationships that necessarily hold

among those vocabulary items. Ontologies provide a vocabulary for representing

knowledge about a domain and for describing specific situations in a domain” [29]. For

example, a wine ontology[30] can define taxonomy of wine and classify Wine as type of

WhiteWine, Loire, WhiteLoire etc. and in the wine ontology the relations between types

of wine can also be defined such as WhiteLoire is an intersection of Loire and

WhiteWine which means an instance of WhiteLoire is both Loire and WhiteWine.

2.5.1 Design Ontology

 A general ontology for design concepts is proposed to describe the interactions

between design concepts[31]. An extended device ontology is proposed to describe

artifacts based on intended use as a composite of devices that processes input and

produces output[32].

 9

Process Specification Language (PSL)[33] has been developed at NIST and is

written in Knowledge Interchange Format (KIF) as an interlingua for different

manufacturing process applications to exchange information. The focus of PSL is to

represent and capture manufacturing process-specific data only. Concepts that need to be

represented in product data, such as design rationale, function, behavior, and interpart

relationships, cannot be represented using PSL.

A Product Semantic Representation Language (PSRL) [34] based on formal

description logic (DAML+OIL) is used to encode semantics. Mathematical logic and

corresponding reasoning are used to determine semantic equivalences between an

application ontology and PSRL. In the project, only exact equivalences between two

ontologies are considered. This is significant but limits ontology mapping on the feature

level. Also, it is not discussed that how to automatically find equivalences between two

ontologies.

Ontologies have been and are currently being used in several projects to represent

conceptualizations of products and capture product data semantics [35-39]. Furthermore,

in the integration of engineering applications, ontologies have been used in many projects

to solve interoperability problems including semantic clashes and multiple translators.

Approaches were developed in those projects can be categorized into two types: 1) using

a shared, common ontology; and 2) using ontology as an interlingua[39]. As an

integration framework consisting of existing heterogeneous applications that use different

languages to represent data, the latter approach seems to be a better choice. For example,

PSL[40;41] is used to represent ontologies in the manufacturing process, which works as

an interlingua to integrate a process modeling tool and scheduling tool. However, in this

 10

integration process, it is always supposed that the semantics have already been built and

that the ontology merely acts as a translator. Inference support is being added and

improved. In a concurrent distributed design environment for exchanging product data

semantics, it is important for an integration process to be able to capture the product data

semantics during the information exchange and use an inference tool to make further

assertions.

A “car seat” ontology is built to provide a shared conceptualization of the product

requirement, which encapsulates the required functionalities, design parameters,

performance criteria, structure and geometry[42].

2.5.2 Supporting Technologies for Developing Ontology

Recently, several ontology definition languages have been created during the

development of the semantic web[43;44] such as RDF, RDFS[45-47], and OWL[48], and

are widely accepted as important ontology languages. Some other ontology languages

were developed based on these for the purpose of engineering integration, such as PSRL,

developed at the University of Michigan[34].

OWL is already used extensively in describing product family modeling since it

can store the structure of the product family as well as the evolution of different

components of the product family. There are several other development tools supported

globally by different research groups such as Jena[49] and Protégé [50]. Jena, a Java

framework for building Semantic Web application, provides a programmatic environment

for RDF, RDFS and OWL, and also includes a rule-based inference engine. Protégé is an

 11

ontology editor that also supports ontology building using RDF, RDFS and OWL.

Similarly, OilEd also provides this kind of functionality. Reasoners such as RACER and

FaCT also support reasoning for RDF, RDFS and OWL.

2.5.3 Ontology Mapping

 Even in describing the same subject, different ontologies can use different

concepts/terminologies. Using ontology in integration itself doesn’t solve interoperability

problem, it just raises heterogeneity from data level to a semantic level. To solve the

interoperability problem, ontology Mapping is one of the critical techniques in

reconciling differences between ontologies thus enabling semantic information exchange.

Ontology Mapping is used to find relationships between entities, given two ontologies

that describe each in a set of discrete entities. It is sometimes referred to as “Ontology

Alignment”.

 The main issue in Ontology Mapping is finding what entity in one ontology

corresponds to that in another. Basically, there are two ways of discovering mapping:

either by using a shared ontology; or by using a heuristic-based approach. A general top

level ontology is normally built to describe some commonly accepted concepts such as

time and space. Other domain-specific ontologies are built upon the general top level

ontology so that all the concepts in it can be used as standards for calculating similarities

between them. This method may be difficult for semantic web integration since it is

impossible for all ontologies developed globally to follow one general ontology.

However, it is ideal for a specific domain, which has many sub-domains, as a core

ontology for the domain can be built and other sub-domain ontologies can be built upon

 12

that. Examples include SUMO[51] and DOLCE[52]. An integration framework was

developed using PSL for the purpose of integrating manufacturing processes[53].

 Compared to the method of shared ontology, the other method tends to use a

heuristic-based approach, such as data analysis, machine learning, statistics, or

knowledge representation. For example, PROMPT[54] regards ontology as a graph, and

finds similar nodes by comparing nodes in similar paths with the same start and end

nodes. Other methods include combining weighted similarities in different definitions in

OWL, such as domain, range, and properties[55]; and a method of finding class

equivalence in two ontologies that share instances using formal concept analysis[56].

Recently a framework for integration based on ontologies has been proposed and a

mapping algorithm is developed based on a whole set of mapping axioms[57]. The

proposed framework uses a common upper level engineering ontology to represent

semantics, and the ontology mapping is limited in the local level ontology which is used

to represent each specific design model.

 13

Chapter Three - Problem Statement, Proposed Solution,
And Scope of Work

This chapter identifies some of the higher-level limitations of the current

CAD/CAE integration frameworks and seeks to identify certain specific limitations that

are a sub-set of these higher-level limitations and will be addressed in this dissertation..

Also included is a brief description of the approach used to address these issues that is

followed by a description of the scope of work and an organization of the disseratation.

3.1 Problems of CAD/CAE Integration Framework

A product is considered from different viewpoints and perspectives, and different

representations and terminologies may be used by each viewpoint. For example, consider

an automobile interior design evaluation. One viewpoint may focus on ergonomic

comfort and accommodation while another may focus on assembly simulation for the

dashboard. The representation of the product, the terminology used, and the

communication of the results of these analyses vary greatly despite the fact that the

underlying product is the same.

Unfortunately, most ensembles of engineering software tools only understand

their own knowledge representations are not adaptable to others; furthermore, there are

few general frameworks and approaches for enabling this adaptability. Although each

engineering software tool can solve a problem within its scope in an effective manner,

when there is a task requiring collaboration between people with different expertise and

 14

tools, these tools do not talk to each other effectively. The data formats for these tools

vary greatly and, more importantly, the results generated in one system based on its own

knowledge representation cannot be understood in another. Product data semantics

generated throughout the design process cannot be collected efficiently and are almost

always discarded. This impacts the efficiency and survivability of the ensembles that are

cobbled together. There are several critical barriers:

• A lack of an approach to build knowledge representation of engineering

design/analysis, in a manner that is a) easily expandable, b) customizable

for traditional and non-traditional (e.g. virtual prototyping) design

information systems. c) capable of sharing of product data semantics

across all these heterogeneous systems to support distributed,

collaborative engineering capabilities

• A lack of a way to capture the product data semantics and record design

intent and design history

• A lack of a way to translate product data based on one knowledge

representation to one based on knowledge representation.

Thus, it is becoming increasingly important for people to share their product data

semantics and rationale in such a way that there exists a true integration of the product

model data and support for diverse compositions with engineering application ensembles

and diverse viewpoints. Although engineering firms are using a number of software tools

in the product development cycle, these tools do not talk to each other very effectively.

The knowledge representations behind the data vary greatly and the results generated in

one system cannot be understood in another system. This miscommunication has led to a

 15

significant focus in recent years on PDM and PLM. Most traditional integration efforts

have focused on pure data exchange, but there is a lack of effort in attempting to translate

data at a semantic level.

3.2 Problem Statement

Relatively new software technologies, such as tools for developing ontology, are

now making feasible the exchange of semantic information among engineering

applications. For example, through proper integration of software tools, a user of

commercial ergonomics software should be able to exchange product data semantics with

a commercial CAD software user to communicate what needs to be modified and why. In

addition to providing a common thread for communication, the use of ontology will also

ensure that this information becomes part of the product model and the development

process. This level of integration is referred to as “integration at a semantic level”.

In order to focus our investigation, we concentrate on the representation of

product data semantics information and methods for the exchange of product data

semantics. The specific objective is: To model an approach based on ontology

engineering for the semantic level integration of software tools for CAD/CAE

applications, after identifying fundamental issues of interoperability problem in

integrating these tools.

Specifically, the following research questions are investigated:

1) How to build knowledge representation, such that different engineering

applications can have their terminologies/knowledge easily represented and reused.

 16

2) How to represent an engineer’s understanding (product data semantics) about a

product design by associating CAD data to knowledge in engineering design and

analysis.

3) How to find the similarities between different knowledge representations that

are from different viewports, and use these similarities to translate product data semantics

that is based on them.

3.3 Proposed Solution

The proposed approach is to build an ontology-based knowledge system in an

integration framework. The requirements, specifications, parameters, description, data,

and model (collectively referred to here as “concept”) of a design vary vastly depending

on the viewpoint of the engineer or design activity. From different viewpoints, different

concepts can be applied to a design. By building these concepts into ontologies, different

viewpoints of a design can be represented through domain-specific concepts and

terminology. This provides an environment for the variety of applications involved in the

design process to describe a design/simulation decision in their own languages. By

mapping the ontology of the concepts of one viewpoint to concepts in other ontologies,

representations of a design from different viewpoints can be interconnected and

exchanged.

 17

3.4 Scope of Work

 The research described in this dissertation focuses on realizing the solution

proposed above through design and integration of the following: 1) An integration

framework prototype that would allow applications in engineering design/analysis

domains to exchange design semantic information; 2) An ontology architecture to capture

and describe the product data semantics during the design and analysis processes; 3) A

method to translate product data semantics used in one ontology to semantics used to

describe concepts in another– specifically, how to discover mapping information between

different semantic information; and, 4) A method of representing the mapping

information between semantics in different domains/applications so that the information

generated in the translation process can be retrieved during the

integration/communication process.

Among the above tasks, the most important aspect of enabling semantic

integration is that of discovering the relationship between different entities in different

ontologies in order to translate semantics.

3.5 Organization of the dissertation

The dissertation is organized as follows:

Chapter 4 describes the overall architecture of the framework, including a description

about the working mechanism of the framework.

Chapter 5, 6 describe how knowledge of engineering design and analysis in different

domains is built into ontologies in a layered structure. Chapter 5 discusses the knowledge

in the domain and application level. Chapter 6 discusses the knowledge in a general level.

 18

Chapter 7 describes how product data semantics is captured using the knowledge

acquired in chapter 5 and 6.

Chapter 8 describes how to calculate similarities between ontologies so to translate

product data semantics described by the concepts in different ontologies.

Chapter 9 shows how the mapping information between different product data semantics

is represented

Chapter 10 shows an example scenario in which a sample assembly is designed and

simulated in different software packages and an integrated process is made to exchange

information between them.

Chapter 11 discusses conclusion and future work

 19

Chapter Four - Architecture of CAD/CAE Integration
Framework

This chapter discusses in detail the architecture of the proposed integration

framework, which supports integrating design and analysis applications at the semantic

level. The essential components of the proposed system are as follows: 1) Ontology

builder; 2) Ontology mapping tool; 3) Custom tools. The requirements and details of each

of these components are discussed.

4.1 Requirements of Integration Framework

The requirement of the proposed integration framework is to support an approach

for integrating engineering software systems in a manner that can adapt to varying tools

and points of view. There is a collection of design activities, which usually focuses on

different aspects of a product and is performed by people with different areas of expertise

using a variety of engineering applications tools. Opportunities for adaptive design

analyses have been classified into two categories:

 1) Composition adaptability: The software world today is one of great diversity.

Thousands of software products are available to users today, providing a wide variety of

information and services in many different domains. A diverse array of design and

analysis tools and software systems are available to compose an ensemble that supports

collaboration for any design analysis. Although a number of methods have been proposed

and implemented by various researchers in an effort to integrate engineering applications,

 20

these methods all propose to integrate the data for a fixed set of applications. However,

different design analyses require different combinations of tools. In addition, new

systems may be added after the initial integration in order to provide enhanced support

for a particular analysis. For example, an evaluation scenario may consist of the design

engineer at one location using an immersive application to communicate with an

agronomist using a human factors analysis application at a different location. This

collaboration must allow the two designers to work on the same product using the

application of their choice, while the software tools communicate. Getting programs to

work together often necessitates extensive work by users and developers.

 2) Viewpoint adaptability: A product is considered from different viewpoints and

perspectives, and different representations and terminologies may be used in each

viewpoint. For example, consider an automobile interior design evaluation. One

viewpoint may focus on ergonomic comfort and accommodation while another may

focus on assembly simulation for the dashboard. The representation of the product, the

terminologies used, and the communication of the results of these analyses vary greatly,

though the underlying product is the same.

 21

4.2 Integration Framework Overview

Pr
od

uc
t D

at
a

Se
m

an
tic

s

P
ro

du
ct

 D
at

a
S

em
an

tic
s

Figure 4 - 1 Structure of Integration Framework

In the framework, there exist the following components:

1) Ontology Builder, used to build ontologies for different engineering

applications. Viewpoint-specific knowledge including concepts and their relationships

are captured using an Ontology Builder.

2) Ontology mapping tool, used to translate knowledge associated in one specific

domain to knowledge in another.

3) Custom tools, used to connect the engineering applications to the knowledge

by creating an instance layer (product data semantics) to link actual data to the concepts

in ontology.

 22

The framework also contains an ontology implementation, which contains

concepts about the knowledge in various areas, including design ontology and other

viewpoint-specific ontologies. Product ontology defines the concepts of a product design

which mainly includes the definitions of functions, behaviors and forms, and properties

that necessarily describe the product. Viewpoint-specific ontology defines the concepts

from specific viewpoints (e.g. ergonomics; assembly simulation). Relations between

these ontologies exist so one ontology can be mapped to another. We focus on Product

Design and Product Analysis in this dissertation, with the former being the source and the

latter being the target.

4.3 Working Mechanism of Integration Framework

In the design process, product information can be described in terms of product

concepts and product data. For example, an automobile dashboard can be described using

concepts of Panels and Gadgets and their product data such as geometry, sizes, positions

etc. Our overall solution for exchanging product data semantics is to use ontology to

interpret product data, and then use ontology mapping to translate concepts into other

viewpoints (different terminologies), so that the interpretation of product data can be

semantically translated.

Heterogeneous applications implicitly use different knowledge bases to interpret

product data. To improve the interoperability, this knowledge needs to be explicitly built

into engineering ontologies as concepts and their relations. To associate the knowledge in

engineering ontologies to product design, instances of concepts are instantiated with the

product data. Since in different knowledge bases the concepts and relations vary

 23

significantly, through mapping between ontologies, the concepts used in a source

ontology can be translated into a target ontology, and then a new instance can be created

that corresponds to the translated concept in the target ontology. Thus, the product data

representation in one application can be translated into another.

The procedures are as follows:

• Capturing Product Data Semantics by defining relevant engineering ontology

concepts and instantiating these concepts with specific product data

1) Define Product data semantics by building engineering ontologies for both

product design and product analysis

 General Design Ontology (GDO) is used as a shared upper-level

ontology. The commonly accepted concepts used by all the design,

analysis and other domains to describe a product design are

collected into this ontology. For example, to describe a design,

three types of attributes, function, behavior, and form are used in

the ontology. For example, in the function layer, functions of a

dashboard can be described as providing dynamic feedback,

control, and storage, and each function can have several sub-

functions: providing visual feedback, scale plate to display text,

and scale.

 For the product design (source), a Product Design Ontology (PDO)

that includes a domain-specific ontology layer for assembly design

domain and an application-specific ontology layer for

Pro/Engineer is created. For example, if an assembly is designed

 24

by using Pro/Engineer, based on GDO, PDO uses concepts and

terminology used assembly design domain and also the specific

concepts that only used in Pro/Engineer to describe the design

process, such as concepts of constraint and specific constraint

types.

 On the other hand, for the design analysis (target), a design

analysis ontology is built to describe the concepts; for example, an

Assembly Simulation Ontology (ASO) defines the concepts of

assembly simulation and their relations, such as Assembly

constraint, joint, assembly hierarchy, etc.

2) Associate product data semantics to real product data by instantiating

concepts in source ontology

A product is first defined using the concepts in PDO, and, according to the

concepts, parametric product data is extracted from the product database. A file consists

of ontology instances in OWL is created as product data semantics, which instantiates the

design concepts with the actual data.

• Translate Product Data Semantics by defining Ontology Mapping

In both the domain of 3-D parametric feature-based design and the constraint-

based assembly simulation domain, different concepts are used to describe a product

design from different perspectives. However, these concepts can be translated as they

eventually relate to the same information of a product design; certain concepts of a

product design (for example, information in feature about geometry) in PDO can be

related into concepts in ASO (geometry, material, etc.). A method is developed to

 25

calculate the similarities between these concepts, thus helping to map one concept in

product design ontology to a similar concept in assembly simulation ontology.

By identifying and translating concepts that refer to the same product design

information between the two ontologies, instances of concepts in PDO and their attributes

are extracted from the previous product data semantics and translated into new product

data semantics which consists of instances of new concepts and attributes in ASO Tthe

new product data semantics described by concepts in ASO can be easily understood by

assembly simulation tool and eventually will help original product data to be converted

into a data representation that assembly simulation tool can read. An intermediate file is

used to record the mapping information.

The process is illustrated in Figure 4-

2:

Figure 4 - 2 Working Mechanism of Semantic Level Integration

 26

4.4 Benefits of the Framework

o 1) Interoperability: By defining ontologies from different viewpoints and

building mapping between them, a product design including design intent and history can

be captured and translated to different applications. A design/analysis result described

using terminology of a certain viewpoint can be translated into terminology of another.

Further, interoperability is enhanced by defining ontology as an intermediate data model,

so that product data may be translated into or from the data model before it is exchanged

between CAD/CAE applications.

o 2) Reusability: A product data model is built into concepts and product data

semantics files separately. This representation, particularly the concepts, can be reused

and shared.

o 3) Scalability: the layered structure of engineering ontology makes it easy to add

new ontologies to the existing framework for new integration, allowing for adaptability in

composition.

 27

Chapter Five - Defining Product Data Semantics Using
Engineering Ontologies

5.1 Introduction

During CAD/CAE integration, heterogeneous applications use different

knowledge to represent product data. Different terminologies and data types are used. As

a result, the product data semantics generated in one application in a certain domain

cannot be understood in other applications.

Product data semantics is defined here as an “understanding about the data of a

product design based on certain engineering design/analysis knowledge”. A product is

considered from different viewpoints and perspectives, and different representations and

terminologies may be used in these different viewpoints. Hence there are different

product data semantics. For example, consider an automobile interior design; one

viewpoint may focus on ergonomic comfort and accommodation while another may

focus on assembly simulation for the dashboard. The representation of the product, the

terminologies used, and the communication of the results of these analyses vary greatly,

though the underlying product is the same.

This chapter presents an overall method of capturing product data semantics to be

utilized in a CAD/CAE integration framework. In contrast to traditional integration

framework where information exchange is primarily limited to a pure data level, our

process deals with both concepts and instance data. It allows the discovery of mapped

concepts between source and target, and then the translation of instance data from the

 28

source, which is originally in terms of the source concepts, to instance data in the target,

now in terms of the target concepts that were discovered and specified in the mapping.

In this dissertation, a method of capturing product data semantics is created in two

steps:

1) Build engineering ontologies for each specific application, which includes

three layers: general design ontology layer, domain-specific layer and application-

specific ontology layer; and

2) Create interpretation about product data by associating instantiating concepts

with product data

5.2 Methodology of Building Engineering Ontologies

 Methods of building engineering ontologies have been explored by many

researchers. In this dissertation, in addition to the existing process of building engineering

ontologies summarized [58], the following steps are used:

 1) Specify the required taxonomies for general design;

 2) Specify axioms for general design;

 3) Specify the required taxonomies for specific engineering design/analysis

domain;

 4) Specify axioms in the specific design/analysis domain;

 5) Specify the required taxonomies for specific application;

 6) Specify axioms for specific application;

 7) Identify existing taxonomies that can be used to fulfill the specifications;

 8) Create new taxonomies if none exist.

 29

5.3 Define the classes and their relations

 As a powerful ontology editor and knowledge acquisition system, Protégé is used

to define knowledge in ontologies. Figure 5-1 shows an example of classes and class

hierarchies for product design in Protégé.

Based on concept definitions, relations between concepts are defined by using a

basic expression in ontology that described in OWL/RDF as a Subject-Property-Object

triplet form, which means a subject concept has an object concept as its property.

Figure 5 - 1 Class Hierarchy in Protégé

 30

5.4 Layered Structure of the Ontology in Semantic Web

 In this dissertation, methods from semantic web technologies are used to model

engineering ontologies. The general structure of the semantic web layer structure

developed by Tim Berners-Lee, as shown in Figure 5-2 [59], presents the fundamentals

of the system. It consists of new web languages such as metadata languages (XML/RDF

etc.) and logic languages, which can be used to describe rules, proofs and logic[60]. In

this dissertation, we have built an infrastructure of ontology that is similar to Figure 5-2,

but simplified. It has the layers shown in Figure 5-3. Each layer is incrementally built on

the previous layer and incorporates more specific value into the whole architecture. A

description of the individual layers is as follows:

1) The Unique Resource Identifier (URI) layer provides the capability to identify

resources uniquely and globally.

2) The XML layer enables the data interoperability and the syntactic interoperability

by defining the data format. It provides syntax for formatting and tagging data. XML

documents are more flexible and easier to understand compared to other existing formats,

such as HTML. Together with XML schema and other tools, data exchange is made

much easier.

3) The RDF/RDFS layer uses the triplet concept of Subject-Property-Object as the

foundation of the engineering ontology to describe the basic object relationships.

4) The OWL layer provides semantic interoperability by further enabling describing

objects and their relations, and reasoning on them.

 31

5) The RULE layer overcomes the expressive restriction of OWL and describes more

complex relationships. In this dissertation, Semantic Web Rule Language (SWRL) is

used as the RULE language.

Figure 5 - 2 W3C Semantic Web Layer Cake

Figure 5 - 3 Structure of Engineering Ontology

 32

5.5 Layered Structure of Engineering Ontology

In our integration method, product data semantics is built upon product data.

Product data semantics is represented in two parts: knowledge base consisting of

ontology concepts and their relationships; and instances of concepts that instantiated from

the product data. The knowledge base describes the general and basic knowledge in

different domains using concepts, relations, properties and axioms in engineering

ontologies. Instance layer consists of instances which instantiate concepts in engineering

ontologies, which then represent each piece of the design information in real product

data. Instance layer plays as a role linking the knowledge to the actual product data. Their

relationship is depicted in Figure 5-4.

An ontology is composed of the following:

 1) Knowledge Representation using concepts

 2) Instance data based on instantiation of concepts

Within knowledge representation are contained:

 1) Axioms to state the facts in an ontology

 2) Inference Rules

 3) Concepts/Classes

 4) Relations

 5) Slots/Roles/Properties

 6) Facets

 33

Figure 5 - 4 Relationship between Ontology and Product data

A layered structure of ontology as shown in Figure 5-5 is used to build

engineering ontologies in the product design/analysis domain: The three-tier ontology

structure includes general design ontology, domain-specific ontology, and application-

specific ontology. Each layer is built upon the previous one.

General Design Ontology

Domain-Specific Ontology

Application-Specific Ontology

Figure 5 - 5 Engineering Ontology Layered Structure

 34

1) General design ontology describes basic elements that represent commonalities

in the product, which can be applied to any domain in design/design analysis. It includes

the following commonly accepted concepts: 1) Basic attributes to describe a design, such

as form-function-behavior triple concepts. 2) International standards about products, such

as material names, properties, etc. 3) Common terminology, such as geometry primitives,

mathematical terms, etc.

In Subject-Property-Object triplet expression, property is used to describe the

relations between concepts, in general design ontology, basic properties are defined in

this layer: is-a, part-of; attribute-of; external-reference, which can be used as base

properties so other more specific properties can be inherited from, for example,

is_geometry_attribute_of property is based on attribute-of property And

has_feature/is_feature_of are inherited from part-of basic property to indicate the relation

between concepts feature and component

 • Is-a reflects the relation that one concept is a sub-concept of another, which is a

common relation existing in ontology concepts definition and is a built-in type in

RDF/OWL.

 • Part-of , as a non-predefined relationship in RDF/OWL, defines ownership and

is introduced as a basic property because in CAD/CAE product data, part-of is a very

common relation. In this dissertation, we use has_Child/has_Parent to represent this basic

property..

 • Attribute-of defines the relations between an object and its attributes. Attribute-

of property can have further sub-properties, such as hasFunctionAttribute,

 35

hasBehaviorAttribute, and hasFormAttribute, which describe the relations between a

ProductDesign and its three basic attributes.

Regarding attribute-of and part-of relations, we define that the attribute-of relation

can be transitive based on part-of relation, which means if A is part of B, then B will also

have all the attributes that A has. A rule can be defined:

Rule 5.5.1 for three concepts C1 and C2 and C3, if C1 has_Child C2 and C2

has_Attribute C3, then it can be deducted that C1 has_Attribute C3.

For example, according to the rule, if a component C has a feature F, and

geometry attribute A is an attribute of feature F, then attribute A is also an attribute of

component C.

 • External-reference defines the relation in which one instance is related to

another other than is-a, part-of and attribute-of relations. For example, Part A is

constrained to Part B in an assembly, the constrained_to relation is an external-reference

relation type which doesn’t fall under is-a, part-of and attribute-of relations

Figure 5-6 is part of RDF/OWL sample code that defines concepts and relations.

<owl:Class rdf:ID="Function"/>
 <owl:Class rdf:ID="ProductDesign"/>
 <owl:Class rdf:ID="Behavior"/>
 <owl:Class rdf:ID="Geometry"/>
 <owl:ObjectProperty rdf:ID="hasBehaviorAttribute">
 <rdfs:domain rdf:resource="#ProductDesign"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasFunctionAttribute">
 <rdfs:domain rdf:resource="#ProductDesign"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="hasGeometryAttribute">
 <rdfs:domain rdf:resource="#ProductDesign"/>
 </owl:ObjectProperty>

 36

Figure 5 - 6 OWL/RDF Sample Code of Concepts and Relations

2) Domain-specific ontology describes elements in a particular domain.

Examples of domains include 3-D parametric feature-based geometric modeling,

constraint-based assembly simulation, and product design ergonomics analysis. Each

domain has concepts and relations described in this layer that are widely accepted by

those work in this domain, but those concepts might not be recognized in other domain-

specific ontologies. Even if two domain-specific ontologies use the same terminologies,

they may have different meanings. For example, in a 3-D parametric feature-based

geometric modeling domain, the concept of feature is commonly understood and used by

designers, regardless of what kind of specific feature-based CAD tools are used.

However, in Computer Aided Manufacturing domain, the concept “feature” connotes

different information than the concept “feature” in the design domain, since the latter is

targeted at the manufacturing process and may imply manufacturing information.

3) Application-specific ontology describes knowledge in a specific application.

Even though in the same domain, different applications use different terminologies and

concepts and their ways of representing the structure of design are also different. For

example, some feature concepts being used to describe the structure of a product in CAD

applications such as Pro/Engineer are different from concepts and terminologies used in

other CAD applications, like Catia, Solidworks and Unigraphics. For example, the

concepts BaseExtrude and BossExtrude in Solidworks correspond to the concept

Extrusion in Unigraphics[34]. Another example is the fact that every system has its own

way of defining a constraint; for the same type of constraint, Pro/Engineer uses Mate

while Catia uses Contact.

 37

5.6 Benefits of Layered Ontology Structure

 The layered structure of the ontology structure ensures the extensibility of the

framework. For any new applications being included in the framework, the ontology that

describes its knowledge base can be easily created and plugged into the ontology

framework since there is a mechanism for considerable reuse and also openness to bring

in the unique and different elemnts of the new application. For example, an ontology to

represent knowledge of product design based on application Solidworks can reuse

structures from the existing general design ontology layer and domain ontology layer of

3d feature based design that could have been created for an application using

Pro/Engineer.

 Additionally, the layered structure of ontology has the powerful advantage of

limiting the ontology mapping effort to a local level and thus, improves its efficiency. For

two different applications that fall under the same domain and share the same domain

ontology, the ontology mapping only needs to happen on the application level. Sharing

same concepts in upper-level ontologies also makes it easier to discover similar concepts

in the lower-level ontologies.

 38

Chapter Six - Key Concepts in General Design Ontology

In this dissertation, we create a general design ontology and build the

fundamentals of product design that is acknowledged in design/analysis domains. In

addition to the concepts about the final product design, such as product form and

materials, additional ontology concepts are developed to capture the design intent and

design history in order to improve communication between design and other analysis

processes.

This chapter discusses key concepts in a General Design Ontology with a focus

on necessary concepts that will allow later for the integration of sample

applications/domain-specific ontologies for a CAD system,Pro/Engineer, and an

Assemby Simulation Environment.

6.1 Basic Design Entity

A design process can be defined as a process of collecting information related to

product data, and the information collected can be divided into many units; each unit can

have its own attribute and can be independent of the other units. In this dissertation, we

define the basic element of design information that an engineer uses to describe a product

design as Basic Design Entity (BDE). BDE can have following characteristics:

1) A BDE normally has three basic attributes: form attribute, behavior attribute

and function attribute. In most of the cases a BDE has at least a form attribute that relate

to the geometry.

 39

2) A BDE is used as a basic information unit during design/analysis.

3) A BDE is independent of other BDEs, but there are normally interactions

between them.

Examples of BDE include the Feature concept in 3-D feature-based design and

feature-based manufacturing, concepts of part, assembly, and joint in assembly

design/simulation. As we can see, in different design/analysis domains, design entities

could differ and have different attribute definitions.

6.2 Attributes of a Basic Design Entity

In general design ontology, function-behavior-form triplet concepts are used to

describe a product design process. All attributes of a Basic Design Entity are categorized

as 1) FormAttribute; 2) BehaviorAttribute; and 3) FunctionAttribute.

It is commonly accepted to use form-behavior-function to describe a product

design attribute. For a design artifact, form is used to represent physical properties such

as structure, geometric shape, and material, and behavior is used to specify the response

under certain input conditions[18]. However, the use of these definitions is limited to the

final result of a product design. As a result, much information generated during the

design process cannot be represented by the attributes, such as design intent and design

history.

In our semantic integration, in order to enhance communication between

applications at the semantic level, it is desirable to be able to exchange the information

about how design/analysis is completed and why it is designed/analyzed in that way.

 40

Further, if this information is captured, it can be also used for ontology mapping to

discover matching concepts, as discussed in later chapters.

To represent design process information in design ontology, in addition to being

used to describe attributes of a final product design result, function-behavior-form

concepts are extended to describe the information generated during product

design/analysis process, specifically by extending behavior and form attributes. For

example, information generated during design process such as how a product is created,

the creation/manufacturing order etc.

6.2.1 Form Attribute

In General Design Ontology (GDO), a geometry ontology is built as a subset of

form attribute ontology to represent geometry information of product design, where

geometry is divided into the following categories: 1) Point; 2) Curve; 3) Surface; and 4)

Solid.

In this dissertation, we extend form attribute to describe any form attributes that

are used during the design process. In other words, even those that do not become part of

the final design and are only used as intermediate information in the design process are

built into ontology, such as 2d profile and datum plane which are used as auxiliary

information during 3d feature creation.

According to its use, geometry can be also categorized into functional geometry

and auxiliary geometry. Functional geometry is used to describe geometry that supports

functionality of design, for example, the shape of a shaft to support the function of a

transmitting torque. Auxiliary Geometry is used to describe the geometry used during the

 41

design process that may not be part of the functional geometry and is only used as

auxiliary information, such as datum plane, datum axis, feature profile, etc.

6.2.2 Behavior Attribute

Normally, a behavior attribute is closely associated with the final function of a

design unit. Simply put, a behavior attribute is used to describe the behaviors of a product

design in order to accomplish certain functions. There are different kinds of behavior,

such as motions, deformation, etc.

In this dissertation, this traditional description of behavior, as described above, is

defined as functional behavior. For example, Assembly Constraint Behavior is used when

two parts (or components) are combined to form an assembly, which could be described

using terms of motion (or degree of freedom): Translation in x, y, z directions, and

Rotation in x,y,z directions.

However, in addition to functional behavior, we also want to capture those

behaviors that occur during the design process, which can be used to present information

such as design intent and history.

Under the design behaviors, we identified at least the following two sub-classes:

1) Design Constraint, Behavior such as parametric constraint, to describe the

mathematical relationships between parameters; and 2) Design Creation Behavior to

describe the way a 3-D feature is created, such as by extruding or revolving a 2-D

profile.

 For example, in Pro/Engineer, a 3-D feature is usually created by a design

creation behavior in a 2-D geometry (profile). A geometric shape, such as a cylinder, can

 42

be created in one of two ways: 1) A rectangle profile revolve around an axis; or 2) A

circle profile extruded in the direction of the normal of the circle profile, as depicted in

Figure 6-1 and Figure 6-2.

Figure 6 - 1 Feature created using Extrude behavior

Figure 6 - 2 Feature created using Revolve behavior

 To represent the design intent captured in the design process, design creation

behaviors are used along with Profile concepts; code in Figure 6-3 depicts the

representation of a feature created in Figure 6-1, in which an extrude behavior is used on

a circular profile.

 43

Figure 6 - 3 OWL/RDF Code of Extrude Feature

Code in Figure 6-4 depicts the representation of the feature created in Figure 6-2,

a rotate behavior on a rectangular profile.

Figure 6 - 4 OWL/RDF Code of Revolve Feature

Function attribute is another important attribute. However, in this dissertation it is

not considered and is not the focus of this work.

<Axis rdf:ID="axis_1">
 <has_start_point rdf:resource="#point_2"
 <has_end_point rdf:resource="#point_3"
</Axis>
<Rectangle rdf:ID="rectangle_1">
 <has_width=5.0>
 <has_height=10.0>
</Rectangle>
< Profile rdf:ID="Profile_2">
 <has_geometry_attribute
rdf:resource="#rectangle_1">
</Profile>
<RevolveFeature rdf:ID="revolve_1">
 <has_design_creation_behavior
rdf:resource=Revolve_z>
 <has_profile="#Profile_2"/>
 <has_axis=10.0/>
</RevolveFeature>

<Circle rdf:ID="circle_1">
 <has_center="#point_1">
 <has_diameter=5.0>
</Circle>
< Profile rdf:ID="Profile_1">
 <has_geometry_attribute rdf:resource="#circle_1">
</Profile>
<ExtrudeFeature rdf:ID="extrude_1">
 <has_design_creation_behavior
rdf:resource=Extrude_z>
 <has_profile="#Profile_1"/>
 <has_extrude_depth=10.0/>
</ExtrudeFeature>

 44

Chapter Seven - Building Application-Specific
Ontologies

This chapter discusses in detail the methods of building application specifc

ontologies for the product design/assembly simulation based on the engineering ontology

structure and the General Design Ontology concepts discussed in the previous chapters. .

Specifically, it will focus on building two ontologies: one to support Product Design

using Pro/Engineer, and the second to support Assembly Simulation using a virtual

assembly environment called VADE. Later sections discuss in detail how product data

semantics are captured using these ontologies.

7.1 Product Design Ontology

7.1.1 Foundational Domain-specific Ontologies

As a commercial product design package, Pro/Engineer covers different

engineering domains. Its functionality in geometric modeling is based on the technology

of feature-based parametric design, and it also facilitates assembly design using spatial

constraints. To build ontology for Pro/Engineer, we first need to build domain ontologies

for parametric feature-based design and assembly design, which are the common

concepts used in these domains, so the concepts specific to Pro/Engineer can be built

upon them. An investigation was performed to find some of the most common and

fundamental general concepts in feature based parametric design.

 In the parametric feature-based design domain, we identify the following

concepts: 1) Feature; 2) Parameter; 3) Design Constraint; 4) Feature_Tree 5) Feature

 45

element; Figure7-1 shows the relations between the above concepts. Each link indicates

ownership relationships.

Figure 7 - 1 Composition Relations in feature based parametric design domain ontology

 In the assembly design domain, we identify the following concepts: 1)

Assembly_Hierarchy, an orderly hierarchy of the subassemblies in an assembly; 2)

Assembly; 3) Component; 4) Component Constraint; and 5) Degree of Freedom. Their

relations are illustrated in Figure 7-2.

 46

Assembly

Component

Component_
constraint

Assembly_
Hierarchy

DOF

Figure 7 - 2 Composition Relations in assembly design domain ontology

7.1.2 Application-specific Ontology for Pro/Engineer

In the application-specific ontology for Pro/Engineer, we build upon

concepts/terminologies that are used in parametric feature-based design and assembly

design.

Extending Concepts from Parametric Feature Based Design Domain

Extending the feature concept in the Parametric Feature Based Design Domain,

we identified two basic types in the application-specifc ontology for Pro/Engineer:

Datum and Solid; Datum has the following sub-types: 1) Datum_Coordinate_System; 2)

Datum_Curve; 3) Datum_Plane; and 4) Datum_Point. For a solid feature, there exist the

following sub-types: 1) Chamfer; 2) Extrude; 3) Fillet; 4) Hole; 5) Revolve; 6) sweep and

7) Round.

 47

In Pro/Engineer, a feature is defined to consist of feature elements, such as Edge,

Surface , Point, and Axis, which can be regarded as its form attribute. Also behavior

attribute based on concepts in GDO can be defined for each feature type.

Extending Concepts from the Assembly Design Domain

Since, as mentioned before, the Pro/Engineer application is also based on the

Assembly Design Domain, concepts in the Assembly Design domain are now similarly

extended for the application specific ontology. For example, in the domain of Assembly

Design, Pro/Engineer uses concept of component constraint to restrain the degree of

freedom of each part in an assembly. Specifically, following component constraint types

are used: 1) Align; 2) Align_Offset (align with offset); 3) Coord_Sys; 4) Edge_On_Srf; 5)

Insert; 6) Mate; 7) Mate_Offset (Mate with Offset); 8) Pnt_On_Line; 9) Pnt_On_Srf; and

10) Tangent. Each component constraint may have one of the following parameters:

coincident (Boolean), offset (float point), or angle (float point). Figure 7-4 shows the

taxonomy of Component Constraint defined in Pro/Engineer.

Figure 7 - 3 PDO Component_constraint Taxonomy

 48

In addition to the concept definitions, there is knowledge regarding some facts

about the component constraint. For example, when a constraint type is specified, it is

required to specify on which geometry the component constraint is implemented. The

user is asked to select a model item of a part; the valid model item types are plane, axis,

point, edge, etc. According to the type of component constraint, the valid model item type

could vary. The model item of the base part is defined as assembly reference, and the

model item of the part that is to be assembled is defined as component reference.

. For example, in a component constraint with a type of Pnt_On_Line, the

restriction of the selected model item of one part should be a point, and the selected

model item of the other part should be a line. This information can be represented using

axioms in Product Design Ontology:

Axiom1: An instance of Component_Constraint has at least one

assembly_reference and one component_reference, which can be represented in the

following restriction:

≥ has_assembly_reference min 1

≥ has_component_reference min 1

 Axiom2: An instance of Component_Constraint with type PNT_ON_LINE, must

have an assembly_reference and a component_reference, being one Point and one Line-

type model item such as Axis and Edge, which can be represented in the following

restrictions:

∀ has_component_reference only (Axis or Edge or Point)
∀ has_assembly_reference only (Axis or Edge or Point)

The OWL source code to describe the axiom is as shown in Figure 7-3:

 49

Figure 7 - 4 Sample OWL/RDF Code of Axioms

Similarly, we have following the axioms for other constraints:

Axiom3: An instance of Component_Constraint with Type INSERT must have an

assembly_reference and a component_reference, being cylindrical surface, which can be

represented in the following ways:

∀ has_component_reference only (cylindrical_surface)
∀ has_assembly_reference only (cylindrical_surface)

 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="has_component_reference"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Axis"/>
 <owl:Class rdf:about="#Edge"/>
 <owl:Class rdf:about="#Point"/>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Insert"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#Mate"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="has_assembly_reference"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Axis"/>
 <owl:Class rdf:about="#Edge"/>
 <owl:Class rdf:about="#Point"/>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>

 50

Axiom4: An instance of Component_Constraint with Type of ALIGN must have

an assembly_reference and a component_reference being Axis, Edge or Surface, which

can be represented in the following ways:

∀ has_component_reference only (Axis or Edge or Point)

∀ has_assembly_reference only (Axis or Edge or Point)

And more similar axioms can be written for other types of constraint.

7.2 Assembly Simulation Ontology
After we choose an assembly simulation tool, an Assembly Simulation Ontology

is built based on its knowledge. In this dissertation, we use Virtual Design Assembly

Environment (VADE) developed in VRCIM Lab, Washington State University as our

assembly simulation tool.

7.2.1 Domain-Specific Ontology for VADE

As VADE belongs to constraint-based assembly simulation domain, we identify

the following concepts in this domain: 1) Assembly; 2) subassembly 3) Part; 4) Joint; and

5) Assembly Constraint.

Concepts Assembly, Subassembly and Part are used to represent the basic

components in assembly simulation.

Joint is defined as an aggregation of all Assembly constraints between two parts

which represent total interfaces between two parts that interact with each other in an

assembly.

Assembly constraint is used to represent the concept of interface between two

assembled parts in our Assembly Simulation Ontology (ASO). In an assembly, one part

interacts with another through assembly constraint, and each assembly constraint is

 51

implemented based on assembly features to reduce the degree of freedom of each part.

The information about each interface, including the Assembly Feature, Assembly

Parameter, Behavior Attribute (Degree of Freedom), is defined as Assembly_Constraint.

1) Assembly Constraint

Assembly constraint is the spatial constraint that limits the motion of a part in an

assembly.

2) Assembly Features

As a sub-property of Form Attribute, Assembly features refer to those geometric

features involved in assembly interaction, or those features on which assembly constraint

is implemented. In our Assembly Simulation Ontology (ASO), assembly features can be

one of the following basic types 1) Point; 2) Curve; 3) Surface;

3) Assembly Parameters

Assembly parameters in Assembly Simulation Ontology refer to those key

parameters that must be satisfied in order to meet the assembly constraint specification,

for example, Offset and Angle.

4) Behavior Attribute of Assembly Constraint

In the previos chapters, we use function-behavior-structure triple concepts to

describe Basic Design Entity. As an important BDE in assembly design/simulation

ontology, assembly constraint uses Degree of Freedom as its function behavior.

7.2.1 Application-Specific Ontology for VADE

In the application level, specific types of assembly constraints are defined: 1)

Align; 2) Coincidence; 3) Contact; 4) Fix; and 5) Offset. Figure 7-5 shows the taxonomy

of the assembly constraint

 52

ASO:
Assembly

_Constraint

is-a

Angle

is-a

Coincidence

is-a

Contact

is-a

Fix

is-a

Offset

Figure 7 - 5 ASO Assembly_Constraint Taxonomy

Also, axioms are defined in the application-specific ontology level to specify

restrictions and conditions that need to be satisfied for each of the constraint types, for

example, for certain assembly constraints, following restrictions must be followed:

Axiom5: Assembly_Constraint has at least two assembly_feature, which can be

expressed as following restriction:

≥ has_assembly_feature min 2

Axiom 6 Contact constraint must have planes as its assembly features, which can

be expressed as follows:

∀ has_assembly_feature only (plane)

Axiom 7 Align constraint must have either lines or planes.as its assembly features,

which can be expressed as follows:

 53

∀ has_assembly_feature only (line ∪ plane)

7.3. Capturing Product Data Semantics for product data

In relation to product data, product data semantics refers to the “meaning” of data.

After concepts are built into the engineering ontologies, these concepts need to be

instantiated with data from the actual product. Product data semantics is generated by

associating each product data to its “meaning” and this is done by instantiating concepts

with product data.

7.3.1 Methodology of Capturing Product Data Semantics

The process of capturing product data semantics can be regarded as a process of

instantiating concepts with instances. To capture product data semantics, according to the

concepts from a viewpoint, and based on the pre-defined concepts and their relations in

engineering ontology, instances are created to represent the product data..

Since most of the commercial CAD/CAE applications provide open API to access

information from the application, information about the product structure can be obtained

by calling the API to build the instances. After the pre-built ontology is created, based on

the existing concepts, an application is built to automatically extract the product

information from the CAD database for instances.

 54

Figure 7 - 6 Programming API to link ontology to product data

 55

7.3.2 Interpreting Product Data Using Product Data Semantics

Product data semantics describes the structure of product data using predefined

concepts, instances, and their relations. Instances of concepts are used as main

components in product data semantics to link product data to the concepts in the ontology

layers. Figure 7-7 shows a simple part created in Pro/Engineer which consists of two

features: an extrusion feature and a hole feature, including their key dimensions. Code in

Figure 7-8 is generated in custom tools based on Pro/Engineer APIs and ontology toolkit

Jena to represent product data semantics of the part

Figure 7 - 7 Features created in Pro/Engineer

 56

Figure 7 - 8 Instances of a Simple Part

In this product data semantics, the following concepts in Pro/Engineer application

ontology are used: Hole, Extrusion, which are two types of features; Hole_Depth,

property of Hole, which is used to describe the depth of the hole;Hole_Diameter,

property of Hole,which is used to describe the diameter of Hole; Extrusion_Depth,

property of Extrusion, which is used to describe the diameter of extrusion. and Instances

created for the concepts respectively: Hole1, Block1, Hole1_Depth, Hole1_diameter,

Block1_Depth

 <Hole rdf:ID="Hole1">
 <has_dimension>
 <Hole_depth rdf:ID="Hole1_depth">
 <dimension_value
rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
 >50.0</dimension_value>
 </Hole_depth>
 </has_dimension>
 <has_dimension>
 <Hole_diameter rdf:ID="Hole1_diameter">
 <dimension_value
rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
 >100.0</dimension_value>
 </Hole_diameter>
 </has_dimension>
 </Hole>
 <Extrusion rdf:ID="Block1">
 <has_dimension>
 <Extrusion_depth rdf:ID="Block1_Depth">
 <dimension_value
rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
 >100.0</dimension_value>
 </Extrusion_depth>
 </has_dimension>
 </ Extrusion >
 <Component rdf:ID="Component1">
 <has_feature rdf:resource="#Hole1"/>
 <has_feature rdf:resource="#Block1"/>
 </Component>

 57

In addition, the relations between instances are also described in the product data

semantics, such as: has_feature property to describe the ownership between Component1

and Hole1, Block1; has_dimentions property to describe the composition relation

between Hole1 and Hole1_diameter and Hole1_Depth.

In this CAD/CAE integration framework, the differences between the product

semantics and other traditional product metadata is the data is not described using data

types, but instead using ontology concepts and their relations. Thus, the product

semantics can contain rich semantic information and can be easily understood. Further,

the ontology makes it easier to describe the relations between data sets.

 58

Chapter Eight - Ontology Mapping Methods for
Design/Analysis

This chapter introduces method of ontology mapping between design/analysis

ontologies. Pproduct data semantics are based on different ontologies, where different

concepts and relations are defined. To make product data semantics translatable between

different representations, it is critical to map different concepts and relations.

Ontology mapping can be implemented in two ways: 1) Finding mapping

information based on definitions; and 2) Performing similarity calculations, which

calculate similarities between different concepts using heuristics method.

8.1 Introduction

Ontology mapping (also called Ontology alignment) is a process to find mapping

relationships between entities, including concepts, properties, and instances. This

process is one of the critical tasks necessary to achieve interoperability between

engineering applications that use heterogeneous ontologies.

In a CAD/CAE integration framework, heterogeneous applications focus on the

same product design and use different ontologies to describe their views of product data

(product data semantics). To translate product data semantics described in heterogeneous

ontologies, an important step is to align the heterogeneous ontologies. As in CAD/CAE

integration, we mainly focus on product design. Hence, in this chapter, we will limit the

 59

ontology mapping to the scope of entities related to product design/analysis, defined as

Basic Design Entity in this dissertation.

In a CAD/CAE integration framework, we need to translate product semantics

associated with product data. So, we are looking to find mapping concepts in different

engineering domains about a given product.

8.2 Definitions

As the focus of this work is on integration and conversion, the following

definitions are made based broadly on data integration/conversion issues related to

instances and their corresponding concepts:

Definition 8.1: Mutual Information: Mutual information refers to the

information shared by two instances.

Definition 8.2: Instance Similarity:

)(BAI ∩ : Mutual information of instance A and B

)(BAI ∪ : Union of information of instance A and B

Instance Similarity between A and B is:
)(
)(),(

BAI
BAIBASim

∪
∩

=

Definition 8.3: Matching Instances: In CAD/CAE integration, information about

product design is exchanged between instances when common information exists. A pair

of instances that have mutual information and also have the highest similarity are defined

as Matching Instances, and during translation, the matching instances can be translated

from one to another.

Assumption: In this dissertation, for simplicity, we assume the exclusiveness of

the Matching Instances in two product data semantics; if Instances A and B are Matching

 60

Instances which belong to different product data semantics P1 and P2, then there cannot

exist a third Instance C that belongs to the same product data semantics P2 as B and is

also a matching instance of A.

Definition 8.4: Convertible Instance: If Instance A and Instance B are Matching

Instances, during CAD/CAE integration, and information in Instance A can be translated

to information in Instance B, then we call Instance B a convertible instance of B

(),(ABeConvertibl). As in CAD/CAE integration, data flow is usually one-directional,

and convertible instance is irreversible: B is a convertible instance of A but does not

guarantee that A is a convertible instance of B (),(),(BAeConvertiblABeConvertibl ⇒/).

Definition 8.5: Matching Concepts: For two Matching Instances, their

corresponding concepts are defined as Matching Concepts.

Definition 8.6: Concept Similarity: Among all the instances iI1 of concepts C1

and iI 2 of C2, the highest instance similarity between two instances),((21 ii IISimMax is

defined as the concept similarity of C1 and C2.

Definition 8.7: Convertible Concept: For two instances, A and B, which belong

to concept AC and BC respectively, if A is a convertible instance of B, then the concept

AC is a convertible concept of BC .

Definition 8.8: Mismatching Instances: Mismatching Instances do not share

mutual information.

Definition 8.9: Mismatching Concepts: Mismatching Concepts do not have any

instances that have concept similarity > 0.

During the integration process, one of the most important tasks is to find the

matching instances/concepts to ensure that product data semantics are translated

 61

correctly. In the following sections, we will discuss how to find matching

instances/concepts.

8.3 Finding Matching Information Based on Definitions

Before we look further to use heuristic method to calculate mapping information,

some matching concepts can be found based on the definitions and some information that

defined in ontologies. The information includes predefined explicit equivalence of classes

and instances, also, since our integration is based on traditional integration framework,

information generated during data conversion process of traditional integration method

can also be used for ontology mapping process later.

In this dissertation the information that is used together with definitions to find

matching concepts is categorized into following three types:

8.3.1 Ontology Mapping by Explicit Equivalent Classes

During the process of building engineering design/analysis knowledge into

ontologies, some of the concepts can be readily identified to be equivalent and the

information is explicitly expressed in the ontology. This is one of the simplest and most

trivial cases. A rule is defined to find matching concepts according to the equivalence

information that was previously built in the ontology:

Rule 8.3.1.1 If two concepts are equivalent, then they are matching concepts.

In OWL, equivalences can be expressed using the predefined constructs,

owl:samePropertyAs and owl:sameClassAs, to indicate that two properties/classes are

equivalent..

 62

For example, in lower level ontology, common concepts are defined so that they

can be reused in upper level ontologies, and it is also possible that concepts defined in

upper level ontology are the actually equivalent to some of the common concepts defined

in the lower level ontology. We use the predefined expression owl:sameClassAs to

represent this relationship of equivalence. Code in Figure 8-1 can be used to indicate that

the concept of “Srf” in PDO is actually refers to the same concept “Surface” as indicated

in General Design Ontology:

Figure 8 - 1 OWL/RDF Code of Explicit Equivalence

 Similarly, we can use constructs owl:samePropertyAs and owl:sameIndividualAs

to represent the relationships between two properties or two instances that are the same.

Also with the same constructs, more complex equivalence relations between two

concepts can be represented.

For example, in Product Design Ontology for Pro/Engineer, according to the

definition in Pro/Engineer, a constraint with type of Align is the same as the type

“Align_Offset” when the offset property is set to be “coincidence”. So in the PDO, it has

the following assertion:

If a component_constraint with property “has_assembly_constraint_type” being

“Align_Offset” and property has_Offset being zero, or property is_coincident being true,

then the component_constraint is the same as component_constraint with a property

“has_assembly_constraint_type” with value of “Align”. Following assertion in OWL can

be made as shown in Figure 8-2.

<owl:Class rdf:ID=“Srf”>
 <owl:sameClassAs rdf:resource=”&GDO;Surface”/>
</owl:Class>

 63

Figure 8 - 2 OWL/RDF code of Complex Equivalence

8.3.2 Mapping Concepts based on Explicitly Equivalent Instances

At the beginning of the integration process, equivalences between existing

instances can be defined to indicate the data flow information. For example, between an

assembly design tool and an assembly simulation tool, data flow information is defined as

from an instance of assembly in assembly design to an instance of assembly in assembly

simulation. To indicate the equivalence, each instance uses an URI (Unique Resource

Identifier) for the purpose of identification, when different instances share the same

identifier, or the two URIs eventually redirects to the same URI, they are assumed to be

equivalent.

Based on the information of instances equivalence, based on the definitions of

matching instances and matching concepts, since two equivalent instances are obviously

two matching instances, we can conclude that:

Rule 8.3.2.1 If two concepts share the equivalent instance, then the two

concepts are two matching concepts.

<owl:Class rdf:ID=“Align_Offset”>
 <owl:sameClassAs>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“is_coincident” />
 <owl:hasValue true />
 </owl:Restriction>
 </owl:sameClassAs>
</owl:Class>

 64

For example, during an integration process between assembly design and

assembly simulation applications, an URI of

http://www.wsu.edu/~peizhan/example/#bracket_assembly is used to indicate the

resource of the assembly that is being designed and simulated. In PDO, an instance of

PDO:Assembly is instantiated to represent the assembly that is designed in the design

tool, and it is assigned this URI [Figure 8-3]

Figure 8 - 3 OWL/RDF Code of Assembly Instance in PDO

During the assembly simulation, an instance of concept Assembly in ASO is

created to represent the assembly that is simulated, which also has the same URI [Figure

8-4]

Figure 8 - 4 OWL/RDF Code of Assembly Instance in ASO

Based on this information,, we can conclude that both the instances use the same

URI. Hence they are equivalent, and according to the rule mentioned earlier, their

concepts PDO:assembly and ASO:assembly are equivalent.

<ASO:Assembly rdf:ID="asm001">
 <has_URI
rdf:resource="http://www.wsu.edu/~peizhan/example/#bracket_ass
embly"/>
</ASO:Assembly>

<PDO:Assembly rdf:ID="asm001">
 <has_URI
rdf:resource="http://www.wsu.edu/~peizhan/example/#bracket_ass
embly"/>
</PDO:Assembly>

 65

8.3.3 Mapping Information Generated through Data Conversion

In the traditional integration which is based on data exchanging, standard neutral

formats are defined and used as a bridge format, source data is first converted to neutral

format and then convert to the target data. In our approach of semantic level integration ,

product data semantics is first translated and data is converted based on the mapping of

product data semantics, however, the existing procedure of data conversion in traditional

integration still can be used and some information generated during the data conversion

can be used to help ontology mapping. for example, if it is known that one data types can

be converted to another data type, the information can be used to find the matching

concepts that used to interpret the two data types.

In this dissertation we regard the data conversion in CAD/CAE integration as a

process of converting one type of Basic Design Entity (BDE) to another type of Basic

Design Entity. During the data conversion process, if we know two sets of product data

can be converted from one to the other, this information can be represented by building

relationships between concepts and instances that are described in product data

semantics. The following rule is defined to reflect this phenomenon:

Rule 8.3.3.1 During data conversion, if the attribute of an instance of a BDE

is converted to be the attribute of an instance of another BDE, then both Basic

Design Entities share the same attribute.

For example, when the data of a component in Pro/Engineer is converted from

Pro/Engineer native format to a neutral format, like *.iv or * iges format, geometry

attribute is involved in the conversion. When one instance of ASO:Part is converted from

 66

an instance of PDO:Component, according to Rule 8.3.3.1, the new instance will have the

same geometry attribute as the original.

In Figure 8-5, both PDO:Component and ASO:Part are connected to a file that

contains its geometry attribute, and since file Bracket.iv is converted from Bracket.prt so

it can be regarded that both the files have the same geometry attribute. Hence

PDO:Component and ASO:Part have the same geometry attribute.

As through data conversion, it is certain that there is common information being

shared between the instances of the two concepts hence they are matching instances, so

here we conclude that the two concepts are matching concepts.

ASOPDO

Component Part

has_geometry_attribute

convertBracket.prt

has_geometry_attribute

Bracket.iv

Figure 8 - 5 Mapping Information through Data Conversion

8.4 Ontology Mapping by Heuristics Method

Heuristic method is used to find matching concepts based on the calculation of

similarity and concepts that have the highest similarity are used as matching concepts.

 67

Since it is difficult to use definition 8.5 in section 8.3 to calculate similarity, and

Concept Similarity can also be regarded as the relevance between two concepts, instead

of using definition 8.2, we measure similarities based on different types of relationships

between concepts using heuristics method.

There are several types of relationships that exist between concepts. We limit

similarity calculation to the following three types: 1. Attribute (attribute_of relationship)

2. Composition (part_of relationship) 3. Inheritance (is_a relationship)

8.4.1 Attribute Similarity

Attribute relationship refers to the relation between an object and its attributes. In

this dissertation, the object is limited to a Basic Design Entity (BDE)

 Attribute Similarity is used to measure the similarity by calculating whether there

are any common attributes that two concepts share.

 For the two concepts A and B, which have attributes AiT , BiT from, assume

similarity between two attributes as),(BiAii TTSim , the attribute similarity is the

aggregation of all attribute similarities. If we use),(1 BASim to represent overall attribute

similarity between A and B, we can have following equation:

∑
=

×=
n

i
BiAiii TTSimWBASim

1
1),(),(

iW = Weight for each attribute

 Note: when calculating attribute similarity, if a concept is an abstract concept

which lacks a specific attribute, then an attribute similarity cannot be calculated. For

example, the root concept owl:Thing is an abstract concept for all the other concepts, and

 68

concept is too general to have any attribute so it cannot be used to calculate attribute

similarity

8.4.2 Composition Similarity

Composition similarity is to consider the similarity according to the part_of

relationship, which has the following characteristics:

1) has_parent/has_child properties are the two basic relations defined for the

composition (part_of) relationship

2) has_parent/has_child properties are inverse to each other, meaning that if A

has_parent B, then B has_child A

3) has_parent/has_child are transitive properties, meaning that if A has_parent/has_child

B and B has_parent/has_child C, then A has_parent/has_child C.

Transitive relation between Composition and Attribute

As we defined in Rule 5.5.1, the attribute-of relation is transitive to part-of

relation. If concept A’ in target ontology is found to have the certain attribute similarity,

all the concepts that has ownership relations over A’ will also have the same attribute

similarity, since they also have the same attributes. This can be described as following

rule:

Rule 8.4.2.1 For a given source concept A, if a target concept A’ has attribute

similarity)',(1 AASim , and if a Concept C’ has_Child A’, then Concept C’ and A

have the same attribute similarity)',()',(11 AASimCASim =

According to this, if two concepts A and A’ have attribute similarity, all their

owners will have the same attribute similarity. So we will have two composition paths

with A and A’ at the tail of the each of the path, all the concepts that has ownership over

 69

A could have the same attribute similarity to a concept that has ownership over A’. In this

case, composition similarity can be used to further differentiate the similarities.

Definition 8.10: Composition Path: Path that only consists of composition relations

Definition 8.11: Similar Composition Path for two composition paths: If all the nodes

in one composition path have the same attribute similarity to all the nodes in the other

composition path, then we define the two paths as similar composition paths. For

example, in Figure 8-6, for two paths PDO:Assembly->PDO:Component-

>PDO:Component_feature->PDO:Model_item, and ASO:Assembly->ASO:Part-

>ASO:Assembly_feature, if two nodes at the tail have the same attribute similarity and

based on transitivity of attribute-of relation over part-of relation, all the nodes in the first

path have the same attribute similarity to the second path, then the two paths are similar

composition paths.

After setting the equivalence and filtering out the class hierarchies due to

inheritance(is-a) relationship, the following graph can be drawn for PDO and ASO

considering only composition(part-of) relationship and the concepts limited at design

entity level [Figure 8-5 and Figure 8-6]. Each of the paths in the graph is a composition

path.

 70

Figure 8 - 6 Similar Composition Paths

In a CAD/CAE integration framework, it is always easier to identify data

translation from a higher composition level and to find matching concepts at the top level

(e.g. both the assembly concepts in PDO and ASO). After we discover concepts that have

attribute similarity in a lower composition level, plus the matching concepts that

previously found at the top composition level, the concepts between them will share the

attribute similarity and can be differentiated in composition similarity. So in this

dissertation we always calculate the composition similarity between concepts that are in

two similar composition paths.

We define the composition similarity between two concepts in similar

composition paths based on the distance measure:

Distance nBAD =),(

 71

n – Number of edges in the shortest path between two nodes A and B if only

considers part-of relation, for two matching concepts, the distance is 0

In two similar composition paths, if we have two nodes A and B in each of the

path which has H1, T1 and H2 and T2 as head and tail nodes respectively as shown in

figure 8-7, the composition similarity is the similarity of their relative position in each of

the path, and if we use),(2 BASim to represent composition similarity, then an it can be

calculated as ()
)2,2(
),2(

)1,1(
),1(1,2 THD

BHD
THD
AHDBASim −−=

Figure 8 - 7 Composition Similarity of Nodes in Two Paths

For example, in Figure 8-6, if it is known that PDO:Assembly and ASO:Assembly

are matching concepts, composition similarities factor between PDO:Component and

ASO:Part can be calculated as:

()

83.0
2
1

3
11

):,:(
)_:,:(

)_:,:(
):,:(1

:,:2

=−−=

−−

=

PartASOAssemblyASOD
FeatureAssemblyASOAssemblyASOD

itemModelPDOAssemblyPDOD
ComponentPDOAssemblyPDOD

PartASOComponentPDOSim

 72

8.4.3 Similarity based on Inheritance Relation

Definition 8.12 Inheritance Hierarchy: Concept hierarchy that consists of is-a

relation only.

In this dissertation, we assume the transitivity of attribute similarity and

composition similarity over inheritance relation, which means all the concepts in a

concept inheritance hierarchy will share the same attribute similarity and composition

similarity.

A rule can be used to describe this assumption:

Rule 8.4.3.1 For two matching concepts A and B, if each of which belongs to

the two different hierarchies, then all the concepts Ai and Bi that are sub-concepts

of A and B will have the same attribute similarity and composition

similarity:),(),(11 BASimBASim ii = and),(),(22 BASimBASim ii =

For example, Figure 8-8 shows a concept inheritance hierarchy for

assembly_constraint in ASO, compared with inheritance hierarchy in figure 7-4, all the

sub-concepts of PDO:Component_constraint and ASO:Assembly_constraint share the

same attribute similarity and composition similarity as PDO:Component_constraint and

ASO:Assembly_constraint has.

 73

Figure 8 - 8 Assembly_Constraint Inheritance Hierarchy

8.4.4 A General Method of Finding Matching Concepts

 The process of finding matching concepts can be regarded as a repetitive process:

after a pair of matching concepts is found, the new matching information will be used for

the next round of similarity calculations.

As it is always easier to identify the matching concepts at a higher composition

level, the whole sequence flows in a top-down direction.

To find all the matching concepts between two ontologies, we use following

steps:

 1) Start with a matching process based on definitions. Find explicit

equivalences based on definitions and define them as matching concepts.

 2) Create composition graph and inheritance hierarchies. Create composition

graph for composition relations and class hierarchies for inheritance relations. In a

composition graph, only the root class in an inheritance hierarchy is used, all the sub-

 74

classes are excluded from the composition graph. And as it is always easier to identify

matching concepts at the top level, it is expected that two root concepts in the

composition graph are matching concepts. For example, in Figure 8-9, a two composition

graphs that belong to different ontologies are created, with root node A0 and B0 as

matching concepts. Figure 8-10 and Figure 8-11 show two inheritance hierarchies which

use A21 and B22 as base class.

A0

A11

A21 A22

A12

A23

has has

hashashas

B0

B11

B21 B22

B12

B23

has has

hashashas

Matching Concept

Figure 8 - 9 Two Composition Graphs in Source and Target Ontology

A21

A21,2A21,1 A21,3 A21,4

is-a is-a is-ais-a

Figure 8 - 10 Inheritance Hierarchy of Node A21 in Source Ontology

 75

Figure 8 - 11 Inheritance Hierarchy of Node B22 in Target Ontology

 3) Calculate Attribute Similarity. Among two composition graphs from two

different ontologies, for each given source concept, calculate attribute similarity between

the source concept and other concepts in target ontology and find all the nodes that have

similar attribute. For example, for concept A21, iterate all the concepts in the right

composition graph of Figure 8-9 and calculate the attribute similarity between them and

concept A21 to find the one has highest overall attribute similarity.

4). Find Similar Composition Paths. After a target concept is found to have

highest attribute similarity with the given source concept, for example, A21 and B22,

since the attribute is transitive over composition relation, all the classes that has owner

relations over the target concept will have at least the same attribute similarity, and two

similar composition paths can be created between two root nodes A0, B0 and the source

concept A21 and target concept B22, as shown in Figure 8-12

 76

A0

A11

A21

has

has

B0

B22

B12

has

has

Matching Concept

Figure 8 - 12 Two Similar Composition Path in Source and Target Ontology

 5) Calculate Composition Similarity. Calculate composition similarity and

choose the one with the highest composition similarity and attribute similarity as

matching concept. In Figure 8-12, we can see A11 and B12, A21 and B22 have the

highest composition similarity, so we can conclude that A11 and B12, A21 and B22 are

matching concepts

6) Calculate attribute similarity and composition similarity based on

inheritance relation. Composition similarity and attribute similarity can be transitive

over inheritance relation, after two base concepts are found to be matching concepts, all

their sub-concepts are set to have the same attribute similarity and composition similarity.

For example, we can conclude that all the sub-classes of A21 and B22 as shown in Figure

8-10 and Figure 8-11 have same attribute similarity and composition similarity as A21

and B22 has.

 7) Go to 3) until all the candidate concepts are calculated

8) Human intervention, if no similarity information can be used to find matching

concept, human interference has to be used.

 77

8.5 Tailoring the Method for Mapping using Basic Design Entity
 In the previous section we discussed the method of calculating mapping similarity

for concepts. In this dissertation the focus is to translate product information between

different representations that have design entities as the basic elements. Hence it is of the

highest interest to find the similarities between design entities in two different ontologies.

 As discussed in 6.1 and 6.2 about specific attribute of BDE, to calculate similarity

between Basic Design Entities, similarity for each of the specific attribute is calculated,

they are form attribute similarity, behavior attribute similarity respectively, function

attribute is not considered in this dissertation.

8.5.1 Form Attribute
Form attribute includes information about design such as material, geometry etc.

In this dissertation we will focus on the geometry of form attribute since it contains the

most important information in a design that most design/analysis activities are focused

on. Geometry attribute is always the common currency during CAD/CAE integration.

To represent geometry attribute, a geometry inheritance hierarchy is defined in

General Design Ontology. To simplify the calculation of geometry similarity, geometry

information is categorized into four basic types: Point, Curve, Surface, and Solid, which

can be further categorized such as plane and cylindrical_surface under Surface. We can

see that the lower the level that a geometry type falls under, the more specific is the

geometry information that it has.

 78

Figure 8 - 13 Geometry Information Model

With the simplified model, the following rules are used to determine geometry

similarity:

Rule 8.5.1.1 If two geometry attributes fall under the same immediate

geometry attribute category, then the geometry similarity of two geometry

attributes is proportional to the depth of the geometry category from the top level.

For example, a Line and Circle have the common type of Curve, so their geometry

similarity is proportional to the depth of the level Curve in the hierarchy. If we define a

function F to be positive proportional to the depth, the geometry similarity between two

geometry types can be expressed as)1())((),(FCurvedepthFCircleLineSim == . And

the geometry similarity between Point and Line is

)0())((),(FGeometrydepthFCircleLineSim == since concept Geometry is the common

category of Point and Line which has a depth of 0. We can also conclude that

)int,(),(LinePoSimCircleLineSim > since)0()1(FF >

 79

Rule 8.5.1.2 If a concept can have different geometry types as its geometry

attribute, the common geometry category at the lowest level in the hierarchy is used

to calculate geometry attribute similarity. For example, concept PDO:Feature can

have geometry types such as Point, Curve, Surface, Solid as its geometry attribute, hence

their common geometry category at the lowest level GDO:Geometry is used to calculate

geometry attribute similarity.

8.5.2 Behavior Attributes
 Various behaviors focus on different aspects of product design which are defined

and used across engineering design/analysis domains. In order to find similar behavior

attribute that are shared by both the applications in ontology mapping, rules are defined

to identify common behavior attribute between engineering design/analysis applications

so it can be used for calculating behavior attribute similarity:

Rule 8.5.2.3 If both applications are in the realm of 3-D feature-based product

design for example, such as Pro/Engineer, Solidworks, or CATIA, then

designCreationBehavior can be used as common behavior attribute.

Rule 8.5.2.4 If both applications share a common definition in

functionalBehavior, then that definition may be used as behavior attribute. For example,

in the Assembly Design and Assembly Simulation domains, for the concepts

PDO:component_constraint and ASO:Assembly_constraint, both of them have

FunctionalBehaviorAttribute as degree of freedom, so degree of freedom can be used as

behavior attribute to calculate behavior attribute similarity.

 80

8.5.3 Example of Calculating Similarity for BDEs Based on Their

Attributes

With the algorithm of calculating attribute similarity introduced previously, we

use an example to show how to find a matching concept for a given BDE concept based

on similarity calculation.

In an integration between an assembly design and assembly simulation, the

knowledge of assembly design and assembly simulation are built into two ontologies:

PDO (Product Design Ontology) and ASO (Assembly Simulation Ontology), both of

them use their own knowledge to describe product assembly information. To help

product assembly information to be translated from assembly design tool to assembly

simulation tool, it is important to find corresponding matching concepts in target

ontology (ASO) for a given concept in source ontology (PDO) that are used to describe

product assembly data.

Following steps are used for finding matching information:

1) Matching process based on definitions.

Based on the existing data flow information, assuming data is exchanged between

assembly design unit – an instance of PDO:Assembly in product design to an instance of

ASO:Assembly, and we define they are equivalent instances, and based on definition in

8.3, concepts PDO:Assembly and ASO:Assembly are a pair of matching concepts.

2) Create composition graph and inheritance hierarchies

After step 1 of finding matching concepts based on definitions, first we need to

create composition graph. After filtering out inheritance relations, we have two

composition graphs for each of the ontology as in Figure 8-14 and Figure 8-15

 81

Figure 8 - 14 PDO composition graph

 82

Figure 8 - 15 ASO composition graph

3) Calculate Attribute Similarity

In two composition graphs, for source concept PDO:component_constraint, we

found it has following attributes:

1. Geometry Attribute: PDO:component_constraint has two relations

has_component_reference and has_assembly_reference, which are sub-properties of

composition relation (part_of), the object of has_component_reference and

has_assembly_reference, which are both PDO:Model_Item, has GDO:Geometry as its

geometry attribute. According to rule 8.4.2.1 about the transitivity of attribute-of relation

over part-of relation, geometry attribute of PDO:Model_Item is also the geometry

attribute of PDO:component_constraint

2. Functional Behavior Attribute, PDO:component_constraint has

GDO:Degree_of_Freedom as its functional behavior attribute.

4). Find Similar Composition Paths

 83

In target ontology ASO, after iterating all the concepts in the composition graph

in figure 8-15, based on the information that GDO:Geometry is geometry attribute of

ASO:Assembly_feature, and the composition relation has_assembly_feature between

ASO:assembly_constraint and ASO:Assembly_feature, accordint to rule 8.4.2.1 about the

transitivity of composition relation, we found ASO:assembly_constraint has

GDO:Geometry as its geometry attribute. Also ASO:assembly_constraint has

GDO:Degree_of_Freedom as its functional behavior attribute. Hence we can conclude

that PDO:component_constraint and ASO:assembly_constraint has highest attribute

similarity.

Since it is known that PDO:Assembly and ASO:Assembly are a pair of matching

concepts, from all the BDE concepts in ASO composition graph as in Figure 8-14 and 8-

15, two similar composition paths can be drawn in Figure 8 - 16,

PDO:
Assembly

PDO:
Component
_Constraint

has_component_
constraint

ASO:Asse
mbly

ASO:
Assembly_
Constraint

has-subassembly

ASO:
Joint

has-assembly_constraint

Similar
Concepts

ASO:
Subassem

bly

has-joint

Similar
Concepts

Figure 8 - 16 Similar Composition Paths between PDO and ASO

5) Calculate Composition Similarity.

 84

Considering the composition similarity factor in figure 8-16, the composition

similarities are:

Sim(PDO:Component_Constraint, ASO:Joint) = 5.0
2
1

1
11 =−−

Sim(PDO:Component_Constraint, ASO: Assembly_constraint) = 1
2
2

1
11 =−−

We can see that ASO: Assembly_constraint has a higher composition similarity

with PDO:Component_Constraint, so it can be concluded that ASO: Assembly_constraint

has the highest similarity to PDO:Component_Constraint and hence they are matching

concepts.

6) Calculate attribute similarity and composition similarity based on inheritance

relation

After calculating similarities between Basic Design Entities, if a match between

two BDEs is found, e.g. PDO:Component_Constraint and ASO: Assembly_constraint,

according to the RULE 8.4.3.1 about transitivity of attribute and composition attribute

over inheritance relation, all subclasses of these two concepts also have the same

inheritance similarity. At this level, we cannot differentiate the similarities between any

two subclasses, and we will introduce how to depend on the exact properties of each

instance to find matching concepts for each specific instance in the next section.

8.5.4 Calculating Concept Similarity Based on Instances

After finding matching concepts between two base concepts, for example,

PDO:Component_constraint and ASO:Assembly_constraint in Figure 8-14 and Figure 8-

 85

15 respectively, according to RULE 8.4.3.1 their sub-concepts share the same attribute

similarity and composition similarity. In an inheritance hierarchy, compared to concepts

in a higher level which usually has general information about attributes, concepts in

lower level have more specific attribute information, and similarity between two concepts

can be different when their attributes have different specific value(type), in order to

further calculate similarity between their sub-concepts in their inheritance hierarchies as

shown in Figure 7-4 and Figure 7-5, specific attribute information that depend on the

actual instance of the concepts needs to be collected to calculate similarity.

For example, based on its definition, ASO:Contact can have following different

assembly features and corresponding behaviors:

Geometry Attribute from

ASO:has_assembly_feature

Geometry Attribute from

ASO:has_assembly_feature

Behavior Attribute

GDO:Cylindrical_surface GDO:Cylindrical_surface GDO:Translate_z,

GDO:Rotate_z

GDO:Plane GDO:Plane GDO:Translate_x,

GDO:Translate_y,

GDO:Rotate_z

GDO:Line GDO:Plane GDO:Translate_x

GDO:Translate_z

GDO:Rotate_z

GDO:Rotate_y

Table 8 - 1 Possible Attributes of concept ASO:Contact

Depends on the actual instance in the product data semantics, if an instance

Contact1 of class ASO:Contact is found to have the following attributes:

has_assembly_feature Plane1, which is an instance of concept GDO:Plane

 86

has_assembly_feature Plane2, which is an instance of concept GDO:Plane

has_functional_behavior: ASO:Translate_x

has_functional_behavior: ASO:Translate_y

has_functional_behavior: ASO:Translate_z

has_functional_behavior: ASO:Rotate_z

OWL/RDF code to represent the above attributes is shown in Figure 8-17.

Figure 8 - 17 OWL/RDF Code of Contact Constraint

In order to find the corresponding matching concept for ASO:Contact so that

instance Contact_1 can be converted to, attribute similarity between subconcepts of

PDO:Component_Constraint and ASO:Contact are calculated to find which subconcept

can have highest attribute similarity with ASO:Contact with the specific attribute

information according to Contact_1.

For example, according to the restriction and axiom built in the PDO, PDO:Mate

can have exactly the same geometry attribute and behavior attribute as ASO:Contact has

for instance Contact_1:

Geometry Attribute from

PDO:has_assembly_reference

Geometry Attribute from

PDO:has_component_feature

Behavior Attribute

GDO:Plane GDO:Plane GDO:Translate_x,

< Contact rdf:ID=" Contact_1">
 <has_assembly_feature rdf:resource="#Plane_1"/>
 <has_assembly_feature rdf:resource="#Plane_2"/>
 <has_functional_behavior rdf:resource="#Translate_x"/>
 <has_functional_behavior rdf:resource="#Translate_y"/>
 <has_functional_behavior rdf:resource="#Translate_z"/>
 <has_functional_behavior rdf:resource="#Rotate_z"/>
 </ Contact>

 87

GDO:Translate_y,

GDO:Rotate_z

Table 8 - 2 Attribute of Concept PDO:Mate

From the above information, we can conclude that PDO:Mate .is the matching

concept of ASO:Contact for instance Contact_1. Please note that, the matching concept

that is found based on this method is dynamic and depends on the actual instance

information, so it is not fixed and has to be determined every time for each of the specific

instances.

 88

Chapter Nine - Representing Ontology Mapping
Information

9.1 Introduction

After finding the mapping information between two ontologies, it is necessary to

store the information in a certain format so that it can be reused. In order to represent the

mapping information between different product data semantics, a bridge ontology is used

to describe the mapping information between two different ontologies.

In this chapter, the mapping informaiotn is categorized and discussed as

following:

1. Concept mapping

2. Instance mapping

9.2 Bridge Ontology

In ontology mapping, bridge ontology represents the mapping information

between the two ontologies. If two different ontologies are regarded as two islands,

bridge ontology acts as a bridge between the two ontologies – with the bridge ontology, a

match of a concept or an instance in source ontology can be found in the target ontology.

Bridge ontology is an ontology which identifies concepts and instances from both

the source ontology and target ontology and represents their mapping relations. Once a

bridge ontology is built, it can be reused for a new integration process that involves the

same source and target ontologies

 89

9.3 Concept Mapping Representation
Concept mapping is to represent the mapping relations between concepts in

different ontologies. In this dissertation, we only consider one to one concept mapping,

which is identified to have following types:

1. Unconditional Mapping: Concept is unconditionally a matching concept of

another concept;

2. Conditional mapping: Only under certain conditions can one concept be a

matching concept of another concept

9.3.1 Unconditional Mapping
Unconditional mapping is for two concepts that are unconditionally pair of

matching concepts, for example, PDO:Assembly and ASO:Assembly

To describe unconditional mapping, predefined owl expression owl:sameClassAs

can be used to describe the explicit equivalence if two concepts are found to be matching

concepts during the building ontology process. For matching concepts that are found later

in ontology mapping process, in this dissertation we use concept of ConceptMatch to

describe the matching concept relation between two concepts in bridge ontology. To

describe which concepts are involved in the matching concepts, property has_concept is

used to describe the which concepts are being mapped from one to another.

Figure 9 - 1 OWL/RDF Code of Unconditional Mapping

<ConceptMatch rdf:ID="Match_1">
 <has_concept rdf:resource="#PDO:Component"/>
 <has_concept rdf:resource="#ASO:Part"/>
</ConceptMatch>

 90

9.3.2 Conditional Mapping
For some classes, only under certain circumstances will they be matching

concepts, these circumstances are described using concept Condition, for example, some

classes can be matching concepts only under a condition that a concept has given specific

values of attribute. For a concept match, there could be more than one conditions.

For instance, concept PDO:Model_item is a general concept and only some of its

subtypes can be a matching concept to ASO:Assembly_feature. The condition for

PDO:Model_item to be a matching concept of ASO:Assembly_feature is when

PDO:Model_item has a geometry attribute. The condition can be described using the

following OWL/RDF code:

Figure 9 - 2 OWL/RDF Code of Mapping Condition

9.4 Instance Mapping Representation
In our semantic level integration, instances in product data semantics act as a link

between concepts and product data, instance mapping links instances between different

product data semantics so product data in one representation can be eventually linked to

another representation.

In this dissertation, we use following concept of InstanceMatch together with

their properties to describe the relation between two mapped instances:

<Condition rdf:ID="condition1">
 <MappingAttribute rdf:resource="#has_geometry_attribute"/>
</ Condition >

 <ConditionalConceptMatch rdf:ID="Match_1">
 <has_concept rdf:resource="#PDO:Model_item"/>
 <has_condition rdf:resource="#condition1"/>
 <has_concept rdf:resource="#ASO:Assembly_feature"/>
 </ConceptMatch>

 91

1) SourceInstance indicates the instance in source product data semantics

2) TargetInstance indicates the instance in target product data semantics that is

linked to the source instance.

Bellow is some sample code in OWL which describes the mapping relationship

between two instances PDO:asm001 and ASO:asm001

Figure 9 - 3 OWL/RDF Code of InstanceMatch

 <InstanceMatch rdf:ID="instancematch1">
 <sourceInstance rdf:resource="#PDO:asm001"/>
 <targetInstance rdf:resource="#ASO:asm001"/>
 </InstanceMatch >

 92

Chapter Ten - Example Scenario

This chapter introduces an example scenario and shows the benefit of new

semantic level integration compared to the traditional data level integration. In the

example scenario, a product assembly is designed in one application that focus on the

assembly design domain and the assembly process of the assembly design is simulated in

another application that focus on assembly simulation domain. The interoperability

problem that happens in the process of integrating different applications is addressed,

specifically, problem about how information about assembly design is described and

exchanged between the two heterogeneous applications.

To show how the new integration mechanism proposed in this dissertation works,

based on the knowledge built in ontologies and the product data created in product

assembly design, results and processes in different stages are discussed, such as result of

original product data semantics about product design that captured in assembly design,

result and process of translating product data semantics from original representation to a

targeted different representation, and the mapping information between the original and

converted product data semantics. And at last it is discussed that how these processes and

results could come together and benefit us in converting heterogeneous product data from

one presentation to another presentation.

 93

10.1 Motivating Scenario

The motivation of the example is to show how CAD/CAE applications can be

integrated at a new “semantic level”. Two parts, Screw and Plate, are designed in a 3d

feature based geometric modeling tool as shown in Figure 10-1 and Figure 10-2. An

assembly asm001 which consists of the two parts is then designed in the assembly design

tool in Pro/Engineer as shown in Figure 10-3, by using knowledge of constraints and

features that are defined specifically for Pro/Engineer users.

To simulate the assembly process, assembly data needs to be imported into a

virtual environment that can be used to simulate the real assembly environment so user

can verify that the two parts can be assembled into the final assembly. In the virtual

assembly environment, the assembly process is simulated based on its own knowledge

model, and it also has its own data format and ways of representing geometry and

assembly information.

 94

Figure 10 - 1 Part Screw in a Test Assembly

Figure 10 - 2 Part Plate in a Test Assembly

 95

Figure 10 - 3 Test Assembly asm001

10.2 Integration in a Traditional Integration Framework

Previously in a traditional integration framework, the information exchange is

limited to a pure data level. The information flow is as follows:

In order to allow the assembly simulation tool to recognize the assembly data that

was originally designed in Pro/Engineer, the assembly design data in Pro/Engineer needs

to be converted to another representation that can be understood by assembly simulation

tool. Since Pro/Engineer and the Assembly simulation tool use different knowledge to

describe constraints between parts in the assembly, for example Align concept is used in

Pro/Engineer to describe the relationship of two planes which have the same position and

are parallel to each other, whereas in the assembly simulation tool the concept Contact is

used to describe the same relationship, during the conversion process, in a traditional

integration framework, the data that is described by the original knowledge model of

Pro/Eingineer cannot be understood by assembly simulation tool which is based on the

 96

other knowledge model. To reconcile the differences, normally in a traditional integration

framework the original data has to be converted to a neutral knowledge representation

and then converted to the target representation again. However, in an integration

framework that focuses on product lifecycle management, there could be large number of

different applications that co-exist and need to communicate with each other. Data is

interpreted from different viewports and its representation varies so significantly that

there is no common knowledge representation can cover all the different knowledge

bases. This leads to information getting lost during the conversion simply because it is

not able to be recognized by other applications that use a different knowledge

representation.

In the next a few sections, we will discuss how to overcome the interoperability

problem by using our new semantic integration approach that has been designed and

implemented in this dissertation.

10.3 Building Ontologies for Assembly Design/Assembly Simulation

As discussed in chapter 5, 6 and 7, knowledge in assembly design using

Pro/Engineer and assembly simulation is investigated and built into ontologies as Product

Design Ontology (PDO) and Assembly Simulation Ontology (ASO). Using Protégé as

ontology editor and OWL/RDF as ontology language, concepts and relations are

represented in ontology using subject-property-object triplet expression. Figure 10-4 and

Figure 10-5 show a small sample of defined classes and relations of PDO in protégé.

Similarly ASO is defined.

 97

Figure 10 - 4 Define PDO Classes in Protégé

Figure 10 - 5 Define PDO Relations in Protégé

10.4 Capturing Product Data Semantics from Original Design

Based on the knowledge of assembly design in Pro/Engineer that is built into

Product Design Ontology (PDO), product data semantics need to be created based on

steps introduced in chapter 7. Since same knowledge is used to describe product data

semantics and also to create original product assembly data, we can easily identify the

concepts and relations from PDO and use them to interpret the product assembly data by

creating instances.

 98

For example, the following concepts in PDO are instantiated according to the

assembly data: instance Asm001 is instantiated from concept PDO:Assembly, instance

Plate is instantiated from concept PDO:Component, and instance Screw is instantiated

from concept PDO:Component, Figure 10-6 shows the actual OWL/RDF source code.

Figure 10 - 6 OWL/RDF Code of Specific Assembly and Component in PDO

Also, constraints information in the assembly is described using predefined

concepts in PDO, and the following instances are created:

Mate_1 is created as an instance of concept PDO:Mate and Insert_1 is created as

an instance of concept PDO:Insert. Figure 10-7 shows the actual OWL/RDF source code

Figure 10 - 7 OWL/RDF Code of Specific Constraints in PDO

According to the product design in Pro/Engineer, the relations between instances

can be represented as shown in Table 10-1 in form of Subject-Property-Object,. For

example, as indicated in the first row, assembly Asm001 has Plate as its

PDO:has_component property, meaning Plate is a component of Asm001. RDF/OWL

source code in Figure 10-8 uses rdf:Description and predefined properties to describe

these relations in supplement of the definition of instance asm001 that described in

Figure 10-4.

Subject Property Object

 < Mate rdf:ID="Mate_1"/>
 < Insert rdf:ID="Insert_1"/>

 < Assembly rdf:ID="asm001"/>
 < Component rdf:ID="Plate"/>
 < Component rdf:ID="Screw"/>

 99

Asm001 PDO:has_component Plate

Asm001 PDO:has_component Screw

Asm001 PDO:has_component_constraint Mate_1

Asm001 PDO:has_component_constraint Insert_1

Table 10 - 1 Relations between Instances

Figure 10 - 8 OWL/RDF code of Assembly Relations

In original assembly design, detailed information about each component

constraint between two parts is captured and described using PDO concepts. As defined

in PDO, each instance of concept component_constraint should have at least one instance

of model_item as attribute of has_assembly_reference, and at least one instance of

model_item as attribute of has_component_reference. By inquiring the product data

model, we found following information that can be used to reflect this information:

Plate has Surface1 and Surface2 as two model items. Screw also has two model

items named Surface1 and Surface2. The Mate_1 constraint between Plate and Screw

uses Surface1 of Plate and Surface2 of Screw as component reference and assembly

reference respectively, and the insert_1 constraint between the same parts uses Surface2

of Plate and Surface1 of Screw as component reference and assembly reference. To

describe above information, we have following instances and properties in PDO:

 < rdf:Description rdf:about="asm001">
 <has_component rdf:resource="#plate"/>
 <has_component rdf:resource="#screw"/>
 <has_assembly_constraint rdf:resource="#Align_1"/>
 <has_assembly_constraint rdf:resource="#Insert_1"/>
 </rdf:Description>

 100

Previously two instances of concept PDO:Component_Constraints, Mate_1 and

Insert_1, are already created for the component constraint information. Another four

instances Plate:Surface1, Plate:Surface2, Screw:Surface1, Screw:Surface2 are created for

each of the model items. (Note: namespace Plate and Screw are added to the instance

name to indicate the component that these model items belong to)

To reflect the relations between model items and component constraint, properties

are used to link instances and we have the following subject-property-object relations as

shown in Table 10-2. Figure 10 – 9 and Figure 10 – 10 shows the corresponding

OWL/RDF source code.

Subject Property Object

Mate_1 PDO:has_component_reference Plate:Surface2

Mate_1 PDO:has_assembly_reference Screw:Surface1

Insert_1 PDO:has_component_reference Plate:Surface1

Insert_1 PDO:has_assembly_reference Screw:Surface2

Table 10 - 2 Relations between Component Constraints and Model Items

Figure 10 - 9 OWL/RDF Code of Mate_1

 < rdf:Description rdf:about="Align_1">
 <has_component_reference
rdf:resource="#Plate:Surface2"/>
 <has_assembly_reference
rdf:resource="#Screw:Surface1"/>
 </rdf:Description>

 101

Figure 10 - 10 OWL/RDF Code of Insert_1

10.5 Ontology Mapping for PDO and ASO

Now we have product data semantics which describes product data using

knowledge in PDO. Before translating it to another knowledge representation, we need to

find the matching concepts by using the ontology mapping algorithm described in

Chapter 8. The process can be analogized to translating an article from one human

language to another human language. Before we translate product data semantics, it is

important to find the matching concepts in two knowledge bases, similar to finding the

corresponding word in the target language that has the same meaning as the one in source

language in the given context.

In this example we will reuse some result from chapter 8. By using methods

introduced in chapter 8, we have identified PDO:Assembly and ASO:Assembly as

matching concepts based on definitions of matching concepts and equivalent instances

and Rule 8.3.2.1 as discussed in Chapter 8.3.2. Also PDO:Component and ASO:Part are

identified as matching concepts according to Rule 8.3.3.1 as discussed in Chapter 8.3.3.

PDO:Component_Constraint and ASO:Assembly_Constraint are identified as

matching concepts according to similarity calculation using heuristics method as

discussed in chapter 8.4

 < rdf:Description rdf:about="Insert_1">
 <has_component_reference
rdf:resource="#Plate:Surface1"/>
 <has_assembly_reference
rdf:resource="#Screw:Surface2"/>
 </rdf:Description>

 102

Concept in Source Ontology (PDO) Concept in Target Ontology (ASO)

PDO:Assembly ASO:Assembly

PDO:Component ASO:Part

PDO:Component_constraint ASO:Assembly_constraint

Table 10 - 3 Matching Concepts between PDO and ASO

Based on information of existing instance Insert_1 and its concept PDO:Insert,

we need to find the matching concept that Insert_1 can be converted to.

As we already identified ASO:Assembly_constraint and

PDO:Component_constraint in 8.3.2 as matching concepts, all the sub-concepts of

ASO:Assembly_constraint will have inheritance similarity to PDO:Insert. To find which

concept is the most appropriate concept that instance Insert_1 can be converted to, all the

sub-concepts of ASO:Assembly_constraint are enumerated to find the one can have the

highest attribute similarity with Insert_1.

Based on existing information about instances Insert_1, its geometry attribute and

behavior attribute are listed in Table 10-4.

Note: according to axiom1 in chapter 7, an instance of

PDO:component_constraint has at least one instance of PDO:Model_item as

PDO:has_component_reference property and one instance of PDO:Model_item as

PDO:has_assembly_reference property, both the properties are derived from “part-of”

relation, according to the transitivity of “attribute-of” relation over “part-of” relation,

geometry attributes of PDO:Model_item instances are also geometry attribute of Insert_1.

Instance Geometry Attribute From

PDO:has_component_reference

Geometry Attribute From

PDO:has_assembly_reference

Behavior Attribute

 103

Insert_1 GDO:Cylindrical_Surface GDO:Cylindrical_Surface GDO:Translate_z

GDO:Rotate_z

Table 10 - 4 Instance of Insert component constraint

According to definitions and restrictions in ASO, subtypes of

ASO:Assembly_constraint can have attributes as shown in Table 10-5

Concept Geometry Attribute from

ASO:has_assembly_feature

Geometry Attribute From

ASO:has_assembly_feature

Behavior Attribute

ASO:Coincidence GDO:Point GDO:Point GDO:Rotate_x,

GDO:Rotate_y,

GDO:Rotate_z

GDO:Line GDO:Line GDO:Translate_z,

GDO:Rotate_z

GDO:Plane GDO:Plane GDO:Translate_x,

GDO:Translate_y,

GDO:Rotate_z

ASO:Offset GDO:Plane GDO:Plane GDO:Translate_x,

GDO:Translate_y,

GDO:Rotate_z

ASO:Contact GDO:Cylindrical_surface GDO:Cylindrical_surface GDO:Translate_z,

GDO:Rotate_z

GDO:Plane GDO:Plane GDO:Translate_x,

GDO:Translate_y,

GDO:Rotate_z

Table 10 - 5 ASO:Assembly_constraint Attributes

 104

From Table 10-4 and Table 10-5, we can see that ASO:Contact can have similar

attributes in both geometry and behavior attributes, so it can be concluded that

ASO:Contact is the matching concept of PDO:Insert for instance Insert_1.

Similarly, it can be found that ASO:Coincidence can have the similar geometry

attribute and behavior attributes as PDO:Mate so it is the matching concept of PDO:Mate

for instance Mate_1.

10.6 Translated Product Data Semantics and Instance Mapping

During the translation process, after finding the matching concept in ASO for

each of the source concept in PDO, instances in PDO are translated into their counterpart

instances of ASO concepts. Table 10-6 and 10-7 list the new instances and the mapping

between new instances and old instances. Table 10-8 lists the new relations between the

new instances. Figure 10 –9 through Figure 10-16 show the sample OWL/RDF source

code.

Concept Instance

ASO:Assembly ASO:Asm001

ASO:Part ASO:Plate, ASO:Screw

ASO:Assembly_feature ASO:Plate:Surface1, ASO:Plate:Surface2,

ASO:Screw:Surface1, ASO:Screw:Surface2

ASO:Assembly_constraint ASO:Contact_1, ASO:Coincidence_1

Table 10 - 6 New Instances in ASO

Source Instance Target Instance

PDO:Asm001 ASO:Asm001

 105

PDO:Plate ASO:Plate

PDO:Screw ASO:Screw

PDO:Plate:Surface1 ASO:Plate:Surface1

PDO:Plate:Surface2 ASO:Plate:Surface2

PDO:Screw:Surface1 ASO:Screw:Surface1

PDO:Screw:Surface2 ASO:Screw:Surface2

PDO:Insert_1 ASO:Contact_1

PDO:Mate_1 ASO:Coincidence_1

Table 10 - 7 Instance Mapping between PDO and ASO

Subject Property Object

ASO:Asm001 ASO:has_part ASO:Plate

ASO:Asm001 ASO:has_part ASO:Screw

ASO:Coincidence_1 ASO:has_assembly_feature ASO:Plate:Surface1

ASO:Contact_1 PDO:has_assembly_feature ASO:Screw:Surface2

ASO:Coincidence_1 ASO:has_assembly_feature ASO:Screw:Surface1

ASO:Contact_1 ASO:has_assembly_feature ASO:Plate:Surface2

Table 10 - 8 New Instance Relations

Figure 10 - 11 OWL/RDF Code of New Instances

 <ASO:Assembly rdf:ID="Asm001">
 </Assembly_feature >
 <ASO:Part rdf:ID="Plate">
 </Part>
 <ASO:Part rdf:ID="Screw">
 </Part>

 106

Figure 10 - 12 OWL/RDF Code Of Instance Mapping

Figure 10 - 13 OWL/RDF Code of New Part Instance

Figure 10 - 14 OWL/RDF Code Instance Coincidence_1

Figure 10 - 15 OWL/RDF Code of Instance Contact_1

 <InstanceMatch rdf:ID="im1">
 <sourceInstance rdf:resource="#PDO:asm001"/>
 <targetInstance rdf:resource="#ASO:asm001"/>
 </InstanceMatch>
 <InstanceMatch rdf:ID="im1">
 <sourceInstance rdf:resource="#PDO:Plate"/>
 <targetInstance rdf:resource="#ASO:Plate"/>
 </InstanceMatch>
 <InstanceMatch rdf:ID="im1">
 <sourceInstance rdf:resource="#PDO:Screw"/>
 <targetInstance rdf:resource="#ASO:Screw"/>
 </InstanceMatch>

 < rdf:Description rdf:about="Contact_1">
 <has_assembly_feature rdf:resource="#ASO:Plate:Surface2"/>
 <has_assembly_feature rdf:resource="#ASO:Screw:Surface1"/>
 </rdf:Description>

 < rdf:Description rdf:about="Coincidence_1">
 <has_assembly_feature rdf:resource="#Plate_Surface1"/>
 <has_assembly_feature rdf:resource="#Screw_Surface2"/>
 </rdf:Description>

 <ASO:Assembly_feature rdf:ID="ASO:Plate:Surface1">
 </Assembly_feature >
 <ASO: Assembly_feature rdf:ID="ASO:Plate:Surface2">
 </Assembly_feature >

 <ASO:Part rdf:ID="plate">
 <has_assembly_feature rdf:resource="#ASO:Plate:Surface1"/>
 <has_assembly_feature rdf:resource="#ASO:Plate:Surface2"/>
 </Part>

 107

Figure 10 - 16 OWL/RDF Code of Instance asm001

10.7 Summary

The example illustrates a new semantic integration process. In the new semantic

integration, product data semantics is captured to represent an engineer’s understanding

about a product design, which is based on existing CAD data model and pre-built

knowledge base in engineering ontologies.

Using method of ontology mapping developed in this dissertation, product data

semantics can be translated to another knowledge representation.. In this example, one

product data semantics based on the knowledge representation of assembly design is

translated into another product data semantics based on knowledge representation of

assembly simulation.

One advantage of the new integration framework is the improved interoperability.

Because different applications usually describe a product design using different

knowledge representations, which lead to big difference in data type and data structure, in

a traditional integration framework where information is exchanged purely in a data

level, this results in the problem of heterogeneous data. Using the method proposed in

this dissertation, based on the knowledge of the application that the data is generated

from, data is first interpreted into product data semantic, and then it is translated into

 < rdf:Description rdf:about="asm001">
 <has_part rdf:resource="#plate"/>
 <has_part rdf:resource="#screw"/>
 <has_assembly_constraint rdf:resource="#Coincidence_1"/>
 <has_assembly_constraint rdf:resource="#Contact_1"/>
 </ rdf:Description >

 108

another product data semantics based on knowledge of the application that converted data

will be used, by using ontology mapping. In the example presented in this chapter, data

about assembly design is interpreted in product data semantics using assembly design

knowledge, then the original product data semantics is translated into another product

data semantics which interpret data based on assembly simulation knowledge, according

to the mapping information between these two product data semantics, we know what

data types can be converted from one to the other. During the process, no common

knowledge is required to cover all the knowledge representations, and tasks that used to

require human intervention now can be accomplished automatically, which will

significantly improve the efficiency of integration.

 109

Chapter Eleven - Summary and Future Work

This dissertation seeks to improve the interoperability of CAD/CAE applications

during PLM. In a CAD/CAE integration, we think the interoperability problem caused

by heterogeneous data types in various applications, is rooted from the fact that

different knowledge representations are used to interpret product data,. In order to solve

the problem, and also improve composition adaptivity and viewport adaptivity of an

integration framework, our proposed solution is to build knowledge to interpret product

data as product data semantics and translate between different product data semantics.

The following research questions are investigated:

1. How to represent knowledge in engineering design and analysis in a

consistent, scalable manner.

2. How to generate product data semantics by associating the engineering

design/analysis knowledge to the actual product data.

3. How to reconcile the differences in different product semantics and

make the semantics translations, and eventually lead to data being

translated correctly.

In order to answer the above questions, Chapter 5 shows how an engineer’s

understanding about a product design (product data semantics) is represented using the

ontologies. Chapters 6 and 7 define the structure and syntax of engineering ontologies to

represent the knowledge in engineering design and analysis. Chapter 8 and 9 discuss the

method of translating different product data semantics based on different knowledge. A

 110

use case is introduced in Chapter 10 to show how different product data semantics are

translated between assembly design and simulation tools.

11.1 Summary

To address the interoperability problem in CAD/CAE integration, one solution is

to explicitly build engineering knowledge that is used during different design/analysis

process into ontologies, and use the knowledge to interpret the product data. Using this

method, some of the interoperability problem can be improved by automatically

translating the interpretation from one representation to other representations so that

applications in the integration framework can understand.

With the automatic translation process and layer structured ontology based on

consistent, scalable ontology language, new knowledge representation can be easily built

based on existing ontologies so to improve scalability and reusability. By mapping to

other knowledge, interpretation of data based on one knowledge representation can be

translated into interpretation based on other knowledge representation, and eventually

help the data to be converted to the correct type.

 In our solution, knowledge representation, product data semantics creation and

translation are the key issues.

11.1.1 Knowledge Representation
Ontology is a consistent and scalable way to represent knowledge in engineering

design and analysis. We use a three layered structure to model engineering ontology:

general ontology, domain ontology and application ontology. In an ontology, concepts

are related to other concepts by different types of relations. In this dissertation, three

 111

basic relations are considered: 1) part-of, which represents the composition relationship;

2) is-a, which represents the inheritance relationships; and 3) attribute-of, which

represents the object-attribute relationship. In addition, axioms supplement the

knowledge by defining the restrictions on the concepts and their relations.

As one of the most commonly accepted ontology languages and also an actual

industrial standard, RDF/OWL is a powerful ontology language to model engineering

design and analysis ontologies. The capability of serializing OWL/RDF in XML format

makes it easier to be accepted by different applications. The wide availability of toolkits

such as Protégé and Jena makes it possible to develop new functionalities.

11.1.2 Product Data Semantics Creation in Source
Product Data Semantics is used to describe product data using the concepts and

relations defined in engineering ontologies.

To capture product data semantics, firstly concepts and relations that are used

during the design/analysis are built into engineering ontologies. In this dissertation we

use two ontologies PDO and ASO as examples to show how knowledge of different

domain (assembly design and assembly simulation) are built into ontologies.

Secondly, to associate the product data to concepts, instances are created by using

CAD/CAE APIs and ontology toolkits to instantiate concepts in an ontology with the

actual product data.

 112

11.1.3 Product Data Semantics Translation To Target
One of the most challenging problems in solving heterogeneous data is finding the

correct target data representation for source data. To improve interoperability, our

approach is to use built-in knowledge to interpret product data into product data

semantics, and then by translating different product data semantics based on ontology

mapping, so that source data that is interpreted in original product data semantics can be

found its matching data interpretation, and eventually to help the source data to be

converted to the correct target data representation.

To translate product data semantics, one of the most critical steps is ontology

mapping, which is to map different concepts and relations in two ontologies. In this

dissertation, mostly focused on integration of CAD/CAE applications, we propose a

method of finding matching concepts for engineering ontologies in product design and

analysis domains, two steps are used: explicit matching by definitions and matching

based on heuristics method of similarity calculation. For the first step, definitions are

given based on information exchange in a CAD/CAE integration process. In the latter

step, compared to other heuristics method of ontology mapping which don’t differentiate

relation types, based on the characteristics of product data, three basic types of relations

are used to calculate similarities so to find matching concepts: similarity based on “part-

of” relationship, similarity based on “is-a” relationship, and similarity based on

“attribute-of” relationship, and similarity based on specific attributes of product design

are also discussed. An algorithm is developed for this purpose.

11.1.4 Key Contributions
In summary, compared to traditional data leve integration, our proposed semantic

level integration has following features:

 113

1) Ontologies with layered structure to represent engineering knowledge using

semantic web technologies.

2) Product Data Semantics as interpretation of product data based on knowledge

represented in ontologies, which can be captured by instantiating concepts in

ontologies using product data.

3) An algorithm of systematically finding mapping information in two steps: 1.

Finding matching information based on definitions and 2. Finding matching

information based on heuristics method. In step 2, a new algorithm is

developed to calculate similarity based on different types of relations between

concepts.

In the example scenario we used integration between an assembly design tool and

an assembly simulation tool to show the new semantic integration method. Theoretically,

semantic level integration can be used for any applications in CAD/CAE that is focused

on product data, including design/analysis/simulation, to integrate different applications,

different attributes especially behavior attributes may need to be defined for similarity

calculation.

11.2 Future Work
The proposed solution in this dissertation tries to address the interoperability

problem in a CAD/CAE framework and improves the communications process between

different applications. However, there are still many problems need to be addressed and

further investigated:

1) Deployment adaptivity. As the engineering application in a CAD/CAE

framework can be very different. For example, one application may require real-time

 114

collaboration, whereas another may require a strict, well-defined, procedure-based

communication. Also in some cases the deployment is based on sharing just the product

data (PDM model) whereas others require the complete integration of the engineering,

manufacturing, and business processes (ERP model). Any resulting system based on

current integration methods is very rigid in terms of deployment: deployment strategies

often cannot be modified or replaced without subsequent rounds of negotiation and

programming. There is an increasing demand for flexible deployment strategy that can

support multiple deployment possibilities.

2) Representation of difference in ontology mapping for complex concepts. In this

dissertation we mainly focus on finding the mapping between basic design entities, and it

is also very important to find the difference between the two similar concepts so to help

the translation. For example, the difference in part/sub-assembly order information

between an assembly design hierarchy (as designed) and an assembly simulation

hierarchy (as manufactured).

Overall, semantic level integration improves interoperability and adaptivity of

integration in several aspects. There remains more ongoing research to make further

improvement.

 115

 116

Appendix – Acronyms

ASO: Assembly Simulation Ontology

BDE: Basic Design Entity

CAD: Computer Aided Design

CAE: Computer Aided Engineering

DOF: Degree of Freedom

GDO: General Design Ontology

PDM: Product Data Management

PDO: Product Design Ontology

PLM: Product Lifecycle Management

 117

Appendix – RULES for Ontology Mapping

Rule 5.5.1 for three concepts C1 and C2 and C3, if C1 has_Child C2 and C2

has_Attribute C3, then it can be deducted that C1 has_Attribute C3.

Rule 8.3.1.1 If two concepts are equivalent, then they are matching concepts.

Rule 8.3.2.1 if two concepts share the equivalent instance, then the two

concepts are two matching concepts.

Rule 8.3.3.1 During data conversion, if the attribute of an instance of a BDE

is converted to be the attribute of an instance of another BDE, then both Basic

Design Entities share the same attribute.

Rule 8.4.2.1 For a given source concept A, if a target concept A’ has attribute

similarity)',(1 AASim , and if a Concept C’ has_Child A’, then Concept C’ and A

have the same attribute similarity)',()',(11 AASimCASim =

Rule 8.4.3.1 if there are two matching concepts A and B which belong to each

one of the hierarchies, then all the concepts Ai and Bi that are sub-concepts of A and

B will have inheritance similarity),(),(11 BASimBASim ii = and

),(),(22 BASimBASim ii =

Rule 8.5.1.1 If two geometry attributes fall under the same immediate

geometry attribute category, then the geometry similarity of two geometry

attributes is proportional to the depth of the geometry category from the top level.

Rule 8.5.1.2 If a concept can have different geometry types as its geometry

attribute, the common geometry category at the lowest level in the hierarchy is used

to calculate geometry attribute similarity

 118

Rule 8.5.2.3 If both applications are regarding 3-D feature-based product

design, then designCreationBehavior can be used as common behavior attribute.

Rule 8.5.2.4 If both applications share a common definition in

functionalBehavior, then that definition may be used as behavior attribute.

 119

 Appendix – Definitions

Definition 8.1: Mutual Information: Mutual information refers to the

information shared by two instances.

Definition 8.2: Instance Similarity:

)(BAI ∩ : Mutual information of instance A and B

)(BAI ∪ : Union of information of instance A and B

Instance Similarity between A and B is:
)(
)(),(

BAI
BAIBASim

∪
∩

=

Definition 8.3: Matching Instances: A pair of instances that have mutual

information and also have the highest similarity are defined as Matching Instances, and

during translation, the matching instances can be translated from one to another.

Definition 8.4: Convertible Instance: If Instance A and Instance B are Matching

Instances, during CAD/CAE integration, and information in Instance A can be translated

to information in Instance B, then we call Instance B a convertible instance of B

(),(ABeConvertibl).

Definition 8.5: Matching Concepts: For two Matching Instances, their

corresponding concepts are defined as Matching Concepts.

Definition 8.6: Concept Similarity: among all the instances iI1 of concepts C1

and iI 2 of C2, the highest instance similarity between two instances),((21 ii IISimMax is

defined as concept similarity of C1 and C2.

 120

Definition 8.7: Convertible Concept: For two instances, A and B, which belong

to concept AC and BC respectively, if A is a convertible instance of B, then the concept

AC is a convertible concept of BC .

Definition 8.8: Mismatching Instances: Mismatching Instances do not share

mutual information.

Definition 8.9: Mismatching Concepts: Mismatching Concepts do not have any

instances that have concept similarity > 0.

Definition 8.10: Composition Path is a path that only consists of composition

relations

Definition 8.11: Similar Composition Path for two composition paths, if all the

nodes in one composition path have the same attribute similarity to all the nodes in the

other composition path, then we define the two paths as similar composition paths.

 121

Bibliography

 [1] N.Senin, D.R.Wallace, and N.Borland, "Distributed Object-Based Modeling in

Design Simulation Marketplace," Journal of Mechanical Design, vol. 125, pp. 2-13,
Mar.2003.

 [2] F.Mervyn, A.Senthil Kumar, S.H.Bok, and A.Y.C Nee, "Developing distributed
applications for integrated product and process design," Computer Aided Design,
vol. 36, pp. 679-689, 2004.

 [3] X.W.Xu and Q.He, "Striving for a total integration of CAD,CAPP,CAM and CNC,"
Robotics and Computer-Integrated Manufacturing, vol. 20, pp. 101-109, 2004.

 [4] S.Q.Xie, P.L.Tu, D.Aitchison, D.Aitchison, R.Dunlop, and Z.D.Zhou, "A WWW-
based integrated product development platform for sheet metal parts intelligent
concurrent design and manufacturing," International Journal of Production
Research, vol. 39, pp. 3829-3852, 2001.

 [5] X.F.Zha and H.Du, "A PDES/STEP-based model and system for concurrent
integrated design and assembly planning," Computer Aided Deisgn, vol. 34, pp.
1087-1110, 2002.

 [6] J. Shah and P. Wilson, "Analysis of Design Abstraction, Representation, and
Inferencing Requirements for Computer Aided Design," Journal of Design Studies,
vol. 10, no. 3, pp. 169-178, 1989.

 [7] W. Regli, X. Hu, M. Atwood, and W. Sun, "A Survey of Design Rationale Systems
: Approaches, Representation, Capture and Retrieval," Engineering With
Computers, vol. 16, pp. 209-235, 2000.

 [8] O. Eris, P. Hansen, A. Mabogunje, and L. Leifer, "Toward a Progmatic Ontology
for Product Development Projects in Small Teams," Procedding of the
International Conference on Engineering Design (ICED 99), 1999.

 [9] C. Dym, Engineering Design: A synthesis of View. New Youk, NY: Cambridge
University Press, 1995.

[10] Y.M.Deng, Y.C.Lam, S.B.Tor, and G.A.Britton, "A CAD-CAE integrated injection
modeling design system," Engineering with Computer, vol. 18, no. 1, pp. 82-90,
2002.

[11] J.J.Shah, Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and
Applications Wiley-Interscience, 1995.

[12] H.Shin, G.J.Olling, Y.C.Chung, B.H.Kim, and S.K.Cho, "An integrated
CAPP/CAM system for stamping die patttern machining," Computer Aided Design,
vol. 35, no. 2, pp. 203-213, 2003.

 122

[13] O. W. Salomons, F.J.A.M.van Houten, and H.J.J.Kals, "Review of research in
feature-based design," Journal of Manufacturing Systems, vol. 12, no. 2, pp. 113-
132, 2003.

[14] H. F. Wang and Y.-L.Z, "CAD/CAM integrated system in collaborative
development environment," Robotics and Computer Integrated Manufacturing, vol.
18, pp. 135-145, 2002.

[15] S. Szykman, S. J. Fenves, S. B. Shooter, and W. Keirouz, "A Foundation for
Interoperability in Next generation Product Development Systems," Computer
Aided Design, vol. 33, no. 7, pp. 545-559, 2001.

[16] S. J. Fenves, S. Sriram, and R. Wang, "A Product Information Modeling
Framework for Product Lifecycle Management," International Symposium on
Product Lifecycle Management, 2003.

[17] D. Xue and H.Yang, "A concurrent engineering-oriented design database
representation model," Computer Aided Design, vol. 36, no. 10, pp. 947-965, 2004.

[18] S.R.Gorti, A.Gupta, G.J.Kim, R.D.Sriram, and A.Wong, "An object-oriented
representation for product and design process," Computer Aided Design, vol. 30,
no. 7, pp. 489-501, 1997.

[19] S. B. Shooer, W. Keirouz, S. Szykman, and S. J. Fenves, "A Model of the Flow of
Design Information in Product Development," Engineering With Computers, vol.
16, pp. 178-194, 2001.

[20] International Organization for Standardization (ISO), "Industrial Automation
Systems, Standard for the Exchange of Product Model Data (STEP)," Geneva,
Switzerland: ISO 10303, 1994.

[21] H. Kahn, Nick Filer, Alan Williams, and Nigel Whitaker, "A generic framework for
transforming EXPRESS information models," Computer Aided Deisgn, vol. 33, pp.
501-510, 2001.

[22] M.J.Pratt and B.D.Anderson, "A shape modelling applications programming
interface for the STEP standard," Computer Aided Design, vol. 33, pp. 531-543,
2001.

[23] D. T. De Martino, B. Falcidieno, and S. Habinger, "Design and engineering process
integration through a multiple view intermediate modeller in a distributed object-
oriented system environment," Computer Aided Design, vol. 30, no. 6, pp. 437-452,
1998.

[24] T. Mannisto, Hannu Peltonen, Asko Martio, and Reijo Sulonen, "Modelling generic
product structures in STEP," Computer Aided Design, vol. 30, no. 14, pp. 1111-
1118, 1998.

 123

[25] X. F. Zha and H.Du, "A PEDS/STEP-based model and system for concurrent
integrated design and assembly planning," Computer Aided Design, vol. 34, pp.
1087-1110, 2002.

[26] C.D.Cera, W.C.Regli, I.Braude, Y.Shapirstein, and C.V.Foster, "A collaborative 3D
environment for authoring design semantics," Compuer Graphics and Applications,
IEEE, vol. 22, no. 3, pp. 43-55, 2002.

[27] "http://en.wikipedia.org/wiki/Ontology_%28computer_science%29," 2007.

[28] T. R. Gruber, "Toward Principles of the Design of Ontologies Used for Knowledge
Sharing," International Workshop on Formal Ontology in Conceptual Analysis and
Knowledge Representation, 1993.

[29] R. Fikes and A. Farquhar, "Distributed Repositories of Highly Expressive Reusable
Ontologies," IEEE Intelligent System, vol. 14, no. 2, pp. 73-79, 1999.

[30] "Wine Ontology," 6 A.D..

[31] I.Horvath, J.S.M.Vergeest, and G.Kuczogi, "Development and Application of
Design Concept Ontologies for Contextual Conceptualization," 1998.

[32] Y.Kitamura and R.Mizoguchi, "Ontology-based Description of Functional Design
Knowledge and its Use in a Functional Way Server," Expert System Application,
vol. 24, no. 2, pp. 153-166, 2002.

[33] J.J.Michel and A.F.Cutting-Decelle, "The Process Specification Language," 2004.

[34] Lalit Patil, Debasish Dutta, and Ram Sriram, "Ontology-Based Exchange of
Product Data Semantics," IEEE Transactions On Automation Science And
Engineering, vol. 2, no. 3, pp. 213-225, 2005.

[35] M. Ciocoiu and D. S. Nau, "Ontology Based Semantics," Seventh International
Conference on Principles of Knowledge Representation and Reasoning, 2000.

[36] Y. Nomaguchi, A. Ohnuma, and K. Fujita, "Design Rationale Acquisition in
Conceptual Design by Hierachical Integration of Action, Model and
Argumentation," Proceeding of the 2004 ASME Design Engineering Technical
Conference, 2004.

[37] G. Mocko, Richard Malak, Christiaan Paredis, and Russel Peak, "A knowledge
repository for behavioral models in engineering design," 2004 ASME Design
Engineering Technical Conferences, 2004.

[38] C. Kerr, Rajkumar Roy, and Peter J.Sackett, "A product ontology for automotive
seat specification," 2004 ASME Design Engineering Technical Conferences, 2004.

 124

[39] M. Ciocoiu, D. S. Nau, and M. Gruninger, "Ontologies for Integrating Engineering
Applications," Journal of Computing and Information Science in Engineering, vol.
1, pp. 12-22, Mar.2001.

[40] M. Gruninger, C. Schlenoff, and A. Knutilla, "Using Process Requirement as the
Basis for the Creation and Evaluation of Process Ontologies fro Enterprise
Modeling," ACM SIGGROUP Bulletin Special Issue on Enterprise Modelling, vol.
18, no. 3 1997.

[41] C. Schlenoff, A. Knutilla, and S. Ray, "Unified Process Specification Language:
Requirements for Modeling Process," Technical Report NISTIR 5910,
Gaithersburg, MD,1996.

[42] C.I.Kerr, R.Rajkumar, and P.J.Sackett, "A Product Ontology for Automotive Seat
Specification," 2004.

[43] W3C, "W3C Semantic Web," Available online via http://www. w3. org/2001/sw/>
[accessed June 2004], 2001.

[44] Grigoris Antoniou and F.V.H., A Semantic Web Primer MIT Press, 2004.

[45] W3C, " Resource Description Framework (RDF)," Available online via
<http://www. w3. org/RDF/> [accessed June 2004], 2004.

[46] S. Powers, Practical RDF, O'Reilly, 2003.

[47] S. Ray, "Interoperability Standards in the Semantic Web," Journal of Computing
and Information Science in Engineering, vol. 2, pp. 65-69, Mar.2002.

[48] W3C, " OWL Web Ontology Language Overview," Available online via
<http://www. w3. org/TR/owl-features/> [accessed June 2004], 2004.

[49] "Jena - A Semantic Web Framework for Java," Available online via <http://jena.
sourceforge. net/> [accessed June 2004], 2004.

[50] "The Protege Ontology Editor and Knowledge Acquisition System," Available
online via <http://protege. stanford. edu/> [accessed June 2004], 2005.

[51] I.Niles and A.Pease, "Towards a standard upper ontology," 2001.

[52] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari, "Sweetening wordnet with
DOLCE," AI Magazine, vol. 24, no. 3, pp. 13-24, 2003.

[53] M.Gruninger and J.Kopena, "Semantic integration through invariants," 2003.

[54] N.F.Noy and M.A.Musen, "The PROMPT suite: Interactive tools for ontology
merging and mapping," International Journal of Human-Computer Studies, vol. 59,
no. 6, pp. 983-1024, 2003.

 125

[55] J.Euzenat and P.Valtchev, "Similarity-based Ontology alignment in OWL-Lite,"
2004.

[56] G.Summe and A.Madche, "FCA-Merge: Bottom-up merging of ontologies," 2001.

[57] T. Tudorache, "Employing Ontologies for an Improved Development Process in
Collaborative Engineering." 2006.

[58] Saeema Ahmed, Sanghee Kim, and Ken M.Wallace, "A Methodology for Creating
Ontologies for Engineering Design," 2005.

[59] T.Berners-Lee, "Semantic Web on XML,"2000.

[60] A.Swartz and J.Hendler, "The Semantic Web: A Network of Content for the Digital
City," 2001.

