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Chair: Judith J. McDonald

Nonnegative and eventually nonnegative matrices are useful in many areas of math-

ematics and have been widely studied. Perhaps the most famous results pertaining to

nonnegative matrices are due to Perron and Frobenius and have prompted much further

research. In this thesis, we investigate the combinatorial structure of nonnegative and

eventually nonnegative matrices as it relates to the (peripheral) Jordan form of the ma-

trices. Information obtained from the level form of a nonnegative matrix is used to gain

insight into the Jordan form of the matrix, and vice-versa.

In this paper, we give necessary and sufficient conditions for a set of Jordan blocks to

correspond to the peripheral spectrum of a nonnegative matrix. For each eigenvalue, λ,

the λ-level characteristic (with respect to the spectral radius) is defined. The necessary

and sufficient conditions include a requirement that the λ-level characteristic is majorized

by the λ-height characteristic. An algorithm which has been implemented in MATLAB

is given to determine when a multiset of Jordan blocks corresponds to the peripheral

spectrum of a nonnegative matrix.

We also consider the Jordan form of an eventually nonnegative matrix. It is known

that the necessary and sufficient conditions for a multiset of Jordan blocks to correspond



iv

to the peripheral Jordan form of an eventually nonnegative matrix coincide exactly with

the necessary and sufficient conditions for a multiset of Jordan blocks to correspond to

the peripheral Jordan form of a nonnegative matrix. We take a closer look at the Jordan

blocks associated with eigenvalues of smaller magnitude. Multiple sufficient conditions

on the Jordan form of an (eventually) nonnegative matrix are given. We also offer

necessary and sufficient conditions on the Jordan form of an eventually nonnegative

matrix.
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Chapter 1

Introduction and Standard Definitions

1.1 Introduction

The Perron-Frobenius Theorem is an important result which has prompted much re-

search pertaining to spectral properties of nonnegative matrices. Many combinatorial

properties of the spectrum of a nonnegative matrix, and its generalized eigenspace, are

known (for example, see [1], [5], and [13]). Many authors have contributed to this

knowledge base, and there are many interesting papers on this topic.

While introducing the idea of level sets associated with a nonnegative matrix, Rich-

man and Schneider give results pertaining to the singular graph and Weyr characteristic

of an M-matrix in [11] as does Rothblum in [12]. Hershkowitz and Schneider give neces-

sary and sufficient conditions on the relation between the height and level characteristics

corresponding to the spectral radius of a nonnegative matrix in [6]. For an overview of

these results and many more on this topic, see the survey papers [5] and [13]. In par-

ticular, it has been shown that, if ν and η are two sequences of nonnegative integers,

then there exists a nonnegative matrix A with height characteristic η, corresponding to

the spectral radius, and level characteristic ν, corresponding to the spectral radius (with

entries rewritten in decreasing order), if and only if ν is majorized by η.

Looking at extensions of Perron-Frobenius theory from a cone theoretic perspective,
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Tam and Schneider obtain a necessary and sufficient condition on the peripheral spec-

trum of a matrix for which there is a proper cone that the matrix leaves invariant, with

the core of the matrix with respect to this cone being simplicial [15]. Tam noted that

the condition is also necessary for a nonnegative matrix and called for a matrix theoretic

proof of this necessity, with the question being formally posed in [14]. In [9], McDonald

extends the necessary condition and offers a necessary and sufficient condition (the ex-

tended Tam-Schneider condition) for a multiset of Jordan blocks to correspond to the

peripheral spectrum of a nonnegative matrix A.

In Chapter 2, we offer necessary and sufficient conditions which are equivalent to

the extended Tam-Schneider condition, but which are more concise and point out the

relation between level sets and the height characteristic of A corresponding to the spec-

tral radius. For each eigenvalue λ in the peripheral spectrum of a nonnegative matrix

A, we define the λ−level characteristic (with respect to the spectral radius) and show

that the λ−level characteristic is majorized by the λ−height characteristic. This prop-

erty and the requirement that the peripheral spectrum associated with each level must

be a union of complete sets of roots of unity (multiplied by the spectral radius of A)

provide necessary and sufficient conditions on the peripheral spectrum of a nonnegative

matrix. This result is formally stated as Theorem 2.9. An algorithm is presented which

determines whether or not there exists a nonnegative matrix with peripheral spectrum

corresponding to a given multiset J of Jordan blocks. The algorithm is based on the

conditions given in Theorem 2.9 and has been implemented in MATLAB.

In Chapter 3, we are interested in the entire spectrum (as opposed to just the periph-

eral spectrum) and present results related to the question of when a multiset of Jordan

blocks corresponds to the spectrum of an eventually nonnegative matrix. It is known
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that the peripheral spectrum of an eventually nonnegative matrix must satisfy the same

conditions given for the peripheral spectrum of a nonnegative matrix, so the difficulty

lies in analyzing the Jordan form of the eigenvalues with smaller modulus. We will see

that the Jordan form of an eventually nonnegative matrix satisfies many beautiful, yet

complicated properties. Beginning with the idea of split-level partitions, we will define

component level partitions of eventually nonnegative matrices and discuss combinatorial

properties of their Jordan forms in this context.

1.2 Standard Definitions and Notation

Let A ∈ Cn×n.

For any c ∈ C, c̄ represents the complex conjugate of c. For a matrix A, Ā represents

the matrix formed from A by conjugating each entry.

We will write 〈n〉 for {1, . . . , n}.
Zq is defined to be the set {1, e 2πi

q , e
4πi
q , . . . , e

2(q−1)πi
q } and is referred to as a complete

set of roots of unity or the qth roots of unity.

The multiset

σ(A) = {λ | λ is an eigenvalue of A },

where each eigenvalue is listed the number of times it occurs as a root of the characteristic

polynomial of A, is referred to as the spectrum of A.

ρ(A) = max
λ∈σ(A)

{|λ|}

is the spectral radius of A. The multiset

π(A) = {λ ∈ σ(A) | |λ| = ρ(A)}
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is referred to as the peripheral spectrum of A. We let multλ(A) denote the degree of λ

as a root of the characteristic polynomial of A, and indexλ(A) denote the degree of λ

as a root of the minimal polynomial of A. Let m = index0(A), and for each i ∈ 〈m〉,
set ηi(A) = nullity(Ai)−nullity(Ai−1). The sequence η(A) = (η1(A), η2(A), . . . , ηm(A))

is referred to as the height or Weyr characteristic of A. The height characteristic of

A − λI is referred to as the λ-height characteristic of A and is denoted by ηλ(A). If J
is a multiset of matrices, we let J be the direct sum of the matrices from J and define

the λ-height characteristic of J to be the λ-height characteristic of J.

Let η = (η1, η2, . . . , ηt) and ν = (ν1, ν2, . . . , νt) be two sequences of nonnegative

integers (append zeros if necessary to the end of the shorter sequence so that they are

of the same length). Then ν is majorized by η if
∑j

i=1 νi ≤
∑j

i=1 ηi, for all 1 ≤ j ≤ t,

and
∑t

i=1 νi =
∑t

i=1 ηi. We write ν ¹ η. We denote by ν̂ the sequence ν reordered in

decreasing order.

We write Jj(λ) to represent the j × j matrix whose diagonal elements are λ, whose

first subdiagonal elements are 1, and all other elements are zero. We will refer to such

a matrix as a Jordan block (with eigenvalue λ).

We say a collection of Jordan blocks J is self–conjugate if, whenever Jj(λ) ∈ J and

λ is not real, we have Jj(λ̄) ∈ J and the two blocks occur the same number of times.

We say that a collection of Jordan blocks J corresponds to the Jordan form of A

provided the Jordan form of A is the direct sum of the elements in J .

Let J be a collection of Jordan blocks and let J be the direct sum of the elements in

J . We define the spectrum of J by σ(J ) = σ(J), the spectral radius of J by ρ(J ) =

ρ(J), the peripheral spectrum of J by π(J ) = π(J), and the λ-height characteristic of

J by ηλ(J ) = ηλ(J). We denote the direct sum of all blocks in J by ⊕J . We let P (J )
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be the set (not multiset) {|λ| | λ ∈ σ(J )} and J ρj the multiset of Jordan blocks from

J whose eigenvalues have magnitude ρj. For λ ∈ σ(J ), we let J (λ) be the multiset of

Jordan blocks from J with eigenvalue λ. If A is a square matrix, we denote by J (A),

the multiset of Jordan blocks corresponding to the Jordan form of A.

A multiset of Jordan blocks J is said to be a Frobenius multiset if for some positive

integer h the following conditions are satisfied:

(i) there is exactly one block in J with eigenvalue ρ(J ) and this block is 1× 1,

(i) π(J ) = ρ(J )Zh, and

(ii) e
2πi
h J = J .

We note that our definition differs from that of [16] and [10] in that we do not require

ρ(J ) > 0 so we do consider {[0]} to be a Frobenius multiset.

A matrix A ∈ Rn×n is called:

positive (A À 0) if aij > 0, for all i, j ∈ 〈n〉;
semipositive (A > 0) if aij ≥ 0, for all i, j ∈ 〈n〉 and A 6= 0; and

nonnegative (A ≥ 0) if aij ≥ 0, for all i, j ∈ 〈n〉.
Let Γ = (V,E) be a (directed) graph, where V is a finite vertex set and E ⊆ V × V

is an edge set. A path from j to l in Γ is a sequence of vertices j = r1, r2, ..., rt = l, with

(ri, ri+1) ∈ E, for i = 1, ..., t − 1. A path for which the vertices are pairwise distinct

is called a simple path. The empty path will be considered to be a simple path linking

every vertex to itself.

We define the graph of A by G(A) = (V,E), where V = 〈n〉 and E = {(i, j) | aij 6= 0}.
Let Γ = (V,E) be a graph. If there is a path from a vertex j to a vertex l in Γ,

we say that j has access to l. If j has access to l and l has access to j, we say j and



6

l communicate. The communication relation is an equivalence relation, hence we may

partition V into equivalence classes, which we will refer to as the (irreducible) classes of

Γ. Note that this characterization of irreducibility requires that the 1 × 1 zero matrix

be irreducible.

Let K,L ⊆ 〈n〉. We will write AKL to represent the submatrix of A whose rows are

indexed from K and whose columns are indexed from L. If κ = (K1, K2, . . . , Kk) is an

ordered partition of 〈n〉, we write

Aκ =




AK1K1 AK1K2 . . . AK1Kk

AK2K1 AK2K2 . . . AK2Kk

...
...

...

AKkK1 AKkK2 . . . AKkKk




.

We say Aκ is block lower triangular if AKiKj
= 0 whenever i < j. We refer to the blocks

AKiKj
as subdiagonal blocks whenever i > j. Given a matrix A, it is well known that

there is an ordered partition κ = (K1, K2, . . . , Kk) of 〈n〉 so that each Ki corresponds

to a class of G(A) and Aκ is block lower triangular. We say that Aκ is the Frobenius

normal form of A. A class Kj is said to be singular if AKjKj
is singular, and nonsingular

otherwise. If A is an eventually nonnegative matrix, a class Kj of A is said to be basic

if ρ(AKjKj
) = ρ(A), and nonbasic otherwise.

We define the reduced graph of A by R(A) = (V, E) where V = { K | K is a class of

A }, and E = { (K, L) | there is edge from a vertex j ∈ K to a vertex l ∈ L in G(A) }.
The singular length of a simple path in R(A) is the sum of the indexes of zero of each

of the singular vertices it contains. The level of a vertex K is the maximum singular

length over all the simple paths in R(A) which terminate at K.

Let νi(A) be the number of singular vertices with level i in R(A) and let m be the
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largest number for which νi(A) 6= 0. Then ν(A) = (ν1(A), . . . , νm(A)) is referred to as

the level characteristic of A.

Let κ = (K1, . . . , Kk) correspond to the Frobenius normal form of an eventually

nonnegative matrix A. Let ρ = ρ(A) and m =indexρ(A). For j ∈ 〈m + 1〉, set

Mj = ∪{ Kl | the level of Kl is m + 1− j in R(ρI − A) }.

Then µ = (M1,M2, . . . , Mm,Mm+1) is referred to as the level partition of A with respect

to the eigenvalue ρ(A), Mq is referred to as a level set, and Aµ is referred to as a level

form of A. We note that our subscripting matches that of [6], but is different from [11].

Our definition also differs from that of [11] in that it includes the nonsingular classes.

In addition, we see that for any j ∈ 〈m〉, Mj can be further partitioned into two (not

necessarily nonempty) subsets. We set

L2j = ∪{ Kl | the level of Kl is m + 1− j in R(ρI − A) and ρ(AKlKl
) = ρ}

and

L2j−1 = Mj \ L2j.

Notice then that:

(i) ρ(AL2j−1L2j−1
) < ρ.

(ii) AL2jL2j
is the direct sum of blocks whose spectral radius is ρ.

(iii) AL2j−1L2j
= 0.

We set L2m+1 = Mm+1 and refer to Λ = (L1, L2, . . . , L2m+1) as the split–level partition

of A with respect to the eigenvalue ρ(A). We will refer to Lq as a split–level set. Notice

that Aµ and AΛ are block lower triangular. We say that AΛ is in split–level form. We

refer to each AL2jL2j
as a lower level and to each AL2j−1L2j−1

as an upper level.
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1.3 Historical Results

Much of the information presented in this thesis finds its roots with the Perron-Frobenius

theorem(s), stated below ([7] 8.4.4 and 8.4.6, [1] Theorem 2.20).

Theorem 1.1 [Perron–Frobenius Theorem] Suppose A ≥ 0 is irreducible. Then

(a) ρ(A) is a simple eigenvalue of A,

(b) there exists a positive integer h such that π(A) = ρ(A)Zh,

(c) σ(A) = e
2πi
h σ(A),

(d) if h > 1, then there exists a permutation matrix P such that

PAP T =




0 A12 0 . . . 0

0 0 A23 . . . 0

...
...

...
. . .

...

0 0 0 · · · Ah−1h

Ah1 0 0 · · · 0




,

where the zero blocks along the diagonal are square, and

(e) there exists a positive vector x such that Ax = ρ(A)x.

Remark 1.2 Recall that π(A) is a multiset, so part (b) above implies that each periph-

eral eigenvalue is simple.

Remark 1.3 If A ≥ 0 is reducible, then the peripheral spectrum of A must be a union

of complete sets of roots of unity multiplied by ρ(A).
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In 1975, Uriel Rothblum [12] showed that there exists a basis of semipositive vectors

for the generalized eigenspace corresponding to the spectral radius of reducible non-

negative matrices. We should note that Richman and Schneider proved similar results

independently in [11]. Rothblum’s result given in Theorem 1.4 below takes advantage

of the combinatorial structure of a nonnegative matrix. Much can be learned by inves-

tigating the reduced graph of a matrix, especially when we take into account the Perron

eigenvalue associated with each vertex in the reduced graph. We will use subscripts of

vectors to represent coordinates and superscrits for enumeration. Rothblum’s theorem

is as follows:

Theorem 1.4 ([12] Theorem 3.1) Let A ≥ 0 be square with ρ = ρ(A), ν = indexρ(A),

and m basic classes. Let Â = A− ρI. Then

(a) The algebraic eigenspace of A has a collection x1, . . . , xm of semipositive vectors such

that xj
i À 0 if and only if i has access to the jth basic class of A, j = 1, . . . , m,

and any such collection is a basis for the algebraic eigenspace of A.

(b) The index of A is the length of its longest path.

(c) There is a generalized eigenvector x of A having the largest set of positive coordinates

among all generalized eigenvectors, and for n = 0 . . . , ν−1, Ânx > 0. Furthermore,

(Ânx)i À 0 if and only if i has access to some basic class in at least n + 1 steps.

We offer an example to illustrate the previous theorem in addition to some of the

definitions given in Section 1.2.
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Example 1.5 Let

A =




4 0 0 0 0 0

5 1 0 0 0 0

0 2 2 0 0 0

1 1 0 4 0 0

1 0 0 1 1 2

2 0 0 0 3 2




.

Notice that A is in Frobenius Normal Form and has 5 classes, 3 basic classes, and

ρ(A) = 4. Consider the reduced graph of A :

3

2

5

1

4

Figure 1: Reduced Graph of A

where circles denote basic classes and squares nonbasic classes. From the graph, we

easily determine the level of each class, summarized below:
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The Classes of A and Their Levels

Class Level ρ(AKi
)

K1 = {1} 3 4 (Basic)

K2 = {2} 2 1 (Nonbasic)

K3 = {3} 0 2 (Nonbasic)

K4 = {4} 2 4 (Basic)

K5 = {5, 6} 1 4 (Basic)

Then from Theorem 1.4, we have that the dimension of the generalized eigenspace

corresponding to ρ(A) = 4 is 3 since A has 3 basic classes (note that this is also the

size of the largest Jordan block in the Jordan form of A with eigenvalue ρ(A) = 4).

Moreover, if we can find generalized eigenvectors of the form

x1 =




∗
∗
∗
∗
∗
∗




, x2 =




0

0

0

∗
∗
∗




, x3 =




0

0

0

0

∗
∗




where ∗ denotes a positive entry, then the set {x1, x2, x3} will be a basis for the algebraic

eigenspace of A. We may obtain an eigenvector of A with zero-nonzero pattern given by

x3 by attaching the unique (up to scalar multiplication) positive eigenvector of AK5 to
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the zero vector of length 4. We find that

x1 =




1

5/3

5/3

1

52/75

1




, x2 =




0

0

0

5

3

3




, x3 =




0

0

0

0

2

3




are of the prescribed form and satisfy x3 ∈ null(A − 4I), x2 ∈ null[(A − 4I)2], x1 ∈
null[(A− 4I)3] and so form a basis for the algebraic eigenspace of A. Then we also have

that x1 is the generalized eigenvector having the most positive entries of all generalized

eigenvectors of A.

Also, notice that, if we let κ = (K1, K2 ∪K4, K5, K3), then

Aκ =




4 0 0 0 0 0

5 1 0 0 0 0

1 1 4 0 0 0

1 0 1 1 2 0

2 0 0 3 2 0

0 2 0 0 0 2




is in level form.

We see from the previous theorem and example that the reduced graph of a matrix

can tell us a great deal about the spectral properties of that matrix. Richman and

Schneider investigated the relationship between the reduced graph, height characteristic

and level characteristic of M-matrices in [11]. Corollary 4.5 in [11] states that the height

characteristic majorizes the level characteristic:
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Corollary 1.6 [11, Corollary 4.5] Let B be an M-matrix with height characteristic

(ω1, ω2, . . . , ωm) and level characteristic (λ1, λ2, . . . , λm). Then

(a) ω1 + . . . + ωm = s = λ1 + . . . + λm,

(b) ω1 + . . . + ωp ≤ s−m + p for p = 1 . . . m,

(c) ω1 + . . . + ωp ≥ λ1 + . . . + λp for p = 1 . . . m.

Recall that an M-matrix is a matrix of the form B = rI − A where A ≥ 0 and r ≥
ρ(A). Then index0(B) = indexρ(A)(A) where B = ρ(A)I − A. So if A is a nonnegative

matrix, the height characteristic of A− ρ(A)I majorizes the level characteristic of A−
ρ(A)I. We will extend this idea to the other peripheral eigenvalues in Chapter 2.

Example 1.7 Let

A =




3 0 0 0 0 0

1 3 0 0 0 0

0 0 2 0 0 0

1 1 1 1 0 0

1 0 0 0 3 0

1 0 0 1 1 3




.

Notice that ρ(A) = 3. Consider the reduced graph of A below (again with circles

denoting basic classes and squares nonbasic). Note that this is the same as the reduced

graph of A− 3I (where circles denote singular classes and squares nonsingular).

From Theorem 1.4 we know that the dimension of the algebraic eigenspace is 4 (since

there are 4 basic classes) and that the length of the level and height characteristics will

be 3 (length of the longest path). We see from the graph that the level characteristic of
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4 6

1

5

3

2

Figure 2: Reduced Graph of A

A− 3I is (1, 2, 1) since there is one basic vertex with level one, two with level two, and

one with level three.

It can be verified that rank(A − 3I) = 4, rank((A − 3I)2) = 3, and rank((A −
3I)3) = 2. Hence, the height characteristic for A − 3I is (2, 1, 1) and we see that the

level characteristic is indeed majorized by the height characteristic.

Notice that A has a positive generalized eigenvector since every class of A has access

to some basic class of A.
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Chapter 2

The Peripheral Jordan Form of a Nonnegative

Matrix

In this chapter, we investigate the Jordan form corresponding to the peripheral spectrum

of a nonnegative matrix. As mentioned in Section 1, it is known that if ν and η are

two sequences of nonnegative integers, then there exists a nonnegative matrix A with

height characteristic η, corresponding to the spectral radius, and level characteristic ν,

corresponding to the spectral radius (with entries rewritten in decreasing order), if and

only if ν is majorized by η ([6] Theorem 3.3 and [11] Corollary 4.5). In this chapter, we

extend this property to all eigenvalues in the peripheral spectrum and offer necessary

and sufficient conditions, based on the level and hight characteristics, for a multiset J
of Jordan blocks to correspond to the peripheral spectrum of a nonnegative matrix.

2.1 Necessary and Sufficient Conditions on J

We begin with a necessary and sufficient condition offered by McDonald in [9], called

the extended Tam-Schneider condition.

Definition 2.1 Let J be a self–conjugate collection of Jordan blocks all of whose eigen-

values have modulus 1. Let m be the size of the largest Jordan block in J . We say J
satisfies the extended Tam–Schneider condition provided that there is a sequence of
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multisets J1, . . . ,Jm such that

(i) Jm(1) ∈ J and Jm = J .

(ii) J1 is a collection of 1×1 Jordan blocks which can be partitioned into complete sets

of roots of unity.

(iii) For any 2 ≤ j ≤ m, if we enumerate the blocks in Jj as J (1), J (2), . . . J (r) and create

the sets

Sj = {(t, λ)|λ is an eigenvalue of J (t) ∈ Jj, where J (t) is j × j},

and

Tj = {(t, λ)|λ is an eigenvalue of J (t) ∈ Jj, where J (t) is p× p with p < j},

then there is a set Uj ⊆ Tj so that

(a) Jj−1 can be formed from Jj by removing the first row and column from each

Jordan block in Jj labelled with an element appearing as a first coordinate in

Sj ∪Uj and leaving all other Jordan blocks the same. Note that if we remove

the first row and column of a 1 × 1 block, then we simply remove the block

itself.

(b) The second coordinates of Sj ∪ Uj can be partitioned into complete sets of

roots of unity.

McDonald showed (in [9], Theorem 3.5) that a self–conjugate multiset J of Jordan

blocks (all of whose eigenvalues have modulus 1) corresponds to the peripheral spectrum

of a nonnegative matrix if and only if J satisfies the extended Tam-Schneider condition.
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We seek to offer conditions equivalent to the extended Tam–Schneider condition

which incorporate the idea of level sets and which lead nicely to an algorithm that

determines when a multiset of Jordan blocks corresponds to the peripheral spectrum of

a nonnegative matrix. What follows in the rest of this section offers just that, with the

main result given in Theorem 2.9.

It is well known that the peripheral spectrum of a nonnegative matrix A is a union of

complete sets of roots of unity (multiplied by ρ(A)). Hence, if a multiset J , all of whose

eigenvalues have modulus 1, corresponds to the peripheral spectrum of a nonnegative

matrix, then σ(J ) must partition into complete sets of roots of unity. This partition

can be determined based on the following lemma and its proof.

Lemma 2.2 If a multiset S can be partitioned into complete sets of roots of unity, then

the partition is unique.

Proof: Note that the number of times 1 is listed in S determines the number of sets in

the partition of S into complete sets of roots of unity. We induct on this number. If S

partitions into one complete set of roots of unity, the result holds. Suppose S partitions

into t sets of roots of unity. Suppose each element of S is written in the form e
2πik

n

where k
n

< 1 and gcd(k, n) = 1. Let α = max{ k
n

: e
2πik

n ∈ S}. Note that α = m−1
m

for

some m ∈ N. Then Zm must be a set in the partition of S into complete sets of roots

of unity. Otherwise there is an integer p > 1 such that Zpm is a set in the partition so

e
2πi(pm−1)

pm ∈ S, but pm−1
pm

> m−1
m

, a contradiction. Then S \ Zm partitions into complete

sets of roots of unity and by the inductive hypothesis, this partition is unique. Hence,

the partition of S into complete sets of roots of unity is unique. ¤
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Notice that the above proof suggests an algorithm for determining whether or not a

set S partitions into complete sets of roots of unity, and if so, determining the sets in

the partition. This is discussed further in the following section where an algorithm for

determining whether or not a multiset of Jordan blocks correspondes to the peripheral

spectrum of a nonnegative matrix is outlined. The relationship between the height

characteristic and the level characteristic of a nonnegative matrix with respect to the

Perron eigenvalue has played an important role in the study of reducible nonnegative

matrices. Here, we illustrate how these ideas can be generalized to the entire peripheral

spectrum.

Definition 2.3 Suppose A ≥ 0. Let µ = (M1,M2, . . . , Mm, Mm+1) be the level partition

of A with respect to ρ = ρ(A). For each λ ∈ π(A), let νi(λ) be the number of times λ

occurs as an eigenvalue of AMiMi
. Then the λ−level characteristic of A (with respect to

ρ) is the sequence νλ,ρ(A) = (ν1(λ), . . . , νm(λ)) (note that νm+1(λ) = 0 so it need not be

included).

The corollary below follows easily from Lemma 3.2 of [9], which we restate here.

Lemma 2.4 [[9] Lemma 3.2] Let A be a nonnegative matrix. Set m = indexρ(A)(A) and

let (L1, L2, . . . , L2m+1) be the split–level partition of A with respect to ρ(A). Set

Pj =
2m+1⋃

q=2(m+1−j)

Lq

and let λ ∈ π(A). Then for j = 2, . . . ,m, the Jordan form of λ for APjPj
can be produced

from the Jordan form of λ for APj−1Pj−1
by increasing the size of a select number of Jordan

blocks by one, and adding copies of J1(λ).
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Corollary 2.5 Let A ≥ 0 with ρ(A) = ρ. Then, for each λ ∈ π(A), ν̂λ,ρ(A) ¹ ηλ(A).

As stated in the above definition and corollary, the peripheral eigenvalues of a non-

negative matrix A must be distributed among the levels of A such that the majorization

condition in Corollary 2.5 is satisfied. We are interested in the question of whether

or not there exists a nonnegative matrix with peripheral spectrum corresponding to a

given multiset J of Jordan blocks. Corollary 2.5 asserts that the eigenvalues of J must

partition into level sets satisfying the majorization criterion. The definition below will

allow us to gather information about a partition of a multiset of eigenvalues.

Definition 2.6 Suppose L1, . . . , Lk are multisets of eigenvalues. For each λ ∈ ⋃k
i=1 Li,

let νλ(Li) be the number of times λ is listed in Li. Then νλ(L1, L2, . . . , Lk) is defined to

be the sequence (νλ(L1), νλ(L2), . . . , νλ(Lk)).

The following lemmas will be used in the proof of the main theorem.

Lemma 2.7 Let α and β be decreasing sequences of length k satisfying α ¹ β. Then

αj ≥ βk for j = 1 . . . k.

Proof: Σk
i=1αi = Σk

i=1βi and Σk−1
i=1 αi ≤ Σk−1

i=1 βi implies αj ≥ αk ≥ βk. ¤

Lemma 2.8 Suppose α and β are decreasing sequences of length k satisfying α ¹ β.

Let

α̃(j) = (α1, . . . , αj−1, αj+1, . . . , αk)

and

β̃(j) = (β̃1, . . . , β̃k−1)
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where

β̃i = βi −max{0, αj − Σk
t=i+1βt}.

Then α̃(j) ¹ β̃(j).

Proof: If s < j, then αs = [α̃(j)]s and βs = β̃s. If s ≥ j, then
∑s

i=1[α̃(j)]i = −αj +

∑s+1
i=1 αi ≤ −αj+

∑s+1
i=1 βi ≤

∑s
i=1 β̃i. Also, Σk−1

i=1 [α̃(j)]i = −αj+Σk
i=1αi = −αj+Σk

i=1βi =

Σk−1
i=1 β̃i. ¤

We are now ready to state and prove our main theorem. Note that we state our

theorem for the case where ρ(A) = 1. If ρ(A) 6= 1, consider the matrix 1
ρ(A)

A.

Theorem 2.9 Let J be a self conjugate multiset of Jordan blocks all of whose eigenval-

ues have modulus 1. Let m be the size of the largest Jordan block in J with eigenvalue

1. Then the following are equivalent.

(i) J corresponds to the peripheral Jordan form of a nonnegative matrix.

(ii) σ(J ) = L1

⋃
L2

⋃ · · ·⋃ Lm where
⋃

represents a multiset union and

(a) Each Li partitions into complete sets of roots of unity and

(b) For each λ ∈ σ(J ), ν̂λ(L1, . . . , Lm) ¹ ηλ(J ).

Proof: (i) ⇒ (ii) : Suppose J corresponds to the peripheral Jordan form of a non-

negative matrix A. Let (M1, . . . , Mm+1) be the level partition of A with respect to

1. Let Li = π(AMiMi
) for i = 1 . . .m. Note that

⋃m
i=1 Li = π(A) = σ(J ). By [9]

Lemma 3.1 (iii), each Li is a union of complete sets of roots of unity. By Corollary 2.5,

ν̂λ,ρ(A) = ν̂λ(L1, . . . , Lm) ¹ ηλ(A) = ηλ(J ).
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(ii) ⇒ (i) : Set Jm = J and let sets Sm and Tm be defined as in Definition 2.1. For

each λ ∈ σ(J ), set ηλ = ηλ(Jm). Notice that (ν̂λ)j ≤ (ν̂λ)1 ≤ (ηλ)1 for all j ∈ 〈m〉, so

the number of λ in Lm is less than or equal to the number of Jordan blocks in J with

eigenvalue λ. Using Lemma 2.7, (ν̂λ)j ≥ (ηλ)m, so the number of λ in Lm is at least

the number of Jordan blocks of size m in J . Hence, Um ⊂ Tm may be chosen so that

the second coordinates of the elements of Sm

⋃
Um are the elements of Lm. If there is a

choice, we choose the largest Jordan block(s) to be represented in Um. Create Jm−1 by

removing one row and one column from each Jordan block represented in Sm

⋃
Um and

leaving all others unchanged.

By Lemma 2.8, for each λ ∈ σ(J ), ν̂λ(L1, . . . , Lm−1) ¹ ηλ(Jm−1) so Um−1 ⊂ Tm−1

may be chosen so that the second coordinates of the elements of Sm−1

⋃
Um−1 are the

elements of Lm−1. We continue in this manner, noting that for each λ ∈ σ(J ) and

j = 1 . . . (m − 1), ν̂λ(L1, . . . , Lm−j) ¹ ηλ(Jm−j) provided that we remove rows and

columns from the largest remaining Jordan block(s) when there is a choice.

Then J satisfies the extended Tam-Schneider condition so by [9] Theorem 3.5, J
corresponds to the peripheral Jordan form of a nonnegative matrix. ¤

Remark 2.10 Part (ii) (b) of Theorem 2.9 is equivalent to saying that no two eigen-

values in an Li come from the same Jordan block in J .

Remark 2.11 Suppose J satisfies the extended Tam-Schneider condition. Then there
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exists a nonnegative matrix

A =




A11 0 . . . 0

A21 A22 . . . 0

...
...

...

Am1 Am2 . . . Amm




in level form with Jordan form corresponding to J . Moreover, from the proof of Theorem

3.5 in [9], we may construct A so that each subdiagonal block Aij, i > j, is positive and

has arbitrarily large entries.

The previous remark will become useful when constructing (eventually) nonnegative

matrices in Chapter 3.

Observation 2.12 Suppose J satisfies the extended Tam-Schneider condition. Then,

as shown in the proof of [9] Theorem 3.5, a nonnegative matrix A in level form can

be constructed such that π(AMqMq) consists of the second coordinates of Si

⋃
Ui for

i ∈ 〈m〉 where µ = (M1, . . . ,Mm+1) is the level partition of A with respect to ρ(A) and

q = m+1− i. From the proof of Theorem 2.9, Li can be chosen to consist of the second

coordinates of Si

⋃
Ui. Hence, π(AMqMq) = Li where q = m + 1− i for i ∈ 〈m〉.

The above observation leads to the following corollary.

Corollary 2.13 Let

A =




A11 0 . . . 0

A21 A22 . . . 0

...
...

...

Am1 Am2 . . . Amm



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be a nonnegative matrix in level form, all of whose eigenvalues have modulus 1. Then,

for any permutation τ of 〈m〉, there exists a B ≥ 0 similar to A such that the level form

of B is

B =




B11 0 . . . 0

B21 B22 . . . 0

...
...

...

Bm1 Bm2 . . . Bmm




.

and σ(Bii) = σ(Aτ(i)τ(i)) for i = 1, . . . ,m.

Proof: Let J be the collection of Jordan blocks corresponding to the Jordan form of

A. Let Li = σ(Aqq) where q = m + 1 − i. Then by [9][Lemma 3.1, Lemma 3.2] we

have m sets L1, L2, . . . , Lm satisfying the conditions in Theorem 2.9 (ii). But the sets

Lτ(1), Lτ(2), . . . , Lτ(m) also satisfy the conditions in Theorem 2.9 (ii), so we may construct

a nonnegative matrix B with Jordan form corresponding to J and σ(Bqq) = π(Bqq) =

Lτ(i) = σ(Aτ(q)τ(q)) where q = m + 1− i, i = 1, . . . , m. Since A and B both have Jordan

form corresponding to J , A and B are similar. ¤

We will refer to the condition stated in Theorem 2.9 (ii)(b) as the majorization

condition. Suppose J is a multiset of Jordan blocks (all of whose eigenvalues have

modulus 1) and m is the size of the largest Jordan block in J . Note that it is possible

to find a partition L1, . . . , Lm of σ(J ) such that the majorization condition is satisfied.

As the next example illustrates, it may also be possible to partition the eigenvalues of

J into m sets, each of which is a union of complete sets of roots of unity. However, it

may not be possible to achieve both requirements with the same partition of σ(J ), and

hence J does not correspond to the peripheral Jordan form of a nonnegative matrix.
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Example 2.14 Consider the following multiset of Jordan blocks whose spectrum par-

titions into Z6 ∪ Z10 ∪ Z15.

J = {J2(1), J2(e
2πi
2 ), J2(e

2πi
3 ), J2(e

4πi
3 ), J2(e

2πi
5 ), J2(e

8πi
5 ), J1(1), J1(e

2πi
6 ), J1(e

10πi
6 ),

J1(e
2πi
10 ), J1(e

6πi
10 ), J1(e

8πi
10 ), J1(e

12πi
10 ), J1(e

14πi
10 ), J1(e

18πi
10 ), J1(e

2πi
15 ), J1(e

4πi
15 ),

J1(e
8πi
15 ), J1(e

12πi
15 ), J1(e

14πi
15 ), J1(e

16πi
15 ), J1(e

18πi
15 ), J1(e

22πi
15 ), J1(e

26πi
15 ), J1(e

28πi
15 )}.

It was shown in [9] Example 3.7 that J does not correspond to the peripheral spectrum

of a nonnegative matrix. We see that the eigenvalues partition into complete sets of

roots of unity, but these sets of roots cannot be partitioned into m = 2 levels so that the

majorization condition is satisfied. Note that the partitions of σ(J ) into 2 sets, each of

which is a union of complete sets of roots of unity are as follows:

(a) L1 = Z15, L2 = Z10

⋃
Z6 or

(b) L1 = Z10, L2 = Z15

⋃
Z6 or

(c) L1 = Z6, L2 = Z15

⋃
Z10.

Then ηλ(J ) = (1, 1) does not majorize ν̂λ(L1, L2) = (2, 0) for λ = e
2πi
2 , e

2πi
3 , and e

2πi
5 ,

respectively.

Note that it is possible to partition σ(J ) into 2 sets, L1 and L2 such that, for

each λ ∈ σ(J ), ν̂λ(L1, L2) ¹ ηλ. For example, consider L1 = Z15

⋃{e 2πi
2 } and L2 =

Z10

⋃
Z6 \ {e 2πi

2 }. However, each Li is not a union of complete sets of roots of unity.
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2.2 An Algorithmic Approach

In this section, we present a recursive branch and bound algorithm based on Theorem

2.9 that will determine whether or not a multiset of eigenvalues J corresponds to the

peripheral Jordan form of a nonnegative matrix. If J does correspond to the peripheral

Jordan form of a nonnegative matrix, two vectors, R and N are returned indicating that

a partition of σ(J ) into sets L1, . . . , Lm can be formed by placing ZRi
in LNi

. We will

refer to N as the assignment vector (as each entry of N assigns a set of roots to one of

the sets L1, . . . , Lm.) Pseudocode for the main function is as follows:

LEVEL PERIPH(J )

R ←PARTITION(J )

N ← [1],

N ← PLACE ROOTS(R, N,J )

return R, N

The function PARTITION determines whether or not σ(J ) can be partitioned into

complete sets of roots of unity. If so, the vector R is returned. The function works

recursively as indicated in the proof of Lemma 2.2:

PARTITION(J )

while σ(J ) 6= ∅
n ← max{n : e

2πik
n ∈ σ(J )}

if Zn ⊂ σ(J )
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σ(J ) ← σ(J ) \ Zn

R ← [R, n]

else

Eigenvalues do not partition into complete sets of roots of unity.

J does not correspond to the peripheral spectrum of a nonnegative matrix.

return

return R

The function PLACE ROOTS is a recursive function that determines whether or not

the sets of roots of unity specified in R can be placed in m sets satisfying the majorization

condition. If so, the vector N is returned. We begin with N = [N1] = [1] indicating that

we will place ZR1 in L1. We then place ZR2 in either L1 (if the majorization condition

can still be satisfied) or L2 (otherwise). We continue in this manner. After ZRj
has

been placed in some Li, we place ZRj+1
in Lk where k is the smallest integer in 〈m〉

such that
∑j

i=1[ν̂λ(L1, . . . , Lm)]i ≤
∑j

i=1[ηλ]i for j ∈ 〈m〉. If no such k exists, then we

prune the current branch of the search tree and proceed to the next vertex. Note that

∑m
i=1[ν̂λ(L1, . . . , Lm)]i =

∑m
i=1[ηλ]i once all sets of roots of unity have been placed. A

sample search tree for the case when σ(J ) = ZR1

⋃
ZR2

⋃
ZR3

⋃
ZR4 and m = 3 is given

in Figure 3.

Since the numbering of the sets L1, . . . , Lm is arbitrary, placement of ZR1 in any other

Li need not be considered. Moreover, we only consider N satisfying Ni ≤ 1+maxj<i Nj

for i ∈ 〈m〉 since we do not assign a set of roots to Li if none have yet been assigned to

Li−1. Also, at least one set of roots must be assigned to each Li, otherwise the majoriza-

tion condition will be violated for λ = 1. So if max(N) < m−length(R)+length(N),
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1 1 2 3 1 2 1 3 1 2 2 3 1 2 3 3

1 2 3 2

1 2 3 1

1 2 31 2 21 2 11 1 2

1 1 1 2

1

1 3

1 2 2 2

1 2 2 1

1 2 1 2

1 2 1 1

1 1 3

1 1 3 1

1 1 3 2

1 1 3 3

1 1 2 2

1 1 2 1

1 1 1

1 1 1 1

1 1 1 2

1 1 1 3

1 3 1 1 3 2 1 3 3

1 3 1 1

1 3 1 2

1 3 1 3

1 3 2 1

1 3 2 2

1 3 2 3

1 3 3 1

1 3 3 2

1 3 3 3

Figure 3: Search tree for m = 3 and σ(J ) = ZR1

⋃
ZR2

⋃
ZR3

⋃
ZR4

then N is not a valid assignment vector so we move to the next assignment vector.

This allows us to prune many branches of the search tree quickly. For example, the

only vertices remaining after pruning the tree in Figure 3 are shown in Figure 4. The

pseudocode for PLACE ROOTS is given below.

1 1 2 3 1 2 1 3 1 2 2 3

1 2 3 3

1 2 3 2

1 2 3 1

1 2 31 2 21 2 11 1 2

1 1 1 2

1

Figure 4: Pruned search tree for m = 3 and σ(J ) = ZR1

⋃
ZR2

⋃
ZR3

⋃
ZR4

PLACE ROOTS(R,N,J )

if N1 = 2

No level assignments satisfy the majorization condition.

J does not correspond to the peripheral spectrum of a nonnegative matrix.

return
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k ←length(N)

if Nk > 1 + maxj<k Nj or maxj≤k Nj < m−length(R)+length(N)

N ←BYPASS CHILDREN(N)

PLACE ROOTS(R, N,J )

if majorization condition can be/is satisfied

if length(N) =length(R)

return R, N

else N ← NEXT VERTEX(N)

else N ←BYPASS CHILDREN(N)

PLACE ROOTS(R,N,J )

NEXT VERTEX is a function which proceeds to the next vertex in the pre-ordered

search tree. BYPASS CHILDREN is used when the current N is not a valid assignment

vector (so no assignment vector beginning with the entries of N will be valid). In this

case, we move to the next vertex in the search tree which does not begin with the current

assignment vector N. Once all of the vertices in the search tree have been considered or

pruned, both NEXT VERTEX and BYPASS CHILDREN return the assignment vector

N = [2] which indicates that J does not correspond to the peripheral Jordan form of

a nonnegative matrix. Both functions are modeled after the pseudocode given in [8],

pages 107-108.

When a multiset J does correspond to the peripheral spectrum of a nonnegative

matrix, the algorithm J2NN computes a nonnegative matrix with the prescribed Jordan

form. J2NN applies a series of similarity transformations to the direct sum of blocks in

J to arrive at a nonnegative matrix.
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The MATLAB codes for level periph and J2NN are given in Appendix A and Ap-

pendix B, respectively.



30

Chapter 3

The Jordan Form of an Eventually Nonnegative

Matrix

We now turn our focus to the entire (as opposed to just the peripheral) Jordan form

of an eventually nonnegative matrix. It is known that the peripheral Jordan form of

an eventually nonnegative matrix must satisfy the same conditions as the peripheral

Jordan form of a nonnegative matrix (the conditions given in Theorem 2.9). We begin

our discussion by investigating the Jordan forms and Frobenius normal forms of powers

of an eventually nonnegative matrix. Then, we look at the structure of an eventually

nonnegative matrix in terms of split-level sets and generalize split-level sets to define

the component level sets of an eventually nonnegative matrix. Along the way, we give

multiple sufficient conditions, escalating in complexity, for a multiset of Jordan blocks

to correspond to the Jordan form of an (eventually) nonnegative matrix. Necessary

and sufficient conditions on the Jordan form of an eventually nonnegative matrix are

given in Section 3.4. Lastly, with a goal of finding an algorithm that will determine

whether or not a given multiset, J , of Jordan blocks corresponds to the spectrum of

an eventually nonnegative matrix in mind, we offer examples which discuss some of the

issues/difficulties that arise in writing such an algorithm.
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3.1 Jordan Forms and Frobenius Normal Forms of

Powers of A

In this section, we compare the Jordan form of a matrix, A, with the Jordan forms of the

powers of A. We also investigate the relationship between the Frobenius normal forms

of A and the Frobenius normal forms of powers of A.

First, suppose λ 6= 0 and n ∈ N. Consider the Jordan block Jn(λ). Notice that

[Jn(λ)]k is the matrix with all diagonal entries equal to λk and jth subdiagonal entries

equal to
(

k
k−j

)
λk−j if j ≤ k and 0 otherwise. Hence, the Jordan form of [Jn(λ)]k is Jn(λk),

so in some sense the Jordan form is preserved as we power up the matrix; the Jordan

block sizes do not change and the eigenvalues are just powers of the original eigenvalues.

In other words, for a matrix A and λ 6= 0, Jn(λ) ∈ J (A) implies Jn(λk) ∈ J (Ak), and

the blocks occur the same number of times. Note that it is possible for λ, µ ∈ σ(A) with

λ 6= µ, but λk = µk. For example, let λ = 1, µ = −1, and k be an even natural number.

Then λk = µk, but λ 6= µ.

However, we do not have this property (of preservation of Jordan block sizes) for the

Jordan blocks with eigenvalue zero. Notice that [Jn(0)]k is just the n × n zero matrix

when k ≥ n. So the Jordan form for the eigenvalue zero is not preserved when we power

up the matrix unless all zero eigenvalue blocks were originally 1× 1.

Carnochan Naqvi and McDonald discuss the structure of eventually nonnegative

matrices having index0(A) ≤ 1 in [2]. In particular, it is shown that if A is an eventually

nonnegative matrix with index0(A) ≤ 1, then a large prime number g can be chosen so

that if κ = (K1, K2, . . . , Kk) is the ordered partition such that Ag
κ is in Frobenius normal

form, then Aκ is also in Frobenius normal form (see [2], Theorem 3.4). Elhashash and
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Szyld give the set NA of natural numbers for which the above property and those listed

below hold in [4].

• Ak ≥ 0 for all k ≥ g and

• for any λ, µ ∈ σ(A), λg = µg if and only if λ = µ.

In keeping with the convention used by Carnochan Naqvi and McDonald in [2], we will

simply observe that, if A is an eventually nonnegative matrix, then there is a large prime

g for which the above properties hold. We encourage the interested reader to see [4] for

a complete characterization of all of the values of g for which the above properties hold.

Notice that a consequence of this is that we may obtain the Jordan form for all nonzero

eigenvalues of A from the Jordan form of Ag.

The properties discussed thus far in this section can be applied to eventually non-

negative matrices for which index0(A) > 1 by considering the following decomposition

theorem given by Zaslavsky and Tam.

Theorem 3.1 ([16], Theorem 3.6) Let A be an n× n complex matrix.

(a) The matrix A can be expressed uniquely in the form B + C, where index0(B) ≤ 1

and C is nilpotent such that BC = CB = 0.

(b) With B, C as given in (a), the collection of nonsingular Jordan blocks in J (A) is

the same as the collection of nonsingular Jordan blocks in J (B), and the collection

of singular Jordan blocks in J (A) can be obtained from J (C) by removing from

it r J1(0)’s where r =rank(B).

(c) With B as given in (a), A is eventually nonnegative if and only if B is eventually

nonnegative.



33

Remark 3.2 Notice that part (c) in the previous theorem follows from the observation

that Ak = Bk for k ≥ index0(A).

We end this section by offering the following example to illustrate some of the proper-

ties discussed thus far and to make further observations corresponding to the peripheral

Jordan form of an eventually nonnegative matrix as compared to the peripheral Jordan

form of a nonnegative matrix with respect to the structure of the matrix. We note that

the matrices used in this example were presented in [16].

Example 3.3 Let A = B + C where

B =




1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1




and C =




1 −1 −1 1

−1 1 1 −1

1 −1 −1 1

−1 1 1 −1




.

First, we verify that the conditions in Theorem 3.1 are met. The reader may verify that

BC = CB = 0. The Jordan forms corresponding to A, B, and C are given by:

• J (A) = {J1(2), J1(2), J2(0)} (so index0(A) = 2),

• J (B) = {J1(2), J1(2), J1(0), J1(0)} (so index0(B) = 1), and

• J (C) = {J2(0), J1(0), J1(0)} (so index0(C) = 2).

Notice that J (A) can indeed be obtained from J (B) and J (C) in a manner de-

scribed in Theorem 3.1 (b). Also notice that B is (eventually) nonnegative and hence

A is eventually nonnegative since Ak = Bk for k ≥ 2 = index0(A). Also notice that A

is irreducible, but ρ(A) = 2 is a repeated eigenvalue of A. This fact illustrates a differ-

ence in the combinatorial structure of nonnegative as opposed to eventually nonnegative
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matrices as the spectral radius cannot be a repeated eigenvalue of an irreducible non-

negative matrix. Notice, however, that for k ≥ 2, Ak is reducible. It is essentially the

contribution of the zero eigenvalue blocks that result in A being irreducible, and once

we power up the matrix enough so that the nilpotent part is zero (again, we just need

to take a power larger than index0(A)), we obtain a reducible matrix.

3.2 Component Level Sets

The idea of level sets was first introduced by Richman and Schneider in [11]. Level

sets have since been used by many authors. McDonald defines split-level sets in [9].

We extend this idea to define the component level sets for an eventually nonnegative

matrix. We will then use these component level sets to discuss combinatorial properties

of eventually nonnegative matrices. We first offer an example to motivate the definition.

Example 3.4 Let

A =




A11 0 0 0 0 0

A21 A22 0 0 0 0

0 0 A33 0 0 0

A41 A42 A43 A44 0 0

0 A52 0 A54 A55 0

0 0 0 0 A65 A66




be a nonnegative matrix in Frobenius Normal form. Suppose ρ(A55) = ρ(A66) = ρ(A) =

ρ1, ρ(A11) = ρ(A44) = ρ2, and ρ(A22) = ρ(A33) = ρ3 where ρ1 > ρ2 > ρ3. The reduced

graph of A is then
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Figure 5: The reduced graph of A from which we determine the split-level partition of A

where circles denote basic classes and squares nonbasic. We see that the split-level

partition of A is given by

A =




A11 0 0 0 0 0

A21 A22 0 0 0 0

0 0 A33 0 0 0

A41 A42 A43 A44 0 0

0 A52 0 A54 A55 0

0 0 0 0 A65 A66




(3.1)

Recall that ρ(A) = ρ(A55) = ρ(A66) and we refer to each of the blocks A55 and A66

as a lower level. There is only one nonempty upper level in A, namely the upper left

block in the block partition given in 3.1. This upper level has spectral radius ρ2 and

is itself a nonnegative matrix. Hence, we may consider the split-level partition of this

upper level with respect to ρ2 to further partition the matrix A. Below is the reduced

graph of this upper level:

We see that further partitioning A based on the split-level partition of its upper left
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Figure 6: The reduced graph of an upper level of A.

submatrix from the partition in 3.1 results in the following partition:

A =




A11 0 0 0 0 0

A21 A22 0 0 0 0

0 0 A33 0 0 0

A41 A42 A43 A44 0 0

0 A52 0 A54 A55 0

0 0 0 0 A65 A66




(3.2)

Notice that only one ”upper” level was formed at this step, namely the A22 ⊕ A33

block. This upper level is an eventually nonnegative matrix with spectral radius ρ3 and

we may consider its split-level partition and further partition A accordingly. The split

level partition of A22 ⊕ A33 is trivial, so, in this case, A is not partitioned further. We

have now considered all spectral radii. The partition of A given in 3.2 corresponds to the

component level partition of A. Each diagonal block will be referred to as a component

level (of A).

The ideas illustrated in the above example are formalized in the definition below.
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Definition 3.5 Let A be an eventually nonnegative matrix with P (A) = {ρ1, ρ2, . . . , ρt}
where ρ1 > ρ2 > · · · > ρt. Suppose Λ1 = (L

(1)
1 , L

(1)
2 , . . . , L

(1)
m1) is the split-level parti-

tion of A with respect to ρ1. For k = 2, . . . , t, replace each L
(k−1)
j in Λk−1 for which

ρ(A
L

(k−1)
j L

(k−1)
j

) = ρk with the split-level partition of A
L

(k−1)
j L

(k−1)
j

with respect to ρk to

obtain Λk = (L
(k)
1 , L

(k)
2 , . . . , L

(k)
mk). Delete all empty sets from Λt = (L

(t)
1 , L

(t)
2 , . . . , L

(t)
mt) to

obtain C = (C1, C2, . . . , C`) Then C is the component level partition of A. We refer to

each Cj as a component level set and refer to each ACjCj
as a component level of A. We

say that AC is in component level form.

Remark 3.6 Note that in the definition above, we use the indices from the original

matrix A when determining the split-level partition of submatrices.

Recall that the necessary and sufficient conditions (see Theorem 2.9) for a multiset J
of Jordan blocks to correspond to the peripheral Jordan form of a nonnegative matrix rely

on the notion of level sets. Similarly, we will see that component levels play an important

role in the necessary and sufficient conditions on the Jordan form of an eventually

nonnegative matrix. Since the component levels play such an important role, we discuss

some related properties below.

Remark 3.7 If C = (C1, C2, . . . , C`) is the component-level partition of an eventually

nonnegative matrix A, then each ACjCj
is a direct sum of irreducible eventually nonneg-

ative matrices with a common spectral radius.

Then the corollary below follows from Theorem 5.1 of [16].

Corollary 3.8 Let A be an eventually nonnegative matrix and g a large prime. Suppose

Ag has component level partition C = (C1, C2, . . . , C`). For each j ∈ 〈`〉, let Jj be the
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multiset of Jordan blocks corresponding to the Jordan form of Ag
CjCj

. Then each Jj is a

union of self-conjugate Frobenius multisets, each with spectral radius ρ(Ag
CjCj

).

Remark 3.9 Since, for a large prime g, the Jordan form of an eventually nonnnegative

matrix A can be obtained from the Jordan form of Ag, we know that the Jordan form

of A must also satisfy the combinatorial properties indicated in the above corollary.

In much the same way as we construct the spectrum of levels to create a nonnegative

matrix in Chapter 2, we will attempt to construct multisets which will correspond to the

Jordan form of component levels in order to construct eventually nonnegative matrices

in the following sections. This task is more complicated for a variety of reasons. We offer

the following example to point out that we really do need to consider the component

levels of Ag as opposed to just looking at the structure of A itself to gain insight into

the Jordan form of the matrix A.

Example 3.10 Consider the matrices given in Example 3.3:

B =




1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1




, C =




1 −1 −1 1

−1 1 1 −1

1 −1 −1 1

−1 1 1 −1




and A = B + C. Also consider Â = B̂ + Ĉ where

B̂ =




1 1 0 0

1 1 0 0

1 1 1 1

1 1 1 1




and Ĉ =




0 0 1 −1

0 0 −1 1

0 0 0 0

0 0 0 0




.
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We note that Â, B̂, and Ĉ appeared in [2]. Now, A and Â are both irreducible eventually

nonnegative matrices (and so each have only one level). However, ρ(A) = ρ(Â) = 2 is a

repeated root of both A and Â. The Jordan forms of A and Â are given by

• J (A) = {J1(2), J1(2), J2(0)}

• J (Â) = {J2(2), J2(0)}.

So we see that, even though A and Â both have the same level form, they have different

Jordan forms corresponding to the eigenvalue 2. Thus, in this case, we cannot predict

the Jordan forms based on the level structures of A and Â. Instead, consider

A2 = B2 =




2 2 0 0

2 2 0 0

0 0 2 2

0 0 2 2




and Â2 = B̂2 =




2 2 0 0

2 2 0 0

4 4 2 2

4 4 2 2




.

Now we see a significant difference between the structure of A2 and that of Â2. The

matrix A2 still consists of a single (component) level, but is reducible. There are two

(component) levels in Â2, and Â2 is also reducible. We pause momentarily to comment

that, in this example, component levels coincide exactly with the levels, so we will just

write ’level’ instead of ’component level’ for the remainder of the discussion. We now see

that the Jordan form corresponding to the spectral radius is in agreement with the level

form for both matrices. For the matrix A2, there is only one level, and the size of the

largest Jordan block in J (A2) with eigenvalue ρ(A2) = ρ(A)2 = 4 is 1× 1. Analagously,

Â2 has two levels, and the size of the largest Jordan block with eigenvalue ρ(Â2) = 4 is

2× 2. In both cases, the spectral radius is a simple eigenvalue of each irreducible block
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(which is not the case for the original matrices A and Â). For the matrices A and Â and

any g ≥ 2, Ag and Âg will satisfy the properties discussed above for A2 and Â2. We see

that the component level form of Ag is a better indicator of the Jordan form of A than

A itself (similarly for Âg).

3.3 Sufficient Conditions on J

Thus far, we have discussed combinatorial properties of eventually nonnegative matrices

beginning with the eventually nonnegative matrix. We would now like to begin with a

multiset J of Jordan blocks and determine whether or not J corresponds to the Jordan

form of an eventually nonnegative matrix. We will use the idea of component levels and

attempt to construct the Jordan form of each component level of the desired eventually

nonnegative matrix from the given J . This approach is similar to that taken with the

peripheral Jordan form of a nonnegative matrix discussed in Chapter 2, and in fact the

condition on the peripheral Jordan form of an eventually nonnegative matrix is exactly

the same as that on the peripheral Jordan form of a nonnegative matrix (see Theorem

2.9). We will present several sufficient conditions on J along with an algorithm that

has been implemented in MATLAB that determines if J satisfies one of the sufficient

conditions. We comment that the sufficent conditions given in this section are actually

for J to correspond to the Jordan form of a nonnegative matrix. We include these

conditions here as opposed to in Chapter 2 since the conditions build up to a necessarry

and sufficient condition discussed in Section 3.4.

Since we are now interested in the Jordan form of an eventually nonnegative matrix

(as opposed to the peripheral Jordan form of a nonnegative matrix), we must consider
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multisets J of Jordan blocks whose eigenvalues may not have a common magnitude. We

begin with a definition which is a slight generalization of the extended Tam-Schneider

condition.

Definition 3.11 Let J be a multiset of Jordan blocks all of whose eigenvalues have

modulus ρ. Let m be a positive integer. Then J can be leveled into m multisets

L1, . . . , Lm provided σ(J ) = L1

⋃
L2

⋃ · · ·⋃ Lm where
⋃

represents a multiset union

and

(a) Each Li is nonempty and partitions into complete sets of roots of unity multiplied

by ρ and

(b) For each λ ∈ σ(J ), ν̂λ(L1, . . . , Lm) ¹ ηλ(J ).

Notice the similarity of the above definition to the conditions in Theorem 2.9; the

only difference is that m is not set to be the size of the largest Jordan block in J with

eigenvalue ρ. If J is a multiset of Jordan blocks which corresponds to the Jordan form of

an eventually nonnegative matrix, it is known that J ρ(J ) can be leveled into m multisets

where m is the size of the largest Jordan block in J with eigenvalue ρ(J ). Notice that

the following sufficient condition for J to correspond to the spectrum of a nonnegative

matrix is a corollary to Theorem 2.9.

Corollary 3.12 Let J be a multiset of Jordan blocks with P (J ) = {ρ1, ρ2, . . . , ρt}
where ρ1 > ρ2 > · · · > ρt. For j ∈ 〈t〉, let mj be the size of the largest Jordan block

in J with eigenvalue ρj. Then there exists a nonnegative matrix A with Jordan form

corresponding to J if each J ρj can be leveled into mj multisets.
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Proof: By Theorem 2.9, for j ∈ 〈t〉, J ρj corresponds to the peripheral spectrum of a

nonnegative matrix, call it Aj. Then A = A1 ⊕ A2 ⊕ · · · ⊕ At is a nonnegative matrix

with Jordan form corresponding to J . ¤

The condition given in the above corollary can be generalized slightly to obtain

another sufficient condition on the Jordan form of a nonnegative matrix. We take

advantage of the idea of component levels and show that we can adjust our choice

of mj’s from the previous corollary to allow more possibilities. The following definition

is given in order to specify the number of multisets into which we may level each J ρj .

Definition 3.13 Let J be a multiset of Jordan blocks with P (J ) = {ρ1, . . . , ρt} where

ρ1 > ρ2 > . . . > ρt ≥ 0. Suppose, for each j ∈ 〈t〉,

J (ρj) = {Jn1(j)(ρj), Jn2(j)(ρj), . . . , Jn`j
(j)(ρj)}

where n1(j) ≥ n2(j) ≥ · · · ≥ n`j
(j). Then set m1 = n1(1) and for each 2 ≤ j ≤ t, set

mj =

(m1+m2+···+mj−1+1)∑

k=1

nk(j).

We denote the vector (m1,m2, . . . ,mt) by m(J ).

The following lemma will be used in the proof of Theorem 3.15 and is useful in the

construction of (eventually) nonnegative matrices.

Lemma 3.14 Let N be a nonnegative matrix in Frobenius normal form such that each

irreducible block Njj of N satisfies ρ(Njj) = ρ(N). Let A be a nonnegative matrix such

that ρ(A) > ρ(N) and suppose A has positive left and right eigenvectors corresponding

to ρ(A). Then we have the following.
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(i) There exists a nonsingular matrix Q satisfying

Q(N ⊕ A)Q−1 =




I 0

−X I







N 0

0 A







I 0

X I


 =




N 0

P1 A




where X is a positive matrix and P1 is a positive matrix whose entries can be made

arbitrarily large with an appropriate choice of X.

(ii) There exists a nonsingular matrix R satisfying

R(A⊕N)R−1 =




I 0

Y I







A 0

0 N







I 0

−Y I


 =




A 0

P2 N




where Y is a positive matrix and P2 is a positive matrix whose entries can be made

arbitrarily large with an appropriate choice of Y .

Proof: (i): We induct on the number m of irreducible classes of N. Suppose m = 1. Then

N is an irreducible nonnegative matrix and has a positive left eigenvector corresponding

to ρ(N), call it y. Let x be the positive right eigenvector of A. Let Q1 =




I 0

−αxyT I




where α is a large positive scalar. Then

Q1(N ⊕ A)Q−1
1 =




I 0

−αxyT I







N 0

0 A







I 0

αxyT I


 =




N 0

αAxyT − αxyT N A




Notice that αAxyT − αxyT N = αxyT (ρ(A) − ρ(N)) À 0 and can be chosen to have

arbitrarily large entries by an appropriate choice of α.

Now suppose N has m ≥ 2 irreducible classes. Consider the block partition of N

given by

N =




N1 0

N2 N3



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where N1 is a single irreducible block of N. By the inductive hypothesis, there is a

Q2 =




I 0

−X I


 such that Q2(N3 ⊕ A)Q−1

2 =




N3 0

P A


 where P is a positive matrix.

Then notice that

(I ⊕Q2)(N ⊕ A)(I ⊕Q2)
−1 =




N1 0 0

N2 N3 0

−XN2 P A




.

Now, let x̂ and ŷ be the positive right eigenvector of A and positive left eigenvector of

N1, respectively. Set Q3 =




I 0 0

0 I 0

−α1x̂ŷT 0 I




. Then

Q3(I ⊕Q2)(N ⊕ A)(I ⊕Q2)
−1Q−1

3 =




N1 0 0

N2 N3 0

α1Ax̂ŷT − α1x̂ŷT N1 −XN2 P A




Notice that α1Ax̂ŷT −α1x̂ŷT N1−XN2 = α1(ρ(A)−ρ(N1))x̂ŷT −XN2 and can be made

a positive matrix with arbitrarily large entries with an appropriate choice of α1.

The proof of (ii) is analogous. ¤

We are now ready to state a more general sufficient condition.

Theorem 3.15 Let J be a self-conjugate multiset of Jordan blocks with P (J ) =

{ρ1, . . . , ρt} where ρ1 > ρ2 > . . . > ρt ≥ 0 and m(J ) = (m1, . . . , mt). Then J cor-

responds to the Jordan form of an eventually nonnegative matrix if J ρj can be leveled

into mj multisets for each j ∈ 〈t〉.

Proof: We induct on t. For t = 1, J can be leveled into m1 multisets L1, L2, . . . , Lm1 and

J corresponds to the Jordan form of a nonnegative matrix by Theorem 2.9. Moreover,
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the resulting nonnegative matrix has m1 levels and the (peripheral) spectrums of the

levels are given by the multisets L1, L2, . . . , Lm1 .

Let J be a multiset of Jordan blocks with P (J ) = {ρ1, ρ2, . . . , ρt+1} where ρ1 >

ρ2 > · · · > ρt. We suppose there exists a nonnegative matrix

A =




A11 0 · · · 0

A21 A22 · · · 0

...
...

. . .
...

Amt,1 Amt,2 · · · Amt,mt




in component level form with Jordan form corresponding to J \J ρt+1 where the subdi-

agonal blocks of A are positive matrices whose entries are arbitrarily large (see Remark

2.11). Now, since J ρt+1 can be leveled into mt+1 multisets, there exist multisets of

Jordan blocks U1, . . . , Umt+1 such that

• Jnj(t+1)(ρt+1) ∈ Uj for each j ∈ 〈mt + 1〉, where the blocks in J (ρt+1) are enumer-

ated as in Definition 3.13, and

• each Uj satisfies the extended Tam-Schneider condition.

The collection {U1, . . . , Umt+1} is obtained from J ρt+1 by block partitioning each J ∈
J ρt+1 and placing the resulting diagonal blocks in different Uj’s. Since each Uj satis-

fies the extended Tam-Schneider condition, there exists a nonnegative matrix Njj with

Jordan form corresponding to Uj for each j ∈ 〈mt + 1〉. Moreover, we may construct a
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matrix

N =




N11 0 · · · 0

N21 N22 · · · 0

...
...

. . .
...

Nmt+1,1 Nmt+1,2 · · · Nmt+1,mt+1




where each Nij is real and each Njj is nonnegative as described above (we obtain real

subdiagonal blocks by taking advantage of the self-conjugacy of J ρt+1). Then consider

the matrix

B =




N11 0 0 0 · · · 0

0 A11 0 0 · · · 0

N21 0 N22 0 · · · 0

0 A21 0 A22 · · · 0

...
...

...
. . .

...
...

Nmt+1,1 0 Nmt+1,2 0 · · · Nmt+1,mt+1




Each block in the above block partition of B is a nonnegative matrix with the exception

of the Nij blocks when i > j and B has Jordan form corresponding to J . We now

argue that we can apply a string of similarity transformations to B to construct a

nonnegative matrix. By Lemma 3.14 (i), there exists a Q1 =




I 0

−X1 I


 satisfying

Q1




N11 0

0 A11


 Q−1

1 =




N11 0

P1 A11


 where P1 is a positive matrix with arbitrarily large
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entries. Then

(Q1 ⊕ I)B(Q1 ⊕ I)−1 =




N11 0 0 0 · · · 0

P1 A11 0 0 · · · 0

N21 0 N22 0 · · · 0

A21X1 A21 0 A22 · · · 0

...
...

...
...

. . .
...

Nmt+1,1 0 Nmt+1,2 0 · · · Nmt+1,Mt+1




Note that each zero block appearing in the first column of B has been replaced by a

positive matrix of the form AijX1. Now, by Lemma 3.14 (ii), there exists a Q2 =




I 0

Y1 I




such that Q2




A11 0

0 N22


 Q−1

2 =




A11 0

P2 N22


 where Y and P2 are positive matrices.

Then

(I ⊕Q2 ⊕ I)(Q1 ⊕ I)B(Q1 ⊕ I)−1(I ⊕Q2 ⊕ I)−1

=




N11 0 0 0 0 · · · 0

P1 A11 0 0 0 · · · 0

Y1P1 + N21 P2 N22 0 0 · · · 0

A21X1 A21 0 A22 0 · · · 0

N31 −N31Y1 N32 0 N33 · · · 0

...
...

...
...

. . .
...

Nmt+1,1 −Nmt+1,2Y1 Nmt+1,2 0 · · · Nmt+1,mt+1




Now, Y1P1 + N21 À 0 since Y1 and P1 are positive and the entries of P1 can be made

arbitrarily large. At this point, all subdiagonal blocks of the first three rows are positive

matrices whose entries can be made arbitrarily large. We continue in this manner,
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applying Lemma 3.14 and the fact that the matrices Aij, i > j are positive matrices

with large entries to fill in the remaining subdiagonal blocks one row at a time. In this

fashion, we obtain a nonnegative matrix whose Jordan form corresponds to J . ¤

We would like to comment that a MATLAB function is currently being written which

will test a given multiset J of Jordan blocks against the condition given in Theorem

3.15.

3.4 Necessary and Sufficient Conditions on J

In this section, we offer necessary and sufficient conditions on the Jordan form of an

eventually nonnegative matrix which are stated as Theorem 3.23. In addition, numerous

examples are given to illustrate the difficulties that arise in finding an algorithm that

will determine whether or not a given multiset J of Jordan blocks corresponds to the

Jordan form of an eventually nonnegative matrix.

In keeping with the approach taken in the previous section, we attempt to construct

the Jordan form of the component levels of the desired eventually nonnegative matrix.

The steps taken to do this are summarized briefly below.

1. Start with a self-conjugate multiset J of Jordan blocks with P (J ) = {ρ1, ρ2, . . . , ρt}
where ρ1 > ρ2 > · · · > ρt.

2. Check to see that J ρ1 satisfies the extended Tam Schneider condition (conditions

of Theorem 2.9). If so, we obtain multisets which correspond to the peripheral

Jordan form of the levels of the desired eventually nonnegative matrix.

3. Consider J ρ2 . We must be able to assign Jordan blocks to the multisets obtained
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in the previous step (the ”existing” multisets) and/or to ”new” multisets (which

will correspond to the peripheral Jordan form of upper levels of the desired ma-

trix) so that the updated existing multisets partition into self-conjugate Frobenius

multisets with spectral radius ρ1 and each new multiset satisfies the extended Tam

Schneider condition. We must also have that the Jordan form assigned to each

multiset is compatible with our original Jordan form.

4. We continue in this manner, beginning with the multisets resulting from the pre-

vious step, we add to these multisets or create new multisets between existing

multisets so that new multisets satisfy the extended Tam Schneider condition and

existing multisets remain unions of self-cojugate Frobenius collections.

We illustrate this process with the example below.

Example 3.16 Let

J =





[
3

]
,




3 0

1 3


 ,



−3 0

1 −3


 ,

[
3e

2πi
3

]
,

[
3e

4πi
3

]
,




2 0 0

1 2 0

0 1 2




,

[
2i

]
,

[
−2i

]
,

[
2e

2πi
5

]
,

[
2e

4πi
5

]
,

[
2e

6πi
5

]
,

[
2e

8πi
5

]
,

[
1

]
,

[
e

2πi
6

]
,

[
e

10πi
6

]
,



−1 0

1 −1


 ,




i 0

1 i


 ,



−i 0

1 −i








Then P (J ) = {3, 2, 1} and we first check to see that J 3 satisfies the extended Tam

Schneider condition. Indeed it does, as can be seen by taking

L2 = {[3], [−3], [3], [3e
2πi
3 ], [3e

4πi
3 ]} and
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L1 = {[3], [−3]}

Notice that L2 partitions into two self-conjugate Frobenius collections, one with index

of cyclicity 2 and the other with index of cyclicity 3. This must remain the case as we

update L2 in subsequent steps by adding blocks with eigenvalues of smaller magnitudes.

Likewise, L1 must remain 2-cyclic when blocks are added. At this point, if J does

correspond to the Jordan form of an eventually nonnegative matrix A, we know that

A must have two levels (perhaps in addition to a zero level). L1 and L2 give us the

peripheral Jordan form of the levels of A. Note that, in this example, L1 and L2 are

unique up to a reordering of the multisets.

Now, we must consider J 2. We may create three new upper levels at this point

(interlaced with the existing levels) and/or update the existing L1 and L2. The ”new”

upper levels created at this point must satisfy the extended Tam-Schneider condition

(and will perhaps be broken into several new component levels as we shall see). Notice

that [2i] and [−2i] must be placed in either L1 or L2 since [−2] 6∈ J 2 so it would be

impossible for a multiset containing [2i] or [−2i] to satisfy the extended Tam-Schneider

condition. Also, we may place [2i] and [−2i] in either L1 or L2 and we choose one of the

multisets arbitrarily at this point. Notice that 2Z5 ⊂ σ(J 2), but 5 is not an allowable

index of cyclicity for either L1 or L2 (since neither 2 nor 3 divides 5) and hence, these

fifth roots must be represented in a new upper level. Note that one arrangement that is

allowable for this step is given by

L2 = {[3], [−3], [3], [3e
2πi
3 ], [3e

4πi
3 ]},

U1 =








2 0

1 2


 , [2e

2πi
5 ], [2e

4πi
5 ], [2e

6πi
5 ], [2e

8πi
5 ]





,
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L1 = {[3], [−3], [2i], [−2i]}.

Then U1 satisfies the extended Tam-Schneider condition as required; take

U
(2)
1 = {[2], [2e

2πi
5 ], [2e

4πi
5 ], [2e

6πi
5 ], [2e

8πi
5 ]} and

U
(1)
1 = {[2]}.

This results in a current assignment of Jordan blocks to component levels given by:

C4 = L2 = {[3], [−3], [3], [3e
2πi
3 ], [3e

4πi
3 ]},

C3 = U
(2)
1 = {[2], [2e

2πi
5 ], [2e

4πi
5 ], [2e

6πi
5 ], [2e

8πi
5 ]},

C2 = U
(1)
1 = {[2]}, and

C1 = L1 = {[3], [−3], [2i], [−2i]}.

Notice that the multisets have simply been relabeled to avoid the use of further sub-

scripting as we move to the next step. We now consider J 1. We may create up to five

new multisets, each satisfying the extended Tam Schneider condition and/or update

the existing component levels. There are numerous options for the placement of Jor-

dan blocks in the existing component levels and/or new levels. Before giving a few of

the options, we would like to make some observations. Since 1 only occurs once as an

eigenvalue in σ(J 1), we can only create one new component level at this step. Notice

that Z2 and Z4 are each subsets of σ(J 1), and we may create a new component level

with spectrum equal to either Z2 or Z4. Also notice that Z2 and Z4 are both 2-cyclic, so

could be incorporated into any of the three component levels C1, C2, or C4, but not C3

as it is 5-cyclic. Also note that C2 has index of cyclicity 1, so we may assign all Jordan

blocks from J 1 to C2 and the resulting multiset would still be a self-conjugate Frobenius
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multiset with index of cyclicity 1. However, we give a different allowable assignment for

this last step below:

C4 = {[3], [−3], [3], [3e
2πi
3 ], [3e

4πi
3 ], [e

2πi
6 ], [−1], [e

10πi
6 ]},

C3 = {[2], [2e
2πi
5 ], [2e

4πi
5 ], [2e

6πi
5 ], [2e

8πi
5 ]},

C2 = {[2]}, and

C1 =





[3], [−3], [2i], [−2i], [1], [−1],




i 0

1 i


 ,



−i 0

1 −i


 ,





.

In this case, we were able to construct self-conjugate Frobenius multisets from the given

J and so J does correspond to the Jordan form of an eventually nonnegative matrix. We

note that the eventually nonnegative matrix that could be formed from the multisets

specified above would have two levels (since there are two Cj’s with spectral radius

ρ(J ) = 3) and one nonempty upper level. If we consider this one nonempty upper level

in its own right, it has two levels. So we have a total of four component levels. We note

that it would also be possible to construct an eventually nonnegative matrix with six

component levels had we used

C6 = {[1], [−1], [i], [−i]},

C5 = {[2]},

C4 = {[3], [−3], [3], [3e
2πi
3 ], [3e

4πi
3 ], [e

2πi
6 ], [−1], [e

10πi
6 ]},

C3 = {[2]},

C2 = {[3], [−3], [2i], [−2i], [i], [−i]}, and
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C1 = {[2], [2e
2πi
5 ], [2e

4πi
5 ], [2e

6πi
5 ], [2e

8πi
5 ]},

for example. We could also construct five component levels, but there is no way to use

fewer than four component levels. We would like to note that there are many more

options for the choice of component levels than the two given above in this example. We

see that the choices made at each step are not unique.

Another way to view the construction of the Jordan form of component levels in the

previous example is that we simply applied a permutation similarity to ⊕J and block

partitioned the resulting matrix so that each diagonal block corresponded to a self-

conjugate Frobenius multiset (in addition to other conditions pertaining to the number

of diagonal blocks and placement with respect to each other). We will see in the next

example that only allowing permutation similarities is not enough and we may need to

allow a more general class of similarity transformations. The more general transforma-

tions that must be considered are given in Definition 3.18.

Example 3.17 Suppose α = eθi for some θ ∈ (0, π
2
). Let

J = {J2(2), J2(−2), J3(α), J1(α), J2(−α), J2(−α), J3(α), J1(α), J2(−α), J2(−α)}.

Note that P (J ) = {1, 2} and J 2 satisfies the extended Tam-Schneider condition (take

L1 = {[2], [−2]} = L2). Also notice 1 /∈ J 1. Hence, if J corresponds to the Jordan

form of an eventually nonnegative matrix A, then A has two irreducible classes and the

Jordan form of each class must correspond to a self-conjugate Frobenius collection with

index of cyclicity 2.

Let J = ⊕J . Notice that J is 20× 20, but there is no partition κ = (K1, K2) of 20
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for which each JKjKj
corresponds to a self-conjugate Frobenius collection. However, let

C =




C11 0

C21 C22




where

C11 = C22 = J1(2)⊕ J1(−2)⊕ J2(α)⊕ J2(−α)⊕ J2(α)⊕ J2(−α)

and C21 = [cij] where c11 = c22 = c33 = c77 = 1 and all other cij = 0. Then C is similar to

J and each Cjj is in Jordan form and has Jordan form corresponding to a self-conjugate

Frobenius collection. Hence, J does correspond to the Jordan form of an eventually

nonnegative matrix.

The following definition gives the class of matrices we must consider when construct-

ing the Jordan form of component levels given a Jordan matrix.

Definition 3.18 Let J be an n × n matrix in Jordan form and κ = (K1, . . . , Kk) a

partition of 〈n〉. We say that the matrix C is a reorganization of J with respect to κ

provided

(i) The matrix C is similar to J.

(ii) Each CKj
is in Jordan form.

(iii) Cκ is lower triangular.

(iv) cii 6= cjj implies cij = cji = 0 for all i, j ∈ 〈n〉.

Since we are interested in considering multisets of Jordan blocks as opposed to the direct

sum of Jordan blocks, we offer the following definition of a multiset reorganization.
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Definition 3.19 Let J be a multiset of Jordan blocks and let m be a natural number.

We say that J can be multiset reorganized into m multisets denoted by (S1, S2, . . . , Sm)

provided each Sj is a multiset of Jordan blocks and there exists a reorganization

C =




C11 0 · · · 0

C21 C22 · · · 0

...
...

. . .
...

Cm1 Cm2 · · · Cmm




= [cij]

of ⊕J such that for each j ∈ 〈m〉, Cjj = ⊕Sj.

The next two definitions are given as they are needed for the proof of Theorem 3.23.

Definition 3.20 ([10] Definition 4.4) Let L be a set of ordered partitions of 〈n〉. We

will say that L is a set of nested odd partitions of n provided that

(i) L contains exactly one ordered partition of 〈n〉.

(ii) L contains exactly one ordered partition of each nonempty set which occurs in an

odd position of an ordered partition in L .

(iii) The partitions described in (i) and (ii) are the only partitions in L .

Definition 3.21 ([10] Definition 4.6) Let J be an n × n matrix, κ = (K1, . . . , Kk) an

ordered partition of 〈n〉, C a reorganization of J with respect to κ, and L a set of nested

odd partitions of n. We say that C with the partition κ allows the nested odd partition

L provided that ρ(CKj
) ∈ σ(CKj

) for all j ∈ 〈k〉, and for each ordered partition Λ ∈ L ,

we have the following.
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Write Λ = (L1, L2, . . . , Lt) and for each i ∈ 〈t〉, set

Pi = {j|Kj ∩ Li 6= ∅}.

Set

P =
⋃t

i=1 Pi, τ =
⋃t

i=1 Li, ρτ = ρ(Cτ ), mτ = indexρτ (Cτ ).

Then we need that

(a) t = 2mτ + 1.

(b) Li = ∪j∈Pi
Kj.

(c) If j ∈ P and ρ(CKj
) = ρτ , then j ∈ Pi where i is even.

(d) If j ∈ P and ρ(CKj
) < ρτ , then j ∈ Pi where i is odd.

(e) If j, ` ∈ P with j 6= ` and CKjK`
6= 0, then j ∈ Pq and ` ∈ Pr where q ≥ r and if

q = r then q must be odd.

The following appeared as part of Theorem 3.3 of [3] and offers necessary and suf-

ficient conditions for a multiset J of Jordan blocks to correspond to the Jordan form

of an eventually nonnegative matrix. The characterization is based on reorganizations

and the notions defined above. We note that the conditions given in part (ii) below

first appeared in [10], when a certain class of matrices called seminonnegative matrices

were considered. In [3], it was proven that eventually nonnegative matrices are similar

to seminonnegative matrices and the theorem below followed.

Theorem 3.22 ([10] Theorem 4.10, [3] Theorem 3.3) Let J be an n×n matrix in Jordan

form. Then the following are equivalent.
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(i) The matrix J is similar to an eventually nonnegative matrix.

(ii) There exists an ordered partition κ = (K1, . . . , Kk) of 〈n〉 and a reorganization C

of J with respect to κ such that

(a) For each nonzero λ ∈ σ(J), Cκ(λ̄) = Cκ(λ).

(b) For each j ∈ 〈k〉, CKj
corresponds to a self-conjugate Frobenius collection.

(c) C with the partition κ allows a set of nested odd partitions of 〈n〉.

We are now ready to state necessary and sufficient conditions for a multiset J of

Jordan blocks to correspond to the Jordan form of an eventually nonnegative matrix.

Theorem 3.23 Let J be a multiset of Jordan blocks with P (J ) = {ρ1, ρ2, . . . , ρt}
where ρ1 > ρ2 > . . . > ρt. Then J corresponds to the Jordan form of an eventually

nonnegative matrix if and only if

(a) J ρ1 can be leveled into m1 = indexρ1(J ρ1) multisets denoted by (L
(1)
1 , L

(1)
2 , . . . , L

(1)
m1)

and

(b) for j = 2 . . . t, J ρj can be multiset reorganized into 2mj−1 + 1 multisets, some

possibly empty, denoted by

(S
(j)
1 , S

(j)
2 , . . . , S

(j)
2mj−1+1)

where, for each k ∈ 〈2mj−1 + 1〉,

(i) if k is even, then L
(j−1)
k/2

⋃
S

(j)
k partitions into self-conjugate Frobenius multisets,

each with spectral radius greater than ρj, and
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(ii) if k is odd, then S
(j)
k can be leveled into mk,j =indexρj

(S
(j)
k ) multisets denoted

by (T
(j)
k,1 , T

(j)
k,2 , . . . , T

(j)
k,mk,j

).

Set L(j)∗ = (T
(j)
1,1 , . . . , T

(j)
1,m1,j

, L
(j−1)
1 ∪S

(j)
2 , T

(j)
3,1 , . . . , T

(j)
3,m3,j

, L
(j−1)
2 ∪S

(j)
4 , . . . , L

(j−1)
2mj−1

∪
S

(j)
mj−1 , T2mj−1+1,1, . . . , T2mj−1+1,m2mj−1+1,j

). Delete all empty sets listed in L(j)∗ and

relabel the remaining multisets to obtain L(j) = (L
(j)
1 , L

(j)
2 , . . . , L

(j)
mj). Note that mj

is the number of multisets listed in L(j).

Proof: (⇐) Suppose J satisfies the conditions given in (a) and (b) above. First consider

the case where ρt > 0. We will show that J = ⊕J satisfies the conditions given in

Theorem 3.22 (ii). Suppose J is n×n. Note that J can be multiset reorganized into mt

multisets denoted by L(t) = (L
(t)
1 , L

(t)
2 , . . . , L

(t)
mt). Hence, there exists a matrix

C =




C11 0 · · · 0

C21 C22 · · · 0

...
...

. . .
...

Cmt1 Cmt2 · · · Cmtmt




which is similar to J and for each j ∈ 〈mt〉, we have that the Jordan form of Cjj is ⊕L
(t)
j .

Let κ = (K1, . . . , Kmt) be the partition of n corresponding to the block partition of C

given above. Since each L
(t)
j partitions into self-conjugate Frobenius multisets, there is

a refinement κ̂ = (K̂1, K̂2, . . . , K̂k) of the ordered partition κ such that each CK̂j
has

Jordan form corresponding to a single self-conjugate Frobenius multiset.

Construct L , a set of ordered partitions, as follows. Suppose Kn1 , Kn2 , . . . , Kn`
are

all of the elements of κ satisfying ρ(CKj
) = ρ1 where n1 < n2 < · · · < n`. Set

Λ0 =




n1−1⋃
j=1

Kj, Kn1 ,

n2−1⋃
j=n1+1

Kj, Kn2 , . . . ,

n`−1⋃
j=n`−1+1

Kj, Kn`
,

mt⋃
j=n`+1

Kj


 .
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Note that some sets listed in odd positions of Λ0 may be empty, but are still included

in the list. Place Λ0 in L .

Now, set n0 = 0, n`+1 = mt+1, and κ(nj) = (Knj−1+1, . . . , Knj−1) for each j ∈ 〈`+1〉.
Let ρ(j) = ρ(Cκ(nj)). We construct ordered partitions Λj from κ(nj) in the same way

that Λ0 was constructed from κ. If κ(nj) is empty, do nothing. Otherwise, suppose

Kn1(j), Kn2(j), . . . , Kn`j
(j) are the elements of κ(nj) satisfying ρ(CKni(j)

) = ρ(j) where

n1(j) < n2(j) < · · · < n`j
(j). Set

Λj =




n1(j)−1⋃
i=nj−1+1

Ki, Kn1(j), . . . ,

n`j
−1⋃

i=n`j−1+1

Ki, Kn`j
(j),

nj−1⋃

i=n`j
(j)+1

Ki


 .

Again, some sets listed in Λj may be empty, but are still included in the list. Place

each Λj in L . We proceed in this manner, creating ordered partitions of each set listed

in an odd position of each Λj based on the associated spectral radius, and add these

ordered partitions to L . Continue until sets listed in odd positions are all empty. Note

that each Kj will be a set listed in exactly one element of L after L is completely

constructed. Then C allows the nested odd partition L and hence J satisfies the

conditions of Theorem 3.22. Therefore, there exists an eventually nonnegative matrix

with Jordan form corresponding to J .

Now we consider the case where ρt = 0. From the above proof, there is an eventu-

ally nonnegative matrix A with Jordan form corresponding to J \J 0. Then the matrix

obtained by taking the direct sum of A with the blocks from J 0 is an eventually non-

negative matrix with Jordan form corresponding to J .

(⇒) Suppose J corresponds to the Jordan form of an eventually nonnegative matrix

A. We will show that the conditions given in Theorem 3.22 imply the conditions in parts

(a) and (b) of this Theorem. Let J = ⊕J , and suppose J is n× n. Let κ be an ordered
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partition of 〈n〉, C a reorganization of J with respect to κ, and L a set of nested odd

partitions of 〈n〉 satisfying the conditions in Theorem 3.22 (ii). We first establish some

notation that will be used in this proof. For Λ ∈ L , write Λ = (M1,M2, . . . , M`) and

let τ = ∪`
i=1Mi. We will denote ρ(Cτ ) by ρ(Λ). We will denote the multiset of Jordan

blocks with eigenvalues of greatest modulus corresponding to the Jordan form of CMjMj

by J π(CMjMj
).

Let Λ(0) be the unique partition in L satisfying ρ(Λ(0)) = ρ1 and write Λ(0) =

(M1,M2, . . . ,M`). Set L
(1)
j = J π(CM2j

) for each j. Then (L
(1)
1 , L

(1)
2 , . . . , L

(1)
m1) satisfies

the condition given in part (a) of this theorem. Define the sets U
(1)
1 , . . . , U

(1)
m1 by U

(1)
j =

J (CM2j
)\J π(CM2j

). Note that the indices from each M2j+1 all appear in other partitions

in L and will be considered at a later step. Now, for j = 2 . . . , t, choose all Λ ∈ L such

that ρ(Λ) = ρj. Enumerate these partitions as Λ(1), Λ(2), . . . , Λ(`1). For k odd, set S
(j)
k =

J π(C
Λ( k+1

2 )) and write Λ( k+1
2

) = (M
(k)
1 ,M

(k)
2 , . . . , M

(k)
sk ). Set T

(j)
k,r = J π(C

M
(k)
2r

) and U
(j)
k,r =

J (C
M

(k)
2r

) \ J π(C
M

(k)
2r

). Again, note that the M
(k)
j ’s, where j is odd are considered at a

later step as they are further partitioned and the partition appears in L . Now, let L(j)∗ =

(T
(j)
1,1 , . . . , T

(j)
1,m1,j

, L
(j−1)
1 ∪J π(C

U
(j−1)
1

), T
(j)
3,1 , . . . , T

(j)
3,m3,j

, L
(j−1)
2 ∪J π(C

U
(j−1)
2

), . . . , L
(j−1)
2mj−1

∪
J π(C

U
(j−1)
m

), T2mj−1+1,1, . . . , T2mj−1+1,m2mj−1+1,j
). Delete the empty sets from L(j)∗ and

relabel the entries to obtain L(j) = (L
(j)
1 , L

(j)
2 , . . . , L

(j)
mj). Relabel the U

(j)
i ’s conformally.

¤

We conclude this section by investigating examples which point out some of the

issues that must be considered to obtain an algorithm which tests a given J against

these necessary and sufficient conditions.

Given a multiset of eigenvalues, it can quickly be determined whether or not the

multiset partitions into complete sets of roots of unity. If the multiset does partition
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into complete sets of roots of unity, the partition is unique (see Lemma 2.2). However, it

is more difficult to determine whether or not the multiset partitions into shifted complete

sets of roots of unity and, if it does, we are not guarenteed uniqueness. This poses a

problem in finding an algorithm which determines whether or not a given multiset, J ,

of Jordan blocks corresponds to the spectrum of an eventually nonnegative matrix as

it is necessary that each σ(J ρj) (where P (J ) = {ρ1, ρ2, . . . , ρt}) partitions into shifted

complete sets of roots of unity multiplied by ρj. The next few examples illustrate some

issues that arise in determining whether or not σ(J ), where J is a given multiset of

Jordan blocks, partitions into shifted complete sets of roots and how these partitions

relate to the desired eventually nonnegative matrix.

Example 3.24 In this example, we illustrate a difficulty pertaining to the representa-

tion of eigenvalues in σ(J ), where J is a multiset of Jordan blocks. We will see that a

single eigenvalue must be viewed as two different shifted roots. Let

J = {J2(2), J1(2e
2πi
3 ), J1(2e

4πi
3 ), J1(2e

πi), J2(e
3πi
4 ), J2(e

5πi
4 ),

J1(e
πi
4 ), J1(e

7πi
4 ), J1(e

πi
12 ), J1(e

23πi
12 ), J1(e

17πi
12 )}.

Notice that P (J ) = {2, 1}. In order for J to correspond to the Jordan form of an

eventually nonnegative matrix, J 2 must satisfy the extended Tam-Schneider condition.

Notice that the size of the largest Jordan block in J 2 is 2 and that σ(J 2) = 2Z2

⋃
2Z3.

Setting L1 = 2Z2 and L2 = 2Z3, we see that J 2 does indeed satisfy the extended

Tam-Schneider condition. Notice that 1 /∈ σ(J 1), and hence σ(J 1) does not contain a

complete set of roots of unity. Therefore, in order for J to correspond to the Jordan

form of an eventually nonnegative matrix, it is necessary that σ(J 1) partitions into two
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sets, S1 and S2, where S1 is 2-cyclic and S2 is 3-cyclic (since L1 is 2-cyclic and L2 is

3-cyclic). The only such partition is given by S1 = e
πi
4 Z4 and S2 = e

πi
12Z3

⋃
e
−πi
12 Z3.

Then we can construct an eventually nonnegative matrix

A =




A11 0

A21 A22




in Frobenius normal form where σ(A11) = L1

⋃
S1 and σ(A22) = L2

⋃
S2.

We would like to point out a difficulty in determining the sets S1 and S2. Note that

e
3πi
4 ∈ e

πi
4 Z4 and e

3πi
4 ∈ e

πi
12Z3. So, on one hand we have considered the eigenvalue e

3πi
4

as a 4th root of unity shifted by θ1 = π
4

(note e
3πi
4 = e(θ1+π

2
)i) and on the other hand as

a 3rd root of unity shifted by θ2 = π
12

(note e
3πi
4 = e(θ2+ 2π

3
)i). In general, for any natural

number n and any eigenvalue λ, λ can be viewed as a shifted nth root.

Example 3.25 In this example, we illustrate a difficulty in partitioning the eigenvalues

from a multiset J of Jordan blocks into cyclic multisets. Let θ ∈ (0, π
4
) and

J = {[3], [−3], [2], [2i], [−2], [−2i],




eiθ 0

1 eiθ


 ,




e−iθ 0

1 e−iθ


 ,

[−eiθ], [−eiθ], [−e−iθ]}, [−e−iθ]}.

We will see that J does correspond to the Jordan form of an eventually nonnegative

matrix

A =




A11 0

A21 A22




in split-level form. However, even though 2Z4 ⊆ σ(J ), we show that it is impossible for

2Z4 to be a subset of either σ(A11) or σ(A22).
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Now, we are interested in determining whether or not J corresponds to the Jordan

form of an eventually nonnegative matrix. Notice that P (J ) = {1, 2, 3} and that J3

trivially satisfies the extended Tam-Schneider condition. We proceeed by attempting

to build multisets which will correspond to the spectra of the component levels (in this

example simply the split-levels) of an eventually nonnegative matrix. Begin by setting

L
(1)
2 = ∅,

L
(1)
1 = {3,−3},

L
(1)
0 = ∅

.

Note that L
(1)
1 is 2-cyclic and that σ(J2) = 2Z4. Now, we must assign each of the

elements of σ(J2) to one of the multisets L
(1)
2 , L

(1)
1 , or L

(1)
0 so that each of the resulting

multisets (L
(2)
2 , L

(2)
1 , and L

(2)
0 ) corresponds to a self-conjugate Frobenius collection. One

way to do this is to set

L
(2)
2 = ∅,

L
(2)
1 = {3,−3},

L
(2)
0 = {2, 2i,−2,−2i}

.

Now, σ(J1) = eiθZ2

⋃
eiθZ2

⋃
e−iθZ2

⋃
e−iθZ2. Since all elements of J1 are purely com-

plex, we must assign each element to either L
(1)
1 or L

(1)
0 in order for the resulting multisets

to correspond to Frobenius sets. Notice that J1 is not 2-cyclic (nor 4-cyclic), and hence,

we cannot assign all elements of J1 to a single multiset. Also notice that there is no

4-cyclic subset of σ(J1), and so we cannot assign any elements to L
(2)
0 . Therefore, we

must adjust our original choices of L
(2)
2 , L

(2)
1 , and L

(2)
0 . Instead, consider

L̂
(2)
2 = ∅,

L̂
(2)
1 = {3,−3, 2i,−2i},

L̂
(2)
0 = {2,−2}

.
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Now we have two 2-cyclic sets to work with instead of the original 2-cyclic and 4-cyclic

sets and can set

L
(3)
2 = ∅,

L
(3)
1 = {3,−3, 2i,−2i, eiθ,−eiθ, e−iθ,−e−iθ},

L
(3)
0 = {2,−2, eiθ,−eiθ, e−iθ,−e−iθ}

.

We see that each L
(3)
j corresponds to a self-conjugate Frobenius collection. Therefore,

there does exist an eventually nonnegative matrix A with Jordan form corresponding to

J . The sets L
(3)
2 , L

(3)
1 , and L

(3)
0 give the spectra corresponding to the split-level partition

of A with respect to ρ(A) = 3.
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Chapter 4

Concluding Remarks

A great deal is known about the combinatorial structure of nonnegative and eventually

nonnegative matrices, some of which has been addressed in this paper. We have written

neccessary and sufficient conditions for a multiset of Jordan blocks to correspond to the

peripheral Jordan form of an (eventually) nonnegative matrix. In addition, an algorithm

has been written and implemented in MATLAB which tests a multiset against these

conditions and returns a nonnegative matrix with the prescribed Jordan form if possible.

We have also offered necessary and sufficient conditions for a multiset of Jordan

blocks to correspond to the Jordan form of an eventually nonnegative matrix. These

conditions are more complicated than those on the peripheral Jordan form, and we have

offered examples which point out some of the difficulties in writing an algorithm to test

these conditions. In the future, we would like to investigate these difficulties further

and write an algorithm. We would like to know exactly what the allowable multiset

reorganizations are for a given multiset of Jordan blocks. That is, given a Jordan matrix

J, what are the possible Jordan forms of the diagonal blocks of a block lower triangular

matrix which is similar to J?

The question as to how we represent eigenvalues should also be addressed. As men-

tioned in Chapter 3, if λ is a complex number, we can view λ as a shifted nth root for

any n ∈ N, and we may need to view λ as both a shifted nth
1 root and as a shifted nth

2 for

some n1 6= n2 even though they may share a Jordan block. We also know that we may



66

have to split up a complete set of roots of unity, viewing, say, Z4 as two sets of (shifted)

2nd roots as seen in Example 3.25.

Even knowing the allowable multiset reorganizations and an effective way to represent

eigenvalues, the question as to how exactly to write an algorithm testing the conditions

in Theorem 3.23 may be quite challenging since multiple conditions must be satisfied

simultaneously. The hope is that a better understanding of the reorganizations will lead

to a more clear and concise statemant of the necessary and sufficient conditions, it turn

shedding some light on the creation of an effective algorithm.
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Appendix A

MATLAB Code for level periph

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function will determine if a set of Jordan blocks (all with

% eigenvalues of the same modulus, assumed to be 1 WLOG) corresponds

% to the peripheral spectrum of a nonnegative matrix.

% The function takes as input a t x (m+2) matrix

% A where m is the size of the largest Jordan block in the set with

% eigenvalue 1 and t is the number of distinct eigenvalues in the set.

% Each row of A correponds to a particular eigenvalue. We represent the

% complex number exp(2*pi*k*i/n) by the ordered pair (k,n) and these

% ordered pairs determine the first two columns of A. For j>2, the (i,j)

% entry of A is the number of Jordan blocks of size (j-2)x(j-2)

% with the ith eigenvalue.

% For example, if m=4 and there are 8 Jordan blocks in the multiset

% with eigenvalue exp(2*pi*i*k/n) where 3 are size 1, 4 size 2, and 1

% size 3, then the corresponding row of A is [k n 3 4 1 0].

% This program first checks to see that the multiset of eigenvalues can

% be partitioned into complete sets of roots of unity. If so, a vector

% R is formed that lists the sizes of the sets of roots of unity in the

% partition in decreasing order.
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% Next, it is determined whether or not the set of blocks satisfies the

% Extended Tam-Schneider condition. If so, a vector L is returned with

% entries from {1,...,m} which indicates that the R(i)th roots of unity

% should be placed in level L(i).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function[R,L] = level_periph(A)

A = sortrows(A); % Useful for check(A) and self_conj(A).

[t,m] = size(A);

m = m-2;

if ~check(A,t,m) % Check to see that A is an appropriate input matrix.

L = []; R = [];

return

end

if ~self_conj(A,t) % Check to see if the multiset is self-conjugate.

disp(’Multiset does not correspond to peripheral spectrum of

nonnegative matrix’)

disp(’The multiset is not self-conjugate.’)

L = []; R = [];

return

end

A(:,1) = A(:,1)./A(:,2);

[R,b] = partition(A,t,m);

if ~b

disp(’Multiset does not correspond to peripheral spectrum of a
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nonnegative matrix.’)

L = [];

return

end

% Delete second column of A (no longer needed).

% Note that A is now tx(m+1) where the first column indicates e-vals and

% remaining columns the number of (m-1)x(m-1) blocks.

A(:,2) = [];

% Delete rows of A corresponding to eigenvalues only appearing in 1x1

% blocks. Also delete rows corresp to e-vals with argument greater than

% 2*pi.

rows = [];

for ii = 1:t

if A(ii,3:m+1) == 0

rows = [rows; ii];

elseif A(ii,1) > 1/2

rows = [rows; ii];

end

end

A(rows,:) = [];

% Replace 2nd through last row of A with ’majorizing’ vector.

t = length(A(:,1));

for jj = m:-1:2

A(:,jj) = A(:,jj) + A(:,jj+1);
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end

% initialize placement matrix P and level vector L

P = zeros(t,m);

L = [1];

done = 0;

[R,L] = place_roots(R,L,A,P,m);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function checks:

% 1. That all entries of A are nonnegative integers.

% 2. That eigenvalues are represented in lowest terms.

% 3. Each eigenvalue appears in only one row.

% 4. That, if m is the size of the largest Jordan block, then there is

% an m-by-m block with eigenvalue 1.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function b = check(A,t,m)

for ii = 1:t

for jj = 1:m+2

if ~isequal(round(A(ii,jj)),A(ii,jj)) | A(ii,jj) < 0

error(’Entries of A must be nonnegative integers.’);

end

end

if gcd(A(ii,1),A(ii,2)) > 1 | A(ii,1)/A(ii,2) >= 1

error(’Eigenvalues must be represented in lowest terms.’);

end
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for jj = ii+1:t

if A(ii,1:2) == A(jj,1:2)

error(’Each eigenvalue must be represented in only one row.’);

end

end

end

if A(1,m+2) == 0 | A(1,1) ~= 0

disp(’Multiset does not correspond to the peripheral spectrum of a

nonnegative matrix.’)

disp(’There is not an m-by-m block with eigenvalue 1.’)

b = 0;

return

end

b = 1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function checks to see that A corresponds to a self-conjugate

% collection of Jordan blocks

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function b = self_conj(A,t)

B = A;

for ii = 2:t

B(ii,1) = A(ii,2)-A(ii,1);

end

B = sortrows(B);
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if A == B

b = 1;

else

b = 0;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function determines if the eigenvalues can be partitioned into

% complete sets of roots of unity.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [R,b] = partition(A,t,m)

% Add (m+3)rd column to A with total numbers of e-vals.

new_col = zeros(t,1);

for jj = 3:m+2

new_col = new_col + (jj-2)*A(:,jj);

end

A = [A new_col];

% Determine sets in partition into complete sets of roots of unity.

R = [];

while A(1,m+3) > 0

I = find(A(:,m+3)); n = max(A(I,2)); % nth roots

for r = 0:n-1

row = find(A(:,1)==r/n);

if isempty(row) | A(row,m+3) == 0

R = (’Eigenvalues do not partition into complete sets of
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roots of unity.’);

b = 0;

return

else

A(row,m+3) = A(row,m+3)-1;

end

end

R = [R, n];

end

% Check that all eigenvalues were used (since above uses no ones left as

% stopping criterion).

nonzeros = find(A(:,m+3));

if length(nonzeros) ~= 0

R = (’Eigenvalues do not partition into complete sets of roots of

unity.’);

b = 0;

return

end

b = 1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Recursive branch and bound algorithm for placing sets of roots in

% levels. The function searches a tree where nodes are pre-ordered.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [R,L] = place_roots(R,L,A,P,m)
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if L(1) == 2 % All groupings fail

disp(’Multiset does not correspond to peripheral spectrum of

nonnegative matrix.’)

L = ’No level assignments satisfy Extended Tam-Schneider Condition’;

return

end

root_num = length(L);

if L(root_num) > max(L(1:root_num-1))+1 % level was skipped so move on.

[L,P] = bypass_children(L,P);

[R,L] = place_roots(R,L,A,P,m);

end

if max(L) < m - length(R) + length(L) % cannot visit every level, move on

[L,P] = bypass_children(L,P);

[R,L] = place_roots(R,L,A,P,m);

end

% If the current set of roots is equal to previous, must stay at same

% level or move up a level.

if root_num > 1 & R(root_num)==R(root_num-1)&L(root_num)<L(root_num-1)

L(root_num) = L(root_num-1);

end

% Update placement matrix, placing R(root_num) roots in level L(root_num).

for k = 0:R(root_num)-1

row = find(A(:,1)==k/R(root_num));

P(row,L(root_num)) = P(row,L(root_num))+1;
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end

if majorize(A(:,2:m+1),P)

if length(L) == length(R); % All roots placed successfully so done.

done = 1;

return

else

[L,P]=next_vertex(L,P,length(R)); % Not all roots placed yet, but

% majorization OK.

end

else

for k = 0:R(root_num)-1 % ’Unplace’ roots.

row = find(A(:,1)==k/R(root_num));

P(row,L(root_num)) = P(row,L(root_num))-1;

end

[L,P] = bypass_children(L,P); % Majorization failed, move to

% next branch.

end

if isempty(P)

P = calculate_P(A,L,R);

end

[R,L]=place_roots(R,L,A,P,m);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Updates L to next vertex in tree. If moving to a new branch,

% sets P to empty.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [L,P] = next_vertex(L,P,t)

m = length(P(1,:));

root_num = length(L);

if root_num < t

L = [L 1];

else

[L,P] = bypass_children(L,P);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Bypasses all children, grandchildren, etc. of input node L. If only

% the last entry of L changes then P is left unchanged. Otherwise P is

% set to empty to be calculated later using calculate_P subroutine.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [L,P] = bypass_children(L,P)

m = length(P(1,:));

root_num = length(L);

for jj = root_num:-1:1

if L(jj) < m

L(jj) = L(jj) + 1;

L = L(1:jj);

if jj == root_num

return
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else

P = [];

return

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculates placement matrix P from A, L, and R.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function P = calculate_P(A,L,R)

root_num = length(L);

[t,m] = size(A);

m = m - 1;

P = zeros(t,m);

for r = 1:root_num-1

for k = 0:R(r)-1

row = find(A(:,1)==k/R(r));

if isempty(row)

else

P(row,L(r)) = P(row,L(r)) + 1;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Checks to see if B = A(2:m+1) ’majorizes’ P (ie Does row i of A

% ’majorize’ row i of P for each i).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function b = majorize(B,P)

[n,m] = size(P);

P = sort(P’)’;

B = sort(B’)’;

for ii = 1:n

for jj = 1:m-1

for k = jj+1:m

P(ii,jj) = P(ii,jj) + P(ii,k);

B(ii,jj) = B(ii,jj) + B(ii,k);

end

end

end

if B >= P

b = 1;

else

b = 0;

end
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Appendix B

MATLAB Code for J2NN

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function will output a nonnegative matrix with spectrum

% corresponding to J (provided one exists).

% This function calls the level_periph function to determine whether or

% not a multiset of Jordan blocks corresponds to the peripheral spectrum

% of a nonnegative matrix. See level_periph for details on input.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function[NN,R,L] = J2NN(J)

[R,L] = level_periph(J);

if ~isfloat(L)

NN = ’There is no nonnegative matrix with Jordan form corresponding

to J’;

else

[t,m] = size(J); % t = number of distinct eigenvalues

m = m - 2; % m = number of levels

% Compute RootsInLevel cell array.

% RootsInLevel{i} is a vector listing the root numbers in level i.

RootsInLevel = cell(1,m);

for ii = 1:m
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ind = find(L == ii);

RootsInLevel{ii} = R(ind);

LevelChar(ii) = length(ind);

end

% We now construct LJ, the cell array representing the matrix we will

% apply a series of similarity transformations to to get NN

% (LJ = "Leveled Jordan form").

% Diagonal blocks are represented by vectors consisting of unions of

% complete sets of roots of unity.

LJ = cell(m,m);

for s = 1:m

LJ{s,s} = Z(RootsInLevel{s}(1));

for ii = 2:length(RootsInLevel{s});

LJ{s,s} = [LJ{s,s}, Z(RootsInLevel{s}(ii))];

end

end

% Initialize off diagonal blocks to zero blocks.

for s = 1:m

for c = 1:s-1

LJ{s,c} = zeros(length(LJ{s,s}),length(LJ{c,c}));

end

for c = s+1:m

LJ{s,c} = zeros(length(LJ{s,s}),length(LJ{c,c}));

end
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end

% Place ones in subdiagonal blocks connecting eigenvalues

for eigval = 1:t

%if J(eigval,3:m+2)~=0 % All 1x1 blocks so skip to next eigenvalue.

lambda = exp(2*pi*i*J(eigval,1)/J(eigval,2));

for s = 1:m

indcell{s} = find(LJ{s,s}==lambda);

level_char(s) = length(indcell{s});

end

for Jblocksize = m:-1:2 % Start with largest block size.

% for each block of above size,

for BlockNumber = 1:J(eigval,Jblocksize + 2);

% Find location of first lambda in seperate levels that have

% not yet been connected.

nb = find(level_char);

for count = 1:Jblocksize - 1;

s = nb(count + 1); % row s block

c = nb(count); % column c block

LJ{s,c}(indcell{s}(1),indcell{c}(1)) = 1;

% Remove lambda that have just been connected from lists.

indcell{c} = indcell{c}(2:level_char(c));

level_char(c) = level_char(c) - 1;

end

indcell{nb(Jblocksize)} = indcell{nb(Jblocksize)}
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(2:level_char(nb(Jblocksize)));

level_char(nb(Jblocksize)) =level_char(nb(Jblocksize))-1;

end

end

end

% celldisp(LJ)

% Set the (1,1) entry of each subdiagonal block to an appropriately large

% scalar.

for s = 2:m

for c = 1:(s-1)

LJ{s,c}(1,1)=m^2+max(R);

end

end

% Now we assemble the matrix LJ from the cell array LJ.

for s = 1:m

LJ{s,s}=diag(LJ{s,s});

end

LJ = cell2mat(LJ);

RootsInLevel = cell2mat(RootsInLevel);

% Apply a similarity transformation to the submatrix corresponding to

% lambda = 1.

ind = find(diag(LJ)==1);

[S,invS] = S1(LevelChar);

LJ(ind,ind) = S*LJ(ind,ind)*invS;
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% Apply the final similarity transformation.

[S,invS] = simtrans(RootsInLevel);

NN = S*LJ*invS;

NN = real(NN);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Z = Z(n)

% This function will take the natural number n as input and output a

% vector Z of length n consisting of the nth roots of unity.

Z=[1];

for j=1:n-1

Z=[Z exp(2*pi*i*j/n)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [S,invS] = simtrans(R)

% Input: R, a vector. R_i is a natural number corresponding to

% exp(2*pi*i/R_i). These numbers will generate S.

% Output: blocks, a cell array containing the diagonal blocks of the

% transformation matrix.

% S, a matrix which is the direct sum of the blocks.

t = length(R);

blocks{1} = subsim(R(1));

S = blocks{1};
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invS = 1/R(1)*conj(blocks{1});

for ii=2:t

blocks{ii} = subsim(R(ii));

S = [S zeros(sum(R(1:ii-1)),R(ii));zeros(R(ii),sum(R(1:ii-1)))

blocks{ii}];

invS = [invS zeros(sum(R(1:ii-1)),R(ii));zeros(R(ii),sum(R(1:ii-1)))

1/R(ii)*conj(blocks{ii})];

end

%%%%%%

function S = subsim(n)

alpha = exp(2*pi*i/n);

for jj = 1:n

for kk = 1:n

S(jj,kk) = alpha^((jj-1)*(kk-1));

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [S,invS] = S1(n)

% Creates block diagonal matrix S and its inverse, invS.

% The diagonal blocks satisfy: the first column is the all ones matrix,

% diagonal entries are ones, and

% remaining entries in row 1 are -1.

% invS is the inverse of S.

% Input: n, a vector determining the block sizes.
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S = [1 -1*ones(1,n(1)-1); ones(n(1)-1,1) eye(n(1)-1)];

invS=1/n(1)*[ones(1,n(1));-1*ones(n(1)-1,1),-1*ones(n(1)-1)+n(1)*

eye(n(1)-1)];

for ii = 2:length(n)

next = [1 -1*ones(1,n(ii)-1); ones(n(ii)-1,1) eye(n(ii)-1)];

S = blkdiag(S,next);

next = 1/n(ii)*[ones(1,n(ii)); -1*ones(n(ii)-1,1),

-1*ones(n(ii)-1)+n(ii)*eye(n(ii)-1)];

invS = blkdiag(invS,next);

end
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