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ESSAYS IN THE ESTIMATION OF SYSTEMS OF LIMITED DEPENDENT 

VARIABLES WITH APPLICATION TO DEMAND SYSTEMS 

Abstract  

 

by Faysal Habib Fahs, Ph.D. 
Washington State University  
School of Economic Sciences 

August 2008 
 

 

Chair: Ron C. Mittelhammer 

This dissertation includes three essays in the estimation of Limited Dependent Variables 

and Demand System Models. In the first essay, we utilize the Generalized Method of 

Moments (GMM) approach to estimate censored equation systems. The GMM approach 

is based on a common set of marginal and bivariate moment relations that hold between 

the explanatory variables and the model noise. We review the computational problems 

involved in estimating Multivariate Tobit (MVT) Models of relatively high dimension, 

and then note how our GMM approach addresses the computational burden. The GMM 

estimator is consistent, asymptotically normally distributed, near-asymptotically efficient, 

and computationally easy and tractable as the dimensionality of the model increases. 

Finally Monte Carlo experiments were conducted to investigate and compare the 

performance of the GMM approach to the Simulated Maximum Likelihood (SML) 

estimator with different distributional assumptions. The GMM estimator demonstrates 

itself as an empirically tractable way of estimating systems of censored regressions 

involving large samples and high dimensional models. 
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The Second essay examines the impact of the E.coli outbreaks that occurred in 

2006 on consumer demand for salad vegetables on the West Coast of the United States. 

The scanner-data set used in our analysis is obtained from a chain supermarket and is 

aggregated on a weekly basis for the consumption of salad vegetables. The data contain a 

significant portion of observations with zero consumption on one or more vegetable 

groups. Zero consumption may be reflecting consumer concern about the E.coli 

outbreaks, the effect of removal of vegetable groups from store shelves due to product 

recalls and/or the result of personal preferences with respect to consumption. We 

motivate the use of the Tobit model as a statistical representation of consumer behavior 

by specifying the Quadratic Almost Ideal Demand System (QUAIDS) with demographic 

effects under binding non-negativity constraints. To avoid violating the non-negativity 

constraints of the model and to overcome the computational burden of high 

dimensionality, the GMM approach, along with the virtual prices concept, are used for 

estimating the system of non-linear censored demand equations. The empirical results 

show that during the outbreak period lettuce and cabbage were substituted for spinach, 

indicating consumers’ concern about the E.coli impact. 

The third essay utilizes the Minimum Power Divergence (MPD) class of 

probability distributions to estimate censored regression models. Based on the 

minimization of the Cressie-Read (CR) power divergence function, we are able to 

implement an estimator that requires less priori model structure than conventional 

parametric models such as the Tobit estimator. Our estimator assumes that the 

distribution of the noise term is neither based on, nor restricted to, the conventional 

parametric families (normal, logistic) and suggests a range of CDFs that is based on the 
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MPD principle. The paper pursues two estimation approaches to estimate censored 

regression model using the MPD principle: 1) Generalized Method of Moments (GMM) 

and 2) Maximum Likelihood approach (ML). Monte Carlo sampling experiments suggest 

that the estimators within the CR class will be more robust than conventional methods 

often used in empirical practice while also producing estimation precision that rivals the 

tightly specified parametric approaches in the event that the data generating distributional 

assumptions underlying the parametric specifications are true. 
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INTRODUCTION 

 

Models with Limited Dependent Variables (LDV) have received considerable 

attention in the econometric literature. LDV models stem from the increasing use of 

household and firm-level microeconomic data in empirical analysis of consumer demand, 

labor supply, output supply, and input demand, among other empirical economic 

contexts. 

In this dissertation we focus on a situation where the dependent variable is 

censored. With the assumption of normality, the Tobit model is one of the classical 

models that can address the situation of censoring using Maximum Likelihood (ML) 

estimation procedure. In a systems context, the Multivariate Tobit (MVT) Model 

typically has a correlated error structure and requires a joint estimation procedure based 

on a mixed continuous-discrete distribution consisting of the continuous probability 

density function and the discrete mass function for the zero observations. Using ML for 

estimating MVT models requires the evaluation of the partially integrated multivariate 

normal probability density function. This is known to be computationally inefficient and 

quickly becomes intractable as the dimensionality of the model increases. 

The first essay in this dissertation suggests using the Generalized Method of 

Moments approach (GMM) as an alternative approach for estimating MVT models. The 

GMM approach is based on a common set of marginal and bivariate moment relations 

that hold between explanatory variables and model noise. Estimates obtained by the 

GMM procedure are consistent, asymptotically normally distributed, and near-

asymptotically efficient. Other advantages of the GMM, in comparison to the ML 



 2

approach, are that it is empirically tractable as the dimensionality of the model increases, 

computationally easy and relatively fast, and flexible for imposing restrictions. 

The second essay provides a substantive illustration of the empirical application of 

the GMM approach, presenting a case study that analyzes and estimates the demand for 

vegetable salads after the 2006 E. coli outbreaks on the West Coast of the United States.  

A censored Quadratic Almost Ideal Demand System (QUAIDS) under binding non-

negativity constraints is used as a functional form for the demand system. Because of the 

E. coli outbreaks, the expenditure data obtained from the retail store contains a high 

frequency of zero consumption observations for spinach. The zero consumption can be 

representative of consumer concern about the E.coli outbreaks, the effect of removal of 

vegetable groups from the shelves due to product recall, or the result of personal 

preferences. The GMM approach alone is not sufficient for the analysis, since there is a 

possibility of the violation of the non-negativity constrains and the adding up conditions. 

This additional econometric complication was addressed by introducing the virtual prices 

concept within the GMM estimation approach. The proposed approach guarantees that 

the regularity conditions and adding up constraints are satisfied in these models. The 

empirical results along with an elasticity analysis suggest the usefulness of this approach 

in the analysis of the E. coli outbreaks on consumer demand for salad vegetable. 

The third essay utilizes the Minimum Power Divergence (MPD) class of 

probability distributions to estimate censored regression models. Based on the 

minimization of the Cressie-Read (CR) power divergence function, we are able to 

implement an estimator that requires less priori model structure than conventional 

parametric models such as the Tobit estimator. Our estimator assumes that the 
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distribution of the noise term is neither based on, nor restricted to, the conventional 

parametric families (normal, logistic) and suggests a range of CDFs that is based on the 

MPD principle. The paper pursues two estimation approaches to estimate censored 

regression model using the MPD principle: 1) Generalized Method of Moments (GMM) 

and 2) Maximum Likelihood approach (ML). Monte Carlo sampling experiments suggest 

that the estimators within the CR class will be more robust than conventional methods 

often used in empirical practice while also producing estimation precision that rivals the 

tightly specified parametric approaches in the event that the data generating distributional 

assumptions underlying the parametric specifications are true. 
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ESSAY ONE: 

 
GENERALIZED METHOD OF MOMENTS ESTIMATION OF CENSORED 

EQUATION SYSTEMS 

 

Abstract 

In this paper we utilize the Generalized Method of Moments (GMM) approach to 

estimate censored equation systems. The GMM approach is based on a common set of 

marginal and bivariate moment relations that hold between the explanatory variables and 

the model noise. We review the computational problems involved in estimating 

Multivariate Tobit (MVT) Models of relatively high dimension, and then note how our 

GMM approach addresses the computational burden. The GMM estimator is consistent, 

asymptotically normally distributed, near-asymptotically efficient, and computationally 

easy and tractable as the dimensionality of the model increases. Finally Monte Carlo 

experiments were conducted to investigate and compare the performance of the GMM 

approach to the Simulated Maximum Likelihood (SML) estimator with different 

distributional assumptions. The GMM estimator demonstrates itself as an empirically 

tractable way of estimating systems of censored regressions involving large samples and 

high dimensional models. 
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1. Introduction  

In statistical applications, one often encounters a situation where the dependent 

variable is only observable under certain conditions. Censoring occurs when observations 

on the dependent variable are limited in range, whereby observations are restricted to one 

or both endpoints of an interval with positive probability mass. 

A common example of the above situation is Tobin’s (1958) study of household 

expenditures. The consumer maximizes his or her utility by purchasing durable goods 

under the constraint that total expenditures do not exceed income. The expenditure for 

durable goods must be at least equal to the cost of the least expensive item or else the 

outcome is censored at a zero value. Many other examples of censored outcomes can be 

found: hours worked by wives (Quester and Green, 1982), scientific publications 

(Stephan and Levin, 1992), extramarital affairs (Fair, 1978), foreign trade and investment 

(Eaton and Tamura, 1994), austerity protests in Third World countries (Walton and 

Ragin, 1990), damage caused by a hurricane (Fronstin and Holtmann, 1994) and in 

addition to a wide range of examples that researchers encounter in both economic and 

econometric analysis.  

One of the econometric approaches for addressing censored dependent variables in 

a single equation setting is using the standard Tobit estimator while assuming that the 

error term is normally distributed. However, in system of equations with multiple 

censored variables the error terms are correlated and require a joint estimation procedure. 

Lee (1993) proposed a specification of a mixed continuous-discrete distribution which 

consists of a continuous probability density function for positive observation and a 

discrete probability mass function for the zero observations.  
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Maximum likelihood (ML) is a commonly used estimation approach in the context 

of censored regressions. It requires the evaluation of a partially integrated multivariate 

normal density function (in the case of a Tobit model), which is known to be a 

computationally inefficient, inaccurate and intractable approach as dimensionality of the 

model increases (Lee, 1993). Several studies attempted to apply alternative 

computationally more tractable techniques. For example, Pudney (1989) estimated a 

system of Tobit equations by applying the Tobit technique to each equation marginally. 

Amemiya (1974) proposed a model based only on jointly positive sample outcomes of all 

dependent variables. While both techniques are consistent and numerically tractable, the 

estimators are inefficient. The former ignores the inter-correlation between the equations 

and fails to impose any cross equation restrictions, such as symmetry conditions, while 

the latter does not consider cases where the number of observations with positive valued 

dependent variables is very small i.e., the probability of joint positivity is small. Maddala 

(1977) modified Amemiya’s (1974) procedure so as to use all the sample observations 

pertaining to the model, but a major shortcoming of his procedure is the evaluation of 

partially integrated multivariate normal probability density functions. 

Evaluating the probability of the censored observations involves high dimensional 

integration in the case of a system with a relatively large number of equations, and an 

appreciable incidence of censoring. In response, researchers often restrict their attention 

to special classes of multivariate Tobit models where the censored observations are 

ignored. Ignoring the specific data sampling characteristics of the zero observations while 

modeling and estimating the parameters of the model leads to biased estimates. 
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Excluding the censored observations will result in sample selection bias (Lee and Pitt, 

1987).  

Hajivassiliou and Ruud (1994) suggested the Simulated Maximum Likelihood 

(SML) approach based on the Geweke-Hajivassiliou-Keane (GHK) simulator for 

overcoming the problem of high dimensional numerical integration underlying the choice 

probabilities in systems of censored equations. Hasan and Mittelhammer (2001) 

developed an improved type of GHK Called the “ordered GHK” (ORDGHK) simulator 

which is based on efficient reordering of the integrations that occur in the definition of 

the conditional probabilities in the GHK simulators. The advantage of the reordering is 

the calculation of multivariate rectangular probabilities, which is less computationally 

difficult, more numerically accurate and faster in convergence compared to other 

simulators. Although a great deal of work has been done to overcome the problem of high 

dimensionality, a remaining concern was tractability, simplicity and convergence time. 

This paper utilizes the GMM approach, first used by Fahs and Mittelhammer 

(2001), to estimate systems of MVT models. In order to increase efficiency, we introduce 

third moment bivariate conditions along with cross-moments in the GMM approach. 

Adding more moments conditions, where asymptotic efficiency comparisons suggest that 

more is better than less, will generally decrease the asymptotic covariance matrix of the 

GMM estimator. The GMM uses a common set of marginal and bivariate moment 

conditions that takes into account correlation among the random components of the 

model to calculate parameter estimates and covariance structure of the error terms. The 

GMM estimator is consistent, empirically tractable, asymptotically normally distributed, 
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and near-asymptotically efficient while being more robust relative to alternative sampling 

distributions. 

The reminder of the paper is organized as follows: Section 2 summarizes the basic 

structure of the MVT model. Section 3 describes the moment conditions used in the 

GMM approach. Section 4 introduces the GMM estimation of the MVT model. Section 5 

illustrates the Monte Carlo experiments and summarizes the results. Lastly, Section 6 

ends with our conclusions. 

 

2. Multivariate Tobit Model 

In a multivariate Tobit model we have 

(2.1)    * , 1, , ,i i i i nβ ε= + = …Y X  

[ ]( ) ( )*where 0 , and ,i iN Nε βΣ Σ∼ ∼Y X  and i denotes the observation number. In this 

model *
iY is a J×1 continuous latent variables that determine the choice probabilities of 

an optimizing agent, 

1

and
i 1 1i

i i ji ji j

Ji J Ji

β U
β= U β

β U

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

# #
X

X U X
X

, where jiX  is j1× K  row vector of 

explanatory variables, jβ is jK ×1 column vector of parameters and Σ  is 

J × J covariance matrix. Here, and elsewhere, the symbol jiU  is the same as ji jβX . 

Assuming the censoring occurs at zero, the model is generally written as: 

(2.2)  for and
 otherwise

* *
ji ji

ji
Y     if   Y > 0

Y  = i = 1,2,…,n, j = 1,2,…,J
0        

⎧
⎨
⎩
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where the subscript i denotes the observation number and the subscript j denotes choice 

alternative.  

More generally, for a given individual decision maker, the latent vector *
iY can be 

written as: 

(2.3)     

*
id

*
i

*
ic

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y
Y

Y
 

where *
idY  represents the discrete elements of *

iY associated with the outcomes 0id =Y , 

and *
icY represents the non-censored observations corresponding to 0*

ic ic= >Y Y . 

Let [ ],θ β= ∑  denote all the parameters of the model. Then the joint probability 

density of ( ),* *
ic idY Y can be represented in general by  

(2.4)  * * * * *
id ic id ic icf( , ; ,θ) = f( | ; ,θ)× f( ; ,θ)Y Y X Y Y X Y X  

where * *
id icf( | ; ,θ)Y Y X  represents the discrete choice probability conditional on the 

continuous variable *
icY , and *

icf( ; ,θ)Y X is the probability density function for the 

continuous random variable. Thus the contribution of the ith observation to the likelihood 

function will be 

(2.5)  * * * * *
id ic ic id icL( , ; ,θ) = L( ; ,θ) × L( | ; ,θ)Y Y X Y X Y Y X . 

The first component of the likelihood function, *
icL( ; ,θ)Y X , is a Jc-dimensional 

multivariate normal probability density and its value is straightforward to calculate. The 

second part of the likelihood function, * *
id icL( | ; ,θ)Y Y X , is difficult to evaluate, where 

different simulators have been suggested to overcome this problem. These simulators 
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become computationally intractable and slow in convergence, and accuracy decreases as 

the dimensionality of the model increases. We demonstrate these problems in section 5 as 

we compare the GMM approach with SML using an ordered GHK simulator 

(ORDGHK).  

 

3. Moments of the MVT Model 

Given the MVT model presented in section 2, this section presents the moment 

conditions that hold between the explanatory variables and the model noise. Two types of 

moment conditions are introduced. The first is the marginal moment conditions and the 

second type is the bivariate moments that help to identify and estimate the parameters 

involved in the covariance matrix across equation errors. 

 

3.1 Marginal Moments Conditions 

Considering the model given by equation (2.2) and conditioning on the positive 

observations, the first and second conditional moments of a truncated normal random 

variable first derived by Amemiya (1973) are given by  

(3.1.1)    ( ). . .| >0 j
j j j j

j

E Y Y U
φ

σ
Φ

= +   

(3.1.2)    ( ) ( )2 2
. . . . .| >0 | >0j j j j j jE Y Y U E Y Y σ= +  

where the subscript j denotes the jth choice alternative1. Equation (3.1.1) represents the 

first order marginal moments condition on all the positive observations in .jY , jφ  is the 

                                                 

1 
1 1 1

. . .shorthand for , shorthand for ,  shorthand for
i 1 i i

j j j

Ji J Ji Ji

X β Y X
U Y and X

X β Y X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# # #  
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probability density function (PDF)and jΦ  is the cumulative density function (CDF), and 

both are shorthand for .j

j

U
σ

φ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 and .j

j

U
σ

Φ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, respectively (these notations apply for the rest 

of the paper). Equation (3.1.2) represents the second order marginal moments condition 

on all the positive observations in .jY . 

Using all the observations in .jY , instead of using the non-zero observations, we can 

represent two unconditional marginal moments (Heckman, 1976b) as: 

(3.1.3)    ( ). .j j j j jE Y U σ φ= Φ +  

(3.1.4)    ( ) ( )2 2
. . .j j j j jE Y U E Y σ Φ= +  

where andj jφ Φ  represents the PDFs and the CDFs, respectively,  equations (3.1.3) and 

(3.1.4) represent the first and the second order of the unconditional marginal moments 

respectively. 

Based on asymptotic efficiency comparisons, the asymptotic covariance matrix of 

the GMM estimator generally becomes smaller as the number of nonredundant moments 

used increases. We can derive an additional moment condition by defining a binary 

variable, analogous to the Probit case:  

.
.

1 0
0 otherwise

j
Binary j

if Y
Y

>⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 

The binary marginal moment condition can be represented as 

 (3.1.5)    E( ) =Binary j. jY Φ  

where jΦ represents the CDF and is a shorthand for  .j

j

U
σ

Φ
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. 
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Gathering all of the marginal moment conditions (3.1.1)–(3.1.5) for all n 

observations, we can define the following relationships between .jU , .jY  and disturbances 

( i )
jξ  that have zero expectations as: 

(3.1.6)   

( )

0

0

(1)
j.>0 j . j j>0 j

j>0
2 2 (2)
j.>0 j . j.>0 j j

(3)
j . j . j j j j

2 2 (4)
j . j . j . j j j

(5)
Binary j. j j

1Y =U +σ +

Y =U E(Y )+σ +
Y =U +σ +

Y =U E Y +σ +

Y = +

ξ

ξ
ξ

ξ

ξ

>

>

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

: :

:
: :

: :

Φ

Φ

Φ

Φ

φ

φ  

 
 
where j.>0Y  denotes the set of positive valued observations relating to the jth choice 

alternative, 0j .U >  denotes the observations on the explanatory variables that correspond to 

the positive valued outcomes, ( )j.>0E Y  is shorthand notation for 

( ). .| >0j.>0 j jEY E Y Y  ≡ ( ) . 0 j j>0j
j>0

1= U +σ
>

: :
Φ

φ , : denotes the Hadamard (elementwise) 

product. In this context, jΦ  and jφ  are vectors  the cumulative distribution function and 

density function values of the standard normal distribution, evaluated at the vector 

.
1

j
j

U
σ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

: , j>0Φ  and >0jφ  are the subsets of those vectors corresponding to the positive 

valued observations j.>0Y , and 
j>0

1
Φ

 denotes a vector of reciprocals of the elements in 

j>0Φ . 

Because  
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0
(1)

j j.>0 j . j j>0
j>0

1Y U -σ ,ξ >= − : :
Φ

φ  

0
(2) 2 2

j j.>0 j . j.>0 jY U E(Y )- σ ,ξ >= − :  

(3)
j j . j . j j jY U - σ ,ξ = − : :Φ φ  

( )(4) 2 2
j j . j . j . j jY U E Y -σ ,ξ = − : :Φ  

and 

(5)
j Binary j. jY -Φ .ξ =  

Orthogonality conditions can be defined as follows: 

0j.>0 j.>0 j . j j>0
j>0

1E Y - U - σ = 0, >

⎡ ⎤⎛ ⎞
′⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

: :X
Φ

φ  

( )0
2 2

j.>0 j.>0 j . j>0 jE Y  - U EY  - σ = 0,>
⎡ ⎤′⎣ ⎦:X  

( )j . j . j . j j jE Y  - U - σ = 0,  ⎡ ⎤′⎣ ⎦: :X Φ φ  

( )( )2 2
j . j . j . j . j jE Y  - U E Y - σ = 0,⎡ ⎤′

⎣ ⎦: :X Φ  

and 

( )j . Binary j. jE Y  - = 0,⎡ ⎤′⎣ ⎦X Φ  

where j.X  denotes the observations on the explanatory variables for the jth  outcome and 

having dimension (n×K), j.>0X  denotes the observations on the explanatory variables that 

correspond to the jth positive valued outcomes. We can define a ( )5KJ×1 vector of 

moment conditions derived from the orthogonality conditions as 
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 (3.1.7)  

( )( )
( )

( )( )
( )

. 0

. 0

j Marginal
. . .

. . . .

.

j.>0 j.>0 j j j>0
j>0

2 2
j.>0 j.>0 j j.>0 j

j j j j j j

2 2
j j j j j j

j Binary j. j

1Y - U - σ

Y  - U E Y  - σ
E ( , , ) = E = 0.

Y  - U  -σ  

Y  - U E Y -σ  

Y  - 

θ

>

>

⎡ ⎤⎛ ⎞
′⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥
′⎢ ⎥

⎢ ⎥⎡ ⎤⎣ ⎦ ′⎢ ⎥
⎢ ⎥

′⎢ ⎥
⎢ ⎥
⎢ ⎥′⎣ ⎦

: :

:

: :

: :

X
Φ

X
h Y X

X Φ

X Φ

X Φ

φ

φ  

 

Then the sample analog of the population moments displayed in (3.1.7) is 

(3.1.8)  
( )

( )( )

( )

( )( )

( )

. 0(1)

. 0(2)

.
j Marginal . .(3)

.
. . .(4)

.
(5)

j j
j

2
j j

j

j
j j j j j

j

j 2 2
j j j j j

j

j
Binary j. j

j

j.>0
j.>0 j>0

j>0

j.>0 2
j.>0 j.>0

1y - u - σ
n

y  - u E y  - σ
n

, , θ = y  - u  - σ
n

y  - u E y - σ
n

y  - 
n

>

>

⎡ ⎛ ⎞′
⎢ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠
⎢ ′⎢
⎢
⎢

′⎢
⎢
⎢
⎢ ′

′

⎣

: :

:

: :

: :

x
Φ

x

xh y x Φ

x
Φ

x
Φ

φ

φ = 0, 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

 

where ( )i
jn  denotes the number of sample observations that correspond to the ith set of 

moment conditions for the jth  choice alternative, ( ). 0jE y > is equal to ( ). 0jE Y >  evaluated 

at sample outcomes for .jy  and .jx  and at specified values for θ . Note we changed 

variables from capital letters to small letters to indicate that we are evaluation at the 

sample moments. 
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The dimension of Marginal(Y, X, θ)h  is ( )5KJ× 1 , which is greater than the number of 

unknown parameters in the model. Consequently, in general there will not exist a unique 

parameter vector θ  that solves the sample moment conditions via the ordinary method of 

moment’s approach, which attempts to find a θ  that satisfies (3.1.8). We will deal with 

identification issues later in the paper. 

 

3.2 Bivariate Moment Conditions 

The bivariate moments help to identify and estimate the parameters involve in the 

covariance structure occurring across equation errors. In addition, the bivariate moments 

avoid the problem of evaluating the probability of the discontinuous part in higher 

dimensions because numerical integration is then only required in two dimensions, which 

is accurate and computationally fast. 

Tallis (1961) derived the first two moments and the moment generating function of 

the truncated multivariate normal distribution. Following Tallis, Fahs and Mittelhammer 

(2001) were able to derive the first two moments of the truncated bivariate normal 

distribution based on a different parameterization of the model. In this paper we derive 

the first, second and third order bivariate moments along with all the cross moment 

conditions. Based on Tallis (1961), Fahs and Mittelhammer (2001), Appendix 2 shows all 

the calculation for any decision outcomes2 ( ). .,j kY Y . 

The MVT model is characterized by J alternative choices, so that there 

are 1
2

JJ −⎛ ⎞
⎜ ⎟
⎝ ⎠

  alternative pairs of decision outcomes that can be examined in a bivariate 

                                                 
2 Note  j and k denotes the choice alternatives and Capital K represents the number of columns in the 
explanatory variables, i ' sX  
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manner. For example, in a five choice-model, there are ten bivariate pairs for each 

observation given by: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1i, 2 1i, 3 1i, 4 1i, 5 2i, 3 2i, 4 2i, 5 3i, 4y y , y y , y y , y y , y y , y y , y y , y y ,i i i i i i i i  

( ) ( )3i, 5 4i, 5y y and y y .i i  For each pair, one can derive nine moment conditions through the 

third order. For example for ( )1 2,i iY Y outcome we can represent the moments as: 

The first order bivariate moments: ( )1 1 2| 0, 0i i iE y y y≥ ≥ and ( )2 1 2| 0, 0i i iE y y y≥ ≥  

The second order bivariate moments: ( )2
1 1 2| 0, 0i i iE y y y≥ ≥ and ( )2

2 1 2| 0, 0i i iE y y y≥ ≥  

The third order bivariate moments: ( )3
1 1 2| 0, 0i i iE y y y≥ ≥ and ( )3

2 1 2| 0, 0i i iE y y y≥ ≥  

Lastly the cross bivariate moments: ( ) ( )2
1 2 1 2 1 2 1 2| 0, 0 , | 0, 0i i i i i i i iE y y y y E y y y y≥ ≥ ≥ ≥  

( )2
2 1 1 2and | 0, 0i i i iE y y y y≥ ≥  

Similar to the orthogonality conditions presented in section 3.1 relating to the 

marginal moments, and noting that for any pair of decision outcomes, ( )j. k.y , y , there are 

nine bivariate moments. We can define a ( )9 1
1

2
J J K−⎛ ⎞

×⎜ ⎟
⎝ ⎠

 vector function of bivariate 

moment conditions based on the preceding results as:  

( )

( )( )

( )( )

( )( )

[ ]

'
. . . . .

1,2, ;

' 2 2
. . . . .

Bivariate 1,2, ;

' 3 3
. . . . .

1,2, ;

| 0, 0

| 0, 0
(3.2.1) , , 0

| 0, 0

j j j j k

for j and k J j k

j j j j k

j for j and k J j k

j j j j k

for j and k J j k

E Y

E
E

E

θ

= ≠

= ≠

= ≠

⎡ ⎤− ≥ ≥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− ≥ ≥⎢ ⎥
⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥

− ≥ ≥⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥

…

…

…

#

#

#

X Y Y Y

X Y Y Y Y
h Y X

X Y Y Y Y
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( )( )

( )( )

( )( )

'
. . . . . . .

1, 2, ;

' 2 2
. . . . . . .

1, 2, ;

' 2 2
. . . . . . .

1, 2, ;

| 0, 0

| 0, 0

| 0, 0

j j k j k j k

for j and k J j k

j j k j k j k

for j and k J j k

j j k j k j k

for j and k J k j

E

E

E

= >

= >

= >

⎢ ⎥
⎢ ⎥

− ≥ ≥⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− ≥ ≥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− ≥ ≥⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

…

#

#

#

X Y Y Y Y Y Y

X Y Y Y Y Y Y

X Y Y Y Y Y Y

 

 

The sample analog of the population moment condition (3.2.1) 

( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( )

6

7

8

9

'
.

. . . .

1,2, ;

'
. 2 2

. . . .

1,2, ;

j Bivariate '
. 3 3

. . . .

1,2, ;

'
.

. . . . .

| 0, 0

| 0, 0

(3.2.2) , ,
| 0, 0

|

j
j j j k

jk

for j and k J j k

j
j j j k

jk

for j and k J j k

j
j j j k

jk

for j and k J j k

j
j k j k j

jk

E
n

E
n

E
n

E
n

θ

= ≠

= ≠

= ≠

− ≥ ≥

− ≥ ≥

=

− ≥ ≥

− ≥

…

…

…

#

#

#

x
y y y y

x
y y y y

h y x
x

y y y y

x
y y y y y( )( )

[ ]

.

1, 2, ;

0

0, 0k

for j and k J j k= >

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥≥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

…

#

y
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( ) ( )( )

( ) ( )( )

10

11

'
. 2 2

. . . . . .

1, 2, ;

'
. 2 2

. . . . . .

1, 2, ;

| 0, 0

| 0, 0

j
j k j k j k

jk

for j and k J j k

j
j k j k j k

jk

for j and k J k j

E
n

E
n

= >

= >

⎢ ⎥
⎢ ⎥
⎢ ⎥− ≥ ≥⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− ≥ ≥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

#

#

x
y y y y y y

x
y y y y y y

 

where, 
( )i

jkn  denotes the number of sample observations involved in the ith set of moment 

conditions for the (j,k)th Choice pair. The number of equations in the vector 

Bivariate(Y, X, θ)h , ( )9 1
1

2
J J K−⎛ ⎞

×⎜ ⎟
⎝ ⎠

 , is greater than the number of unknown parameters in 

the model ( )1
2

J J
K

−⎛ ⎞
+⎜ ⎟

⎝ ⎠
. Consequently, there is no unique parameter vector ( )θ  that 

solves the sample moment conditions via the ordinary method of moments approach. We 

will deal with such issues in section 4 ahead. 

 

4. GMM Estimation of the MVT System 

In this section the GMM approach is applied to the MVT system by utilizing the 

general marginal and bivariate moment relations that were derived in Sections 3. In 

section 3.1 we defined a ( )5K×1  vector of marginal moment conditions, and in section 

3.2 we derived a 9J(J -1)K ×1
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

vector of the bivariate moment conditions. Then a 

cumulative set of moment conditions, including both marginal and bivariate moments, 

can be specified as:  



 20

(4.1)   ( ) jMarginal

jbivariate

( , , θ)
 E ( , , θ)  = Ε = 0

( , , θ)
⎡ ⎤
⎢ ⎥
⎣ ⎦

h Y X
H Y X

h Y X
 

The sample estimating moment analog is [ ] ( , , θ) = 0H y x , which has dimension 

9J(J - 1)K
5KJ + ×1

2
⎛ ⎞⎜ ⎟
⎝ ⎠

 while the parameter vector ( ),θ β= ∑ contains J(J - 1)
+ K

2
⎛ ⎞
⎜ ⎟
⎝ ⎠

unique 

elements, where ( )1is Kβ × and ( )J JΣ = × . 

The number of estimating functions in the preceding specification is greater than 

the number of unknown parametersθ , so the set of estimating equations is over-

determined for estimatingθ . Given [ ] ( , , θ) = 0H y x , under the GMM approach the 

parameter vector is chosen for which the sample moment conditions are as close to the 

zero vector as possible. To solve for the estimation problem we use the following 

weighted Euclidean distance as a measure of closeness:  

(4.2)  [ ] [ ]min ( , , θ) min ( , , ) ( , , )Qθ θ θ θ′ =  y x H y x W H y x   

where W is a conformable positive definite symmetric weight matrix. Another way to 

view the GMM approach to the problem of solving over-determined sets of sample 

moment conditions is through the necessary condition for minimizing (4.2) by 

(4.3)  , θ 'Q( , ) ( , , θ) = 2 ( , , θ) = 0
θ θ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎣ ⎦

y x H y x W H y x . 

The condition (4.3) indicates that the problem of the equation system being over-

determined is overcome by forming a J(J - 1) + K
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 linear combination of the moment 

conditions based on the matrix
'

θ
⎡ ⎤∂⎛ ⎞
⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦

H W  to project the moment conditions to a 
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J(J - 1) + K
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

-dimensional space, in effect resulting in the same number of equations as 

unknowns.  

One major difficulty in implementing the GMM estimator is the choice of the 

weighting matrix W, which can affect the relative efficiency of the estimator. The choice 

of W that results in the asymptotically most efficient estimator within the class of GMM 

estimators is the inverse of the covariance matrix cov -1 *[ ( , , θ)]=(E( ')) =H y x HH W  

(Hansen, 1982; Andrews, 1999). Optimality in the current context refers to choosing a W 

matrix in the definition of the GMM estimator 

(4.4)   ˆ
GMM θθ ( )= arg min  [ ( , , θ) ( , , θ)] ′W H y x W H y x  

such that ˆ
GMMθ ( )W  has the smallest asymptotic covariance matrix. Because the optimal 

weight matrix implied by -1 *(E( ')) =HH W  is generally unknown, and thus ˆ
GMMθ ( )W  

is not operational, a consistent estimator, ˆ
nW  of *W is used.  In practice, this is obtained 

by setting W = I and calculating ( )θ̂ I  in (4.4) and in the process calculating the 

covariance matrix of H. In the second step, the sample estimator of the optimal weighting 

matrix ˆ
nW  is substituted into (4.4) leading to the estimated optimal GMM defined 

by ˆ ˆ
GMM nθ ( )W . The estimated optimal GMM estimator will be consistent, asymptotically 

normal and asymptotically efficient estimator in the sense of making asymptotically 

efficient use of the given moment information used in estimation. 

The above estimation procedure can be summarized as follows: 

1. Use all conditional and unconditional (first and second) marginal moments 

along with the binary moments for each equation. 
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2. Use all possible combinations of the bivariate first, second and third order 

moments, including cross moments. 

3. Define the sample estimating equations analogs to the population moments. 

4. Use the GMM method with an estimated optimal weight matrix to estimate 

the model parameters. 

An important question in seeking the minimum of the quadratic form in moment 

conditions that defines the GMM objective is how to provide starting values for the 

minimization algorithm used. We suggest using the univariate and bivariate Tobit 

estimator. In the first step, given that the MVT system has J equations, one can estimate 

J-univariate Tobit estimates of each equation marginally. Doing this we get consistent 

estimates of ˆ
jβ 's  and ˆ jσ 's . In the second step we apply the bivariate Tobit on every pair 

of equations to estimate ˆ
j'sβ  and J(J - 1)

2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 covariances. The estimates of the first and 

second steps are then averaged and used as starting values for the GMM approach. We 

have found this approach to be very effective in providing starting values in the array of 

problems we have applied the procedure to. 

 

5. Monte Carlo Experiments and Results 

In this section we perform Monte Carlo experiments to compare the parameter 

estimates of the GMM to the SML using the ORDGHK simulator (Hasan and 

Mittelhammer, 2001). We start the first experiment with a Two-choice model and 

compare our GMM approach to a SML under the assumption of normality as well a 

number of skewed distributions that are described in greater detail below. Then we test 

moment equations validity under these different distributions. Finally, in the second 
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experiment we extended the MVT system to a Five-choice model and compare the GMM 

to the SML under normality. 

All calculations were obtained using the GAUSS 8.0 matrix programming 

language. All the simulation experiments were performed on the HP Pentium 4 machine 

(AMD Athlon ™ 64×2 Dual core processor 5600 +2.8 GHz) and 4 GHz of memory. 

For the minimization of equation (4.2), we used the Nelder-Meade polytope direct-

search method of optimization which only requires a continuous objective function, and 

evaluations of that function to achieve optimization. It is robust to non-differentiability 

and useful for functions whose derivatives cannot be calculated or approximated easily, 

or at all. A convergence criterion of 0.00001 was used for the difference between the 

maximum and the minimum objective function associated with the vertices of the Nelder-

Meade simplex.  

 

5.1 Sampling Experiments 

We begin generating outcomes of the latent variable in equation (2.1) by sampling 

the X from a uniform distribution having support on the interval (-5, 5). The betas and the 

correlation matrix, R, for the two-choice model and the five-choice model are represented 

in equation 5.1.1 and 5.1.2 respectively.  

( )5.1.1

where ,and
2

*
1
*
2

11 21 1 11
1 2

12 22 2 22

1 1 1

2 2 2

Y
= ,

Y

β β ε σ.1 .3 0 1 .2 1
β = = ,β = = ~ N ,R = , =

β β ε σ.2 .4 0 .2 1

X β ε
+

X β ε
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
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( )5.1.2

where

*
1
*
2
*

3
*

4
*

5

31 4111 21
1 2 3 4

32 4212 22

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

Y
Y

= ,Y

Y

Y

β ββ β.1 .3 .5
β = = ,β = = ,β = = ,β =

β ββ β.2 .4 .6

X β ε
X β ε
X β ε+
X β ε
X β ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

and

51
5

52

1 11

2 22

3 33

444

555

β.7 .5
= ,β = = ,

β.8 .2

ε σ0 1 .1 .2 .3 .4
ε σ0 .1 1 .6 .4 .25
ε ~ N ,R = , σ0 .2 .6 1 .11 .12

σε 0 .3 .4 .11 1 .15
σ0 .4 .25 .12 .15 1ε

⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎦ ⎣ ⎦

⎛ ⎞⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠

1
2

= .4
3
4

⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

The correlation matrix was chosen so as to produce a fair degree of variability in the error 

term outcomes as well as to produce a variety of covariances between latent variables. 

Given all the information above we can generate the latent variables and then generate 

the data for the MVT model as shown in equation (2.2). 

 

5.2 Two-Choice Tobit Model  

Under the assumption of normality, Table 1 in Appendix 1 summarizes the 

comparison between the GMM and SML in the Two-choice model. With a sample size of 

1,000 observations the SML approach, as expected, outperforms the GMM approach in 
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term of the root means square errors3 (RMSE). The RMSEs of the SML is slightly 

smaller in magnitude compared to the RMSEs of the GMM. These results are not 

surprising because of the asymptotic efficiency of the ML estimator, which achieves the 

Cramér-Rao lower bound when the assumption of normality is correct. 

The Percentage probabilities of censored observations in each equation of the Two-

choice model show a fair degree of censoring. In equation one (containing 11β  and 12β  

parameters) the percentage probability of censored observations is 23%, while in 

equation two (containing 21β  and 22β  parameters) it is 20%. Reporting the percentage 

probability of censoring is very important as we will show later in the paper how high 

censoring can affect our results. To check if any of the estimation methods (GMM or 

SML) is an improvement over the other, two tests were performed to see if there were 

any statistical differences in the RMSEs and the sample means of the two approaches. 

The null hypothesis for the RMSEs is H0: mean (RMSEGMM) – mean (RMSESML) = 0 and 

the null hypothesis for the sample means is H0: mean ( GMMβ ) – mean ( SMLβ ) = 0. Simple 

T-tests are performed according to the following formulas:  

GMM SML GMM SML
2 2 2 2
GMM SML GMM SML

1 2 1 2

Mean(RMSE )-Mean(RMSE ) Mean( )-Mean( )T = T = .
s s s s+ +

n n n n

RMSE SampleMeansand β β

 

                                                 

3 RMSE= 
( )2

1

ˆ
n

i i
i

n

θ θ
=

−∑
, where iθ is the vector of the true parameters and îθ is vector of estimated 

parameters 
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The results (Table 1) show that with the assumption of normality we fail to reject the null 

hypothesis4 for the RMSEs and the sample means. Given that there are no differences 

between the RMSEs of the GMM and the SML estimators, the results suggest that the 

GMM estimator is nearly asymptotically efficient as the SML estimator in reasonably 

higher sample size. Beside this interesting result, the GMM has two advantages over the 

SML which are tractability and speed of convergence. The convergence time shows that 

GMM converges faster than the SML (GMM converges at 140 minuets while SML 

converges at 310 minutes). 

Again with the assumption of normality, Table 2 in Appendix 2 shows that 

decreasing the sample size by one tenth of the observations (n=100) causes the RMSEs in 

both approach to increase (compared to larger sample size, Table 1), suggesting that 

sample size have direct effect on the RMSEs. The most interesting finding is that the 

magnitudes of the RMSEs in the GMM approach are smaller than the magnitudes of the 

RMSEs in the SML approach, suggesting that the GMM approach is an improvement 

over the SML approach. The T-tests for the RMSEs and the sample means confirm our 

conclusion, as the T-test of RMSEs indicates that we reject the null hypothesis indicating 

the means of the RMSEs are different, while the T-test for the sample means indicates 

that we fail to reject the null hypothesis5. Again the percentage probability of censoring 

for each equation has fair degree of censoring and The GMM approach has faster 

convergence. 

                                                 
4 Large sample size (n=1,000), at 95% significance level the critical value is 1.96 
5 Small sample size (n=100), at 95% significance level the critical value is 1.98 
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As a conclusion, under the assumption of normality and under fair degree of 

censoring, the above results suggest that the GMM have three advantages over SML in 

the Two-Choice model: 

1. GMM in large sample size is nearly asymptotically efficient as the SML. 

2. The GMM is computationally tractable and has faster convergence in large and 

small sample sizes.  

3. The GMM is more efficient in small sample size compared to the SML. 

 Further investigation was done, as we compared both approaches (GMM and 

SML) under the assumptions of different skewed distributions. We assumed three Types 

of Gamma distributions taking into consideration the level of skewness. Figure 1 in 

Appendix 1 shows the graphical representations of these distributions (where each was 

scaled to have a mean of zero and variance of one). 

 With a sample size of 1,000 observations, Tables 3,4, and 5 in Appendix 1 

represent the comparison results between the GMM and the SML with the assumptions of 

Gamma (1,1), Gamma (3,2), and Gamma (4,3) distributions, respectively. The results tell 

us that the GMM is an improvement over the SML, as the RMSEs magnitudes of the 

GMM are smaller compared to those of SML. Also the T-test of the RMSEs indicates 

that we reject the null hypothesis, suggesting that there is a statistical difference between 

the means of the RMSEs of the two approaches. The sample mean test fail to reject the 

null hypothesis suggesting that there are no statistical differences in the sample means. 

This finding suggests that the ML estimator become inefficient as it deviates from the 

normality assumption, and suggests that the GMM estimator can be more robust towards 
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these different distributions given that it does not use all of the information implied by 

the normal distribution assumption.      

Regarding the number of moment equations to use in the GMM approach, 

asymptotic efficiency comparisons suggest more is better than less. Unfortunately, it is 

not necessarily the case that more moments are better than less in terms of finite sampling 

properties. There is a tendency for finite sample bias to increase as more estimating 

equations are used for estimation. To validate the moment equations in the GMM 

approach, we construct a Chi-square test that is based on the asymptotic normal 

distribution of the estimating equations. In particular, if 
1
2 ( ) (0,1),

d
h Y, X,θ N

−
Ψ → and 

cov[ ( )]h Y,X,θΨ =  '[ ( ) ( ) ]E h Y, X,θ h Y, X,θ=  then:  

( ) ( )
1 2

( ) 0
ˆ( , , ) ' , , , , ' ( , , ) ( ) under

d

GMM TESTQ h Y X θ E h Y X h Y X h Y X m Hθ θ θ χ
−

⎡ ⎤⎡ ⎤= →⎣ ⎦⎣ ⎦  

where m is the number estimating equations. If 2
( ) ( )GMM TESTQ mχ≥ , we will reject the 

validity of the estimating moments. Table 6, in Appendix 1, shows the GMM moments 

validity test for the Two- Choice model under the assumptions of normality and Gamma 

distributions. The degree of freedom for the Two- Choice Tobit model is 38 with a 

critical value of 53.10 at 95% significant level. The results suggest that we fail to reject 

the null hypothesis. Failing to reject the null hypothesis can signal that there is no 

violation of the moments conditions added. 

 

5.3 Five-Choice Tobit Model 

Assuming that the error terms follow a normal distribution (standard normal) and 

assuming that sample size equal to 1,000 observations, the two-choice MVT model is 
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extended to a Five-choice model as in equation (5.1.2). Monte Carlo experiment with 

1,000 repetitions is designed to estimate and compare the Five-choice model using both 

GMM and SML approaches. Table 7 in Appendix 1 shows the comparison between the 

two estimation approaches. The results show that the RMSEs of the GMM have smaller 

magnitude than those of the SML. The T-test of the RMSEs shows that we reject the null 

hypothesis, while the T-test of the sample means suggest the opposite (fail to reject the 

null hypothesis), meaning that GMM is an improvement over SML in higher dimensions. 

These results are surprising since the GMM uses subset of moments conditions while the 

SML is considered asymptotically efficient when the assumption of normality is correct. 

We speculate that the reason for these results lies in the percentage censoring 

probabilities for each equation in MVT systems. In the Two-choice model the percentage 

censoring probabilities vary from 20% to 23%, while in Five-choice model they varies 

from 42% to 53%.  In the Two-choice model with low censoring, the RMSEs of the SML 

were smaller, meaning that the SML outperforms the GMM approach. In the Five-choice 

model with high censoring, the RMSEs of the GMM are smaller, meaning that the GMM 

outperforms the SML approach. This finding could be related to the likelihood function 

in equation (2.4). As the likelihood function is composed of two parts the continuous part  

( cL ), and the discontinuous ( d|cL ) part. Simulating the discontinuous likelihood part and 

imposing high censoring could be a reasonable explanation for these results. Beside 

efficiency, another advantage of the GMM over the SML is tractability and speed of 

convergence, the GMM approach converges in 10 hours while the SML approach 

converges in 48 hours.  
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6. Conclusions 

In this paper we utilize the GMM approach to estimate systems of censored 

equations. In the GMM approach we use the marginal and all possible bivariate moment 

conditions (up to the third order) to help increase the efficiency of the GMM estimator. 

The GMM estimator is compared with an efficient full information ML estimator 

obtained by simulating the likelihood function by ORDGHK algorithm. Monte Carlo 

experiments reveal that the GMM estimator under the assumption of normality and with 

small sample size is more efficient than that of SML. Furthermore, the GMM estimator 

can be more robust toward different skewed distributions given that it does not use all of 

the information implied by the normal distribution assumption. In the presence of high 

censoring, high dimensional systems, large sample size, and with the assumption of 

normality the GMM estimator is more efficient than SML.   

 The GMM parameter estimates from a variety of Monte Carlo experiments appear 

quit accurate, and illustrate the potential of the proposed GMM estimation method. 

Estimates obtained by this procedure are consistent, asymptotically normally distributed 

and appear overall near-asymptotically efficient, making asymptotic efficient use of the 

rather high order of moment information used. Besides providing a tractable way of 

estimating systems of MVT models, the GMM demonstrates faster convergence in 

simulations. 

Another advantage of the GMM over the SML, in practice there is often 

insufficient information to specify the parametric form of the likelihood function 

underlying the data sampling process. Given this situation, the GMM method in this 

paper can be applied to non-normally distributed data sampling processes by defining the 
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analogs of the moment conditions used here. Furthermore, even using moment conditions 

based on the normal distribution, the fact that not all of the information of the normal 

distribution is utilized in the specification can afford the GMM approach a robustness 

advantage when the distribution of the error term is not normal. The principle 

contribution of this paper is to introduce a method of estimating a system of censored 

demand equations that is computationally tractable, consistent, near overall 

asymptotically efficient, and asymptotically efficient relative to the moment conditions 

used. 
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Appendix 1 

 
Figure 1: Graphical representations of the scaled Gamma distributions 
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Dashed line: Scaled Gamma (1,1) distribution 
Solid line : N(0,1) distribution 
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Dashed line: Scaled Gamma (3,2) distribution 
Solid line : N(0,1) distribution 
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Table 1: Comparison between GMM and SML, Two-choice model, large sample size 
and under the assumption of normality 

Sample Size=1,000, Repetitions=1,000 

Parameters True 
 Values  

GMM 
(MEAN) 

GMM 
 (RMSE)

SML  
(MEAN)

SML  
(RMSE)

T-Test
 Values
(RMSE)

T-Test 
 Values 

(MEAN) 

% Probability  of 
Censored 

Observation  
in each Equation 

         
β11 0.1000 0.1054 0.0475 0.1032 0.0462 0.7888 0.1080 
β12 0.2000 0.1998 0.0310 0.1991 0.0299 0.7280 0.0409 23% 

         
β21 0.3000 0.2940 0.0742 0.2957 0.0731 0.9775 0.0682 
β22 0.4000 0.3996 0.0482 0.4008 0.0442 1.1747 0.0605 20% 

         
ρ 0.2000 0.2088 0.0088 0.2013 0.0083 0.8375 0.0523  
         
  GMM SML    

Time of  
Convergence 

(Minutes)  
140 310 
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Table 2: Comparison between GMM and SML, Two-choice model, small sample size 
and under the assumption of normality 

Sample Size=100, Repetitions=1,000 

Parameters True 
 Values  

GMM 
(MEAN) 

GMM 
 (RMSE)

SML  
(MEAN)

SML  
(RMSE)

T-Test
 Values
(RMSE)

T-Test 
 Values 

(MEAN) 

% Probability  of 
Censored 

Observation  
in each Equation 

         
β11 0.1000 0.0922 0.1016 0.0952 0.1670 1.9930 0.0779 
β12 0.2000 0.2012 0.0629 0.1974 0.1119 2.0669 0.1293 

23% 

         
β21 0.3000 0.2948 0.1767 0.3042 0.2387 1.9942 0.4245 
β22 0.4000 0.4125 0.0999 0.4139 0.1499 2.0206 0.0389 

20% 

         
ρ 0.2000 0.2094 0.0130 0.1870 0.0294 1.9984 0.1252  
         
  GMM SML    

Time of  
Convergence 

(Minutes)  
97 210 
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Table 3: Comparison between GMM and SML, Two-choice model, large sample size 
and under the assumption of Gamma (1,1) 

Sample Size=1000, Repetitions=1000 

Parameters True 
 Values  

GMM 
(MEAN) 

GMM 
 (RMSE)

SML  
(MEAN)

SML  
(RMSE)

T-Test
 Values
(RMSE)

T-Test 
 Values 

(MEAN) 

% Probability  of 
Censored 

Observation  
in each Equation 

         
β11 0.1000 0.0867 0.0156 0.1238 0.0447 2.0772 0.9876 
β12 0.2000 0.2117 0.0182 0.2206 0.0825 3.1256 0.4657 56.6% 

         
β21 0.3000 0.2768 0.0268 0.2555 0.3697 2.8754 0.5862 
β22 0.4000 0.447 0.0109 0.5011 0.0161 1.9824 0.6024 49.5% 

         
ρ 0.2000 0.1983 0.0102 0.2102 0.0417 2.2332 0.6213  
         
  GMM SML    

Time of  
Convergence 

(Minutes)  
196 412 
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Table 4: Comparison between GMM and SML, Two-choice model, large sample size 
and under the assumption of Gamma (3, 2) 

Sample Size=1000, Repetitions=1000 

Parameters True 
 Values  

GMM 
(MEAN) 

GMM 
 (RMSE)

SML  
(MEAN)

SML  
(RMSE)

T-Test
 Values
(RMSE)

T-Test 
 Values 

(MEAN) 

% Probability  of 
Censored 

Observation  
in each Equation 

         
β11 0.1000 0.0899 0.0190 0.0845 0.0237 2.3241 0.2321 
β12 0.2000 0.2070 0.0202 0.2167 0.0225 1.9846 0.3452 50.1% 

         
β21 0.3000 0.2204 0.0179 0.2349 0.0398 2.0231 1.2321 
β22 0.4000 0.3928 0.0240 0.4166 0.0292 1.9975 0.7652 46.6% 

         
ρ 0.2000 0.1932 0.0068 0.1677 0.0323 2.4345 0.6534  
         
  GMM SML    

Time of  
Convergence 

(Minutes)  
175 389 
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Table 5: Comparison between GMM and SML, Two-choice model, large sample size 
and under the assumption of Gamma (4, 3) 

Sample Size=1000, Repetitions=1000 

Parameters True 
 Values  

GMM 
(MEAN) 

GMM 
 (RMSE)

SML  
(MEAN)

SML  
(RMSE)

T-Test
 Values
(RMSE)

T-Test 
 Values 

(MEAN) 

% Probability  of 
Censored 

Observation  
in each Equation 

         
β11 0.1000 0.0394 0.0149 0.0404 0.0169 2.8940 0.0740 
β12 0.2000 0.2043 0.0155 0.2129 0.0162 2.7452 0.7766 49.4% 

         
β21 0.3000 0.3199 0.0237 0.2747 0.0369 2.3180 1.2000 
β22 0.4000 0.3887 0.0105 0.4124 0.0396 2.8918 1.6028 46.3% 

         
ρ 0.2000 0.2061 0.0083 0.1917 0.0123 1.9986 0.6243  
         
  GMM SML    

Time of  
Convergence 

(Minutes)  
191 394 
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Table 6: Chi-Square tests for the GMM Two-choice Tobit model with the assumption of 
different distributions on the error terms; the degree of freedom is 38 and the critical 
value is 53.10 at 95% significance level 

GMM 

Distributions  Sample size  Moment validity 
Chi-square test 

Normal (0,1) 100 15.2 

Normal (0,1) 1000 13.3 

Gamma(1,1) 1000 26.5 

Gamma(3,2) 1000 20.4 

Gamma(4,3) 1000 22.6 
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Table 7: Comparison between GMM and SML, Five-choice model, large sample size 
and under the assumption of normality 

Sample Size=1000, Repetitions=1000 

Parameter True  
Value 

GMM 
(Mean) 

GMM 
(RMSE)

SML 
(RMSE)

SML 
(RMSE)

T-Test 
Values 

(RMSE)

T-Test 
Values  
(Mean) 

% Probability of
Censored 

Observations 
in each equation

β11 0.1000 0.1022 0.0224 0.1086 0.0784 2.1354 0.6324 

β12 0.2000 0.2003 0.0130 0.2043 0.0253 2.0323 0.5324 
48% 

          
β21 0.3000 0.3032 0.0326 0.3134 0.0472 1.9981 0.5623 

β22 0.4000 0.4010 0.0142 0.4080 0.0568 2.3213 0.4562 
53% 

          
β31 0.5000 0.5021 0.0412 0.5141 0.0819 2.3421 0.5214 

β32 0.6000 0.6011 0.0241 0.6094 0.0964 2.4213 0.5642 
42% 

          
β41 0.7000 0.7021 0.0324 0.6982 0.0985 2.2243 0.4896 

β42 0.8000 0.8031 0.0143 0.8130 0.0432 2.5342 0.3213 
51.5% 

          
β51 0.9000 0.9100 0.0241 0.9181 0.0452 2.4325 0.6354 

β52 0.1100 0.1101 0.0128 0.1193 0.0845 2.3351 0.4532 
47% 

          
ρ12 0.1000 0.1014 0.0141 0.1207 0.0549 2.1352 0.2232  

ρ13 0.2000 0.2013 0.0136 0.2131 0.0562 2.1213 0.2865  

ρ14 0.3000 0.3009 0.0245 0.3090 0.0568 1.9875 0.3248  

ρ15 0.4000 0.4015 0.0314 0.3970 0.0454 2.0562 0.4356  

ρ23 0.6000 0.4022 0.0233 0.4103 0.0426 1.9895 0.3521  

ρ24 0.7000 0.7013 0.0138 0.7087 0.0542 2.1542 0.3641  

ρ25 0.2500 0.2500 0.0122 0.2530 0.0565 2.1438 0.2013  

ρ34 0.1100 0.1100 0.0130 0.1121 0.0423 2.0532 0.2831  

ρ35 0.1200 0.1190 0.0521 0.1300 0.0849 2.0462 0.3261  

ρ45 0.1500 0.1501 0.0233 0.1498 0.0989 2.1024 0.3352  
         

  GMM SML    
Time of 

Convergence 
(Hours)  

10 48 
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Appendix 2 
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1 1 1 1 1
1 1 1

1 1

2 2 2 2 2
2 2 2

2 2

0

0

y x xy z a

y x xy z a

β β
σ σ

β β
σ σ

− −
≥ ⇔ = ≥ =

− −
≥ ⇔ = ≥ =

 

All the derivations below can be obtained from the author upon request.   
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1 2

1 '2
1 1 1 2 2 1 2 112 2

2

2 1
2

1
2

2 1
2

1( | , )
(2 )(1 )

1
, 1 ,

1

(1 )
1 11.

1 1 (1 )
1

z R z

a a

E z z a z a z e dz dz

where R R

and R

π ρ
ρ

ρ
ρ

ρρ
ρ ρ

ρ ρρ ρ
ρ

−
∞ ∞

−

−

−

−

≥ ≥ =
−

⎡ ⎤
= = −⎢ ⎥

⎣ ⎦
−⎛ ⎞−⎜ ⎟− −⎡ ⎤ ⎛ ⎞ ⎜ ⎟= =⎜ ⎟⎢ ⎥− −− ⎜ ⎟⎝ ⎠⎣ ⎦ −⎜ ⎟−⎝ ⎠

∫ ∫

 

1 2

2 2
1 1 1 2 2 1 1 2 1 2 2 11 22 2

2 1 1 2
1 21 1* 2 22 21 2

1 1( | , ) exp 2
2(1 )(2 )(1 )

1 ( ) ( )
( , ) (1 ) (1 )

a a

E z z a z a z z z z z dz dz

a a a aa a
F a a

ρ
ρπ ρ

ρ ρφ ρφ
ρ ρ

∞ ∞ ⎛ ⎞− ⎡ ⎤≥ ≥ = + −⎜ ⎟⎣ ⎦−⎝ ⎠−

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟= Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫
 

where 
1 2

*
1 2( , ) ( ; )

a a

F a a BISN z dzρ
∞ ∞

= ∫ ∫  represents integral of a bivariate standard normal 

random variable with correlation ρ , andφ Φ represents the probability density function 

(PDF) and  the cumulative density function (CDF) respectively. 
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22 1 1 2
1 1 2 21 12 22 2

2
1 1 1 2 2 *

21 2
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2 12 2 2
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(1 ) (1 )1( | , ) 1

( , ) (1 ) ( )
(1 ) (1 )

a a a aa a a a

E z z a z a
F a a a aa

ρ ρφ ρ φ
ρ ρ

ρρρ φ
ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎢ ⎥≥ ≥ = +

⎛ ⎞⎢ ⎥−− ⎜ ⎟+ Φ⎢ ⎥
⎜ ⎟⎢ ⎥− −⎝ ⎠⎣ ⎦

 

2 1 1 2
1 21 12 22 2

2
3 3 2 21 2 1 2
1 1 1 2 2 2 2 2 21 1* 22 22 21 2

1 2
2 2

3 ( ) ( )
(1 ) (1 )

1 1( | , ) ( ) 2 ( )
( , ) 1(1 ) (1 )

( )
(1

a a a aa a

a a a aE z z a z a a a a a
F a a

a aa

ρ ρφ ρφ
ρ ρ

ρ ρ ρρ φ ρ φ
ρρ ρ

ρρφ
ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟× Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎜ ⎟≥ ≥ = + Φ + Φ
⎜ ⎟⎜ ⎟ ⎜ ⎟ −− − ⎝ ⎠⎝ ⎠ ⎝ ⎠

−
+ Φ

−
( )2 2 2 1

1 11 122 2
1 ( )

) (1 )

a aa a ρρ φ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟ ⎜ ⎟− + Φ

⎜ ⎟ ⎜ ⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦

 

2 1 1 2
1 1 2 21 12 22 2

1 2 1 1 2 2 *
21 2

2 1
1 12 2 2

( ) ( )
(1 ) (1 )1( | , )

( , ) 1 ( )
1 (1 )

a a a aa a a a

E z z z a z a
F a a a aa

ρ ρρ φ ρ φ
ρ ρ

ρ
ρρ φ

ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎢ ⎥≥ ≥ = +

⎛ ⎞⎢ ⎥⎛ ⎞ −− ⎜ ⎟⎜ ⎟+ Φ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦

 

2 1 1 2
1 21 12 22 2

2 1 1 2
1 21 12 22 2

2
1 2 1 1 2 2 *

1 2
2 2 2 1

1 1 12 2

( ) ( )
(1 ) (1 )

2 ( ) ( )
(1 ) (1 )1( | , )

( , )
( )

(1 )

a a a aa a

a a a aa a

E z z z a z a
F a a a aa a

ρ ρφ ρφ
ρ ρ

ρ ρρ ρφ φ
ρ ρ

ρρ φ
ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟+ Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦≥ ≥ =

⎛ ⎞−⎜ ⎟+ Φ
⎜ ⎟−⎝ ⎠

2
2 1

1 1 1 22 2

2
2 1 2 1 2
2 2 2 21 1 22 22 2
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1(1 )

1( ) ( )
1(1 ) (1 )

a aa a
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ρ ρρ φ
ρρ
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ρρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟+ Φ

⎜ ⎟⎜ ⎟⎢ ⎥−− ⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟+ Φ + Φ

⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥−− − ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
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ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟+ Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦≥ ≥ =
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟+ Φ

⎜ ⎟⎜ ⎟⎢ ⎥−− ⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟+ Φ + Φ

⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥−− − ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Then  

2 1

2 2
2 1 1 2 2 2 1 2 1 2 1 21 22 2
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∞ ∞ ⎛ ⎞− ⎡ ⎤≥ ≥ = + −⎜ ⎟⎣ ⎦−⎝ ⎠−

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟= Φ + Φ
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∫ ∫
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⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎢ ⎥≥ ≥ = +
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⎜ ⎟⎢ ⎥− −⎝ ⎠⎣ ⎦

 

2 1 1 2
1 21 12 22 2

2
3 3 2 22 2 2 1
2 1 1 2 2 1 1 1 11 1* 22 22 21 2

2 1
1 2

3 ( ) ( )
(1 ) (1 )

1 1( | , ) ( ) 2 ( )
( , ) 1(1 ) (1 )

( )
(1

a a a aa a

a a a aE z z a z a a a a a
F a a

a aa

ρ ρρφ φ
ρ ρ

ρ ρ ρρ φ ρ φ
ρρ ρ

ρρφ
ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟× Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎜ ⎟ ⎜ ⎟⎜ ⎟≥ ≥ = + Φ + Φ
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⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟+ Φ + Φ
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⎢ ⎥
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⎢ ⎥⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟+ Φ + Φ
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⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟Φ + Φ
⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟+ Φ + Φ
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞− −⎢ ⎥⎜ ⎟⎜ ⎟+ Φ

⎜ ⎟⎜ ⎟⎢ ⎥−− ⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟+ Φ + Φ

⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥−− − ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Then the first order moments are 
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⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟Φ +
⎜ ⎟⎢ ⎥−⎝ ⎠⎢ ⎥≥ ≥ = +

⎛ ⎞⎢ ⎥−⎜ ⎟Φ⎢ ⎥
⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

 

2 1
1 12 2

2
2 1 2 2 2*

1 2
1 2

2 12 2

( )
(1 )

( | 0, 0)
( , )

( )
(1 )

a aa

E y y y x
F a a a aa

ρρφ
ρσ β
ρφ

ρ

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟Φ +
⎜ ⎟⎢ ⎥−⎝ ⎠⎢ ⎥≥ ≥ = +

⎛ ⎞⎢ ⎥−⎜ ⎟Φ⎢ ⎥
⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

 

The second moments are 
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The third moments are  
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The cross section moments are  
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ESSAY TWO: 

 
GMM AND VIRTUAL PRICES APPROACH FOR ESTIMATING SYSTEM OF 

CENSORED DEMAND EQUATIONS: A CASE STUDY FOR ANALYZING THE 

IMPACT OF THE E.COLI OUTBREAKS ON CONSUMER DEMAND FOR 

SALAD VEGETABLES 

 

Abstract 

This paper examines the impact of the E.coli outbreaks that occurred in 2006 on 

consumer demand for salad vegetables on the West Coast of the United States. The 

scanner-data set used in our analysis is obtained from a chain supermarket and is 

aggregated on a weekly basis for the consumption of salad vegetables. The data contain a 

significant portion of observations with zero consumption on one or more vegetable 

groups. Zero consumption may be reflecting consumer concern about the E.coli 

outbreaks, the effect of removal of vegetable groups from store shelves due to product 

recalls and/or the result of personal preferences with respect to consumption. We 

motivate the use of the Tobit model as a statistical representation of consumer behavior 

by specifying the Quadratic Almost Ideal Demand System (QUAIDS) with demographic 

effects under binding non-negativity constraints. To avoid violating the non-negativity 

constraints of the model and to overcome the computational burden of high 

dimensionality, the GMM approach, along with the virtual prices concept, are used for 

estimating the system of non-linear censored demand equations. The empirical results 

show that during the outbreak period lettuce and cabbage were substituted for spinach, 

indicating consumers’ concern about the E.coli impact. 
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1. Introduction  

Consumption of salad vegetables has increased significantly in recent years because 

of health interests and the dietary trends of consumers. The popularity of salad bars, 

ethnic dishes and vegetable appetizers in restaurants contributed to the increase in the 

consumption of vegetables. Freshly prepared salads are offered in more than 70% of fast 

food establishments and family restaurant chains (Hedberg et al., 1994). In addition, fresh 

cut vegetables, including salad vegetables, are sold in supermarkets. According to the 

U.S. Department of Agriculture (USDA), in 2000, Americans consumed 20% more 

vegetables than in the 1970s. Figure 1 in the Appendix shows how the annual per capita 

vegetable consumption has continued to increase over time1.  

Fresh salad vegetables are generally considered safe to eat by consumers. However, 

a survey conducted by the Center for Disease Control and Prevention (CDC) revealed 

that vegetables, as a category, contributed to 5% of the foodborne disease outbreaks in 

the World, 2% of which occurred in the USA, during 1973 and 1987 (Bean and Griffin, 

1990). Outbreaks of foodborne diseases caused by E. coli (Escherichia coli)2 bacteria 

have become a serious problem in the United States. The CDC estimates 73,000 cases of 

infection with E. coli 0157:H7 and 61 deaths on average occur in the USA every year.3 

In 2006 there were two major outbreaks of the E. coli 0157:H7 in North America: 

the first outbreak occurred in September and the second outbreak happened in November. 

Both outbreaks were tracked to organic bagged fresh spinach that was grown in San 
                                                 
1 Source: USDA, ERS Briefing rooms, Vegetables and Melons 
2 Escherichia coli: is a bacterium that is commonly found in the lower intestine of warm-blooded animals. 
Most E. coli strains are harmless, but some such serotype O157:H7, can cause serious food poisoning in 
humans, and are occasionally responsible for costly product recalls  
3 Center for Disease Control and Prevention, Strategies to Reduce Person-to-Person Transmission during 
Widespread Escherichia coli O157:H7 Outbreak, Edmund Y.W. Seto, Jeffrey A. Soller, and John M. 
Colford Jr 
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Benito County, California. The CDC investigators initially speculated that the dangerous 

strains of the E. coli 0157:H7 bacteria originated from the irrigation water contaminated 

with cattle feces or from grazing deer4. Federal and state public health officials issued a 

nationwide health alert warning. Although the Food and Drug Administration (FDA) had 

no mandatory recall authority, Natural Selection Food, other processors, and retailers 

quickly initiated a voluntary recall of all products containing fresh spinach. As a result of 

the voluntary removal of spinach from retail shelves, new illness outbreaks were curtailed 

by early October and December for both outbreaks, respectively.  

The long term impact of the E. coli O157:H7 outbreak is still uncertain; however, 

the broad recall could have lasting effects on consumers. The economic impacts of the 

recall had the greatest effect on growers and retailers, when sales of salad mix 

experienced a roughly 50% reduction during the two outbreaks, according to Pacific 

International Marketing.   

In this paper we estimate the effect of E.coli on consumer demand for salad 

vegetables (Tomato, Onion, Cabbage, Lettuce and Spinach). The data used in this 

analysis are a scanner-data set, provided by a well known retail chain5 that has many 

supermarkets throughout the United States. For this analysis we collected data from 

stores located on the West Coast of the United States (California, Oregon and 

Washington). 

The Quadratic Almost Ideal Demand System (QUAIDS) is specified for estimating 

the demand for salad vegetables. For the outbreak period, the data contain a significant 

portion of observations in which the expenditure on one or more vegetable groups is zero. 

                                                 
4 Source: FDA Warning on Serious Foodborne E.coli O157:H7 Outbreak. FDA (September 14, 2006)  
5 The name of the retail store is suppressed for confidentiality reasons 
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The presence of zero consumption observations reflects positive probabilities that choices 

occur at the kink or boundary points of the feasible choice set. This implies that the 

dependent variable is censored at zero. In a systems approach the censored regression 

equations typically have correlated error terms and require a joint estimation procedure, 

which generally leads to the specification of a mixed distribution consisting of continuous 

probability density functions for the positive observations and discrete probability mass 

functions for the zero observations (Lee, 1993).   

In the literature, the Multivariate Tobit Model (MVT) has been frequently used to 

represent the data generating process underlying consumer demand models that exhibit 

binding non-negativity constraints (Wales and Woodland, 1983; Ransom, 1987; 

Hausman, 1985; Lee and Pitt, 1986; Heien and Wessells, 1990, and Lee, 1993). 

Estimating the MVT model using classical maximum likelihood methods requires the 

evaluation of a partially integrated multivariate normal probability density function, 

which is known to be computationally inefficient, inaccurate and intractable as the 

dimensionality of the integration problem increases much beyond three. 

Fahs and Mittelhammer (2007) attempted to circumvent the estimation tractability 

problem of systems of censored demand equations by utilizing a Generalized Method of 

Moments (GMM) approach in place of Maximum Likelihood. The authors calculate 

parameter estimates and the covariance structure of the error terms based on a set of 

marginal univariate and bivariate moment conditions that account for correlation among 

random components of the model. 

In our analysis the response variables in the QUAIDS model are bounded between 

zero and one, and the sum of the response variables must equal one. It is possible in these 



 54

types of models that predicted shares violate the non-negativity constraints and adding up 

conditions implied by Neoclassical economic theory. We address this problem by 

applying the concept of virtual prices that was first suggested by Lee and Pitt (1986). 

Using the virtual prices concept along with the GMM approach, we ensure that the 

predicted shares are between zero and one, eliminating the possibility of a violation of the 

non-negativity constraints and adding up conditions.  

 The reminder of the paper is organized as follows: Section 2 describes the 

characteristics of the data set, variables, and aggregation procedure. Section 3 introduces 

an overview of the QUAIDS model and its functional specifications with binding non-

negativity constraints. Section 4 focuses on the discussion of the virtual prices concept 

and the use of the GMM estimation approach to calculate these prices. Section 5 

summarizes the GMM approach (Fahs & Mittelhammer, 2007) for estimating system of 

censored demand equations. Section 6 discusses the GMM estimation procedure for the 

QUAIDS model incorporating estimated virtual prices. Section 7 summarizes, interprets, 

and analyzes the estimation results. Lastly, Section 8 ends with our conclusions. 

 

2. Data, Variables and Related Issues  

The scanner-data set used originally contained observations referring to three states 

that are located on the West Coast of the United States (California, Oregon and 

Washington). Ten stores from each state were selected taking into consideration 

geographical spread, and representation of rural and urban areas. Figure 2 in the 

Appendix presents the geographical location of these retail stores6. The daily data 

observations represent consumer purchases of salad vegetables for one calendar year 
                                                 
6 Note that these retail stores belong to one supermarket chain 
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(January 1, 2006 to December 31, 2006), as well as household expenditures, quantities 

purchased and socio-demographic variables that are expected to influence consumer 

behavior.  

Five groups of vegetables suitable for salad consumption were identified: Tomato, 

Onion, Cabbage, Lettuce and Spinach. Each group is divided into two subgroups: bulk 

and bagged; those, in turn, vary by different vegetable types as shown in Table 1 of the 

Appendix. 

Socio-demographic variables are important factors in influencing the variety as 

well as the quantity of vegetable consumption by households. In this study these variables 

are defined as: 

• Age: is a continuous variable that represents the age of the head of the household. 

• Sex: is an indicator variable that represents the gender of the head of the 

household, where male is set as the base indicator value of 0 (Female =1 and 

male= 0). 

• Children: is a variable that represents the number of children in the household. 

• Status: is an indicator variable that represents the marital status of the head of the 

household, where single is the base indicator value of 0 (single=0 and 

Married=1). 

• Income-D1: is a dummy variable that indicates consumers’ income in the range 

between $25,000 and $50,000 (Income-D1=1 and 0 otherwise). 

• Income-D2: is a dummy variable that indicates consumers’ income greater than 

$50,000 (Income-D2 =1 and 0 otherwise). 
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• Location: is an indicator variable, where the location of the household is 

identified, the north states (Oregon and California) being the base indicator value 

of 0 (Oregon and California =0 and California =1). 

• D-September: is a dummy variable that represents the month of the first outbreak 

(September), during which the consumers purchased salad vegetables (D-

September=1 and 0 otherwise). 

• D-October: is a dummy variable that represents the month after the first outbreak 

(October), during which the consumers purchased salad vegetables (D-October =1 

and 0 otherwise). 

• D-November: is a dummy variable that represents the month of the second 

outbreak (November), during which the consumers purchased salad vegetables 

(D-November=1 and 0 otherwise). 

• D-December: is a dummy variable that represents the month after the second 

outbreak (December), during which the consumers purchased salad vegetables 

(D-December =1 and 0 otherwise). 

• Time and Time2: are the variables that account for time trends, where Time 

represents the months from January to December (t=1, 2…, 12). 

 

The original data consisted of five different groups of vegetables with a number of 

types and varieties as indicated in Table 1. The data were aggregated in two steps: first, 

into five major groups (Tomato, Onion, Cabbage, Lettuce and Spinach); second, on a 

weekly observation basis. Note that all the quantities sold are measured in pounds of 

group product (lb unit) and the expenditures are measured in dollars. Associated with the 
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aggregated quantities and expenditures, the weighted (by quantities) average prices for 

each of the vegetable groups consumed were calculated. For those households who did 

not purchase a particular vegetable group, it was assumed that they paid the average price 

associated with the vegetable groups for the store they made other purchases from. 

After aggregating, the data contained five different groups of prices along with the 

demographic variables. The demographic variables were obtained from a third party 

contractor and it contained missing data.  Age, Sex, Status, and Income variables had the 

same percentage of missing data i.e. 38% (the data on those demographics are either 

completely missing or non-missing) and the variable Children had 45% missing data. 

Three different types of statistical analysis were conducted to test if the missing values 

were missing completely at random (MCAR). MCAR exists when missing values are 

randomly distributed across all observations. If data are MCAR, then the researcher may 

choose to delete the missing observations7. 

The prices of vegetables were divided into two groups (missing and non-missing) 

matching the corresponding observations of missing and non-missing in the demographic 

variables. Three types of analysis were conducted for the two groups of prices created 

(missing and non-missing). The first analysis was to check if the means of those two 

groups were the same. The null hypothesis is: sample mean of prices with missing 

observations equal to the sample mean of prices with non-missing observations. A simple 

T-test was performed and the values were reported in Table 2 in the Appendix. The 

results show that at 95% significance level (critical value=1.96) we fail to reject the null 

hypothesis (t-values are less than the critical value). This finding indicates that the means 
                                                 

7 Missing Data: A Gentle Introduction, by Patrick E. McKnight, Souraya Sidani, Aurelio Jose Figueredo 
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between the two groups (missing and non-missing) for all types of prices are statistically 

the same.  

 The second analysis was to check if the two groups of prices (missing and non-

missing) have similar distributions. We generated the empirical cumulative density 

functions for the two groups of prices as shown in Figures 3 –12. The patterns of curves 

are noted to be nearly similar, which suggest that the distributions of the prices with 

missing and non-missing observations are almost identical. For example, Figure 3 shows 

that 80% of the onion prices with missing observations and 80% of onion prices with 

non-missing observations have prices less than 1.13 dollars (horizontal axis represents 

prices in dollars and vertical axis represents percentage of data).  

The third analysis was conducted to check whether the two distributions of prices 

(missing and non-missing) were statistically identical. The Mann-Whitney Test, which is 

a non-parametric test to determine whether two populations have the same population 

median, was used for this analysis8. The Mann-Whitney test does not require the data to 

come from normally distributed populations, but it does make the following assumptions: 

1) the populations of interest have the same shape; 2) the populations are independent. 

The null hypothesis is: the two population medians are equal or have identical 

distributions. Table 3 in the Appendix presents the p-values of the Mann-Whitney test. It 

indicates that the p-values are not significant at alpha =0.05, which suggests that that we 

fail to reject the null hypothesis.  

The above three analysis suggested that there were no statistical differences 

between the two groups of prices (missing and non-missing). According to those tests, we 

                                                 
8 Statistics for Biologists by Richard Colin Campbell 
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assumed that the data were missing completely at random. Deleting the missing cases 

form the data, with the assumption of MCAR, the sample selectivity would not be an 

issue for furtherer analysis. 

Table 4 in the appendix represents the summary statistics for all variables along 

with the market shares for each vegetable group. The sample of observations on the 

consumption of the five vegetable groups contained 377,149 observations. 

 

3. A QUAIDS Consumer Demand System under Binding Non-Negativity 

Constraints 

It is desirable to specify the indirect utility function in a flexible way, retaining 

theoretical consistency but also producing a general and flexible demand system. There 

are several flexible forms introduced in literature. In this paper, we used the non-linear 

form of QUAIDS to represent our model because it has better approximation of the non-

linear Engel curves in empirical analysis, aggregate perfectly over consumers and capable 

of imposing restrictions of homogeneity and Slutsky symmetry. 

 

3.1 Overview of the QUAIDS Model 

The Almost Ideal Demand System (AIDS) of Deaton and Muellbauer (1980) has 

been the most widely used system approach for modeling consumption behavior for 

grouped commodities after it was claimed to possess the best properties of both the 

Translog and Rotterdam models, including approximating any demand system arbitrarily 

to first-order, aggregating perfectly over consumers, satisfying the axioms of choice and 

capable of imposing restrictions of homogeneity and Slutsky symmetry.  
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However, the AIDS model has difficulty capturing the effects of non-linear Engel 

curves. In order to maintain the attractive properties of the AIDS model, while 

maintaining consistency with both Engel curve and relative price effects within the utility 

maximization framework, a quadratic term in log income or log total expenditure is 

added to the AIDS model and leads to Quadratic Almost Ideal Demand System 

(QUAIDS) model specification (Lewbel, 1997). Increased flexibility of the demand 

system representation is thus achieved in a parsimonious way through the addition of the 

quadratic term. 

The generalized linear form of rank two (Gorman, 1981) is necessary and sufficient 

for aggregation of demands9. Rank two demand models include Linear AIDS, Translog, 

Linear Expenditure, Price-Independent Generalized linear (PIGL) and Price-Independent 

Generalized Log (PIGLOG) systems. These locally flexible functional forms possess a 

relatively small regular region according to Cooper and McLaren (1996), and they can 

only provide a local approximation within a small neighborhood of the true data 

generation function. The Translog has been criticized for mistakenly classifying goods as 

complements when they are substitutes, and it loses flexibility when semi-definiteness 

(curvature) is imposed (Diewert and Wales, 1987), while the Linear Expenditure Systems 

has been criticized for its additive preference structure. 

Because of these problems, researchers focused their attention on developing 

globally flexible functional forms that have higher ranks. The QUAIDS has rank three, 

and better approximates non-linear Engel curves in empirical analysis. Since the 

QUAIDS model produces a considerably larger regular region than the locally flexible 

                                                 
9 Rank is the maximum dimension of the function space spanned by Engel curves of the demand system 
(Lewbel, 1991). 
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forms, it can be classified as “effectively globally regular”, which is a label defined by 

Cooper and McLaren (1996) for locally flexible functional forms with larger regularity 

regions, whose corresponding direct and indirect utility functions and cost functions 

satisfy their theoretical properties for all non-negative demand, price and all utility levels 

as appropriate. 

 

3.2 Functional Specification of the QUAIDS Model 

Assume a rational consumer has an income y to spend on the purchase of M 

different goods ( )1, , MQ Q Q= … . The consumer considers both income and prices of 

goods ( )1, , Mp p p= … to be exogenous, and furthermore, she has the possibility of 

consuming the desired quantities and does not face transaction costs. Given the prices of 

the goods and income, the individual chooses a particular consumption vector, 

( )1, , Mq q q= … . This vector belongs to the consumption set defined as the non-negative 

space M
≥R  and is the non-negative quantities of the M consumption goods that maximize 

utility, where these quantities do not imply expenditure higher than available income. In 

this paper we focus on the demand for a specific group of commodities, and use total 

expenditure on those commodities, y, in place of income.  

Assuming the existence of a utility function U(q) that represents the preferences of 

the consumer, one can formulate the consumer equilibrium as the constrained 

optimization problem 

(3.2.1)     ( )max . .U q s t y pq=  
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whose first-order conditions can be solved to derive the Marshallian demand system 

( ) ( ), , for 1, , .i iq q p y i M= = …  

Now consider the QUAIDS model as a generalization of PIGLOG preferences 

(Muellbauer, 1975 and 1976), which can be derived from the following indirect utility 

function for M commodities as: 

(3.2.2)    ( )
( ) ( )

11
ln ln

ln
y a p

V p
b p

λ

−−⎧ ⎫⎡ ⎤−⎪ ⎪= +⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

 

where 

(3.2.3)    ( ) 0
1 1 1

1ln ln ln ln
2

M M M

i i ij i j
i i j

a p p p pα α γ
= = =

= + +∑ ∑∑  

(3.2.4)    ( )
1

i

M

i
i

b p pβ

=

= ∏ is the simple Cobb-Douglas price aggregator 

(3.2.5)    ( )
1

ln
M

i i
i

p pλ λ
=

= ∑  

and 
1

0
M

i
i

λ
=

=∑ , All ( ) ( ) ( ), anda p b p pλ are defined to be homogenous functions of 

degree zero in prices. 

Applying Roy’s identity to equation (3.2.2) obtains: 

(3.2.6)   ( ) ( )2ln ( ) ln ( ) 1ln ln
ln ln ln ( )i

i i i

a p b pw x x
p p p b p

λ∂ ∂ ∂
= + +

∂ ∂ ∂
 

where ln ln( ) ln ( )x y a p= − , and iw denotes the expenditure share of the ith commodity. 

Inserting the appropriate derivative expressions in 3.2.6 obtains Marshallian demand 

equation for the QUAIDS model in budget share form as: 
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(3.2.7)  
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and note that i and j denote commodities, which are M in numbers. 

The adding-up restriction,
1

1
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w
=

=∑  implies that 
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0
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ij
i

jγ
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Since the Marshallian demands are homogenous of degree zero in ( ),p y  

(3.2.12)   
1

0
M

ij
i

jγ
=

= ∀∑  

Slutsky symmetry implies that: 

(3.2.13)   ij ji i jγ γ= ∀ ≠  

As can be seen, the expenditure shares, which are quadratic in the logarithm of 

expenditure, have been derived from PIGLOG preferences. Therefore, they maintain the 

relevant properties of its linear counterpart, the AIDS, allowing for exact aggregation 

over households. It is evident that the QUAIDS budget shares reduce to those of AIDS 

if 0iλ = , for all i, in which case the rank three Engel curves for the QUAIDS reduces to 

the rank two Working-Leser Engel curves. 
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Demographic effects on household consumption are introduced in this model, 

where constant term and total expenditure coefficients are specified to depend on the 

vector of household characteristics hZ (Moschini and Rizzi, 1997). Including these 

demographic effects, the share model is expressed as: 

(3.2.14) ( ) ( ) ( )

2

1
ln ln ln

, ,

n
h i

i i is s ij j i ih h
s j

y yw z p
b pa p z a p z

λα α γ β ε
=

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟= + + + + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∑ ∑  

Note that s denotes the demographic variables, which are seven in number. And 

(3.2.15) ( ) 0 0
1ln , ln ln ln
2

h h
s s i is s i ij i j

s i s i j

a p z z z p p pα α α α γ⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑∑  

and the following parameter restriction applies 

(3.2.16)   0is
i

sα = ∀∑  

Following Banks et al. (1997), expenditure elasticities are calculated by 

differentiating the log of equation (3.2.14) with respect to log of total expenditure ( ln y ), 

yielding: 

(3.2.17)  
( ) ( )
211 ln

,
i

i i h
i

ye
w b p a p z

λβ
⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= + +⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

The uncompensated price elasticities are calculated by differentiating the log of equation 

(3.2.14) with respect to the log of price ( ln jp ): 
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where ijδ is the Kronecker’s delta, which equals one if i j=  (i.e., for own price 

elasticities) and zero otherwise. 

The compensated price elasticities are deduced from the Slutsky’s formula as follow: 

(3.2.19)   C U
ij ij j ie e w e= +   

Finally, the QUAIDS model can be represented in regression form as: 

(3.2.20)    ( ) ( ) ( )
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i i is s ij j i ih h
s j

y yw z p
b pa p z a p z

λα α γ β ε
=

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟= + + + + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∑ ∑  

If it is assumed in (3.2.14) that [ ]( )0 ,Nε Σ∼ and
11 1

1

M

M MM

σ σ

σ σ

⎡ ⎤
⎢ ⎥Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
, so that 

( ),iw N u Σ∼ where 

( ) ( ) ( )

2

1
ln ln ln

, ,

M
h i

i i is s ij j i h h
s j

y yu z p
b pa p z a p z

λα α γ β
=

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟= + + + + ⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∑ ∑ , then the 

demand model in equation (3.2.14) is a censored demand equation system and can be 

represented in the MVT model form as: 

(3.2.21)   
0

0
i i

i

w if w
w

otherwise
≥⎧

= ⎨
⎩

 

( ) ( ) ( )

( ) ( )

2

213.2.18      ln ln( )
,

ln
,

U hi
ij ij ij i j js s jr rh

s ri

i j
h

ye z p
w b p a p z

y
b p a p z

λδ γ β α α γ

λ β

⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟⎜ ⎟= − + − + + + −⎨ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎝ ⎠⎩
⎫⎛ ⎞⎛ ⎞ ⎪⎜ ⎟⎜ ⎟ ⎬⎜ ⎟⎜ ⎟ ⎪⎝ ⎠⎝ ⎠ ⎭

∑ ∑
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where iw  represents the observed level of consumption for the vegetable groups 

(Tomato, Cabbage, Lettuce and Spinach). Note that we drop one of the vegetable groups 

(Onion) from the MVT-QUAIDS model to deal with the inherent covariance matrix 

singularity in the model. 

 

4. Virtual Price and Internal Consistency of the Model 

Given the QUAIDS model presented in equation (3.2.14), two econometric 

problems generally arise when estimating these type of models; internal theoretical 

Neoclassical consistency of the model and evaluation of high dimensional multivariate 

integrals corresponding to the corner solution decisions. 

The first problem arises because each share variable in the QUAIDS models is 

bounded between zero and one, and the sum of the shares must equal one. It is possible 

that the predicted shares violate the non-negativity constraint and the adding up 

conditions. The second problem arises in evaluating the probability distribution of the 

mixed continuous-discrete density function. This latter issue will be discussed in section 

5. 

Lee and Pitt (1986a) introduced the concept of virtual prices when dealing with 

corner solutions. In this section, to elucidate the difficulties arising from the improper use 

of market prices when corner solutions are present, we initially investigate a simplified 

model of consumer choice. We illustrate that the correct price to be used in the case of 

corner point solutions is the virtual price, which is the price that results in the quantity 

demanded equalling zero. This approach can be used to insure that budget shares are 

bounded between zero and one, and the sum of the shares is equal to one. 
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Assume a choice set involving two goods, and let the utility function U (q1, q2) be 

smooth, continuously differentiable, strictly increasing and strictly quasi-concave utility 

of 1 2andq q . 

The consumer seeks to maximize utility subject to: 

(4.1)    
1 21 2q qP q P q Y+ ≤  

where 
1 2
andq qP P , are the respective prices of the goods, respectively, Y is income, and 

1 20, 0q q≥ ≥  are the non-negativity constraints. 

The demand functions can be solved by maximizing the following Lagrangian: 

(4.2)   ( ) ( )1 21 2 1 2 1 2, q qL U q q Y P q P q q qλ δ η= − − − + +  

where , andλ δ η  are LaGrange multipliers, respectively. 

Given that a strictly increasing utility function implies budget exhaustion, the Kuhn-

Tucker conditions can be written as: 

(4.3)   

( )

( )

1

2

1 2

1 1

1 2

2 2

,

,
      

q

q

U q qL P
q q

U q qL P
q q

λ δ

λ η

∂∂
= − +

∂ ∂

∂∂
= − +

∂ ∂

 

(4.4)   

( )

( )
1

2

1 2 1

1 2 2

,

,

q

q

U q q q
P

U q q q
P

δ
λλ

η
λλ

∂ ∂
⇒ = −

∂ ∂
⇒ = −

 

and 

(4.5)    1 20,   0q qδ η= =  

From equations (4.1) to (4.5), the consumer decides the optimal consumption bundle 

( ) ( )1 2 1 2

* *
1 2, , , , ,q q q qq P P Y q P P Y  where the optimal Lagrange multipliers are such that ( )* 0λ >i , 
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( ) ( )* *0 0andδ η≥ ≥i i . Inserting these values into (4.3) and (4.4) allows defining the 

Marshallian (virtual) prices for q1 and q2 as: 

(4.6)   
( ) ( )

( ) ( )
1 1 2 1

2 1 2 2

* * *1 2 1
**

* * *1 2 2
**

,
, ,

,
, ,

v
q q q q

v
q q q q

U q q q
P P P Y P

U q q q
P P P Y P

δ
λλ

η
λλ

∂ ∂
= = −

∂ ∂
= = −

 

 

Equation (4.6) suggests that 
1 2

and v v
q qP P  equal their corresponding market prices only if 

* *0 and 0δ η= = or equivalently if  *
1 0q >  or *

2 0q > , given the complementary slackness 

conditions represented by equation (4.5).  

If we assume that the consumer decides to consume bundle q1 only, then 
1 1
  v

q qP P=  

and
2 22 0  v

q qq P P= ⇒ ≠  and 
2 2

*

*
v

q qP P η
λ= − . In other words, at equilibrium the prices 

that determine the quantity demanded of q1 and q2 are
1qP  for positively consumed 

commodities and the virtual prices for q2 ,
2 2

*

*
v

q qP P η
λ= − , the prices that set the demand 

for q2 to zero. Thus, at equilibrium the quantity demanded of q1 and q2 in this situation is: 

(4.7)    
( )( )
( )( )

1 2 1 2

1 2 1 2

*
1 1

*
2 2

, , , ,

, , , ,

v
q q q q

v
q q q q

q q P P P P Y Y

q q P P P P Y Y

=

=
 

An intuitive explanation of the use of virtual prices in a two-choice model is 

provided in Figure 3 of the Appendix. The utility-maximizing observed consumption 

bundle in this case is a corner solution, where q2 = 0 at market prices
1 2

( , )q qP P . If the 

utility function was maximized without regard to non-negativity constraints, the solution 
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would be the notional demands 1 2( , )q q− , where the good q2 is consumed at a negative 

level. The virtual price 
2

V
qP for the q2 good is a reservation price at which consumption of 

the good is induced to be exactly zero. By using the price ratio 1

2

q
V

q

P
P

  in place of 1

2

q

q

P
P

, one 

can characterize the tangency condition for the observed consumption bundle. Also note 

that in the case of a corner solution the market price is greater than the virtual price of a 

non-consumed good. Comparison of the virtual price to the market price can, therefore, 

be used to identify which goods are non-consumed. 

Now consider how virtual prices can be calculated empirically. Given the 

aggregated data and market prices as described in section 2, suppose  the MVT-QUAIDS 

model is estimated (with all restrictions that apply: homogeneity, adding up and 

symmetry). The parameter estimates resulting from the estimation procedure are 

economically meaningless if there is a violation of the non-negativity constraints, which 

would be evident if some of the predicted budget shares are negative valued. Consistent 

with the concept of virtual prices, set the negative values of the predicted shares to zeros 

and solve for the respective virtual prices within the vector p that satisfy the following 

system: 

(4.8)

( ) ( ) ( ) { }
2

1

ˆˆˆ ˆ ˆ ˆ0 ln ln ln , : 0
, ,

M
h i

i is s ij j i ih h
s j

y yz p i i w
b pa p z a p z

λα α γ β
=

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟= + + + + ∈ <⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
∑ ∑  

Then using the price vector ( )*p  consisting of market prices for goods consumed at 

positive values and virtual prices for those not consumed (zero-valued) values of 
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predicted shares can be recalculated, reflecting the appropriate corner point solution for 

the non-consumed good. 

 

5. GMM Estimation of the MVT System  

In estimating the QUAIDS model, a difficulty arises when evaluating the 

probability distribution of the mixed continuous-discrete density function. This 

probability density function exhibits both discrete (probability of observing zero 

outcomes) and continuous (probability density of w > 0) components (Lee, 1993). 

Researchers recognized that if the number of decision outcomes, and thus the number of 

equations in the system, is relatively large, the propensity for a notable subset of the 

decision outcomes in the system to occur at kink or boundary points is generally 

increased. In this case ML estimation of unknown parameters of the system will involve 

integration problems at each iteration of a likelihood maximization algorithm that are 

equal in number to the number of sample observations having binding non-negativity 

constraints. Moreover, the dimension of each of the integrals equals the number of 

elements contained in the discontinuous component of the observation. While numerical 

integration methods can evaluate multiple integrals in two or even in three dimensions 

with reasonable accuracy and speed, integration becomes progressively slower, less 

accurate, and /or intractable as the dimension of integration increases. 

Circumventing the problem of tractability, we use the GMM approach (Fahs and 

Mittelhammer, 2007) to estimate the QUAIDS model. The GMM approach can be 

applied to the QUAIDS model by utilizing the general marginal and bivariate moment 

relations that hold between explanatory variables and model noise. The GMM can use 
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both univariate and bivariate moments sufficient to mitigate information loss while 

avoiding the use of higher order moments and higher dimensional probability integrals. 

The general form of the MVT model is represented as: 

(5.1)   ji ji ji
ji

w = u if     w > 0
w =

0 otherwise
⎧
⎨
⎩

  

where now the subscript j  denotes the commodity10 and subscript i  denotes the sample 

observation, and uji is an observation on the appropriate function of the explanatory 

variables. 

 

5.1 Marginal Moments  

Fahs and Mittelhammer (2007) derive all the marginal moments that are based on 

equation (5.1) as:  

(5.1.1)  j
j. j. j. j

j

E(W |W > 0) = U + σ
φ
Φ

 

(5.1.2)   2 2
j. j. j. j. j. jE(W |W > 0) = U E(W |W > 0) + σ   

(5.1.3)   j. j. j j jE(W ) = U  + σ φΦ   

(5.1.4)   2 2
j. j. j. j jE(W ) = U E(W )+ σ Φ  

(5.1.5)   Binary j. jE(W )=Φ  

                                                 
10 For simplicity of presenting the moment equation we used the notation J to represent the commodities 
instead of M  (only for section 5) 
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where the subscript  j denotes the jth commodity11, jφ and jΦ  are shorthand for  

. .andj j

j j

U U
φ

σ σ
⎛ ⎞ ⎛ ⎞

Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, respectively, Uj. denotes the observations on the explanatory 

variables relating to the jth commodity and WBinary j. is defined as: 

                                                 .
.

1 0
0 otherwise

j
Binary j

if W
W

>⎧ ⎫
= ⎨ ⎬

⎩ ⎭
.  

Equations (5.1.1) and (5.1.2) represent the conditional first and second order moment 

conditions respectively, and equations (5.1.3) and (5.1.4) represent the unconditional first 

and second order moment conditions respectively. Finally, equation (5.1.5) represents the 

binary moment conditions. 

Gathering all of the marginal moment conditions (5.1.1)–(5.1.5) for all n 

observations, we can define the following relationships between .jU , .jW  and disturbances 

( i )
jξ  that have zero expectations as: 

(5.1.6)   

( )

0

0

(1)
j.>0 j . j j>0 j

j>0
2 2 (2)
j.>0 j . j.>0 j j

(3)
j . j . j j j j

2 2 (4)
j . j . j . j j j

(5)
Binary j. j j

1W = U +σ +

W = U E(W )+σ +
W = U +σ +

W = U E W +σ +

W = +

ξ

ξ
ξ

ξ

ξ

>

>

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

: :

:
: :

: :

Φ

Φ

Φ

Φ

φ

φ  

where ( i )
jξ denotes the disturbances that correspond to the ith set of moment conditions for 

the jth commodity, j.>0W  denotes the set of positive valued observations relating to the jth 

                                                 

11 
1 1

. .shorthand for , shorthand for
i i

j j

Ji Ji

U W
U W

U W

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

# #  
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commodity, ( ) 0j .
U

>
 denotes the observations on the explanatory variables that 

correspond to the positive valued outcomes, ( )j.>0E W  is shorthand notation for 

( ). .| >0j.>0 j jEW E W W  ≡ ( ) . 0 j j>0j
j>0

1= U +σ
>

: :
Φ

φ , : denotes the Hadamard (elementwise) 

product, In this context, jΦ  and jφ  are vectors of the CDFs and PDFs of the standard 

normal distribution, evaluated at the vector .j

j

U
σ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, respectively, j>0Φ  and j>0φ  are the 

subsets of those vectors corresponding to the positive valued observations j.>0W , and 

j>0

1
Φ

 denotes a vector of reciprocals of the elements in j>0Φ . 

Because  

0
(1)

j j.>0 j . j j>0
j>0

1W U - σ ,ξ >= − : :
Φ

φ  

0
(2) 2 2

j j.>0 j . j.>0 jW U E(W )- σ ,ξ >= − :  

(3)
j j . j . j j jW U - σ ,ξ = − : :Φ φ  

( )(4) 2 2
j j . j . j . j jW U E W - σ ,ξ = − : :Φ  

and 

(5)
j Binary j. jW - .ξ = Φ  

Orthogonality moment conditions can be defined as follows: 

0j . >0 j.>0 j . j j>0
j>0

1E ' W - U - σ = 0, >

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

: :Z
Φ

φ  

( )0
2 2

j . >0 j.>0 j . j>0 jE ' W  - U EW  - σ = 0,>
⎡ ⎤
⎣ ⎦:Z  
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( )j . j . j . j j jE ' W  - U - σ = 0,  ⎡ ⎤⎣ ⎦: :Z Φ φ  

( )( )2 2
j . j . j . j . j jE ' W  - U E W - σ = 0,⎡ ⎤

⎣ ⎦: :Z Φ  

and 

( )j . Binary j. jE ' W  - = 0,⎡ ⎤⎣ ⎦Z Φ  

where j .Z  denotes the observations on the exogenous explanatory variables ( prices, 

demographics and expenditure), j .>0Z  denotes the observations on the exogenous 

explanatory variables that correspond to the positive valued outcomes and having 

dimension (n×K).  

We can define a (5KJ×1) vector of moment conditions derived from the 

orthogonality condition as: 

( )( )
( )

( )( )
( )

. . 0

. . 0

Marginal
. . .

. . . .

.

(5.1.7)

j >0 j.>0 j j j>0
j>0

2 2
j >0 j.>0 j j.>0 j

j
j j j j j j

2 2
j j j j j j

j Binary j. j

1' W - U - σ

' W  - U E W  - σ
E (W, , ) = E

' W  - U  -σ  

' W  - U E W -σ  

' W  - 

θ

>

>

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢⎣ ⎦

: :

:

: :

: :

Z
Φ

Z
h Z

Z Φ

Z Φ

Z Φ

φ

φ
= 0.

⎥

 

The sample analog of the population moments displayed in (5.1.7) is  
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(5.1.8)                 

( )( )

( )

( )( )

( )

.
. 0(1)

.
. 0(2)

.
j Marginal . .(3)

.
. . .(4)

.
(5)

j
j j

j

j 2
j j

j

j
j j j j j

j

j 2 2
j j j j j

j

j
Binary j. j

j

>0
j.>0 j>0

j>0

>0 2
j.>0 j.>0

' 1w - u - σ
n

'
w  - u E w  - σ

n

'(w, , θ)= w  - u  - σ
n

'
w  - u E w - σ

n

'
w  - 

n

>

>

⎡ ⎛ ⎞
⎢ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

z

z

z

z

z

: :

:

: :

: :

Φ

h z Φ

Φ

Φ

φ

φ = 0, 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

where ( )i
jn  denotes the number of sample observations that correspond to the ith set of 

moment conditions for the jth commodity; the notations .jz , .jw and .ju  are the same as 

.jZ , .jW  and .jU  respectively (sample moments notations). ( ). 0jE w >  is equal to 

( ). 0jE W >  evaluated at sample outcomes for .jw  and .jz  and at specified values for 

θ ,where θ represents the parameters to be estimated. 

 

5.2 Bivariate Moments  

Fahs and Mittelhammer (2007) were able to derive the first, second and third order 

moment conditions for the truncated bivariate normal distribution. Bivariate moment 

conditions help to identify and estimate the parameters involved in the covariance or the 

correlation structure occurring across equation errors. In addition, the bivariate moments 

avoid the problem of evaluating the probability of the discontinuous part in higher 

dimensions as numerical integration is then only required in two dimensions, which is 

quite accurate and fast computationally. 



 76

In the MVT model, there are J different dependent variables. There are 

( )1
2

J J −⎛ ⎞
⎜ ⎟
⎝ ⎠

alternative pairs of decision outcomes relating to these dependent variables that 

can be examined in a bivariate manner. For example, in the empirical demand model 

there are four groups of vegetables (one being suppressed to address the issue of 

covariance matrix singularity), leading to six pairs of bivariate outcomes that can be 

represented as ( ) ( ) ( ) ( ) ( ) ( )1 2 1 3 1 4 2 3 2 4 3 4, , , , , , , , , and ,i i i i i i i i i i i iw w w w w w w w w w w w . For each 

pair, one can derive first, second, third and cross moment conditions.  

Using the bivariate moment conditions (Fahs and Mittelhammer, 2007), and similar 

to the orthogonality conditions of the marginal moments above, and noting that for any 

pair of decision outcomes, ( )j. k.y , y , there are nine bivariate moments, we can define a 

vector of bivariate-type as:  

( )

( )( )

( )( )

( )( )

( )( )

. . . . .

1 , 2 , , ;

2 2
. . . . .

1 , 2 , , ;

3 3
. . . . .

1 , 2 , , ;

B i v a r i a t e

. . . . . . .

' | 0 , 0

' | 0 , 0

' | 0 , 0

( 5 .2 .1 ) , ,

' | 0 , 0

j j j j k

f o r j a n d k J j k

j j j j k

f o r j a n d k J j k

j j j j k

f o r j a n d k J j k

j j k j k j k

f o r

E

E

E

E

E

θ

= ≠

= ≠

= ≠

− ≥ ≥

− ≥ ≥

− ≥ ≥

=⎡ ⎤⎣ ⎦
− ≥ ≥

…

…

…

#

#

#

Z W W W W

Z W W W W

Z W W W W

h W Z

Z W W W W W W

( )( )

( )( )

[ ]

1 , 2 , , ;

2 2
. . . . . . .

1 , 2 , , ;

2 2
. . . . . . .

1 , 2 , , ;

0 ,

' | 0 , 0

' | 0 , 0

j a n d k J j k

j j k j k j k

f o r j a n d k J j k

j j k j k j k

f o r j a n d k J k j

E

E

= >

= >

= >

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− ≥ ≥⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− ≥ ≥⎢ ⎥
⎢ ⎥
⎣ ⎦

…

…

…

#

#

Z W W W W W W

Z W W W W W W
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where .jZ  denotes the observations on the exogenous explanatory variables ( prices, 

demographics and expenditure) and it have a dimension of (n×K), all the expectation 

terms are derived in Fahs and Mittelhammer (2007) paper, the dimension of 

( )Bivariate , ,E h W Z θ⎡ ⎤⎣ ⎦ is 9J(J - 1)K ×1
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where J is the number of commodities and K is 

the number of columns in the explanatory variable .jZ . 

The sample analog of the population moments condition are: 

( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( )

6

7

8

9

'
.

. . . .

1,2 , , ;

'
. 2 2

. . . .

1,2 , , ;

'
. 3 3

. . . .

1,2 , , ;

B ivariate
'

.
. . . . .

| 0 , 0

| 0, 0

| 0 , 0

(5 .2 .2 ) ,

|

j
j j j k

jk

for j and k J j k

j
j j j k

jk

for j and k J j k

j
j j j k

jk

for j and k J j k

j
j k j k j

jk

z
E

n

w E
n

E
n

E
n

θ

= ≠

= ≠

= ≠

− ≥ ≥

− ≥ ≥

− ≥ ≥

=

−

z

z

y , z
z

…

…

…

#

#

#

w w w w

w w w

w w w w

h

w w w w w( )( )

( ) ( )( )

( ) ( )( )

10

11

.

1, 2 , , ;

'
. 2 2

. . . . . .

1, 2 , , ;

'
. 2 2

. . . . . .

1, 2 , , ;

0 , 0

| 0 , 0

| 0 , 0

k

for j and k J j k

j
j k j k j k

jk

for j and k J j k
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where as before, 
( )i

jkn  denotes the number of sample observations involved in the ith set of 

moment conditions for the (j,k)th Choice pair. The cumulative set of moment conditions, 

including both marginal and bivariate moments, can be specified as:  

(5.2.3)    Marginal

Bivariate

(W , z, θ)
 E (W , z , θ) = Ε = 0

(W , z , θ)
⎡ ⎤
⎢ ⎥
⎣ ⎦

h
H

h
 

The sample counterpart of the population moments is [ ](w, z, θ) = 0H . It has a 

dimension of 9J(J -1)K 5KJ + ×1
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

, in our empirical analysis J=4 (number of share 

equations after dropping share of Onion), K=19 (prices, expenditure and demographics) 

the dimension of the H vector defined above will be (1406×1). Given this moment 

information, we need to estimate a parameter vector that has J(J -1)+ K
2

elements, which 

are unique. The number of moment conditions is clearly greater than the number of 

unknown parameters we need to estimate. Hence, the set of moment equations is over 

determined. In the GMM approach, the parameter vector is chosen for which the sample 

moment conditions are as close to the zero vector in weighted Euclidian distance as 

possible. We use the following measure closeness, and to generate GMM estimates of the 

parameters of the model: 

(5.2.4)  ˆ
θ j. j. θ optmin Q(w , z , θ)  = min  (w , z , θ)   (w, z, θ)⎡ ⎤′⎡ ⎤⎣ ⎦ ⎣ ⎦H W H  

where ˆ
optW  denotes an estimate of the optimal weight matrix. 
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5.3 Starting Values for GMM Estimation Method 

The convergence of the non-linear optimization problem in equation (5.2.4) is 

affected by the quality of the starting values for the parameters. To find starting values 

we followed a two step approach. In the first step, with the starting values obtained from 

the procedure described in Fahs and Mittelhammer (2007), we solved the optimization 

problem for all of the marginal moment conditions with symmetry, homogeneity and 

adding up restrictions imposed. The identity matrix was used as the weight matrix in the 

GMM criterion function. Then the parameter estimates obtained from this first step were 

used as the starting values for the second step. The optimal GMM weight matrix in the 

second step was defined by finding the inverse of the covariance matrix for the set of 

marginal and bivariate moment conditions, and then they were inserted into the weight 

matrix. Using this estimated optimal weight matrix and starting values derived from the 

first step, we solved the optimization problem for all the moment conditions, i.e., 

marginal and bivariate conditions, with symmetry, homogeneity and adding up restriction 

imposed. 

 

6. Model Estimation Using Virtual Prices 

Using the market prices (prices from the original data) to estimate the share 

equations in model (3.2.20) by the GMM approach will generate predicted shares with 

negative values. This will result in violating the non-negativity constraints. Setting those 

negative values (predicted shares) to zeros and solving for the virtual prices as in 

equation (4.8), we can form a new set of prices that contain both market price and virtual 

prices ( )*p . Using this new set of prices we can recalculate the new predicted shares. 
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The parameter estimates from the GMM approach, the new set of prices containing both 

market and virtual prices and the new calculated predicted shares can be used in elasticity 

analysis. 

The MVT-QUAIDS model estimation using the GMM approach along with the 

virtual prices concept is carried out by the following steps: 

1. Obtain starting values for the parameter estimates for the MVT-QUAIDS 

model using the market price data (section 5.3). 

2. Estimate the MVT-QUAIDS model with market price data using the GMM 

approach (section 5). 

3. Set the negative predicted shares obtained in step 2 to zeros (section 4). 

4. Calculate the virtual prices by solving the subset of the demand system for 

the prices equate the respective budget shares to zero.  

5. Use the virtual prices calculated in step 4 together with market prices for the 

goods consumed at positive levels to recalculate predictions of the budget 

shares. 

6. Use the parameter estimates together with the market and virtual prices to 

perform an elasticity analysis of the demand system. 

 

7. Estimation Results Using the GMM–Virtual Prices Approach 

This section is divided into two parts: the first part presents the parameter estimate 

of the QUAIDS using the GMM approach and illustrates the usefulness of the GMM-

virtual price approach in correcting the corner point and improving predictions of the 

observed share values. The second part presents the effect of the E.coli on the 
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consumption of salad vegetables during the non-outbreak period (January to August) 

versus the outbreak periods (i.e. September and November).  

Note that in this paper, we used the SAS statistical software package for data 

recoding, cleaning and transformation. Estimation is conducted using GAUSS 8.0 

programming software. 

 

7.1 Results of the Demand for Salad Vegetables 

The QUAIDS model is estimated using the GMM approach, with theoretical 

restrictions of adding-up, homogeneity, and symmetry imposed during estimation. Four 

share equations are estimated (Tomato, Cabbage, Lettuce and Spinach), where the share 

equation of Onion is dropped to deal with the inherent covariance matrix singularity in 

the model. 

In order to estimate the QUAIDS model presented above one should minimize 

equation (5.2.4), which is non-linear, we used the Nelder-Meade polytope direct-search 

method of optimization, which is a direct search method that only requires objective 

function evaluations for optimization. As a result, it is robust to non-differentiability (but 

requires continuity) and useful for functions whose derivatives are difficult to calculate, 

or that cannot be calculated or approximated at all. A convergence criterion of 0.00001 

was used for the difference between the maximum and the minimum objective function 

associated with the vertices of the Nelder-Meade simplex. 

Table 5 in the Appendix presents the estimated coefficients for the QUAIDS 

model. At the 95% significance level, the parameters associated with the expenditure 

terms (β and λ) are highly significant; this demonstrates the importance of the quadratic 
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terms in real expenditure for all five types of salad vegetables under the GMM estimation 

criterion. The coefficients associated with the prices (γ) are also highly significant; the 

interpretation of these parameters can be better explained using elasticity analysis 

(procedures of elasticity analysis during the non-outbreak and outbreak periods are 

described in section 7.2). Besides the price and expenditure parameters it is important to 

examine the effects of socio-demographic variables on the consumption of vegetables. 

Households with different socio-demographic profiles may have different consumption 

preferences and exhibit different consumption patterns. During the outbreak period, the 

coefficient estimates of the socio-demographic variables suggest that: 

• Age: is not statistically significant for all groups of salad vegetables. 

• Sex: indicates that female households prefer more of Tomato, Lettuce and 

Spinach, and less of Cabbage and Onion. 

• Children: indicates that households with children prefer more of Tomato, 

Cabbage, Lettuce and Onion, and less of Spinach. This finding suggests 

that consumers are concern about their children safety during the outbreak 

period.  

• Status: is not statistically significant for all groups of salad vegetables. 

• Income-D1: indicates that households with income between $25,000 and 

$50,000 prefer more of Tomato, Cabbage, Lettuce and Onion, and less of 

Spinach. 

•  Income-D2: indicates that households with income greater than $50,000 

prefer more of Tomato, Lettuce, Cabbage and Onion, and less of Spinach. 
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Note that households with higher income consume less of Spinach and 

more of other vegetables than those with lower income.  

• Location: indicates that households located in California prefer more of 

Tomato, Cabbage and Lettuce, and less of Spinach and Onion. This could 

be explained as the closer the consumer to the epidemic area, the more 

he/she is concern about the E.coli effect. 

• D-September: indicates that households during the first outbreak prefer 

more of Tomato, Cabbage, Lettuce and Onion, and less of Spinach. This 

indicates that consumers are either concern about their safety or there is a 

lack of Spinach due to the product recalls during the first outbreak. 

• D-October: indicates that households after the first outbreak prefer more of 

Tomato, Cabbage and Lettuce, and less of Spinach and Onion. However, 

the households’ preferences for Tomato, Cabbage and Lettuce are lower 

than their preferences for the same vegetables in September (for example, 

Lettuce was 0.414 in September and dropped down to 0.322 in October).  

Households’ preferences for Spinach start increasing significantly in 

October (from -0.8761in September to -0.0012 in October). These changes 

indicate that the consumers start adjusting their preferences for vegetables 

after the first outbreak. 

• D-November: indicates that households during the second outbreak prefer 

more of Tomato, Cabbage, Lettuce and Onion and less of Spinach. Note 

that during the second outbreak (November) households prefer less of 

Spinach and more of other vegetables compared to the first outbreak 
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(September). The explanation of this finding could be that households 

during the second outbreak are more alert and more educated about the 

E.coli warnings, as the result of the first outbreak.  

• D-December: indicates that households after the second outbreak prefer 

more of Tomato, Cabbage and Lettuce, and less of Spinach and Onion. 

Again, in this month households start adjusting their preferences for 

vegetables after the second outbreak. 

The time trend suggests that households consume more of salad vegetables in the 

summer months as shown in Figure 14 in the Appendix. The consumption of Tomato, 

Cabbage, Lettuce and Spinach reaches the peak in the summer, while the consumption of 

Onion decreases. This finding coincides with the fact that households in the United States 

tend to consume more of salad vegetables during summer months. 

In order to calculate the marginal effects of socio-demographics on consumption 

and elasticities of demand, we need to use the virtual price concept to correct for the 

predicted shares. The predicted shares obtained from the GMM estimator had negative 

values; the presence of these negative values would be evident that we would be violating 

the non-negativity constraints. Setting the predicted negative shares to zeros and solving 

for the virtual prices, we created a new set of prices that contained both market (goods 

consumed at positive values) and virtual prices (goods that are not consumed). The new 

predicted shares, which were calculated from those new set of prices, would reflect the 

appropriate corner point solution for the non-consumed goods. Table 6 in the Appendix 
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summarizes the actual, new predicted shares, and the root mean square errors 12(RMSE). 

The RMSE of the actual and new predicted shares are reasonably small for all the groups 

of vegetables. This finding supports the usefulness of the GMM–virtual prices approach 

in correcting the corner point and improving predictions of the observed share values. 

 

7.2 The Effect of the E.coli Outbreak on the Demand for Salad Vegetables 

In order to explain the effect of E.coli on the consumer demand for salad 

vegetables, we computed and compared the elasticities of the model before the outbreak 

(i.e. January to August) to the elasticities of the first outbreak (September) and the second 

outbreak (November). Then we calculated the percentage change of marginal effects of 

the socio-demographic variables on the consumption of salad vegetables before and 

during the outbreaks. 

The elasticities before the outbreak period (January to August) are calculated 

according to the following procedure: 

• Set the dummies for September, October, November and December to zero 

(switch off); this will eliminate the effect of these months. 

• Set the right-hand-side (RHS) demographic variables in equations (3.2.20) 

to the mean levels of their values in January to August. 

• Predict the shares for salad vegetables using GMM approach. 

• Set the negative predicted shares obtained to zeros and solve for the Virtual 

prices according to equation (4.8). 

                                                 

12 
( )2

ˆ
1 ˆ, where w : actuals shares, and w : new predicted sharesi i

n
w wi iiRMSE

n

−∑
==  
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• Recalculate the predicted shares using both market and virtual prices. 

• Use the parameter estimates and the recalculated predicted shares to 

calculate the expenditure and price elasticities. 

 

To compute the elasticities of the September outbreak period: 

• Set the dummy of September to one and the dummies for October, 

November and September to zero (switch off). 

• Set time = 9 indicating September month. 

• Set the right-hand-side (RHS) demographic variables in equations (3.2.20) 

to the mean levels of their values in September. 

• Predict the shares for salad vegetables using GMM approach. 

• Set the negative predicted shares to zeros and solve for the Virtual prices. 

• Recalculate the predicted shares using both market and virtual prices. 

• Use the parameter estimates and the recalculated predicted shares to 

calculate the expenditure and price elasticities. 

To compute the elasticities of the November outbreak period we follow the same 

procedure as for the September outbreak, the only difference is to account for November 

instead of September. 

Tables 7 and 8 in the Appendix present the predicted shares of the non-outbreak 

period (January to August) and the outbreak periods (September and November). The 

results show that the consumption of Tomato, Cabbage, Lettuce and Onion increases by 

8.6%, 32.6%, 31.8% and 0.7%, respectively, by September. While the consumption of 

Spinach decreases by 50.6%. Similarly, the consumption of Tomato, Cabbage, Lettuce 
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and Onion increases by 13.5%, 34.4%, 33.4% and 1.3%, respectively, by November. 

While the consumption of Spinach decreases by 54.2%. The results depict that Spinach is 

being substituted with other salad vegetables, which suggests that consumers either 

concern about the E.coli effect or they are not able to purchase Spinach due to the 

product recalls. The results also show that the second outbreak has greater impact on the 

consumption of salad vegetables as consumers seem to be more alert and worried about 

the E.coli effect. 

   Table 9 in the Appendix presents the expenditure elasticities during the non-

outbreak and the outbreak periods. The results indicate that during the non-outbreak 

period, Tomato (1.22), Lettuce (1.13) and Spinach (1.73) are expenditure elastic, while 

Cabbage (0.86) and Onion (0.72) are expenditure inelastic; the latter indicates that 

Cabbage and Onion are not responsive to consumer change in expenditure. During the 

first outbreak (September) the expenditure elasticities of Tomato (1.35), Cabbage (1.05) 

and Lettuce (1.31) are elastic, while Onion (0.83) and Spinach (0.81) are inelastic. The 

results for the second outbreak (November) indicate that the expenditure elasticities of 

Tomato (1.37), Cabbage (1.06) and Lettuce (1.51) are more elastic compared to the first 

outbreak, while Spinach (0.85) becomes less inelastic. Three main comparative 

observations can be made: 

1. The expenditure elasticity of Cabbage changes from inelastic (during the 

non-outbreak period) to elastic (during both outbreaks), which indicates that 

consumers are willing to purchase more of Cabbage if their expenditures 

increase.  
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2. The expenditure elasticity of Spinach changes from elastic (during the non-

outbreak period) to inelastic (during both outbreaks), which indicates that 

consumers are not responsive to expenditure changes. This could be 

because households are concern about their safety. 

3. Tomato, Cabbage and Lettuce are more elastic and Spinach is more inelastic 

during the second outbreak compared to the first outbreak. This indicates 

that the November outbreak has greater impact on the expenditure 

elasticities than the September outbreak. 

 

Tables 10, 11 and 12 represent the compensated price elasticities for the non-

outbreak, the first outbreak and the second outbreak periods, respectively. All 

compensated own price elasticities are negative and have reasonable magnitudes 

consistent with the economic theory.  

Table 10 shows that Tomato (-1.33), Lettuce (-1.421) and Spinach (-1.52) are price 

elastic, while Cabbage (-0.81) and Onion (-0.812) are price inelastic. The cross price 

elasticities contain positive and negative values indicating that the set of vegetables 

contains both substitute and complement goods. For example, Spinach and Cabbage are 

substitutes, while Spinach and Lettuce are complement goods. 

Table 11 indicates that during the first outbreak the own price elasticities of 

Tomato (-1.43), Cabbage (-1.12) and Lettuce (-1.51) are more price elastic, while 

Spinach (-0.80) and Onion (-0.84) are price inelastic. The results also show that Spinach 

is substituted with Tomato, Cabbage and Lettuce.  
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Table 12 indicates that during the second outbreak the own price elasticities of 

Tomato (-1.51), Cabbage (-1.32) and Lettuce (-1.63) are more price elastic, while 

Spinach (-0.68) is more price inelastic compared to the first outbreak. The cross price 

elasticities also show that Spinach is substituted with Tomato, Cabbage and Lettuce.  

Five main observations can be made from the elasticity analysis results: 

1. The own price elasticity of Cabbage changes from price inelastic (during 

the non-outbreak period) to price elastic (during both outbreaks), which 

indicates that consumers are willing to purchase more of Cabbage if the 

price of Cabbage is increased.  

2. The own price elasticity of Spinach changes from price elastic (during the 

non-outbreak period) to price inelastic (during both outbreaks), which 

means that consumers are not responsive to price changes during the 

outbreaks. 

3. In the second outbreak the own price elasticities of Tomato, Cabbage, and 

Lettuce are more price elastic, while Spinach is more inelastic compared to 

the first outbreak. 

4. Spinach is substituted with Tomato, Cabbage, and Lettuce during both 

outbreak periods.   

5. The substitution of Spinach with Tomato, Cabbage, and Lettuce is greater 

during the second outbreak.  

 

The summary of the results above indicates that the consumption of Spinach 

decreases, while the consumption of other vegetables increases significantly during the 
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outbreak periods. The cross price elasticities results suggest that Spinach is substituted 

with other vegetables, such as Cabbage and Lettuce. This finding has two possible 

interpretations: consumers either are concerned about their health or there is a shortage in 

the supply of Spinach due to product recalls. The results also indicate that the second 

outbreak has greater impact on the consumption of salad vegetables as consumers seem 

to be more alert and worried about the E.coli effect. 

Because of the non-linearity in the demand system and the fact we are dealing with 

a censored data generating, the values of the parameter estimates do not provide a simple 

measure of marginal effects of socio-demographic variable on consumption.  

In this study we compared the percentage change of marginal effects of the socio-

demographic variable on consumption. The comparison is computed for the non-outbreak 

period versus the outbreak periods.  

To calculate the marginal effect of socio-demographic variables on consumption 

during the non-outbreak period versus the outbreak periods, the procedure is based on the 

following steps: 

For non-outbreak period 

1. Create three types of income Ranges 

i) Set Income-D1=0 and Income-D2=0 (Income < $25,000) 

ii) Set Income-D1=1 and Income-D2=0 ($25,000 <Income < $50,000) 

iii) Set Income-D1=0 and Income-D2=1 (Income >$50,000) 

2. Set the dummies for September, October, November and December to zero 

(switch off); this will eliminate the effect of these months. 
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3. Next, set the RHS demographic variables in equations (3.2.20) to the mean 

levels of their values in January to August. 

4. Set the appropriate demographic variable of interest to zero or one (if it is 

an indicator variable), and set the variable to its mean (if it is not an 

indicator variable).  

5. Then predict the share using GMM approach for each type of income range 

in step 1, taking into account the variable of interest in step 4. 

6. Set the negative predicted shares to zeros and solve for the Virtual prices. 

7. Recalculate the predicted shares of the demographic variable of interest 

using both market and virtual prices. 

For the September outbreak 

1. Create three types of income Ranges 

i) Set Income-D1=0 and Income-D2=0 (Income < $25,000) 

ii) Set Income-D1=1 and Income-D2=0 ($25,000 <Income < $50,000) 

iii) Set Income-D1=0 and Income-D2=1 (Income >$50,000) 

2. Set the dummy of September to one and the dummies for October, 

November and September to zero (switch off). 

3. Set time = 9 indicating September month. 

4. Then set the RHS demographic variables in equations (3.2.20) to the mean 

levels of their values in September. 

5. Set the appropriate demographic variable of interest to zero or one (if it is 

an indicator variable), and set the variable to its mean (if it is not an 

indicator variable).  
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6. Then predict the share using GMM approach. 

7. Set the negative predicted shares to zeros and solve for the Virtual prices. 

8. Recalculate the predicted shares of the demographic variable of interest 

using both market and virtual prices. 

 

For the November outbreak 

• For November outbreak we follow the same procedure as the September 

outbreak, the only difference is to account for November instead of September. 

 

Comparison between the non-outbreak period versus the outbreak periods 

• Calculate the percentage change of the recalculated shares during the non-

outbreak versus the outbreak periods.  

Table 13 in the Appendix represents the percentage changes of marginal effects of 

income on the consumption of salad vegetables during the non-outbreak versus the 

outbreak periods. Three major observations can be detected: 

1. Higher income households consume more of Tomato, Cabbage, and Lettuce 

and less of Spinach and Onion compared to households with lower income 

during both outbreak periods (September and November). 

2. Regardless of the household income, the consumption of Tomato, Cabbage, 

Lettuce and Onion increases, while consumption of Spinach decreases 

during both outbreak periods. 
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3. November outbreak has greater impact on the consumption of salad 

vegetables, where households tend to consume less of Spinach and more of 

other vegetables compared to September outbreak. 

As a conclusion income has a significant effect on the consumption of vegetable 

during the outbreak periods, where it is evident that households with higher income tend 

to consume less of Spinach and more of other vegetables (Tomato, Cabbage and Lettuce) 

than households with lower income with the exception of Onion. 

The percentage changes of marginal effects of Sex on the consumption of salad 

vegetables during the non-outbreak versus the outbreak periods are presented in Table 14. 

The results depict four major observations: 

1. Females tend to consume more of Tomato, Spinach and Lettuce, and 

consume less of Onion and Cabbage compared to males, during both 

outbreak periods. A reasonable explanation of this finding is that females 

consider salad as a main constituent of their diet.  

1. Consumers with higher income consume more of Tomato, Cabbage and 

Lettuce and less of Onion and Spinach. 

2. Regardless of the household gender and income, the consumption of 

Tomato, Cabbage, Lettuce and Onion increases, while consumption of 

Spinach decreases during both outbreak periods. 

3. November outbreak has greater impact on the consumption of salad 

vegetables, where households tend to consume less of Spinach and more of 

other vegetables compared to the first outbreak. 
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Table 15 in the Appendix represents the percentage changes of marginal effects of 

Location on the consumption of salad vegetables during the non-outbreak versus the 

outbreak period. The results depict three major observations: 

1. During both outbreak periods, Consumers located in California tend to 

consume more of Tomato, Cabbage and Lettuce and less of Onion and 

Spinach than those consumers located in Oregon and Washington. The 

decrease in the consumption of spinach in California indicates that 

consumers closer to the epidemic area are more concerns about the E.coli 

effect. 

2.  Consumers with higher income consume more of Tomato, Cabbage and 

Lettuce and less of Onion and Spinach. 

3. November outbreak has greater impact on the consumption of salad 

vegetables, where households tend to consume less of Spinach and Onion 

and more of other vegetables compared September outbreak. 

The percentage changes of marginal effects of Status on the consumption of salad 

vegetables during the non-outbreak versus the outbreak period are presented in Table 16. 

Note that all the parameters for Status were found to be insignificant. 

Table 17 in the Appendix represents the percentage changes of marginal effects of 

Children on the consumption of salad vegetables during the non-outbreak versus the 

outbreak period. Four categories are identified for the number of children: 1) consumers 

with no children; 2) consumers with one child; 3) consumers with 2 children; 4) 

consumers with three or more children. Four major observations can be detected: 
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1. In general households with children consume more of Tomato, Cabbage, 

Onion and Lettuce and consume less of Spinach compared to those 

households without children, during both outbreak periods.  

2. Consumers with higher income tend to consume less of Spinach and Onion, 

and more of other vegetables than those with lower income, during both 

outbreaks. 

3. November outbreak has greater impact on the consumption of salad 

vegetables, where households tend to consume less of Spinach and more of 

other vegetables compared to September outbreak. 

Finally Table 18 in the Appendix represents the elasticity of Age on the 

consumption of salad vegetables, where the elasticity of age is calculated by 

differentiating the share model with respect to Age in equation (3.2.20). Note that all 

parameter estimates for age are not significant.  

As a summary, this study shows that during the outbreak periods the consumption 

of Spinach decreases significantly, while the consumption of Tomato, Onion, Cabbage 

and Lettuce increases. The decrease in Spinach consumption can be explained as: 1) The 

consumer is either concern about his/her health or 2) the supply of Spinach is decreased 

due to the recalls of spinach. The results also show that after the outbreaks (October and 

December) consumers adjusted their behavior and the consumption of Spinach increases 

significantly. The elasticity analysis shows that households substituted spinach with other 

leafy vegetables such as Cabbage and Lettuce; this finding justifies the increase in the 

consumption of Tomato, Onion, Cabbage and Lettuce. 
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 The socio-demographic effects indicate that households with higher income 

consume more of Tomato, Cabbage and Lettuce and consume less of Spinach and Onion. 

It is also shown that consumers with children tend to consume less of Spinach and 

substitute Spinach with other vegetables, as consumers are concern about their children 

safety. The study also reveals that households close to the epidemic area (California) 

consume less of spinach and more of alternative vegetables than those households in 

Oregon and Washington. Finally the study shows that consumers are more affected by the 

E.coli in the second outbreak compared to the first outbreak; as consumers seem to be 

more alert and more knowledgeable about the E.coli effect. 

 

8. Conclusions  

The 2006 E.coli outbreaks affecting salad vegetables, and in particular Spinach, 

raise concerns about the impact of these outbreaks on consumers’ consumption of salad 

vegetables. A system of demand equations for four groups of vegetables was estimated to 

estimate the quantitative impacts of the outbreak on consumption, and the system was 

based on the QUAIDS model under binding non-negativity constraints with demographic 

effects and allowing for non-linear Engel curves. Two prominent econometric issues 

were addressed in the analysis. The first resulted from the presence of censoring because 

budget shares (w) should not violate the non-negativity constraints and the adding up 

conditions of the QUAIDS model. The virtual price approach of Lee and Pitt (1986) was 

used to address the problem. Their empirical implementation of the virtual price approach 

is troubled by the computational complexity of maximizing the likelihood function. In 

this paper, we utilize a new GMM approach for estimating systems of non-linear 
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censored demand equations that addresses both the computational burden of high 

dimensional integrals and also prevents the violation of the non-negativity constraints 

(Fahs and Mittelhammer, 2007). The method utilizes general marginal and bivariate 

moment relations that hold between explanatory variables and model noise. The estimates 

obtained by this approach are consistent, asymptotically normal, and near-asymptotically 

efficient, and are computationally relatively straightforward and tractable as the 

dimensionality of the model is increased. Another advantage of the GMM approach is its 

ability to impose side constraints on the parameters that add information to the data with 

the potential of further increasing the precision of the estimates. 

Regarding the empirical results, the proposed model was useful for analyzing the 

effect of the E.coli outbreaks on consumers’ consumption of salad vegetables. The results 

suggest that during the outbreak period, Spinach was affected the most; this was expected 

because of the warnings issued by the CDC and the recalls affecting this product. 

Households with Children were especially concerned about the outbreaks as indicated in 

our analysis, with the consumption of Cabbage, Tomato, Onion and Lettuce increasing 

significantly while the consumption of Spinach decreased during the outbreak periods. 

Further the elasticity analysis showed that consumers substitute away from spinach and 

towards alternative vegetables. 
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Appendix 

 

Figure 1: Annual per capita vegetables consumption (1970–2002) 

 
 
 
 

Figure 2: Geographical spread of the retail stores in California, Oregon and Washington 
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Figure 3: Empirical Cumulative Distribution Functions, Price of Onion, indicator 

variables: Age, Sex, Status, and Income Range 
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Figure 4: Empirical Cumulative Distribution Functions, Price of Onion, indicator 

variables: Number of Children 
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Figure 5: Empirical Cumulative Distribution Functions, Price of Cabbage, Demographic 

variables: Age, Sex, Status, and Income Range 
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Figure 6: Empirical Cumulative Distribution Functions, Price of Cabbage, Demographic 

variables: Number of Children 
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Figure 7: Empirical Cumulative Distribution Functions, Price of Lettuce, Demographic 

variables: Age, Sex, Status, and Income Range 

 
 
 

 

 

Figure 8: Empirical Cumulative Distribution Functions, Price of Lettuce, Demographic 

variables: Number of Children 
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Figure 9: Empirical Cumulative Distribution Functions, Price of Spinach, Demographic 

variables: Age, Sex, Status, and Income Range 
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Figure 10: Empirical Cumulative Distribution Functions, Price of Spinach, Demographic 

variable: Number of Children 
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Figure 11: Empirical Cumulative Distribution Functions, Price of Tomato, Demographic 

variables: Age, Sex, Status, and Income Range 
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Figure 12: Empirical Cumulative Distribution Functions, Price of Tomato, Demographic 

variables: Number of Children 
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Figure 13: Example of corner solution and virtual price 
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Figure 14: Time trend Graphs 
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Table 1: Vegetable groups, subgroups and types 

Groups Bulk Packed 
 Subgroups 

Tomato 148 Types 91 Types 
Onion 95 Types 126 Types 

Cabbage 16 Types – 
Lettuce 106 Types 43 Types 
Spinach 31 Types 53 Types 
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Table 2: T-tests statistics for comparing the means of prices with missing observations 

with the means of prices with non-missing observations 

 
 

Null Hypothesis H0: mean of price with missing observations equal to the 
mean of price with non-missing observations 

      
Price Age Sex Status Income Children 

      
 T-test values 
      
Tomato 0.40 0.40 0.40 0.40 0.72 
Onion 0.52 0.52 0.52 0.52 0.78 

Cabbage 0.48 0.48 0.48 0.48 0.65 
Lettuce 0.63 0.63 0.63 0.63 0.82 
Spinach 0.98 0.98 0.98 0.98 1.20 

      
At 95% significant level, t-critical=1.96 
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Table 3: The Mann-Whitney Test 

 
 

Null Hypothesis H0: The two populations have identical distribution 
functions 

      
Price Age Sex Status Income  Children 

      
 
 p-values 

Tomato 0.79 0.79 0.79 0.79 0.89 
Onion 0.62 0.62 0.62 0.62 0.71 

Cabbage 0.83 0.83 0.83 0.83 0.95 
Lettuce 0.86 0.86 0.86 0.86 0.92 
Spinach 0.91 0.91 0.91 0.91 0.98 

At 95% significant level,  p-critical=0.05 
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Table 4: Summary statistics for the variables after aggregation 

Variables Mean Standard 
Deviation Minimum Maximum

Share-Tomato 0.2327 0.3849 0 1 
Share-Onion 0.2842 0.4134 0 1 
Share-Cabbage 0.0627 0.2223 0 1 
Share-Lettuce 0.3380 0.4325 0 1 
Share-Spinach 0.0823 0.255 0 1 
Price Tomato 1.4479 0.3735 0.219 3.99 
Price Onion 1.1358 0.2134 0.2983 3.99 
Price Cabbage 0.7564 0.0516 0.2494 1.4948 
Price Lettuce 1.6015 0.1782 0.265 2.99 
Price Spinach 1.3651 0.1502 0.25 2.495 
Total Expenditure 3.0488 2.5166 1.01 418.5 
Age 56.1891 13.0264 18 98 
Sex 0.184 0.3875 0 1 
Children 0.7316 0.9561 0 7 
Status 0.7842 0.4113 0 1 
Income-D1  0.3314 0.2824 0 1 
Income-D2 0.4823 0.3862 0 1 
D-September 0.00833 0.2763 0 1 
D-October 0.00824 0.2756 0 1 
D-November 0.00866 0.2788 0 1 
D-December 0.00889 0.2767 0 1 
Location 0.2747 0.4464 0 1 
Total number of observations 377149 
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Table 5: GMM parameter estimates for vegetable salads and the p-values 

GMM QUAIDS  Model 
Parameter Variables  Tomato Cabbage Lettuce Spinach

αi Intercept 0.5214 
(0.6120)

0.42654 
(0.1521)

0.4253 
(0.7521) 

0.55.22 
(0.4685)

 
 

Age -0.0498
(0.1030)

0.0354 
(0.1101)

0.0135 
(0.2121) 

0.0244 
(0.1250)

 
 

Sex 0.0535 
(0.0008)

-0.0623 
(0.0000)

0.0623 
(0.0221) 

0.0055 
(0.0020)

 
 

Children 0.0525 
(0.0001)

0.0635 
(0.0010)

0.0345 
(0.0000) 

-0.2412
(0.0000)

 
 

Status -0.4210
(0.2621)

0.0312 
(0.1151)

0.0312 
(0.4202) 

0.0313 
(0.3010)

 
 

Income-D1 ($25,000-$50,000) 0.0345 
(0.0010)

0.1232 
(0.0120)

0.2352 
(0.0005) 

-0.4022
(0.0011)

 Income-D2 (>$50,000) 0.1362 
(0.0201)

0.2520 
(0.0510)

0.2433 
(0.0015) 

-0.5082
(0.0150)

αis Location 0.0055 
(0.410)

0.1244 
(0.0000)

0.2534 
(0.0021) 

-0.1334
(0.0051)

 
 

D-September 0.1343 
(0.1240)

0.2232 
(0.0010)

0.4146 
(0.0011) 

-0.8761
(0.0042)

 
 

D-October 0.1212 
(0.0214)

0.1811 
(0.0225)

0.3221 
(0.0113) 

-0.0012
(0.0000)

 
 

D-November 
 

0.1553 
(0.0902)

0.3012 
(0.0000)

0.5021 
(0.0030) 

-0.9642
(0.0001)

 D-December 
 

0.1201 
(0.0011)

0.2432 
(0.0010)

0.3757 
(0.0250) 

-0.0022
(0.0011)

 Time 0.0003 
(0.0111)

0.0001 
(0.0000)

0.0002 
(0.0000) 

0.0004 
(0.0010)

 Time2 -0.00003
(0.0512)

-0.00001
(0.0010)

-0.00002 
(0.0000) 

-0.00003
(0.0000)

 
 

Price-Tomato -0.1762
(0.0000)

-0.0552 
(0.0001)

0.1456 
(0.0000) 

-0.0561
(0.0000)

 
γi 

Price-Cabbage 
 

-0.2534 
(0.0000)

-0.0562 
(0.0001) 

-0.3356
(0.0000)

   
 

Price-Lettuce 
  

-0.5950 
(0.0000) 

-0.1422
(0.0001)

    
 

Price-Spinach 
   

-0.2971
(0.0000)

βi Expenditure 0.1321 
(0.0000)

0.16254 
(0.0005)

0.1032 
(0.0000) 

-0.1055
(0.0000)

λi Expenditure-Squared 0.0856 
(0.0002)

0.0765 
(0.0000)

0.0720 
(0.0210) 

-0.2432
(0.0000)

The values in parenthesis are the p-values at 95% confidence level  
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Table 6: Actual, new predicted shares and RMSE 

Model actual Shares,  predicted shares and RMSE 

Vegetables Mean of Actual 
Share 

Mean of new 
Predicted shares RMSE = 

( )2

1

ˆ
n

i i
i

w w

n
=

−∑

Tomato 0.2225 0.2095 0.0041 
Onion 0.2831 0.2211 0.0033 

Cabbage 0.0627 0.0632 0.0039 
Lettuce 0.3390 0.3378 0.0035 
Spinach 0.0723 0.0668 0.0062 
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Table 7: Predicted shares of salad vegetables during the non-outbreak period and the first 

outbreak 

Predicted Shares of Vegetables during the Non-outbreak and September 

  Tomato Cabbage Lettuce Spinach  Onion 
Mean Predicted shares during 

September Outbreak 0.248 0.081 0.385 0.048 0.289 

Mean Predicted shares Non-Outbreak 
(January to August) 0.228 0.061 0.290 0.097 0.287 

% Change between Non-outbreak and 
September 8.661 32.67 31.83 -50.61 0.731 
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Table 8: Predicted shares of salad vegetables during the non-outbreak period and the 

Second outbreak 

Predicted Shares of Vegetables during the Non-outbreak and November 

  Tomato Cabbage Lettuce Spinach  Onion 
Mean Predicted shares during 

November Outbreak 0.259 0.082 0.3896 0.0444 0.291 

Mean Predicted shares Non-Outbreak 
(January to August) 0.228 0.061 0.290 0.097 0.287 

% Change between Non-outbreak and 
November 13.59 34.42 33.42 -54.21 1.39 
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Table 9: Expenditure elasticities during the Non-outbreak and the Outbreak periods 

 

Expenditure Elasticities during the Non-outbreak and the Outbreak periods 

  Tomato Cabbage Lettuce Spinach  Onion 

Non-Outbreak Expenditure 
Elasticities 

1.2201
(0.0000)

0.8691
(0.0232)

1.1342
(0.0010)

1.7312 
(0.0021) 

0.7224
(0.0320)

September Outbreak Expenditure 
Elasticities 

1.3542
(0.0000)

1.0561
(0.0212)

1.3132
(0.0001)

0.8125 
(0.0032) 

0.8312
(0.0432)

November Outbreak Expenditure 
Elasticities 

1.3712
(0.0020)

1.0631
(0.0352)

1.5122
(0.0001)

0.7321 
(0.0001) 

0.8511
(0.0032)

The values in parenthesis are the p-values at 95% confidence level 
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Table 10: Compensated price elasticities during the non-outbreak period 

 

  
Compensated price elasticities during the  Non-outbreak period

 Tomato Cabbage Lettuce Spinach  Onion 

P-Tomato -1.333 
(0.000) 

0.161 
(0.003) 

-0.244 
(0.020) 

-0.432 
(0.021) 

0.565 
(0.020) 

P-Cabbage 0.151 
(0.022) 

-0.813 
(0.010) 

0.489 
(0.048) 

0.324 
(0.030) 

0.123 
(0.021) 

P-Lettuce -0.321 
(0.010) 

0.502 
(0.044) 

-1.421 
(0.000) 

-0.342 
(0.000) 

-0.443 
(0.032) 

P-Spinach -0.420 
(0.010) 

0.422 
(0.020) 

-0.344 
(0.010) 

-1.521 
(0.000) 

-0.484 
(0.042) 

P-Onion 0.522 
(0.021) 

0.245 
(0.021) 

-0.421 
(0.022) 

-0.424 
(0.020) 

-0.812 
(0.000) 

The values in parenthesis are the p-values at 95% confidence level 
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Table 11: Compensated price elasticities during the first outbreak 

  Compensated price elasticities during September 

 Tomato Cabbage Lettuce Spinach  Onion 

P-Tomato -1.433 
(0.010) 

-0.173 
(0.002) 

-0.341 
(0.000) 

0.678 
(0.000) 

0.568 
(0.015) 

P-Cabbage -0.162 
(0.002) 

-1.124 
(0.000) 

0.805 
(0.000) 

0.882 
(0.035) 

0.264 
(0.000) 

P-Lettuce -0.331 
(0.021) 

0.785 
(0.031) 

-1.512 
(0.000) 

0.585 
(0.021) 

-0.540 
(0.031) 

P-Spinach  0.625 
(0.022) 

0.922 
(0.000) 

0.562 
(0.000) 

-0.801 
(0.000) 

-0.501 
(0.045) 

P-Onion 0.554 
(0.010) 

0.232 
(0.001) 

-0.450 
(0.001) 

-0.432 
(0.034) 

-0.844 
(0.000) 

The values in parenthesis are the p-values at 95% confidence level 
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Table 12: Compensated price elasticities during the second outbreak 

  Compensated elasticities during November 

 Tomato Cabbage Lettuce Spinach  Onion 

P-Tomato -1.514 
(0.000) 

-0.281 
(0.003) 

-0.398 
(0.005) 

0.788 
(0.015) 

0.368 
(0.015) 

P-Cabbage -0.252 
(0.000) 

-1.321 
(0.000) 

0.701 
(0.030) 

0.881 
(0.035) 

0.232 
(0.000) 

P-Lettuce -0.441 
(0.021) 

0.656 
(0.025) 

-1.632 
(0.000) 

0.885 
(0.042) 

-0.540 
(0.001) 

P-Spinach  0.825 
(0.011) 

0.962 
(0.030) 

0.632 
(0.010) 

-0.689 
(0.000) 

-0.522 
(0.001) 

P-Onion 0.324 
(0.010) 

0.258 
(0.001) 

-0.530 
(0.000) 

-0.536 
(0.000) 

-0.954 
(0.000) 

The values in parenthesis are the p-values at 95% confidence level 
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Table 13: Percentage changes of marginal effects of income on the consumption of salad 

vegetables during the non-outbreak versus the outbreak periods 

Percentage change of Marginal Effect of Income on the consumption of salad 
vegetables during the non-outbreak versus the outbreak periods 

 Tomato 

 Non-outbreak versus 
September  

Non-outbreak versus 
November  

Income<$25,000 5.50% 7.80% 
$25,000<Income<$50,000 6.60% 8.23% 

Income>$50,000 8.65% 10.20% 
 Cabbage 

 Non-outbreak versus 
September  

Non-outbreak versus 
November  

Income<$25,000 25.00% 27.50% 
$25,000<Income<$50,000 25.68% 28.62% 

Income>$50,000 26.20% 29.80% 
 Lettuce 

 Non-outbreak versus 
September  

Non-outbreak versus 
November  

Income<$25,000 30.20% 31.50% 
$25,000<Income<$50,000 34.30% 34.82% 

Income>$50,000 37.60% 37.62% 
 Spinach 

 Non-outbreak versus 
September  

Non-outbreak versus 
November  

Income<$25,000 -37.33% -39.50% 
$25,000<Income<$50,000 -43.31% -44.45% 

Income>$50,000 -49.25% -50.42% 
 Onion 

 Non-outbreak versus 
September  

Non-outbreak versus 
November  

Income<$25,000 6.43% 7.85% 
$25,000<Income<$50,000 5.32% 7.29% 

Income>$50,000 4.88% 6.06% 
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Table 14: Percentage changes of marginal effects of sex on the consumption of salad 

vegetables during the non-outbreak versus the outbreak periods 

Percentage change of Marginal Effect of Sex on the consumption of salad vegetables 
during the non-outbreak versus the outbreak periods 

 Income<$25,000 $25,000<Income<$50,000 Income>$50,000 
 Tomato 

 Non-outbreak versus September 
Male 7.80% 8.25% 14.20% 

Female 25.25% 28.36% 32.36% 
 Non-outbreak versus November  

Male 9.00% 9.45% 15.40% 
Female 26.45% 29.56% 33.56% 

 Cabbage 
 Non-outbreak versus September  

Male 18.54% 19.70% 13.20% 
Female 8.27% 9.80% 8.56% 

 Non-outbreak versus November  
Male 19.74% 20.90% 14.40% 

Female 9.47% 11.00% 9.76% 
 Lettuce 
 Non-outbreak versus September  

Male 17.80% 18.25% 24.20% 
Female 35.25% 38.36% 42.36% 

 Non-outbreak versus November  
Male 17.92% 18.37% 24.32% 

Female 35.37% 38.48% 42.48% 
 Spinach 
 Non-outbreak versus September  

Male -29.56% -33.56% -40.53% 
Female -14.56% -18.56% -25.53% 

 Non-outbreak versus November  
Male -29.46% -33.46% -40.43% 

Female -14.46% -18.46% -25.43% 
 Onion 
 Non-outbreak versus September  

Male 28.54% 29.70% 23.20% 
Female 18.27% 19.80% 18.56% 

 Non-outbreak versus November  
Male 28.84% 30.00% 23.50% 

Female 18.57% 20.10% 18.86% 
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Table 15: Percentage changes of marginal effects of Location on the consumption of 

salad vegetables during the non-outbreak versus the outbreak periods 

Percentage change of Marginal Effect of Location on the consumption of salad 
vegetables during the non-outbreak versus the outbreak periods 

 Income<$25,000 $25,000<Income<$50,000 Income>$50,000 
 Tomato 

 Non-outbreak versus September 
Oregon and Washington 8.45% 9.99% 13.50% 

California 15.33% 16.23% 19.45% 
 Non-outbreak versus November  

Oregon and Washington 8.59% 10.13% 13.64% 
California 15.47% 16.37% 19.59% 

 Cabbage 
 Non-outbreak versus September  
Oregon and Washington 20.45% 21.99% 25.50% 

California 27.33% 28.23% 31.45% 
 Non-outbreak versus November  

Oregon and Washington 20.80% 22.34% 25.85% 
California 27.68% 28.58% 31.80% 

 Lettuce 
 Non-outbreak versus September  
Oregon and Washington 23.95% 25.49% 29.00% 

California 30.83% 31.73% 34.95% 
 Non-outbreak versus November  

Oregon and Washington 24.37% 25.91% 29.42% 
California 31.25% 32.15% 35.37% 

 Spinach 
 Non-outbreak versus September  
Oregon and Washington -11.12% -13.45% -13.87% 

California -31.21% -35.24% -38.56% 
 Non-outbreak versus November  

Oregon and Washington -10.69% -13.02% -13.44% 
California -30.78% -34.81% -38.13% 

 Onion 
 Non-outbreak versus September  
Oregon and Washington 17.95% 16.49% 15.06% 

California 13.95% 15.49% 11.20% 
 Non-outbreak versus November  

Oregon and Washington 18.06% 17.60% 16.11% 
California 14.06% 13.60% 12.81% 
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Table 16: Percentage changes of marginal effects of Status on the consumption of salad 

vegetables during the non-outbreak versus the outbreak periods 

Percentage change of Marginal Effect of Status on the consumption of salad 
vegetables during the non-outbreak versus the outbreak periods 

 Income<$25,000 $25,000<Income<$50,000 Income>$50,000 
 Tomato 
 Non-outbreak to September 

Married 14.25% 16.32% 21.26% 
Single 25.35% 30.21% 35.56% 

 Non-outbreak to November  
Married 14.75% 16.82% 21.76% 
Single 31.22% 36.08% 41.43% 

 Cabbage 
 Non-outbreak to September  

Married 33.32% 38.18% 43.53% 
Single 15.08% 17.15% 22.09% 

 Non-outbreak to November  
Married 33.91% 38.77% 44.12% 
Single 15.67% 17.74% 22.68% 

 Lettuce 
 Non-outbreak to September  

Married 38.32% 43.18% 48.53% 
Single 20.08% 22.15% 27.09% 

 Non-outbreak to November  
Married 43.12% 47.98% 53.33% 
Single 24.88% 26.95% 31.89% 

 Spinach 
 Non-outbreak to September  

Married -22.00% -25.22% -31.42% 
Single -33.14% -35.24% -38.41% 

 Non-outbreak to November  
Married -21.73% -24.95% -31.15% 
Single -32.87% -34.97% -38.14% 

 Onion 
 Non-outbreak to September  

Married 19.16% 21.59% 24.27% 
Single 10.04% 11.08% 13.55% 

 Non-outbreak to November  
Married 21.76% 24.19% 26.87% 
Single 12.64% 13.68% 16.15% 
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Table 17: Percentage changes of marginal effects of Children on the consumption of 

salad vegetables during the non-outbreak versus the outbreak periods 

Percentage change of Marginal Effect of Children on the consumption of salad 
vegetables during the non-outbreak versus the outbreak periods 

Number of 
Children Income<$25,000 $25,000<Income<$50,000 Income>$50,000 

 Tomato 
 Non-outbreak versus September 

0 2025% 27.51% 29.25% 
1 36.22% 38.51% 38.16% 
2 35.45% 33.20% 34.98% 
≥3 36.21% 36.50% 36.01% 

 Non-outbreak versus November  
0 23.21% 27.61% 28.32% 
1 38.21% 38.21% 40.18% 
2 38.45% 38.22% 38.15% 
≥3 38.21% 38.20% 38.57% 

 Cabbage 
 Non-outbreak versus September  

0 16.86% 17.02% 17.12% 
1 31.25% 32.55% 36.80% 
2 32.01% 32.32% 32.60% 
≥3 38.21% 39.89% 40.68% 

 Non-outbreak versus November  
0 17.75% 18.46% 18.14% 
1 32.14% 33.45% 37.49% 
2 33.42% 33.22% 33.59% 
≥3 38.51% 40.89% 41.37% 

 Lettuce 
 non-outbreak versus September  

0 27.86% 28.02% 28.12% 
1 35.25% 36.55% 37.80% 
2 35.01% 35.32% 38.60% 
≥3 33.21% 36.89% 31.68% 

 Non-outbreak versus November  
0 28.75% 22.46% 22.14% 
1 36.14% 39.45% 39.49% 
2 36.42% 40.22% 41.59% 
≥3 39.51% 40.89% 42.37% 

 Spinach 
 Non-outbreak versus September  
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0 -30.07% -31.22% -33.31% 
1 -41.03% -37.70% -46.02% 
2 -41.71% -38.39% -46.74% 
≥3 -41.89% -39.80% -46.81% 

 Non-outbreak versus November  
0 -31.50% -31.22% -35.31% 
1 -49.03% -45.70% -54.02% 
2 -49.71% -46.39% -54.74% 
≥3 -49.89% -47.80% -54.81% 

 Onion 
 Non-outbreak versus September  

0 3.05% 2.20% 2.11% 
1 3.40% 2.56% 2.52% 
2 3.41% 2.62% 2.53% 
≥3 3.52% 2.88% 2.75% 

 Non-outbreak versus November  
0 3.33% 2.83% 2.33% 
1 3.52% 2.62% 2.52% 
2 4.10% 2.60% 2.59% 
≥3 4.11% 3.61% 3.11% 
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Table 18: Elasticity of age on the consumption of salad vegetables during the non-

outbreak versus the outbreak periods 

Elasticity of age on the consumption of salad vegetables during the non-
outbreak versus the outbreak periods 

 Tomato Cabbage Lettuce Spinach Onion 
 Non-outbreak 

Income<$25,000 1.321 1.421 1.650 0.989 1.532 
$25,000<Income<$50,000 1.465 1.321 1.685 0.882 1.632 

Income>$50,000 1.365 1.334 1.562 1.131 1.563 
 September 

Income<$25,000 1.442 1.542 1.771 1.11 1.653 
$25,000<Income<$50,000 1.586 1.442 1.806 1.003 1.753 

Income>$50,000 1.486 1.455 1.683 1.252 1.684 
 November 

Income<$25,000 1.456 1.556 1.785 1.124 1.667 
$25,000<Income<$50,000 1.6 1.456 1.82 1.017 1.767 

Income>$50,000 1.5 1.469 1.697 1.266 1.698 

 

 

 

 

 

 
 

 

 

 

 

 



 129

 

 

 

Estimation of Censored Regression Models Based on the 

Minimum Power Diversion Class of Probability Distributions 

 

 

 

 

 

Faysal Habib.Fahs 

 

 

 

 

 

 

School of Economic Sciences 
Washington State University 
Pullman, WA 99163-4741 

(509)-339-3376 
Email: faysal74@wsu.edu 

 

 



 130

 

ESSAY THREE 

 
Estimation of Censored Regression Models Based on the Minimum 

Power Diversion Class of Probability Distributions 

 

Abstract 

This paper utilizes the Minimum Power Divergence (MPD) class of probability 

distributions to estimate censored regression models. Based on the minimization of the 

Cressie-Read (CR) power divergence function, we are able to implement an estimator 

that requires less priori model structure than conventional parametric models such as the 

Tobit estimator. Our estimator assumes that the distribution of the noise term is neither 

based on, nor restricted to, the conventional parametric families (normal, logistic) and 

suggests a range of CDFs that is based on the MPD principle. The paper pursues two 

estimation approaches to estimate censored regression model using the MPD principle: 1) 

Generalized Method of Moments (GMM) and 2) Maximum Likelihood approach (ML). 

Monte Carlo sampling experiments suggest that the estimators within the CR class will 

be more robust than conventional methods often used in empirical practice while also 

producing estimation precision that rivals the tightly specified parametric approaches in 

the event that the data generating distributional assumptions underlying the parametric 

specifications are true. 
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1. Introduction 

In statistical applications, we often encounter a situation where the dependent 

variable is only observable under certain conditions. Censoring occurs when we observe 

the independent variable for the entire sample, but for some sample outcomes we observe 

only limited information about the dependent variable. The classic example of censoring 

is Tobin’s (1958) study of household expenditures, where a consumer maximizes his or 

her utility by purchasing durable goods under the constraint that total expenditure does 

not exceed income. Many other examples of censored outcomes can be found: hours 

worked by wives (Quester and Green, 1982), scientific publications (Stephan and Levin, 

1992), extramarital affairs (Fair, 1978), foreign trade and investment (Eaton and Tamura, 

1994), austerity protests in Third World countries (Walton and Ragin, 1990), damage 

caused by a hurricane (Fronstin and Holtmann, 1994) and in addition to a wide range of 

examples that researchers encounter in both economic and econometric analysis.  

Statistical inference for data containing many zero values has been investigated in 

various ways, and analysts face numerous choices in selecting an appropriate statistical 

model and associated estimation criterion. One of two estimation methods has been most 

often followed in the empirical literature when estimating censored regression models. 

By far the most popular method has been the parametric approach, where specific 

assumptions are made regarding the distribution underlying data sampling process. For 

example, in the Tobit model one assumes that the density function of the disturbance in 

the censored regression model follows a normal distribution. Any misspecification of the 

parametric assumptions generally leads to inconsistent estimators.  
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In empirical applications the data sampling process for observations on a censored 

random variable iY  is generally based on the behavior of a latent variable defined by1: 

* *
.(1.1) 1, ,i i iY for i nε= + = …βx  

where iY ∗  is  the ith observation on the latent variable  latent variables, .ix  is a ( )1 k×  row 

vector of explanatory variables,β  is ( )1×k  vector of the unknown parameters , and *
iε  is  

the ith noise term. The .i βx  in equation (1.1) can be replaced (here and elsewhere) by 

more general functional form ( ). ,ig βx  if the effect of the response variable on the latent 

variable is thought to be nonlinear. Assuming the censoring occurs at zero, the censored 

regression model is generally written as the following function of the latent variable 

outcome: 

* **
.

* *
.

0
(1.2) , 1, ,

00
i i ii

i
i i i

YY
Y if for i n

Y
ε
ε

⎧ ⎫ ⎧ ⎫⎧ ⎫ > > −
= ⇔ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

≤ ≤ −⎩ ⎭ ⎩ ⎭ ⎩ ⎭
…

β
β

x
x

 

Traditionally β has been estimated by parametric methods that prescribe the density 

function for *
iε , almost invariably as normal. If the density of *

iε is unknown, semi-

parametric estimation of beta ( β ) becomes of interest. In literature the researchers’ 

objective to find the best estimator of β  and to achieve the semi-parametric efficiency 

bound. This bound is a function of what is assumed about the density of *
iε  and the 

relation of .ix to *
iε . There will be different bounds if (i) densities of .ix and *

iε are 

independently distributed (Cosslett, 1987), (ii) the density of *
iε , conditional upon .ix  has 

                                                 
1 Note that for the entire paper, X or Y are Scalar random, vectors or matrixes are denoted by bold capital 
letters X or Y, A subscripted index on a vector indicates particular row or column elements of the vector 
( .iX denotes the ith row of X), Observed outcomes or fixed values are denoted by lower case letters. 
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zero median (Newey and Powell, 1990b), and (iii) the density of *
iε , conditional upon .ix , 

is symmetrically distributed (Powell, 1986b; Newey, 1990a). The most recent consistent 

estimators, semi-parametric and non-parametric estimation, have been proposed which 

allow for much weaker restrictions on the error term ( *
iε ), such as constant conditional 

quantiles (Powell, 1986, 1990; Nawata, 1990; Kahn and Powell, 1999; Buchinsky and 

Hahn, 1998), conditional symmetry (Powell, 1986b) and independence between the 

errors and regressors (Horowitz, 1989; Moon, 1989; Honoré and Powell, 1994). Some of 

the problems of semi-parametric and non-parametric estimation are small sample size and 

limited inference power and accuracy. 

Mittelhammer and Judge (2007) introduced a new and broad class of estimators 

based on minimization of the Cressie-Read power divergence measure for binary choice 

models. They focus on information-theoretic methods that account for inherent model 

and data uncertainty and lead to a wide class of CDF’s, with associated estimators that 

are minimally divergent from the type and level of information known about the data 

generating process. 

Pursuing the estimation of censored regression model and assuming that the error 

term *
iε  in equation (1.1) follows Mittelhammer and Judge’s MPD class of distributions. 

We estimated the censored regression model using two different approaches, the 

Generalized Method of Moments (GMM) and the Maximum Likelihood (ML) estimation 

methods. 

 The remainder of the paper is structured as follow: Section 2 is an overview of the 

Minimum Power Divergence Class of CDFs and estimators for the binary choice models 

(Mittelhammer and Judge, 2007). Section 3 describes how we utilize the MPD 
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distributions assumptions to estimate censored regression models using the GMM and the 

ML approach. Section 4 presents the comparisons between standard Tobit models and the 

new estimation method proposed in this paper under the assumption of normality and 

under a skewed gamma distribution. The final section presents a summary and 

conclusions derived from our findings. 

 

2. Overview of MPD Class of CDFs for Binary Choice Model 

 In the context of binary response models described in Mittelhammer and Judge 

(2007), it is assumed that on trial 1, 2, , ,i n= …  one of two alternatives is observed to 

occur for the independent binary random variables { }1, , nY Y… having , 1, , ,ip i n= …  as 

their respective probabilities of success. The data sampling process for the binary random 

variable iY is specified in terms of the latent variable *
iY , as 

* *
.(2.1) 1, ,i i iY for i nε= + = …βx  

where iY ∗  is  the ith observation on the latent variable  latent variables, .ix  is a ( )1 k×  row 

vector of explanatory variables, β  is ( )1×k  vector of the unknown parameters , and *
iε  

is  the ith noise term. ( )* 0 , 1, , ,i iY I Y i n≡ > = …  are independent Bernoulli random 

variables, I(A) is an indicator function that takes the value “1” when condition (A) is true 

and takes the value “0” otherwise. Given equation (2.1) the Bernoulli probability ip , is 

defined as: 

( ) ( ) ( )*
. . * .(2.2) 1 1 ( ) ,i i i i i ip P Y P G Gε= = = > − = − − = −β β βx x x  
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where ( )G i  is the cumulative distribution function (CDF) of the noise term ( *
iε ) of the 

latent variable in equation (1.1), and ( )*G i  is the complement of that CDF.  

The authors were able to identify a class of CDFs that satisfy basic and generally 

applicable conditions relating to the binary response model. Three conditions were 

identified as: 

1) A generally applicable nonparametric statistical model specification of the 

Bernoulli outcomes reflecting signal and noise components. 

 They assumed that the vector of Bernoulli random variables, Y, can be modeled by 

the very general representation: 

(2.3) Y = p + ε  

where 
1

( ) 0 and (0,1),
n

i
E

=
= ∈×pε  and the expectation of Y is some mean vector p. 

2) An orthogonality condition between the response variables and the noise 

component. 

In the context of equation (2.3) the Bernoulli probabilities involve known covariate 

information in the form of associated response variables, X (in our case), with dimension 

of (n×k).  If the probabilities p could be given an explicit parametric functional form, 

p = G(xβ) withG( )i being some CDF, then the moment equations can be specified as 

( )E ' −⎡ ⎤⎣ ⎦X Y G(Xβ) = 0 and the empirical moments as 

(2.4)     ( )1 ' ( ) 0n− − =⎡ ⎤⎣ ⎦px y x  

The number of unknowns in (2.4) is greater than the estimating equations thus the system 

of equations is undetermined regarding a unique interior solution for the probability 

vector p.  
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3) A minimum distance divergence measures between members of the CDF 

class and reference distributions for the Bernoulli probabilities underlying 

the binary response model.  

In order to estimate the underdetermined p-vector in (2.4), the authors adopted the 

Cressie-Read (CR) family of power divergence measures (Cressie and Read (1984); Read 

and Cressie (1988); Mittelhammer, et al., (2000)) as their estimation objective function 

( )
2

'
1 1

2

1

2

1

'

1(2.5) min 1
1

subject to:

(2.6) p 1,p 0, ,

(2.7) q 1,q 0, ,

(2.8) ( ( )) 0

n
ij

pij s ij
i j ij

ij ij
j

ij ij
j

p
p

q

i j

i j

n

γ

γ γ= =

=

=

−

⎧ ⎫⎛ ⎞⎡ ⎤⎛ ⎞⎪ ⎪⎜ ⎟⎢ ⎥−⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟+ ⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎝ ⎠⎩ ⎭

= ≥ ∀

= ≥ ∀

− =

∑ ∑

∑

∑
px y

 

where the Bernoulli process underlying the binary outcomes for each observation is 

characterized by the probabilities [ ]i. 1 2p  pi i=p , the  
( ) ⎟⎟

⎟

⎠

⎞
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γ

γγ ij

ij

j
ij q

p
p  represents the 

(CR) power divergence of the of the Bernoulli probabilities from a reference 

distributions [ ]i. 1 2i iq q=q . The summation term can be interpreted as defining the 

conditional empirical expectation of the divergence between the power ratio 
γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
p and 

the value of 1. The choice of ( ),γ ∈ −∞ ∞  determines an entire family of measures of 

divergence between p and q probability distributions. The constraints (2.6) and (2.7) are 
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necessary conditions required for the 'ijp s and 'ijq s  to be interpreted as probabilities. 

Constraint (2.8) is the empirical implementation of the moment condition ( )E ' −⎡ ⎤⎣ ⎦X Y p =0.   

Defining 1 1i i i ip p and q q≡ ≡ , they set the following optimization problem as  

( ) ( ) '

1

11(2.9) ( , ) 1 1 ( )
1 1

0 , 1, .

n
i i

i i
i i i

i i

p pL p p
q q

subject to
p q i

γ γ

γ γ=

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞−⎢ ⎥⎢ ⎥= + − − + −⎜ ⎟ ⎜ ⎟+ −⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

≤ ≤ ∀

∑p pλ x yλ '

 

where the premultiplier 1n− on the moment constraints is suppressed. The representation 

of the 'ip s  as functions of the response variables and Lagrange multipliers can be 

defined by solving the first order conditions with respect to p that are adjusted by 

complementary slackness conditions of Kuhn-Tucker theory in the event that inequality 

constraint are binding. The ( )i ip x λ is represented as: 

( )

(2.13)

1arg 0
1
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A unique solution for ( )i ip x λ  necessarily exists by the strict monotonicity of either 
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1 1( ) ( ) ln ln (0,1), 0 0,
1 1

i i i i
i i

i i i i

p p p pp or p in p for or
q q q q

γ γ γ γ

η η γ γ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟= − = − ∈ ≠ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

respectively. Note that because the ip  is monotonically increasing function of the ix λ . 

This implies that the ( )i ip x λ functions can be legitimately interpreted as cumulative 

distribution functions CDFs on the respective supports ix λ . Given the first order 

condition with respect to p and given that the probability model is specified correctly, the 

authors were able to prove that λ β= . 

As a result of the above three conditions the authors were able to generate to a wide 

class of CDFs, with associated estimators, that are minimally divergent from the type and 

level of information known about the data generating process. This class of CDFs 

subsumes the logistic distribution as a special case. 

In general the authors showed that the MPD class of distributions contained a wide 

rage of symmetric and skewed probability density functions (when changingγ ). Each family 

of distributions contained within the MPD class exhibited a reflective property around the 

origin. As for the MPD estimator of the binary choice model, it was shown that if the model 

distribution was correctly specified then the MPD estimator will consistently estimate β .  

If the model distribution was not specified correctly then the MPD estimator will 

generally be inconsistent. This result is similar to the case of a misspecified ML problem. 

Beside consistency the authors were able to attain the asymptotic normality of β . 
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3. Estimation of Censored Regression Models Using the MPD Class of CDFs 

For estimating the censored regression model in equation (1.1), we assumed that 

the error term *
iε   to be one of the members of the large and varied class of MPD 

distributions.   

Analogous to Mittelhammer and Judge (2007), the probability for of observing a 

positive value for iY , in the context of censored regression model (1.1), was defined as: 

( ) ( ) ( )*
. . * .(3.1) 1 1 ( ) ,i i i i ip P Z P G Gε= = = > − = − − = −β β βx x x  

where Z is an indicator variable that takes the value of 1 ( Z=1 if 0iY > ) and the value of 

0 ( Z=1 if 0iY = ). ( )G i  is the cumulative distribution function (CDF) of the noise term, 

*
iε  the latent variable in equation (1.1), and ( )*G i  is the complement of that CDF. 

 

3.1 GMM Estimation of the Censored Regression Model Assuming MPD 

distributions 

Assuming that the distribution of *
iε in equation (1.1) to be one of the members of 

the large and varied class of MPD distributions. We begin by identifying the expected 

value of the limited dependent variable as: 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

(3.1.1) ( ) 0 | 0 0 | 0

0 0 0 | 0

0 | 0

i i i i i i i

i i i i

i i i

E Y P y E y y P y E y y

P y P y E y y

P y E y y

= = = + > >

= = + > >

= > >

i i

i i

i

 

The conditional expectation of the dependent variable is represented as: 

( ) ( ) ( )* *
.(3.1.2) | 0 |i i i i i iE y y X E Xβ ε ε β> = + > −  

The probability of the dependent variables being positive can be represented as: 
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( ) ( ) ( ) ( )*
.(3.1.3) 0 1 ; ,i i i i iP y P X P Z p F X qε β β γ> = > − = = = =  

Thus equation (3.1.1) can be rewritten as: 

( ) ( ) ( ) ( )* * * *
. . . .(3.1.4) ( ) |i i i i i i i i iE Y P X X P X E Xε β β ε β ε ε β= > − + > − > −i i   

or 

( ) ( ) ( ) ( )* *
. . . .(3.1.5) ( ) ; , ; , |i i i i i i iE Y F X q X F X q E Xβ γ β β γ ε ε β= + > −i i  

where ( ); ,iF X qβ γ  represents the CDF complement of the noise term.  

A necessary condition for using GMM in the current problem context is that 

( )* *
.|i i iE Xε ε β>−  should be expressible as a function of{ }, ,qβ γ , where and qγ are the 

two parameters of the MPD class of distributions. We can specify the conditional 

expectation of the error term as: 

( )
( )

( )

( )

( )
.

.

* * *

* *
..

* * .

(3.1.6) |
; ,

i i

i

i i i
X X

i i i
i

i i
X

f d w f w dw
E X

F X q
f d

β β

β

ε ε ε
ε ε β

β γ
ε ε

∞ ∞

− −
∞

−

> − = =
∫ ∫

∫
 

Mittelhammer and Judge (2007) have shown that the general functional 

representation of the PDFs contained in the Minimum Power Divergence Class of 

distributions is given by: 

( )1 1

1(3.1.7) ( ; , ) ,
( ; , ) (1 ) (1 ( ; , )

f w q for w q
q F w q q F w qγ γ γ γγ γ

γ γ− − − −= ∈ ϒ
+ − −

. 

Consider the solution for ( ) ( )
iX

w f w d w
β

−∞
∫ . We utilize the PDF of equation (3.1.7) to 

represent the integral as: 
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( ) 1 1(3.1.8) ( )
( , , ) (1 ) (1 ( , , )

i iX X ww f w d w dw
q F w q q F w q

β β

γ γ γ γγ γ− − − −
−∞ −∞

=
+ − −∫ ∫ . 

Incorporate a change of variable in equation (3.1.8) via the transformation 

( , , )p F w q γ= so that  

1( , , )w F p q γ−=  and ( )1 ; ,F p qw
p p

γ−∂∂
=

∂ ∂
, where ( )1 ; ,F p q γ− denotes the inverse 

function associated with the CDF.  

Given 0γ ≠  we can represent the inverse CDF as: 

( ) ( )1 1 1(3.1.9) ; , 0,1
1

i i

i i

p pw F p q for p
q q

γ γ

γ γ− −
⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟= = − ∈⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

It follows that 

( ) ( )
( ).. ; ,

1

0

(3.1.10) ( ) ; ,
ii F X qX

w f w d w F p q dp
β γβ

γ−

−∞

=∫ ∫  

 and the conditional expectation can be represented as: 

( )

( ; , ) 1

0
* *

1
1

(3.1.11) |
( ; , )

iF X q

i i i
i

p p dp
q q

E X
F X q

γ γ
β γ

γ

ε ε β
β γ

−
⎛ ⎞⎛ ⎞ ⎛ ⎞−
⎜ − ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠> − = −

∫
 

then the solution of (3.1.11) is 

( )

( )( )

( ) ( )
( )( )1 1

. .

* *
.

.

( ; , ) 1 ( ; , )1 1
1 1 11

(3.1.12) |
( ; , )

i i

i i i
i

F X q F X q
q q

E X
F X q

γ γ

γγ

β γ β γ
γ γ γ γγ

ε ε β
β γ

+ +⎛ ⎞−
⎜ ⎟− + −
⎜ ⎟+ + +− ⎝ ⎠> − =
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where ( ; , )iF X qβ γ  is some member of the Class of Minimum Power Divergence 

distributions, parameterized by the values { }q,γ . The Distributions in the MPD-Class 

with 1γ ≤ −  do not have moments defined of any order as shown in Appendix 2. 

Given the above information we can state sample moment conditions as: 

( ) ( )( ) ( )1 ' * *
. .(3.1.13) , , , , | , , 0i i i i ig Y X q n X Y X E X F X qβ γ β ε ε β β γ− ⎡ ⎤≡ − + > − =⎣ ⎦:  

And under the GMM approach the parameter vector is chosen so that the sample moment 

conditions are as close to the zero value as possible.  The following weighted Euclidean 

distance is used as a measure of closeness:  

 

( ) ( ){ }
ˆ

'ˆˆ(3.1.14) , , , , , , , ,arg min
, ,ˆ

GMM

GMM GMM opt

GMM

q g Y X q W Y X q
q

β
θ β γ β γ

β γγ

⎡ ⎤
⎢ ⎥ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 

 

where W is a conformable positive definite symmetric weight matrix. In order to find the 

optimal weight matrix, optW , we set W = I and by calculating the ( )θ̂ I  in (3.1.14), we are 

able to calculate  ( )( ) ˆˆ ˆ -1
OPTE gg' = W . The sample estimator of the optimal weighting 

matrix ˆ
optW  is substituted into (3.1.14) leading to the estimated optimal GMM defined 

by ˆ ˆ
GMM nθ (W ) .  

As a summary, after obtaining the sample moment, we used the GMM method to 

estimate the parameters of the censored regression model by minimizing the objective 

function (3.1.14). We were able to characterize the appropriate minimum power 

divergence distribution which identifies the noise distribution. It should be noted that the 
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conditional expectation of the noise term will not exist for MPD distributions associated 

with 1γ ≤ − , since the integrals defining moments of any order are non-convergent. Thus, 

for the regression moment approach underlying the GMM formulation to be 

implementable, the MPD class of distributions must be restricted to those for 

which 1γ > − . 

 

3.2 ML Estimation of the Censored Regression Model Assuming MPD distributions 

An alternative method of estimating the censored regression problem can be 

defined through the use of the Maximum Likelihood principle. In order to specify the 

likelihood function of the mixed continuous-discrete process underlying the observation 

of the censored outcomes of iY , we need to specify the appropriate probability density 

function underlying the noise term. The general functional representation of the PDFs 

contained in the Minimum Power Divergence Class of distributions is given by: 

( )1 1

1(3.2.1) ( ; , ) ,
( , , ) (1 ) (1 ( , , )

f w q for w q
q F w q q F w qγ γ γ γγ γ

γ γ− − − −= ∈ ϒ
+ − −

 

where ( ),q γϒ denotes the appropriate support of the density , which depends on the 

values of { },q γ .  

Using the reflexive property of the MPD class of distributions, it follows that the 

likelihood function associated with the sample outcomes of  
1

n

Y
Y

Y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

#  can be written as: 

( ) . .
' 0 ' 0

(3.2.2) , , | ( ; , ) ( ; , )
i i

i i i
y s y s

L q Y F X q f y X qβ γ β γ β γ
= >

= − −∏ ∏i  
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Substituting into the PDF of equation (3.2.1) the explicit form of .i iw y X β= −  the 

likelihood function can be represented as: 

( ) 11 1
. . .

' 0 ' 0

(3.2.3) , , | ( ; , ) ( , , ) (1 ) (1 ( , , )
i i

i i i i i
y s y s

L q Y F X q q F y X q q F y X qγ γ γ γβ γ β γ β γ β γ
−− − − −

= >

⎡ ⎤= − − + − − −⎣ ⎦∏ ∏i
 

where ( , , )i iF y X qβ γ− is the CDF of the error term evaluated at positive outcomes and 

( , , )iF X qβ γ− is the CDF of the error term evaluated at the zero outcomes. 

Maximizing the likelihood function (3.2.3) with respect to{ }, ,qβ γ , results in the 

ML estimates of the unknowns, and in the estimation process, we can identify the 

appropriate MPD distribution which characterizes the noise distribution. Unlike the 

GMM approach, this method of estimating the unknowns does not rely on the existence 

of the conditional expectation of the noise term, and thus the choice of the γ  value can be 

unrestricted. Further, the estimation procedure based on (3.2.3) is implemented by taking 

the negative log likelihood of the objective function and minimizing using an appropriate 

algorithm, which will be discussed in section 4 ahead. 

 

4. Monte Carlo Sampling Experiments and Results 

This section is divided into two parts. The first part presents results relating to a 

Monte Carlo simulation involving the GMM and ML procedures based on the MPD class 

of probability distributions. The second part compares both GMM and ML methods  to 

the standard Tobit model first assuming the data generating process follows a normal 

distribution, and then a skewed Gamma (alpha=4, beta= 2) distribution. 

 The ML and GMM estimators based on the MPD class of distributions use the 

Neadler-Meade Polytope direct search method of optimization in calculating solutions, 



 145

which is an easily implemented direct search method that only requires objective function 

evaluations for optimization. As a result it is robust to non-differentiabilities and it is 

useful for functions whose derivative cannot be easily or accurately calculated or 

approximated, or that are ill-conditioned. 

 

4.1 Monte Carlo Simulation of GMM and ML Using MPD Principle 

 Based on model (1.1), we begin the sampling experiment by defining the 

parameters of the model. In both the GMM and ML approaches we set the parameters 

to 0 10.1 and 0.2β β= = , where 0β  is the intercept and 1β  is the slope of the regression. In 

order to generate the latent variable we sample *andi iX ε  in a way that takes into 

consideration the properties of the Minimum Power Divergence class of probability 

distribution functions. 

We begin generating a size n sample of the 'iX s , where n=1000, and we define: 

0 1(4.1.1) ( 0) ( ) 1, , .i i ip P y F x for i nβ β= > = + = "  

where ( )F i  is a cumulative distribution. The 'iX s are chosen such that 
( )( )( )1

0

1

0i
i

F P y
X

β

β

− > −
=  

and ( )( )1 0iF P y− >  is the inverse cumulative distribution that includes three MPD 

distributions associated with different choices of γ  parameter. If the choice of 0γ ≠ .i.e. 

0 and 0γ γ> <  then we can represent the inverse CDF as: 

( )( )1

1
1

(4.1.2) 0

i i

i i
i

p p
q q

F P y

γ γ

γ
−

⎛ ⎞ ⎛ ⎞−
−⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠> =  

 If 0γ =  then the inverse CDF is represented as 



 146

( )( )1 1(4.1.3) 0 ln ln
1

i i
i

i i

p pF P y
q q

− ⎛ ⎞ ⎛ ⎞−
> = −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

. 

The subject probabilities ip ’s in equations (4.1.2) and (4.1.3) are generated randomly 

from a Beta distribution B (a, b) that has a=3 and b=3 such that 0 1p< < . The beta 

distribution is symmetric and has a mean equal to 0.5. The q in all the experiments 

performed was set to 0.5. Generating the ip ’s and setting q=0.5 we are able to generate 

the 'iX s  

For the noise term *
iε , we follow the same process as used in generating the 'ix s , if the 

choice of 0γ ≠ , then the CDF can be represented as (4.1.2) and if 0γ = then the CDF will 

be as (4.1.3). 

After generating *andi ix ε  we can simply generate the latent dependent variable *
iY . 

Here the *
iY contains both negative and positive values, and the censored regression model 

can be represented as: 

**

* , 1, , .
0

i ii
i

i i

XY
Y if i n

X
ε β
ε β

⎧ ⎫⎧ ⎫ > −
= =⎨ ⎬ ⎨ ⎬

≤ −⎩ ⎭ ⎩ ⎭
…  

The results of the above sampling experiment are presented in Appendix 1 and it is 

based on 1000 repetitions, where both GMM and ML results are reported. Table 1 

presents a comparison between the GMM and ML approach using the MPD principle, 

where the reference distribution q is set to 0.5 and the Gamma to 0.5. The root means 

square errors (RMSE) of the ML-MPD are smaller than the RMSEs of the GMM-MPD, 

which suggest that the ML is more efficient than the GMM under the assumption of this 

arbitrary MPD distribution. These results are expected because of the asymptotic 
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efficiency of maximum likelihood, also the maximum likelihood has an advantage over 

the GMM since there are no restriction imposed on the gamma parameter.  

Table 2 compares the GMM and ML approach using the MPD that is identical to 

the standard logit distribution and it is defined at q=0.5 and γ  =0. Again the results show 

that the RMSEs of the ML is smaller the RMSEs of the GMM and suggest that ML is 

more efficient when assuming the logit MPD distribution. 

The above results show that the ML estimator is consistent, asymptotically 

efficient, and is not subjected to any restriction on its parameters. While the GMM 

estimator is consistent, not fully efficient and is subjected to restrictions on its 

parameters. 

 

4.2 Comparison between GMM, ML using MPD to Standard Tobit Model  

In order to compare the performance of the ML-MPD and GMM-MPD to the 

standard Tobit model under the assumption of normality we perform two Monte Carlo 

experiments with different sample sizes n=1,000, and n=100, where the data generating 

process for the three models is assumed to be standard normal. 

The Tobit model is similar to model (1.1); the only difference being that the 

distribution of the error term is assumed to be standard normal. The ML estimator has 

been the most popular estimation procedure for the Tobit model. The estimators are 

consistent if the assumption of normality is correct, in which case it is also asymptotically 

efficient. Table 3 in the Appendix shows the comparison between the three models under 

the assumption of normality for the large sample size (n = 1000). It is not surprising that 

the correctly specified Tobit-ML out performs ML-MPD and GMM-MPD because in 
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large samples the efficiency of the Tobit-ML should increase, and this is in fact evident in 

the RMSE results. Furthermore, the ML-MPD out performs the GMM-MPD, which is 

also expected given that the latter is not fully asymptotically efficient, but rather is 

efficient only with respect to the moment information used in estimation. 

To examine the three models in smaller sample size, Table 4 shows the comparison 

of the models at sample size n=100. The results in this case show that RMSE (ML-MPD) 

<RMSE (GMM-MPD) <RMSE (Tobit), which suggests that estimation based on the 

MPD class of distributions in small sample size can outperform the Tobit-ML, even when 

the latter is correctly specified. 

Finally, we compare the ML and GMM estimators that are based on the MPD class 

of distributions with the Tobit model, assuming a highly skewed distribution of the error 

term. We choose a Gamma distribution, which is skewed to the right and has the 

following parameters alpha = 4 and beta = 2. Figure 1 in the Appendix illustrates a 

graphical representation of Gamma (4, 2) distribution compared to the Standard normal 

distribution, where it is evident that the Gamma distribution is highly skewed to the right. 

The results are presented in Table 5 for sample size (n=1,000). The RMSEs suggest that 

ML-MPD is more efficient than the GMM-MPD under the assumption of the MPD that is 

similar to Gamma (4, 2) distribution, while the Tobit model becomes inconsistent and 

inefficient when the distribution is not correctly specified. Figure 2 shows the histogram 

of the Gamma (4, 2) distribution compared to MPD with q=0.1 and γ =1.54, where both 

graphs show approximately similar distributions. This finding suggest that estimating 

censored regression model, where the distribution in not correctly specified, The ML-
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MPD and the GMM-MPD work reasonably well compared to the Tobit estimator, where 

the latter becomes inconsistent and inefficient. 

  

5. Conclusions  

In this paper, we represent sample information underlying continuous-discrete 

outcomes through general moment conditions, ( )( )'E X Y - p x = 0⎡ ⎤⎣ ⎦ . We then use the CR 

family of divergence measures, CR (γ) for ( ),γ ∈ −∞ ∞ , to identify a wide and flexible 

class of CDFs underlying the sampling distribution of censored responses. Utilizing this 

class of CDFs we are able to estimate censored regression models with two different 

estimation procedures, ML and GMM. 

ML and GMM estimation methods using the MPD class of distributions provide 

promising and alternative ways of estimating censored regression models, as Monte Carlo 

results suggest. Consistent and asymptotically efficient estimators are provided by the 

ML-MPD approach, but the GMM method is not fully efficient, although efficiency can 

be made to increase by adding more moment equation information to the model. The 

advantage of these models compared to conventional estimation procedures is that less 

stringent parametric assumptions are required, leading to robustness, consistency, and full 

asymptotic efficiency (in the case of ML) across a substantially wider class of 

distributions for the underlying data sampling process. Future research is being directed 

towards extending ML-MPD ML-GMM to higher dimensional models, where one can 

estimate a system of censored regression models having wide applicability in applications 

of microeconomic theory. 

 



 150

References 

 
 
Buchinsky, M. and Hahn, J., (1998). “An alternative estimator for the censored quantile 
regression model”. Econometrica 66, pp. 653–672. 
 
Cosslett, S.R. (1983), “Distribution-Free Maximum Likelihood Estimation of the Binary 
Choice Model”. Econometrica 51, 765-782 
 
Cosslett, S.R. (1987), “Efficiency bounds for distribution-free estimators of the binary 
choice and censored regression models”, Econometrica , 55, 559-585 (1987). 
 
Cox, D.R., Snell, E.J., (1979), “On sampling and the estimation of rare errors” 
Biometrika 66, 125–132 
 
Cressie, N. and Read, T.,(1984), “Multinomial Goodness of Fit Tests”. Journal of the 
Royal Statistical Society, Series B 46, 440-464 
 
Judge, G., Mittelhammer R., and Miller, D.,  (2004), “Estimating the link function in 
multinomial response models under endogeneity”, Chapter in Chavas, Jean-Paul, ed., 
Volume in Honor of Stanley Johnson, University of California Press, in progress 
 
Honoré   B.E. and Powell, J.L., (1994). “Pairwise difference estimators of censored and 
truncated regression models”. Journal of Econometrics 64, pp. 241–278 
 
Horowitz, J.L., (1988). Semiparametric  “M-estimation of censored linear regression 
models”. Advances in Econometrics 7, pp. 45–83. 
 
Green, W., (1993), “Econometric analysis” Second edition Prentice Hall, Englewood 
Cliffs, NJ 
 
Khan , S., Powell, J.L., (1999). “Two-step quantile estimation of the censored regression 
model”. Manuscript, University of Rochester 
 
Klein, R.W. and Spady, R.H., (1993), “An Efficient Semiparametric Estimator for 
Binary Response Models” Econometrica 61(2), 387-421. 
 
Lin, J. (1991), “Divergence measures based on the Shannon entropy”. IEEE Trans. 
Inform. Theory, 37, 145-151 
 
McFadden, D., (1984), “Qualitative Response Models,” In Z. Griliches and M. 
Intriligator, eds.Handbook of Econometrics 2, Amsterdam, North Holland, pp 1395-1457 
 
McFadden, D., (1974), “Conditional Logit Analysis of Qualitative Choice Behavior,” in 
P.Zarembka, ed., Frontiers of Econometrics, New York: Academic Press, pp. 105-142 



 151

 
Maddala, G.S., (1983), “Limited Dependent and Qualitative Variables in Econometrics”.  
Econometric Society Monographs, Cambridge University Press 
 
McCullough, P. and Nelder, J.A., (1995), “Generalized Linear Models”, New York: 
Chapman and Hall 
 
Mittelhammer, R. and Judge, G., (2007), “A minimum power divergence class of 
CDFs and estimators for the Binary Choice mode” (Working paper) Washington State 
University 
 
Mittelhammer, R., Judge, G. and Miller, D.,(2000), Econometric Foundations, New 
York: Cambridge University Press 
 
Nawata, K., (1990). “Robust estimation based on group-adjusted data in censored 
regression models”. Journal of Econometrics 43, pp. 337–362 
 
Newey, K. W., (1990a), “Semiparametric efficiency bounds” Journal of Applied 
Econometrics, 5, 99-135 
 
Newey, K. W., and Powell J. L., (1990b), “Efficient estimation of type I censored 
regression models under conditional quantile restrictions” Econometric Theory, 6, 295-
317 
 
Moon,C.-G., (1989).”A Monte Carlo comparison of semiparametric Tobit estimators”. 
Journal of Applied Econometrics 4, pp. 361–382 
 
Owen, A. (1988), “Empirical likelihood ratio confidence intervals for a single 
functional”. Biometrika 75, 237–249 
 
Owen, A. (2001), “Empirical Likelihood”. Chapman & Hall, London 
 
Parado, L. (2006), “Statistical Inference Based on Divergence Measure”, Boca Raton, 
Chapman and Hall   
 
Powell, J.L., (1986). “Symmetrically trimmed least squares estimation of Tobit models”. 
Econometrica 54, pp. 1435–1460. 
 
Powell , J.L., (1986). “Censored regression quantiles”. Journal of Econometrics 32, pp. 
143–155. 
 
Qin, J.,  (2000), “Combining Parametric and Empirical Likelihood Data”. Biometrika 87, 
484-490 
 
Read, T.R. & N.A. Cressie, (1988), “Goodness of Fit Statistics for Discrete Multivariate 
Data”, New York: Springer Verlag. 



 152

 
Song Xi Chena, Jing Qinb, (2003), “Empirical likelihood-based confidence intervals for 
data with possible zero observations” Statistics & Probability Letters 65, 29–37 
 
Tamura, H., (1988), “Estimation of rare errors using expert judgment”. Biometrika 75, 
1–9 
 
Train, K., (2003), “Discrete choice Methods with Simulation” New York ,Cambridge 
University Press 
 
Tobin, J., (1958), “Estimation of relationships for limited dependent variables”. 
Econometrica 26, 24–36 
 
Ullah, A., (1996), “Entropy, Divergence and Distance Measures with Econometric 
Applications” Journal of Statistical Planning and Inference 49, 137-162. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 153

Appendix 1 

 

Table 1: Comparison between the GMM-MPD and ML-MPD, where ( )0.5& 0.5qγ = = , 

Sample size=1,000, Repetition=1,000 

Sample size=1,000, Repetition=1,000  

Parameters True  
Values 

GMM-MPD 
Parameter 
Estimates 

GMM-MPD 
RMSE  

ML-MPD 
Parameter 
Estimates 

ML-MPD
RMSE  

      
γ 0.5 0.5059 0.0356 0.5019 0.0124 
q 0.5 0.5025 0.0425 0.5005 0.0345 
β0 0.1 0.1033 0.0251 0.1001 0.0101 
β1 0.2 0.2064 0.0321 0.2031 0.0276 
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Table 2: Comparison between the GMM-MPD and ML-MPD, where ( )0& 0.5qγ = = , 

Sample size=1,000, Repetition=1,000 

Sample size=1,000, Repetition=1,000  

Parameters True  
Values 

GMM-MPD 
Parameter 
Estimates 

GMM-MPD 
RMSE  

ML-MPD 
Parameter 
Estimates 

ML-MPD
RMSE  

      

γ 0 0.0003 0.0342 1.84×10-08 0.0231 
q 0.5 0.5030 0.0552 0.4999 0.0421 
β0 0.1 0.1041 0.0342 0.1009 0.0321 
β1 0.2 0.2012 0.0401 0.2009 0.0392 
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Figure 1: Graphical representation of the scaled gamma (4,2) distribution 
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Figure 2: Comparison between Gamma (4, 2) and MPD (q=0.1, γ =1.54) distributions 
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Table 3: Large sample size comparison of the GMM and ML using MPD principle with 

the classical standard Tobit, under the assumption of Normality 

Sample size=1,000, Repetition=1,000  

Parameters True 
 Values 

GMM-MPD 
Parameter 
Estimates 

GMM-MPD 
RMSE  

ML-MPD 
Parameter 
Estimates 

ML-
MPD 

RMSE  

Tobit 
Parameter 
Estimates 

Tobit
RMSE 

        
β0 0.1 0.0898 0.0201 0.0988 0.0101 0.1021 0.0095
β1 0.2 0.2210 0.0605 0.2105 0.0408 0.1999 0.0121
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Table 4: Small sample size comparison of the GMM and ML using MPD principle with 

the classical standard Tobit, under the assumption of Normality 

Sample size=100, Repetition=1,000  

Parameters 
True 

 
Values 

GMM-MPD 
Parameter 
Estimates 

GMM-MPD 
RMSE  

ML-MPD 
Parameter 
Estimates 

ML-MPD 
RMSE  

Tobit 
Parameter 
Estimates

Tobit
RMSE 

        
β0 0.1 0.0984 0.0321 0.1004 0.0221 0.0954 0.0382
β1 0.2 0.1985 0.0646 0.2007 0.0582 0.1933 0.0686
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Table 5: Large sample size comparison of the GMM and ML using MPD principle with 

the classical standard Tobit, under the assumption of Gamma (4,2) distribution 

Sample size=1,000, Repetition=1,000  

Parameters 
True 

 
Values 

GMM-MPD 
Parameter 
Estimates 

GMM-MPD 
RMSE  

ML-MPD 
Parameter 
Estimates 

ML-MPD
RMSE  

Tobit 
Parameter 
Estimates 

Tobit 
RMSE  

        
β0 0.1 0.0876 0.0082 0.0984 0.0023 -0.1292 0.0554 
β1 0.2 0.2287 0.0075 0.2190 0.0019 0.2690 0.0385 
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Appendix 2 

Given the following conditional moment for the error terms 

( )

( ; , ) 1

0
* *

1
1

|
( ; , )

iF X q

i i i
i

p p dp
q q

E X
F X q

γ γ
β γ

γ

ε ε β
β γ

−
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ − ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠> − = −

∫
 

We want to examine the integration part in the above equation, that is  

( ; , ) 1

0

1
1

iF X q p p dp
q q

γ γ
β γ

γ −
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∫  

1. Assuming 1γ = −  

                  Then 

( )

1 1
1 1 1( 1)

1 1

( 1) ln( ) (1 ) ln(1 )

p p p pdp dp
q q q q

q p q p C

γ γ

γ
− −

−
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= − + − − +

∫ ∫  

2. Assuming 1γ ≠ −  

 

( )
( )

( ) ( )

11
1 1

1

11
1 1 1 1

pp p pdp C
q q q q

γ γ γγ

γγγ γ
γ γ

++
− −

+

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ −⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎜ ⎟− = + +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∫  

 

In order to decide on convergence or divergence of the above two integrals, we need to 

consider the following cases: 

• 1γ = −  
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( )

( ; , ) 1 1

0 00

0

1 1lim
1 1

lim ( 1) ln( ) (1 ) ln(1 )
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p p p pdp dp
q q q q
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∫ ∫  

 

• 1γ < −  
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• 1γ > −  
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⎟

 

 
Therefore the integral will be divergent if 1γ < − & 1γ = −  and convergent if 1γ > − . 


