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MINIMAL BOUNDARY CONDITIONS FOR SIMULATIONS OF  

DISORDERED MATERIALS 

Abstract 
 
 
 

By Jagan Padbidri, M.S. 
Washington State University 

December 2003 
 

Chair: Sinisa Dj. Mesarovic 
 
 Traditional boundary conditions impose artificial rigidity and/or periodicity on the 

Representative Volume Element (RVE) during deformation simulations of materials. The 

result is a very small portion of the computational model demonstrates the actual 

microstructural state of the deformation. These are referred to as End Effects and lead to 

computational inefficiency. Further, they introduce Spurious wavelengths in the field 

variables. 

The current research presents the development of Minimal boundary conditions 

and their implementation to an elastic crystalline aggregate. The Minimal boundary 

conditions do not impose any rigidity or periodicity on the computational model and 

effectively eliminate the problem of End Effects. The simulations are carried out on 

polycrystalline aggregates of different sizes and for different realizations of the 

orientations of the grains constituting the aggregate.  

The superiority of the Minimal boundary conditions is demonstrated by subjecting 

the same aggregate to the other traditional boundary conditions and gauging the overall 

 iv



elastic response. The Minimal boundary conditions deform the material such that the 

overall response falls within the Hashin-Shtrikman bounds for the elastic constants of an 

infinite polycrystal assembly.  

A two-dimensional Fourier Transform of the field variables illustrates that the 

Minimal boundary conditions contribute Spurious wavelengths to a far lesser extent than 

the traditional boundary conditions. 
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CHAPTER 1 

INTRODUCTION 

1.1 Disordered Materials 

Modeling and simulation of disordered materials is having an increasing impact 

on understanding of the behavior of materials, both, in the processing stage and in 

service.  Examples of disordered structures of materials can be found on all length scales 

viz. granular materials (Fig. 1.1 a), metallic foams (Fig.1.1 b) etc. on the macro-scale, 

polycrystalline materials (Fig.1.1 c), fine powders as in powder metallurgy etc. on the 

micro-scale.  

 

 

 

 

 

Fig. 1.1 Disordered Materials 
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the microscopic length scale. The computational modeling of the material should 

overcome the properties inherent to a macroscopic modeling such as free surfaces. 

Modeling and simulations of disordered materials are usually done for a representative 

volume element (RVE). The RVE is an assembly of basic building blocks i.e. atoms, 

grains, granules, etc.  It is assumed that such element of volume is representative of the 

materials’ behavior at large. For the purpose of simulation, it serves as a quasi-unit cell.  

The RVE is then subjected to boundary conditions (BC’s), and the behavior of the 

disordered assembly observed. 

1.2 The Representative Volume Element 

One important goal of the mechanics and physics of heterogeneous materials is to 

derive their effective properties from the knowledge of the constitutive laws and spatial 

distributions of their components. Homogenization methods have been designed for this 

purpose which have reached a high level of sophistication and accuracy particularly for 

linear properties such as elasticity.  

Rigorous bounds for the macroscopic linear properties of composites are 

available. These include the Voigt-Reuss bounds and the Hashin-Shtrikman bounds. 

These estimations are given for a random composite media with an infinite extension and, 

hence, are asymptotic estimates. A different method to solve homogenization problems is 

to use numerical techniques and simulations on samples of microstructure. This renders 

the notion of Representative Volume Element (RVE) very important.  

The RVE is usually regarded as a volume of heterogeneous material that is 

sufficiently large to be statistically representative of the composite i.e. it effectively 
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includes a sampling of all the microscopic heterogeneities that can occur in the 

composite. Another definition provided by Drugan and Willis (1996) states that an RVE 

is the smallest material element volume of a composite for which the usual spatially 

constant (overall modulus) macroscopic constitutive representation is a sufficiently 

accurate model to represent the mean constitutive response. This approach uses the 

principle of homogenization for an infinite medium and does not take into account the 

statistical fluctuations of effective properties over finite domains. 

These definitions lead to the fact that the RVE must include a large number of 

micro-heterogeneities of the composite. Several types of boundary conditions can be 

prescribed on the RVE to impose a given mean strain or mean stress to the given material 

element. 

The response of an RVE has to be independent of the nature of the boundary 

conditions. This would require an enormous size of the RVE. This is due to the excessive 

constraints imposed on the RVE for the simulations. This problem is overcome by the 

Minimal Boundary conditions, thus rendering a more manageable size of the RVE. The 

boundary conditions used traditionally and their drawbacks are outlined in the succeeding 

section. 

1.3 Traditional Boundary Conditions 

The most commonly used boundary conditions are Rigid boundary conditions 

(Fig 1.2 (a)) and Periodic boundary conditions (Fig. 1.2 (b)). The Rigid boundary 

conditions impose a rigid boundary and periodicity. The Periodic boundary condition is 
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slightly more relaxed, in that, only periodicity is applied. The boundary conditions are 

shown below. 
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Both periodic and rigid boundary conditions will prevent localization and development of 

strain gradients depicted in the figure above. 

1.4 Objective and Approach of the current research 

The objective of the current research is to implement new Minimal boundary 

conditions which overcome the aforementioned defects. These boundary conditions use a 

definition of strain provided by Bishop and Hill (1951) defining the macroscopic strain as 

the volumetric average of strain in the body. This is reduced to a lower order integral and 

implemented using Finite Elements.  

The test case considered is a Linear Elastic problem for a two-dimensional 

aggregate of crystals. The average strain defined over the area is reduced to an integral 

over the boundary and then as a summation of products of the normals to the boundary 

and displacements of the nodes on the boundary. In a Linear Elastic case, the direction of 

the normal of the boundary is considered to remain the same during the entire process of 

deformation. This renders the Linear Elastic case easy for implementation. The concept is 

extendable to Non-Linear cases as well where the boundary conditions are applied 

incrementally. 

A polycrystalline aggregate is simulated and the different boundary conditions are 

applied to it. The overall response and the presence of spurious wavelengths are verified 

using Fourier Transforms. The minimal boundary conditions are expected to yield leaner 

results than the rigid or periodic boundary conditions since nothing but the strain is 

imposed in this case. Bounds are derived for the overall elastic response of a polycrystal. 

The derivation of the bounds is presented in detail in the next chapter. 
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CHAPTER 2 

HASHIN-SHTRIKMAN BOUNDS FOR THE ELASTIC MODULUS OF A 

CRYSTALLINE AGGREGATE 

 Variational principles for anisotropic elasticity were applied to the derivation of 

bounds for the elastic modulii of polycrystals in terms of the modulus of the constituting 

crystals by Hashin Z and Shtrikman S (1962). 

 Consider a homogenous, isotropic elastic body of volume V and surface S. Let 

this body be deformed so that the surface displacements are given by 

                    ( ) jij
S
i xSu 0ε=      (2.2.1) 

Since the body is homogenous and isotropic, the strain field throughout the body is 

homogenous and given by . Also, the displacement field inside the body is known. Let 

this be represented by  which is related to  by the usual small strain expression. 

0
ijε

0
iju 0

ijε

 Consider a polycrystalline body with randomly oriented crystals. A cubical 

element is selected from this body which is large when compared to the individual 

crystals but small when compared to the body as a whole. The mean strains in this 

cubical element will be the same as those for the entire body. This cubical element will 

be henceforth referred to as a reference cube. Let the same surface displacements as in 

(2.2.1) be prescribed on the polycrystalline body. The strains in the reference cube will be 

given by 

ijijij '0 εεε +=      (2.2.2) 
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where  are deviations from the mean strain and its average over the entire volume is 0. 

The displacement field in this body, , will be different from that of the homogenous 

body due to the anisotropy. 

ij'ε

iu

The stress field in the homogenous body is given by 

000
klijklij C εσ =      (2.2.3) 

where for the present homogenous case 

ijklklijijkl IGC 00
0 2+= δδλ    (2.2.4) 

where 0λ  and G  are the Lame and Shear modulus respectively, which are constant in 

space. The tensor I is defined as 

0

( )jkiljlikijklI δδδδ +=
2
1    (2.2.5) 

The stress-strain relation for the anisotropic material is given by 

klijklij C εσ =      (2.2.6) 

where the components of C  are variable in space, but satisfy the usual symmetry 

relations. 

ijkl

Define 

0' iii uuu −=      (2.2.7) 

0' ijijij εεε −=     (2.2.8) 

and the symmetric stress polarization tensor as 

klijklijij Cp εσ 0−=     (2.2.9) 

Let the tensor R be defined as 
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0
ijklijklijkl CCR −=    (2.2.10) 

and the tensor H as the reciprocal of R so that 

ijklmnklijmn IRH =    (2.2.11) 

The  and  are chosen as unknowns here and variational principles in terms of these 

quantities are formulated. 

ij'ε ijp

Consider the integral 

( )∫ ∫ −−−=
V V

ijijijijklijijklijijp dVppppHdVU 000 2'
2
1

2
1 εεεσ  (2.2.12) 

subject to the condition 

( ) 0'
,

0 =+
jijklijkl pC ε     (2.2.13) 

and the boundary condition 

( ) 0' =Su i      (2.2.14) 

The first variation of Up is given by 

( )[ ]dVppppHU
V

ijijijijijijklijklp ∫ −+−−= ''2
2
1 δεδεδεδ  (2.2.15) 

Let the condition given in (2.2.13) be integrated in the form 

ijijklijkl tpC =+'0 ε     (2.2.16) 

where tij,j = 0.         (2.2.17) 

The variations of (2.2.16) and (2.2.17) are 

ijijklijkl tpC δδδε =+'0     (2.2.18) 
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and δtij,j = 0.         (2.2.19) 

consider the part of (2.2.15) given by 

∫ −
V

ijijijij dVpp )''( δεδε  

Substituting the values of pij and δpij,j from (2.2.16) and (2.2.17), we get 

( ) ( )[ ]∫ −−−
V

ijklijklijklijklijij dVCtCt '''' 00 δεεδεδε  

( )dVCCtt
V

klijklijklijklijijijijij∫ +−−= '''''' 00 εδεδεεδεδε  

the last two terms cancel due to the symmetry of . This reduces the integral to 0
ijklC

( )∫ −
V

ijijijij dVtt '' δεδε  

( )∫ −−+=
V

ijijjiijijijijji dVututtutu ,,,, ''''
2
1 δδδδ  









−−








−−









−+








−=

∫ ∫∫ ∫

∫∫∫ ∫

S V
jiijijij

S V
ijijjiij

V
jiij

S
ijij

S V
ijijjiij

utnututnut

dVutdSnutdVutdSnut

''
2
1''

2
1

''
2
1''

2
1

,,

,,

δδδδ

δδδδ

 

the above integral reduces to 0 since ( ) 0' =Siu , δtij,j = 0 and tij,j = 0 on V. 

So, of the original integral equation given by (2.2.15), the part that remains is  

( )[ ]dVppHU
V

ijijklijklp ∫ −−= δεδ 2
2
1  

This also reduces to 0 when 

0=− ijklijkl pH ε  
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klijklij Rp ε=⇒    (2.2.20) 

i.e. 0=pUδ for the above condition. This means that Up attains a stationary, extremal 

value denoted by Up
s. It can be demonstrated that Up

s is the actual strain energy stored in 

the body. Its value is an absolute maximum when Rijkl is positive definite and an absolute 

minimum when Rijkl is negative definite. 

 When theC  are very small when compared to the C , the variational 

principles reduce to the principle of minimum complimentary energy, whereas when the 

 are infinitely large when compared toC , the principle of minimum potential 

energy is obtained. 

0
ijkl ijkl

0
ijklC ijkl

The strain energy stored in a reference cube, when (2.2.1) is prescribed on the boundary 

of the body is given by 

( )( )00*20* 29
2
1

ijij eeGKU += ε   (2.2.21) 

where K* and G* are the effective bulk and shear modulii respectively, 00

3
1

kkεε =  and 

 ijijije δεε 000 −=

Let the orientation of the Cartesian crystallographic axes of a crystal with respect to the 

fixed Cartesian co-ordinate system be denoted by Ω. The volume of all crystals with the 

same orientation is given by VΩ. Since the number of crystals is very large and Ω is taken 

as continuous, 

dVVdV =Ω=Ω     (2.2.22) 
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Since the polarization field can be arbitrarily chosen, due to the variational formulation, a 

piecewise constant field is chosen in VΩ. Since the orientations are continuous, this can 

be written as 

( )Ω= ijij pp  where pij are continuous functions of Ω. The orientation average of the 

polarization function is given by 

( ) ΩΩ>=< ∫ dpp ijij  where ∫ =Ω 1d   (2.2.23) 

The integral in (2.2.12) for the reference cube can now be written in terms of pij(Ω) as 

( ) ( ) ( ) ( )[ ]∫ ΩΩ−ΩΩΩ−+= dpppHUUU ijijklijijklp
0

0 2
2
1' ε  (2.2.24) 

where ( ) ( ) ΩΩΩ= ∫ dp ijij '
2
1' εU  

expressing pij and u’i as Fourier series and substituting them in (2.2.13), we get 

 ( )[ ] ( )[ ] ( )[ ] Ω><−Ω><−Ω+Ω><−Ω= ∫∫ dffffdppU ijijijijβα 22'2   

          …(2.2.25) 

where p(Ω)δij and fij(Ω) are the isotropic and deviatoric parts of pij(Ω) and 

00 43
3

GK +
−=α  

( )
( )000

00

435
23

GKG
GK

+
+

−=β  

where K0 and G0 are components of . (2.2.25) is substituted into (2.2.24) which 

expresses U

0
ijklC

p in terms of U0 and an integral involving the polarization components. When 

Rijkl is positive definite, 
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      Up < U 

when Rijkl is negative definite, 

      Up > U 

These two conditions will become bounds on K* and G* in terms of polarization 

components. The variation of Up is equated to zero and using the relations in (2.2.25), the 

extremum condition is obtained to be  

  ( ) ( ) [ ] ( )[ ] 0
ijklklijklijklklijkl ppIpH εβδαδ =<−Ω+−ΩΩ >    (2.2.26) 

when (2.2.26) is introduced into the equation for Up, we obtain 

    0
0 2

1
ijijp pU ε><+=U  

where ijp are the polarization components that satisfy (2.2.26). 

The elastic modulii of a cubic crystal are completely specified by C11, C12, and C44. The 

bulk modulii and the two shear modulii of such a crystal are defined by 

( )

( )

442

12111

1211

,
2
1

,2
3
1

CG

CCG

CCK

=

−=

+=

 

Since we are considering the Shear Modulus, the  is taken in the deviatoric form and 

will be denoted by e  where e  

0
ijε

0
ij .00 =kk

Taking the orientation average of (2.2.26) yields the result 

     0
ijklijkl epH >=<  
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     0

3
1

ijijklmmkl epH =⇒ δ  

Taking into account the cubic symmetry and that , we get 00 =kke

      0=kkp  

Hence, the polarization tensor is also deviatoric. On using the above equation, (2.2.26) 

reduces to 

 

 

    ( ) ><−=− klijklijklijklijkl pIepIH ββ 0  

   ( ) ( )( )><−Ω=Ω klmnklmnijmnij pIeBp β0⇒  (2.2.27) 

where 

ijklijklijkl IHA β−=  

ijklmnklijmn IAB =  

Averaging both sides of (2.2.27), we get 

   ( )><−>>=<< klmnklnmijmnij pIeBp β0  

The Cijkl in this case are cubic and the C0
ijkl are isotropic and hence cubic. Thus, Hijkl and 

Bijkl are also cubic and are given by the three components 

( )( )ββ
β

−−−+
−+

=
12111211

1211
11 2 HHHH

HHB  

( )( )ββ −−−+
−=

12111211

12
12 2 HHHH

HB  
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( )β−
=

44
44

1
H

B  

Since Bijkl obeys the elastic modulii symmetry rules, its average can be given in the 

simplified form as 

    ijklklijijkl IBBB 21 2+>=< δδ  

B1 and B2 are found to be 

( )4412111 24
5
1 BBBB −+=  

( )4412112 3
5
1 BBBB +−=  

Also, we get 

     
2

2

21
2

B
Bpij β+

>=<  

Introducing this expression into the expression for Up, and applying the extremal 

conditions, we get 

     
2

2
0

*

21 B
BG

β+
+

<
>

G   (2.2.28) 

The B2 is expressed in terms of components of C, which gives 

  ( ) ( )

1

02

1

01
2

13
2

15
−−









−

−
+








−

−
= ββ

GGGG
B  

This expression when substituted in (2.2.28) yields a monotonically increasing function 

of K0 and G0. Hence, the best lower bound for G* is obtained for the largest values of K0 

and G0 i.e. for K and G1 and the upper bound is obtained for K and G2. These bounds are 

obtained to be 
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1

1
12

1
*
1 453

−









−

−
+= β

GG
GG  

1

2
21

2
*
2 652

−









−

−
+= β

GG
GG  

where 

( )
( )11

1
1 435

23
GKG

GK
+

+
−=β  

( )
( )22

2
2 435

23
GKG

GK
+

+
−=β  

*
1G  and  provide the bounds for the polycrystalline aggregate. The Voigt-Reuss 

bounds for a polycrystalline aggregate are given by 

*
2G

12

21

32
5

GG
GGGR +

=  

( )21 32
5
1 GGGV +=  

 The material selected is assumed to have cubic symmetry and the constants of 

Copper are assigned to the material. The C11, C12 and C44 of Copper are 1.75E11, 

1.45E11 and 0.75E11. To induce a slightly greater degree of anisotropy, the C44 value is 

changed to 0.8E11. The bounds are calculated from these constants and are found to be as 

follows. 

Voigt bound = 4.25 GPa 

Hashin-Shtrikman lower bound = 4.88 GPa 
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Hashin-Shtrikman upper bound = 5.24 GPa 

Reuss bound = 5.8 GPa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 16



CHAPTER 3 

FORMULATION OF THE MINIMAL BOUNDARY CONDITIONS 

3.1 The General Linear Elastostatic case 

 In this section, we develop the formulation for Linear Elastostatics which is the 

domain of deformation in which the simulations are carried out. This deformation is 

characterized by a linear relation between the two most important variables of 

deformation viz. Stress and Strain. The focus here will be to develop the classical strong 

and weak formulations for a general three-dimensional case. 

 

Ω 
 

Γt
 

 
Γu 

 

Fig. 3.1 Boundary Conditions for Generalized 3-D Elastostatic case 

Ω is defined to be the domain of the body and Γ its boundary. The boundary is 

divided into two parts,Γu where the displacements are prescribed and Γt where the 

tractions are prescribed. Let σij denote the Cartesian components of the Cauchy stress 

tensor, ui, the components of the displacement vector and fi be the prescribed body force 

per unit volume. The strain tensor is defined to be the symmetric part of the displacement 

gradients given by 

                                                       
2

,, ijji
ij

uu +
=ε                                          (3.1.1) 

The stress and strain tensors are related through the generalized Hooke’s law given by 
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                                                        klijklij C εσ =                                               (3.1.2) 

Cijkl are the components of the Constitutive matrix and are also referred to as 

Elastic coefficients. The matrix C is positive definite. These are given functions of x. If 

the elastic coefficients are constant throughout the body, then the body is homogenous. 

Typically, metals consist of grains in each of which the elastic coefficients are constants. 

However, from a global perspective, these constants vary with x i.e. they do not remain 

the same for different grains, all of which are represented in a global co-ordinate system. 

The solution here is the displacement vector u(x). 

The strong form of the boundary value problem is given as 

Find ui ∈ R defined on Ω such that 

                                                            0, =+ ijij fσ                    in Ω 

                                                            ijij gn =σ                          on Γt                           (3.1.3) 

                                                            u ii h=                               on Γu 

The first equation is the equation of equilibrium. g and h are prescribed functions 

of traction and displacement on Γt and Γu respectively. The stress σij, is defined in terms 

of the displacement using the Hooke’s law. This Strong form is also referred to as the 

mixed boundary value problem of elastostatics and possesses a unique solution. 

 For the Weak formulation of the problem, let S be the trial solution space and V 

be the variation space. Each of the trial solutions u ∈ S and the variations w ∈ V satisfy 

the prescribed boundary displacement conditions. Multiplying the equilibrium equation 

with the variation function and integrating it over the domain Ω, we obtain 
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∫
Ω

=Ω+ 0)( , dfw ijiji σ  

Integrating by parts, we get 

∫ ∫∫
Γ ΩΩ

=Ω+Γ+Ω− 0, dfwdnwdw iijijiijji σσ  

In the first integral, σij is a symmetric tensor. wi,j is a tensor, which can be 

expressed as the sum of its symmetric and anti-symmetric parts. The anti-symmetric part 

of wi,j and σij nullify each other which leaves the product of the symmetric part of wi,j and 

σij. Let w(i,j) represent the symmetric part of wi,j. wi is zero on the boundary where the 

displacements are prescribed (Γu ), and so the domain of integration of the second 

integral reduces to Γt. 

∫ ∫∫
Γ ΩΩ

=Ω+Γ+Ω−
t

iitiiijji dfwdgwdw 0),( σ  

∫ ∫∫
Γ ΩΩ

Ω+Γ=Ω
t

iitiiijji dfwdgwdw σ),(  

Thus, the weak form is expressed as 

Find ui∈S and wi∈V such that, ui = hi and wi = 0 on Γu and for all wi∈V, 

                                                                       (3.1.4)   ∫ ∫∫
Γ ΩΩ

Ω+Γ=Ω
t

iitiiijji dfwdgwdw σ),(

3.2 Constraints to be imposed 

 In the implementation of the minimal boundary conditions, only the strain is 

imposed over the body. For obtaining a solution, rigid body rotation has to be eliminated. 

This is done by constraining the displacements of the nodes on the boundary. Consider 

the body shown in Fig. 3.2. 
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Fig. 3.2 Constraints to prevent rigid Body Rotation for a 3-D case 

x1, x2 and x3 are the co-ordinate axes and A, B and C are points on the surface of the 

body. By imposing displacement constraints in the points A, B and C, rigid body rotation 

is eliminated. For this, we need six displacements to vanish. These are summed up as 

                                          u                                        (3.2.1) 0, 232 ==== CBBA uuu0

These constraints prevent the rotation of the body about any of the axes. 

In the current simulations, a two-dimensional model is used and so the vanishing of six 

displacements is not required. The constraints required to eliminate rigid body rotation in 

a two-dimensional case are explained below. Consider the body shown in Fig. 5.3. 

 

A B

x2 

x1

 

 

 

 

 

Fig. 3.3 Constraints to prevent rigid Body Rotation for a 2-D case 

x1 and x2 are the co-ordinate axes and A and B are points on the boundary of the 

body. The three-dimensional body requires six degrees of freedom to vanish for 

preventing rigid body rotation. However, for the two-dimensional case, only three 
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degrees of freedom need to be constrained to prevent rigid body rotation. These 

constraints are given as 

                                                             u                                              (3.2.2) 0,0 2 == BA u

It is to be noted that there are only two components of displacement for the point 

A. These constraints are analogous to the prescribed boundary displacements mentioned 

in the previous section. 

3.3 Formulation of the problem 

 In this section, the formulation of the problem is developed for the present two-

dimensional case with the relevant boundary conditions and constraints. The strong and 

weak forms are developed for the minimal boundary conditions which impose only the 

macroscopic shear strain as an average over the area and the constraints mentioned in 

(3.2.2) for preventing rigid body rotation. The definition for the macroscopic strain is 

given as the volumetric average of strains over the entire body. This definition, given by 

Bishop and Hill in 1951, is represented as 

∫=
V

ijij dV
V

E ε1  

 In the present case, a two-dimensional model is considered. This is represented as 

∫=
A

ijij dA
A

E ε1  

∫
+

=
A

ijji
ij dA

uu
A

E
2

)(1 ,,  

[ ]∫ ==+⇒
A

ijijijji LAEdAuu u2)( ,,  
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 This, along with the constraints in (3.2.2) is only condition imposed on the body. 

It should be noted that only the essential boundary conditions are imposed. 

The strong form of the boundary value problem is expressed as 

Find ui ∈ R defined on Ω such that 

0, =jijσ                    in Ω 

ijij AEL 2=           on Γ 

0, 232 ==== CBBA uuu0u  

Since there are no body forces prescribed, the corresponding term vanishes. 

The governing equation for the weak formulation is as given by (3.1.4) 

∫ ∫∫
Γ ΩΩ

Ω+Γ=Ω
t

iitiiijji dfwdgwdw σ),(  

Since there are no tractions or body forces, this equation reduces to 

∫ ∫
Ω Γ

Γ=Ω dgwdw iiijji σ),(  

Using (3.1.2) and (3.1.1), the above equation can be expressed as 

∫ ∫
Ω Γ

Γ=Ω
+

dgwd
uu

Cw ii
kllk

ijklji 2
)( ,,

),(  

[ ] ∫
Γ

Γ= dgwB ii)(),( xuxw  

If there exists a macroscopic stress Σij, such that,  

∫
Ω

Ω=∑ dE ijijijij εσ  

then  ∫
Ω

Ω=∑ dE ijijijij δεσδ
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But  ∫∫
ΓΩ

Γ=Ω dund iijjijij δσδεσ

∫
Γ

Γ= dug iiδ  

One possible solution for w is δu where δu is the virtual displacement. It satisfies all the 

conditions necessary for w. Let us assume the existence of two solutions for u viz. u’ and 

u”. δu is defined as 

δu = u’ – u” 

Since u’ and u” are solutions to the problem, we have 

0"';0"';0"';"' C
2

C
23322 ======== uuuuuu BBBBAA 0uu  

0, 232 ==== CBBA uuu δδδδ 0u  

Also, u’ and u” satisfy 

[ ] [ ] ijijij VELL 2"' == uu  

Due to the linearity of Lij, this implies 

[ ] 0=uδijL  

Thus, δu is a solution for w and also means that the solution u is unique. 

Now, ii wu ≡δ  and 0≡ijEδ . This means that 

0=Γ=Γ=∑ ∫∫
ΓΓ

dwgdugE iiiiijij δδ  

Thus the bilinear volume functional vanishes, [ ] 0)(),( =xuxwB  
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Thus, the weak form of the formulation is given as 

Find u(x) such that u  and 0, 232 ==== CBBA uuu0 [ ] ijij AEL 2=u , so that for any 

w(x), wA = 0, w2
B = 0 and [ ] 0=wijL , the bilinear functional vanishes 

[ ] 0)(),( =xuxwB  

The bilinear functional B for the solution δu would be 

( ) ( )[ ] ( )∫
Ω

= ),(,, lkijklji uCuB δδ xuxu  

∫
Ω

= εδε :: C       (3.3.1) 

Due to the symmetry of C, this can be written as 

∫
Ω

εεδ ::
2
1 C  

( ) ( )[ ]xuxu ,
2
1 Bδ=  

which implies that the problem reduces to minimizing B.  

Since the boundary conditions are of an integral nature and the bilinear functional 

vanishes, the standard weak form is not very helpful in finding the solution. Hence, the 

method of Lagrange multipliers is adopted. 

3.4 Lagrange Multipliers  

The problem reduces to minimizing ( ) ( )[ ]xuxu ,B  subject to 

and 0, 232 ==== CBBA uuu0u [ ] ijij AEL 2=u . 

Upon introducing the Lagrange multiplier λ, for each of the constraints imposed, this can 

be equivalently stated as minimizing the functional 
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[ ] [ ] [ ]( )∑ −−=
m

ijijm AELBF 2, uuuu λ  

where m is the number of constraints imposed and can vary from 1 to 6. Under variations 

δu and δλ, such that the allowable variations satisfy u , the 

minimization conditions take the form 

0,0 232 ==== CBBA uuu

[ ] [ ] 0, =⋅− ∑
m

ijm LB uuu δλδ  and 

[ ]( ) 02 =−⋅∑
m

ijijm AEL uδλ  

3.5 Solution Method 

 Consider a two-dimensional Finite Element mesh with n nodes. Each of the nodes 

has two degrees of freedom. The total number of degrees of freedom is N which is given 

by 

     N = 2n 

Since three degrees of freedom are constrained for the prevention of rigid body rotation, 

the number of degrees of freedom will be 2N-3. Let p of these degrees of freedom be on 

the boundary. For the finite element implementation, the minimal boundary condition 

takes the form 

∑
=

=
p

k
ijkk AEuc

1
2  

for each of the constraints imposed. If m strains are imposed on the computational model, 

there would be m such equations. The method of expressing the constraint as a 

summation is elucidated in the next section. 

Each of these can be represented in a matrix form as 

 25



ijAE2=⋅ uc  

where c  and  [ Nccc ..21= ]























=

Nu

u
u

.

.
2

1

u

The different constraints can be expressed in the matrix form shown above. The u 

matrices would be the same for all the constraints, since they represent the displacement 

of the nodes. The c matrices would be different for different constraints. 

The minimal boundary conditions can also be expressed as fulfilling the function 

 02 =−⋅= ij
m

m AEucµ

Since there are no prescribed boundary tractions, the Finite Element form of the potential 

energy is 

KuuT

2
1

=π  

Consider the function 

( ) ( ) ( )uuu mmF µλπλ −=,  

where λm is a scalar multiplier called the Lagrange Multiplier. Rendering the above 

equation stationary is equivalent to satisfying the constraint imposed by the minimal 

boundary condition. The condition of being stationary simplifies to 

( ) ( ) 02 =−⋅−







−⋅ ∑∑

m
ij

m

m

Tm
m

T AEb uccuKa λ  

Since a and b are arbitrarily selected, 
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( ) 0=−⋅
Tm

m cuK λ  and  02 =−⋅ ij
m AEuc

for each of the m macroscopic strain constraints imposed. 

This is represented as 

                                                      ∑                           j = 1,2,3…N 
=

=−
N

j
m

m
ijij cuK

1
0λ

∑
=

=
N

k
ijk

m
k AEuc

1
2  

Thus we have N + m unknowns viz. the N degrees of freedom and the m Lagrange 

multipliers which can be solved using the N + m equations. 

The commercial software ABAQUS is used for carrying out the simulations. This 

software, however, does not use Lagrange multipliers as stated above for a constraint 

imposed using the *EQUATION option. The solution is obtained by solving for one of 

the displacements in terms of the other. For e.g. 









−= ∑

=

N

i
iiij ucAE

c
u

2

1
1
1

1 21  

The homogenous system of equations which is to be solved is given by 

                                                          ∑                                           i = 1,2,3…N 
=

=
N

j
jijuK

1
0

∑
=

=+
N

j
jiji uKuK

2
11 0  

021
22

1
1
1

1 =+







− ∑∑

==

N

j
jij

N

k
kkiji uKucAE

c
K  
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                                    ∑
=

−=











−

N

j
ijij

j
iij AE

c
Ku

c
c

KK
2

1
1

11
1

1

1 21                     i = 2,3,…,N 

The above equation yields N-1 equations with N-1 unknowns. This process of expressing 

one degree of freedom in terms of the remaining is done for each of the constraints 

imposed. If m constraints are imposed, we finally have N-m equations with as many 

unknowns. 

3.6 Finite Element Implementation 

In this section, the finite element implementation of the minimal boundary 

conditions for a two-dimensional case is presented. Bishop and Hill (1951) have provided 

the universal definition for macroscopic strain as the volumetric average of strain of 

infinitismal volume elements over the entire domain of the body. Analogous definitions 

have been provided by Gurson (1977) for granular materials. The Bishop and Hill 

definition is given as 

∫=
V

ijij dV
V

E ε1  

( )
dV

uu
V

E
V

ijji
ij ∫

+
=

2
1 ,,  

using the Gauss theorem, 

( )∫ +=
S

ijjiij dSnunu
V

E
2
1  

where S is the boundary of the domain and n is the normal to the boundary. Thus, the 

minimal boundary conditions can be applied to any shape of the representative volume 

element as long as the normal to the boundary is known. Also note that the conditions can 
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be applied incrementally to non-linear problems (du = vdt). This can be done since the 

formulation is valid irrespective of additional kinematic variables. 

For the present two-dimensional case the macroscopic strain is defined over the area and 

the integral reduces to a boundary integral given by 

( )dSnunu
A

E
S

ijjiij ∫ +=
2
1  

The test case here is a linear elastic problem where only shear strain is imposed. Hence 

the equation takes the form 

( )dSnunu
A

E
S
∫ += 122112 2

1  

 

 

 

 

 

 

Fig. 3.4 Schematic of the case for which the Boundary Conditions are implemented 

A 

C 

D 

B 

k 

k−1 

n=(−1,0) 

k+1 

Shown above is a schematic of the two-dimensional domain on which the minimal 

boundary conditions will be imposed. AB, BC, CD and DA constitute the boundary (S) 

of the domain. The integral in reduces to 

( ) ( ) ( ) ( )dSnunudSnunudSnunudSnunuAE
A

D

D

C

C

B

B

A
∫∫∫∫ +++++++= 1221122112211221122  

 29



The normal (n), is shown for the side AB in the figure. The magnitude of the y-

component of the normal is 0. For each of the sides of the boundary, one component of 

the normal is 0. Thus, the equation reduces to 

∫∫∫∫ ++−−=
A

D

D

C

C

B

B

A

dSudSudSudSuAE 1212122  

The integral can be expressed as a summation of the product of the displacement 

of a node and its weight function. This can be represented as 

∫
B

A

dSu2

∫ ∑ ∫=
B

A k

B

A
k

k dSudSu ψ22  

where is referred to as the weight of the node k. In a rough sense, it is the 

importance of the node k in the finite element mesh. In the current case, constant strain 

elements are used. The weight of the node k is the area of the triangle formed by it with 

its two adjacent nodes as the base and a height of 1. This is demonstrated in the figure. 

∫
B

A
k dSψ

 

 

 

Fig. 3.5 Calculation of Weight Functions for Constant Strain Elements 

1ψk 

k k+1k-1

Thus, the integral in changes to a summation of the products of the displacements 

of the nodes and their corresponding weight functions. Let there be p number of nodes on 

the boundary. The minimal boundary condition is expressed as 

∑
=

=
p

i
ii AEuc

1
122  

 30



CHAPTER 4 

MODELING AND SIMULATIONS 

The objective of the current research is to analyze the response of a heterogeneous 

material to an externally imposed strain. Metals, when considered at a small length scale 

can be considered to be heterogeneous. At a larger length scale, however, metals are 

approximated and assumed to be isotropic and homogeneous. 

 Metals are composed of grains or crystals. Each grain has a specific orientation in 

which their physical constants are expressed. The orientation differs from one grain to 

another. The physical constants of all the grains are the same when they are expressed in 

the direction in which the grain is orientated. However, when the physical constants are 

expressed in a global co-ordinate system, which remains fixed, the values of the constants 

change from one grain to another. Thus, the two most important aspects of modeling are 

the determination of the shape of the grains, their dimensions etc. and the directions in 

which they are oriented. The simulations are carried out using the commercial Finite 

Element software ABAQUS. The issue of shape and size of the grains is addressed first 

here. 

4.1 Modeling the Microstructure 

 The assembly of grains required for the simulations is generated using Voronoi 

Tessellation. Voronoi Tessellation is one of the most commonly used methods for the 

generation of microstructure. It provides a reasonably good representation of the 

microstructure, albeit with some approximations. 
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 The concept of voronoi tessellation is to mimic the growth of grains as a metal 

solidifies assuming that the temperature gradients are very small in the solidifying 

regime. Since the temperature gradients are assumed to be very small, a number of 

crystals start forming at the same instant of time. The points of origin of solidifications 

are called seed points and occur randomly in space. Also, all the crystals grow at the 

same rate in all directions due to the uniform temperature. The crystals keep growing 

until the growth is opposed by the growth of the neighboring crystals. A grain boundary 

forms at the space where the two crystals oppose each other. 

 Since all the crystals grow at the same rate, the grain boundary between two seed 

points is a plane which is normal to the line joining the two seed points and passes 

through the mid-point of this line. In a two-dimensional case, the grain boundary is the 

perpendicular bisector of the line joining the seed points. Numerous such seed points lead 

to the formation of closed polygons (grains), each corresponding to a seed point. The 

important fact to be realized is that every point in such a closed polygon is closest to the 

seed point of that polygon than to any other seed point. 

 The voronoi tessellation for the present case is performed using the commercial 

software MATLAB. The size of the grains depends on the relative positioning of the seed 

points i.e. the farther the seed points, the larger the size of the grain. To prevent large 

differences in the sizes of the grains, the seed points are generated such that uniformity in 

size is maintained.  

 The process of generation of the seed points for this purpose is simple, yet very 

effective. The domain of the model is divided into as many number of squares of uniform 
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area as the number of grains to be modeled. A seed point is generated in each of these 

squares of uniform area. The process of generation of the co-ordinates of the seed point is 

randomized i.e. the x co-ordinate of the seed point for a square is a random number 

whose value lies between the extremities of the square. The y co-ordinate is also 

generated through the same process. Thus, a random point is generated in each of the 

squares in the domain. 

 The co-ordinates of these randomly generated points are input into MATLAB 

which generates a voronoi diagram with these points as the seed points. MATLAB also 

provides the vertices of the polygons generated. These polygons are recreated in 

ABAQUS using the co-ordinates of the vertices. The grains are assembled as in the 

voronoi diagram which creates a computational model of the microstructure. 

 The simulations are carried out in the linear elastic regime of the deformation of 

materials. In this regime of deformation, there is no sliding or cleavage at the grain 

boundary. So, the edges of each polygon (grain boundary) are rigidly tied with the 

corresponding edges of the adjacent polygons (grains). Triangular, constant strain, Plane 

strain elements are used for the meshing of the assembly. Grain boundaries have the same 

number of nodes on the boundary corresponding to each grain so that continuity of 

displacements in maintained. 

Since the grains are anisotropic, the deformation, even though elastic, produces 

substantial variations of stress in a single grain. These variations are effectively 

represented by the large number of elements in each grain. The 25 grain assembly has an 

average of 53 elements per grain, the 100 grains assembly, 56 per grain and the 400 
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grains assembly has an average of 58 elements per grain. The assembly for 25 grains is 

shown with a sample finite element mesh of one of the grains. 

Fig. 4.1 Assembly of 25 grains and Finite Element Mesh of one grain 
 

4.2 Modeling the Material 

 A solid body changes its shape when subjected to an external force or stress. For 

sufficiently small amounts of stress, the strain is linearly proportional to the magnitude of 

stress. The constitutive relation is called the Hooke’s law and is expressed as 

klijklij C εσ =  

where C is the stiffness tensor. 
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 It can be observed that the stiffness tensor has 81 components corresponding to 

the four indices. However, due to symmetry of the stress and strain tensors, there are a 

maximum of 21 independent constants in the stiffness tensor. For convenience, the 

constitutive relation is now expressed as 

jiji C εσ =  

where the stress and strain are column matrices and C is a 6X6 symmetric matrix. 

 There are a maximum of 21 independent constants in the C matrix. However, this 

number reduces with the nature of the material and the symmetries inherent to the 

material. In the present case, a material with cubic symmetry is considered which reduces 

the number of independent components of C to three. This is shown below 


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These constants are however, subject to the conditions 

c11 > |c12|, c11 + 2c12 > 0, c44 > 0 

The material used for the simulations is Copper. However, the values of the elastic 

constants have been slightly altered to induce greater anisotropy. 

 In the current model, each grain of the assembly is oriented differently. ABAQUS 

requires the upper triangular C matrix to be input to define the properties of the material. 

This can be done by defining the orientation of each grain in which the stiffness matrix is 

defined. However, in such a case, the output variables viz. stress etc. are also given in the 

 35



same orientation instead of the global orientation. To overcome this problem, the stiffness 

matrix is transformed into the desired orientation and the constants are expressed in a 

global co-ordinate system. 

 The transformation is done through a homemade FORTRAN code. It is to be 

noted that the elastic constants cannot be transformed as a matrix, but have to 

transformed as a fourth order tensor. The constants of the matrix are plugged back as 

components of the fourth order stiffness tensor and transformed as a tensor given by 

mnoplpkojnimijkl CaaaaC ='  

where the a matrices are the directional cosine matrices for transformation. 

 The constants corresponding to the upper triangular C matrix are extracted back 

and input into ABAQUS. Thus, the grain behaves as if it is oriented in a specified 

direction, but all the variables are now expressed in the global co-ordinate system. Each 

orientation requires a different directional cosine matrix and consequently yields different 

values for the elastic constants. This means for every grain and its corresponding 

orientation, a new material has to be defined which has its own set of constants. Thus, as 

many number of different materials are defined as the number of grains. 

4.3 Orientations 

 The material being modeled has cubic symmetry. Thus, only orientations from     

-π/4 radians to π/4 radians with respect to the global axes are independent. Any other 

orientation yields the same constitutive matrix as one of the orientations from -π/4 to π/4 

radians. So, the orientations assigned to the materials are selected from the domain         

[-π/4, π/4]. Orientations are assigned using two methods viz. uniform probability 
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distribution and enforced uniform distribution. Five realizations of orientations are 

simulated for each of the assemblies for each of the boundary conditions. 

4.3.1 Uniform Probability Distribution 

 As the title suggests, every orientation assigned to the grains has an equal 

probability of being selected. The domain of possible orientations is [-π/4, π/4] radians. 

Random numbers are generated in the domain [-1,1] and are multiplied with π/4 which 

gives the orientation of a particular grain with respect to the global axes. All the random 

numbers are generated independent of each other i.e. the random numbers generated till a 

particular point of time have no impact on the number which is generated next. Thus, 

every orientation has an equal probability of being selected and this method is hence 

termed Uniform Probability Distribution. 

4.3.2 Enforced Uniform Distribution 

 In this method, orientations assigned to grains are selected randomly from 

uniformly spaced intervals in the domain of orientations. The domain of orientations              

[-π/4, π/4] is divided into equal intervals. The number of intervals is equal to the number 

of grains. A random number is generated in each of these intervals and is randomly 

assigned to a grain. Once an orientation has been selected from an interval, it is discarded 

and so is the grain to which the orientation has been assigned, the idea being orientations 

throughout the entire spectrum [-π/4, π/4] have to be encompassed in a finite number of 

grains. 

Both these methods of assigning orientations are repeated to obtain five sets of 

orientations for the assembly of the grains. The process of selecting an orientation and 
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assigning to a grain is randomized and is accomplished using a homemade FORTRAN 

code. The code uses four different randomly generated sequences of numbers to select an 

orientation and assign it to a grain. 

4.4 Boundary Conditions 

 The assembly so created, is subjected to different boundary conditions with the 

same macroscopic shear strain being imposed in each case. Three different boundary 

conditions are imposed on the assembly viz. Rigid Boundary Conditions, Periodic 

Boundary Conditions and Minimal Boundary Conditions. 

4.4.1 Rigid Boundary Conditions 

 These boundary conditions impose rigidity of the boundary along with 

periodicity. The boundary does not have the freedom to change its shape i.e. a straight 

remains straight. This is illustrated in Fig. 1.2 (a). 

 This boundary condition is simulated by prescribing the corresponding 

displacements of all the nodes that lie on the boundary. The boundary at the base of the 

assembly is completely fixed. No node on any boundary has vertical displacement. 

4.4.2 Periodic Boundary Conditions 

 Periodic boundary conditions do not impose rigidity of the boundary, but they 

impose periodicity of the unit cell. Periodic boundary conditions impose that opposite 

sides of the unit cell deform parallel to each other. If many of such deformed unit cells 

were taken, they would fit each other along the boundary since they deform in a parallel 

manner. This is illustrated in Fig. 1.2 (b). 
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 The assembly is constrained so that rigid body rotation is prevented. The 

condition that opposite sides have to deform parallel to each other is achieved by 

specifying that the displacements of the nodes on opposite boundaries have to be the 

same. If an imaginary co-ordinate system is placed at the center of the assembly and L 

gives the dimension of the assembly, the Periodic boundary conditions are stated in 

equation form as 
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If the nodes do not have the same co-ordinates, the displacement is prescribed as a linear 

interpolation of the nearest nodes on the opposite boundary. The displacements of the 

nodes are related using the *EQUATION keyword in ABAQUS. 

4.4.3 Minimal Boundary Conditions 

 The Minimal boundary conditions are the conditions which impose the least 

constraints on the material and hence the name “Minimal” boundary conditions. These 

boundary conditions do not impose rigidity or periodicity at the boundary. The only 

constraint imposed is the macroscopic shear strain as the average of the strains over the 

entire area. The formulation of the constraints has been demonstrated in the previous 

chapter. The constraint is expressed as the summation of products of the displacements of 

nodes and their weight functions over the boundary of the domain. This is given by 

∑
=

=
N

i
mnii AEuc

1
2  

The constraint is imposed using the *EQUATION keyword in ABAQUS. 
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4.5 Shear Modulus 

 The different boundary conditions are imposed on the assembly to deform it. 

Stresses develop in the material due to the strain imposed in the form of displacements on 

the boundary. Due to the different orientations for different grains, the stresses developed 

in each grain are different. Since constant strain elements are used, the stresses in each 

element are constant. To calculate the average response of the material, the average shear 

modulus over the entire assembly is calculated using a homemade FORTRAN code. 

 The average shear modulus is defined to be the ratio of the average shear stress to 

the average shear strain. The average shear stress is calculated as the weighted average of 

the stresses of the elements. The nodes forming an element and the co-ordinates of the 

nodes are read from the ABAQUS input file from which the area of the element is 

calculated. The corresponding shear stress of the element is extracted from the output 

data file of ABAQUS. The shear stress in the element is multiplied with the area of the 

element. This operation is performed over all the elements and the products are summed 

up. The ratio of this sum to the total area gives the weighted average of the shear stress 

over the entire area. The ratio of this average stress to the imposed macroscopic strain 

gives the shear modulus of the assembly. 

 The deformation simulations are repeated for five sets of uniform probability 

distribution and five sets of enforced uniform distribution. The values of the shear 

modulus are expected to lie between the bounds derived in chapter 2. 
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CHAPTER 5 

FOURIER TRANSFORMS OF THE FIELD VARIABLES 

5.1 Fourier Transform 

 A principal analysis tool in many of today’s scientific applications is the Fourier 

Transform. Possibly, the most well known application of this mathematical technique is 

the analysis of linear time-invariant systems. But, the Fourier transform is essentially a 

universal problem-solving technique. Its importance is based on the fact that one can 

examine a particular relationship from an entirely different point of view. Simultaneous 

visualization of a function and its Fourier transform is often the key to successful 

problem solving.  

 The essence of the Fourier transform of a waveform is to decompose or separate 

the waveform into a sum of sinusoids of different frequencies. If these sinusoids sum to 

the original waveform, we have determined the Fourier transform of the waveform. The 

Fourier transform identifies or distinguishes the different frequency sinusoids, and their 

respective amplitudes, that combine to form the arbitrary waveform. Mathematically, the 

relationship is stated as 

                                                                                             (5.1.1) dtetsfS fti∫
∞

∞−

−= π2)()(

where s(t) is the waveform to be decomposed into a sum of sinusoids, S(f) is the Fourier 

transform of s(t), and i = √-1. Typically, s(t) is termed a function of the variable time and 

S(f) is termed a function of the variable frequency.  
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In general, the Fourier transform is a complex quantity: 

                               )()()()()( fiefSfIfRfS θ=+=  

where R(f) is the real part of the Fourier transform, 

           I(f) is the imaginary part of the Fourier transform, 

           |S(f)| is the amplitude of the Fourier spectrum of s(t) given by )()( 22 fIfR + , 

           θ(f) is the phase angle of the Fourier transform given by tan-1[I(f)/R(f)]. 

 If the waveform s(t) is not periodic, then the Fourier transform will be a 

continuous function of frequency, that is, s(t) is represented by the summation of 

sinusoids of all frequencies. The Fourier transform is a frequency-domain (inverse of 

wavelength) representation of a function. The Fourier transform frequency domain 

contains exactly the same information as that of the original function, albeit they differ in 

their manner of representation. 

5.2 Discrete Fourier Transform 

 The Fourier transform is defined for continuous functions. However, Fourier 

transforms of functions can also be obtained through sampling of the function at regular 

time intervals which forms the basis for Discrete Fourier transforms and Fast Fourier 

transforms. Clearly, Discrete Fourier transforms can be derived independently of the 

Fourier integral. However, it can be demonstrated that Discrete Fourier transforms are 

actually a special case of the Fourier integral. 

 The Discrete Fourier transform is of interest primarily because it approximates the 

Continuous Fourier transform. Validity of this approximation is strictly a function of the 

waveform being analyzed. The differences in the two transforms arise because of the 
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Discrete transform requirement of sampling and truncation. However many of the 

scientific applications of the Continuous Fourier transforms rely on a digital computer for 

implementation, which leads to the direct use of the Discrete Fourier transform and hence 

the Fast Fourier transform. 

 The Discrete and Fast Fourier transforms are certainly ubiquitous because of the 

great variety of apparently unrelated fields of application. However, the proliferation of 

applications across broad and diverse areas is because they are united by a common 

entity, The Fourier Transform. FFTs and DFTs find applications in structural dynamics, 

acoustics, signal processing, radar technology, communications and a host of other areas. 

 The terms of the Discrete Fourier transform are given as 

               ∑
−
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where N is the total number of sampling points and T is the time period between two 

successive sampling points, h(kT) is the value of the function at point kT and H is the 

Fourier transform of the function h. It is of primary importance that there are enough 

number of sampling points that can represent the properties of the function being 

sampled. 

 Similarly, the two-dimensional Fourier transform is given by 
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where n = 0,1,2,…,N-1 and m = 0,1,2,…,M-1. N and M are the number of sampling 

points taken in x and y directions and Tx and Ty are the respective time periods of 
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sampling points. h is an m x n matrix which represents the functional values and H is the 

Fourier transform of h which is also an m x n matrix. 

 From the above equation, it can be noted that a one-dimensional Fourier 

transform is carried out for each column and row wise Fourier transformation is carried 

out for these transformed columns. The total number of computations required for the 

two-dimensional transform is immense. For an m x n matrix, it requires m2n2 

multiplications of complex numbers and a huge number of additions of complex numbers 

to arrive at the final Fourier transform. If we consider an n x n square array, the number 

of multiplications of complex numbers required is n4 and we also need to perform      

n2(n-1)2 complex additions. Cooley and Turkey proposed a mathematical algorithm in 

1965 which reduces the computational time to be proportional to n2log2n. This algorithm 

is widely recognized as the “Fast Fourier Transform”. 

5.3 Present Methodology 

 The Fourier transform can be interpreted as the mapping of a function to a 

frequency domain i.e. the dependence of the function for a particular frequency. From 

(5.2.1), it can be seen that transform gives the dependence on frequencies given by n/NT. 

This means the terms correspond to a wavelength of NT/n.                       (5.3.1) 

The amplitude of the term gives the dependence of the function or the significance of that 

particular wavelength. 

 In the current context, Fourier transforms of the deviations of stress from the 

average stress are performed. The stress values for the transform are obtained using a 

homemade code. The code generates a grid of points in each of the assemblies created. 
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The grain in which a particular point lies is determined. The code then forms triangles 

with the current point and two nodes of each element in the grain at a time for all the 

nodes. Thus, three triangles are formed for each element in the grain with the given point. 

The areas of these three triangles are found out and so is the area of the triangular 

element. If the sum of the areas of the three triangles formed by the point and the nodes 

of an element is equal to the area of the element, then the given point lies inside that 

particular element. If not the code proceeds to perform the same check on the next 

element of that grain. The code goes through all the elements of a grain irrespective of 

whether previously an element had been obtained in which the point lies. This is because 

the point might be co-incident with a node of an element or might lie on the side of an 

element, in which cases, all the elements in which the point lies are stored. The stresses 

of all the elements in which the point lies are extracted and are averaged. This gives the 

stress value at that point. If the point lies solely in one element, the stress in that element 

is the stress value at the point. 

 This computation is repeated for the entire grid of points and the stress values of 

all the points are stored in a matrix. The average of the values of all the elements in this 

matrix gives the average stress value for the grid of points. This average value is 

subtracted from each element of the matrix. This gives a matrix of the deviation from the 

average stress of the grid of points. A two-dimensional FFT of this matrix gives the 

dependence of the deviations of the stress from the average for different frequencies and 

their corresponding wavelengths. 
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 Since the FFT is performed for the deviations of stress from the average, the 

output indicates the periodicity and dependence of stress variations for various length 

scales of the domain. The domain here is a polycrystalline aggregate and so the length 

scales can be associated with the size of the grains consisting the domain. The grains of 

the assembly are each oriented differently and so have different stresses in them. Hence, 

the stress varies at each grain boundary. Thus, we expect to see a strong dependence of 

the FFTs for a length scale corresponding to one grain and integral multiples of a grain. 

 From (5.3.1), we know that the terms of the Fourier Transform correspond to a 

wavelength of NT/n where n = 0, 1, 2… N-1. N is the number of sampling points and T is 

the time period of sampling. If l is the length of the domain, then 

                                                     
1−

=
N

lT                                                              (5.3.2) 

the wavelength corresponding to the term n, denoted by λn is given by 

                                                     
nN

Nl
n )1( −

=λ                          n = 0,1,2…N-1     (5.3.3) 

For the 5 x 5 grain assembly, a grid of 10,000 points is formed i.e. N = 100. 

The wavelengths are given as 

                                                      
n
l

n 99
100

=λ                                n = 0,1,2…N-1     (5.3.4) 

for n = 0, the wavelength is λ0 = ∞. The successive wavelengths are λ1 = 
199
l

×
100 , 

λ2 = 
299
l

×
100 , λ3 = 

399
100 l

×  and so on. 

The 10 x 10 assembly has a sample size of 150 points. The wavelengths are given by 
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n
l

n 149
150

=λ                               n = 0,1,2…N-1     (5.3.5) 

for n = 0, the wavelength is λ0 = ∞. The successive wavelengths are λ1 = 
1149
l

×
150 , 

λ2 = 
2149
l

×
150 , λ3 = 

3149
150 l

×  and so on. 

The 20 x 20 assembly has a sample size of 200 points. The wavelengths are given by 

                                                      
n
l

n 199
200

=λ                              n = 0,1,2…N-1     (5.3.6) 

for n = 0, the wavelength is λ0 = ∞. The successive wavelengths are λ1 = 
1199

200 l
× , 

λ2 = 
2199

200 l
× , λ3 = 

3199
200 l

×  and so on. 

 The input for the FFTs is in the form of an array. This array is uploaded into 

MATLAB and the two dimensional FFT is performed. This results in an array of equal 

dimensions of the input. However, the terms of the output array are amplitudes of the 

corresponding frequencies. As demonstrated above, each term of the FFT represents a 

particular wavelength or a specific length spectrum of the domain. The wavelength 

decreases as the terms of the FFT progress and we soon arrive at wavelengths which are 

smaller than the size of a grain. These wavelengths are insignificant and are eliminated. 

The terms of the FFT whose wavelengths are significant are selected and a smooth 

surface is fitted through them using cubic interpolation in MATLAB. The resultant 

surface is smooth which renders the peaks more visible and also projects the significance 

of intermediate wavelengths. 
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5.4 Aliasing 

 The accuracy of the Discrete Fourier transform does depend on the number of 

sampling points. The frequency of sampling has to be equal to or greater than the largest 

frequency of the sampled function. Sampling lesser number of points results in a distorted 

FFT. This phenomenon is known “Aliasing”. 

 The sampled function is the variation of stresses from the average. Since constant 

strain elements are used, the elements have constant stresses. Thus, the largest frequency 

of stress variation is from an element to element. So, the number of sampling points has 

to be greater than the number of elements. This criterion is fulfilled many times over in 

all the cases. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

The assemblies of grains created are subjected to the various boundary conditions 

and the simulations are performed for different realizations of orientations. The overall 

response of the crystalline aggregate, the stress distributions and the effectiveness of the 

minimal boundary conditions are discussed here. 

6.1 Overall Elastic Response of the Crystalline Aggregate 

 The deformation of the crystalline aggregate is simulated using the different 

boundary conditions. The overall elastic shear stress is calculated using a weighted 

average of the stresses in each element of the finite element mesh. The average shear 

modulus of the aggregate, which is the ratio of the weighted average stress to the 

macroscopic strain, for Uniform Probability Distribution of orientations is shown in the 

tables below for different sizes of the RVE. 

 Orientation 1 Orientation 2 Orientation 3 Orientation 4 Orientation 5
Rigid 5.321 5.8741 5.4509 6.0312 5.5247 

Periodic 5.1258 5.606 5.0051 5.7028 5.104 

Minimal 4.4156 4.7733 4.559 5.3013 4.6313 
 

Table 6.1 Shear Modulus (in GPa) for 25 Grains assembly  

 

 

 Orientation 1 Orientation 2 Orientation 3 Orientation 4 Orientation 5
Rigid 5.3797 5.9438 5.475 5.1595 5.2957 

Periodic 5.1622 5.7339 5.2962 4.9744 5.0551 

Minimal 4.6936 5.3626 4.9318 4.5364 4.6935 

Table 6.2 Shear modulus (in GPa) for 100 grains assembly 
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 Orientation 1 Orientation 2 Orientation 3 Orientation 4 Orientation 5
Rigid 5.3036 5.4753 5.4025 5.3864 5.5708 

Periodic 5.2079 5.3808 5.253 5.2479 5.4591 

Minimal 5.0725 5.2185 5.0851 5.0684 5.3359 

Table 6.3 Shear modulus (in GPa) for 400 grains assembly 
 The average shear modulus, which indicates the stiffness of the material, shows 

that the Rigid boundary conditions impose the stiffest constraints on the body followed 

by Periodic and Minimal boundary conditions respectively. This is due to the fact that 

Rigid conditions impose rigidity with periodicity. For every simulation, the Minimal 

boundary conditions impose the least constraints which indicates that the body deforms 

more relaxedly as expected i.e. for every orientation, the shear modulus for the Minimal 

boundary conditions is lower than those for Rigid and Periodic boundary conditions. 
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Fig. 6.1 Shear Modulii for different realizations of Uniform Probability Distribution 
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The above graph shows the response of the aggregate for various sizes of the RVE. The 

ineffectiveness of the Rigid and Periodic boundary conditions and the superiority of the 

Minimal boundary conditions is evident. The Rigid and Periodic boundary conditions are 

very stiff even for the assembly of 100 grains. The minimal boundary conditions give 

more freedom for the body to deform. For the RVE of 400 grains, the minimal boundary 

conditions are comprehensively better than the other two with almost all the responses 

lying in the Hashin-Shtrikman bounds. 

 The overall responses for Enforced Uniform Distribution are presented below. 

 

 Orientation 1 Orientation 2 Orientation 3 Orientation 4 Orientation 5
Rigid 5.8005 5.719 5.3655 5.7203 5.8485 

Periodic 5.6057 5.22 5.1325 5.2238 5.2811 

Minimal 4.7378 4.9317 4.7068 4.7801 4.669 

Table 6.4 Shear Modulus (in GPa ) for 25 Grains assembly. 

 

 Orientation 1 Orientation 2 Orientation 3 Orientation 4 Orientation 5
Rigid 5.5131 5.4796 5.5286 5.4825 5.5838 

Periodic 5.3387 5.2859 5.276 5.2944 5.3339 
Minimal 4.9957 4.9253 4.9249 4.9707 5.0114 

Table 6.5 Shear modulus (in GPa) for 100 grains assembly 

 

 Orientation 1 Orientation 2 Orientation 3 Orientation 4 Orientation 5
Rigid 5.3925 5.4623 5.4832 5.4309 5.4897 

Periodic 5.2488 5.3574 5.4008 5.2806 5.3721 
Minimal 5.1153 5.2367 5.2202 5.1597 5.208 

Table 6.6 Shear modulus (in GPa) for 400 grains assembly 
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  Fig. 6.2 Shear Modulii for different realizations of Enforced Uniform Distribution 

 The trend observed for the uniformed probability distribution continues with the 

enforced uniform distribution. The average shear modulus for the Rigid Boundary 

Conditions are highest followed by the Periodic boundary conditions and then by the 

Minimal boundary conditions. However, the effect is more pronounced because the 

orientations assigned to the grains are uniformly distributed throughout the domain of 

orientations.  

 An RVE size of 100 grains gives perfect results, all the responses lying in the 

Hashin-Shtrikman bounds. Also, the range over which the shear modulii are spread for 

each boundary condition decreases with the increase of the RVE size. The responses for 

different boundary conditions also come closer to each other indicating that as the RVE 
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size tends towards infinity, there would be no difference between the three boundary 

conditions. 

The Hashin-Shtrikman bounds and the Voigt-Reuss bounds have been derived for 

an infinite assembly of polycrystals. Both these derivations assume that the distribution 

of orientations of the grains is continuous. This is the reason why the Enforced Uniform 

Distribution enter the Hashin-Shtrikman zone with a greater frequency than that of 

Uniform Probability Distribution. Since these bounds have been derived for an infinite 

assembly, if the Shear Modulus of an aggregate of polycrystals lies in this zone, it implies 

that the aggregate is showing the response that an infinite assembly would. This is 

observed in the Minimal boundary conditions. Thus, the Minimal boundary conditions 

simulate an infinite medium which provides an effective counter to the problems faced in 

computational mechanics due to End Effects. 

6.2 Stress Distributions in the Crystalline Aggregate 

 The distributions for the in-plane Shear stress are presented in this section. These 

give a general idea of the areas of stress concentrations. The contours are plotted such 

that they compare with the overall elastic modulus i.e. they are plotted for each contour to 

lie within the bounds calculated for the crystalline aggregate. 

 In the contours shown below, the areas in black are where the stress value is 

below the Reuss (lower) bound. The dark and light blue areas denote the elements whose 

stress value lies between the Reuss bound and the Hashin-Shtrikman lower bound. The 

areas in green are where the stresses are within the Hashin-Shtrikman regime and the 
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yellow and the red areas denote the regions where the stress lies between the Upper 

Hashin-Shtrikman bound and the Voigt (Upper) bound. 

RIGID 

PERIODIC 

MINIMAL 

Fig 6.3 Stress Distributions in the 25 Crystal Aggregate 
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PERIODIC 
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Fig 6.3 Stress Distributions in the 100 Crystal Aggregate 
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Fig 6.3 Stress Distributions in the 400 Crystal Aggregate 
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The stress contours show that large portions of the assembly have stresses above the 

Voigt bound for the Rigid boundary conditions. Very few elements fall within the 

Hashin-Shtrikman regime which demonstrates the strictness of these boundary 

conditions. The Periodic boundary conditions are an improvement over the Rigid 

boundary conditions, but still contain substantial number of elements which have stress 

values outside the bounds (Voigt-Reuss). The Minimal boundary conditions provide 

stress contours in which majority of the assembly falls in the Voigt-Reuss Bounds. 

The Minimal boundary conditions generate stresses which are largely confined to 

a relatively small segment of the stress spectrum. This phenomenon is observed for all 

the assemblies. As the size of the assembly increases, larger areas fall in this small 

domain of stresses. This is a definite trend towards homogeneity, a typical characteristic 

of macroscopic deformation. Thus, the Minimal boundary conditions overcome the 

constraint of a specimen of finite length. 

6.3 Fourier Transforms 

 The Fourier Transform gives a mathematical perspective of the results. The Fourier 

Transform converts a given function from a time or space domain to a frequency or 

wavelength domain. Fourier Transform of the variations of stress from the average are 

performed in the current context. Since this is a function of space, the Fourier Transform 

converts it into a wavelength domain. It gives the dependence of the function for various 

wavelengths of the specimen. A two-dimensional Fourier Transform is performed here 

which accounts for periodicity of stress variations in both the x and y directions of the 

crystalline aggregate. 
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Fig. 6.7 Fourier Transforms for 25 grains 
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Fig. 6.9 Fourier Transforms for 100 grains
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Fig. 6.10 Fourier Transforms for 100 grains 
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Fig. 6.11 Fourier Transforms for 100 g
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Fig. 6.12 Fourier Transforms for 400 grains 
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Fig. 6.13 Fourier Transforms for 400 grain
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Fig. 6.14 Fourier Transforms for 400 g
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The Fourier Transforms confirm to the expectations that the Minimal boundary 

conditions are more suitable for deformation simulation of materials. 

For the 25 grains assembly, a very high peak is obtained at wavelength l and a 

peak is noticed at the wavelength l/5 for the Rigid boundary conditions. This indicates 

that the field variables (stress) are highly dependent on the size of the specimen, which 

should not happen. The Periodic boundary conditions also give a strong peak at 

wavelength l, but slightly smaller in magnitude. This is because both boundary conditions 

impose periodicity of the RVE. The periodic boundary conditions also generate peaks at a 

wavelength slightly lesser than l/2 and at the wavelength l/5. The Minimal boundary 

conditions do not exhibit a sizeable peak at wavelength l, but yield peaks at wavelengths 

slightly lesser than l/2 and at wavelength l. The peak displayed at a wavelength l/5 is for a 

wavelength corresponding to one grain. Since the Fourier Transform of the variations of 

stress is performed, there will be a peak at a wavelength corresponding to an integral 

multiple of one grain since the stress varies from one grain to another. Further, the 

Periodic and Minimal boundary conditions exhibit peaks at wavelengths slightly lesser 

than l/2 i.e. slightly lesser than 2.5 grains. Thus, peaks are exhibited at wavelengths very 

close to twice the grain size. 

For the 100 grains assembly, the trends continue i.e. the magnitude of the peak at 

a wavelength l is lesser for the Minimal boundary conditions than for the Rigid and 

Periodic boundary conditions. Peaks are observed at wavelengths l/10, l/5 and l/2 for all 

the cases. These correspond to wavelengths of one grain size, two grain sizes and five 

grain sizes respectively. Also, off-diagonal peaks are observed at wavelengths l/5 and l/2. 
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This implies that the variation of the field variable (stress) is periodic in one particular 

direction i.e. in one particular direction, the orientations assigned to the grains have 

attained periodicity which causes the periodic variations of stress and thus produces high 

peaks at these wavelengths. 

For the 400 grains assembly too, the peaks at wavelength l are much lower for 

Minimal boundary conditions than for Rigid and Periodic boundary conditions at the 

same wavelength. As in the case of the 100 grains assembly, off-diagonal peaks are 

observed for all the boundary conditions at wavelength l/2 (in one direction) and 

wavelength l/5 (in both the directions). This implies a periodicity of orientations at the 

corresponding wavelengths. 

The most important fact to be realized is the lower peaks of the Minimal boundary 

conditions for wavelength l. This implies that the stresses are not dependent on the size of 

the computational model. The Size Effect inherent to both the other boundary conditions 

has been reduced by a large extent. 
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CHAPTER 7 

CONCLUSIONS 

The computational models are subjected to the different boundary conditions and 

the results are analyzed. The Rigid boundary conditions demonstrate the stiffest response 

followed by the Periodic boundary conditions and the Minimal boundary conditions. This 

is attributed to the additional rigidity and/or periodicity of the boundary conditions in the 

first two cases.  

The distribution of the results for overall shear modulus is over a wider range for 

uniform probability distribution of orientations. The range of the results narrows as the 

number of grains increase. This shows the tendency of the computational model to 

demonstrate a behavior of an infinite media. In the case for an infinite media, the three 

boundary conditions would yield the same response. 

The shear modulus values of a 100 grain assembly subjected to Minimal boundary 

conditions enters the Hashin-Shtrikman regime, whereas the response of even the 400 

grain assembly lies outside the Hashin-Shtrikman zone for Rigid and Periodic boundary 

conditions. Thus the Minimal boundary conditions require a much smaller computational 

cell size and effectively overcome end effects. 

The Fourier Transforms of the stress variations indicate that the Minimal 

boundary conditions do not introduce spurious wavelengths like Rigid or Periodic 

boundary conditions. Strain gradients and/or localization can also be simulated using 

these boundary conditions. 
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