
CAD TOOL EMULATION FOR A TWO-LEVEL RECONFIGURABLE CELL

ARRAY FOR DIGITAL SIGNAL PROCESSING

By

JONATHAN KARL LARSON

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

DECEMBER 2005

© Copyright by JONATHAN KARL LARSON, 2005
All Rights Reserved

© Copyright by JONATHAN KARL LARSON, 2005
All Rights Reserved

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of JONATHAN

KARL LARSON find it satisfactory and recommend that it be accepted.

 Chair

ii

ACKNOWLEDGMENTS

 This research was done in conjunction with the High Performance Computer Systems

(HiPerCopS) research group under the direction of Dr. José Delgado-Frias at

Washington State University. I would particularly like to thank Mitchell Myjak, who

developed the foundational designs that the CAD tools were developed for. I would also

like to thank Mitchell for all his help and support. Finally, I would like to thank Dr. José

Delgado-Frias for his guidance and support.

iii

CAD TOOL EMULATION FOR A TWO-LEVEL RECONFIGURABLE CELL

ARRAY FOR DIGITAL SIGNAL PROCESSING

Abstract

by Jonathan Karl Larson, M.S.
Washington State University

December 2005

Chair: José Delgado-Frias

 The use of reconfigurable hardware has been increasing in recent years; the need for

robust Computer Aided Design (CAD) tools has risen accordingly. For a reconfigurable

system, CAD tools enable developers to create, modify, simulate, and estimate the

performance of synthesized designs. Furthermore, once a design is realized, the CAD

tools can be used to generate a configuration file to program the hardware.

 This research deals with the design of comprehensive CAD tools for a medium-grain

reconfigurable cell array. This architecture has been developed by the High Performance

Computer Systems (HiPerCopS) research group at Washington State University to

accelerate digital signal processing (DSP). The CAD tools include a full-featured

designer utility that allows users to map sophisticated DSP algorithms onto the array. A

hardware-level simulator verifies these designs and produces results for benchmarking.

Finally, an array of supporting structures, such as designer history and part libraries, are

built around the core tools to provide a full-featured user experience.

 The CAD tools have been used to evaluate the reconfigurable architecture itself. The

results from the simulated benchmarks help verify the performance and functionality of

the system, and suggest potential areas for improvement. As a result, a more powerful

iv

interconnection network has been designed to simplify the mapping process and to

improve performance. Thus, the CAD tools provide a powerful platform for future

research into medium-grain reconfigurable architectures.

v

TABLE OF CONTENTS
Page

ACKNOWLEDGMENTS .. iii

ABSTRACT...iv

LIST OF FIGURES ...ix

LIST OF TABLES...xi

CHAPTER 1: Introduction ... 1

1.1 Background... 2

1.2 Development Platform.. 8

1.3 Outline... 8

CHAPTER 2: CAD Tool Design.. 9

2.1 Architecture... 9

2.1.1 Designer ... 9

2.1.2 Impact of different architectures.. 10

2.2 Cells .. 10

2.2.1 Cell Routing Tables ... 10

2.2.2 Cell Mapping ... 13

2.2.3 Cell Elements ... 17

2.3 Global Switches .. 19

2.3.1 Global Switch Instantiation.. 19

2.3.2 Global Switch to Local Switch Network Locations .. 20

2.3.3 Global Switch Routing:.. 21

2.3.4 Simulation Design.. 25

vi

2.4 Local Switches (Manhattan Architecture Only) ... 26

2.4.1 Switch Wiring .. 26

2.4.2 Local Switch to Global Switch Mapping:.. 28

2.4.3 Simulation Design.. 29

CHAPTER 3: Simulator Design ... 30

3.1 Cell Level Simulation ... 30

3.2 System Level Simulation .. 33

3.3 Pipeline Latches .. 33

3.4 Behavioral Simulation .. 34

CHAPTER 4: Software Support Structures.. 35

4.1 Back End... 35

4.1.1 Traces... 35

4.1.2 Part Libraries.. 39

4.2 Front End .. 40

4.2.1 Rendering Engines ... 40

4.2.2 Software Differences ... 43

CHAPTER 5: Performance Analysis.. 44

5.1 Layout of DSP on Cell Array.. 44

5.1.1 Twelve Tap FIR Filter ... 44

5.2 Software Performance... 50

5.2.1 Memory Usage... 50

5.2.2 Simulation Performance... 51

CHAPTER 6: Comparison of Architectures... 53

vii

6.1 Manhattan Architecture .. 53

6.2 Washington Architecture .. 54

CHAPTER 7: Conclusion ... 57

7.1 Contributions... 57

7.2 Future Work .. 58

References... 60

APPENDIX

 A. Simulator Diagram...62

 B. Washington Cell to Cell Connection Source Code..63

 C. Manhattan Cell to Cell Connection Source Code ..71

 D. Math Cell Simulation Source Code ...74

viii

LIST OF FIGURES

Figure 1. Cell in mathematics mode .. 3

Figure 2. Cell in memory mode ... 4

Figure 3. Structure of global network [9] .. 5

Figure 4. Screenshot of local network in Manhattan architecture 6

Figure 5. Screenshot of local network in Washington architecture 7

Figure 6. Diagram of cell showing internal switches .. 11

Figure 7. Cell-to-switch mapping in Manhattan architecture .. 14

Figure 8. Orthogonal cell-to-cell mapping in Washington architecture 15

Figure 9. Diagonal cell-to-cell mapping in Washington architecture.............................. 16

Figure 10. Truth Table User Control ... 17

Figure 11. Cell Data Structure ... 19

Figure 12. Global Switch Positioning Overlay .. 21

Figure 13. Global switch wiring (oriented in vertical plane)... 22

Figure 14. Global switch wiring (oriented in horizontal plane)....................................... 22

Figure 15. Interface from local switch to global switch in Manhattan architecture 23

Figure 16. Relational layout of global switches... 24

Figure 17. Wiring of local switch .. 26

Figure 18. Code for Local Switch to Global Switch Mapping .. 28

Figure 19. Local Switch to Global Switch Mapping ... 28

Figure 20. Matrix of elements in mathematics mode .. 31

Figure 21. Matrix of elements in memory mode ... 32

Figure 22. Simulation procedures .. 33

ix

Figure 23. History window .. 36

Figure 24. Example of history, traces, and trace nodes ... 37

Figure 25. Worst-case connection in the Manhattan architecture.................................... 38

Figure 26. Screenshot of Part Library.. 39

Figure 27. Diagram of system interfaces ... 41

Figure 28. Diagram of FIR filter [10] .. 44

Figure 29. Modular implementation of FIR Filter [10] ... 45

Figure 30. Screenshot of Local Network of FIR Filter Implementation.......................... 46

Figure 31. Screenshot of Local Network of a 3-Coefficient Module for FIR Filter

Implementation ... 47

Figure 32. Diagram of FFT [10] .. 48

Figure 33. Implementation of FFT... 49

Figure 34. Memory usage per cycle in a normal system ... 50

Figure 35. Worst-case delay scenario for Manhattan architecture 54

Figure 36. Internal switch used in Manhattan architecture.. 55

Figure 37. Internal switch used in Washington architecture.. 56

x

LIST OF TABLES

Table 1. Routing table entry for cell .. 11

Table 2. Fields in routing table entry for cell... 12

Table 3. Input mapping .. 12

Table 4. Cell-to-switch mapping in Manhattan architecture ... 13

Table 5. Cell-to-cell mapping in Washington architecture.. 16

Table 6: Global switches in Manhattan architecture.. 20

Table 7. Routing table entry for global switch .. 25

Table 8. Fields in routing table entry for global switch... 25

Table 9. Data structure of global switch .. 25

Table 10. Routing table entry for local switch... 27

Table 11. Fields in routing table entry for local switch ... 27

Table 12. Data structure for local switch ... 27

Table 13. Execution Time of 256-Point FFT... 50

xi

Dedication

This thesis is dedicated to Jesus Christ, my Lord and Savior. Also I would like to

dedicate this to my parents, who always encouraged me in everything I did.

xii

CHAPTER 1

Introduction

 Digital signal processing (DSP) is used in numerous digital systems today. Embedded

devices such as cellular phones, satellite radios, and video cards have permeated

everyday life. However, DSP places great demands on the processing power of the

underlying hardware. As technology continues to advance, reconfigurable hardware has

become a well-accepted option for implementing DSP. This alternative balances the

flexibility of a microprocessor with the performance of dedicated hardware.

Sophisticated computer aided design (CAD) tools allow developers to synthesize

algorithms onto the reconfigurable platform.

 Traditional fine-grain devices such as field-programmable gate arrays (FPGAs) can

implement arbitrary logic equations. However, binary arithmetic such as multiplication

creates a bottleneck when mapped onto fine-grain cells. Many FPGAs have incorporated

dedicated multipliers for this reason. On the other hand, researchers have proposed new

coarse-grain architectures that provide inherent support for DSP computations [1]. These

alternatives include the one-dimensional RaPiD array [2], the two-dimensional

KressArray [3], and the heterogeneous Pleiades [4] and MONTIUM [5] architectures that

combine both fine-grain and coarse-grain components. While coarse-grain devices offer

enhanced performance, their functionality may be limited to basic operations of a

predefined word length.

1

As a third alternative, medium-grain architectures attempt to balance performance and

flexibility. Each cell may only work with 4-bit or 8-bit data, so a module such as a 16-bit

multiplier would require several cells. However, cells typically can support a wider

variety of operations. To this end, the High Performance Computing Systems

(HiPerCopS) research group at Washington State University has developed a novel

medium-grain architecture that strives for efficient circuit-level implementation [6].

Each cell can perform mathematical functions or memory operations.

Mapping DSP onto reconfigurable hardware requires a sophisticated set of software tools.

This software may include place and route functionality, timing analysis, and circuit

simulations. As an initial step, we have created CAD tools that allow users to map

algorithms onto the HiPerCopS architecture by hand. A hardware-level simulator

performs verification and testing of the designs. We have used the software to implement

several DSP benchmarks and evaluate the performance of the system. Based on the

results obtained from these designs, we propose to modify the interconnection network in

the HiPerCopS architecture. We have developed a second version of the CAD tools to

allow for comparisons between the two alternatives.

1.1 Background

 The HiPerCopS reconfigurable architecture integrates an array of medium-grain cells

with a pipelined interconnection network [7]. DSP algorithms are divided into modules,

such as multipliers and adders, and mapped onto blocks of cells. Each cell handles a 4-

bit operation within the module. Cells can perform mathematics functions or implement

a small memory. The outputs of each cell are sent to the inputs of the next cell via a two-

tiered interconnect structure.

2

 Conceptually, the HiPerCopS architecture contains three layers:

1. Element Layer – Each cell consists of a 4x4 matrix of lookup tables, known as

elements. The matrix of elements can be configured into two structures [8]. In

mathematics mode, shown in Figure 1, each element stores a lookup table for a

mathematics function. In memory mode, shown in Figure 2, the elements

collectively implement a random-access memory. More details about the design

of basic functions appear in the reference.

Figure 1. Cell in mathematics mode

3

Figure 2. Cell in memory mode

2. Local Network Layer – This layer transfers data in 4-bit units between two cells

in the same module. The structure consists of a mesh of busses that connect

adjacent cells. Cells also contain two internal switches to connect the matrix of

elements to the local network: one for the input side, and one for the output side.

All outputs are pipelined to maintain high throughput.

3. Global Network Layer – This layer connects the outputs of one module with the

inputs of the next module. The global network overlays on top of the local

network, but can transfer data quickly across the entire array. The structure is

modeled after a binary tree and is described in detail in [7]. Each level of the tree

contains pipeline latches. Figure 3 shows the lowest level of the global network

and how it interfaces with the cells.

4

Figure 3. Structure of global network [9]

 The original HiPerCopS architecture utilized a mesh of busses on the local network.

A screenshot showing this structure appears in Figure 4. As shown, each cell has four

local switches adjacent to it. The cell uses these switches to route data to the cell on the

other side of the switch. Notice that the lowest level of the global network feeds directly

into the local network.

5

Figur

 After mapping som

that using a different

This alternative elim

cells or global switch

cells rather than stric

showing this structur
Local Switch
e 4. Screenshot of local network i

e DSP algorithms onto the H

 interconnection network migh

inates the local switches, so ea

es. The local network also co

tly horizontal and vertical line

e. Due to the absence of local

6
Cell

n Manhattan architecture

iPerCopS architecture, we discovered

t improve the overall performance.

ch cell interfaces directly with other

ntains diagonal connections between

s. Figure 5 contains a screenshot

 switches, an additional layer of the

global network is needed to interface with the cells. In effect, this doubles the bandwidth

of the global network.

Figure 5. Screenshot of local network in Washington architecture

 In this thesis, the original version of the reconfigurable architecture is named

HiPerCopS Manhattan (for its grid-like nature), whereas the new version is named

HiPerCopS Washington (for its diagonal routing). The Washington architecture offers

the flexibility of the Manhattan architecture, while improving upon bus capacities. Just

as the two architectures differ fundamentally on the local network, the software CAD

tools also reflect these design changes.

7

1.2 Development Platform

 The CAD tools were developed using Microsoft Visual Studio .NET 2003. All of the

code was developed using the free student version of Microsoft Developer Network’s

Academic Alliance software. C# was the primary language used for the development as

it provides a rapid prototyping environment. Lower-level languages were considered, but

C# offered much shorter development time. The main graphics engines within the CAD

software used GDI+, though the components could be expanded later to support hardware

rendering. The designs and tests were run on a 3.2-GHz P4 HT system with 2 GB of

RAM and a 320-GB performance-striped RAID rack.

1.3 Outline

 The remainder of this thesis gives an overview of the software design of the CAD

tools developed for the two HiPerCopS reconfigurable architectures. Chapter 2 covers

the basic software structures needed to map DSP algorithms. Chapter 3 describes the

basic design of the simulator. Chapter 4 deals with the underlying support structures for

the software. Chapter 5 looks at the performance of the CAD tools. Chapter 6 compares

HiPerCopS Manhattan with HiPerCopS Washington. Finally, Chapter 7 concludes the

thesis and looks ahead into future work.

8

CHAPTER 2

CAD Tool Design

2.1 Architecture

2.1.1 Designer

 The primary purpose of the CAD tools centers around the ability to model the

HiPerCopS reconfigurable architectures. Using the CAD tools, developers can map DSP

algorithms onto the array of cells and ensure that these designs adhere to the applicable

constraints. Future extensions of the tools could translate the design into a configuration

file for programming the hardware. Because of this, the designer was built with the

intention of modeling the hardware as closely as possible. Thus, the designer stores the

fine-grain details of the synthesized design, such as the individual truth tables used in the

cell elements. However, the component does abstract some principles, such as switch

programming.

The abstract layout of the data structures that applies to both architectures to represent

the hardware is as follows:

• Cell Array

• Local Switch Array

• Global Switch Array

9

2.1.2 Impact of different architectures

 Programming CAD tools for two different architectures that use the same basic array

of cells allowed for the re-use of many code modules. Following the development of

HiPerCopS Washington, all of the simulator and most of the designer were leveraged into

a shared code base. This was possible because the simulator does not actually perform

routing itself, but uses an underlying support structure that is described in Chapter 4.

2.2 Cells

 The core component to both architectures is the cell. Internally, the cell is responsible

for producing the core calculations that are then propagated to other cells. As such, the

software model of the cell includes the following:

• The interface between the cell and the interconnection network

• The lookup tables inside each element

Each of these parts will be discussed in detail in the following sections.

2.2.1 Cell Routing Tables

 Each cell contains a pair of switches that connect the matrix of elements to the

interconnection network. Figure 6 depicts these two internal switches. The input switch

routes data from the interconnection network to the eight inputs of the matrix of

elements, which are named as follows: a, b, c, d, w, x, y, z. The output switch routes the

eight outputs of the matrix of elements back to the interconnection network. The

Manhattan architecture allows cells to interface with eight input lines and eight output

lines. The Washington architecture doubles this number to sixteen.

 The designer represents the input and output switches with routing tables that contain

one entry per switch input. Each table entry is a bitmap that specifies whether that switch

10

input connects to any one of the switch outputs. This method allows one source line to

drive multiple destination lines. Table 1 shows the format of an entry, and Table 2

describes the fields inside the bitmap.

Cell

Matrix of Elements

Any Input Wire Any Output Wire

Cell Input Switch Cell Output Switch

Figure 6. Diagram of cell showing internal switches

Table 1. Routing table entry for cell

Cell Routing Table Bitmap by bit position
A D1 D0 r r r r r r r r r r r r r
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

G G G G W W W W Y Y Y Y Y Y Y Y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11

Table 2. Fields in routing table entry for cell

Field Definition
A Specifies whether the input line is active.

D1, D0 Delay bits. (Only applies to the output routing tables.)
Specifies how many latches to send the output through.
This is used to create pipeline delays for data
synchronization elsewhere in the array. Default of 1
delay when D0 and D1 are 0. Can delay up to 3 extra
cycles.

r Reserved bits not used for actual design specifications.
Can be used in the user interfaces for faster tracing, wire
coloring, or other various functions.

G Only applies to the output routing tables in HiPerCopS
Washington. Denotes a connection directly to the
adjacent global switch.

W Only applies to the output routing tables in HiPerCopS
Washington. Denotes a connection in a diagonal
direction to an adjacent cell. See Figure 9 for more
details on the diagonal wiring present in the Washington
Architecture.

Y These bits are handled differently depending on whether
the bitmap is in an output routing table or an input
routing table.

Input routing tables: Map the incoming wire to the
processing core. Bits are mapped to the matrix of
elements as shown in Table 3
.

Table 3. Input mapping

Input a b c d w x y z
Bit 7 6 5 4 3 2 1 0

Output Tables: Map the outbound processor core
outputs to the corresponding wires around the cell.

12

2.2.2 Cell Mapping

Each component of the designer—cells, local switches, and global switches—assigns

numbers to its input and output lines based on position. To propagate data from one

component to the next, the CAD tools must define a mapping between the numbering

schemes used by these components. This section outlines these standards.

For the Manhattan architecture, cell wires map to the local network as shown in Figure

7. Horizontally-oriented switches have a different mapping than vertically-oriented

switches (VSwitches). Table 4 shows the mappings between cells and switches in tabular

form.

Table 4. Cell-to-switch mapping in Manhattan architecture

Cell Switch VSwitch
0 - 6
1 - 7
2 0 -
3 1 -
4 - 0
5 - 1
6 6 -
7 7 -

13

Figure 7. Cell-to-switch mapping in Manhattan architecture

For the Washington architecture, cells map directly to one another as shown in Figure 8.

and Figure 9. Extracting this figure into a table yields the list in Table 5.

.

14

Figure 8. Orthogonal cell-to-cell mapping in Washington architecture

15

Figure 9. Diagonal cell-to-cell mapping in Washington architecture

Table 5. Cell-to-cell mapping in Washington architecture

Cell
Output

Cell
Input

0 5
1 4
2 7
3 6
4 1
5 0
6 3
7 2

16

2.2.3 Cell Elements

 The designer must program the matrix of elements inside each cell as well as the

routing around it. Because different cells may use the same configuration of elements,

the CAD tools feature a part library, described in Chapter 4. Each part stores a

configuration for the lookup table (LUT) inside each element. These configurations may

then be used to program cells within the array, at which point the cells will be labeled

accordingly.

 In mathematics mode, the lookup table for each element is represented in memory by a

raw 32-bit bitmap. The upper 16 bits refer to the ‘Y’ portion of the truth table, whereas

the lower 16 bits refer to ‘Z’ portion. This raw bitmap is abstracted through the

ConnectionDS class and is exposed through the TruthTable user control that appears in

the element editor. A screenshot of this user control is shown in Figure 10.

Figure 10. Truth Table User Control

17

 In memory mode, the designer does not model each element individually, but rather

abstracts the entire matrix of elements to a random-access memory. The memory data is

stored as metadata and has the ability to persist data across cycles of simulation. If a cell

is configured into memory mode, that cell will contain a pointer off to the memory

segment for which it is responsible. This solution has proved much more useful than

treating the cell as a 4x4 matrix of LUTs, and is an example of simulator behavioral

abstraction, which is discussed in Chapter 3.4.

Cell data for simulation is stored as a collection of registers. Figure 11 shows the

basic data structure used for this purpose. CycleData is a two-dimensional array that

holds the current contents of the registers for each cell. The IsDefined property is a

bitmask that tells the simulator whether a specified input is valid. The simulator skips

over a cell unless all applicable bits are active—a feature that can be useful in debugging.

Finally, the MemData structure is a linked list of all of the memory cells.

All data in the system is input driven. Accordingly, CycleData contains all the data

coming into the inputs of the cell for the given cycle. The cell latches in a typical

simulation cycle will consume approximately 8 KB of memory for a 64x64 array of cells

(not accounting for memory mode cells and their metadata).

18

Figure 11. Cell Data Structure

2.3 Global Switches

 Global switches are used to connect cells that are far away from each other. In terms

of connections between lines, all global switches share a common structure. However,

switches on higher levels route data in larger word units than switches on lower levels.

Global switches only connect with other global switches or directly to cells. In fact,

given the coordinates of a cell, one can easily determine the coordinates and location of

the global switch that connects to it. As with local switches, the global switches do not

perform any operation on the data other than routing. However, global switches do

contain pipeline latches between each layer.

2.3.1 Global Switch Instantiation

To support a 64x64 grid of cells, the CAD tools instantiate ten layers of global

switches. The number given to each layer corresponds to the number of clock cycles that

it would take for data to travel from the global switch to the local network. Every layer

19

has two groups of eight busses connecting to the previous layer, and one group of sixteen

busses connecting to the next layer. Table 6 shows the number of global switches in each

layer for a Manhattan 64x64 grid of cells and the bus width for each. The Washington

Architecture introduces another layer of 64x32 switches beneath layer 0.

Table 6: Global switches in Manhattan architecture

Layer Number of Global
Switches

Bits on bus to
previous layer

Bits on bus to next
layer

0 32x32 4 8
1 16x32 8 16
2 16x16 16 32
3 8x16 32 64
4 8x8 64 128
5 4x8 128 256
6 4x4 256 512
7 2x4 512 1024
8 2x2 1024 2056
9 1x2 2056 4096
10 1x1 4096 -

2.3.2 Global Switch to Local Switch Network Locations

 Level 0 global switches (which bridge between the global network and local network)

are located inside a square of local switches and cells, directly between two horizontal

local switches which have an even x coordinate. There is no global switch between

horizontal local switches that have an odd x coordinate. Figure 12 shows the positioning

of the global switch with respect to the local network.

20

Figure 12. Global Switch Positioning Overlay

2.3.3 Global Switch Routing:

 Even though the global switches differ in bus width, the number of busses on each

switch remains the same. The designer only needs to know the direction in which the

data is routed. The simulator uses this routing to track data through the simulation stages.

The global switch routing is represented by input-based bitmaps (similar to the internal

cell mapping and local switch routing). The input and output wiring is shown in Figure

13, Figure 14, Figure 15, and Figure 16. Note that two wire bundles will either be on the

right or left of the global switch—not both—as represented by the dotted lines.

21

0 3 0 3

Figure 13. Global switch wiring (oriented in vertical plane)

Figure 14. Global switch wiring (oriented in horizontal plane)

 The positions of these wires directly correspond to the positions used with each other

and for local switches. For more information on this mapping, see Figure 17, which has

global switch to global switch mappings. To interface with the local network in the

4 7 4 7

7 744

8

11

8

11

0

3

0

3

8 8

4 4

7 7

4 4

7 7

11 11

22

Manhattan architecture, wires 0-3 or 8-11 communicate with wires G0-G3 of a local

switch. The Washington Architecture connects the global switches directly to cells using

bits 12-15 of the cell’s input/output bitmap.

Local Switch’s Global bitmap layout

0 3 0 3

Global Switch L0

0 3 0 3

Figure 15. Interface from local switch to global switch in Manhattan architecture

23

Figure 16. Relational layout of global switches

Global switches are similar to local switches in the way their routing tables are built.

Because a switch has no processing capabilities within the software, the routing tables are

the only logic applied to the data. There are 12 routing table entries for any global

switch.

Table 7 shows the format of a routing table entry. Table 8 provides the description of

the fields in this bitmap. Finally, Table 9 depicts the container holding the bitmaps.

(0, 0)
Level: I+1

(0, 0) (1, 0)
Level: I Level: I

(0, 0)
Level: I+1

(0, 1)
Level: I

(0, 0)
Level: I

0 11
3 8

4 7

 0 11
3 8

4 7

0 3

4
7

8 11

24

Table 7. Routing table entry for global switch

A R R R R R R R B B B B B B B B
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
B B B B O O O O O O O O O O O O
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 8. Fields in routing table entry for global switch

Field Definition
A Specifies whether the input line is active.
R Reserved for future use.
O Maps the input line to the output wire that is the same

number as the bit position of this output bit.
B Paired bit with the output bit. If flipped, transfers to

upper half of the output bus rather than the lower half.

Table 9. Data structure of global switch

Data Field Comment
Wires [0-11] 16-bit bitmap for inputs into the global switch.
Unmapped Unmapped outputs.
Type WiresLeft = 0, WiresRight = 1. Specifies whether the Right/Left

bundle for this global switch are to its right or left.

2.3.4 Simulation Design

 The simulator’s instantiation of the global network adheres to the same principles as

the cell simulator. Wherever a latch exists in hardware, memory must be allocated in

software to mimic the hardware. For a single cycle, this means that the single highest

level global latch in a Washington Architecture will consume 4 KB alone. Because the

Manhattan architecture uses one less layer of global switches, its highest level global

25

latch only consumes 2 KB. The global network is responsible for a large amount of the

memory usage during simulation. This is unavoidable as the simulations mimic the

hardware’s behavior. Extra caution should be used if the global network were to expand

to fit a larger sized array.

2.4 Local Switches (Manhattan Architecture Only)

 HiPerCopS Manhattan uses a local network that incorporates local switches for

routing data between neighboring cells. These switches do not perform any operation on

the data other than routing it to the correct destination. The following section specifies

how local switches are built in the designer and how they route wires from one location

to another.

2.4.1 Switch Wiring

The wiring of a local switch is defined as shown in Figure 17. The numbering of these

wires directly corresponds to the numbering used for cells.

2 3 4
0 7

1 6
2 3 4 5

5

Figure 17. Wiring of local switch

 Local switches work in a similar manner to the routing tables used in cells. However,

because a switch has no internal logic, there are only nine entries in the routing table.

26

Furthermore, the designer uses an additional bitmap to keep track of unconnected wires.

This is known as the Unmapped Outputs bitmap.

Table 11. Fields in routing table entry for local switch Table 10 shows the routing table

entry used for wires coming into the switch. Table 11 describes the fields in this bitmap.

Finally, Table 12 shows the container data structure that holds the bitmaps.

Table 10. Routing table entry for local switch

a r r r G3 G2 G1 G0 o o O o o o o o
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 11. Fields in routing table entry for local switch

Field Definition
a Specifies whether the input line is active.
r Reserved for future use.
o Maps the input line to the output wire that is the same

number as the bit position of this output bit.
G0-G3 Specifies an output to the global switch connected to this

local switch. Not used for switches that cannot connect
to the global network.

Table 12. Data structure for local switch

Data Field Comment
Local [0-7] 16-bit bitmap for inputs from local network.
Unmapped Unmapped outputs.
Type Horizontal = 0, Vertical =1.
Global [0-3] Pointer to four bitmaps that let wires connect to the global network.

27

2.4.2 Local Switch to Global Switch Mapping:

 The designer must perform two types of mapping when connecting a local switch to a

global switch. First, the software must determine which global switch is connected to the

local switch. This value can be calculated using the local switch’s coordinates (Lx, Ly)

using the algorithm in Figure 18. Second, the software must map the wire positions on

the local switch to the wire positions on the level 0 global switch. Figure 19 defines this

mapping.

//Lx = Local Switch x coordinate
//Ly = Local Switch x coordinate
//Glblx = Local Switch x coordinate
//Glbly = Local Switch x coordinate

if(Lx%2!=0)
{
 //No global switches connect up to
 return -1;
}
//Find the x,y for the global switch
Glblx = Lx/2;
Glbly = Ly/2;

Figure 18. Code for Local Switch to Global Switch Mapping

Figure 19. Local Switch to Global Switch Mapping

G0 G1 G2

G0 G1 G2 G3

G3

28

2.4.3 Simulation Design

 Though the local switches exist in hardware, the simulator effectively bypasses these

components because they contain no latches. Data leaving a cell is instantly propagated

to its destination latch during simulation.

29

CHAPTER 3

Simulator Design

 There are two major areas of simulation that take place in the HiPerCopS CAD tools.

The first is the cell-level simulation, which pertains to the 4x4 matrix of elements within

a cell. Here, the simulator drives the inputs of the elements and computes the required

memory and mathematics functions. The second is the system-level simulation, which is

responsible for propagating the simulated data to appropriate registers elsewhere in the

array. The following sections cover both of these concepts in detail.

3.1 Cell Level Simulation

 As described in Chapter 1, cells have two operating modes: mathematics mode and

memory mode. Both modes take in four 4-bit inputs and generate two 4-bit outputs.

3.1.1 Mathematics Mode

True element-level simulation takes place for mathematics mode. The elements for

mathematics mode are wired as shown in Figure 20.

30

Figure 20. Matrix of elements in mathematics mode

The primary driver function used for simulating a basic cell uses fast computational

procedures wherever possible, such as shifting and other basic logic functions. The basic

algorithm used is as follows:

1. Bitmask off each of the 4-bit inputs – break inputs off to truth table patterns.

2. Simulate each truth table for every element. Start with Element 0 and iterate

through 15.

3. Propagate data to next stage in the array before simulation of a dependent

stage.

4. Bitmask and OR the outputs together into a single byte.

31

The important element of the above process is verifying the connections between the

elements and simulating the elements in the correct order. For example, in the figure

above, element 5 cannot be simulated until elements 1 and 2 have both finished and have

a result ready. Furthermore, because the system has to run this simulation for every cell

that has valid inputs, it is imperative that these simulations run at the highest speed

possible.

3.1.2 Memory Mode:

 Because of memory mode’s conventional behavior, it is simulated on the behavioral

level. In other words, its function was abstracted to the cell level. The truth tables were

expanded into a single 64-entry truth table that can take a byte of data for each entry.

The layout of a memory cell is shown in Figure 21.

Figure 21. Matrix of elements in memory mode

32

3.2 System Level Simulation

 There are several stages to simulating a full system design. The system level

simulator works as a large state machine that calls upon the cell-level simulator object.

The basic stages to simulation are described in Figure 22.

High Level View of Simulation
 1. Initialization

a. Allocate cell output pipeline latches
b. Transfer memory mode data into latches
c. Set up initial data input feed

2. Simulation (NS = Next State; PS = Prev. State)
a. MemCell(NS) = MemCell(PS + Input Logic)
b. MathCell(NS) = MathCell(PS + Input Logic)

i. References to design structure for truth tables
ii. Math cell emulation performed

3. Propagation
a. Trace output to destination
b. Translate output wire to input wire
c. Copy data to input latch of next logic/control element
d. Global network latch propagation

As each output is propagated, the IsDefined is propagated
along with the data.

Figure 22. Simulation procedures

Stage 1 is performed at the beginning of every cycle to set up all of the necessary data

structures for the current simulation. This step includes mid-simulation re-programming

that may need to be done on the fly. Stage 2 is performed almost entirely at the cell

simulator level. Stage 3 is done in conjunction with the Trace support structure. Once

the simulated data is obtained, its trace can be called to instantly transport that data to its

destination spot in memory for the next cycle.

3.3 Pipeline Latches

 In a pipelined architecture such as the HiPerCopS architectures, it is imperative that

data be synchronized at certain stages within a DSP operation. To satisfy this

33

requirement, all cell outputs have an outgoing latch which can be used to delay a 4-bit

result for up to 3 cycles. Every latch that is allocated on a cell output requires memory to

be allocated for it. The simulator mimics the hardware with respect to the timing of clock

cycles when dealing with these latches.

3.4 Behavioral Simulation

 If the logic of a particular block of cells can be abstracted to a given math function, the

simulation could be performed on the behavioral level. Currently, this ability is not

available in the CAD tools, but the interfaces currently exist to allow for this feature to be

added. For example, if a block of cells behaved like a multiplier and had a known

propagation delay, the simulator could be programmed to simulate the block of cells

behaviorally. This abstraction would greatly speed up the simulation process.

34

CHAPTER 4

Software Support Structures

 The software support structures are necessary features that assist in the software’s

necessary functions. These structures interface with both the back end and the front end

to add required functionality to the tools.

4.1 Back End

 Developing the CAD tools to map designs onto the reconfigurable architecture created

a need for various other support structures within the software. These structures help

expedite simulations, keep the code clean, and add higher-level functionality for the user.

There are two main support structures within the CAD tools: Traces and Part Libraries.

The first, Traces, tracks every user action into a history, which can be used for wire

deletion and other undo functionality. The second, Part Libraries, provides a way to

program one cell and apply that programming to other cells within the array, creating the

concept of “parts” within the CAD tools. The part library provides a basic structure that

can be programmed by the user and stored for later use.

4.1.1 Traces

 Taking cues from other design tools, we added a history feature to the software. This

history serves several purposes: allowing users to undo their actions, abstracting the

routing between cells to a higher level, and increasing the performance of the simulator.

The Trace class encapsulates a linked list that tracks every action that the user has taken

35

during the mapping process. These actions are also serialized and saved into the files for

permanent storage along with the actual design, so that a user can load the history and

design together from file. Each action is recorded in the history log as it occurs, so the

most recent events appear at the bottom while the earliest events occur at the top. A

screenshot of the History window is shown in Figure 23.

Figure 23. History window

The history itself is composed of a list of Trace objects. Figure 24 shows a graphical

representation of how the history is managed:

36

History
Node

Figure 24. Example of history, traces, and trace nodes

 Notice that traces always end on a data latch. Thus, the simulator can simply skip to

the end of a trace to propagate the data from source to destination. This optimization

greatly accelerates the performance of the simulator. In the Manhattan architecture, a

trace could jump across three connections before reaching its final destination, as shown

in Figure 25. Hence, the simulator would have to perform a series of table lookups to

Trace 1 Trace 1 Trace 1 Trace 1 …

Trace Node
Connect

Cell Output ‘A’
Cell 3,2

To
Switch 2,2

From Wire 6
To Wire 6

Trace Node
Connect

Switch 3,2
To

GSwitch 0,1,1
From Wire 6

To Wire 0

37

translate the wire position to the next component—two translations per cell and one per

switch. These actions are recorded within the Trace object.

Cell Local
Switch A

Cell Local
Switch B

Figure 25. Worst-case connection in the Manhattan architecture

In the Washington architecture, the implementation of traces has less value, because

the simulator can compute the destination with only three table lookups for a cell-to-cell

connection. However, because the new architecture was based off of the old architecture,

much of the code base was inherited by the new architecture. The ability to delete wires

easily was required in both architectures regardless of simulation needs.

 The downside to using these traces are memory usage and navigating through the

traces when there are dense sets of wires existing on the schematic. For future work and

expediting the implementation of traces, it would be good to add a reference to the trace

from within the originating component (cell or global switch). This would greatly speed

up the performance over the current model, which uses one master history list.

The Trace class has become a very important class within the designs of both

architectures. It allows the easy movement across a wire from beginning to end and

keeps a record of everything done on the wire. The delete and undo features find their

38

roots through the traces. It proved so useful that it was used in the early version of the

simulator for tracing outputs to their destination latch.

4.1.2 Part Libraries

The part window is familiar for any CAD tool users as it provides the elemental

components with which to build a system. Similarly, the HiPerCopS CAD tools have

such a window for the storage of the cell configurations. A screenshot of the window is

shown in Figure 26. The cell configurations are stored in a linked list that record

complete cell configurations down to the element lookup tables. The configurations are

then programmed into cells on the array, which effectively copies the configuration onto

that cell. Because of this copy relationship, the cell can be further modified after

programming (to add extra pipeline latches, for example) without affecting other cells of

the same type.

Figure 26. Screenshot of Part Library

39

Future versions of the software should support parts at a much larger scale. Currently,

one can build pieces of a multiplier or pieces of any generic part. Eventually, the

software should also allow for the design of parts incorporating a set of cells. In this

way, a designer could place an entire multiplier and all the routing and element

programming would be complete. This functionality could also be extended to

simulations, as a part such as a multiplier could have a simulation behavior associated

with it to speed up simulation. The primary concern with this upgrade is the positioning

of the global network with respect to the parts, and defining the part inputs and outputs.

Furthermore, if the part is modified in any way after placement, all expedited simulation

models would have to be discarded.

4.2 Front End

 This section is dedicated to the user interfaces developed for the HiPerCopS CAD

tools.

4.2.1 Rendering Engines

 The basic structure for the CAD tools is shown in Figure 27. Though each version of

the CAD tools uses a completely different rendering method, the basic responsibility for

the engine is the same for each version. The rendering engine is responsible for

displaying the routing data stored in the instantiated cell array object in an informative

and usable fashion. It is important to balance all of the following performance aspects in

the rendering engine:

• Render Speed: The rate at which the rendering engine can respond to user input.

40

• Visual Comprehension: The interface must make intuitive sense and not be over-

cluttered. It must also display all information about the design of the cell array.

• Usability: The interface must provide efficient entry points and use case

scenarios for the design of the system.

Back-End
Engine

Instantiation
of Cell Array
in Memory

Figure 27. Diagram of system interfaces

4.2.1.1 Shift Array Rendering Engine

 The first rendering engine used in the CAD tools was built from an array of compiled

User Controls. This was done for the sake of rapid development and for code re-

usability. The Manhattan architecture’s local network editor is the only rendering engine

that uses this method. It provides the fastest redraw speeds because the operating system

optimizes its graphics draw routines on the user controls, however, this rendering engine

provides the least in terms of flexibility. This is because every user control is responsible

Global Network
Editor

File
Storage
on Hard

Disk

File
handling
routines

Routing
Interface

UI

Rendering Engine
 Wire

Rendering

Wire
Connection

Part
Library

Part
Library Routing

Tables Interface

Local Network
Editor

Element
Editor

Cell/Switch
Routing

Cell and
Switch

Rendering

Simulation
Rendering

Layer
Engine

Rendering

41

for its own drawn area. It becomes very difficult to overlay images that traverse across a

portion of a user control. Drawing an image across several user controls presents a large

processor heavy challenge.

4.2.1.2 Basic GDI+ Global Rendering Engine

 After the development of the Shift Array Rendering Engine, a better engine was

developed to handle the cases where wires would need to be drawn over top of current

cells and routing wires. This rendering engine was developed using the basic features of

GDI+ and ran through the cell array instantiation drawing everything onto a back buffer,

which was then flashed to screen. This proved to be a much slower rendering agent, but

a lot more flexible.

4.2.1.3 Washington Rendering Engine

 Finally, when the development of the Washington Architecture was chartered, a final

rendering engine was developed. Based off of some of the principles used in the Basic

GDI+ engine, this much more object-oriented engine also incorporated features such as

matrix transformations and layered architecture. Matrix transformations allow for the

array view to be resized on demand, while the layered architecture views the drawing as a

series of drawings put on top of one another. These offer additional flexibility and assist

in the design-making process. Unfortunately, this is currently the slowest rendering

engine as it has a lot of drawing overhead. Future work could look at ways to optimize

this engine to increase its performance.

42

4.2.2 Software Differences

 There are several areas in which HiPerCopS Washington differs from HiPerCopS.

First, the new interconnection network incorporates an additional layer of global

switches, since the local switches are effectively removed. This extra layer causes an

extra 2-cycle delay for all communication through the global network. It also effectively

doubles the bandwidth of the global network, allowing for much more complex designs.

Furthermore, the switching mechanisms in the newer architecture are more complex, and

incur additional delay versus the same switches in the older architecture. However, the

absence of the local switches reduces the overall complexity of the system.

 Migrating the software to the newer platform highlighted all of these differences.

First, the local switches had to be removed from the local network. A change this drastic

warranted a re-design of the graphics engine driving the CAD tools. Instead of using an

array of dynamically updating user-controls, a blank draw surface was used. To display a

design on the screen for the new layout, the CAD tools draw the representation in layers

on a back buffer which is then sent through a transformation matrix before being flushed

to the screen. This also creates a flicker-free double buffered environment similar to the

environment used in the old architecture.

43

CHAPTER 5

Performance Analysis

5.1 Layout of DSP on Cell Array

 With all the foundation built and the CAD tools operational, we implemented several

DSP benchmarks on the HiPerCopS Washington and HiPerCopS Manhattan

architectures. These benchmarks included a 12-tap Finite Impulse Response (FIR) filter

and a 256-point Fast Fourier Transform (FFT). Each algorithm was designed from the

modular level down to the individual elements.

5.1.1 Twelve Tap FIR Filter

 The first DSP algorithm we implemented was a FIR filter, which appears in Figure 28.

As can be seen in the diagram, the filter is comprised of multipliers and adders operating

in parallel. A diagram showing a suitable layout for the HiPerCopS CAD Tools is shown

in Figure 29.

Figure 28. Diagram of FIR filter [10]

44

Figure 29. Modular implementation of FIR Filter [10]

 To create a higher-order filter, one could simply add more modules. The pipelined

architecture of the design will also produce outputs in the same order that the inputs are

fed. Finally, extra pipeline latches within the design allow for time synchronization on

all of the outputs. A sample local network view of the whole FIR Filter as built in the

HiPerCopS Washington architecture appears in Figure 30. A standalone 3-Coefficient

Module also appears in Figure 31.

45

Figure 30. Screenshot of Local Network of FIR Filter Implementation

46

Figure 31. Screenshot of Local Network of a 3-Coefficient Module for FIR Filter Implementation

5.1.2 256 Point FFT

 The second benchmark algorithm that we implemented was a 256 Point FFT, which

appears in Figure 32.

47

Figure 32. Diagram of FFT [10]

 This algorithm is more complex and more diverse in its layout as it uses cells in

memory mode. The FFT demonstrates the implementation of several major structures,

such as a multiplier, subtractor, adder, and its memory core. It also heavily uses the

global interconnect, as many busses have to be transported across the array. In fact, the

design led to the development of the Washington architecture, which doubles the capacity

of the global network. The FFT was implemented onto the array of cell as shown in

Figure 33.

48

Figure 33. Implementation of FFT

 After simulation, we discovered that our architecture has a latency of 57 cycles

between the two memory units. Each processing stage handles 128 pairs of samples, for

a total of 185 cycles. Taking the runtime reconfiguration, the FFT requires 1560 cycles,

or 6.24 micro-seconds. This execution time is greater than other implementations as

shown in Table 13, but these other approaches use a more sophisticated radix-4 technique

to reduce the number of computations required. We estimate that a radix-4 FFT would

require four times the area but lower the execution time to less than 2 micro-seconds [10].

49

Table 13. Execution Time of 256-Point FFT

5.2 Software Performance

5.2.1 Memory Usage

 Memory usage is always a critical statistic when setting software requirements.

Basically, the CAD tools allocate a base set of memory for the engine and underlying

design data structure, which varies between the Washington and Manhattan architectures.

Either way, this memory usage does not change very much and stays at a reasonable

value. What is a much greater consideration to memory is the simulation results. Every

cycle of simulation requires a large amount of memory from the system resources. The

base memory required for simulating a single cycle at debug runtime is 696 KB. This

value does not include cells in memory mode or pipeline latches. An additional 66 bytes

should be added for every memory mode cell and additional 2 bytes for every additional

pipeline latch. Extending these numbers off to a typical system comprised of 25%

memory cells and 10% additional pipeline latching, the total memory usage per cycle is

shown in Figure 34.

696KB + 67.584KB + 1.6384KB = 765.2224KB
(System) (Memory) (Pipeline)

Figure 34. Memory usage per cycle in a normal system

50

 765 KB may not seem like a significant amount of memory. However, one must take

into consideration that to sufficiently test a DSP algorithm, hundreds to tens of thousands

of cycles must be simulated to come up with an accurate result. Simulating a thousand

cycles on this typical system and storing every bit of data for every one of those cycles

would use up 765 MB of RAM.

 Currently, the CAD tools store a complete snapshot of the entire cycle that it simulates

and stores it into an array. To improve on performance and cut down on memory usage,

one could only store data selected to watch. This would force the user to select certain

wires that they would want to monitor over the course of the simulation. Each wire

would only be on the order of 4 bits, so a selection of 20 wires would only cost the user a

total of 10 bytes of memory per cycle. The downside to using a watch feature as

described is that if the user wanted to “watch” any other wire that they hadn’t selected,

the simulation would have to be redone in its entirety.

5.2.2 Simulation Performance

 It is difficult to derive a metric for simulation performance as every design will

produce a different simulation behavior and timing scheme. Not only do different

designs produce different simulation speeds, but simulation speeds vary at every cycle

due to the optimizations programmed into the simulator. In particular, the simulator uses

the IsDefined bitmap associated with cell latches to bypass simulation if one of the

necessary inputs is undefined. Because large portions of the array may not be used

during the first few cycles of the simulation, there is no need to simulate garbage data in

these unused portions. Furthermore, to expedite memory mode cells, a separate part of

the simulator was developed just for the simulation and update of the memory tables. All

51

memory cells are thrown into a list at the beginning of a simulation cycle. During

simulation, the simulator runs through the list and updates the memory values for all the

memory cells in one quick traversal.

52

CHAPTER 6

Comparison of Architectures

6.1 Manhattan Architecture

 The Manhattan architecture has provided a solid basis for testing design principles and

routing mechanisms. From an architectural standpoint, the Manhattan architecture’s

primary limitation was found to be its global network. Extremely complex designs

requiring a lot of dense routing cannot be built easily on such an architecture. However,

this model does provide the benefit of fast propagation across the array of cells.

 Looking at the basic local network model, the cells transfer data through local

switches which does not exist in the Washington architecture. One of the factors taken

into account for determining the minimum clock cycle period in the Manhattan

architecture is the worst-case delay between latches in the architecture. Because of the

presence of the local network, the worst-case delay scenario, shown in Figure 35, has

four traversals to complete during a single clock cycle. The output signal must propagate

through the output switch of the source cell, two local switches, and the input switch of

the destination cell. This means that each of the four switches must have an average

propagation delay of 1 ns to provide a clock rate of 250 MHz.

53

Figure 35. Worst-case delay scenario for Manhattan architecture

 From a software standpoint, the implementation of the Manhattan architecture was far

more complex than that of the Washington architecture. The need for a local network

created the need for many different routing routines and tables that were not needed in

the other alternative. However, because the local network was not latched with the clock,

the simulator was not affected by the presence of the local network.

6.2 Washington Architecture

 The Washington architecture has several advantages over the Manhattan architecture

as it offers more routing features. In particular, one more layer was added to the global

network and the local network was removed. This effectively doubled the available lines

in the global network. To account for the loss of the local network switches, four

additional routes were added to allow “diagonal” routing between cells. Furthermore, the

cells are connected directly to the global network. This impacts the design because the

input/output switches of the cells are two times larger than their equivalent switches

found in the Manhattan architecture. For example, the input/output switch for a

54

Manhattan Cell is show in Figure 36. The equivalent input switch for a Washington

architecture cell is shown in Figure 37.

Figure 36. Internal switch used in Manhattan architecture

55

Figure 37. Internal switch used in Washington architecture

56

CHAPTER 7

Conclusion

 This thesis has presented CAD tools for the design of DSP on the HiPerCopS two-

level reconfigurable architecture. A robust simulator for both the Manhattan and

Washington architecture were built and tested. The designs in software allow for

optimizations in design and create a viable workspace for synthesizing DSP algorithms.

Furthermore, the simulations provide sufficient information to qualify benchmarks and

give a reasonable idea as to the performance of the hardware at clock-level granularity.

7.1 Contributions

 Several full-featured systems were built during the course of this research to support

the reconfigurable architectures tested:

• Developed flexible mapping tool designer. A novel CAD tool was developed

for both the Manhattan and Washington architectures. This tool allows for

schematics to be designed in a 64x64 reconfigurable cell array. The software

structure is flexible enough to allow for new architectures to be implemented

in the future.

• Developed a reconfigurable array simulator. The simulator works with the

designer to test and verify designs made in the software. The simulator takes a

state-based approach to the models and runs each simulation as it should occur

in hardware. Useful data and metrics, such as the execution time, can be

obtained from the simulator.

57

• Mapped and simulated two benchmarks. We verified the software’s

functionality by successfully implementing an FIR filter and an FFT in the

CAD tools. Each algorithm was mapped onto the cell array and then

simulated. Each of these benchmarks was verified by successfully running

actual data through the array of programmed cells and viewing the results.

• Proposed a new interconnection structure to improve performance. After

viewing the results of the Manhattan architecture, the Washington interconnect

structure was developed. This alternative improves upon performance and has

significantly improved bus capabilities. The software tools were migrated to

support this new architecture as well.

7.2 Future Work

Further research on the development of the CAD tools will focus on several areas:

• Hardware Assisted Rendering. Currently the graphics engine for the CAD tools

is done without any hardware support, which can lead to slow draw times when

displaying the whole cell array. Implementing draw routines by utilizing a

hardware graphics card will greatly improve performance.

• Auto Place and Route. Another useful feature that we are looking to implement

in future version is automated routing. Extending this feature further, we are

looking to develop a format for downloading designs into hardware.

• Component Level Design. Extending the part library to be able to design whole

multipliers, adders, and other parts is a pivotal feature for future development. A

set of standard parts could be built and distributed with the software so that

designers could design with an object oriented approach.

58

• DSP Mapping Translation: Perhaps the most complex feature that we are looking

to develop is a script translator. The ability for a designer to simply write a script

that will automatically program the cell array with the correct DSP would be very

valuable.

59

References

[1] R. Hartenstein, “Coarse grain reconfigurable architectures,” in Proc. 6th Asia South

Pacific Design Automation Conference, Yokohama, Japan, pp. 564-570, 2001.

[2] C. Ebeling, D. Cronquist, P. Franklin, and C. Fisher, “RaPiD—a configurable

computing architecture for compute-intensive applications,” University of

Washington Department of Computer Science & Engineering Tech Report TR-96-

11-03, Nov. 1996.

[3] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, “Using the KressArray

for reconfigurable computing,” Proc. SPIE, vol. 3526, pp. 150-161, Oct. 1998.

[4] H. Zhang et al, “A 1-V heterogeneous reconfigurable DSP IC for wireless baseband

digital signal processing,” IEEE J. Solid-State Circuits, vol. 35, iss. 11, pp. 1697-

1704, Feb. 2000.

[5] P. Heysters and G. Smit, “Mapping of DSP algorithms on the MONTIUM

architecture,” in Proc. International Parallel and Distributed Processing

Symposium, pp. 180-185, Apr. 2003.

[6] M. Myjak, “A two-level reconfigurable cell array for digital signal processing,”

M.S. thesis, Washington State University, May 2004.

[7] M. Myjak, F. Anderson, and J. Delgado-Frias, “H-tree interconnection structure for

reconfigurable DSP hardware,” in Proc. 2004 International Conference on

Engineering of Reconfigurable Systems and Algorithms, Las Vegas, NV, pp. 170-

176, Jun. 2004.

60

[8] M. Myjak and J. Delgado-Frias, “A two-level reconfigurable architecture for digital

signal processing,” in Proc. 2003 International Conference on VLSI, Las Vegas,

NV, pp. 21-27, Jun 2003.

 [9] M. Myjak and J. Delgado-Frias, “Superpipelined reconfigurable hardware for

DSP,” IEEE International Symposium on Circuits and Systems, May 2006,

submitted.

[10] J. Larson, M. Myjak, and J. Delgado-Frias, “Mapping and performance of DSP

benchmarks on a medium-grain reconfigurable architecture,” IEEE International

Symposium on Circuits and Systems, May 2006, submitted.

61

62

Appendix B: Washington Cell to Cell
Connection Source Code

/// Subroutines for the new architecture
/// </summary>
/// <param name="srccellx">Source Cell X Coordinate</param>
/// <param name="srccelly">Source Cell Y Coordinate</param>
/// <param name="destcellxpos">Destination Cell X Coordinate</param>
/// <param name="destcellypos">Destination Cell Y Coordinate</param>
/// <param name="CellOutput">Source Cell Ouput Line</param>
/// <returns>(ushort)0x0 if success</returns>

 //Subroutine used to connect a cell to a cell
 public ushort ConnectCellToCell(int srccellx, int srccelly, int
destcellx, int destcelly, WireToCell CellOutput, WireToCellInput CellInput)
 {
 int CellWire, availWire;

 //To supress compiler concerns
 availWire = 0xffff;

 //8 directions that we can be wiring to
 //Handle the primary 4 to start with
 //Check Horizontal
 if(srccellx == destcellx)
 {
 //Check vertical
 if(srccelly == destcelly+1)
 {
 //Connecting Upwards

 //Get an available wire
 availWire = CheckAvailInputs(destcellx, destcelly, 4, 5);
 }
 else if(srccelly == destcelly-1)
 {
 //Connecting Downwards
 //Get an available wire
 availWire = CheckAvailInputs(destcellx, destcelly, 0, 1);
 }

 }
 //Check vertical
 else if(srccelly == destcelly)
 {
 //Check vertical
 if(srccellx == destcellx+1)
 {
 //Connecting Left
 //Get an available wire
 availWire = CheckAvailInputs(destcellx, destcelly, 2, 3);
 }
 else if(srccellx == destcellx-1)

63

 {
 //Connecting Right
 //Get an available wire
 availWire = CheckAvailInputs(destcellx, destcelly, 6, 7);
 }
 }
 //Check diagonal
 if(srccellx == destcellx-1 && srccelly == destcelly-1)
 {
 //Connecting to lower right

 //Get an available wire
 availWire = CheckAvailInputs(destcellx, destcelly, 8, 8);
 }
 else if(srccellx == destcellx+1 && srccelly == destcelly-1)
 {
 //Connecting to lower left

 //Get an available wire
 availWire = CheckAvailInputs(destcellx, destcelly, 9, 9);
 }
 else if(srccellx == destcellx-1 && srccelly == destcelly+1)
 {
 //Connecting to upper right

 //Get an available wire
 availWire = CheckAvailInputs(destcellx, destcelly, 11, 11);
 }
 else if(srccellx == destcellx+1 && srccelly == destcelly+1)
 {
 //Connecting to upper left

 //Get an available wire
 availWire = CheckAvailInputs(destcellx, destcelly, 10, 10);
 }
 //Actually make the connection now
 //Make sure we had a wire available
 if(availWire==0xFFFF)
 {
 //CheckAvailWires() failed. Exit out with an error.
 return 0xFFFF;
 }

 //If we get here, we change the cell's bitmap by
 //1) Adding a cell output
 //2) Adding a cell input
 //3) Adding the trace to the history

 CellWire=TranslateCellInputToCellOutput(availWire);

 //1) Connect the output line
 //Activate the output line and
 this.cell[srccellx, srccelly].OutRouteTable[(int)CellOutput] |=
 (uint)(0x80000000 | (0x1 << CellWire));
 //2) Connect the input line
 this.cell[destcellx, destcelly].InRouteTable[availWire] =
 (uint)(0x80000000 | (0x1 << (int)CellInput));

64

 //3) Finally add the wire traces
 //Start trace from cell
 Trace.CreateTrace(srccellx, srccelly, (int)CellOutput, (uint)(0x1 <<
 CellWire));
 //End trace from cell
 Trace.EndTrace(destcellx, destcelly, availWire, (uint)(0x1 <<
 (int)CellInput));

 //Write the trace out
 return (ushort)0x0;
 }

65

Appendix C: Manhattan Cell to Cell
Connection Source Code

//Subroutine used to connect a cell to a switch

 public ushort ConnectCellToSwitch(int cellxpos, int cellypos, int
switchxpos, int switchypos, DrawModeStatus.SOrientation SType, ushort
WirePosition, WireToCell CellOutput)
 {
 //Input Parameters
 //cellxpos = Cell's X coordinate
 //cellypos = Cell's Y coordinate
 //switchxpos = Switch's X coordinate
 //switchypos = Switch's Y coordinate
 //Type = Switch's orientation {Horizontal | Vertical}
 //WirePosition = The position of the last wire connected
 //CellOutput = The output line of the processing core of the cell that
 we will be updating

 bool CellIsOnRightAbove;
 int WireNum;
 ushort CellWire, scratch, availWire;
 /*
 * Return Codes:
 * !0 - Success - Returns the SWITCH's last connected input/output
 * -1 - Insufficient wires
 * */

 //Is the Cell on the Right | Above the switch?
 CellIsOnRightAbove=(cellxpos != switchxpos || cellypos !=switchypos);

 //Get an available wire for the switch
 //availWire contains a bitmap which maps out a single bit and returns
 the wire number to use
 //availWire returns the wire open from the SWITCH's point of view
 availWire=AllocateSwitchWire(switchxpos, switchypos,
 CellIsOnRightAbove, SType);

 //Make sure we had a wire available
 if(availWire==0xFFFF)
 {
 //AllocateSwitchWire() failed. Exit out.
 return 0xFFFF;
 }

 //If we get here, we change the cell's bitmap by
 //1) Adding a cell output
 //2) Cleaning up the unconnected wire bitmap on the switch after we
 are done
 //3) Adding the wire to the switch that is being connected

 CellWire=TranslateSwitchToCell(availWire, SType);

 //Connect the Wire to the processor core
 //Activate the line by OR'ing in a 0x80000000 with the wire position

66

 //Map to the CellWire that we get after translating the switch's wires
 //The bits that we are OR'ing into the OutRouteTable
 this.cell[cellxpos,cellypos].OutRouteTable[(int)CellOutput]=
 (uint)(this.cell[cellxpos,cellypos].
 OutRouteTable[(int)CellOutput] |
 (uint)(0x80000000) | CellWire);

 WireNum = TranslateBitmapToInt(availWire);
 if(WireNum==-1)
 {
 //Sent an invalid bitmap in
 return 0xFFFF;
 }

 //Change the Switch's input lines to connect this line
 //1. Activate the line 0x8000
 //2. Connect it to the Previous wire we used if there was one

 if(SType==DrawModeStatus.SOrientation.Horiz)
 {
 this.switches[switchxpos, switchypos].LocalBitmap[WireNum] =
 ((ushort)(0x8000 | WirePosition));
 }
 else
 {
 this.vswitches[switchxpos, switchypos].LocalBitmap[WireNum] =
 ((ushort)(0x8000 | WirePosition));
 }
 //Clear the Switch's last unconnected bit
 //Create an inverted bitmap with the position we need to turn off set
 to 0
 //WirePosition will be zero if we drawing in the forward direction
 (which doesn't need any wire cleanup)

 scratch = (ushort)(WirePosition ^ 0xFFFF);
 if(SType==DrawModeStatus.SOrientation.Horiz)
 {
 //And the bitmap into the UnMapped Outputs to clear the bit if it
 was set
 this.switches[switchxpos, switchypos].UnmappedBitmap =

((ushort)(scratch & this.switches[switchxpos,
switchypos].UnmappedBitmap));

 }
 else
 {
 //And the bitmap into the UnMapped Outputs to clear the bit if it
 was set
 this.vswitches[switchxpos, switchypos].UnmappedBitmap =

((ushort)(scratch & this.vswitches[switchxpos,
switchypos].UnmappedBitmap));

 }

 //We are starting a new wire. Create a new trace
 Trace.CreateTrace(cellxpos, cellypos, (int) CellOutput,
 (uint)CellWire);
 //Add the switch to the trace

67

 Trace.AppendTrace(switchxpos, switchypos, WireNum,
 (ushort)(WirePosition), SType);

 //Return the wire number that we just wired up
 return availWire;
 }

68

Appendix D: Math Cell Simulation Source
Code

public uint SimulateMathCell(uint Inputs, HiperCopsControls.Cell clInput)
 {
 //This function takes 16 bits of inputs (4 - 4 bit inputs) and outputs
2 - 4 bit outputs
 uint scratch, temp, test, y, z, a, b, c, d, ain, bin, cin, din, TTIn,
ret;

 uint[] outputy = new uint[16];
 uint[] outputz = new uint[16];

 //Run through in math mode
 ain=bin=cin=din=a=b=c=d=y=z=TTIn=0;
 //uint "Input" format
 //-------------------
 // D C B A
 //0000|0000|0000|0000
 //(MSB) (LSB)
 //^ ^
 //D[3] B[0]

 //Start with Element 0's Truth table
 //First calculate output on Y

 //Element Layout
 //
 //| 0| 1| 2| 3|
 //| 4| 5| 6| 7|
 //| 8| 9|10|11|
 //|12|13|14|15|
 //

 //Input Map:
 //A - Bits 15-12
 //B - Bits 11-8
 //C - Bits 7-4
 //D - Bits 3-0

 //Mask out a[0], b[0], c[0], d[0]
 a=this.GetA(Inputs);
 b=this.GetB(Inputs);
 c=this.GetC(Inputs);
 d=this.GetD(Inputs);

 //Run through the truth table
 //D is MSB, A is LSB in truth table
 //Ordering of final 4 bits fed to element:
 //D C B A
 #region 1stRow
 #region Element0
 //Now resolve Element 0's Truth Table
 TTIn = LoadTTIn(a, b, c, d, 0, 0, 0, 0);

69

 //Get the results
 outputz[0] = FindZ(clInput.cellelements[0].TTable, TTIn);
 outputy[0] = FindY(clInput.cellelements[0].TTable, TTIn);
 #endregion
 #region Element1
 //Now resolve Element 1's Truth Table
 TTIn = LoadTTIn(a, b, c, d, 1, 0, 1, 1);
 //Get the results
 outputz[1] = FindZ(clInput.cellelements[1].TTable, TTIn);
 outputy[1] = FindY(clInput.cellelements[1].TTable, TTIn);
 #endregion
 #region Element2
 //Now resolve Element 2's Truth Table
 TTIn = LoadTTIn(a, b, c, d, 2, 0, 2, 2);
 //Get the results
 outputz[2] = FindZ(clInput.cellelements[2].TTable, TTIn);
 outputy[2] = FindY(clInput.cellelements[2].TTable, TTIn);
 #endregion
 #region Element3
 //Element 3 (upper left)

 //Load up TTIn selection a[3], b[3], c[3], d[3]
 TTIn = LoadTTIn(a, b, c, d, 3, 0, 3, 3);

 //At this point, TTIn contains the value to lookup in the truth table
 //Select the bit of the truth table to select
 //Load up Output Z first
 outputz[3] = FindZ(clInput.cellelements[3].TTable, TTIn);
 outputy[3] = FindY(clInput.cellelements[3].TTable, TTIn);
 #endregion
 #endregion

 #region 2ndRow
 #region Element4
 //Now resolve Element 2's Truth Table
 TTIn = LoadTTIn(a, b, 0, 0, 0, 1, 0, 0);
 //Load the two incoming dependent wires
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[0] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputy[1] << 3);
 //Get the results
 outputz[4] = FindZ(clInput.cellelements[4].TTable, TTIn);
 outputy[4] = FindY(clInput.cellelements[4].TTable, TTIn);
 #endregion
 #region Element5
 //Now resolve Element 2's Truth Table
 TTIn = LoadTTIn(a, b, 0, 0, 1, 1, 0, 0);
 //Load the two incoming dependent wires
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[1] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputy[2] << 3);
 //Get the results
 outputz[5] = FindZ(clInput.cellelements[5].TTable, TTIn);
 outputy[5] = FindY(clInput.cellelements[5].TTable, TTIn);

70

 #endregion
 #region Element6
 //Now resolve Element 1's Truth Table
 TTIn = LoadTTIn(a, b, 0, 0, 2, 1, 0, 0);
 //Load the two incoming dependent wires
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[2] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputy[3] << 3);
 //Get the results
 outputz[6] = FindZ(clInput.cellelements[6].TTable, TTIn);
 outputy[6] = FindY(clInput.cellelements[6].TTable, TTIn);
 #endregion
 #region Element7
 //Element 0 (upper left)

 //Load up TTIn selection a[3], b[2]
 TTIn = LoadTTIn(a, b, 0, 0, 3, 1, 0, 0);
 //Work here!
 TTIn = TTIn | (outputz[6] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[3] << 3);
 //At this point, TTIn contains the value to lookup in the truth table
 //Select the bit of the truth table to select
 //Load up Output Z first
 outputz[7] = FindZ(clInput.cellelements[7].TTable, TTIn);
 outputy[7] = FindY(clInput.cellelements[7].TTable, TTIn);
 #endregion
 #endregion

 #region 3rdRow
 #region Element8
 //Now resolve Element 2's Truth Table
 TTIn = LoadTTIn(a, b, 0, 0, 0, 2, 0, 0);
 //Load the two incoming dependent wires
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[4] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputy[5] << 3);
 //Get the results
 outputz[8] = FindZ(clInput.cellelements[8].TTable, TTIn);
 outputy[8] = FindY(clInput.cellelements[8].TTable, TTIn);
 #endregion
 #region Element9
 //Now resolve Element 2's Truth Table
 TTIn = LoadTTIn(a, b, 0, 0, 1, 2, 0, 0);
 //Load the two incoming dependent wires
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[5] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputy[6] << 3);
 //Get the results
 outputz[9] = FindZ(clInput.cellelements[9].TTable, TTIn);
 outputy[9] = FindY(clInput.cellelements[9].TTable, TTIn);
 #endregion
 #region Element10
 //Now resolve Element 1's Truth Table

71

 TTIn = LoadTTIn(a, b, 0, 0, 2, 2, 0, 0);
 //Load the two incoming dependent wires
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[9] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputy[7] << 3);
 //Get the results
 outputz[10] = FindZ(clInput.cellelements[10].TTable, TTIn);
 outputy[10] = FindY(clInput.cellelements[10].TTable, TTIn);
 #endregion
 #region Element11
 //Element 0 (upper left)

 //Load up TTIn selection a[3], b[2]
 TTIn = LoadTTIn(a, b, 0, 0, 3, 2, 0, 0);

 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[10] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[7] << 3);

 //At this point, TTIn contains the value to lookup in the truth table
 //Select the bit of the truth table to select
 //Load up Output Z first
 outputz[11] = FindZ(clInput.cellelements[11].TTable, TTIn);
 outputy[11] = FindY(clInput.cellelements[11].TTable, TTIn);
 #endregion
 #endregion

 #region 4thRow
 #region Element12
 //Now resolve Element 2's Truth Table
 TTIn = LoadTTIn(a, b, 0, 0, 0, 3, 0, 0);
 //Load the two incoming dependent wires
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[8] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputy[9] << 3);
 //Get the results
 outputz[12] = FindZ(clInput.cellelements[12].TTable, TTIn);
 outputy[12] = FindY(clInput.cellelements[12].TTable, TTIn);
 #endregion
 #region Element13
 //Now resolve Element 2's Truth Table
 TTIn = LoadTTIn(a, b, 0, 0, 1, 3, 0, 0);
 //Load the two incoming dependent wires
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[12] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputy[10] << 3);
 //Get the results
 outputz[13] = FindZ(clInput.cellelements[13].TTable, TTIn);
 outputy[13] = FindY(clInput.cellelements[13].TTable, TTIn);
 #endregion
 #region Element14
 //Now resolve Element 1's Truth Table

72

 TTIn = LoadTTIn(a, b, 0, 0, 2, 3, 0, 0);
 //Load the two incoming dependent wires
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[13] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputy[11] << 3);
 //Get the results
 outputz[14] = FindZ(clInput.cellelements[14].TTable, TTIn);
 outputy[14] = FindY(clInput.cellelements[14].TTable, TTIn);
 #endregion
 #region Element15
 //Element 0 (upper left)

 //Load up TTIn selection a[3], b[2]
 TTIn = LoadTTIn(a, b, 0, 0, 3, 3, 0, 0);

 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[14] << 2);
 //Shift by 2 to stick in C's spot. 3 for D.
 TTIn = TTIn | (outputz[11] << 3);

 //At this point, TTIn contains the value to lookup in the truth table
 //Select the bit of the truth table to select
 //Load up Output Z first
 outputz[15] = FindZ(clInput.cellelements[15].TTable, TTIn);
 outputy[15] = FindY(clInput.cellelements[15].TTable, TTIn);
 #endregion
 #endregion
 y = 0;
 y = y|outputy[0];
 y = y|(outputy[4]<<1);
 y = y|(outputy[8]<<2);
 y = y|(outputy[12]<<3);

 z = 0;
 z = z|outputy[13];
 z = z|(outputy[14]<<1);
 z = z|(outputy[15]<<2);
 z = z|(outputz[15]<<3);

 //Combine Y and Z into output uint. Lower 4 bits represent y. Upper
 4 bits represent z.
 ret = 0;
 ret = y;
 ret = ret | (uint)(z<<4);
 //Shift over further
 ret = ret << 24;
 //uint "Input" format
 //-------------------
 // D C B A
 //0000|0000|0000|0000
 //(MSB) (LSB)
 //This will send inputs X -> A through to the output
 ret = ret | Inputs & 0x00FFFFFF;
 //OR in the inputs
 // clInput.cellelements[0].TTable;

73

 //Upper 16 bits refer to Output Y
 //Lower 16 bits refer to Output Z
 //TTable = 0xAAA7FFFF;
 //Lowest bit of grouping refers to DCBA = 0000
 return ret;
 }

74

	1.1 Background
	1.2 Development Platform
	1.3 Outline
	2.1 Architecture
	2.1.1 Designer
	2.1.2 Impact of different architectures

	2.2 Cells
	2.2.1 Cell Routing Tables
	Table 1. Routing table entry for cell
	Table 2. Fields in routing table entry for cell

	2.2.2 Cell Mapping
	2.2.3 Cell Elements

	2.3 Global Switches
	2.3.1 Global Switch Instantiation
	Table 6: Global switches in Manhattan architecture

	2.3.2 Global Switch to Local Switch Network Locations
	2.3.3 Global Switch Routing:
	Table 7. Routing table entry for global switch
	Table 8. Fields in routing table entry for global switch
	Table 9. Data structure of global switch

	2.3.4 Simulation Design

	2.4 Local Switches (Manhattan Architecture Only)
	2.4.1 Switch Wiring
	Table 10. Routing table entry for local switch
	Table 11. Fields in routing table entry for local switch
	Table 12. Data structure for local switch

	2.4.2 Local Switch to Global Switch Mapping:
	2.4.3 Simulation Design
	3.1 Cell Level Simulation
	3.1.1 Mathematics Mode
	3.1.2 Memory Mode:

	3.2 System Level Simulation
	3.3 Pipeline Latches
	3.4 Behavioral Simulation

	4.1 Back End
	4.1.1 Traces
	4.1.2 Part Libraries

	4.2 Front End
	4.2.1 Rendering Engines
	4.2.1.1 Shift Array Rendering Engine
	4.2.1.2 Basic GDI+ Global Rendering Engine
	4.2.1.3 Washington Rendering Engine

	4.2.2 Software Differences

	5.1 Layout of DSP on Cell Array
	5.2 Software Performance
	5.2.1 Memory Usage
	5.2.2 Simulation Performance

	6.1 Manhattan Architecture
	6.2 Washington Architecture
	7.1 Contributions
	7.2 Future Work
	References

