CAD TOOL EMULATION FOR A TWO-LEVEL RECONFIGURABLE CELL

ARRAY FOR DIGITAL SIGNAL PROCESSING

By
JONATHAN KARL LARSON

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

DECEMBER 2005

© Copyright by JONATHAN KARL LARSON, 2005
All Rights Reserved

© Copyright by JONATHAN KARL LARSON, 2005
All Rights Reserved

To the Faculty of Washington State University:
The members of the Committee appointed to examine the thesis of JONATHAN

KARL LARSON find it satisfactory and recommend that it be accepted.

Chair

ACKNOWLEDGMENTS
This research was done in conjunction with the High Performance Computer Systems
(HiPerCopS) research group under the direction of Dr. José Delgado-Frias at
Washington State University. | would particularly like to thank Mitchell Myjak, who
developed the foundational designs that the CAD tools were developed for. | would also
like to thank Mitchell for all his help and support. Finally, | would like to thank Dr. José

Delgado-Frias for his guidance and support.

CAD TOOL EMULATION FOR A TWO-LEVEL RECONFIGURABLE CELL
ARRAY FOR DIGITAL SIGNAL PROCESSING
Abstract
by Jonathan Karl Larson, M.S.

Washington State University
December 2005

Chair: José Delgado-Frias

The use of reconfigurable hardware has been increasing in recent years; the need for
robust Computer Aided Design (CAD) tools has risen accordingly. For areconfigurable
system, CAD tools enable developersto create, modify, simulate, and estimate the
performance of synthesized designs. Furthermore, once adesign isrealized, the CAD
tools can be used to generate a configuration file to program the hardware.

This research deals with the design of comprehensive CAD tools for amedium-grain
reconfigurable cell array. This architecture has been developed by the High Performance
Computer Systems (HiPerCopS) research group at Washington State University to
accelerate digital signal processing (DSP). The CAD toolsinclude a full-featured
designer utility that allows users to map sophisticated DSP algorithms onto the array. A
hardware-level simulator verifies these designs and produces results for benchmarking.
Finally, an array of supporting structures, such as designer history and part libraries, are
built around the core tools to provide a full-featured user experience.

The CAD tools have been used to evaluate the reconfigurable architecture itself. The
results from the simulated benchmarks help verify the performance and functionality of

the system, and suggest potential areas for improvement. Asaresult, amore powerful

interconnection network has been designed to simplify the mapping process and to
improve performance. Thus, the CAD tools provide a powerful platform for future

research into medium-grain reconfigurable architectures.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ...ttt s ae e e n e nne e snne e i
A B ST RA CT ettt ettt b e e e e be e et e e sbe e et e e eae e enneeeneesreenneeeane v
LIST OF FIGURESottt st b e st esnn e ne e snne s IX
LIST OF TABLES. ... oottt st sne e ennas Xi
CHAPTER 1: INErOTUCTION ...ttt 1
0 = ok 10 U o SO 2
1.2 Devel Opment PLatfOrmMcoiiiieeeeee et 8
L3 OULIINE. ...t e e r b r e b 8
CHAPTER 2: CAD TOOI DESIGN....ciiiiiiiitieiesiie et sie st s see st es e e ssesneesneennens 9
2.1 ATCRITECIUNE. ...ttt n e se e 9
P I R 1 o 41 TSR 9
2.1.2 Impact of different architeCtures............ccooveeveeiicee i, 10
2.2 ClIIS ittt ettt b bR be e e nean 10
2.2.1 Cell ROULING TADIESccvecieceicteee ettt 10
A O = | Y=o o oo [T 13
2. 2.3 Cell EIOMENES.ccuiieieeiirieieinie ettt 17
2.3 GlobDal SWITCNES.......ceiiiiiieeeee e 19
2.3.1 Global SWitch INSaNti@tioN..........ccccerereieririeeeereeee e 19
2.3.2 Global Switch to Local Switch Network LOCations..........cccovvereiereriereeeneenn 20
2.3.3 Global SWItCh ROULING:........ceeiice et 21
2.3.4 SIMUIALION DESIGN.......eecveeieciecieeie ettt s re e te e sreene e 25

Vi

2.4 Local Switches (Manhattan Architecture Only)ccceeveeeenennenienee e 26

P RS Y1 (o M AV T T o SRR 26
2.4.2 Local Switch to Global Switch Mapping:........cccceeererinneenenesee e 28

2. 4.3 SIMUIALTON DESIGN....c.uiiitieieiiesieeie ettt st sre et sreesse e 29
CHAPTER 3: SIMUIGLOT DESIONeiueieieieeiie ittt st nae e 30
3.1 Cell Level SIMUIBLIONocveieiiiiieeieeeeeie e 30

3.2 System Level SIMUIBLIONccoiieiiieieee et 33

.3 PIPElINE LACNES.... et et 33

3.4 Behavioral SIMUIBLIONcoviiiiiieeeceese s 34
CHAPTER 4: Software SUPPOIt SIFUCLUIES..........coeeiieiereesieeeie et 35
4.1 BACK ENG.....ooiieiiieieeeee et 35
O T I = = TR 35
4.1.2 Part LIDrariES.ocueeeeeeeee e 39

A2 FTONE ENG ..ottt sb e 40
4.2.1 ReNENING ENQINES........coiiiiiiieiiecie st eieeee st e e ae et ae e e sneenesneenne s 40
4.2.2 SOftware DIffEIENCEScceiveeiireeee e 43
CHAPTER 5: Performance ANAlYSIS........ccceeieeieiiesieciie ettt see e 44
5.1 Layout of DSP 0N Cell AITaY........ccoiiieiieie ettt 44
511 TWelVE TaD FIR FILEN ..ot 44

5.2 Software PErfOrManCe..........c.ooiiiieiiceeeceere s 50

5. 2.1 MEMOIY USBJE.....cciiiiiiiiiieiieiesiee st e siee st e s s ssae e s s ssae s sbae s ssee s snneeennneas 50
5.2.2 Simulation PerformancCe.............coeerereineieeeseseeese et 51
CHAPTER 6: Comparison Of ArChiteCtUrES...........cccveiieieeieeie e 53

Vil

6.1 Manhattan ArChitECIUIEcoooeieeeeeeeee 53

6.2 Washington ArChItECIUNEeoui i 54
CHAPTER 7: CONCIUSION......couiiiiiiieite sttt 57
7.1 CONITDULIONS.......eeeitieieeeee ettt sttt s e r e sn e b sr e ne e e 57
T2 FULUNE WOTK ...ttt n e 58
REFEIEINCES.......eoe e 60
APPENDIX
A, SIMUIELOr DIAQIAIM....cviiiiiiiiieie ettt sttt seesreesseeeesneenrens 62
B. Washington Cell to Cell Connection Source Code.............ceveeeeeieenenienerenennenn 63
C. Manhattan Cell to Cell Connection Source Code...........c.cereeeeieeierenenenesennens 71
D. Math Cell Simulation Source COode...........curvririeiiererereseese e 74

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.

LIST OF FIGURES

Cell in MathematiCS MOTEoovieririece e 3
Cell IN MEMOIY MOUE......ccueeieiee et r e nreas 4
Structure of global NEtWOIK [9]ccovveieiieeee e 5
Screenshot of local network in Manhattan architecture..............ccoccceeveicennne 6
Screenshot of local network in Washington architecture............cccccceveevveeenen. 7
Diagram of cell showing internal SWitChes..........cccccevieierce e 11
Cell-to-switch mapping in Manhattan architecture............ccccoocevvveveceeceenee, 14
Orthogonal cell-to-cell mapping in Washington architecture.......................... 15
Diagonal cell-to-cell mapping in Washington architecture............ccccccovene... 16
Truth Table USer CONLIOlcccciiinieenisierieesie e 17
Cell DA SEIUCIUN ...ttt 19
Global Switch Positioning Overlaycccccevveieiieieece e 21
Global switch wiring (oriented in vertical plane).........cccceceveeveecieceesieceee 22
Global switch wiring (oriented in horizontal plang)..........cccccevveveeceecieceenee. 22
Interface from local switch to global switch in Manhattan architecture........ 23
Relational layout of global SWitChes............ccoccviieiicieicce e, 24
Wiring of [0Cal SWILChc.eooviieeee e 26
Code for Local Switch to Global Switch Mapping........ccccceveeveeveeseesieeeene 28
Local Switch to Global Switch Mappingccccccveveeceieevecie e, 28
Matrix of elementsin mathematicS mode............cooeovenercineneinereee 31
Matrix of elementsin Memory MOGEccocvecuereereeiee e 32
SIMUIELION PrOCEAUIES........eeceeeteeteeee e ee s e ste et e e e e e seenaeeneenns 33

Figure 23. HiStOry WINAOWcceoiiriiiiieieeienie ettt 36

Figure 24. Example of history, traces, and trace NOUES...........ccoeeeiereererresieesee e 37
Figure 25. Worst-case connection in the Manhattan architecture...............cc.cocevvriene. 38
Figure 26. Screenshot Of Part LIDIary ..o s 39
Figure 27. Diagram of SyStem interfaces........cocevieieiiereeree s 41
Figure 28. Diagram of FIR filter [10]ccoooeeiiiieiieie e 44
Figure 29. Modular implementation of FIR Filter [10]cceoeiirienieneeieeeseeieeee e 45
Figure 30. Screenshot of Local Network of FIR Filter Implementation...............cco...... 46

Figure 31. Screenshot of Local Network of a 3-Coefficient Module for FIR Filter

IMPIEMENEALTON ... et re s 47
Figure 32. Diagram Of FFT [L10] ...coooueiiieereeeseeieeie et 438
Figure 33. Implementation Of FFT........ccoo s 49
Figure 34. Memory usage per cycleinanormal SyStemccooevereveenenceneesie e 50
Figure 35. Worst-case delay scenario for Manhattan architecturecccocceevevieeneenee. 54
Figure 36. Internal switch used in Manhattan architecture.............cccocceveeveecececceceene. 55
Figure 37. Internal switch used in Washington architecture............cccccoeeveveeieneesieceenne. 56

LIST OF TABLES

Table 1. Routing table entry for Cell ..o 11
Table2. Fieldsin routing table entry for Cell.........ooooiiiiii 12
Table 3. INPUL MAPPINGeiiiiieieeie ettt se et s eesreeseesneesneeneeas 12
Table 4. Cell-to-switch mapping in Manhattan architeCture..............ccoooveeeveenenieneenens 13
Table 5. Cell-to-cell mapping in Washington architecture..............coccovvvvievenenieneennns 16
Table 6: Global switchesin Manhattan architecture...............ccooeoeieiininnnneeee 20
Table 7. Routing table entry for global SWitChcccooiiiiiiii 25
Table 8. Fieldsin routing table entry for global sSwitCh...........cocoeiiiiiiii 25
Table 9. Datastructure of global SWITCH.........coeiiiiiii s 25
Table 10. Routing table entry for local SWItCh.........ccooeeiiriiiiiiee e 27
Table 11. Fieldsin routing table entry for local SWitCh.........ccoveeiieiiiii e 27
Table 12. Data structure for 10Cal SWITCNocviiiiireere e 27
Table 13. Execution Time of 256-Point FFTccoiieiriiieseeeee e 50

Xi

Dedication

Thisthesisis dedicated to Jesus Christ, my Lord and Savior. Also | would liketo

dedicate this to my parents, who always encouraged me in everything | did.

Xii

CHAPTER 1

| ntroduction

Digital signal processing (DSP) is used in numerous digital systemstoday. Embedded
devices such as cellular phones, satellite radios, and video cards have permeated
everyday life. However, DSP places great demands on the processing power of the
underlying hardware. Astechnology continues to advance, reconfigurable hardware has
become a well-accepted option for implementing DSP. This alternative bal ances the
flexibility of a microprocessor with the performance of dedicated hardware.
Sophisticated computer aided design (CAD) tools alow developers to synthesize
algorithms onto the reconfigurabl e platform.

Traditional fine-grain devices such as field-programmable gate arrays (FPGAS) can
implement arbitrary logic equations. However, binary arithmetic such as multiplication
creates a bottleneck when mapped onto fine-grain cells. Many FPGASs have incorporated
dedicated multipliers for thisreason. On the other hand, researchers have proposed new
coarse-grain architectures that provide inherent support for DSP computations [1]. These
alternatives include the one-dimensional RaPiD array [2], the two-dimensional
KressArray [3], and the heterogeneous Pleiades [4] and MONTIUM [5] architectures that
combine both fine-grain and coarse-grain components. While coarse-grain devices offer
enhanced performance, their functionality may be limited to basic operations of a

predefined word length.

As athird aternative, medium-grain architectures attempt to balance performance and
flexibility. Each cell may only work with 4-bit or 8-bit data, so a module such as a 16-bit
multiplier would require severa cells. However, cellstypically can support awider
variety of operations. To thisend, the High Performance Computing Systems
(HiPerCopS) research group at Washington State University has developed a novel
medium-grain architecture that strives for efficient circuit-level implementation [6].

Each cell can perform mathematical functions or memory operations.

Mapping DSP onto reconfigurable hardware requires a sophisticated set of software tools.
This software may include place and route functionality, timing analysis, and circuit
simulations. Asan initial step, we have created CAD tools that allow users to map
algorithms onto the HiPerCopS architecture by hand. A hardware-level simulator
performs verification and testing of the designs. We have used the software to implement
several DSP benchmarks and evaluate the performance of the system. Based on the
results obtained from these designs, we propose to modify the interconnection network in
the HiPerCopS architecture. We have developed a second version of the CAD toolsto

allow for comparisons between the two aternatives.

1.1 Background

The HiPerCopS reconfigurable architecture integrates an array of medium-grain cells
with a pipelined interconnection network [7]. DSP algorithms are divided into modules,
such as multipliers and adders, and mapped onto blocks of cells. Each cell handles a 4-
bit operation within the module. Cells can perform mathematics functions or implement
asmall memory. The outputs of each cell are sent to the inputs of the next cell viaatwo-

tiered interconnect structure.

Conceptually, the HiPerCopS architecture contains three layers.

1. Element Layer — Each cell consists of a4x4 matrix of lookup tables, known as
elements. The matrix of elements can be configured into two structures[8]. In
mathematics mode, shown in Figure 1, each element stores alookup table for a
mathematics function. In memory mode, shown in Figure 2, the elements
collectively implement a random-access memory. More details about the design

of basic functions appear in the reference.

{13 as a1 a
vy v v ¥
ez di ¢ d» e d1 e d
Y Y v v
b — E E E E
Y l ¥ Y Vo
by —» Ee— E E E|l
Y ¥ h J s
by —» E E E El =
Y .
bo —» rt E E—E|

k
E
v
¥z

Figurel. Cell in mathematics mode

addr{3:0] Memory mode

NY

7:6] i[5:4] i[3:2] i[1:0]

=
-
I~

re[d]
we[O] ! !

i s i el
ra[1] I I I
WH[-I] — — el S—
re[Z] X
welZ] ! ! !
. :uri L3 iuri L3
By iy

q[76] q5:4] g[3:2] q1:0]

Figure2. Cell in memory mode

2. Loca Network Layer — This layer transfers data in 4-bit units between two cells
in the same module. The structure consists of a mesh of busses that connect
adjacent cells. Cellsalso contain two internal switches to connect the matrix of
elementsto the local network: one for the input side, and one for the output side.
All outputs are pipelined to maintain high throughpui.

3. Globa Network Layer — This layer connects the outputs of one module with the
inputs of the next module. The global network overlays on top of the local
network, but can transfer data quickly acrossthe entire array. The structureis
modeled after abinary tree and is described in detail in [7]. Each level of the tree
contains pipeline latches. Figure 3 showsthe lowest level of the global network

and how it interfaces with the cells.

,.i'
Cell Switch Cell
8b4
" 1t‘:}rb
Switch Switch
32b7
Cell Switch Cell
e ——

Figure 3. Structure of global network [9]

The original HiPerCopS architecture utilized a mesh of busses on the local network.
A screenshot showing this structure appearsin Figure 4. As shown, each cell has four
local switches adjacent to it. The cell uses these switches to route data to the cell on the
other side of the switch. Notice that the lowest level of the global network feeds directly

into the local network.

- - - -
El
+ + +

Local Switch \Zell

Figure4. Screenshot of local network in Manhattan ar chitecture

After mapping some DSP agorithms onto the HiPerCopS architecture, we discovered
that using a different interconnection network might improve the overall performance.
This alternative eliminates the local switches, so each cell interfaces directly with other
cells or global switches. Thelocal network also contains diagonal connections between
cellsrather than strictly horizontal and vertical lines. Figure 5 contains a screenshot

showing this structure. Due to the absence of local switches, an additional layer of the

global network is needed to interface with the cells. In effect, this doubles the bandwidth

of the global network.

Figure5. Screenshot of local network in Washington ar chitecture

In thisthesis, the original version of the reconfigurable architecture is named
HiPerCopS Manhattan (for its grid-like nature), whereas the new version is named
HiPerCopS Washington (for its diagonal routing). The Washington architecture offers
the flexibility of the Manhattan architecture, while improving upon bus capacities. Just
as the two architectures differ fundamentally on the local network, the software CAD

tools also reflect these design changes.

1.2 Development Platform

The CAD tools were developed using Microsoft Visual Studio .NET 2003. All of the
code was devel oped using the free student version of Microsoft Developer Network’s
Academic Alliance software. C# was the primary language used for the development as
it provides arapid prototyping environment. Lower-level languages were considered, but
C# offered much shorter development time. The main graphics engines within the CAD
software used GDI+, though the components could be expanded |ater to support hardware
rendering. The designs and tests were run on a 3.2-GHz P4 HT system with 2 GB of

RAM and a 320-GB performance-striped RAID rack.

1.3 Outline

The remainder of thisthesis gives an overview of the software design of the CAD
tools developed for the two HiPerCopS reconfigurable architectures. Chapter 2 covers
the basic software structures needed to map DSP algorithms. Chapter 3 describes the
basic design of the ssmulator. Chapter 4 deals with the underlying support structures for
the software. Chapter 5 looks at the performance of the CAD tools. Chapter 6 compares
HiPerCopS Manhattan with HiPerCopS Washington. Finally, Chapter 7 concludes the

thesis and looks ahead into future work.

CHAPTER 2

CAD Tool Design

2.1 Architecture

2.1.1 Designer

The primary purpose of the CAD tools centers around the ability to model the
HiPerCopS reconfigurable architectures. Using the CAD tools, developers can map DSP
algorithms onto the array of cells and ensure that these designs adhere to the applicable
constraints. Future extensions of the tools could translate the design into a configuration
file for programming the hardware. Because of this, the designer was built with the
intention of modeling the hardware as closely as possible. Thus, the designer stores the
fine-grain details of the synthesized design, such as the individual truth tables used in the
cell elements. However, the component does abstract some principles, such as switch
programming.

The abstract layout of the data structures that applies to both architectures to represent
the hardware is as follows:

e Cdl Array
e Loca Switch Array

e Global Switch Array

2.1.2 Impact of different architectures

Programming CAD tools for two different architectures that use the same basic array
of cellsalowed for the re-use of many code modules. Following the development of
HiPerCopS Washington, all of the ssmulator and most of the designer were leveraged into
ashared code base. Thiswas possible because the simulator does not actually perform

routing itself, but uses an underlying support structure that is described in Chapter 4.

2.2 Célls

The core component to both architecturesisthe cell. Internaly, the cell isresponsible
for producing the core calculations that are then propagated to other cells. Assuch, the
software model of the cell includes the following:

e Theinterface between the cell and the interconnection network
e Thelookup tablesinside each element
Each of these parts will be discussed in detail in the following sections.
2.2.1 Cell Routing Tables

Each cell contains a pair of switches that connect the matrix of elementsto the
interconnection network. Figure 6 depicts these two internal switches. The input switch
routes data from the interconnection network to the eight inputs of the matrix of
elements, which are named asfollows: a b, ¢, d, w, X, y, z. The output switch routes the
eight outputs of the matrix of elements back to the interconnection network. The
Manhattan architecture allows cells to interface with eight input lines and eight output
lines. The Washington architecture doubles this number to sixteen.

The designer represents the input and output switches with routing tables that contain

one entry per switch input. Each table entry isabitmap that specifies whether that switch

10

input connects to any one of the switch outputs. This method allows one source lineto
drive multiple destination lines. Table 1 shows the format of an entry, and Table 2

describes the fields inside the bitmap.

Cell

Matrix of Elements

Any Input Wire Any Output Wi re

Cell Input Switch Cell Output Switch

Figure 6. Diagram of cell showing internal switches

Table 1. Routingtableentry for cell

Cell Routing Table Bitmap by bit position
lADi[Do] r | rlr [l r]l rlr]r]r]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

[GlG[GlGc[ww[w[w]Y[Y]Y[Y]Y[Y]Y][Y]
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11

Table2. Fieldsin routing table entry for cell

Field

Definition

Specifies whether the input lineis active.

D1, DO

Delay bits. (Only appliesto the output routing tables.)
Specifies how many latches to send the output through.
Thisis used to create pipeline delays for data
synchronization elsewherein the array. Default of 1
delay when DO and D1 are 0. Can delay up to 3 extra
cycles.

Reserved bits not used for actual design specifications.
Can be used in the user interfaces for faster tracing, wire
coloring, or other various functions.

Only applies to the output routing tables in HiPerCopS
Washington. Denotes a connection directly to the
adjacent global switch.

Only appliesto the output routing tables in HiPerCopS
Washington. Denotes a connection in a diagonal
direction to an adjacent cell. See Figure 9 for more
details on the diagonal wiring present in the Washington
Architecture.

These bits are handled differently depending on whether
the bitmap isin an output routing table or an input
routing table.

Input routing tables: Map the incoming wire to the

processing core. Bits are mapped to the matrix of
elements as shown in Table 3

Table 3. Input mapping

Input |a|[b|cld|w|x|[y]|z]
Bt 7 6 54 3 210

Output Tables: Map the outbound processor core
outputs to the corresponding wires around the cell.

12

2.2.2 Cell Mapping

Each component of the designer—cells, local switches, and global switches—assigns
numbersto itsinput and output lines based on position. To propagate data from one
component to the next, the CAD tools must define a mapping between the numbering
schemes used by these components. This section outlines these standards.

For the Manhattan architecture, cell wires map to the local network as shown in Figure
7. Horizontally-oriented switches have a different mapping than vertically-oriented
switches (V Switches). Table 4 shows the mappings between cells and switches in tabular

form.

Table4. Cdll-to-switch mapping in Manhattan ar chitecture

Cell Switch V Switch
0 - 6
1 - 7
2 0 -
3 1 -
4 - 0
5 - 1
6 6 -
7 7 -

13

[1-A4 ") youmg

67 67
. A
L B J
7| »7 1 1 2 »[0
B w6 3 w1
Switch (x-1, v} Cell {x, ¥) Switch (x, y}
g 7 21« 0
Ble B 54 54 e 1
. A
LB]
1 i
<
o
z
B
£
=

Figure7. Cell-to-switch mapping in Manhattan architecture

For the Washington architecture, cells map directly to one another as shown in Figure 8.

and Figure 9. Extracting thisfigureinto atable yieldsthelistin Table 5.

14

Call {x, y-1)
5 4 5 4
Far
. w
2 »7 i 1 2 »[7
3 1] 3 »|G
Cell (%1, y) Cell {=, v Cell (x+1, v)
2| 7 2% 7
Il E 54 54 3 B
Y)
LB
3
Call {x, y=1)

Figure 8. Orthogonal cell-to-cell mapping in Washington ar chitecture

15

Call (x-1, y-1)

Cell {x, v

10
10

/

Ceall {x-1, y+1)

N\,

Cell (x+1, y-1)

Cell (x+1, y+1)

Figure 9. Diagonal cell-to-cell mapping in Washington ar chitecture

Table5. Cdll-to-cell mapping in Washington ar chitecture

Cdl Cdl
Output I nput
0 5
1 4
2 7
3 6
4 1
5 0
6 3
7 2

16

2.2.3 Cdl Elements

The designer must program the matrix of elementsinside each cell aswell asthe
routing around it. Because different cells may use the same configuration of elements,
the CAD toolsfeature a part library, described in Chapter 4. Each part stores a
configuration for the lookup table (LUT) inside each element. These configurations may
then be used to program cells within the array, at which point the cells will be labeled
accordingly.

In mathematics mode, the lookup table for each element is represented in memory by a
raw 32-bit bitmap. The upper 16 bitsrefer to the ‘Y’ portion of the truth table, whereas
the lower 16 bitsrefer to *Z’ portion. Thisraw bitmap is abstracted through the
ConnectionDS class and is exposed through the TruthTable user control that appearsin

the element editor. A screenshot of thisuser control is shown in Figure 10.

Out

—
=

T N T - - - - - - - - L=
L T R — R T — T = S — T — T — T — T I
L — T — T S e R — O = T — R SO O T T i ==
T T T = -
(=N E=0 E=0 B=0 E=N i=NE=N i=N E=N =N E=N =N E=N E=N B=R i=N]
cla|le|lalolalola|aole|a]e|a|lalolal|=

Figure 10. Truth Table User Control

17

In memory mode, the designer does not model each element individually, but rather
abstracts the entire matrix of elements to arandom-access memory. The memory datais
stored as metadata and has the ability to persist data across cycles of ssmulation. If acell
is configured into memory mode, that cell will contain a pointer off to the memory
segment for which it isresponsible. This solution has proved much more useful than
treating the cell as a4x4 matrix of LUTSs, and is an example of simulator behavioral
abstraction, which is discussed in Chapter 3.4.

Cell datafor simulation is stored as a collection of registers. Figure 11 shows the
basic data structure used for this purpose. CycleDatais atwo-dimensional array that
holds the current contents of the registers for each cell. The IsDefined property isa
bitmask that tells the simulator whether a specified input isvalid. The ssimulator skips
over acell unless al applicable bits are active—a feature that can be useful in debugging.
Finally, the MemData structure isalinked list of all of the memory cells.

All datain the system isinput driven. Accordingly, CycleData contains al the data
coming into the inputs of the cell for the given cycle. The cell latchesin atypical
simulation cycle will consume approximately 8 KB of memory for a 64x64 array of cells

(not accounting for memory mode cells and their metadata).

18

Class 5imSLatelyclie

Cycla

Classuint [cellxpos, cellypos]

Y

CycleData

e IsDefined

Linked List of Memaory Data

MemData

L |

{byte) xpos

.

{byte) ypos

{byte [64]) MemData

L . [io other data stroctures)

Figure11. Cell Data Structure

2.3 Global Switches

Global switches are used to connect cells that are far away from each other. Interms
of connections between lines, all global switches share a common structure. However,
switches on higher levels route datain larger word units than switches on lower levels.
Global switches only connect with other global switches or directly to cells. In fact,
given the coordinates of a cell, one can easily determine the coordinates and location of
the global switch that connectsto it. Aswith local switches, the global switches do not
perform any operation on the data other than routing. However, global switches do

contain pipeline latches between each layer.

2.3.1 Global Switch Instantiation

To support a64x64 grid of cells, the CAD tools instantiate ten layers of global
switches. The number given to each layer corresponds to the number of clock cycles that

it would take for datato travel from the global switch to the local network. Every layer

19

has two groups of eight busses connecting to the previous layer, and one group of sixteen
busses connecting to the next layer. Table 6 shows the number of global switchesin each
layer for aManhattan 64x64 grid of cells and the bus width for each. The Washington

Architecture introduces another layer of 64x32 switches beneath layer 0.

Table 6: Global switchesin Manhattan architecture

Layer Number of Global Bitson busto Bits on busto next
Switches previous layer layer
0 32x32 4 8
1 16x32 8 16
2 16x16 16 32
3 8x16 32 64
4 8x8 64 128
5 4x8 128 256
6 4x4 256 512
7 2x4 512 1024
8 2x2 1024 2056
9 1x2 2056 4096
10 1x1 4096 -

2.3.2 Global Switch to Local Switch Network L ocations

Level O global switches (which bridge between the global network and local network)
are located inside a square of local switches and cells, directly between two horizontal
local switches which have an even x coordinate. Thereisno global switch between
horizontal local switches that have an odd x coordinate. Figure 12 shows the positioning

of the global switch with respect to the local network.

20

0,0

MO
MO
o=

00 1,
2 2 Global 3
Switch

o
N o

%]

Figure 12. Global Switch Positioning Overlay

2.3.3 Global Switch Routing:

Even though the global switches differ in bus width, the number of busses on each
switch remains the same. The designer only needs to know the direction in which the
dataisrouted. The simulator uses this routing to track data through the simulation stages.
The global switch routing is represented by input-based bitmaps (similar to the internal
cell mapping and local switch routing). The input and output wiring is shown in Figure
13, Figure 14, Figure 15, and Figure 16. Note that two wire bundles will either be on the

right or left of the global switch—not both—as represented by the dotted lines.

21

Loy it

4 4 4 <

< R

< | RIS,

4 7 7 <
4

ARSI

Figure 13. Global switch wiring (oriented in vertical plane)

P AAAA

YVVY

4 7 4 7
<+«— Q 8¢
+— le——
+— l——
‘ 3 11 —
—» 0 8 —>
—» —>
_» _’
—» 3 11—

4 7 4 7

P AAAa

vYVYY

Figure 14. Global switch wiring (oriented in horizontal plane)

The positions of these wires directly correspond to the positions used with each other
and for local switches. For more information on this mapping, see Figure 17, which has

global switch to global switch mappings. To interface with the local network in the

22

Manhattan architecture, wires 0-3 or 8-11 communicate with wires GO-G3 of alocal
switch. The Washington Architecture connects the global switches directly to cells using

bits 12-15 of the cell’ sinput/output bitmap.

L ocal Switch’s Global bitmap layout

A\ AAA

VVVY

<«

Global Switch LO

AAA

>

VYVYVYY

Figure 15. Interfacefrom local switch to global switch in Manhattan ar chitecture

23

0, 0) ©,0)' (1, 0)
Leve: | Level: [+1 Level: |
1o 11 g
3 8
4 7

0,0
Levd: |
> 0 1 <
3 8
4 7
\ 4
0 3
00 4 R
Level: 1+1 7
8 11
A\ 4
0,1
Levd: |

Figure 16. Relational layout of global switches

Global switches are similar to local switches in the way their routing tables are built.
Because a switch has no processing capabilities within the software, the routing tables are
the only logic applied to the data. There are 12 routing table entries for any global
switch.

Table 7 shows the format of arouting table entry. Table 8 provides the description of

thefieldsin thisbitmap. Finally, Table 9 depicts the container holding the bitmaps.

24

Table 7. Routingtableentry for global switch

A|I/R|IRIRIRIRIR|IR|B|B|B|B|B|B|B|B
3113029 | 28|27 | 26|25 |24 |23 |22|21|20| 19|18 | 17| 16
B/ B B|/B|]O]O|l]O|J]O]|]O]O|J]O]J]O]O]O|]0O0]O
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Table 8. Fieldsin routing table entry for global switch
Fiel Definition
A Specifies whether the input lineis active.
R Reserved for future use.
@) Maps the input line to the output wire that is the same
number as the bit position of this output bit.
B Paired bit with the output bit. If flipped, transfersto
upper half of the output bus rather than the lower half.
Table 9. Data structure of global switch
Data Field Comment
Wires[0-11] 16-bit bitmap for inputs into the global switch.
Unmapped Unmapped outputs.
Type WiresLeft = 0, WiresRight = 1. Specifies whether the Right/L eft

bundle for this global switch aretoitsright or |eft.

2.3.4 Simulation Design

The simulator’ s instantiation of the global network adheres to the same principles as

the cell smulator. Wherever alatch existsin hardware, memory must be allocated in

software to mimic the hardware. For asingle cycle, this means that the single highest

level global latch in a Washington Architecture will consume 4 KB alone. Because the

Manhattan architecture uses one less layer of global switches, its highest level global

25

latch only consumes 2 KB. The global network is responsible for alarge amount of the
memory usage during ssimulation. Thisis unavoidable as the simulations mimic the
hardware s behavior. Extra caution should be used if the global network were to expand

tofit alarger sized array.

2.4 Local Switches (Manhattan Architecture Only)

HiPerCopS Manhattan uses alocal network that incorporates local switches for
routing data between neighboring cells. These switches do not perform any operation on
the data other than routing it to the correct destination. The following section specifies
how local switches are built in the designer and how they route wires from one location

to another.

2.4.1 Switch Wiring

The wiring of alocal switch isdefined as shown in Figure 17. The numbering of these

wires directly corresponds to the numbering used for cells.

Figure 17. Wiring of local switch

Local switcheswork in asimilar manner to the routing tables used in cells. However,

because a switch has no internal logic, there are only nine entries in the routing table.

26

Furthermore, the designer uses an additional bitmap to keep track of unconnected wires.
Thisis known as the Unmapped Outputs bitmap.

Table 11. Fieldsinrouting table entry for local switch Table 10 shows the routing table
entry used for wires coming into the switch. Table 11 describes the fields in this bitmap.

Finally, Table 12 shows the container data structure that holds the bitmaps.

Table 10. Routing table entry for local switch

lalr]r]r|c3[G2|[Gl]|GO] o] o] O] o]o]o] o] o]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table11. Fieldsin routing tableentry for local switch

Field Definition
a Specifies whether the input lineis active.
r Reserved for future use.
0 Maps the input line to the output wire that is the same

number as the bit position of this output bit.

GO0-G3 Specifies an output to the global switch connected to this
local switch. Not used for switches that cannot connect
to the global network.

Table 12. Data structurefor local switch

Data Field Comment

Local [0-7] 16-bit bitmap for inputs from local network.

Unmapped Unmapped outputs.

Type Horizontal =0, Vertical =1.

Global [0-3] Pointer to four bitmaps that let wires connect to the global network.

27

2.4.2 Local Switch to Global Switch M apping:

The designer must perform two types of mapping when connecting alocal switchto a
global switch. First, the software must determine which global switch is connected to the
local switch. Thisvalue can be calculated using the local switch’s coordinates (Lx, Ly)
using the algorithm in Figure 18. Second, the software must map the wire positions on

the local switch to the wire positions on the level 0 global switch. Figure 19 definesthis

mapping.
//Lx = Local Switch x coordinate
/1Ly = Local Switch x coordinate
/1@ blx = Local Switch x coordinate
/1dbly = Local Switch x coordinate
i f(Lx92!=0)
/1 No gl obal swi tches connect up to
return -1;
}
/1Find the x,y for the global swtch
d bl x = Lx/ 2;
Gbly = Ly/2;

Figure18. Codefor Local Switch to Global Switch Mapping

S S N 3

i

Figure19. Local Switch to Global Switch Mapping

28

2.4.3 Simulation Design

Though the local switches exist in hardware, the smulator effectively bypasses these
components because they contain no latches. Dataleaving acell isinstantly propagated

to its destination latch during simulation.

29

CHAPTER 3

Simulator Design

There are two major areas of simulation that take place in the HiPerCopS CAD tools.
Thefirst isthe cell-level ssmulation, which pertains to the 4x4 matrix of elements within
acell. Here, the simulator drives the inputs of the elements and computes the required
memory and mathematics functions. The second isthe system-level smulation, whichis
responsible for propagating the simulated data to appropriate registers elsewhere in the

array. The following sections cover both of these conceptsin detail.

3.1 Cdl Level Simulation

As described in Chapter 1, cells have two operating modes. mathematics mode and

memory mode. Both modes take in four 4-bit inputs and generate two 4-bit outputs.

3.1.1 Mathematics Mode

True element-level simulation takes place for mathematics mode. The elements for

mathematics mode are wired as shown in Figure 20.

30

The primary driver function used for simulating a basic cell uses fast computational

procedures wherever possible, such as shifting and other basic logic functions. The basic

da

as o > @ 2 ah ar do an o
3 2 1 0
a C
d
_I.L b -
7 6 5
z Y
[
a d d
'Jl b 1
1 LC 10 L 9 8
}/'
"Jl 1 1
15 L 14 L 13 L 12

v,

N

Z1

N

z0

bo

A

b

‘1’,1

b2

2

b3

i

Figure20. Matrix of elementsin mathematics mode

algorithm used is as follows:

1.

2.

stage.

through 15.

31

Bitmask and OR the outputs together into a single byte.

Bitmask off each of the 4-bit inputs — break inputs off to truth table patterns.

Simulate each truth table for every element. Start with Element O and iterate

Propagate data to next stage in the array before ssmulation of a dependent

The important element of the above processis verifying the connections between the
elements and simulating the elementsin the correct order. For example, in the figure
above, element 5 cannot be simulated until elements 1 and 2 have both finished and have
aresult ready. Furthermore, because the system hasto run this simulation for every cell
that has valid inputs, it is imperative that these smulations run at the highest speed

possible.

3.1.2 Memory Mode:

Because of memory mode’ s conventional behavior, it is simulated on the behavioral
level. In other words, its function was abstracted to the cell level. The truth tables were
expanded into a single 64-entry truth table that can take a byte of datafor each entry.

The layout of amemory cell is shown in Figure 21.

addr3:0] Memory mode
@' i[7:6] i[5:4] i[3:2] i[1:0]

re[0] i-‘li I'ul

we[l] A 3 A
“__. [1] r . h . r . h

wel1] ! ! !
rel2] IH} il iIHIi - A=
we[2] — — | /| —
e [3] r A h B r . Ny
R v vy B v,
g[7:6] q[s:4] g[3:2] g[1:0]

Figure2l. Matrix of elementsin memory mode

32

3.2 System Level Simulation

There are several stagesto ssimulating afull system design. The system level
simulator works as a large state machine that calls upon the cell-level ssmulator object.

The basic stages to ssimulation are described in Figure 22.

High Level View of Simulation
1. Initialization
a. Allocate cell output pipeline latches
b. Transfer memory mode data into latches
c. Set up initial data input feed
2. Simulation (NS = Next State; PS = Prev. State)
a. MemcCell(NS) = MemCell(PS + Input Logic)
b. MathCell(NS) = MathCell(PS + Input Logic)
i. References to design structure for truth tables
ii. Math cell emulation performed
3. Propagation
a. Trace output to destination
b. Translate output wire to input wire
c. Copy data to input latch of next logic/control element
d. Global network latch propagation

As each output is propagated, the IsDefined is propagated

along with the data.

Figure22. Simulation procedures

Stage 1 is performed at the beginning of every cycle to set up all of the necessary data
structures for the current ssmulation. This step includes mid-simulation re-programming
that may need to be done on the fly. Stage 2 is performed almost entirely at the cell
simulator level. Stage 3 is donein conjunction with the Trace support structure. Once
the simulated data is obtained, its trace can be called to instantly transport that data to its

destination spot in memory for the next cycle.

3.3 Pipdline Latches

In a pipelined architecture such as the HiPerCopS architectures, it isimperative that

data be synchronized at certain stages within a DSP operation. To satisfy this

33

requirement, all cell outputs have an outgoing latch which can be used to delay a 4-bit
result for up to 3 cycles. Every latch that is alocated on acell output requires memory to
be allocated for it. The simulator mimics the hardware with respect to the timing of clock

cycles when dealing with these latches.

3.4 Behavioral Simulation

If the logic of a particular block of cells can be abstracted to a given math function, the
simulation could be performed on the behavioral level. Currently, this ability is not
available in the CAD tools, but the interfaces currently exist to allow for this feature to be
added. For example, if ablock of cells behaved like a multiplier and had a known
propagation delay, the simulator could be programmed to simulate the block of cells

behaviorally. This abstraction would greatly speed up the simulation process.

CHAPTER 4

Software Support Sructures

The software support structures are necessary features that assist in the software’s
necessary functions. These structures interface with both the back end and the front end

to add required functionality to the tools.

4.1 Back End

Developing the CAD tools to map designs onto the reconfigurable architecture created
aneed for various other support structures within the software. These structures help
expedite ssimulations, keep the code clean, and add higher-level functionality for the user.
There are two main support structures within the CAD tools:. Traces and Part Libraries.
The first, Traces, tracks every user action into a history, which can be used for wire
deletion and other undo functionality. The second, Part Libraries, provides away to
program one cell and apply that programming to other cells within the array, creating the
concept of “parts’” within the CAD tools. The part library provides abasic structure that

can be programmed by the user and stored for later use.

4.1.1 Traces

Taking cues from other design tools, we added a history feature to the software. This
history serves several purposes: alowing usersto undo their actions, abstracting the
routing between cellsto a higher level, and increasing the performance of the simulator.

The Trace class encapsulates alinked list that tracks every action that the user has taken

35

during the mapping process. These actions are also serialized and saved into the files for
permanent storage along with the actual design, so that a user can load the history and
design together from file. Each action isrecorded in the history log asit occurs, so the
most recent events appear at the bottom while the earliest events occur at the top. A

screenshot of the History window is shown in Figure 23.

History:

0.0 -1 -=0 1) E -~
0.1, -1} [7] =0, 2) [a]

0. 2. -1 [71-= 0. 3) [a]

(1. 0. -1} [71-= (1. 1) [a]

(1L 1L-1[A-=11. 2) 5]
(1.2,-1[[]->11. 3} [&]

2, 0,-1 7= 1) [a

2 1.-0[7-=2 2 [a]

2 2 -1[7-=2 3 [a

(3. 0.-1[7-=43. 1) [a]

(3. 1.-0[7-=03 2 [a]
(3,2, -1 [=13 3 [a]
4.0 -1[7-=4 1)a

4 1.-0[A-=4 HE >

P Y

Opacity

Figure 23. History window

The history itself is composed of alist of Trace objects. Figure 24 shows a graphical

representation of how the history is managed:

36

History
Node

Tracel Tracel Tracel > Tracel > ...

y

Trace Node
Connect
Cell Output ‘A’
Cell 3,2
To
Switch 2,2
From Wire 6
ToWire6

A 4

Trace Node
Connect
Switch 3,2
To
GSwitch 0,1,1
From Wire 6
ToWireO

Figure 24. Example of history, traces, and trace nodes

Notice that traces aways end on adatalatch. Thus, the simulator can simply skip to
the end of atrace to propagate the data from source to destination. This optimization
greatly accelerates the performance of the ssimulator. In the Manhattan architecture, a
trace could jump across three connections before reaching its final destination, as shown

in Figure 25. Hence, the simulator would have to perform a series of table lookups to

37

trand ate the wire position to the next component—two tranglations per cell and one per

switch. These actions are recorded within the Trace object.

Cell Local
A »| Switch
Ll

A

Local Cell
Switch

A 4

Figure25. Wor st-case connection in the Manhattan ar chitecture

In the Washington architecture, the implementation of traces has less value, because
the simulator can compute the destination with only three table lookups for a cell-to-cell
connection. However, because the new architecture was based off of the old architecture,
much of the code base was inherited by the new architecture. The ability to delete wires
easily was required in both architectures regardless of simulation needs.

The downside to using these traces are memory usage and navigating through the
traces when there are dense sets of wires existing on the schematic. For future work and
expediting the implementation of traces, it would be good to add a reference to the trace
from within the originating component (cell or global switch). Thiswould greatly speed
up the performance over the current model, which uses one master history list.

The Trace class has become a very important class within the designs of both
architectures. It allows the easy movement across a wire from beginning to end and

keeps arecord of everything done on the wire. The delete and undo features find their

38

roots through the traces. It proved so useful that it was used in the early version of the

simulator for tracing outputs to their destination latch.

4.1.2 Part Libraries

The part window is familiar for any CAD tool users asit provides the elemental
components with which to build asystem. Similarly, the HiPerCopS CAD tools have
such awindow for the storage of the cell configurations. A screenshot of the window is
shown in Figure 26. The cell configurations are stored in alinked list that record
complete cell configurations down to the element lookup tables. The configurations are
then programmed into cells on the array, which effectively copies the configuration onto
that cell. Because of this copy relationship, the cell can be further modified after

programming (to add extra pipeline latches, for example) without affecting other cells of

the same type.

ToolPane X

Library] Layers | History |
Select a Librany:

|{Defautt) |
Select a Part:

MulF ~
MultG

Add

Ml H

Sub

Mem{ il

New. . | Edit | Delete

Program Cell

Opacity

Figure26. Screenshot of Part Library

39

Future versions of the software should support parts at a much larger scale. Currently,
one can build pieces of amultiplier or pieces of any generic part. Eventualy, the
software should also allow for the design of partsincorporating a set of cells. Inthis
way, a designer could place an entire multiplier and all the routing and element
programming would be complete. Thisfunctionality could also be extended to
simulations, as a part such as a multiplier could have a simulation behavior associated
with it to speed up simulation. The primary concern with this upgrade is the positioning
of the global network with respect to the parts, and defining the part inputs and outputs.
Furthermore, if the part is modified in any way after placement, all expedited simulation

models would have to be discarded.

4.2 Front End

This section is dedicated to the user interfaces devel oped for the HiPerCopS CAD

tools.

4.2.1 Rendering Engines

The basic structure for the CAD toolsis shown in Figure 27. Though each version of
the CAD tools uses a completely different rendering method, the basic responsibility for
the engine is the same for each version. The rendering engine is responsible for
displaying the routing data stored in the instantiated cell array object in an informative
and usable fashion. It isimportant to balance all of the following performance aspectsin
the rendering engine:

e Render Speed: The rate at which the rendering engine can respond to user input.

40

e Visual Comprehension: The interface must make intuitive sense and not be over-
cluttered. It must also display all information about the design of the cell array.
e Usahility: Theinterface must provide efficient entry points and use case

scenarios for the design of the system.

Back-End
Engine
Instantiation
Routing [@&— of Cell Array
Interface in Memory
Ul 7'y
Part
Routing Wire Part Library

Tables Connection Library [« Interface 1_’ File
A handling
A 4 routines

Global Network L ocal Network Element
Editor Editor Editor
Cell/Switch

Routing File
Storage
A 4 on Hard

Rendering Engine Disk

Wire Cell and Simulation Layer
Rendering Switch Rendering Engine
Rendering Rendering

Figure27. Diagram of system interfaces

4.2.1.1 Shift Array Rendering Engine

The first rendering engine used in the CAD tools was built from an array of compiled
User Controls. Thiswas done for the sake of rapid development and for code re-
usability. The Manhattan architecture' s local network editor is the only rendering engine
that uses this method. It provides the fastest redraw speeds because the operating system
optimizes its graphics draw routines on the user controls, however, this rendering engine

provides the least in terms of flexibility. Thisis because every user control isresponsible

41

for itsown drawn area. It becomes very difficult to overlay images that traverse across a
portion of auser control. Drawing an image across several user controls presents alarge

processor heavy challenge.

4.2.1.2 Basic GDI + Global Rendering Engine

After the development of the Shift Array Rendering Engine, a better engine was
developed to handle the cases where wires would need to be drawn over top of current
cells and routing wires. This rendering engine was devel oped using the basic features of
GDI+ and ran through the cell array instantiation drawing everything onto a back buffer,
which was then flashed to screen. This proved to be a much slower rendering agent, but

alot more flexible.

4.2.1.3 Washington Rendering Engine

Finally, when the development of the Washington Architecture was chartered, afinal
rendering engine was developed. Based off of some of the principles used in the Basic
GDI+ engine, this much more object-oriented engine also incorporated features such as
matrix transformations and layered architecture. Matrix transformations allow for the
array view to be resized on demand, while the layered architecture views the drawing as a
series of drawings put on top of one another. These offer additional flexibility and assist
in the design-making process. Unfortunately, thisis currently the slowest rendering
engine asit hasalot of drawing overhead. Future work could look at ways to optimize

this engine to increase its performance.

42

4.2.2 Softwar e Differ ences

There are several areas in which HiPerCopS Washington differs from HiPerCopS.
First, the new interconnection network incorporates an additional layer of global
switches, since the local switches are effectively removed. This extralayer causes an
extra 2-cycle delay for all communication through the global network. 1t also effectively
doubles the bandwidth of the global network, alowing for much more complex designs.
Furthermore, the switching mechanisms in the newer architecture are more complex, and
incur additional delay versus the same switches in the older architecture. However, the
absence of the local switches reduces the overall complexity of the system.

Migrating the software to the newer platform highlighted all of these differences.
First, the local switches had to be removed from the local network. A change this drastic
warranted are-design of the graphics engine driving the CAD tools. Instead of using an
array of dynamically updating user-controls, a blank draw surface wasused. To display a
design on the screen for the new layout, the CAD tools draw the representation in layers
on aback buffer which is then sent through a transformation matrix before being flushed
to the screen. This also creates a flicker-free double buffered environment similar to the

environment used in the old architecture.

43

CHAPTER S

Performance Analysis

5.1 Layout of DSP on Cell Array

With all the foundation built and the CAD tools operational, we implemented several
DSP benchmarks on the HiPerCopS Washington and HiPerCopS Manhattan
architectures. These benchmarks included a 12-tap Finite Impulse Response (FIR) filter
and a 256-point Fast Fourier Transform (FFT). Each algorithm was designed from the

modular level down to the individual € ements.

5.1.1 Twelve Tap FIR Filter

The first DSP algorithm we implemented was a FIR filter, which appears in Figure 28.
As can be seen in the diagram, the filter is comprised of multipliers and adders operating
inparallel. A diagram showing a suitable layout for the HiPerCopS CAD Tools is shown

in Figure 29.

x[m]

B 0 o e
() D

Figure 28. Diagram of FIR filter [10]

nultiplier Multiplier

> & 3-Coeficient Module

nultiplier
- 3 Adders
3-Coefiicient Module 3-Coeficient Module
i]

Figure29. Modular implementation of FIR Filter [10]

To create a higher-order filter, one could simply add more modules. The pipelined
architecture of the design will also produce outputs in the same order that the inputs are
fed. Finaly, extra pipeline latches within the design allow for time synchronization on
al of the outputs. A sample local network view of the whole FIR Filter as built in the
HiPerCopS Washington architecture appearsin Figure 30. A standalone 3-Coefficient

Module also appears in Figure 31.

45

I mplementation

Figure 30. Screen

46

0, 0 1,0 7, 0 3, 0 Z, 0 <, 0) 7, 0
MultB MultA MultA MultA MultB MultA MultA MultA
0, 1 11 7, 1 3, 1 T, 1 . 1 6, 1 7, 1
MultD MultG MultA Multa MultD MultG MultA MultA
0, 2 1,2 7, 2 3, 2 Z, 2 <, 2 G, 2 7, 2
MultD MultA MultG MultA MultD Multa MultG Multa
0, 3 1,3 K] K . 3 <, 3] 7.3
MultH MultF MultF MultE MultH MultF MultF MultE
0, 4 1,4 2, 4 3, 2 %3] . 4 S, 4 G, 4 7. 4
MultB MultA MultA MultA add Add Add
0, 5 1,5 7,5 5, 5 Z, 5 e &, 5 7, 5
MultD MultG MultA MultA Add add Add Add
0, 6 1,6 7. 6 5. 6 7. 6 c. 6 G, 6 7. 6
MultD MultA MultG Multa Add Add Add Add
0, 7 1,7 7, 7 3, 7 . 7 S, 7 G, 7 7, 7
MultH MultF MultF MultE Add add Add Add

Figure31. Screenshot of Local Network of a 3-Coefficient Modulefor FIR Filter Implementation

5.1.2 256 Point FFT

The second benchmark algorithm that we implemented was a 256 Point FFT, which

appearsin Figure 32.

47

Memory

This algorithm is more complex and more diverse in itslayout asit uses cellsin
memory mode. The FFT demonstrates the implementation of several mgjor structures,
such asamultiplier, subtractor, adder, and its memory core. It also heavily usesthe
global interconnect, as many busses have to be transported across the array. In fact, the
design led to the development of the Washington architecture, which doubles the capacity

of the global network. The FFT was implemented onto the array of cell as shownin

Figure 33.

Memory

LUT

48

Figure 32. Diagram of FFT [10]

Complex Adder Adder and
and Subtracter Subtracter

Multiplier Multiplier o I o]
L ®
-—J-—u ®
Multiplier Multiplier Memory 1 Memaory 2
® ® = ®

Lookup Table| |Control Logic
o ®

Figure 33. Implementation of FFT

After simulation, we discovered that our architecture has a latency of 57 cycles
between the two memory units. Each processing stage handles 128 pairs of samples, for
atotal of 185 cycles. Taking the runtime reconfiguration, the FFT requires 1560 cycles,
or 6.24 micro-seconds. This execution timeis greater than other implementations as
shown in Table 13, but these other approaches use a more sophisticated radix-4 technique
to reduce the number of computations required. We estimate that aradix-4 FFT would

require four times the area but lower the execution time to less than 2 micro-seconds [10].

49

Table 13. Execution Time of 256-Point FFT

Device Technology Cycles Frequency Time

Analog ADSP-BF5333 2324 750 MHz 310 ps

TI TMS320C64 90 nm 1243 1000 MHz 1.24 pus

Xilinx Virtex-4 90 nm 256 333 MHz 0.77 us

Our approach 180 nm 1560 250 MHz 6.24 us
5.2 Software Performance

5.2.1 Memory Usage

Memory usage is always a critical statistic when setting software requirements.
Basically, the CAD tools allocate a base set of memory for the engine and underlying
design data structure, which varies between the Washington and Manhattan architectures.
Either way, this memory usage does not change very much and stays at a reasonable
value. What isamuch greater consideration to memory isthe simulation results. Every
cycle of simulation requires a large amount of memory from the system resources. The
base memory required for ssmulating a single cycle at debug runtime is 696 KB. This
value does not include cellsin memory mode or pipeline latches. An additional 66 bytes
should be added for every memory mode cell and additional 2 bytes for every additional
pipeline latch. Extending these numbers off to atypical system comprised of 25%
memory cells and 10% additional pipeline latching, the total memory usage per cycleis

shown in Figure 34.

696KB + 67.584KB + 1.6384KB = 765.2224KB
(System) (Memory) (Pipeline)

Figure 34. Memory usage per cyclein anormal system

50

765 KB may not seem like a significant amount of memory. However, one must take
into consideration that to sufficiently test a DSP algorithm, hundreds to tens of thousands
of cycles must be ssimulated to come up with an accurate result. Simulating a thousand
cycles on thistypica system and storing every bit of datafor every one of those cycles
would use up 765 MB of RAM.

Currently, the CAD tools store a complete snapshot of the entire cycle that it simulates
and storesit into an array. To improve on performance and cut down on memory usage,
one could only store data selected to watch. Thiswould force the user to select certain
wires that they would want to monitor over the course of the simulation. Each wire
would only be on the order of 4 bits, so a selection of 20 wires would only cost the user a
total of 10 bytes of memory per cycle. The downside to using a watch feature as
described isthat if the user wanted to “watch” any other wire that they hadn’t selected,

the simulation would have to be redone in its entirety.

5.2.2 Simulation Performance

It is difficult to derive ametric for simulation performance as every design will
produce a different simulation behavior and timing scheme. Not only do different
designs produce different ssmulation speeds, but simulation speeds vary at every cycle
due to the optimizations programmed into the ssimulator. In particular, the smulator uses
the IsDefined bitmap associated with cell latches to bypass simulation if one of the
necessary inputs is undefined. Because large portions of the array may not be used
during thefirst few cycles of the simulation, there is no need to ssimulate garbage datain
these unused portions. Furthermore, to expedite memory mode cells, a separate part of

the simulator was devel oped just for the simulation and update of the memory tables. All

51

memory cells are thrown into alist a the beginning of asimulation cycle. During
simulation, the simulator runs through the list and updates the memory values for all the

memory cellsin one quick traversal.

52

CHAPTER 6

Comparison of Architectures

6.1 Manhattan Architecture

The Manhattan architecture has provided a solid basis for testing design principles and
routing mechanisms. From an architectural standpoint, the Manhattan architecture’s
primary limitation was found to be its global network. Extremely complex designs
requiring alot of dense routing cannot be built easily on such an architecture. However,
this model does provide the benefit of fast propagation across the array of cells.

Looking at the basic local network model, the cells transfer data through local
switches which does not exist in the Washington architecture. One of the factors taken
into account for determining the minimum clock cycle period in the Manhattan
architecture is the worst-case delay between latches in the architecture. Because of the
presence of the local network, the worst-case delay scenario, shown in Figure 35, has
four traversals to complete during a single clock cycle. The output signal must propagate
through the output switch of the source cell, two local switches, and the input switch of
the destination cell. This means that each of the four switches must have an average

propagation delay of 1 nsto provide a clock rate of 250 MHz.

53

Cell h Local Switch

Local Switch s Ceill

Figure 35. Worst-case delay scenario for Manhattan architecture

From a software standpoint, the implementation of the Manhattan architecture was far
more complex than that of the Washington architecture. The need for alocal network
created the need for many different routing routines and tables that were not needed in
the other alternative. However, because the local network was not latched with the clock,

the simulator was not affected by the presence of the local network.

6.2 Washington Architecture

The Washington architecture has several advantages over the Manhattan architecture
asit offers more routing features. In particular, one more layer was added to the global
network and the local network was removed. This effectively doubled the available lines
in the global network. To account for the loss of the local network switches, four
additional routes were added to alow “diagonal” routing between cells. Furthermore, the
cells are connected directly to the global network. This impacts the design because the
input/output switches of the cells are two times larger than their equivalent switches

found in the Manhattan architecture. For example, the input/output switch for a

Manhattan Cell is show in Figure 36. The equivalent input switch for a Washington

architecture cell is shown in Figure 37.

Cell Input/Output Switch {Old)

Figure 36. Internal switch used in Manhattan ar chitecture

55

Cell Input Switch (new)

S0 0= 2 O a0m= 2w

Figure 37. Internal switch used in Washington ar chitecture

56

CHAPTER 7

Conclusion

Thisthesis has presented CAD tools for the design of DSP on the HiPerCopS two-
level reconfigurable architecture. A robust simulator for both the Manhattan and
Washington architecture were built and tested. The designsin software allow for
optimizations in design and create a viable workspace for synthesizing DSP a gorithms.
Furthermore, the simulations provide sufficient information to qualify benchmarks and

give areasonable idea as to the performance of the hardware at clock-level granularity.

7.1 Contributions

Several full-featured systems were built during the course of this research to support
the reconfigurabl e architectures tested:

o Developed flexible mapping tool designer. A novel CAD tool was developed
for both the Manhattan and Washington architectures. Thistool allows for
schematics to be designed in a 64x64 reconfigurable cell array. The software
structure is flexible enough to allow for new architectures to be implemented
in the future.

e Developed areconfigurable array ssmulator. The simulator works with the
designer to test and verify designs made in the software. The simulator takes a
state-based approach to the models and runs each simulation as it should occur
in hardware. Useful data and metrics, such as the execution time, can be

obtained from the simulator.

57

e Mapped and simulated two benchmarks. We verified the software’ s
functionality by successfully implementing an FIR filter and an FFT in the
CAD tools. Each agorithm was mapped onto the cell array and then
simulated. Each of these benchmarks was verified by successfully running
actual data through the array of programmed cells and viewing the results.

e Proposed a new interconnection structure to improve performance. After
viewing the results of the Manhattan architecture, the Washington interconnect
structure was developed. This aternative improves upon performance and has
significantly improved bus capabilities. The software tools were migrated to

support this new architecture as well.

7.2 Future Work

Further research on the development of the CAD tools will focus on severa areas:

e Hardware Assisted Rendering. Currently the graphics engine for the CAD tools
is done without any hardware support, which can lead to slow draw times when
displaying the whole cell array. Implementing draw routines by utilizing a
hardware graphics card will greatly improve performance.

e Auto Place and Route. Another useful feature that we are looking to implement
in future version is automated routing. Extending this feature further, we are
looking to develop aformat for downloading designs into hardware.

e Component Level Design. Extending the part library to be able to design whole
multipliers, adders, and other partsis a pivotal feature for future development. A
set of standard parts could be built and distributed with the software so that

designers could design with an object oriented approach.

58

e DSP Mapping Trandation: Perhaps the most complex feature that we are looking
to develop isascript trandator. The ability for adesigner to simply write a script

that will automatically program the cell array with the correct DSP would be very

valuable.

59

[1]

[2]

[3]

[4]

[3]

[6]

[7]

References

R. Hartenstein, “Coarse grain reconfigurable architectures,” in Proc. 6th Asia South
Pacific Design Automation Conference, Y okohama, Japan, pp. 564-570, 2001.

C. Ebeling, D. Cronquist, P. Franklin, and C. Fisher, “RaPiD—a configurable
computing architecture for compute-intensive applications,” University of
Washington Department of Computer Science & Engineering Tech Report TR-96-
11-03, Nov. 1996.

R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, “Using the KressArray
for reconfigurable computing,” Proc. SPIE, vol. 3526, pp. 150-161, Oct. 1998.

H. Zhang et al, “A 1-V heterogeneous reconfigurable DSP I C for wireless baseband
digital signal processing,” |EEE J. Solid-Sate Circuits, vol. 35, iss. 11, pp. 1697-
1704, Feb. 2000.

P. Heystersand G. Smit, “Mapping of DSP algorithms on the MONTIUM
architecture,” in Proc. International Parallel and Distributed Processing
Symposium, pp. 180-185, Apr. 2003.

M. Myjak, “A two-level reconfigurable cell array for digital signal processing,”
M.S. thesis, Washington State University, May 2004.

M. Myjak, F. Anderson, and J. Delgado-Frias, “H-tree interconnection structure for
reconfigurable DSP hardware,” in Proc. 2004 International Conference on
Engineering of Reconfigurable Systems and Algorithms, Las Vegas, NV, pp. 170-

176, Jun. 2004.

60

[8]

[9]

[10]

M. Myjak and J. Delgado-Frias, “A two-level reconfigurable architecture for digital
signal processing,” in Proc. 2003 International Conference on VLS, Las Vegas,
NV, pp. 21-27, Jun 2003.

M. Myjak and J. Delgado-Frias, “ Superpipelined reconfigurable hardware for
DSP,” IEEE International Symposium on Circuits and Systems, May 2006,
submitted.

J. Larson, M. Myjak, and J. Delgado-Frias, “Mapping and performance of DSP
benchmarks on a medium-grain reconfigurable architecture,” |1EEE International

Symposium on Circuits and Systems, May 2006, submitted.

61

Appendix A: Simulator Diagram

Class Simulator

Simulator Instance

‘ Latched Data |
‘ MetaData |
Linked List of Cycle
> Cycelist | ‘ Optimizations |
Class SimStatelycle
Cycle
Glassuint [cellxpos,cellypos]

—>| CycleData

ushort [cellxpos, cellypos]

—>| IsDafined |

Linked List of Memory Data

—>| MemData |

{if MemCell] then Class MemCeallSlate

(byte} xpos
{byte} ypos
(byte [64]) MemData

Class GSwiltchState/GbiLw] [Gxpos, Gypos]

—>| GlobalLatches |

ushart [WireNaojWordPos]

—>| SmallBus |

ushart WireNaojfWordPos]

—>| BigBus |

ushort jenabled bitmagp)

—>| lsDefined |

int
el smaBwian |
Fir to Deslgn Structure

—>| sarray ‘
|—> ... (See Systam Design)

uintfexpos, cypos, autpulPipeline Latch]

—>| delayLaiches ‘ (Pipeling delay taiches for cell oulputs)
uintfcxpos, cypos, outpul]

—>| delayM ‘ (Delay cycles for call cutput)

62

Appendix B: Washington Cell to Cdll
Connection Sour ce Code

/'l Subroutines for the new architecture

Il </ sumary>

/'l <param nanme="srccel | x">Source Cell X Coordi nat e</ paran

/'l <param nanme="srccel | y">Source Cell Y Coordi nate</ paran

/1l <param nanme="dest cel | xpos">Desti nation Cell X Coordi nat e</ paran
/'] <param nanme="dest cel | ypos">Destination Cell Y Coordi nat e</paran
/1] <param name="Cel | Qut put " >Source Cell CQuput Line</parane

/'l <returns>(ushort)Ox0 if success</returns>

/' Subroutine used to connect a cell to a cel
public ushort ConnectCell ToCell (int srccellx, int srccelly, int
destcel I x, int destcelly, WreToCell Cell Qutput, WreToCelllnput Celllnput)

int Cel| Wre, avail Wre;

/1 To supress conpil er concerns
avai l Wre = Oxffff;

/18 directions that we can be wiring to
//Handl e the primary 4 to start with

/] Check Horizonta

i f(srccellx == destcellXx)

/I Check vertica
if(srccelly == destcelly+1)

/1 Connecti ng Upwar ds

/1 Get an available wire
avai | Wre = CheckAvai l I nput s(destcel I x, destcelly, 4, 5);

el se if(srccelly == destcelly-1)

{
/1 Connect i ng Downwar ds
/1 Get an available wire
avai | Wre = CheckAvail I nput s(destcel I x, destcelly, 0, 1);

/I Check vertica
else if(srccelly == destcelly)

/I Check vertica
i f(srccellx == destcell x+1)

/] Connecting Left
/1 CGet an available wire
avai | Wre = CheckAvail I nputs(destcel I x, destcelly, 2, 3);

el se if(srccellx == destcellx-1)

63

{
/1 Connecting Ri ght

/1 CGet an available wire
avai | Wre = CheckAvail I nput s(destcel I x, destcelly, 6, 7);

}
}
/I Check di agona
if(srccellx == destcellx-1 && srccelly == destcelly-1)

/1 Connecting to | ower right

/1 Get an available wire
avai | Wre = CheckAvail I nput s(destcel I x, destcelly, 8, 8);

else if(srccellx == destcel I x+1 & srccelly == destcelly-1)

{

/1 Connecting to | ower |eft

/1 Get an available wire
avai | Wre = CheckAvail I nput s(destcel I x, destcelly, 9, 9);

el se if(srccellx == destcellx-1 & srccelly == destcelly+1)
/1 Connecting to upper right

/1 CGet an available wire
avai | Wre = CheckAvail I nputs(destcel | x, destcelly, 11, 11);

el se if(srccellx == destcell x+1 &% srccelly == destcelly+1)
/1 Connecting to upper |eft

/1 Get an available wire
avai | Wre = CheckAvail I nput s(destcel | x, destcelly, 10, 10);
}
/1 Actual |y nake the connecti on now
/I Make sure we had a wire avail abl e
i f(avai | Wre==0xFFFF)

/] CheckAvai IWres() failed. Exit out with an error
return OXFFFF;

}

/11f we get here, we change the cell's bitmap by
/11) Adding a cell output

/12) Adding a cell input

/13) Adding the trace to the history

Cel | Wre=Transl at eCel | I nput ToCel | Qut put (avai | Wre);

/11) Connect the output |ine
/1 Activate the output |ine and
this.cell[srccellx, srccelly].QutRouteTable[(int)Cell Qutput] |=
(uint)(0x80000000 | (Ox1 << CellWre));
[12) Connect the input |ine
this.cell[destcellx, destcelly].InRouteTable[avail Wre] =
(uint)(0x80000000 | (Ox1 << (int)Celllnput));

64

/13) Finally add the wire traces
//Start trace from cel
Trace. CreateTrace(srccell x, srccelly, (int)Cell Qutput, (uint)(0x1l <<

CellWre));
//End trace from cel

Trace. EndTrace(destcel | x, destcelly, availWre, (uint)(0x1l <<
(int)Celllnput));

/IWite the trace out
return (ushort) 0xO0;

65

Appendix C: Manhattan Cell to Cdll
Connection Sour ce Code

/1 Subroutine used to connect a cell to a switch

public ushort ConnectCell ToSwi tch(int cellxpos, int cellypos, int
swi t chxpos, int swtchypos, DrawibdeStatus.SOrientation SType, ushort
WrePosition, WreToCell Cell Qutput)

{

/'l nput Paraneters

/lcellxpos = Cell's X coordinate

/lcellypos = Cell's Y coordinate

/1switchxpos = Switch's X coordi nate

/1switchypos = Switch's Y coordi nate

/1 Type = Switch's orientation {Horizontal | Vertical}

/I WrePosition = The position of the last wi re connected

/1 Cell Qutput = The output |line of the processing core of the cell that
we will be updating

bool Cel Il sOnRi ght Above;

int WreNum
ushort Cell Wre, scratch, avail Wre;
/*

* Return Codes:

* 10 - Success - Returns the SWTCH s | ast connected i nput/out put
* -1 - Insufficient wires
* */

/1ls the Cell on the Right | Above the switch?
Cel I I sOnRi ght Above=(cel | xpos != switchxpos || cellypos !=switchypos);

/1 CGet an available wire for the switch
[lavail Wre contains a bitmap which maps out a single bit and returns
the wire nunber to use
/lavail Wre returns the wire open fromthe SWTCH s point of view
avai | Wre=Al | ocateSwi t chWre(swi tchxpos, sw tchypos,
Cel I | sOnRi ght Above, SType);

// Make sure we had a wire avail abl e
i f(avail W r e==0xFFFF)

/1 Al'l ocateSwi tchWre() failed. Exit out.
return OXFFFF;

}

/11f we get here, we change the cell's bitmap by

/11) Adding a cell output

/12) Cleaning up the unconnected wire bitmap on the switch after we
are done

/13) Adding the wire to the switch that is being connected

Cel | Wre=Transl ateSwi t chToCel | (avai | Wre, SType);

/1 Connect the Wre to the processor core
/1 Activate the line by ORing in a 0x80000000 with the wire position

66

/I Map to the CelIWre that we get after translating the switch's wires
/1 The bits that we are ORing into the QutRouteTabl e
this.cell[cellxpos, cellypos]. QutRouteTabl e[(int)Cell Qutput]=

(uint)(this.cell[cellxpos,cellypos].

Qut Rout eTabl e[(i nt) Cel | Qut put] |

(ui nt) (0x80000000) | CellWre);

WreNum = Transl at eBi t mapTol nt (avai |l Wre);
i f(WreNume=-1)

//Sent an invalid bitmap in
return OxFFFF;

}

/1 Change the Switch's input lines to connect this |ine
/11. Activate the |ine 0x8000
//2. Connect it to the Previous wire we used if there was one

i f(SType==Dr awiVbdeSt at us. SOi ent ati on. Hori z)
{

this.switches[sw tchxpos, sw tchypos].Local Bitmap[WreNun] =
((ushort) (0x8000 | WrePosition));
}

el se
{
this.vsw tches[swi tchxpos, sw tchypos].Local Bi t map[WreNunj =
((ushort) (0x8000 | WrePosition));
}

/1 Clear the Switch's last unconnected bit

[/ Create an inverted bitmap with the position we need to turn off set
to O

/I WrePosition will be zero if we drawing in the forward direction
(whi ch doesn't need any w re cl eanup)

scratch = (ushort)(WrePosition * OXFFFF);
i f(SType==Dr awbdeSt at us. SOi ent ati on. Hori z)

/1 And the bitmap into the UnMapped Qutputs to clear the bit if it
was set
this.switches[sw tchxpos, sw tchypos].UnnappedBitmap =
((ushort)(scratch & this.swtches[sw tchxpos,
swi t chypos] . UnnappedBi t map)) ;
}

el se

/1 And the bitmap into the UnMapped Qutputs to clear the bit if it

was set

this.vsw tches[swi tchxpos, sw tchypos]. UnmappedBitmap =
((ushort)(scratch & this.vsw tches[switchxpos,

swi t chypos] . UnnappedBi t map)) ;

}

/I\We are starting a newwire. Create a new trace
Trace. CreateTrace(cel | xpos, cellypos, (int) Cell Qutput,

(uint)Cell Wre);
/1 Add the switch to the trace

67

Trace. AppendTrace(sw t chxpos, swi tchypos, WreNum
(ushort) (WrePosition), SType);

//Return the wire nunber that we just wired up
return avail Wre;
}

68

Appendix D: Math Cell Simulation Source
Code

public uint SinmulateMathCell (uint Inputs, H perCopsControls.Cell cllnput)

/1 This function takes 16 bits of inputs (4 - 4 bit inputs) and outputs
2 - 4 bit outputs

uint scratch, tenmp, test, y, z, a, b, ¢, d, ain, bin, cin, din, TTln,
ret;

uint[] outputy = new uint[16];
uint[] outputz = new uint[16];

/1 Run through in math node
ai n=bi n=ci n=di n=a=b=c=d=y=z=TTI n=0;
[lTuint "Input" fornmat

/I D C B A
/ /0000 0000| 0000| 0000

/1 (VSB) (LSB)
///\ N
/1D 3] B[0]

[IStart with Elenent 0's Truth table
/I First calculate output on Y

/] El ement Layout
/1

/1] 0o 1 2| 3|
/1| 4] 5| 6] 7|
/1] 8] 9|10]11]
/1]12| 13| 14| 15
/1

/11 nput Map:

/IA - Bits 15-12
/IB - Bits 11-8
//C- Bits 7-4
/ID- Bits 3-0

/1 Mask out a[0], b[0O], c[0], d[O]
a=t his. Get A(I nputs);
b=t his. Get B(I nputs);
c=this.GtC(Inputs);
d=t his. Get D(I nputs);

/1 Run through the truth table

/IDis MSB, Ais LSBin truth table

/1 Ordering of final 4 bits fed to el ement:
/IDCBA

#regi on 1st Row

#regi on El ement0

/1 Now resolve Elenent 0's Truth Table
TTln = LoadTTIn(a, b, ¢, d, 0, 0, 0, 0);

69

/1Get the results

out putz[0] = FindZ(clInput.cellelenments[0].TTable, TTIn);
out puty[0] = FindY(cllnput.cellelements[0].TTable, TTIn);
#endr egi on

#region El enment1

/I Now resolve Elenent 1's Truth Table

TTln = LoadTTln(a, b, ¢, d, 1, 0, 1, 1);

/1 CGet the results

outputz[1] = FindZ(cllnput.cellelements[1].TTable, TTIn);
out puty[1] = FindY(cllnput.cellelements[1].TTable, TTIn);
#endr egi on

#regi on El enent 2

// Now resol ve Element 2's Truth Table

TTln = LoadTTln(a, b, ¢, d, 2, 0, 2, 2);

/1Get the results

outputz[2] = FindZ(clInput.cellelenments[2].TTable, TTIn);
out puty[2] = FindY(cllnput.cellelenments[2].TTable, TTIn);
#endr egi on

#regi on El enent 3

/1 Elenent 3 (upper left)

//Load up TTlIn selection a[3], b[3], c[3], d[3]
TTln = LoadTTln(a, b, ¢, d, 3, 0, 3, 3);

[At this point, TTIn contains the value to |ookup in the truth table
/1Select the bit of the truth table to sel ect

//Load up Qutput Z first

out putz[3] = FindZ(clInput.cellelements[3].TTable, TTIn);

out puty[3] = FindY(cllnput.cellelements[3].TTable, TTIn);

#endr egi on

#endr egi on

#regi on 2ndRow

#region El enment4

/1 Now resolve Elenent 2's Truth Table

TTIn = LoadTTIn(a, b, 0, 0, 0, 1, 0, 0);

//Load the two inconm ng dependent wires

/1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputz[0] << 2);

/[1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputy[1l] << 3);

/1 CGet the results

out putz[4] = FindZ(cllnput.cellelements[4].TTable, TTIn);
out put y[4] Fi ndY(cl I nput.cellel enents[4]. TTable, TTIn);
#endr egi on

#regi on El enent5

// Now resol ve Element 2's Truth Table

TTIn = LoadTTIn(a, b, 0, 0, 1, 1, 0, 0);

//Load the two inconing dependent wires

/[1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputz[l] << 2);

/1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputy[2] << 3);

/1Get the results

out putz[5] = FindZ(clInput.cellelenments[5].TTable, TTIn);
out puty[5] = FindY(cllnput.cellelenents[5].TTable, TTIn);

70

#endr egi on

#regi on El enent 6

// Now resol ve Element 1's Truth Table

TTIn = LoadTTIn(a, b, 0, 0, 2, 1, 0, 0);

//Load the two inconmi ng dependent wires

/[1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputz[2] << 2);

/1Shift by 2 to stick in Cs spot. 3 for D

TTln = TTIn | (outputy[3] << 3);

/1 Get the results

out put z[6] Fi ndZ(cl I nput.cell el enents[6]. TTable, TTIn);
out put y[6] Fi ndY(cl I nput.cellel enents[6]. TTable, TTIn);
#endr egi on

#regi on El enent?7

/1 Elenent O (upper left)

//Load up TTlIn selection a[3],
TTln = LoadTTIn(a, b, 0, 0, 3,
/1 Work here!

TTIn = TTIn | (outputz[6] << 2);

/[1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputz[3] << 3);

/1At this point, TTln contains the value to lookup in the truth table
/1 Select the bit of the truth table to sel ect

//Load up Qutput Z first

out put z[7] FindZ(cl I nput.cellel enents[7]. TTable, TTIn);

out puty[7] Fi ndY(cl I nput.cellel enents[7]. TTable, TTIn);

#endr egi on

#endr egi on

b[2]
1, 0, 0);

#regi on 3r dRow

#regi on El enent 8

// Now resol ve Element 2's Truth Table

TTIn = LoadTTIn(a, b, 0, 0, 0, 2, 0, 0);

//Load the two inconing dependent wires

/[1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputz[4] << 2);

/1Shift by 2 to stick in Cs spot. 3 for D

TTln = TTIn | (outputy[5] << 3);

/1Get the results

out putz[8] = FindZ(cllnput.cellelenments[8].TTable, TTIn);
out puty[8] = FindY(cllnput.cellelenents[8].TTable, TTIn);
#endr egi on

#regi on El enent 9

/1 Now resolve Elenent 2's Truth Table

TTln = LoadTTln(a, b, 0, 0, 1, 2, 0, 0);

//Load the two incom ng dependent wires

/1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputz[5] << 2);

[1Shift by 2 to stick in Cs spot. 3 for D

TTln = TTIn | (outputy[6] << 3);

/1 Get the results

out putz[9] = FindZ(cllnput.cellelements[9].TTable, TTIn);
out puty[9] = FindY(cllnput.cellelements[9].TTable, TTIn);
#endr egi on

#regi on El ement 10

/1 Now resolve Elenent 1's Truth Table

71

TTIln = LoadTTln(a, b, 0, 0, 2, 2, 0, 0);

//Load the two incom ng dependent wires

/1Shift by 2 to stick in Cs spot. 3 for D

TTln = TTIn | (outputz[9] << 2);

[1Shift by 2 to stick in Cs spot. 3 for D

TTIln = TTIn | (outputy[7] << 3);

/1 CGet the results

out put z[10] Fi ndZ(cl I nput.cell el ements[10]. TTable, TTIn);
out put y[10] Fi ndY(cl I nput.cellel ements[10]. TTable, TTIn);
#endr egi on

#regi on El enment 11

/1 Elemrent O (upper left)

//Load up TTln selection a[3], b[2]
TTln = LoadTTln(a, b, 0, 0, 3, 2, 0, 0);

/1Shift by 2 to stick in Cs spot. 3 for D
TTln = TTIn | (outputz[10] << 2);
/1Shift by 2 to stick in Cs spot. 3 for D
TTIln = TTIn | (outputz[7] << 3);

/1At this point, TTIn contains the value to |lookup in the truth table
/1 Select the bit of the truth table to sel ect

//Load up Qutput Z first

out putz[11] = FindZ(clInput.cellelenments[1l1l].TTable, TTIn);

out put y[11] Fi ndY(cl I nput.cellelements[11]. TTable, TTIn);
#endr egi on

#endr egi on

#regi on 4t hRow

#regi on El enent 12

// Now resol ve Element 2's Truth Table

TTIn = LoadTTIn(a, b, 0, 0, 0, 3, 0, 0);

//Load the two inconing dependent wires

/[1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputz[8] << 2);

/1Shift by 2 to stick in Cs spot. 3 for D

TTln = TTIn | (outputy[9] << 3);

/1Get the results

out putz[12] = FindZ(cl I nput.cellelenments[12].TTable, TTIn);
out puty[12] = FindY(clInput.cellelenments[12].TTable, TTIn);
#endr egi on

#regi on El enent 13

/1 Now resolve Elenent 2's Truth Table

TTln = LoadTTln(a, b, 0, 0, 1, 3, 0, 0);

//Load the two incom ng dependent wires

/1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputz[1l2] << 2);

[1Shift by 2 to stick in Cs spot. 3 for D

TTln = TTIn | (outputy[10] << 3);

/1 Get the results

out put z[13] = FindZ(cl I nput.cellelements[13].TTable, TTIn);
out puty[13] = FindY(clInput.cellelenments[13].TTable, TTIn);
#endr egi on

#regi on El ement 14

/1 Now resolve Elenent 1's Truth Table

72

TTln = LoadTTln(a, b, 0, 0, 2, 3, 0, 0);

//Load the two incom ng dependent wires

/1Shift by 2 to stick in Cs spot. 3 for D

TTIn = TTIn | (outputz[13] << 2);

[1Shift by 2 to stick in Cs spot. 3 for D

TTln = TTIn | (outputy[1ll] << 3);

/1 CGet the results

out put z[14] Fi ndZ(cl I nput.cell el ements[14]. TTable, TTIn);
out put y[14] Fi ndY(cl I nput.cellel ements[14]. TTable, TTIn);
#endr egi on

#regi on El enent 15

/1 Elemrent O (upper left)

//Load up TTln selection a[3], b[2]
TTln = LoadTTln(a, b, 0, 0, 3, 3, 0, 0);

/1Shift by 2 to stick in Cs spot. 3 for D
TTIln = TTIn | (outputz[1l4] << 2);
/1Shift by 2 to stick in Cs spot. 3 for D
TTIln = TTIn | (outputz[1ll] << 3);

/1At this point, TTIn contains the value to |lookup in the truth table
/1 Select the bit of the truth table to sel ect

//Load up Qutput Z first

out put z[15] = FindZ(cl I nput.cellel ements[15]. TTable, TTIn);
out put y[15] Fi ndY(cl I nput.cellel ements[15]. TTable, TTIn);
#endr egi on

#endr egi on

0;

y| out puty[O] ;

y| (out puty[4] <<1);

y| (out puty[8] <<2);

y| (out put y[12] <<3);

KKK
[L T T 1|

0;

z| out put y[13];

z| (out put y[14] <<1);
z| (out put y[15] <<2);
z| (out put z[15] <<3) ;

N N N NN
LI L I e T ||

/1 Conmbine Y and Z into output uint. Lower 4 bits represent y. Upper
4 bits represent z.

ret = 0;
ret =vy;
ret = ret | (uint)(z<<4);

/1 Shift over further
ret = ret << 24;
[lTuint "Input" fornat

/1l D C B A

//0000| 0000| 0000| 0000

/1 (VBB) (LSB)

/1 This will send inputs X -> A through to the output
ret =ret | Inputs & OxOOFFFFFF

[TOR in the inputs

/1 cl I nput.cellelenents[0]. TTabl e;

73

/1 Upper 16 bits refer to Qutput Y

//Lower 16 bits refer to Qutput Z

/] TTabl e = OxAAA7FFFF;

/1 Lowest bit of grouping refers to DCBA = 0000
return ret;

74

	1.1 Background
	1.2 Development Platform
	1.3 Outline
	2.1 Architecture
	2.1.1 Designer
	2.1.2 Impact of different architectures

	2.2 Cells
	2.2.1 Cell Routing Tables
	Table 1. Routing table entry for cell
	Table 2. Fields in routing table entry for cell

	2.2.2 Cell Mapping
	2.2.3 Cell Elements

	2.3 Global Switches
	2.3.1 Global Switch Instantiation
	Table 6: Global switches in Manhattan architecture

	2.3.2 Global Switch to Local Switch Network Locations
	2.3.3 Global Switch Routing:
	Table 7. Routing table entry for global switch
	Table 8. Fields in routing table entry for global switch
	Table 9. Data structure of global switch

	2.3.4 Simulation Design

	2.4 Local Switches (Manhattan Architecture Only)
	2.4.1 Switch Wiring
	Table 10. Routing table entry for local switch
	Table 11. Fields in routing table entry for local switch
	Table 12. Data structure for local switch

	2.4.2 Local Switch to Global Switch Mapping:
	2.4.3 Simulation Design
	3.1 Cell Level Simulation
	3.1.1 Mathematics Mode
	3.1.2 Memory Mode:

	3.2 System Level Simulation
	3.3 Pipeline Latches
	3.4 Behavioral Simulation

	4.1 Back End
	4.1.1 Traces
	4.1.2 Part Libraries

	4.2 Front End
	4.2.1 Rendering Engines
	4.2.1.1 Shift Array Rendering Engine
	4.2.1.2 Basic GDI+ Global Rendering Engine
	4.2.1.3 Washington Rendering Engine

	4.2.2 Software Differences

	5.1 Layout of DSP on Cell Array
	5.2 Software Performance
	5.2.1 Memory Usage
	5.2.2 Simulation Performance

	6.1 Manhattan Architecture
	6.2 Washington Architecture
	7.1 Contributions
	7.2 Future Work
	References

