
OPEN ARCHITECTURE FOR EMBEDDING VR BASED

MECHANICAL TOOLS IN CAD

By

HRISHIKESH S. JOSHI

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

WASHINGTON STATE UNIVERSITY
School of Mechanical and Materials Engineering

December 2006

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of HRISHIKESH

S. JOSHI find it satisfactory and recommend that it be accepted.

__

 Chair

__

__

 iii

ACKNOWLEDGMENTS

 I would like to thank The Almighty, my parents and my beloved wife Rupali for their

help and support. I would also like to thank my advisor Dr. Sankar Jayaram and Dr. Uma

Jayaram for their guidance and support during my thesis work. Also, a special thanks to Dr.

Hakan Gurocak for being on my committee. I will also like to thank Mr. Larry Varoz from

Sandia National Laboratories for sponsoring the research.

 I want to thank all my friends at WSU, and IES who have been very helpful

throughout my stay in Pullman.

 iv

OPEN ARCHITECTURE FOR EMBEDDING VR BASED

MECHANICAL TOOLS IN CAD

Abstract

By Hrishikesh S Joshi, M.S.
Washington State University

December 2006

Chair: Sankar Jayaram

Virtual assembly technology is revolutionizing the way we design mechanical

assemblies. This technology enables the users to interact with virtual models of mechanical

assemblies in an immersive environment. The user interacts with the virtual environment via

various hardware devices, which can track motion and other user inputs. These devices

Haptic devices are also capable of providing touch and force feedback to the user. The

existing virtual assembly systems however are not tightly integrated with the CAD systems

that are primarily used for modeling the assemblies. This disconnect between the CAD

systems and virtual reality (VR) environments is one of the most important limitation in the

existing virtual assembly systems. In this thesis we propose an open architecture for

embedding VR based virtual mechanical tools in the CAD systems. The goal of this research

is to enhance the CAD experience by allowing the user to interact with the CAD assemblies

inside a virtual environment in a more realistic manner.

The open architecture is designed to leverage off of the inherent visualization

capabilities provided by any commercial CAD system. The architecture consists of a CAD

plugin module, which is primarily responsible for interacting with the CAD system and

handling the visualization through the application programming interface (API) exposed by

 v

the CAD system. The other significant module of the proposed architecture is the Graphics-

Haptics bridge (GHBridge), which is built on top of the haptics API. The GHBridge enables

the integration of haptic devices with diverse visualization systems. Thus, the CAD plugin

and the GHBridge together facilitate tight integration between the CAD system and the

haptic devices. We also propose a CAD model library structure for managing virtual tools

that can be used for assembly operations in the virtual environment.

The proposed architecture is implemented to provide virtual assembly functionality

for CATIA V5 CAD system and VirtualHandTM toolkit haptics API. This implementation

(VR Tools) supports assembly and disassembly operations on CATIA assemblies that use

threaded fasteners. The user can choose from available virtual tools to manipulate

compatible fasteners in the virtual environment.

 vi

TABLE OF CONTENTS
ACKNOWLEDGMENTS ... iii
Abstract .. iv
INTRODUCTION .. 1
LITERATURE SURVEY AND PROBLEM STATEMENT... 4

Problem Statement .. 8
PROTOTYPE IMPLEMENTATION... 10

Goals of Prototype .. 10
Software and Hardware Systems .. 10

CATIA V5-R15 (CAD System).. 11
VirtualHand® for V5 (VH4V5 -CATIA Workbench)... 11
CyberGlove®, CyberGraspTM & CyberForceTM(Haptic devices) 11

VirtualHand for V5 evaluation ... 13
Strengths of VirtualHand for V5: ... 13
Limitations of VirtualHand for V5: .. 13

Implementation ... 14
Approach 1: Reorganize assembly hierarchy .. 14
Approach 2: State management using Callbacks... 18
Approach 3: Constraint management using Callbacks ... 25

Demonstration... 26
PROPOSED SOLUTION ... 30

VRTools Components... 31
CAD System ... 31
Haptic Devices .. 32
CAD Plugin... 32
GHBridge.. 32
Tools/Fasteners Library .. 33

Simulation ... 33
Setup Phase ... 33
Runtime Phase .. 36

OPEN ARCHITECTURE... 38
CAD Plugin Architecture.. 39
GHBridge Architecture... 41

State Management... 43
Constraint Management .. 44

Tools/Fasteners Library Architecture ... 46
VRTOOLS ARCHITECTURE AND DESIGN DETAILS.. 48

VRTools Workbench Design.. 48
VRToolsCommands Design ... 50

GHBridge Design.. 53
Simulation Classes .. 55
Scene Graph Classes ... 58
Constraint Management Classes ... 59
State Management Classes.. 61

VRToolsCatalog Design ... 65
VRToolsCatalog Structure.. 65

 vii

Updating the VRTools catalog.. 66
Modeling Guidelines... 68

VR Tools Fasteners... 68
IMPLEMENTATION AND RESULTS... 73

Implementation and Deployment.. 73
CATIA V5 Workshops and Workbenches ... 73
GHBridge.. 74

VR Tools User Interface ... 74
Component-Fastener Mapping.. 74
Search for Suitable Tools.. 75
Select Tools/Fasteners .. 76
Simulation ... 77

Demonstration... 78
SUMMARY AND FUTURE WORK .. 81

Summary ... 81
VRCut Prototype... 82

Use of the Open Architecture in VRCut ... 85
Future Work .. 85

REFERENCES ... 87

 viii

LIST OF FIGURES

Figure 3.1: CyberGlove and CyberGrasp .. 12
Figure 3.2: Reorganize assembly hierarchy ... 15
Figure 3.3: High level simulation stage management flowchart................................. 22
Figure 3.4: ToolInHand stage state management flowchart....................................... 23
Figure 3.5: RotatingBolt stage state management flowchart...................................... 24
Figure 3.6: Stage 2 ToolInHand .. 27
Figure 3.7: Stage 3 RotatingBolt.. 27
Figure 3.8: Stage 3 – state 4 Bolt out of hole .. 27
Figure 3.9: Unscrewed bolt being removed from the assembly.................................. 28
Figure 3.10: Disassembly of a component... 28
Figure 3.11: Allen wrench demonstration .. 28
Figure 4.1: Proposed Solution.. 30
Figure 5.2: CAD Plugin Architecture ... 40
Figure 5.3: GHBridge Architecture .. 42
Figure 5.4: State Classes... 43
Figure 5.5: Observer Pattern... 44
Figure 5.6 Constraint Management Classes... 45
Figure 5.7 Library Structure ... 47
Figure 6.1 VRTools Workbench Deployment .. 48
Figure 6.2 VRTools Workbench.. 49
Figure 6.3 VRToolsCommands Classes .. 50
Figure 6.4 GHBridge Class Diagram .. 54
Figure 6.5 Start Simulation Event Sequence.. 56
Figure 6.6 Gripping Algorithm.. 57
Figure 6.7: State Classes... 62
Figure 6.8 Component Grasping Sequence Diagram .. 64
Figure 6.9 VRToolsCatalog structure ... 66
Figure 6.10 Add Component.. 68
Figure 6.11 Catalog Hex Bolt... 69
Figure 6.12 Catalog Flathead Screw ... 70
Figure 6.13 Catalog Philips Screw... 71
Figure 6.14 Catalog Allen Screw ... 72
Figure 7.1 VR Tools Toolbar ... 74
Figure 7.2 Component-Fastener Mapping ... 75
Figure 7.3 Catalog preprocessing .. 76
Figure 7.4 Select Tools/Fasteners .. 77
Figure 7.5 Simulation Setup and Runtime ... 77
Figure 7.6 Demonstration Model Assembly Structure.. 78
Figure 7.7a Demonstration: Tool in hand... 79
Figure 7.7b Demonstration: Tool Engaged .. 79
Figure 7.7c Demonstration: Fastener Removed... 80
Figure 7.7d Demonstration: Disassemble Component .. 80
Figure 8.1 Cutting Saw in Hand .. 83

 ix

Figure 8.2 Assembly Cut .. 84
Figure 8.3 Assembly cut into two halves... 84

 1

CHAPTER 1

INTRODUCTION

Virtual Reality (VR) has excited researchers for over several decades. The technology

though has fallen short on delivering on the promises and fulfilling the visions due to

limitations imposed by the available computing power at disposal of the researchers. In

recent times VR systems have been getting better with improvements in the available

computing capabilities and due to research in the field. VR systems are finding a wide range

of applications in fields of engineering, medicine, defense and gaming. A significant amount

of research is being conducted in all those fields for improving the VR technology and

making the VR experience more realistic. The automotive industry has been one of the first

to use VR systems and environments in the design-concept phases for new models. VR

environments have also been effectively used in ergonomics studies. Mechanical engineering

companies have supported research activities in the field of virtual assembly- disassembly.

These tools have enabled engineers to study the assembly- disassembly processes intuitively.

A very basic assembly- disassembly operation that is typically simulated in a VR

system involves real-time human interaction using hands with the assembly components in a

VR environment. The next level of complexity comes when assembly- disassembly

operations are carried out using virtual tools. In this kind of a system, the human hand has to

be able to manipulate a tool and the tool in turn has to manipulate an assembly component.

The system can be developed further to make it more realistic by supporting usage of haptic

devices for providing touch and force feedback while working in the VR environments.

These kinds of VR environments that provide engineers with the ability to study assembly

 2

operations offer lot more insight into potential design flaws from the viewpoint of design for

assembly. The engineers can get feedback on basic unknowns such as: is the part accessible

to the tool? Is there enough space for the tool motion during the assembly process? Is there

enough clearance for the hand to operate the tool? Thus VR systems significantly reduce the

need for expensive and time-consuming physical prototyping.

Several virtual assembly environments have been developed to simulate the assembly

process. In these environments the user can simulate industrial assembly scenarios. The

quality of immersive experience in VR environments depends heavily on visual and haptic

feedback. Most of the developed systems use haptic devices that enable manual interaction

with the virtual environments. These systems implement proprietary 3D viewers capable of

rendering the virtual environment in stereo for visual feedback. One of the drawbacks of

these systems though is their disconnect with the CAD systems that are used for modeling

the assembly components. The geometry of virtual objects in these systems is typically

imported from the CAD systems in the form of polygonal data. Some of the existing

systems such as the Virtual Assembly Design Environment (VADE) developed at the

Virtual Reality Computer Integrated Manufacturing (VRCIM) Lab at Washington State

University do provide limited CAD integration. While performing the assembly operation in

VADE the user can make design modifications to the parts by accessing pre-selected CAD

parameters in the VR environment.

In this research, we have attempted to overcome the following limitations of existing

virtual reality (VR) systems for assembly operations:

1. User has to leave the familiar CAD environment that he is used to and work in a new

UR environment.

 3

2. Most of the Virtual assembly systems do not provide any functionality for 2-way

integration with CAD.

3. Some Virtual assembly systems, which provide loose integration with CAD systems,

require model preprocessing to tag the parameters that are made available in the VR

environment.

This thesis focuses on developing an open architecture for embedding VR based

mechanical tools in CAD system. Some of the primary goals set forth for this research were

as follows:

1. Allow the implementation of virtual tools capability in the CAD system environment.

2. Propose an architecture for interfacing haptic devices directly with the CAD system.

3. Support functionality for building a library of mechanical tools, fasteners etc.

4. Implement the proposed architecture using CATIA V5 as a CAD system and

VirtualHand Toolkit as the haptics API.

5. Support screw joint based mechanical fasteners such as bolts, screws, allen, bolts etc. and

compatible tools.

In the next chapter we take a detailed look at the previous research done in the field

of virtual assembly environments and clearly define the goals for this research.

 4

CHAPTER 2

LITERATURE SURVEY AND PROBLEM STATEMENT

Several assembly design and planning applications have been developed by various

researchers to address a variety of design and manufacturing problems. Researchers have

identified assembly representation, design for assembly, assembly/disassembly operation

sequencing, motion planning, and tool accessibility as major areas in assembly modeling and

simulation. Many researchers have also developed useful haptic and force feedback devices

and applications [1]. In this section, we present a brief summary of work done in these areas,

in particular as it relates to virtual assembly.

 Zachman et al. [2] describe a VR-based method of simulating complex assemblies

for the automotive environment. They utilize menu and voice driven commands to constrain

interactive object motion inside the VR system, Virtual Design II. For a screw movement,

the tool axis is aligned to the screw axis only when collision occurs between the parts. A

thresholding mechanism was created to switch off the snapping constraint when the user

moves the tool a specified distance from the fastener. Sets of associations were used to

match different tools with their respective screws. Less rigid mechanisms were also created

to allow coincident sliding motion between parts during insertion movements in confined

spaces (such as a car door) if no force feedback is available. This mechanism uses a copy of

the object, or “ghost”, which allows it to penetrate other parts while still being rigidly

constrained to the hand.

 Constantinescu et al. [3] have developed a local model of rigid body interaction that

provides haptic feedback while manipulating a virtual tool within a virtual environment.

 5

Their controller allows a user to feel physical phenomenon with the rigid environment such

as collision and friction. This method allows the user to perceive tightly confined spaces and

manipulate stiffer objects. They state one of the limitations as being that the environment

does not allow dynamic manipulation of other parts other than the single tool.

 Regenbrecht et al. [4] describe a method of utilizing tactile force feedback (TFB), in

place of more costly force feedback systems, to assist the user in assembly processes. TFB

associates the sensation of touch as perceived by stimulation on the surface of the skin. The

stimulation is provided using separate vibro-actuators for three degree-of-freedom response.

Their device, TACTOOL, was tested using tasks such as placing a generator in an engine as

well as placing a battery in an engine cavity and proved beneficial in aiding collision

feedback.

 Coute et al. [5] and McDermott et al. [6] present Haptic Integrated Dis/Re-assembly

Analysis (HIDRA), a haptically enabled assembly/disassembly simulation environment. This

work is primarily aimed at providing haptic interface into a disassembly simulation

environment. The haptic, graphic, and collision detection representations for the objects are

created from the geometry obtained from the CAD system. They describe a haptic feedback

and a graphic feedback loop that lets real-time, interactive haptic simulation of complex

mechanical operations. The aim is to ultimately incorporate a set of virtual tools

(screwdrivers, wrenches, pliers, etc.) for the user. This work has been extended [7] to

characterize perception of weight in the virtual environment. The experiments are designed

in such a way that the user can judge the weight of the model in virtual reality with the help

of haptic feedback devices and provide an experience very similar to the weights in real

environment.

 6

 Zhu et al. propose an approach for grasp identification and multi-finger haptic

feedback to provide a realistic force sensation while performing the virtual assembly tasks

[8]. A Voxmap-PointShell (VPS) algorithm is used to detect collisions and the result of this

collision detection is used to guide the motion of the virtual hand.

 Liu et al. discuss how haptic devices can be used in the design and deformation of

complex 3-D models [9]. The haptic devices help in touching a native B-rep CAD model

and using the tactile senses to manipulate it. Wan et al. present MVIAS, a Multi-modal

Immersive Virtual Assembly System, which provides the user with an intuitive and natural

way of assembly evaluation and planning [10]. The user interaction includes realistic virtual

hand interaction, force feedback and real time display of complex assemblies.

 Several key algorithms have been proposed to handle various aspects of geometry

computations required in haptics. For example, Johnson et al. propose a generalized method

to compute the minimum distance between two models in a virtual scene, which is a

fundamental operation in simulation, haptics, and path planning [11]. Research has been

done in Iowa state university to couple a CAD model to the analysis model in a 3-D

environment to study the stress distribution within the product because of the shape changes

[12]. Haptic devices have been used in this research to provide additional information related

to feasibility of design and the impact of shape changes on the actual assembly. VR system

and integrated haptic devices have also been used for the testing of aircraft engines [13]. This

helps to reduce the cost and avoid the necessity of physical mock-ups for maintainability.

Research for creating tools for cable harness design in virtual environment has been done

[14, 15]. An industrial case study has also been put forth consisting of Assembly Process

Planning using Immersive Virtual Reality [16].

 7

 Gupta et al. [17] have developed high fidelity assembly simulations and visualization

tools that can detect assembly related problems without going through physical mock-ups.

These tools can also be used to create easy to visualize instructions for performing assembly

and service operations.

Gomes et al. [18] in Germany have developed a VR based application used for

verification of assembly and maintenance processes. They investigate steps needed to apply

virtual reality for virtual prototyping to verify assembly and maintenance processes. The

authors have developed a three-layer framework to meet strategic and operative objectives.

The three layers are the scene graph layer, the script layer, and the application layer. The

scene graph layer is the CAD interface to the virtual environment, while the scripting layer

drives the events. The application layer provides specific user interfaces depending on the

user intended application domain. Assembly tools have been incorporated in the

environment. Tools snap onto screws and are constrained, based on the snapping paradigms.

The snapped screw is made to follow a 1-DOF rotational constraint that is triggered by

events.

 McDermott et al. [19] present Haptic Integrated Dis/Re-assembly Analysis

(HIDRA), a haptically enabled assembly/disassembly simulation environment. This work is

primarily aimed at providing haptic interface into a disassembly simulation environment. The

haptic, graphic, and collision detection representations for the objects are created from the

geometry obtained from the CAD system. They describe a haptic feedback and a graphic

feedback loop that lets real-time, interactive haptic simulation of complex mechanical

operations. Currently the users can only manipulate and feel the parts with virtual fingers.

The authors describe that the aim is to ultimately incorporate a set of virtual tools

(screwdrivers, wrenches, pliers, etc.) for the user.

 8

Significant work has been done at Washington state university for the last 12 years in

Virtual Assembly design environment “VADE”, including [20-22]. Interested readers will

find an introduction to the basic concepts of virtual assembly and the approaches to

constraint management, kinematics, etc. in these papers. VADE has been tested and used for

various industrial case studies [23]. Ergonomic software has also been integrated with

VADE for evaluating the ergonomic issues of the assembly process [24, 25]. One of the

ergonomic features called RULA has been integrated with VADE for the assessment of right

upper limb [26]. A tool-hand interaction model for assembly in virtual environments has

been created [27]. Another project that was completed created a haptic device for weight

sensation [28].

Problem Statement

As seen in the previous section, several current VR systems provide environments

for simulating the mechanical assembly process. Most of these systems do not support

integration with the CAD systems that are used to model the assemblies. They use neutral

data formats to extract the geometry information out of the CAD systems as tessellated

models.

Virtual Assembly Design Environment (VADE) developed at the Virtual Reality

Computer Integrated Manufacturing (VRCIM) Lab at Washington State University goes a

step further and provides two-way integration with CAD. The user, though outside the CAD

environment, can access certain CAD parameters and modify them in the VR environment.

VADE is capable of communicating these changes back to the CAD system. The CAD

system then updates the models based on the user input and writes out updated polygonal

data for the assembly components.

 9

The limitations of existing virtual assembly systems listed in the previous chapter

provide the motivation for this work. The basic goal of this research is to propose and

implement an architecture to support virtual assembly tools for simulating assembly/

disassembly operations in the CAD systems. Some of the key challenging aspects of this

work will involve the following tasks:

1. Using the CAD visualization system for simulating the immersive virtual environment

for assembly operations.

2. Extracting the assembly hierarchy and the geometry information from the CAD models.

3. Building and maintaining the haptic scene graph using the API provided by haptics

device manufacturer.

4. Synchronizing the visual and the haptic scene graphs during simulation.

5. Managing the tool-fastener interaction through constraints.

6. Managing the states of various simulation components.

7. Providing functionality for building and maintaining tools and fasteners library.

8. Designing and implementing an open architecture that will allow these capabilities to be

quickly adapted for other tools, CAD systems, and haptic devices.

 In the next chapter we discuss in details a prototype implementation of this

functionality. The prototype was implemented as a proof of concept to study the feasibility

of the proposed research.

 10

CHAPTER 3

PROTOTYPE IMPLEMENTATION

This chapter discusses a prototype implementation of the virtual assembly

functionality using virtual tools (VR Tools) for CATIA V5 CAD system and VirtualHandTM

toolkit haptics API. It was decided to do a preliminary feasibility study before developing a

complete production version of the VR Tools software. The following section lists the goals

for this phase.

Goals of Prototype

• To demonstrate the virtual tools capability for assembly/ disassembly operations on a

sample CATIA V5 assembly model consisting of mechanical fasteners.

• To support limited variety of mechanical fasteners such as bolts and allen screws and

compatible tools.

• To use existing commercial software as much as possible and keep custom software

development to a minimum.

Software and Hardware Systems

Based on the requirements laid down by Sandia and available software and hardware

modules, the following systems were chosen for performing the feasibility analysis.

 11

CATIA V5-R15 (CAD System)

Sandia chose CATIA V5 as the CAD system for developing the VR Tools

technology. A sample model consisting of a multi-part platform assembly that used allen

screws and hex bolts as fasteners was provided. Sample models for tools such as Box

wrenches, Allen wrenches and Flathead screwdrivers were created in CATIA. The CATIA

Kinematics workbench was used extensively for creating screw joints between the fasteners

and other assembly components.

VirtualHand® for V5 (VH4V5 -CATIA Workbench)

VH4V5 is a CATIA V5 workbench developed by Immersion Corporation

(Manufacturer of the Cyber Glove, Cyber Grasp and Cyber Force haptic systems). This

workbench enables the haptic devices to interface with CATIA and use it as a visualization

system for the haptic scene graph. It enables the user to control a virtual hand inside CATIA

thereby facilitating assembly manipulations. It is capable of extracting the graphical

representation from the CATIA models for building the haptic scene graph. The user can

also manipulate the objects in the scene graph by using the Virtual Hand through the Cyber

Glove. It synchronizes the graphical representation in CATIA with the haptic scene graph

for real time scene update during the simulation.

CyberGlove®, CyberGraspTM & CyberForceTM(Haptic devices)

Various haptic devices were used for enabling the interaction between the user and

the virtual assembly environment. The CyberGlove was used as a data acquisition device to

capture the motion of a human hand using an array of strain gauges mounted on a glove.

The CyberGrasp provides touch and grasping feedback thereby making the simulation more

 12

realistic. The CyberForce provides force feedback enabling the user to experience the forces

that they would normally experience from working with the real objects. The haptic devices

used are all made by Immersion Corporation. Figure 3.1 shows the CyberGlove and the

CyberGrasp.

Figure 3.1: CyberGlove and CyberGrasp

 13

VirtualHand for V5 evaluation

VirtualHand for V5 supported some functionality that was required to demonstrate

the VR Tools capability. However, as VirtualHand for V5 was not an open source system it

was not possible to develop it further to achieve all the goals set forth for this research. As a

result we decided to use VirtualHand for V5 and add external capabilities in order to provide

a workable demonstration for implementing the prototype. Significant amount of

investigation was done in order to understand the existing capabilities of VirtualHand for V5

and how they can be used in this project. Following are some of the key strengths and

limitations that were discovered during this exercise.

Strengths of VirtualHand for V5:

1. Capability to parse the CATIA assembly tree and build a haptic scene graph.

2. Capability to perform collision detection between the hand and other objects, thereby

enabling grasping.

3. Capability to enforce assembly and kinematics constraints during the simulation.

4. Capability to provide grasp & force feedback during the assembly process.

Limitations of VirtualHand for V5:

1. Collision detection is performed only between the hand and the components. There are

no component-to-component collision checks.

2. Assembly or Kinematic constraints required to implement the tool-fastener interaction

cannot be applied or modified dynamically during the simulation.

 14

3. Gripping algorithm is not very realistic particularly for small components. It is very

difficult to maintain a grip on small parts for manipulation. The fingers tend to stick to

the parts and significant practice is required to become familiar with the process. Due to

this problem, it was decided to scale the sample assembly models up to make them larger

and easier to manipulate. Also, the tools were modeled with extended and thickened

handles to allow easier gripping without obstruction from other parts.

The next section discusses various methodologies adopted to overcome the above-

mentioned limitations while implementing the VR Tools prototype. The implementation

went through quite a few changes based on the results of various approaches.

Implementation

Approach 1: Reorganize assembly hierarchy

It was observed that VirtualHand for V5 does its own constraint management and

does not enforce any dynamically applied constraints during the manipulation process. As

the user could take the wrench and align it with the bolt in 6 different possible locations, it

was necessary that the constraints be applied dynamically. It was also observed that

VirtualHand for V5 treated a sub-assembly as a single body and did not allow any relative

motion between its components. Hence one of the very first approaches involved

development of an algorithm for dynamically reorganizing the assembly hierarchy to

simulate coordinated motion between the fastener and engaged tool. Therefore, it was

required that the wrench be in the top-level assembly when it is not engaged with a bolt. In

this state the user can move it freely and align it with the bolt. Once aligned it was important

 15

that the wrench be constrained to the bolt and cause the bolt to rotate along with it. Hence it

was necessary to dynamically change the assembly hierarchy in the CATIA model.

It was decided to use existing VirtualHand for V5 capabilities for interacting with

CATIA to allow manipulation of assemblies, while a separate program would reorganize the

assembly hierarchy tree inside CATIA. This reorganization method allowed us to manipulate

a tool in engaged and disengaged state using VirtualHand for V5. In the engaged state, the

assembly hierarchy would be changed to make the tool a child of the bolt assembly. This

would facilitate concurrent rotation of the tool (wrench) and the bolt.

Figure 3.2 depicts two different assembly hierarchies. In state I the wrench is in the

top-level assembly and can be grabbed and moved around. In state II the wrench is part of

the bolt sub-assembly, effectively forming a rigid joint with the bolt.

Top Level Assembly

Wrench part

Bolt Sub-assembly

Bolt part

Top Level Assembly

Wrench part

Bolt Sub-assembly

Bolt part

State I State II

Figure 3.2: Reorganize assembly hierarchy

Implementation of the above discussed solution involved development of a CATIA

Workbench “addin” for manipulating the assembly hierarchy. This addin was activated using

 16

a simple toolbar button created inside the CATIA assembly workbench. The basic function

of the toolbar button was to toggle the assembly structure between the two hierarchies

depicted in Figure 3.2. The user could pick up a tool and bring it close to any bolt for

simulation. At this point the user would have to interrupt the VirtualHand for V5 simulation

loop by stopping the manipulation. The user would then initiate the assembly restructuring

code by pressing the addin toolbar button.

Constraints creation for tool placement
The assembly-restructuring algorithm was designed to find the closest edge on the

closet bolt and add the tool to the bolt sub-assembly. Assembly constraints were created so

that the tool is correctly located with respect to the bolt. The user could then re-start the

VirtualHand for V5 manipulation process. At this point VirtualHand for V5 reloaded the

assembly and its scene graph with the updated assembly hierarchy and constraints. This

enabled the user to rotate the tool for tightening or loosening the bolt. Pressing the addin

button after stopping the simulation could then restructure the assembly hierarchy. The user

could then disengage the tool by restarting the simulation. This sequence could be repeated

as many times as necessary to fully tighten or loosen all of the active bolts in the assembly.

To achieve the creation of dynamic constraints a set of datum planes and datum

points was needed for reference. A hex bolt has six faces, so opposite faces were named

FACE A1 and A2, B1 and B2, and C1 and C2. Planes and a datum point were also created

tangent to each bolt edge. Finally a datum plane was created on the top surface of the bolt

for height alignment with the wrench. These planes were used as references for the

constraints, enabling a rigid connection between the bolt and wrench.

Due to the similarities between a hex and allen screws it was possible to use the same

algorithm for both types of fasteners. Extending the functionality to allen screws just

 17

involved creation of datum planes similar to the ones used on the hex screws. An allen

wrench was modeled in CATIA based on the allen screw dimensions. Datum planes were

created and named according to the convention used for the hex wrench. This expanded the

capabilities of the software to allow the use of two separate tools with the limitation that

only one tool can be used at a time.

Limitations
Though the approach discussed above provided a workable solution, it failed to

provide a smooth demonstration in a manner envisioned by the researchers. The assembly

restructuring was necessitated due to the fact that VirtualHand for V5 does its own

constraint management and does not solve dynamically created constraints. The approach

involved manual steps (button clicks) for triggering the assembly hierarchy restructuring.

The user intervention required in this approach was undesirable but also unavoidable. Due

to these limitations this approach was found unsuitable for the final demonstration unless

some of the manual steps were automated.

 18

Approach 2: State management using Callbacks

Approach 1 sufficiently demonstrated the VR Tools concept and capability but the

simulation was not smooth and involved lot of user intervention. Improvements in the

quality of the simulation required new functionality to be implemented in VirtualHand for

V5. Immersion enhanced VirtualHand for V5 to provide a callback mechanism that would

enable an external application to effect desired changes during the simulation. The callback

function was designed such that it would get called on each frame of the simulation and

would provide the grasped object information. The callback returned the name and current

transformation of the grasped object. Knowing the name and position of the grasped object

enabled the program to recognize the grasped tool. This made it possible to use both the

allen wrench and the hex wrench together. To address the issue of user intervention and

manual button clicks, another software module was implemented using Spy++[29]. Spy++

is a tool provided with Visual Studio® that can be used to understand the window layout of

a running application. It helps in finding specific controls on a window and activate them

programmatically. This module made it possible to click the Start and Stop manipulation

buttons programmatically thereby reducing user intervention during the simulation.

Stage-State management for simulation
The callback support provided during the simulation was limited and would cause

the application to crash if not used carefully. It was not possible to perform more than one

action on any given frame. This made it necessary to design the tasks in such a fashion that

they would be carried out over a span of multiple frames. It was therefore necessary to have

an elaborate state management scheme to be able to run complex tasks during the

simulation.

 19

To begin with, the following three independent stages of the simulation were

identified.

1) EmptyHand stage.

2) ToolInHand stage.

3) RotatingBolt stage.

During the simulation it was possible to go from one stage to any of the other 2

stages. Each stage had multiple states associated with it. The combination of the current

stage and its state completely described the state of the simulation thereby enabling the state

handlers to take correct steps. Each stage was assigned a state handler for doing its state

management. Table 3.1 shows different stages and their state handlers.

Stage Number Stage Name State Handler

0 EmptyHand WSUCallback()

1 ToolInHand ToolInHandHandler()

2 RotatingBolt RotatingBoltHandler()

Table 3.1: Simulation Stages

Since it was only possible to perform one operation on every callback, a stage could

only make 1 state transition each frame. Following is a brief description of each stage. Tables

3.2 and 3.3 list all the possible states for stages 2 and 3 along with the actions performed by

the state handlers during each state.

 20

Stage 1: EmptyHand Stage

During this stage the state handler would keep checking if the tool is grasped. Once

the tool is grasped the stage is set to 1 and the state is initialized to 0.

Stage 2: ToolInHand Stage

During this stage the state handler would keep checking if the tool is close enough to

a compatible fastener to be engaged. Once the tool is close the states will increment from 1

through 4 and then the stage will be set to 2.

State

No.

State Name Action

0 Start State If the wrench is close to the bolt, go to State 1.

1 StopManipulation Stop simulation and set the next state to 2.

2 SaveFile1 Save the model and set the next state to 3.

3 ApplyConstraints Apply constraints and set next state to 4.

4 StartManipulation Start simulation and set the stage to 3

(RotatingBolt) and the state to 0 (StartState).

Table 3.2: ToolInHand States

Stage 3: RotatingBolt Stage

This stage is initialized to state 0. The user can loosen of tighten the fastener in this

state. This stage can go to various different states from state 0 based on the event caught by

 21

the state handler. For example, when the user rotates the bolt using wrench and the bolt

comes out of the hole the state handler will return the simulation to stage 1.

State

No.

State Name Action

0 StartState Check if the distance between the bolt and the

tool is larger than a preset tolerance, if it is, set

next state to 1 followed by state 2,

Check if the bolt is out of the hole, if it is, set

next state to 1 followed by state 4, If the tool is

released set stage to EmptyHand

1 StopManipulation Stop simulation and set the next state to 2.

2 SaveFile1 Save the model and set the next state to 3.

3 RemoveConstraintsForTool Remove constraints on tool and set the next

state to 6.

4 SaveFile2 Save the model and set the next state to 5.

5 RemoveConstraintsForBoth Remove constraints on tool and the fastener,

then set the next state to 6.

6 StartManipulation Start simulation and set stage to EmptyHand

and state to 0.

Table 3.3: RotatingBolt States

 22

The following figures (3.3-3.5) depict the flow charts for various stages. They show

logic used for making transitions between stages and between states of the stages. They

show how the state handlers use the current stages and states to decide upon the next stage

and/or state.

Figure 3.3: High level simulation stage management flowchart

 23

Figure 3.4: ToolInHand stage state management flowchart

 24

Figure 3.5: RotatingBolt stage state management flowchart

 25

Approach 3: Constraint management using Callbacks

Though Approach 2 significantly reduced user intervention and automated the

simulation, speed of the simulation was not up to the mark. The process of stopping and

restarting the simulation for changing the assembly hierarchy was quite time consuming. The

whole assembly restructuring was being done because of the fact that VirtualHand for V5

was not capable of creating constraints on the fly. After considering several possibilities for

overcoming this limitation, Immersion Corporation provided a newer version of

VirtualHand for V5. This version was capable of activating and deactivating existing

constraints during the simulation. So the algorithm was changed to pass in a list of active

constraints on every frame based on the location of the tool with respect to the fastener.

A model was created with all possible constraints (108 assembly constraints for the

sample model) for all possible positions of an engaged tool. When the user gripped the tool

and tried to engage it with the bolt, based on the relative positioning of the tool and the bolt,

a set of applicable constraints was identified and passed to VirtualHand for V5. This allowed

the user to dynamically snap the tool on to the fastener in any desired position. This

eliminated the need for stopping and restarting the simulation and made the overall

experience much smoother.

 26

Demonstration

Sandia identified a sample assembly for demonstrating the VR Tools proof of

concept. A suite of CATIA models, which included box wrenches, allen wrenches and

compatible fasteners was created. The fastener sizes were picked to be compatible with the

sample assembly. When all the components were ready they were all assembled together.

CATIA Kinematics module was used to create screw joint constraints between the

screws and their respective holes. It was observed that the constraint solver in VirtualHand

for V5 would enforce the screw joint but the pitch was inversely proportional to the value

set while defying the constraint. So smaller the pitch value, faster the screw would travel in

or out of the hole.

It was also noticed during the preliminary stages of testing that the Sandia model was

too small and it was hard to grab the assembly components using the VirtualHandTM. It was

therefore decided to scale up all the assembly components and the tools and fasteners by a

factor of 4. This gave the user a better control over grabbing the components in the virtual

environment.

Datum planes and points were created on all the tools and fasteners and were used

for creating the constraints to be used during the simulation. The constraints followed a

specific naming convention thereby enabling programmatic manipulation of constraint

states. It was also observed that due to the constraint solver limitations it was necessary to

over constrain a part to be able to position it in a correct manner consistently. Figures 3.6

through 3.11 show various stages during the simulation.

 27

Figure 3.6: Stage 2 ToolInHand

Figure 3.7: Stage 3 RotatingBolt

Figure 3.8: Stage 3 – state 4 Bolt out of hole

 28

Figure 3.9: Unscrewed bolt being removed from the assembly

Figure 3.10: Disassembly of a component

Figure 3.11: Allen wrench demonstration

 29

 Thus we were successfully able to demonstrate the proposed virtual assembly tools

functionality through the prototype implementation of the VR Tools software. Subsequent

chapters discuss in detail the proposed open architecture for VR Tools capability and its

implementation for CATIA V5.

 30

CHAPTER 4

PROPOSED SOLUTION

The proof of concept implementation discussed in chapter 3 gave a deep insight into

the requirements of the proposed system. Due to all the limitations faced while working with

VirtualHand for V5 and due to the fact that it was not an open source system it was decided

to re-develop the core functionality. A completely new system based on an extensible

architecture was envisioned. This chapter discusses the proposed solution for integrating VR

(Haptic) devices with CAD for providing the virtual tools functionality. Figure 4.1 shows a

high-level schematic for the proposed solution.

CAD System

CAD Plugin

Haptics API

Collision
Detection

Visualization
& Haptic
Mapping

Tool Library

Haptics Hardware

GHBridge

Constraint
Management

State
Management

Scene
Management

Simulation

Figure 4.1: Proposed Solution

 31

VRTools Components

The proposed software (VR Tools) comprises of the following building blocks:

1. CAD system: Used for modeling and visualization.

2. Haptic Devices: For capturing human interaction and providing force-feed back.

3. CAD plugin: For interfacing with the CAD system.

4. GHBridge (Graphics-Haptics Bridge): For interfacing with the Haptic devices.

5. Tools/Fasteners Library: For managing the fasteners and compatible tools.

The following section provides an overview of the role of each component in VR

Tools.

CAD System

A Mechanical-CAD (M-CAD) system is a basic software tool that is used for

modeling the parts and assemblies of real mechanisms that can be used in a virtual

environment for simulating mechanical tool operations. CAD systems help build, manage

and store all the geometrical information for a mechanism and also provide visualization

capabilities. Models are built by using feature based modeling techniques and managed using

PDM systems. Some CAD systems also provide library or archiving capabilities for

organizing related models in a desired manner. CAD systems facilitate data storage in various

different formats there by making the geometric information easy to share between various

applications. ProEngineer from Parametric Technologies, Unigraphics from UG, CATIA V5 and

SolidWorks from Dassault Systems are some of the popular M-CAD systems.

 32

Haptic Devices

Haptic means pertaining to the sense of touch. These are hardware devices that

enable human interaction with the VR environments. They act as input as well as output

devices. They capture inputs in terms of motion, speech etc. and provide feedback via touch,

force, vibration etc. There are many kinds of haptic devices. Immersion Corporation’s

CyberForce, CyberGlove and CyberGrasp are some of the devices used in this research.

CAD Plugin

This is a custom software module whose architecture is proposed to enable

interaction with the CAD system through haptic devices. This module is responsible for

extracting all the geometry and kinematics information from the CAD system for building

the haptic scene graph for the collision engine. It provides the user with a graphical interface

for driving the simulation. This module also handles and updates the graphics for the CAD

system during the simulation. The implementation and deployment scheme depend on the

specific CAD system that is being used.

GHBridge

GHBridge (Graphics-Haptics Bridge), as the name suggests, is the link between the

CAD system graphics and the haptic devices. The GHBridge builds on top of the haptics

API and implements the haptic scene graph along with all the custom algorithms for

manipulating it. It uses the geometry information extracted by the CAD plugin to build the

haptic scene graph in the setup phase. During entry frame of the simulation, it extracts

information from the haptic scene graph and drives the visual scene graph using the CAD

plugin.

 33

Tools/Fasteners Library

The VRToolsCatalog acts as a library of fasteners and compatible tools. It facilitates

classification of the models into various categories. It is also responsible for maintaining the

link to the CAD model as well as storing vital meta-data used by the VR Tools program. The

library is completely extensible and provides the user with tools for adding more fasteners

and tools to be used with the VR Tools functionality. A set of modeling guidelines needs to

be laid out to ensure that the new models are VR Tools compliant.

Simulation

All the VR Tools components have specific roles to play during the simulation. The

simulation can be thought of as a two-phase process comprising of a setup phase and a

runtime phase.

Setup Phase

In the proposed solution, VR Tools goes through a setup phase before the

simulation is run. The following tasks are performed during the setup phase.

Component-Fastener mapping
This is an interactive phase. The CAD plug-in provides a GUI based utility for

defining the mapping between assembly components and the fasteners of the model. This

mapping enables the state managers of the components determine the state of the

components during the simulation. For instance, state of an assembly component depends

on the state(s) of the fastener(s) mapped to it (e.g. free, constrained by bolt, etc.)

 34

Preprocessing the tools library
During this operation the program identifies the fasteners used in the model. Once

the list of used fasteners is formed, it is used to identify the compatible tools based on their

type and designation. The tools library is reorganized to separate out the compatible tools as

a result of this operation.

Selecting the Tool
An interactive phase in which the user selects tools from the list of compatible tools

in the library. The selected tools are added to the current model and are made available to be

used during the simulation.

Scaling the hand model
Based on the size of the model the user can specify a scaling factor that is used to

scale the virtual hand model. This enables the user to work with assemblies of different sizes

and still be able to manipulate assembly components comfortably. This functionality is

particularly useful while dealing with very small components, which are rather hard to grasp

if the hand model is too big.

Extracting assembly hierarchy
The simulation engine uses the haptic scene graph maintained by the GHBridge

during the simulation. The scene graph replicates the assembly hierarchy of the CAD model

and keeps the transformations for all the components up to date. During this phase the

assembly tree structure for the CAD model is parsed for extracting the hierarchy and

transformation information. This information is eventually used for building the haptic scene

graph.

 35

Extracting geometry information
For building the haptic scene graph the geometric representation of each component

is required. During this phase the program visits each assembly component and extracts

vertices from its topological representation. The point cloud is used for constructing a

convex hull representing the haptic node for each component.

Extracting the graphical representation
The CAD system internally maintains the graphical representation of every assembly

component, which is used for displaying it. During this phase, the assembly tree structure is

parsed in order to obtain the handles for all the graphical representations. This enables VR

Tools program to update the visual scene graph of the CAD system during the simulation.

Building the haptic scene graph
During this phase the GHBridge builds the haptic scene graph using the information

obtained during the previous stages. It also builds a list of tools and fasteners, which are

later, used while running the simulation. The fasteners are matched with compatible tools

and constraints are mapped. This information is used during the simulation while engaging

the tool with the fastener.

Registering scene update callbacks
The CAD plugin registers a couple of callbacks with the GHBridge. These callbacks

enable the simulation loop to update the scene by sending across the hand transformations

along with the updated scene graph information. The callback functions get called every

frame.

Initializing the haptic devices and collision engine
During this phase the GHBridge initializes the haptic devices selected by the user. It

also initializes the collision engine.

 36

Runtime Phase

During runtime the GHBridge spawns a separate simulation thread that performs

the following tasks during each frame:

Updating the hand transformations
The GHBridge obtains the transformations for all the components of the virtual

hand from the haptic device. These transformations are then sent to the CAD plugin using

the callback function for the hand update. The CAD plugin then updates the

transformations for the graphical representation of the hand thereby keeping the scene

updated.

Checking for gripping
During each frame, the GHBridge checks if any of the objects in the haptic scene

graph is grasped. Collision detection and gripping algorithms are employed to detect a state

change for a component that is being grasped.

Checking for constraints
If an object is grasped, this task monitors the status of all the constraints associated

with the grasped object. This mechanism provides the basis for doing the state management

of a component. If all constraints are met, an assembly component can go from

disassembled to assembled or vice versa. A grasped tool may go from ‘disengaged’ to

‘engaged’ state when it is in the vicinity of a compatible fastener. We will take a closer look at

the constraint and state management in subsequent chapters.

Enforcing constraints
When a grasped object is moved, this task ensures that the active constraints for that

object are enforced. This may result in motion of other components or may cause the

 37

grasped component to have limited degrees of freedom based on the types of constraints

being enforced.

Refreshing the scene using the scene update callback
During each frame the haptic scene graph is updated due to the combination of user

interaction, constraint management and state changes. These changes are communicated

back to the CAD plugin via a scene update callback. This callback is then responsible for

synchronizing the visual scene graph with the haptic scene graph.

Thus the proposed solution provides a basis for an open architecture for

implementing virtual assembly tools functionality within any CAD a system. Various

modules proposed in figure 4.1 facilitate loose coupling between the CAD system and the

haptic devices thereby making it possible to use different combinations of CAD systems and

haptic devices for implementing VR Tools. In the next chapter we discuss in detail the

architecture of various VR Tools components proposed in this chapter. We take a look at

some of the key classes in each software module and delve into the details of state and

constraint management schemes.

 38

CHAPTER 5

OPEN ARCHITECTURE

This chapter discusses the proposed architecture for integrating VR devices with

CAD systems. It gives an overview of interaction between all the different components

discussed in chapter 4. It also lays out architectures for the key software modules of the

proposed solution namely, CAD Plugin, GHBridge and the Tools/Fasteners Library. Figure

5.1 depicts all the high-level components and their relationships with each other. The CAD

plugin and the GHBridge constitute the two main software modules implemented by

VRTools. They are responsible for integrating all the other components.

CAD System

Haptic Devices

Tools/Fasteners
Library

Haptics API

CAD API

VRTools

CAD Plugin

GHBridge

Figure 5.1: Overall Architecture

 39

The CAD Plugin acts as an interface to the CAD system and implements all the

CAD API code. The GHBridge acts as an interface to the haptic devices and implements the

API code provided by the haptic devices. During the simulation phase the CAD plugin and

the GHBridge work together and keep the CAD system graphics and the state of the haptic

scene graph synchronized. The GHBridge captures any changes to the scene graph using the

haptics API and conveys it to the CAD plugin, which in turn updates the CAD graphics.

CAD Plugin Architecture

The CAD plugin is responsible for the following tasks in the VR Tools functionality:

1. Act as an interface to the CAD system.

2. Extract model tree data, assembly hierarchy and geometry information from the CAD

model.

3. Extract and maintain the graphical representation for the CAD model.

4. Extract the constraint data from the CAD model.

5. Support the Tools/Fastener Library functionality either within the CAD system or

externally.

6. Provide a graphical user interface for setting up and running the simulation.

7. Provide a utility for defining Component-Fastener mapping and storing that information

with the CAD model.

Figure 5.2 shows a class diagram representing some of the basic classes proposed in

this architecture. The detailed structure, functionality, implementation and deployment

scheme may vary based on the CAD system being used. Chapter 6 discusses in detail how

this architecture is applied to the implemented solution using CATIA V5 as a CAD system.

 40

CAD System

CAD Plugin

CAD Plugin::Graphics Manager CAD Plugin::Assembly Parser

CAD Plugin::Geometry Extractor

CAD Plugin::GUI

CAD Plugin::Library Manager

Figure 5.2: CAD Plugin Architecture

The CAD Plugin::GUI provides all the functionality for user interaction during the

setup phase. It facilitates the component-fastener mapping and also allows the user to

choose correct set of haptic devices to be used for the simulation. It can be extended to get

other kind of inputs from the user for setting up the simulation.

The GUI also has all the logic for starting the simulation. It uses the ‘Geometry

Extractor’ class for getting all the geometric and topological data needed for building

individual component nodes of the haptic scene graph. The ‘Assembly Parser’ class is used

to extract the assembly hierarchy along with the transformation information for each

assembly component recursively. This information is used by the GHBridge for building the

haptic scene graph.

The GUI also acts as a link between the CAD Plugin and the GHBridge. It provides

all the information needed for building the scene graph. It also registers the graphics-update

callback functions with the GHBridge. The callback functions enable the synchronization

between the visual and the haptic scene graphs. The ‘Graphics Manager’ maintains the

 41

graphical representation of the CAD model and has the functionality to update it every

frame based on the information received from the GHBridge.

The CAD Plugin also provides access to the ‘Tools/Fasteners Library’ through the

Library Manager. It provides functionality for finding appropriate tools based on the

fasteners used in the CAD model. The implementation details for the library depend heavily

on the CAD system being used.

GHBridge Architecture

GHBridge constitutes the other half of the VR Tools architecture and deals with the

haptic devices and their APIs. Following are some of the important tasks performed by the

GHBridge component:

1. Act as an interface to the haptic devices via the haptic API.

2. Use the model tree data, assembly hierarchy and geometry information extracted by the

CAD Plugin for building the haptic scene graph.

3. Initialize, setup and run the simulation and collision engines.

4. Perform the constraint management during the simulation.

5. Perform the state management for the simulation components.

6. Manage the virtual hand.

7. Maintain the haptic scene graph and update the visual scene graph via the CAD Plugin.

8. Implement algorithms for constraint and state management.

Figure 5.3 shows all the important classes proposed for the GHBridge component.

 42

GHBridge

GHBridge::SceneGraphManager

GHBridge::Engine

GHBridge::SimulationManager

GHBridge::DeviceManager

GHBridge::HandManager

GHBridge::SimulationComponent

Figure 5.3: GHBridge Architecture

The Engine class acts as the interface of the GHBridge module. It is primarily

responsible for exchanging data and messages with the CAD Plugin. It uses various manager

classes for delegating different tasks during the simulation.

SceneGraphManager is a class dedicated for managing the haptic scene graph. It uses

the assembly tree and geometry information extracted by the CAD plugin and builds the

scene graph. SimulationComponent class represents 3D components in the simulation such as

the assembly component, tool or the fastener. This class encapsulates all the information

necessary for completely representing a simulation object.

The DeviceManager class handles the haptic devices. The Engine uses this class to

initialize the devices selected by the user.

 43

The HandManager class is used to interface with the virtual hand during the

simulation. It implements the gripping algorithms and tracks the state changes of a gripped

object. It also extracts the transformation data for all the components of the virtual hand.

State Management

State management is one of the most critical aspects of VR Tools. The behavior of

assembly components, tools and the fasteners depends completely on their states. The

components undergo state changes during the simulation and show drastic changes in their

behavior. Therefore it is essential to have a robust state management scheme to ensure

smooth transition between states. The proposed scheme adopts the standard Observer design

pattern. This scheme is extensible and can support more states fairly easily. Figures 5.4 and

5.5 show basic state and state management classes.

State

AssemblyCompState SimComponentState

FastenerStateToolState

Figure 5.4: State Classes

A SimulationComponent can be an AssemblyComponent, a Tool or a Fastener. Each of them

plays a unique role in the simulation and therefore has a unique set of states associated with

it. Each of those state classes can further be extended based on the requirements of the

application being developed. In chapter 6 we will see how this class structure is extended.

 44

StateObserver

StateMediator SimulationSubject

SimulationComponent

«uses»

«uses»

Figure 5.5: Observer Pattern

Figure 5.5 shows a schematic of the class structure for the Observer pattern. The

SimulationComponent has a StateObserver associated with it through the SimulationSubject. The

StateMediator, which extends the StateObserver, maintains a list of SimulationComponents that

register interest in its SimulationSubject. So any state change the SimulationSubject goes through

is notified to all the SimulationComponents that are registered with the StateMediator of the

SimulationSubject.

Constraint Management

Interactions between various simulation components such as the tool and the

fasteners and the fastener and the hole are governed by the constraints between them. The

 45

state of each component determines the kind of constraints that need to be enforced on it.

Figure 5.6 shows a class structure proposed for performing the constraint management.

ComponentConstraint

PlanerConstraint AxialConstraint

ScrewJoint

SimulationComponent «uses»

Figure 5.6 Constraint Management Classes

For the tool-fastener interaction, a set of planar constraints is sufficient to

completely define their relative positions with respect to each other when the tool is engaged

with the fastener. When the tool is in close proximity with a compatible fastener, the

constraint planes that are close to being coplanar are identified and are used for enforcing

the constraints.

An AxialConstraint and a ScrewJoint, which extends the AxialConstraint, are proposed

for the fastener-hole interaction. Enforcing the AxialConstraint aligns the fastener-axis with

the hole-axis. AxialConstraint lets the fastener move only along the axis and rotate about it.

 46

The ScrewJoint is enforced when the fastener is inside the hole. Chapter 6 takes a closer look

at the constraint enforcement algorithms.

Tools/Fasteners Library Architecture

In this section we layout a list of specifications for a Tools/Fasteners library and

propose a structure for such a library. Some of the requirements are addressed by the

proposed structure while the rest are functionalities that need to be implemented. The

implementation details will be specific to the software tools employed for development of

the library and are outside the scope of this work. Following are the basic requirements for

the Tools/Fasteners library to ensure that the design is extensible and easy to maintain:

1. The library should be an independent entity and should not be tightly integrated with the

VR Tools software.

2. It should facilitate addition of new tools and fasteners without requiring changes to the

software implementation.

3. It should follow well-defined set of modeling guidelines laid down to help model new

VR Tools compatible tools and fasteners.

4. It should be capable of storing the necessary engineering information such as the pitch,

designation, etc. for the library components.

5. It should provide a mechanism for classifying and aggregating models into various

categories.

6. It should provide an easy way for adding the library models to the simulation.

Figure 5.7 shows a schematic for the proposed structure for the Tools/Fasteners library.

 47

Tools/Fasteners Library

Tool Type I collection

All Tools

Applicable Tools

Tool Type II collection

All Tools

Applicable Tools

Fasteners

Type I Fasteners

Type II Fasteners
Figure 5.7 Library Structure

A tree structure is proposed for managing the tools and the fasteners in a library.

The leaf nodes of the tree are collections of categorized components. This structure provides

the ability to expand both the scope and depth of categorization. The implementation details

of such a library using CATCatalog document supported by CATIA V5 are provided in the

next chapter.

In chapter 6 we discuss the details of VR Tools architecture, which is based on the

open architecture proposed in this chapter. We also take a close look at the key classes

implemented by the CAD Plugin and GHBridge components. Finally we delve into the state

and constraint management algorithms implemented for VR Tools.

 48

CHAPTER 6

VRTOOLS ARCHITECTURE AND DESIGN DETAILS

Chapter 5 laid out a generic template architecture that can be applied to any

combination of CAD system and haptic devices. In this research, CATIA V5 was chosen as

the CAD system along with the haptic devices from Immersion Corporation (CyberGlove) and

Ascension Technologies (Flock of Birds). This chapter discusses in detail VR Tools

architecture, which is based on the open architecture. It takes a deeper look at the CAD

Plugin implemented as a CATIA Workbench (VRTools workbench) and the GHBridge built

using the VirtualHand Toolkit (VHT). It also discusses the structure and role of key classes

from the VRTools workbench and the GHBridge. Finally it delves into the Tools/Fastener

library (VRToolsCatalog), which is implemented using the Catalog document functionality

supported in CATIA V5.

VRTools Workbench Design

VRTools Workbench is a CATIA CAA application and hence follows a CAA

specific deployment model. Figure 6.1 shows the deployment diagram for the VRTools

workbench.

VRToolsWbench dll VRToolsCommands dllCATIA V5

«uses» «uses»

Figure 6.1 VRTools Workbench Deployment

The VRToolsWbench.dll and the VRToolsCommands.dll together represent the CAD

Plugin introduced in the previous chapter. VRToolsWbench.dll is the workbench dll and is

 49

responsible for making the workbench menus, toolbars and commands accessible through

the CATIA user interface. The workbench relies on the VRToolsCommands.dll for

implementing these commands. Therefore, VRToolsCommands.dll is the main module that

implements all the CAD Plugin functionality. Figure 6.2 shows various VRToolsCommands.dll

command classes used by VRToolsWbench.dll for implementing the commands.

VRToolsCommands.dll

VRMapFastenersDlgCmdVRToolsWbench

VRSelectToolCmd«uses»

VRSimulationDlgCmd

VRPreprocessCmd

«uses»

«uses»

«uses»

Figure 6.2 VRTools Workbench

 50

VRToolsCommands Design

VRToolsCommands.dll implements the CAD Plugin architecture. It exposes the

VRMapFastenerDlgCmd, VRSimulationDlgCmd, VRPreprocessCmd and the VRSelectToolCmd to

the VRTools Workbench. The VRSimulationDlgCmd also interfaces with the GHBridge

module. All the classes implement CATIA CAA API code for interacting with the CAD

system for their particular tasks. Figure 6.3 shows all the important VRToolsCommands

classes.

Tools/Fastener Library Classes

VRMapFastenersDlgCmd

VRPreprocessCmd

VRSelectToolCmd

VRSimulationDlgCmd VRUtilityForCommonTasks

VRAssemblyParser

VRGeometryExtractor

VRSceneManager

«uses»

«uses»

«uses»

«uses»

«uses»

VRToolsCommands dll

«uses»

«uses»

«uses»

VRUtilityForCatalogs

«uses»

«uses»

Figure 6.3 VRToolsCommands Classes

 51

Key Classes and Their Roles
VRMapFastenersDlgCmd: This class provides the user with a graphical user interface

(GUI) for defining the component fastener mapping for the CAD model during the setup

phase of the simulation. It identifies the fasteners and assembly components in the model. It

also implements the functionality for storing the component-fastener mapping with the

CAD model so that it has to be done only once for each model.

VRSimulationDlgCmd: This is the most important class in VRToolsCommands. It provides the

user with a GUI with the following functionalities:

1. Selecting haptic devices to be used during the simulation.

2. Specifying a scaling factor for the virtual hand.

3. Starting and stopping the simulation.

This class also interfaces with the GHBridge and provides it all the necessary

information for setting up the haptic scene graph. It also registers callbacks with the

GHBridge, which are used to keep the CATIA graphics synchronized with the haptic scene

graph.

VRAssemblyParser: This class is responsible for implementing all the assembly tree structure

related functionality. It mainly deals with the assembly hierarchy and the transformation for

the assembly components. VRMapFastenersDlgCmd and VRSimulationDlgCmd use this class

for performing their tasks.

VRSceneManager: This class handles the CATIA graphics. It extracts the graphical

representation for the assembly components. It updates the transformations for the

graphical representation on each frame and refreshes the scene. This class is responsible for

keeping the CATIA graphics synchronized with the haptic scene graph.

 52

VRGeometyExtractor: The primary role of this class is to extract the geometric and topological

data for each assembly component. VRSimulationDlgCmd uses this class for extracting the

point cloud data that is passed on to the GHBridge for constructing the scene graph nodes.

VRUtilityForCommonTasks: This is a utility class and implements basic CATIA functions such

as document handling. All the other classes use it.

VRPreprocessCmd: This command preprocesses the VRToolsCatalog, which acts as the

Tools/Fasteners library. This class uses the VRAssemblyParser and extracts the information

for the fasteners used in the model. Based on this information it detects the tools that are

compatible with the current model and filters them out to the Applicable chapter of the

VRToolsCatalog.

VRSelectToolCmd: This command class enables the user to import new tools in the simulation

environment. It connects to the VRToolsCatalog and brings up a dialog box that lets the user

browse through the available tools in the catalog. The user can then import the tools of

his/her choice into the current model.

VRUtilityForCatalog: This is also a utility class, which specifically deals with the CATIA

catalog documents. The VRPreprocessCmd and the VRSelectToolCmd classes depend on this

class for the basic Catalog related functionalities.

 53

GHBridge Design

This section takes a detailed look at the GHBridge architecture implemented for

VRTools. It follows the template laid out in chapter 5 and customizes it for specific haptic

devices and their API. This implementation of GHBridge is based on Immersion

Corporation’s CyberGlove and Ascension Technologies’ Flock of Birds for the haptic devices.

Immersion Corporation provides the VirtualHand Toolkit (VHT), which is an API for

interfacing with the haptic devices used for this implementation.

The GHBridge has a complex class structure and is responsible for performing a

number of complex tasks during the simulation process. We break down the GHBridge

architecture into several pieces based on their roles. Then we look at the architecture of each

individual piece. Figure 6.4 shows the high-level class diagram of GHBridge. All the classes

are classified into 4 different groups. The following section takes a closer look at each group.

All the classes whose names start with vht are VirtualHand Toolkit’s classes. The classes

whose names start with GHB are the GHBridge classes.

 54

Simulation

State Management

Scene Graph

Constraint Management

GHBSimulationManager

vhtSimulation

GHBEngine

vhtEngine

«uses»

GHBDeviceManager

vhtCyberGlove

«uses»

GHBSceneGraphManager

vhtNode

vhtDataNode

GHBSimulationComponent

GHBAssemblyComponent

GHBMechanicalTool

GHBMechanicalFastener

«uses»

«uses»

GHBComponentConstraint

GHBPlanerConstraint GHBAxialConstraint

GHBScrewJoint

«uses»

vhtCyberGrasp

«uses»

vhtCyberForce«uses»

GHBHandManager vhtHumanHand«uses»

GHBManager

vhtTracker

GHBSimulationSubject

GHBCompStateMediator

GHBStateObserver

«uses»

«uses»

«uses»

GHBSGNode

Figure 6.4 GHBridge Class Diagram

 55

Simulation Classes

GHBEngine: This is the key GHBridge class that manages the complete simulation. Some of

the important tasks carried out by this class are as follows:

1. It acts as the GHBridge interface to the VRToolsCommand (CAD Plugin).

2. It initializes the haptic devices.

3. It initializes all the manager classes needed for the simulation.

4. It instantiates the vhtEngine class which has the functionality for starting and stopping the

simulation.

5. It uses the SceneGraphManager for building the haptic scene graph.

6. It updates the scene graph and all the managers on each simulation frame.

7. It maintains the callbacks for the VRToolsCommand and uses them to refresh the visual

scene graph.

Figure 6.5 shows an activity diagram depicting the sequence of tasks that are

performed while starting the simulation.

 56

GHBridge(GHBEngine)CATIA(VRSimulationDlgCmd)

Construct and initialize
engine

Set callbacks

Construct haptic scenegraph

Initialize all managers

Initialize all devices

Start simulation

Add simulation to
engine

Start Simulation Button

Construct simulation
node

Figure 6.5 Start Simulation Event Sequence

GHBSimulationManager: This class derives from the vhtSimulation class and is registered with

the vhtEngine. It overrides the handleConstraints function, which is called by the VHT

simulation thread on every frame. This function gives the control back to the user on each

frame.

GHBDeviceManager: This class handles all the haptic devices used during the simulation. The

GHBEngine feeds the users choice of devices to the device manager during the setup phase.

The GHBDeviceManager uses vhtTracker, vhtCyberGlove, vhtCyberGrasp and vhtCyberForce classes

for initializing the Flock of Birds, CyberGlove, CyberGrasp and CyberForce respectively. It also

 57

used by the GHBHandManager to instantiate the vhtHumanHand class that represents the

virtual hand.

GHBHandManager: This class uses the vhtHumanHand class to access the virtual hand

functionality. Its primary role is to implement the gripping algorithm and determine whether

an object is gripped. It is also responsible for providing the information pertaining to the

grasped object and the virtual hand transformation information. Figure 6.6 shows the

flowchart for finding the gripped object.

Gripping Algorithm
Constrain and release

gripped objects

Get collision pair
entries

Get the contact
normals

Add contact phalanges
to vhtGraspManager

vhtGraspManager will handle attaching
 the component to the hand.

Update list of gripped
objects

Determine if collision pair
object is being gripped

vhtGraspManager has algorithms to determine
if an object is being gripped based on contact normals.

Refreshes the state of all components

Get Collision between hand and other objects

Figure 6.6 Gripping Algorithm

GHBSceneGraphManager: The primary role of this class is to build and maintain the haptic

scene graph. It obtains the information for the assembly hierarchy, geometric data and type

 58

of the components from the CAD Plugin and uses it create haptic scene graph nodes. It also

initializes the collision factory, which enables collision detection between different

simulation objects. It also initializes the states for all the simulation components and does

the constraints mapping based on the component-fastener mapping defined by the user

during the setup.

Scene Graph Classes

VhtNode: This is the VirtualHand Toolkit’s haptic node class. All the classes that can be used

as node of the haptic scene graph extend this class. It maintains a link to the vhtNodeData,

which is a neutral scene graph node.

VhtNodeData: This VirtualHand Toolkit’s class can be extended to store any information

that has to be stored in the neutral dual of the haptic node on the scene graph.

GHBSGNode: This class is used for building the haptic scene graph. It is implemented by the

GHBridge and exported for the VRToolsCommands module. The VRToolsCommands builds the

entire scene graph using the GHBSGNode class. The GHBSceneManager then uses this tree for

building the haptic scene graph. Thus, this class acts as a medium for data transfer between

the CAD Plugin and the GHBridge.

GHBSimulationComponent: This is the base class for all the types of simulation components.

This class represents the neutral dual of the haptic node. This class extends the vhtNodeData

class. It stores important information such as the grasped-state, current-state, constraints list,

component name, etc. for the simulation components.

 59

GHBMechanicalTool: This class extends the GHBSimulationComponent class and for the tool

specific functionalities. It stores the tool state, list of compatible fasteners and the tool

designation properties.

GHBAssemblyComponent: This class represents an assembly component. It maintains a list of

mapped fasteners. The state of the assembly component depends on the states of the

fasteners that are mapped to it. We will take a closer look at the state management

architecture later in this chapter.

GHBMechanicalFastener: Fastener also being an assembly component extends the

GHBAssemblyComponent class. It manages fastener specific data such as attached tool

information, designation, its state, pitch and shank length.

Constraint Management Classes

Simulation components in GHBridge maintain their own list of constraints, which is

initialized, based on the tool fastener compatibility. This implementation does not use

assembly constraints for placing the assembly components in their assembled locations

except for the threaded fasteners. The assembly functionality is based on the initial

transformations of the components at the beginning of the simulation. It is assumed that all

the components are in their assembled state and their current transformation is stored. The

constraint checking and enforcing is implemented by the state classes for all the

components. Each constraint class implements the CheckConstraint function for checking if

the mating entities are close enough for the constraint to be enforced. It also implements the

EnforceConstraint method, which enforces a validated constraint on the simulation

components. Next section takes a closer look at the constraint and state management

implementation.

 60

GHBComponentConstraint: This is the base class for all the constraint types. It provides

functionality for maintaining a list of matching constraints. It also stores the current state of

the constraint along with the applied constraint information if the constraint is in applied

state. It also knows its owning simulation component, which is used by the state

management algorithms.

GHBPlanarConstraint: This class extends the GHBComponentConstraint class for implementing

the planar constraint. When applied it ensures that the two planes, defined by an origin point

and a normal vector are coplanar. The sensitivity of the constraint is controlled by the

following two factors:

• DEFAULT_ALIGNMENT_TOLERANCE: Tolerance for alignment between the

normals for the mating planes.

• DEFAULT_SEPARATION_TOLERANCE: Tolerance for minimum distance between

the mating planes.

GHBAxialConstraint: This class also extends the GHBComponentConstraint for implementing

the axial constraint used for mating the fasteners with their holes. This constraint forces two

axes to be coaxial when enforced.

It also uses the DEFAULT_ALIGNMENT_TOLERANCE and the

DEFAULT_SEPARATION_TOLERANCE factors for controlling the sensitivity of the

constraint.

GHBScrewJoint: This class extends the GHBAxialConstraint class for emulating the screw joint

behavior. It enforces a screw joint along with the axial constraint. This constraint is applied

to the fasteners when they are inside the hole. The axial translation along the hole axis can

 61

only be achieved by rotating the fastener. The magnitude of axial displacement is governed

by the pitch value for the fastener.

State Management Classes

The standard observer pattern has been implemented for the state management. The

states of the simulation components are interdependent. It is therefore necessary to

propagate a state change event for a component to the other components that might be

dependent on it for their states. Figure 6.7 shows the class diagram for all the different states

that the simulation components can be in based on their type.

Following is a brief description for the states of the components:

1. GHBSimulationComponent

a. GHBSimCompNotGrasped: The component is not grasped by the hand.

b. GHBSimCompGrasped: The component is grasped by the hand.

2. GHBMechanicalTool

a. GHBToolDisengaged: The tool is not attached to a compatible fastener.

b. GHBToolEngaged: The tool is attached to a compatible fastener.

3. GHBAssemblyComponent

a. GHBAsmCompUnconstrained: None of the fasteners mapped to the assembly

component are in place. This component can be grasped and disassembled.

b. GHBAsmCompPartiallyConstrained: Some of the fasteners mapped to the assembly

component are in place.

 62

c. GHBAsmCompFullyConstrained: All the fasteners mapped to the assembly

component are in place.

GHBSimCompState

GHBSimCompGrasped

GHBSimCompNotGrasped

GHBAsmCompState

GHBAsmCompFullyConstrained

GHBAsmCompPartiallyConstrained

GHBAsmCompUnconstrained

GHBFsntrState

GHBFsntrFullyConstrained

GHBFsntrPartiallyConstrained

GHBFsntrUnconstrained

GHBToolState

GHBToolDisengaged

GHBToolEngaged

GHBState «uses» GHBSimulationComponent

Figure 6.7: State Classes

4. GHBMechanicalFastener

a. GHBFsntrUnconstrained: The fastener is completely out of its hole and no

constraints are applied.

 63

b. GHBFsntrPartiallyConstrained: The fastener is partially out of the hole and is under

GHBScrewJoint constraint.

c. GHBFsntrFullyConstrained: The fastener is fully tightened in it hole and can move

only in one direction subject to the GHBScrewJoint constraint.

State Change Mechanism
Each simulation component has a current state. On every frame the GHBEngine

maintains a watch list of simulation components that are grasped or could potentially

undergo a change in position. After the haptic scene graph is updated, each component on

the list is asked to update itself. This update is handled by the current state of the

component. All the state classes implement an Update function that has all the logic to decide

if a state change is necessary. If necessary, the current state changes the state of the

component and propagates this state change event to all the other components that have

registered interest in its owner component. This is achieved because the GHBStateObserver

class. Each component has a GHBStateObserver associated with it. This class is responsible

for maintaining the list of simulation components that register interest in the owner

component.

 For instance, when a fastener is mapped to an assembly component, the assembly

component registers itself with the GHBStateObserver of the fastener. If a tool is engaged with

the fastener it gets added to the GHBEngine’s watch list. The fastener is in

GHBFsntrPartiallyConstrained state if it is being rotated and taken out of its hole. On every

frame GHBFsntrPartiallyConstrained state’s Update method uses the GHBScrewJoint constraint

for the fastener to determine if it is completely out of the hole. As soon as the fastener is

completely out of the hole a state change is triggered and the fastener goes to

GHBFsntrUnconstrained state. At this point the GHBState class notifies the GHBStateObserver

 64

associated with the fastener. The GHBStateObserver then notifies all the assembly

components that have registered interest in this fastener. The assembly components then

update their own state if necessary and similar sequence of events is triggered recursively

until the state of the entire scene graph is synchronized. Figure 6.8 shows a sequence

diagram for the relatively less complicated event of grasping a component.

d_simulation_manager d_engine d_hand_manager d_sg_manager

sim_comp d_cur_state_released

d_constraint_manager

comp_state_mediator

UpdateManagers

Process

GraspComponent

GraspComponent

EnforceConstraints

return

UpdateChange

return

return

return

ChangeState

Grasp a component

GraspComponent

No Comps
Affected

NotifyObserver

return

return

return

GRASPED

Figure 6.8 Component Grasping Sequence Diagram

 65

VRToolsCatalog Design

CATIA V5 supports a Catalog document capability, which satisfies all the

requirements laid out for the Tools/Fasteners library in chapter 5. Hence the library is

created as a CATIA V5 catalog and is named VRToolsCatalog.Catalog.

VRToolsCatalog Structure

The VRToolsCatalog adopts the library structure proposed in the previous chapter.

Following aspects of the catalog relate to the specifications from the proposed architecture.

1. The VRToolsCatalog has a tree structure consisting of chapters, sub-chapters and

families for maintaining the tools and fasteners models as shown in figure 6.9.

2. The top-level chapter in this catalog is named ‘VRTools’.

3. Each type of tool has a sub-chapter under the VRTools chapter.

4. All the fasteners are managed under the ‘Fasteners’ sub-chapter.

5. Each of the tool sub-chapters has two families named as ‘All’ and ‘Applicable’.

6. The ‘All’ family lists the description for all the tools of a particular type.

7. ‘Applicable’ chapter is used to filter out the tools that are compatible with the current

CATIA assembly on which the simulation is being run.

8. Each description in the catalog also stores information such as the Designation, Pitch,

Length and Name for the components.

 66

9. The VRTools WorkBench has a search for suitable tools command, which filters out the

relevant tools for a given model and adds them to the ‘Applicable’ chapter for each

type of tool.

Figure 6.9 VRToolsCatalog structure

Updating the VRTools catalog

CATIA V5 catalog documents are well structured and fairly easy to maintain.

Following guidelines need to be followed to maintain the integrity of the catalog data:

1. The VRToolsCatalog.Catalog is located in C:\Program Files\VRTools\Catalog\

 67

2. The Parts corresponding to the catalog entries are placed C:\Program

Files\VRTools\Parts\. This is not an requirement and parts in the catalog can be located

anywhere.

3. New VR Tools compatible models for tools and fasteners need to be added to the

VRToolsCatalog along with the necessary metadata in order to be able to use them with

the VRTools workbench.

4. A chapter or a family can be made current by double clicking on it in the tree view. The

current node is highlighted in blue.

5. A component can be added to a current family by clicking on the Add Component

button on the Data toolbar.

6. The user then needs to select a document for the component and populate the key word

values for the component in the Description Definition dialog box as shown in figure

6.10.

7. The Name keyword for the component should match the PartNumber inside the

CATIA document.

 68

Figure 6.10 Add Component

Modeling Guidelines

The VRToolsCatalog contains all fasteners and tools that are compatible with VR

Tools. Tools and fasteners are mapped using the designation of the fastener. The name

(part number) of the tool should have the designation of the fastener appended at the end

with an underscore before the designation. For example, if a bolt has a designation of

“M16”, any appropriate tool in the catalog that has “_M16” at the end of the name will be

considered a matching tool. This allows VR Tools to regulate the sizes of tools that can be

used with specific fasteners.

VR Tools Fasteners

This section lists all the fastener types supported in VR Tools. Each fastener type has

a list of requirements that needs to be met for making the fastener VR Tools compatible.

 69

Hex Bolts

1. Part Number should have “BOLT” in it

2. A reference line should be created along the bolt axis and named VRT_Axis

a. The axis should start at the base of the head and point downwards

3. Reference planes should be created on the 6 flat faces of the hexagonal bolt head and

named VRT_Plane1 through VRT_Plane6

a. These planes should be created offset from the surfaces with an offset of 0.0 as

shown in figure 6.11

4. A reference plane VRT_A_Plane should be created at the base of the bolt head such

that the plane normal points downward into the bolt shank

Figure 6.11 Catalog Hex Bolt

 70

Flathead Screws

1. Part Number should have “F_SCREW” in it

2. A reference line should be created along the bolt axis and named VRT_Axis

a. The axis should start at the base of the head and point downwards

3. Reference planes should be created on both the vertical faces of the screw head slot

and should be named VRT_Plane1 and VRT_Plane2 as shown in figure 6.12

a. These planes should be created offset from the surfaces with an offset of 0.0

4. A reference plane VRT_A_Plane should be created at the base of the screw head

slot such that the plane normal points downward into the screw shank

Figure 6.12 Catalog Flathead Screw

 71

Philip Screws

1. Part Number should have “P_SCREW” in it

a. A reference line should be created along the screw axis and named VRT_Axis

2. The axis should start at the base of the head and point downwards

3. Reference planes should be created on 4 flat faces of the screw head slot and named

VRT_Plane1 through VRT_Plane4 as shown in figure 6.13

a. These planes should be created offset from the surfaces with an offset of 0.0

4. A reference plane VRT_A_Plane should be created at the base of the screw head slot

such that the plane normal points into the screw shank

Figure 6.13 Catalog Philips Screw

 72

Allen Screws

1. Part Number should have “A_SCREW” in it

2. A reference line should be created along the screw axis and named VRT_Axis

a. The axis should start at the base of the head and point downwards

3. Reference planes should be created on the 6 flat faces of the hexagonal screw head slot

and named VRT_Plane1 through VRT_Plane6 as shown in figure 6.14

a. These planes should be created offset from the surfaces with an offset of 0.0

4. A reference plane VRT_A_Plane should be created at the base of the screw head slot

such that the plane normal points into the screw shank

Figure 6.14 Catalog Allen Screw

 73

CHAPTER 7

IMPLEMENTATION AND RESULTS

This chapter gives an overview of the implementation and deployment of the

developed solution. It also describes the user interface and functionality details of VR Tools.

Finally, it discusses the modeling guidelines for making tools and fasteners VR Tools

compatible.

Implementation and Deployment

 VR Tools consists of three software modules namely, VRToolsWbench.dll,

VRToolsCommands.dll and GHBridge.dll. VRToolsWbench.dll and VRToolsCommands.dll are

developed in C++ using the CAA RADE (Rapid Application Development Environment)

addin in Visual Studio 6.0.

CATIA V5 Workshops and Workbenches

The CAA V5 application window includes commands in menus and in the standard

toolbars that are common to all document types (Parts, assemblies etc.). Each document

type is associated with a workshop that includes commands pertaining to that document

type, which are added to the common menus and to the standard toolbars. Changing the

active document to another document changes the active workshop if the new active

document's type is different from the type of the previous document. A workshop can

include workbenches to gather commands dedicated to specific tasks to structure the end

user interface. Only one workbench can be active at any time.

 74

VRToolsWbench.dll implements the VRTools workbench. CATIA V5 application

knows about the workbench through an environment file that is used while launching the

application. The VRToolsCommands.dll implements all the commands exposed by the

workbench to the end user via toolbars and menus.

GHBridge

The GHBridge as discussed in the earlier chapters uses the API for the haptic

devices and implements the haptic scene graph. It is implemented as a C++ shared library

using Visual Studio 6.0.

VR Tools User Interface

 The VRTools workbench exposes its functionality to the user via a set of commands

made available through a docking VRTools Manage toolbar shown in figure 7.1.

Figure 7.1 VR Tools Toolbar

The toolbar provides buttons for the following commands.

Component-Fastener Mapping

This command enables the user to define associations between the assembly

components and the fasteners used in the model.

 75

Figure 7.2 Component-Fastener Mapping

As shown in figure 7.2, the user can select one or more assembly components. If a

single assembly component is selected, a list of fasteners associated with it is shown under

the Mapped Fasteners list. The user can update the mapping by adding or removing mapped

fasteners by selecting them from appropriate lists and clicking the Add/Remove buttons.

The mappings defined using this utility are stored permanently with the CAD model as

meta-data. Hence the user has to go through the process of mapping fasteners to assembly

component only once for each assembly.

Search for Suitable Tools

 This command preprocesses the VRTools catalog and finds the tools that are

compatible with the current assembly model. The tools are matched with the fasteners based

on their type and designation and added to the Applicable chapter(s) as shown in figure 7.3.

 76

Figure 7.3 Catalog preprocessing

Select Tools/Fasteners

This commands brings up the VRTools catalog and enables the user to add tools and

fasteners from the catalog to the current model. The user can browse through the catalog

tree structure and has access to all the information stored along with the models. Figure 7.4

shows the contents of Allen Screws family under the Fasteners chapter. Any catalog

component can be added to the current model by double-clicking on it.

 77

Figure 7.4 Select Tools/Fasteners

Simulation

This command brings up the simulation setup and runtime dialog box. The user can

select the haptic devices that will be used during the simulation. The hand-scaling factor can

also be set on this dialog box. It also provides button for starting and stopping the

simulation as shown in figure 7.5.

Figure 7.5 Simulation Setup and Runtime

 78

Demonstration

 This section demonstrates a typical disassembly operation using a simple assembly.

Figure 7.6 shows the assembly tree hierarchy for the demonstration model.

Figure 7.6 Demonstration Model Assembly Structure

The demonstration is depicted using a series of pictures taken during important

stages of the simulation. Before starting the simulation, the component-fastener mapping

has been defined for the simple 3-component assembly using the component-fastener

mapping utility shown in figure 7.2. A compatible Allen wrench for one of the Allen screws

is also imported from the catalog. Figures 7.7a through 7.7d walk through different steps of

the simulation.

In figure 7.7a the user has grasped the tool and is able to move it freely. At this point

none of the assembly components can be disassembled as all the fasteners mapped to them

are in place.

 79

Figure 7.7a Demonstration: Tool in hand

In figure 7.7b the tool (allen wrench) is engaged with the fastener (allen screw) when

it gets in a close to the fastener. At this point the user can rotate the tool to unscrew the

fastener.

Figure 7.7b Demonstration: Tool Engaged

 80

Figure 7.7c shows the fastener being removed after it is completely out of the hole.

The user can now try to disassemble the components held down by this fastener.

Figure 7.7c Demonstration: Fastener Removed

 Figure 7.7d depicts the disassembly step where the component held down by the

removed fastener can be displaced from its assembled location.

Figure 7.7d Demonstration: Disassemble Component

 81

CHAPTER 8

SUMMARY AND FUTURE WORK

This chapter summarizes the goals achieved while developing the open architecture

for implementing virtual assembly tools functionality. It also gives a brief account of

development of a prototype for VR cutting tools functionality to demonstrate the flexibility

of the proposed architecture. Finally it lists limitations of the current architecture, which also

provides a direction for future development of virtual assembly tools functionality.

Summary

 In this research we proposed and demonstrated an open architecture for integrating

CAD systems and Haptic devices while developing virtual assembly environments

supporting virtual tools. The high level architecture proposed the CAD plugin and the

GHBridge as the two main software modules. We further developed a detailed architecture

and defined key classes and their roles for the CAD Plugin and the GHBridge. Thus, the

proposed model facilitates building of immersive environments for performing virtual

assembly operations within CAD systems using various haptic devices for user interaction.

Some of the key features of the proposed architecture are as follows:

1. It converts the familiar CAD environment into virtual environment for assembly

operations.

2. It leverages off of the CAD system’s visualization capabilities.

3. It is extensible and can be applied to various types of mechanical tools.

4. It is flexible in facilitating usage of various haptic devices.

 82

5. It provides a guideline for building and managing a library of virtual tools.

In order to demonstrate the extensibility of the proposed architecture we

implemented a prototype for supporting virtual cutting tools called VRCut. The following

section gives a brief description of the prototype implementation for cutting tools

functionality.

VRCut Prototype

The VRCut prototype is also developed for CATIA V5 and uses the CyberGlove

from Immersion Corporation as the haptic device. In the Haptics Enabled Virtual Tools

Environment, the user is able to grasp a cutting tool in a CATIA V5 environment with the

virtual hand and perform a planar cut through the assembly. Thus, the intent is to allow the

user to interactively split an assembly and manipulate the fragmented pieces. The module

developed has the capability to be used for any CAD assembly, thus providing a very wide

range of applications. The cutting tools supported by the current version of the software are

a circular saw and a jig saw. The only preprocessing required for the simulation is that the

cutting tool, with a certain naming convention, needs to be added at the top of the assembly

that is being cut and manipulated.

The focus of this phase was on developing algorithms for visualizing and

implementing assembly cut operations for CAD models. An extensive literature review led

to the possibility of using voxels. A test-case cutting program was developed in C++ to

further investigate the use of voxels. Since the algorithms had to be implemented for a CAD

model, functionality supported by the CAD system (CATIA V5 in this case) was also taken

into account. CATIA supports a variety of Boolean operation that can be used for emulating

material removal operation. The “Remove” feature supported by the Assembly Workbench

 83

in CATIA V5 enables the user to remove the intersecting geometry between two bodies.

This prototype uses the “Remove” operation for simulating the cutting process. For any cut

that results in two disjoint solids, the “Remove Lump” command from CATIA is used via a

macro to create two separate bodies. These bodies can then be manipulated independent of

each other. Figures 8.1 through 8.3 show various stages of the cutting operation.

Figure 8.1 Cutting Saw in Hand

 84

Figure 8.2 Assembly Cut

Figure 8.3 Assembly cut into two halves

 85

Use of the Open Architecture in VRCut

 VRCut prototype adopts the open architecture proposed in this research. Except for

the algorithms that were implemented to perform the cutting operations on the assemblies

all the functionality from VR Tools implementation was used. The visualization scheme,

scene graph management, constraints and state management were directly used without any

changes. Thus we were able to demonstrate the extensibility of the proposed open

architecture via implementation of the VRCut prototype.

Future Work

While implementing the VRTools functionality and the VRCut prototype we came

across some of the limitations of the architecture proposed in this work. These limitations

can be overcome by further developing the architecture. Following are some of the

limitations in the current architecture that can be addressed in future work:

• Current architecture for the CAD Plugin is designed to be tightly integrated with the

CAD API. Implementing the VRTools functionality for a new CAD system will involve

complete re-writing of the CAD Plugin code. This effort can be reduced to minimum by

breaking down the CAD Plugin into a CAD-neutral component that has all the

algorithms and logic and a utility library implementing the CAD API.

• Current architecture does not allow design modifications to the assembly components

while the simulation is running. The user has to stop the simulation to make design

changes to the parametric CAD model. The architecture can be further developed to

expose the CAD parameters in the virtual environment and allow the user to change

 86

them while running the simulation. The simulation environment can then be

automatically updated once the CAD system regenerates the updated CAD model.

 87

REFERENCES

[1] Burdea, G., 2000, "Haptics Issues in Virtual Environments," The 18th Computer Graphics

International 'Humans and Nature' Conference, Geneve, Switzerland.

[2] Zachmann, G., and Rettig, A., 2001, "Natural and Robust Interaction in Virtual

Assembly Simulation,” 8th ISPE International Conference on Concurrent Engineering: Research

and Applications (ISPE/CE2001), July, Anaheim, California, USA.

[3] Constantinescu, D., Salcudean, S. E., and Croft, E. A., 2005, "Local Model of

Interaction for Haptic Manipulation of Rigid Virtual Worlds," The International Journal

of Robotics Research, 24(10), pp. 789-804.

[4] Regenbrecht, H., Hauber, J., Schoenfelder, R., and Maegerlein, A., 2005, "Virtual Reality

Aided Assembly with Directional Vibro-Tactile Feedback," Proceedings of the 3rd

international conference on Computer graphics and interactive techniques in Australasia and South

East Asia, Dunedin, New Zealand.

[5] Coutee, A. S., Mcdermott, S.D., and Bras, B., 2001, "A Haptic Assembly and

Disassembly Simulation Environment and Associated Computation Load Optimization

Techniques," ASME Journal of Computing and Information Science, 1(2), pp. 113-122.

[6] McDermott, S., and Bras, B., 1997, "Development of a haptically enabled dis/re-

assembly simulation environment," Proceedings ASME Virtual Environment Systems

Conference, Las Vegas.

[7] Coutee, A. S., and Bras, B., 2004, "A Comparison of Two Collision Detection Libraries

in a Haptic Simulation Environment," Proceedings of DETC' 04, ASME 2004 Design

 88

Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt

Lake City, Utah.

[8] Zhu, Z., Gao, S., Wan, H., Luo, Y, and Yang, W., 2004, "Grasp Identification and Multi-

Finger Haptic Feedback for Virtual Assembly," Proceedings of DETC' 04, ASME 2004

Design Engineering Technical Conferences and Computers and Information in Engineering Conference,

Salt Lake City, Utah.

[9] Liu, X., Doods, G., Mccartney, J., and Hinds, B.K., 2004, "Design and Deformation of

Cad Surface Models with Haptics," Proceedings of DETC' 04, ASME 2004 Design

Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt

Lake City, Utah.

[10] Wan, H., Gao, S., Peng, Q., Dai, G., and Zhang, F., 2004, "Mivas: A Multi-Modal

Immersive Virtual Assembly System," Proceedings of DETC' 04, ASME 2004 Design

Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt

Lake City, Utah.

[11] Johnson, D. E., and Cohen, E, 2004, "Unified Distance Queries in a Heterogeneous

Model Environment," Proceedings of DETC' 04, ASME 2004 Design Engineering Technical

Conferences and Computers and Information in Engineering Conference, Salt Lake City, Utah.

[12] Vance, J., 2003, "Interactive Product Development in a Virtual Environment Utilizing

Haptics," 2003 NSF Design, Service and Manufacture and Industrial Innovation Grantees and

Research Conference Proceedings, Birmingham, AL.

 89

[13] Borro, D., Savall, J., Amundarain, A., Gil, J.J., Garcia-Alonso, A., and Matey, L., 2004,

"A Large Haptic Device for Aircraft Engine Maintainability," Computer Graphics and

Applications, IEEE, 24(6), pp. 70-74.

[14] Ng, F. M., Ritchie, J. M., Simmons, J. E. L., and R. G. Dewar, 2000, "Designing Cable

Harness Assemblies in Virtual Environments," Journal of Materials Processing

Technology, 107(1-3), pp. 37-43.

[15] Dewar, R. G., Ritchie, J.M., Carpenter, I.D., and Simmons, J.E.L., 1997, "Tools for

Assembly in a Virtual Environment," Proceedings of ICMA '97, University of Hong Kong.

[16] Ritchie, J. M., Dewar, R.G., and Simmons, J.E.L., 1998, "Assembly Process Planning

Using Immersive Virtual Reality – an Industrial Case Study," Proceedings of PRASIC' 98 -

Robotica, University Transylvania of Brasov, Romania.

[17] Gupta, S. K., Paredis, C., and Sinha, R., 2001, "Intelligent Assembly Modeling and

Simulation," Assembly Automation, 21(3), pp. 215-235.

[18] Gomes de Sá, A., Jakob, U., and Zachmann, G., 1999, "Virtual Reality as a Tool for

Verification of Assembly and Maintenance Processes".

[19] McDermott, S., and Bras, B., 1997, "Development of a haptically enabled dis/re-

assembly simulation environment", Proceedings ASME Virtual Environment Systems

Conference, Las Vegas, September 1997.

[20] Jayaram, S., Jayaram, U., Wang, Y., Tirumali, H., Lyons, K., and Hart, P., 1999, "Vade: A

Virtual Assembly Design Environment," IEEE Computer Graphics and Applications,

Virtual Reality, 19(6), pp. 44-50.

 90

[21] Wang, Y., Jayaram, U., Jayaram, S., and Shaikh, I., 2003, "Methods and Algorithms for

Constraint Based Virtual Assembly," Virtual Reality, 6, pp. 229-243.

[22] Jayaram, S., Vance, J., Gadh, R., Jayaram, U., and Srinivasan, H., 2001, "Assessment of

VR Technology and Its Applications to Engineering Problems," ASME Journal of

Computing and Information Sciences in Engineering, 1, pp. 72-83.

[23] Jayaram, U., Jayaram, S., Dechenne, C., Kim, Y., Palmer, C., and Mitsui, T., 2004, "Case

Studies Using Immersive Virtual Assembly in Industry," Proceedings of DETC' 04, ASME

2004 Design Engineering Technical Conferences and Computers and Information in Engineering

Conference, Salt Lake City, Utah.

[24] Jayaram, U., Jayaram, S., Shaikh, I., Kim, Y., and Palmer, C., 2006, "Introducing

Quantitative Analysis Methods into Virtual Environments for Real-Time and

Continuous Ergonomic Evaluations," Computers in Industry, Accepted for publication.

[25] Shaikh, I., Jayaram, U., Jayaram, S., and Palmer, C., 2004, "Participatory Ergonomics

Using VR Integrated with Analysis Tools," Proceedings of the 2004 winter simulation conference,

Washington D.C.

[26] Shaikh, I., Kim, Y., Jayaram, S., Jayaram, U., and Choi, H., 2003, "Integration of

Immersive Environment and Rula for Real Time Study of Workplace Related

Musculoskeletal Disorders in the Upper Limb," ASME Proceedings of DETC2003,

Chicago, IL.

[27] Jayaram, U., Tirumali, H., Jayaram, S., and Lyons, K., 2000, "A Tool/Part/Human

Interaction Model for Assembly in Virtual Environments," Proceedings of DETC' 00,

 91

ASME 2000 Design Engineering Technical Conferences and Computers and Information in

Engineering Conference, Baltimore, Maryland.

[28] Gurocak, H., Jayaram, S., Parrish, B., and Jayaram, U., 2003, "Weight Sensation in

Virtual Environments Using a Haptic Device with Air Jets," ASME Journal of

Computing and Information Science, 3(2), pp. 130-135.

[29] http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vcug98/html/_asug_home_page.3a_.spy.2b2b.asp

