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OPEN ARCHITECTURE FOR EMBEDDING VR BASED  

MECHANICAL TOOLS IN CAD 

Abstract 

By Hrishikesh S Joshi, M.S. 
Washington State University 

December 2006 
 
Chair: Sankar Jayaram 

Virtual assembly technology is revolutionizing the way we design mechanical 

assemblies. This technology enables the users to interact with virtual models of mechanical 

assemblies in an immersive environment. The user interacts with the virtual environment via 

various hardware devices, which can track motion and other user inputs.  These devices 

Haptic devices are also capable of providing touch and force feedback to the user. The 

existing virtual assembly systems however are not tightly integrated with the CAD systems 

that are primarily used for modeling the assemblies. This disconnect between the CAD 

systems and virtual reality (VR) environments is one of the most important limitation in the 

existing virtual assembly systems. In this thesis we propose an open architecture for 

embedding VR based virtual mechanical tools in the CAD systems. The goal of this research 

is to enhance the CAD experience by allowing the user to interact with the CAD assemblies 

inside a virtual environment in a more realistic manner.  

The open architecture is designed to leverage off of the inherent visualization 

capabilities provided by any commercial CAD system. The architecture consists of a CAD 

plugin module, which is primarily responsible for interacting with the CAD system and 

handling the visualization through the application programming interface (API) exposed by 
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the CAD system. The other significant module of the proposed architecture is the Graphics-

Haptics bridge (GHBridge), which is built on top of the haptics API. The GHBridge enables 

the integration of haptic devices with diverse visualization systems. Thus, the CAD plugin 

and the GHBridge together facilitate tight integration between the CAD system and the 

haptic devices. We also propose a CAD model library structure for managing virtual tools 

that can be used for assembly operations in the virtual environment. 

The proposed architecture is implemented to provide virtual assembly functionality 

for CATIA V5 CAD system and VirtualHandTM toolkit haptics API. This implementation 

(VR Tools) supports assembly and disassembly operations on CATIA assemblies that use 

threaded fasteners. The user can choose from available virtual tools to manipulate 

compatible fasteners in the virtual environment.  
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CHAPTER 1 

INTRODUCTION 

Virtual Reality (VR) has excited researchers for over several decades. The technology 

though has fallen short on delivering on the promises and fulfilling the visions due to 

limitations imposed by the available computing power at disposal of the researchers.  In 

recent times VR systems have been getting better with improvements in the available 

computing capabilities and due to research in the field. VR systems are finding a wide range 

of applications in fields of engineering, medicine, defense and gaming. A significant amount 

of research is being conducted in all those fields for improving the VR technology and 

making the VR experience more realistic. The automotive industry has been one of the first 

to use VR systems and environments in the design-concept phases for new models. VR 

environments have also been effectively used in ergonomics studies. Mechanical engineering 

companies have supported research activities in the field of virtual assembly- disassembly. 

These tools have enabled engineers to study the assembly- disassembly processes intuitively.  

A very basic assembly- disassembly operation that is typically simulated in a VR 

system involves real-time human interaction using hands with the assembly components in a 

VR environment. The next level of complexity comes when assembly- disassembly 

operations are carried out using virtual tools. In this kind of a system, the human hand has to 

be able to manipulate a tool and the tool in turn has to manipulate an assembly component.  

The system can be developed further to make it more realistic by supporting usage of haptic 

devices for providing touch and force feedback while working in the VR environments. 

These kinds of VR environments that provide engineers with the ability to study assembly 
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operations offer lot more insight into potential design flaws from the viewpoint of design for 

assembly. The engineers can get feedback on basic unknowns such as: is the part accessible 

to the tool? Is there enough space for the tool motion during the assembly process? Is there 

enough clearance for the hand to operate the tool? Thus VR systems significantly reduce the 

need for expensive and time-consuming physical prototyping.  

Several virtual assembly environments have been developed to simulate the assembly 

process. In these environments the user can simulate industrial assembly scenarios. The 

quality of immersive experience in VR environments depends heavily on visual and haptic 

feedback. Most of the developed systems use haptic devices that enable manual interaction 

with the virtual environments. These systems implement proprietary 3D viewers capable of 

rendering the virtual environment in stereo for visual feedback. One of the drawbacks of 

these systems though is their disconnect with the CAD systems that are used for modeling 

the assembly components. The geometry of virtual objects in these systems is typically 

imported from the CAD systems in the form of polygonal data. Some of the existing 

systems such as the Virtual Assembly Design Environment (VADE) developed at the 

Virtual Reality Computer Integrated Manufacturing (VRCIM) Lab at Washington State 

University do provide limited CAD integration. While performing the assembly operation in 

VADE the user can make design modifications to the parts by accessing pre-selected CAD 

parameters in the VR environment.  

In this research, we have attempted to overcome the following limitations of existing 

virtual reality (VR) systems for assembly operations: 

1. User has to leave the familiar CAD environment that he is used to and work in a new 

UR environment. 
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2. Most of the Virtual assembly systems do not provide any functionality for 2-way 

integration with CAD. 

3. Some Virtual assembly systems, which provide loose integration with CAD systems, 

require model preprocessing to tag the parameters that are made available in the VR 

environment.  

This thesis focuses on developing an open architecture for embedding VR based 

mechanical tools in CAD system. Some of the primary goals set forth for this research were 

as follows: 

1. Allow the implementation of virtual tools capability in the CAD system environment. 

2.  Propose an architecture for interfacing haptic devices directly with the CAD system. 

3. Support functionality for building a library of mechanical tools, fasteners etc. 

4. Implement the proposed architecture using CATIA V5 as a CAD system and 

VirtualHand Toolkit as the haptics API.  

5. Support screw joint based mechanical fasteners such as bolts, screws, allen, bolts etc. and 

compatible tools. 

In the next chapter we take a detailed look at the previous research done in the field 

of virtual assembly environments and clearly define the goals for this research. 
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CHAPTER 2 

LITERATURE SURVEY AND PROBLEM STATEMENT 

Several assembly design and planning applications have been developed by various 

researchers to address a variety of design and manufacturing problems. Researchers have 

identified assembly representation, design for assembly, assembly/disassembly operation 

sequencing, motion planning, and tool accessibility as major areas in assembly modeling and 

simulation. Many researchers have also developed useful haptic and force feedback devices 

and applications [1]. In this section, we present a brief summary of work done in these areas, 

in particular as it relates to virtual assembly. 

 Zachman et al. [2] describe a VR-based method of simulating complex assemblies 

for the automotive environment. They utilize menu and voice driven commands to constrain 

interactive object motion inside the VR system, Virtual Design II.  For a screw movement, 

the tool axis is aligned to the screw axis only when collision occurs between the parts. A 

thresholding mechanism was created to switch off the snapping constraint when the user 

moves the tool a specified distance from the fastener. Sets of associations were used to 

match different tools with their respective screws. Less rigid mechanisms were also created 

to allow coincident sliding motion between parts during insertion movements in confined 

spaces (such as a car door) if no force feedback is available.  This mechanism uses a copy of 

the object, or “ghost”, which allows it to penetrate other parts while still being rigidly 

constrained to the hand.  

 Constantinescu et al. [3] have developed a local model of rigid body interaction that 

provides haptic feedback while manipulating a virtual tool within a virtual environment. 
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Their controller allows a user to feel physical phenomenon with the rigid environment such 

as collision and friction. This method allows the user to perceive tightly confined spaces and 

manipulate stiffer objects. They state one of the limitations as being that the environment 

does not allow dynamic manipulation of other parts other than the single tool.  

 Regenbrecht et al. [4] describe a method of utilizing tactile force feedback (TFB), in 

place of more costly force feedback systems, to assist the user in assembly processes. TFB 

associates the sensation of touch as perceived by stimulation on the surface of the skin. The 

stimulation is provided using separate vibro-actuators for three degree-of-freedom response. 

Their device, TACTOOL, was tested using tasks such as placing a generator in an engine as 

well as placing a battery in an engine cavity and proved beneficial in aiding collision 

feedback.        

 Coute et al. [5] and McDermott et al. [6] present Haptic Integrated Dis/Re-assembly 

Analysis (HIDRA), a haptically enabled assembly/disassembly simulation environment.  This 

work is primarily aimed at providing haptic interface into a disassembly simulation 

environment. The haptic, graphic, and collision detection representations for the objects are 

created from the geometry obtained from the CAD system. They describe a haptic feedback 

and a graphic feedback loop that lets real-time, interactive haptic simulation of complex 

mechanical operations. The aim is to ultimately incorporate a set of virtual tools 

(screwdrivers, wrenches, pliers, etc.) for the user. This work has been extended [7] to 

characterize perception of weight in the virtual environment. The experiments are designed 

in such a way that the user can judge the weight of the model in virtual reality with the help 

of haptic feedback devices and provide an experience very similar to the weights in real 

environment.  
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 Zhu et al. propose an approach for grasp identification and multi-finger haptic 

feedback to provide a realistic force sensation while performing the virtual assembly tasks 

[8]. A Voxmap-PointShell (VPS) algorithm is used to detect collisions and the result of this 

collision detection is used to guide the motion of the virtual hand.  

 Liu et al. discuss how haptic devices can be used in the design and deformation of 

complex 3-D models [9]. The haptic devices help in touching a native B-rep CAD model 

and using the tactile senses to manipulate it. Wan et al. present MVIAS, a Multi-modal 

Immersive Virtual Assembly System, which provides the user with an intuitive and natural 

way of assembly evaluation and planning [10]. The user interaction includes realistic virtual 

hand interaction, force feedback and real time display of complex assemblies.   

 Several key algorithms have been proposed to handle various aspects of geometry 

computations required in haptics.  For example, Johnson et al. propose a generalized method 

to compute the minimum distance between two models in a virtual scene, which is a 

fundamental operation in simulation, haptics, and path planning [11]. Research has been 

done in Iowa state university to couple a CAD model to the analysis model in a 3-D 

environment to study the stress distribution within the product because of the shape changes 

[12]. Haptic devices have been used in this research to provide additional information related 

to feasibility of design and the impact of shape changes on the actual assembly. VR system 

and integrated haptic devices have also been used for the testing of aircraft engines [13]. This 

helps to reduce the cost and avoid the necessity of physical mock-ups for maintainability. 

Research for creating tools for cable harness design in virtual environment has been done 

[14, 15]. An industrial case study has also been put forth consisting of Assembly Process 

Planning using Immersive Virtual Reality [16].  
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 Gupta et al. [17] have developed high fidelity assembly simulations and visualization 

tools that can detect assembly related problems without going through physical mock-ups. 

These tools can also be used to create easy to visualize instructions for performing assembly 

and service operations.  

Gomes et al. [18] in Germany have developed a VR based application used for 

verification of assembly and maintenance processes. They investigate steps needed to apply 

virtual reality for virtual prototyping to verify assembly and maintenance processes.  The 

authors have developed a three-layer framework to meet strategic and operative objectives. 

The three layers are the scene graph layer, the script layer, and the application layer. The 

scene graph layer is the CAD interface to the virtual environment, while the scripting layer 

drives the events. The application layer provides specific user interfaces depending on the 

user intended application domain. Assembly tools have been incorporated in the 

environment. Tools snap onto screws and are constrained, based on the snapping paradigms. 

The snapped screw is made to follow a 1-DOF rotational constraint that is triggered by 

events.  

 McDermott et al. [19] present Haptic Integrated Dis/Re-assembly Analysis 

(HIDRA), a haptically enabled assembly/disassembly simulation environment.  This work is 

primarily aimed at providing haptic interface into a disassembly simulation environment. The 

haptic, graphic, and collision detection representations for the objects are created from the 

geometry obtained from the CAD system.  They describe a haptic feedback and a graphic 

feedback loop that lets real-time, interactive haptic simulation of complex mechanical 

operations. Currently the users can only manipulate and feel the parts with virtual fingers. 

The authors describe that the aim is to ultimately incorporate a set of virtual tools 

(screwdrivers, wrenches, pliers, etc.) for the user. 
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Significant work has been done at Washington state university for the last 12 years in 

Virtual Assembly design environment “VADE”, including  [20-22]. Interested readers will 

find an introduction to the basic concepts of virtual assembly and the approaches to 

constraint management, kinematics, etc. in these papers. VADE has been tested and used for 

various industrial case studies [23]. Ergonomic software has also been integrated with 

VADE for evaluating the ergonomic issues of the assembly process [24, 25]. One of the 

ergonomic features called RULA has been integrated with VADE for the assessment of right 

upper limb [26]. A tool-hand interaction model for assembly in virtual environments has 

been created [27]. Another project that was completed created a haptic device for weight 

sensation [28]. 

Problem Statement 

As seen in the previous section, several current VR systems provide environments 

for simulating the mechanical assembly process. Most of these systems do not support 

integration with the CAD systems that are used to model the assemblies. They use neutral 

data formats to extract the geometry information out of the CAD systems as tessellated 

models.  

Virtual Assembly Design Environment (VADE) developed at the Virtual Reality 

Computer Integrated Manufacturing (VRCIM) Lab at Washington State University goes a 

step further and provides two-way integration with CAD. The user, though outside the CAD 

environment, can access certain CAD parameters and modify them in the VR environment. 

VADE is capable of communicating these changes back to the CAD system. The CAD 

system then updates the models based on the user input and writes out updated polygonal 

data for the assembly components.  
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The limitations of existing virtual assembly systems listed in the previous chapter 

provide the motivation for this work. The basic goal of this research is to propose and 

implement an architecture to support virtual assembly tools for simulating assembly/ 

disassembly operations in the CAD systems. Some of the key challenging aspects of this 

work will involve the following tasks: 

1. Using the CAD visualization system for simulating the immersive virtual environment 

for assembly operations. 

2. Extracting the assembly hierarchy and the geometry information from the CAD models. 

3. Building and maintaining the haptic scene graph using the API provided by haptics 

device manufacturer. 

4. Synchronizing the visual and the haptic scene graphs during simulation. 

5. Managing the tool-fastener interaction through constraints. 

6. Managing the states of various simulation components. 

7. Providing functionality for building and maintaining tools and fasteners library. 

8. Designing and implementing an open architecture that will allow these capabilities to be 

quickly adapted for other tools, CAD systems, and haptic devices. 

 In the next chapter we discuss in details a prototype implementation of this 

functionality. The prototype was implemented as a proof of concept to study the feasibility 

of the proposed research. 
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CHAPTER 3 

PROTOTYPE IMPLEMENTATION 

This chapter discusses a prototype implementation of the virtual assembly 

functionality using virtual tools (VR Tools) for CATIA V5 CAD system and VirtualHandTM 

toolkit haptics API. It was decided to do a preliminary feasibility study before developing a 

complete production version of the VR Tools software. The following section lists the goals 

for this phase. 

Goals of Prototype 

 

• To demonstrate the virtual tools capability for assembly/ disassembly operations on a 

sample CATIA V5 assembly model consisting of mechanical fasteners.  

• To support limited variety of mechanical fasteners such as bolts and allen screws and 

compatible tools.  

• To use existing commercial software as much as possible and keep custom software 

development to a minimum.  

Software and Hardware Systems 

Based on the requirements laid down by Sandia and available software and hardware 

modules, the following systems were chosen for performing the feasibility analysis. 
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CATIA V5-R15 (CAD System) 

Sandia chose CATIA V5 as the CAD system for developing the VR Tools 

technology. A sample model consisting of a multi-part platform assembly that used allen 

screws and hex bolts as fasteners was provided. Sample models for tools such as Box 

wrenches, Allen wrenches and Flathead screwdrivers were created in CATIA. The CATIA 

Kinematics workbench was used extensively for creating screw joints between the fasteners 

and other assembly components.  

VirtualHand® for V5 (VH4V5 -CATIA Workbench) 

VH4V5 is a CATIA V5 workbench developed by Immersion Corporation 

(Manufacturer of the Cyber Glove, Cyber Grasp and Cyber Force haptic systems). This 

workbench enables the haptic devices to interface with CATIA and use it as a visualization 

system for the haptic scene graph. It enables the user to control a virtual hand inside CATIA 

thereby facilitating assembly manipulations. It is capable of extracting the graphical 

representation from the CATIA models for building the haptic scene graph. The user can 

also manipulate the objects in the scene graph by using the Virtual Hand through the Cyber 

Glove. It synchronizes the graphical representation in CATIA with the haptic scene graph 

for real time scene update during the simulation.  

CyberGlove®, CyberGraspTM & CyberForceTM(Haptic devices) 

Various haptic devices were used for enabling the interaction between the user and 

the virtual assembly environment. The CyberGlove was used as a data acquisition device to 

capture the motion of a human hand using an array of strain gauges mounted on a glove. 

The CyberGrasp provides touch and grasping feedback thereby making the simulation more 
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realistic. The CyberForce provides force feedback enabling the user to experience the forces 

that they would normally experience from working with the real objects.  The haptic devices 

used are all made by Immersion Corporation. Figure 3.1 shows the CyberGlove and the 

CyberGrasp. 

 

Figure 3.1: CyberGlove and CyberGrasp 
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VirtualHand for V5 evaluation 

VirtualHand for V5 supported some functionality that was required to demonstrate 

the VR Tools capability. However, as VirtualHand for V5 was not an open source system it 

was not possible to develop it further to achieve all the goals set forth for this research. As a 

result we decided to use VirtualHand for V5 and add external capabilities in order to provide 

a workable demonstration for implementing the prototype. Significant amount of 

investigation was done in order to understand the existing capabilities of VirtualHand for V5 

and how they can be used in this project. Following are some of the key strengths and 

limitations that were discovered during this exercise. 

Strengths of VirtualHand for V5: 

1. Capability to parse the CATIA assembly tree and build a haptic scene graph. 

2. Capability to perform collision detection between the hand and other objects, thereby 

enabling grasping. 

3. Capability to enforce assembly and kinematics constraints during the simulation. 

4. Capability to provide grasp & force feedback during the assembly process.  

Limitations of VirtualHand for V5: 

1. Collision detection is performed only between the hand and the components.  There are 

no component-to-component collision checks. 

2. Assembly or Kinematic constraints required to implement the tool-fastener interaction 

cannot be applied or modified dynamically during the simulation.  
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3. Gripping algorithm is not very realistic particularly for small components. It is very 

difficult to maintain a grip on small parts for manipulation. The fingers tend to stick to 

the parts and significant practice is required to become familiar with the process. Due to 

this problem, it was decided to scale the sample assembly models up to make them larger 

and easier to manipulate. Also, the tools were modeled with extended and thickened 

handles to allow easier gripping without obstruction from other parts. 

The next section discusses various methodologies adopted to overcome the above-

mentioned limitations while implementing the VR Tools prototype. The implementation 

went through quite a few changes based on the results of various approaches.  

Implementation 

Approach 1:  Reorganize assembly hierarchy 

It was observed that VirtualHand for V5 does its own constraint management and 

does not enforce any dynamically applied constraints during the manipulation process. As 

the user could take the wrench and align it with the bolt in 6 different possible locations, it 

was necessary that the constraints be applied dynamically. It was also observed that 

VirtualHand for V5 treated a sub-assembly as a single body and did not allow any relative 

motion between its components. Hence one of the very first approaches involved 

development of an algorithm for dynamically reorganizing the assembly hierarchy to 

simulate coordinated motion between the fastener and engaged tool. Therefore, it was 

required that the wrench be in the top-level assembly when it is not engaged with a bolt. In 

this state the user can move it freely and align it with the bolt. Once aligned it was important 
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that the wrench be constrained to the bolt and cause the bolt to rotate along with it. Hence it 

was necessary to dynamically change the assembly hierarchy in the CATIA model. 

It was decided to use existing VirtualHand for V5 capabilities for interacting with 

CATIA to allow manipulation of assemblies, while a separate program would reorganize the 

assembly hierarchy tree inside CATIA. This reorganization method allowed us to manipulate 

a tool in engaged and disengaged state using VirtualHand for V5.  In the engaged state, the 

assembly hierarchy would be changed to make the tool a child of the bolt assembly. This 

would facilitate concurrent rotation of the tool (wrench) and the bolt.  

Figure 3.2 depicts two different assembly hierarchies. In state I the wrench is in the 

top-level assembly and can be grabbed and moved around. In state II the wrench is part of 

the bolt sub-assembly, effectively forming a rigid joint with the bolt. 

Top Level Assembly

Wrench part

Bolt Sub-assembly

Bolt part

Top Level Assembly

Wrench part

Bolt Sub-assembly

Bolt part

State I State II

 

Figure 3.2: Reorganize assembly hierarchy 

 

Implementation of the above discussed solution involved development of a CATIA 

Workbench “addin” for manipulating the assembly hierarchy. This addin was activated using 
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a simple toolbar button created inside the CATIA assembly workbench. The basic function 

of the toolbar button was to toggle the assembly structure between the two hierarchies 

depicted in Figure 3.2. The user could pick up a tool and bring it close to any bolt for 

simulation. At this point the user would have to interrupt the VirtualHand for V5 simulation 

loop by stopping the manipulation. The user would then initiate the assembly restructuring 

code by pressing the addin toolbar button.  

Constraints creation for tool placement 
The assembly-restructuring algorithm was designed to find the closest edge on the 

closet bolt and add the tool to the bolt sub-assembly. Assembly constraints were created so 

that the tool is correctly located with respect to the bolt. The user could then re-start the 

VirtualHand for V5 manipulation process. At this point VirtualHand for V5 reloaded the 

assembly and its scene graph with the updated assembly hierarchy and constraints. This 

enabled the user to rotate the tool for tightening or loosening the bolt. Pressing the addin 

button after stopping the simulation could then restructure the assembly hierarchy. The user 

could then disengage the tool by restarting the simulation. This sequence could be repeated 

as many times as necessary to fully tighten or loosen all of the active bolts in the assembly. 

To achieve the creation of dynamic constraints a set of datum planes and datum 

points was needed for reference. A hex bolt has six faces, so opposite faces were named 

FACE A1 and A2, B1 and B2, and C1 and C2.  Planes and a datum point were also created 

tangent to each bolt edge. Finally a datum plane was created on the top surface of the bolt 

for height alignment with the wrench. These planes were used as references for the 

constraints, enabling a rigid connection between the bolt and wrench.  

Due to the similarities between a hex and allen screws it was possible to use the same 

algorithm for both types of fasteners. Extending the functionality to allen screws just 
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involved creation of datum planes similar to the ones used on the hex screws. An allen 

wrench was modeled in CATIA based on the allen screw dimensions. Datum planes were 

created and named according to the convention used for the hex wrench.  This expanded the 

capabilities of the software to allow the use of two separate tools with the limitation that 

only one tool can be used at a time. 

Limitations 
Though the approach discussed above provided a workable solution, it failed to 

provide a smooth demonstration in a manner envisioned by the researchers. The assembly 

restructuring was necessitated due to the fact that VirtualHand for V5 does its own 

constraint management and does not solve dynamically created constraints. The approach 

involved manual steps (button clicks) for triggering the assembly hierarchy restructuring.  

The user intervention required in this approach was undesirable but also unavoidable. Due 

to these limitations this approach was found unsuitable for the final demonstration unless 

some of the manual steps were automated.  
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Approach 2:  State management using Callbacks 

Approach 1 sufficiently demonstrated the VR Tools concept and capability but the 

simulation was not smooth and involved lot of user intervention. Improvements in the 

quality of the simulation required new functionality to be implemented in VirtualHand for 

V5. Immersion enhanced VirtualHand for V5 to provide a callback mechanism that would 

enable an external application to effect desired changes during the simulation. The callback 

function was designed such that it would get called on each frame of the simulation and 

would provide the grasped object information. The callback returned the name and current 

transformation of the grasped object. Knowing the name and position of the grasped object 

enabled the program to recognize the grasped tool. This made it possible to use both the 

allen wrench and the hex wrench together. To address the issue of user intervention and 

manual button clicks, another software module was implemented using Spy++[29]. Spy++ 

is a tool provided with Visual Studio® that can be used to understand the window layout of 

a running application. It helps in finding specific controls on a window and activate them 

programmatically. This module made it possible to click the Start and Stop manipulation 

buttons programmatically thereby reducing user intervention during the simulation.   

Stage-State management for simulation 
The callback support provided during the simulation was limited and would cause 

the application to crash if not used carefully. It was not possible to perform more than one 

action on any given frame. This made it necessary to design the tasks in such a fashion that 

they would be carried out over a span of multiple frames. It was therefore necessary to have 

an elaborate state management scheme to be able to run complex tasks during the 

simulation. 
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To begin with, the following three independent stages of the simulation were 

identified. 

1) EmptyHand stage.  

2)  ToolInHand stage. 

3) RotatingBolt stage. 

During the simulation it was possible to go from one stage to any of the other 2 

stages. Each stage had multiple states associated with it. The combination of the current 

stage and its state completely described the state of the simulation thereby enabling the state 

handlers to take correct steps. Each stage was assigned a state handler for doing its state 

management. Table 3.1 shows different stages and their state handlers. 

Stage Number Stage Name State Handler 

0 EmptyHand WSUCallback()  

1 ToolInHand ToolInHandHandler() 

2 RotatingBolt RotatingBoltHandler() 

Table 3.1: Simulation Stages 

Since it was only possible to perform one operation on every callback, a stage could 

only make 1 state transition each frame. Following is a brief description of each stage. Tables 

3.2 and 3.3 list all the possible states for stages 2 and 3 along with the actions performed by 

the state handlers during each state. 
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Stage 1: EmptyHand Stage 

During this stage the state handler would keep checking if the tool is grasped. Once 

the tool is grasped the stage is set to 1 and the state is initialized to 0.   

Stage 2: ToolInHand Stage 

During this stage the state handler would keep checking if the tool is close enough to 

a compatible fastener to be engaged. Once the tool is close the states will increment from 1 

through 4 and then the stage will be set to 2.   

State 

No. 

State Name Action 

0 Start State If the wrench is close to the bolt, go to State 1.  

1 StopManipulation Stop simulation and set the next state to 2. 

2 SaveFile1 Save the model and set the next state to 3. 

3 ApplyConstraints Apply constraints and set next state to 4. 

4 StartManipulation Start simulation and set the stage to 3 

(RotatingBolt) and the state to 0 (StartState). 

Table 3.2: ToolInHand States 

Stage 3: RotatingBolt Stage 

This stage is initialized to state 0. The user can loosen of tighten the fastener in this 

state. This stage can go to various different states from state 0 based on the event caught by 
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the state handler. For example, when the user rotates the bolt using wrench and the bolt 

comes out of the hole the state handler will return the simulation to stage 1.  

State 

No. 

State Name Action 

0 StartState Check if the distance between the bolt and the 

tool is larger than a preset tolerance, if it is, set 

next state to 1 followed by state 2,  

Check if the bolt is out of the hole, if it is, set 

next state to 1 followed by state 4, If the tool is 

released set stage to EmptyHand 

1 StopManipulation Stop simulation and set the next state to 2. 

2 SaveFile1 Save the model and set the next state to 3. 

3 RemoveConstraintsForTool Remove constraints on tool and set the next 

state to 6. 

4 SaveFile2 Save the model and set the next state to 5. 

5 RemoveConstraintsForBoth Remove constraints on tool and the fastener, 

then set the next state to 6. 

6 StartManipulation Start simulation and set stage to EmptyHand 

and state to 0. 

Table 3.3: RotatingBolt States 



 22

The following figures (3.3-3.5) depict the flow charts for various stages. They show 

logic used for making transitions between stages and between states of the stages. They 

show how the state handlers use the current stages and states to decide upon the next stage 

and/or state.  

 

 
 

Figure 3.3: High level simulation stage management flowchart  
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Figure 3.4: ToolInHand stage state management flowchart 
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Figure 3.5: RotatingBolt stage state management flowchart 
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Approach 3: Constraint management using Callbacks 

Though Approach 2 significantly reduced user intervention and automated the 

simulation, speed of the simulation was not up to the mark. The process of stopping and 

restarting the simulation for changing the assembly hierarchy was quite time consuming. The 

whole assembly restructuring was being done because of the fact that VirtualHand for V5 

was not capable of creating constraints on the fly. After considering several possibilities for 

overcoming this limitation, Immersion Corporation provided a newer version of 

VirtualHand for V5. This version was capable of activating and deactivating existing 

constraints during the simulation. So the algorithm was changed to pass in a list of active 

constraints on every frame based on the location of the tool with respect to the fastener.  

A model was created with all possible constraints (108 assembly constraints for the 

sample model) for all possible positions of an engaged tool. When the user gripped the tool 

and tried to engage it with the bolt, based on the relative positioning of the tool and the bolt, 

a set of applicable constraints was identified and passed to VirtualHand for V5. This allowed 

the user to dynamically snap the tool on to the fastener in any desired position.  This 

eliminated the need for stopping and restarting the simulation and made the overall 

experience much smoother.  
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Demonstration 

Sandia identified a sample assembly for demonstrating the VR Tools proof of 

concept. A suite of CATIA models, which included box wrenches, allen wrenches and 

compatible fasteners was created. The fastener sizes were picked to be compatible with the 

sample assembly. When all the components were ready they were all assembled together.  

CATIA Kinematics module was used to create screw joint constraints between the 

screws and their respective holes. It was observed that the constraint solver in VirtualHand 

for V5 would enforce the screw joint but the pitch was inversely proportional to the value 

set while defying the constraint. So smaller the pitch value, faster the screw would travel in 

or out of the hole.  

It was also noticed during the preliminary stages of testing that the Sandia model was 

too small and it was hard to grab the assembly components using the VirtualHandTM. It was 

therefore decided to scale up all the assembly components and the tools and fasteners by a 

factor of 4. This gave the user a better control over grabbing the components in the virtual 

environment. 

Datum planes and points were created on all the tools and fasteners and were used 

for creating the constraints to be used during the simulation. The constraints followed a 

specific naming convention thereby enabling programmatic manipulation of constraint 

states. It was also observed that due to the constraint solver limitations it was necessary to 

over constrain a part to be able to position it in a correct manner consistently. Figures 3.6 

through 3.11 show various stages during the simulation.  
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Figure 3.6: Stage 2 ToolInHand 

 

Figure 3.7: Stage 3 RotatingBolt 

 

Figure 3.8: Stage 3 – state 4 Bolt out of hole 
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Figure 3.9: Unscrewed bolt being removed from the assembly 

 

Figure 3.10: Disassembly of a component 

 
Figure 3.11: Allen wrench demonstration  
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 Thus we were successfully able to demonstrate the proposed virtual assembly tools 

functionality through the prototype implementation of the VR Tools software. Subsequent 

chapters discuss in detail the proposed open architecture for VR Tools capability and its 

implementation for CATIA V5.  
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CHAPTER 4 

PROPOSED SOLUTION 

The proof of concept implementation discussed in chapter 3 gave a deep insight into 

the requirements of the proposed system. Due to all the limitations faced while working with 

VirtualHand for V5 and due to the fact that it was not an open source system it was decided 

to re-develop the core functionality. A completely new system based on an extensible 

architecture was envisioned. This chapter discusses the proposed solution for integrating VR 

(Haptic) devices with CAD for providing the virtual tools functionality. Figure 4.1 shows a 

high-level schematic for the proposed solution. 

CAD System

CAD Plugin

Haptics API

Collision
Detection

Visualization
& Haptic
Mapping

Tool Library

Haptics Hardware

GHBridge

Constraint
Management

State
Management

Scene
Management

Simulation

 

Figure 4.1: Proposed Solution 
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VRTools Components 

The proposed software (VR Tools) comprises of the following building blocks: 

1. CAD system: Used for modeling and visualization. 

2. Haptic Devices: For capturing human interaction and providing force-feed back. 

3. CAD plugin: For interfacing with the CAD system. 

4. GHBridge (Graphics-Haptics Bridge): For interfacing with the Haptic devices. 

5. Tools/Fasteners Library: For managing the fasteners and compatible tools. 

The following section provides an overview of the role of each component in VR 

Tools. 

CAD System 

A Mechanical-CAD (M-CAD) system is a basic software tool that is used for 

modeling the parts and assemblies of real mechanisms that can be used in a virtual 

environment for simulating mechanical tool operations. CAD systems help build, manage 

and store all the geometrical information for a mechanism and also provide visualization 

capabilities. Models are built by using feature based modeling techniques and managed using 

PDM systems. Some CAD systems also provide library or archiving capabilities for 

organizing related models in a desired manner. CAD systems facilitate data storage in various 

different formats there by making the geometric information easy to share between various 

applications. ProEngineer from Parametric Technologies, Unigraphics from UG, CATIA V5 and 

SolidWorks from Dassault Systems are some of the popular M-CAD systems. 
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Haptic Devices 

Haptic means pertaining to the sense of touch. These are hardware devices that 

enable human interaction with the VR environments. They act as input as well as output 

devices. They capture inputs in terms of motion, speech etc. and provide feedback via touch, 

force, vibration etc. There are many kinds of haptic devices. Immersion Corporation’s 

CyberForce, CyberGlove and CyberGrasp are some of the devices used in this research.  

CAD Plugin 

This is a custom software module whose architecture is proposed to enable 

interaction with the CAD system through haptic devices. This module is responsible for 

extracting all the geometry and kinematics information from the CAD system for building 

the haptic scene graph for the collision engine. It provides the user with a graphical interface 

for driving the simulation. This module also handles and updates the graphics for the CAD 

system during the simulation. The implementation and deployment scheme depend on the 

specific CAD system that is being used.  

GHBridge 

GHBridge (Graphics-Haptics Bridge), as the name suggests, is the link between the 

CAD system graphics and the haptic devices. The GHBridge builds on top of the haptics 

API and implements the haptic scene graph along with all the custom algorithms for 

manipulating it. It uses the geometry information extracted by the CAD plugin to build the 

haptic scene graph in the setup phase. During entry frame of the simulation, it extracts 

information from the haptic scene graph and drives the visual scene graph using the CAD 

plugin.  
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Tools/Fasteners Library 

The VRToolsCatalog acts as a library of fasteners and compatible tools. It facilitates 

classification of the models into various categories. It is also responsible for maintaining the 

link to the CAD model as well as storing vital meta-data used by the VR Tools program. The 

library is completely extensible and provides the user with tools for adding more fasteners 

and tools to be used with the VR Tools functionality. A set of modeling guidelines needs to 

be laid out to ensure that the new models are VR Tools compliant. 

Simulation 

All the VR Tools components have specific roles to play during the simulation. The 

simulation can be thought of as a two-phase process comprising of a setup phase and a 

runtime phase.  

Setup Phase 

In the proposed solution, VR Tools goes through a setup phase before the 

simulation is run. The following tasks are performed during the setup phase. 

Component-Fastener mapping 
This is an interactive phase. The CAD plug-in provides a GUI based utility for 

defining the mapping between assembly components and the fasteners of the model. This 

mapping enables the state managers of the components determine the state of the 

components during the simulation. For instance, state of an assembly component depends 

on the state(s) of the fastener(s) mapped to it (e.g. free, constrained by bolt, etc.) 
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Preprocessing the tools library 
During this operation the program identifies the fasteners used in the model. Once 

the list of used fasteners is formed, it is used to identify the compatible tools based on their 

type and designation. The tools library is reorganized to separate out the compatible tools as 

a result of this operation. 

Selecting the Tool 
An interactive phase in which the user selects tools from the list of compatible tools 

in the library. The selected tools are added to the current model and are made available to be 

used during the simulation.  

Scaling the hand model 
Based on the size of the model the user can specify a scaling factor that is used to 

scale the virtual hand model. This enables the user to work with assemblies of different sizes 

and still be able to manipulate assembly components comfortably. This functionality is 

particularly useful while dealing with very small components, which are rather hard to grasp 

if the hand model is too big. 

Extracting assembly hierarchy 
The simulation engine uses the haptic scene graph maintained by the GHBridge 

during the simulation. The scene graph replicates the assembly hierarchy of the CAD model 

and keeps the transformations for all the components up to date. During this phase the 

assembly tree structure for the CAD model is parsed for extracting the hierarchy and 

transformation information. This information is eventually used for building the haptic scene 

graph.  
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Extracting geometry information 
For building the haptic scene graph the geometric representation of each component 

is required. During this phase the program visits each assembly component and extracts 

vertices from its topological representation. The point cloud is used for constructing a 

convex hull representing the haptic node for each component. 

Extracting the graphical representation 
The CAD system internally maintains the graphical representation of every assembly 

component, which is used for displaying it. During this phase, the assembly tree structure is 

parsed in order to obtain the handles for all the graphical representations. This enables VR 

Tools program to update the visual scene graph of the CAD system during the simulation. 

Building the haptic scene graph 
During this phase the GHBridge builds the haptic scene graph using the information 

obtained during the previous stages. It also builds a list of tools and fasteners, which are 

later, used while running the simulation. The fasteners are matched with compatible tools 

and constraints are mapped. This information is used during the simulation while engaging 

the tool with the fastener.  

Registering scene update callbacks 
The CAD plugin registers a couple of callbacks with the GHBridge. These callbacks 

enable the simulation loop to update the scene by sending across the hand transformations 

along with the updated scene graph information. The callback functions get called every 

frame. 

Initializing the haptic devices and collision engine 
During this phase the GHBridge initializes the haptic devices selected by the user. It 

also initializes the collision engine.  
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Runtime Phase 

During runtime the GHBridge spawns a separate simulation thread that performs 

the following tasks during each frame: 

Updating the hand transformations 
The GHBridge obtains the transformations for all the components of the virtual 

hand from the haptic device. These transformations are then sent to the CAD plugin using 

the callback function for the hand update. The CAD plugin then updates the 

transformations for the graphical representation of the hand thereby keeping the scene 

updated. 

Checking for gripping 
During each frame, the GHBridge checks if any of the objects in the haptic scene 

graph is grasped. Collision detection and gripping algorithms are employed to detect a state 

change for a component that is being grasped. 

Checking for constraints 
If an object is grasped, this task monitors the status of all the constraints associated 

with the grasped object. This mechanism provides the basis for doing the state management 

of a component. If all constraints are met, an assembly component can go from 

disassembled to assembled or vice versa. A grasped tool may go from ‘disengaged’ to 

‘engaged’ state when it is in the vicinity of a compatible fastener. We will take a closer look at 

the constraint and state management in subsequent chapters.  

Enforcing constraints 
When a grasped object is moved, this task ensures that the active constraints for that 

object are enforced. This may result in motion of other components or may cause the 
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grasped component to have limited degrees of freedom based on the types of constraints 

being enforced. 

Refreshing the scene using the scene update callback 
During each frame the haptic scene graph is updated due to the combination of user 

interaction, constraint management and state changes. These changes are communicated 

back to the CAD plugin via a scene update callback. This callback is then responsible for 

synchronizing the visual scene graph with the haptic scene graph.  

Thus the proposed solution provides a basis for an open architecture for 

implementing virtual assembly tools functionality within any CAD a system. Various 

modules proposed in figure 4.1 facilitate loose coupling between the CAD system and the 

haptic devices thereby making it possible to use different combinations of CAD systems and 

haptic devices for implementing VR Tools. In the next chapter we discuss in detail the 

architecture of various VR Tools components proposed in this chapter. We take a look at 

some of the key classes in each software module and delve into the details of state and 

constraint management schemes.  
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CHAPTER 5 

OPEN ARCHITECTURE 

This chapter discusses the proposed architecture for integrating VR devices with 

CAD systems. It gives an overview of interaction between all the different components 

discussed in chapter 4. It also lays out architectures for the key software modules of the 

proposed solution namely, CAD Plugin, GHBridge and the Tools/Fasteners Library.  Figure 

5.1 depicts all the high-level components and their relationships with each other. The CAD 

plugin and the GHBridge constitute the two main software modules implemented by 

VRTools. They are responsible for integrating all the other components. 

CAD System

Haptic Devices

Tools/Fasteners
Library

Haptics API

CAD  API

VRTools

CAD Plugin

GHBridge

 

Figure 5.1: Overall Architecture 
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The CAD Plugin acts as an interface to the CAD system and implements all the 

CAD API code. The GHBridge acts as an interface to the haptic devices and implements the 

API code provided by the haptic devices. During the simulation phase the CAD plugin and 

the GHBridge work together and keep the CAD system graphics and the state of the haptic 

scene graph synchronized. The GHBridge captures any changes to the scene graph using the 

haptics API and conveys it to the CAD plugin, which in turn updates the CAD graphics.  

CAD Plugin Architecture 

The CAD plugin is responsible for the following tasks in the VR Tools functionality: 

1. Act as an interface to the CAD system. 

2. Extract model tree data, assembly hierarchy and geometry information from the CAD 

model. 

3. Extract and maintain the graphical representation for the CAD model. 

4. Extract the constraint data from the CAD model. 

5. Support the Tools/Fastener Library functionality either within the CAD system or 

externally. 

6. Provide a graphical user interface for setting up and running the simulation. 

7. Provide a utility for defining Component-Fastener mapping and storing that information 

with the CAD model. 

Figure 5.2 shows a class diagram representing some of the basic classes proposed in 

this architecture. The detailed structure, functionality, implementation and deployment 

scheme may vary based on the CAD system being used. Chapter 6 discusses in detail how 

this architecture is applied to the implemented solution using CATIA V5 as a CAD system. 
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CAD System
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CAD Plugin::GUI

CAD Plugin::Library Manager

 

Figure 5.2: CAD Plugin Architecture 

The CAD Plugin::GUI provides all the functionality for user interaction during the 

setup phase. It facilitates the component-fastener mapping and also allows the user to 

choose correct set of haptic devices to be used for the simulation. It can be extended to get 

other kind of inputs from the user for setting up the simulation. 

The GUI also has all the logic for starting the simulation. It uses the ‘Geometry 

Extractor’ class for getting all the geometric and topological data needed for building 

individual component nodes of the haptic scene graph. The ‘Assembly Parser’ class is used 

to extract the assembly hierarchy along with the transformation information for each 

assembly component recursively. This information is used by the GHBridge for building the 

haptic scene graph.  

The GUI also acts as a link between the CAD Plugin and the GHBridge. It provides 

all the information needed for building the scene graph. It also registers the graphics-update 

callback functions with the GHBridge. The callback functions enable the synchronization 

between the visual and the haptic scene graphs. The ‘Graphics Manager’ maintains the 
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graphical representation of the CAD model and has the functionality to update it every 

frame based on the information received from the GHBridge. 

The CAD Plugin also provides access to the ‘Tools/Fasteners Library’ through the 

Library Manager. It provides functionality for finding appropriate tools based on the 

fasteners used in the CAD model. The implementation details for the library depend heavily 

on the CAD system being used.   

GHBridge Architecture 

GHBridge constitutes the other half of the VR Tools architecture and deals with the 

haptic devices and their APIs. Following are some of the important tasks performed by the 

GHBridge component: 

1. Act as an interface to the haptic devices via the haptic API. 

2. Use the model tree data, assembly hierarchy and geometry information extracted by the 

CAD Plugin for building the haptic scene graph. 

3. Initialize, setup and run the simulation and collision engines. 

4. Perform the constraint management during the simulation. 

5. Perform the state management for the simulation components. 

6. Manage the virtual hand. 

7. Maintain the haptic scene graph and update the visual scene graph via the CAD Plugin. 

8. Implement algorithms for constraint and state management. 

Figure 5.3 shows all the important classes proposed for the GHBridge component. 
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GHBridge

GHBridge::SceneGraphManager

GHBridge::Engine

GHBridge::SimulationManager

GHBridge::DeviceManager

GHBridge::HandManager

GHBridge::SimulationComponent

 
Figure 5.3: GHBridge Architecture 

 
The Engine class acts as the interface of the GHBridge module. It is primarily 

responsible for exchanging data and messages with the CAD Plugin. It uses various manager 

classes for delegating different tasks during the simulation. 

SceneGraphManager is a class dedicated for managing the haptic scene graph. It uses 

the assembly tree and geometry information extracted by the CAD plugin and builds the 

scene graph. SimulationComponent class represents 3D components in the simulation such as 

the assembly component, tool or the fastener. This class encapsulates all the information 

necessary for completely representing a simulation object.  

The DeviceManager class handles the haptic devices. The Engine uses this class to 

initialize the devices selected by the user.  
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The HandManager class is used to interface with the virtual hand during the 

simulation. It implements the gripping algorithms and tracks the state changes of a gripped 

object. It also extracts the transformation data for all the components of the virtual hand. 

State Management 

State management is one of the most critical aspects of VR Tools. The behavior of 

assembly components, tools and the fasteners depends completely on their states. The 

components undergo state changes during the simulation and show drastic changes in their 

behavior. Therefore it is essential to have a robust state management scheme to ensure 

smooth transition between states. The proposed scheme adopts the standard Observer design 

pattern. This scheme is extensible and can support more states fairly easily. Figures 5.4 and 

5.5 show basic state and state management classes. 

State

AssemblyCompState SimComponentState

FastenerStateToolState

 

Figure 5.4: State Classes 

A SimulationComponent can be an AssemblyComponent, a Tool or a Fastener. Each of them 

plays a unique role in the simulation and therefore has a unique set of states associated with 

it. Each of those state classes can further be extended based on the requirements of the 

application being developed. In chapter 6 we will see how this class structure is extended.  
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StateObserver

StateMediator SimulationSubject

SimulationComponent

«uses»

«uses»

 
Figure 5.5: Observer Pattern 

Figure 5.5 shows a schematic of the class structure for the Observer pattern. The 

SimulationComponent has a StateObserver associated with it through the SimulationSubject. The 

StateMediator, which extends the StateObserver, maintains a list of SimulationComponents that 

register interest in its SimulationSubject. So any state change the SimulationSubject goes through 

is notified to all the SimulationComponents that are registered with the StateMediator of the 

SimulationSubject. 

Constraint Management 

Interactions between various simulation components such as the tool and the 

fasteners and the fastener and the hole are governed by the constraints between them. The 
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state of each component determines the kind of constraints that need to be enforced on it. 

Figure 5.6 shows a class structure proposed for performing the constraint management. 

 

ComponentConstraint

PlanerConstraint AxialConstraint

ScrewJoint

SimulationComponent «uses»

 

Figure 5.6 Constraint Management Classes 

For the tool-fastener interaction, a set of planar constraints is sufficient to 

completely define their relative positions with respect to each other when the tool is engaged 

with the fastener. When the tool is in close proximity with a compatible fastener, the 

constraint planes that are close to being coplanar are identified and are used for enforcing 

the constraints.  

An AxialConstraint and a ScrewJoint, which extends the AxialConstraint, are proposed 

for the fastener-hole interaction. Enforcing the AxialConstraint aligns the fastener-axis with 

the hole-axis. AxialConstraint lets the fastener move only along the axis and rotate about it. 
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The ScrewJoint is enforced when the fastener is inside the hole. Chapter 6 takes a closer look 

at the constraint enforcement algorithms. 

Tools/Fasteners Library Architecture 

In this section we layout a list of specifications for a Tools/Fasteners library and 

propose a structure for such a library. Some of the requirements are addressed by the 

proposed structure while the rest are functionalities that need to be implemented. The 

implementation details will be specific to the software tools employed for development of 

the library and are outside the scope of this work. Following are the basic requirements for 

the Tools/Fasteners library to ensure that the design is extensible and easy to maintain: 

1. The library should be an independent entity and should not be tightly integrated with the 

VR Tools software. 

2. It should facilitate addition of new tools and fasteners without requiring changes to the 

software implementation. 

3. It should follow well-defined set of modeling guidelines laid down to help model new 

VR Tools compatible tools and fasteners.  

4. It should be capable of storing the necessary engineering information such as the pitch, 

designation, etc. for the library components. 

5. It should provide a mechanism for classifying and aggregating models into various 

categories.  

6. It should provide an easy way for adding the library models to the simulation. 

Figure 5.7 shows a schematic for the proposed structure for the Tools/Fasteners library. 
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Tools/Fasteners Library

Tool Type I collection

All Tools

Applicable Tools

Tool Type II collection

All Tools

Applicable Tools

Fasteners

Type I Fasteners

Type II Fasteners  
Figure 5.7 Library Structure 

A tree structure is proposed for managing the tools and the fasteners in a library. 

The leaf nodes of the tree are collections of categorized components. This structure provides 

the ability to expand both the scope and depth of categorization. The implementation details 

of such a library using CATCatalog document supported by CATIA V5 are provided in the 

next chapter. 

In chapter 6 we discuss the details of VR Tools architecture, which is based on the 

open architecture proposed in this chapter. We also take a close look at the key classes 

implemented by the CAD Plugin and GHBridge components. Finally we delve into the state 

and constraint management algorithms implemented for VR Tools.   
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CHAPTER 6 

VRTOOLS ARCHITECTURE AND DESIGN DETAILS 

Chapter 5 laid out a generic template architecture that can be applied to any 

combination of CAD system and haptic devices. In this research, CATIA V5 was chosen as 

the CAD system along with the haptic devices from Immersion Corporation (CyberGlove) and 

Ascension Technologies (Flock of Birds). This chapter discusses in detail VR Tools 

architecture, which is based on the open architecture. It takes a deeper look at the CAD 

Plugin implemented as a CATIA Workbench (VRTools workbench) and the GHBridge built 

using the VirtualHand Toolkit (VHT). It also discusses the structure and role of key classes 

from the VRTools workbench and the GHBridge. Finally it delves into the Tools/Fastener 

library (VRToolsCatalog), which is implemented using the Catalog document functionality 

supported in CATIA V5.  

VRTools Workbench Design 

VRTools Workbench is a CATIA CAA application and hence follows a CAA 

specific deployment model. Figure 6.1 shows the deployment diagram for the VRTools 

workbench. 

VRToolsWbench dll VRToolsCommands dllCATIA V5

«uses» «uses»

 
Figure 6.1 VRTools Workbench Deployment 

The VRToolsWbench.dll and the VRToolsCommands.dll together represent the CAD 

Plugin introduced in the previous chapter. VRToolsWbench.dll is the workbench dll and is 
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responsible for making the workbench menus, toolbars and commands accessible through 

the CATIA user interface. The workbench relies on the VRToolsCommands.dll for 

implementing these commands. Therefore, VRToolsCommands.dll is the main module that 

implements all the CAD Plugin functionality. Figure 6.2 shows various VRToolsCommands.dll 

command classes used by VRToolsWbench.dll for implementing the commands. 

VRToolsCommands.dll

VRMapFastenersDlgCmdVRToolsWbench

VRSelectToolCmd«uses»

VRSimulationDlgCmd

VRPreprocessCmd

«uses»

«uses»

«uses»

 
Figure 6.2 VRTools Workbench  
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VRToolsCommands Design 

VRToolsCommands.dll implements the CAD Plugin architecture. It exposes the 

VRMapFastenerDlgCmd, VRSimulationDlgCmd, VRPreprocessCmd and the VRSelectToolCmd to 

the VRTools Workbench. The VRSimulationDlgCmd also interfaces with the GHBridge 

module. All the classes implement CATIA CAA API code for interacting with the CAD 

system for their particular tasks. Figure 6.3 shows all the important VRToolsCommands 

classes. 

Tools/Fastener Library Classes

VRMapFastenersDlgCmd

VRPreprocessCmd

VRSelectToolCmd

VRSimulationDlgCmd VRUtilityForCommonTasks

VRAssemblyParser

VRGeometryExtractor

VRSceneManager

«uses»

«uses»

«uses»

«uses»

«uses»

VRToolsCommands dll

«uses»

«uses»

«uses»

VRUtilityForCatalogs

«uses»

«uses»

 
Figure 6.3 VRToolsCommands Classes 
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Key Classes and Their Roles 
VRMapFastenersDlgCmd: This class provides the user with a graphical user interface 

(GUI) for defining the component fastener mapping for the CAD model during the setup 

phase of the simulation. It identifies the fasteners and assembly components in the model. It 

also implements the functionality for storing the component-fastener mapping with the 

CAD model so that it has to be done only once for each model. 

VRSimulationDlgCmd: This is the most important class in VRToolsCommands. It provides the 

user with a GUI with the following functionalities: 

1. Selecting haptic devices to be used during the simulation. 

2. Specifying a scaling factor for the virtual hand. 

3. Starting and stopping the simulation. 

This class also interfaces with the GHBridge and provides it all the necessary 

information for setting up the haptic scene graph. It also registers callbacks with the 

GHBridge, which are used to keep the CATIA graphics synchronized with the haptic scene 

graph. 

VRAssemblyParser: This class is responsible for implementing all the assembly tree structure 

related functionality. It mainly deals with the assembly hierarchy and the transformation for 

the assembly components. VRMapFastenersDlgCmd and VRSimulationDlgCmd use this class 

for performing their tasks. 

VRSceneManager: This class handles the CATIA graphics. It extracts the graphical 

representation for the assembly components. It updates the transformations for the 

graphical representation on each frame and refreshes the scene. This class is responsible for 

keeping the CATIA graphics synchronized with the haptic scene graph. 
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VRGeometyExtractor: The primary role of this class is to extract the geometric and topological 

data for each assembly component. VRSimulationDlgCmd uses this class for extracting the 

point cloud data that is passed on to the GHBridge for constructing the scene graph nodes. 

VRUtilityForCommonTasks: This is a utility class and implements basic CATIA functions such 

as document handling. All the other classes use it.  

VRPreprocessCmd: This command preprocesses the VRToolsCatalog, which acts as the 

Tools/Fasteners library. This class uses the VRAssemblyParser and extracts the information 

for the fasteners used in the model. Based on this information it detects the tools that are 

compatible with the current model and filters them out to the Applicable chapter of the 

VRToolsCatalog.  

VRSelectToolCmd: This command class enables the user to import new tools in the simulation 

environment. It connects to the VRToolsCatalog and brings up a dialog box that lets the user 

browse through the available tools in the catalog. The user can then import the tools of 

his/her choice into the current model. 

VRUtilityForCatalog: This is also a utility class, which specifically deals with the CATIA 

catalog documents. The VRPreprocessCmd and the VRSelectToolCmd classes depend on this 

class for the basic Catalog related functionalities. 
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GHBridge Design 

This section takes a detailed look at the GHBridge architecture implemented for 

VRTools. It follows the template laid out in chapter 5 and customizes it for specific haptic 

devices and their API. This implementation of GHBridge is based on Immersion 

Corporation’s CyberGlove and Ascension Technologies’ Flock of Birds for the haptic devices. 

Immersion Corporation provides the VirtualHand Toolkit (VHT), which is an API for 

interfacing with the haptic devices used for this implementation.  

The GHBridge has a complex class structure and is responsible for performing a 

number of complex tasks during the simulation process. We break down the GHBridge 

architecture into several pieces based on their roles. Then we look at the architecture of each 

individual piece. Figure 6.4 shows the high-level class diagram of GHBridge. All the classes 

are classified into 4 different groups. The following section takes a closer look at each group. 

All the classes whose names start with vht are VirtualHand Toolkit’s classes. The classes 

whose names start with GHB are the GHBridge classes. 
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Simulation

State Management

Scene Graph

Constraint Management

GHBSimulationManager

vhtSimulation

GHBEngine

vhtEngine

«uses»

GHBDeviceManager

vhtCyberGlove

«uses»

GHBSceneGraphManager

vhtNode

vhtDataNode

GHBSimulationComponent

GHBAssemblyComponent

GHBMechanicalTool

GHBMechanicalFastener

«uses»

«uses»

GHBComponentConstraint

GHBPlanerConstraint GHBAxialConstraint

GHBScrewJoint

«uses»

vhtCyberGrasp

«uses»

vhtCyberForce«uses»

GHBHandManager vhtHumanHand«uses»

GHBManager

vhtTracker

GHBSimulationSubject

GHBCompStateMediator

GHBStateObserver

«uses»

«uses»

«uses»

GHBSGNode

 
Figure 6.4 GHBridge Class Diagram 
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Simulation Classes 

GHBEngine: This is the key GHBridge class that manages the complete simulation. Some of 

the important tasks carried out by this class are as follows: 

1. It acts as the GHBridge interface to the VRToolsCommand (CAD Plugin).  

2. It initializes the haptic devices. 

3. It initializes all the manager classes needed for the simulation. 

4. It instantiates the vhtEngine class which has the functionality for starting and stopping the 

simulation.  

5. It uses the SceneGraphManager for building the haptic scene graph.  

6. It updates the scene graph and all the managers on each simulation frame. 

7. It maintains the callbacks for the VRToolsCommand and uses them to refresh the visual 

scene graph.  

Figure 6.5 shows an activity diagram depicting the sequence of tasks that are 

performed while starting the simulation.  
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GHBridge(GHBEngine)CATIA(VRSimulationDlgCmd)

Construct and initialize
engine

Set callbacks

Construct haptic scenegraph

Initialize all managers

Initialize all devices

Start simulation

Add simulation to
engine

Start Simulation Button

Construct simulation
node

 
Figure 6.5 Start Simulation Event Sequence 

GHBSimulationManager: This class derives from the vhtSimulation class and is registered with 

the vhtEngine. It overrides the handleConstraints function, which is called by the VHT 

simulation thread on every frame. This function gives the control back to the user on each 

frame.  

GHBDeviceManager: This class handles all the haptic devices used during the simulation. The 

GHBEngine feeds the users choice of devices to the device manager during the setup phase. 

The GHBDeviceManager uses vhtTracker, vhtCyberGlove, vhtCyberGrasp and vhtCyberForce classes 

for initializing the Flock of Birds, CyberGlove, CyberGrasp and CyberForce respectively. It also 
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used by the GHBHandManager to instantiate the vhtHumanHand class that represents the 

virtual hand. 

GHBHandManager: This class uses the vhtHumanHand class to access the virtual hand 

functionality. Its primary role is to implement the gripping algorithm and determine whether 

an object is gripped. It is also responsible for providing the information pertaining to the 

grasped object and the virtual hand transformation information. Figure 6.6 shows the 

flowchart for finding the gripped object. 

Gripping Algorithm
Constrain and release

gripped objects

Get collision pair
entries

Get the contact
normals

Add contact phalanges
to vhtGraspManager

vhtGraspManager will handle attaching
 the component to the hand.

Update list of gripped
objects

Determine if collision pair
object is being gripped

vhtGraspManager has algorithms to determine
if an object is being gripped based on contact normals.

Refreshes the state of all components

Get Collision between hand and other objects

 

Figure 6.6 Gripping Algorithm 

GHBSceneGraphManager: The primary role of this class is to build and maintain the haptic 

scene graph. It obtains the information for the assembly hierarchy, geometric data and type 
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of the components from the CAD Plugin and uses it create haptic scene graph nodes. It also 

initializes the collision factory, which enables collision detection between different 

simulation objects. It also initializes the states for all the simulation components and does 

the constraints mapping based on the component-fastener mapping defined by the user 

during the setup.  

Scene Graph Classes 

VhtNode: This is the VirtualHand Toolkit’s haptic node class. All the classes that can be used 

as node of the haptic scene graph extend this class. It maintains a link to the vhtNodeData, 

which is a neutral scene graph node. 

VhtNodeData: This VirtualHand Toolkit’s class can be extended to store any information 

that has to be stored in the neutral dual of the haptic node on the scene graph.  

GHBSGNode: This class is used for building the haptic scene graph. It is implemented by the 

GHBridge and exported for the VRToolsCommands module. The VRToolsCommands builds the 

entire scene graph using the GHBSGNode class. The GHBSceneManager then uses this tree for 

building the haptic scene graph. Thus, this class acts as a medium for data transfer between 

the CAD Plugin and the GHBridge.  

GHBSimulationComponent: This is the base class for all the types of simulation components. 

This class represents the neutral dual of the haptic node. This class extends the vhtNodeData 

class. It stores important information such as the grasped-state, current-state, constraints list, 

component name, etc. for the simulation components.  
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GHBMechanicalTool: This class extends the GHBSimulationComponent class and for the tool 

specific functionalities. It stores the tool state, list of compatible fasteners and the tool 

designation properties.  

GHBAssemblyComponent: This class represents an assembly component. It maintains a list of 

mapped fasteners. The state of the assembly component depends on the states of the 

fasteners that are mapped to it. We will take a closer look at the state management 

architecture later in this chapter. 

GHBMechanicalFastener: Fastener also being an assembly component extends the 

GHBAssemblyComponent class. It manages fastener specific data such as attached tool 

information, designation, its state, pitch and shank length.  

Constraint Management Classes 

Simulation components in GHBridge maintain their own list of constraints, which is 

initialized, based on the tool fastener compatibility. This implementation does not use 

assembly constraints for placing the assembly components in their assembled locations 

except for the threaded fasteners. The assembly functionality is based on the initial 

transformations of the components at the beginning of the simulation. It is assumed that all 

the components are in their assembled state and their current transformation is stored. The 

constraint checking and enforcing is implemented by the state classes for all the 

components. Each constraint class implements the CheckConstraint function for checking if 

the mating entities are close enough for the constraint to be enforced. It also implements the 

EnforceConstraint method, which enforces a validated constraint on the simulation 

components. Next section takes a closer look at the constraint and state management 

implementation.  
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GHBComponentConstraint: This is the base class for all the constraint types. It provides 

functionality for maintaining a list of matching constraints. It also stores the current state of 

the constraint along with the applied constraint information if the constraint is in applied 

state. It also knows its owning simulation component, which is used by the state 

management algorithms. 

GHBPlanarConstraint: This class extends the GHBComponentConstraint class for implementing 

the planar constraint. When applied it ensures that the two planes, defined by an origin point 

and a normal vector are coplanar. The sensitivity of the constraint is controlled by the 

following two factors: 

• DEFAULT_ALIGNMENT_TOLERANCE: Tolerance for alignment between the 

normals for the mating planes.  

• DEFAULT_SEPARATION_TOLERANCE: Tolerance for minimum distance between 

the mating planes.   

GHBAxialConstraint: This class also extends the GHBComponentConstraint for implementing 

the axial constraint used for mating the fasteners with their holes. This constraint forces two 

axes to be coaxial when enforced.  

It also uses the DEFAULT_ALIGNMENT_TOLERANCE and the 

DEFAULT_SEPARATION_TOLERANCE factors for controlling the sensitivity of the 

constraint. 

GHBScrewJoint: This class extends the GHBAxialConstraint class for emulating the screw joint 

behavior. It enforces a screw joint along with the axial constraint. This constraint is applied 

to the fasteners when they are inside the hole. The axial translation along the hole axis can 
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only be achieved by rotating the fastener. The magnitude of axial displacement is governed 

by the pitch value for the fastener. 

State Management Classes 

The standard observer pattern has been implemented for the state management. The 

states of the simulation components are interdependent. It is therefore necessary to 

propagate a state change event for a component to the other components that might be 

dependent on it for their states. Figure 6.7 shows the class diagram for all the different states 

that the simulation components can be in based on their type.  

Following is a brief description for the states of the components: 

1. GHBSimulationComponent 

a. GHBSimCompNotGrasped: The component is not grasped by the hand. 

b. GHBSimCompGrasped: The component is grasped by the hand. 

2. GHBMechanicalTool 

a. GHBToolDisengaged: The tool is not attached to a compatible fastener. 

b. GHBToolEngaged: The tool is attached to a compatible fastener. 

3. GHBAssemblyComponent 

a. GHBAsmCompUnconstrained: None of the fasteners mapped to the assembly 

component are in place. This component can be grasped and disassembled. 

b. GHBAsmCompPartiallyConstrained: Some of the fasteners mapped to the assembly 

component are in place. 
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c. GHBAsmCompFullyConstrained: All the fasteners mapped to the assembly 

component are in place. 

GHBSimCompState

GHBSimCompGrasped

GHBSimCompNotGrasped

GHBAsmCompState

GHBAsmCompFullyConstrained

GHBAsmCompPartiallyConstrained

GHBAsmCompUnconstrained

GHBFsntrState

GHBFsntrFullyConstrained

GHBFsntrPartiallyConstrained

GHBFsntrUnconstrained

GHBToolState

GHBToolDisengaged

GHBToolEngaged

GHBState «uses» GHBSimulationComponent

 
Figure 6.7: State Classes 

4. GHBMechanicalFastener 

a. GHBFsntrUnconstrained: The fastener is completely out of its hole and no 

constraints are applied. 
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b. GHBFsntrPartiallyConstrained: The fastener is partially out of the hole and is under 

GHBScrewJoint constraint.  

c. GHBFsntrFullyConstrained: The fastener is fully tightened in it hole and can move 

only in one direction subject to the GHBScrewJoint constraint. 

State Change Mechanism 
Each simulation component has a current state. On every frame the GHBEngine 

maintains a watch list of simulation components that are grasped or could potentially 

undergo a change in position. After the haptic scene graph is updated, each component on 

the list is asked to update itself. This update is handled by the current state of the 

component. All the state classes implement an Update function that has all the logic to decide 

if a state change is necessary. If necessary, the current state changes the state of the 

component and propagates this state change event to all the other components that have 

registered interest in its owner component. This is achieved because the GHBStateObserver 

class. Each component has a GHBStateObserver associated with it. This class is responsible 

for maintaining the list of simulation components that register interest in the owner 

component.  

 For instance, when a fastener is mapped to an assembly component, the assembly 

component registers itself with the GHBStateObserver of the fastener. If a tool is engaged with 

the fastener it gets added to the GHBEngine’s watch list. The fastener is in 

GHBFsntrPartiallyConstrained state if it is being rotated and taken out of its hole. On every 

frame GHBFsntrPartiallyConstrained state’s Update method uses the GHBScrewJoint constraint 

for the fastener to determine if it is completely out of the hole. As soon as the fastener is 

completely out of the hole a state change is triggered and the fastener goes to 

GHBFsntrUnconstrained state. At this point the GHBState class notifies the GHBStateObserver 
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associated with the fastener. The GHBStateObserver then notifies all the assembly 

components that have registered interest in this fastener. The assembly components then 

update their own state if necessary and similar sequence of events is triggered recursively 

until the state of the entire scene graph is synchronized. Figure 6.8 shows a sequence 

diagram for the relatively less complicated event of grasping a component.  

d_simulation_manager d_engine d_hand_manager d_sg_manager

sim_comp d_cur_state_released

d_constraint_manager

comp_state_mediator

UpdateManagers

Process

GraspComponent

GraspComponent

EnforceConstraints

return

UpdateChange

return

return

return

ChangeState

Grasp a component

GraspComponent

No Comps
Affected

NotifyObserver

return

return

return

GRASPED

 

Figure 6.8 Component Grasping Sequence Diagram 
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VRToolsCatalog Design 

CATIA V5 supports a Catalog document capability, which satisfies all the 

requirements laid out for the Tools/Fasteners library in chapter 5. Hence the library is 

created as a CATIA V5 catalog and is named VRToolsCatalog.Catalog.  

VRToolsCatalog Structure 

The VRToolsCatalog adopts the library structure proposed in the previous chapter. 

Following aspects of the catalog relate to the specifications from the proposed architecture.  

1. The VRToolsCatalog has a tree structure consisting of chapters, sub-chapters and 

families for maintaining the tools and fasteners models as shown in figure 6.9. 

2. The top-level chapter in this catalog is named ‘VRTools’. 

3. Each type of tool has a sub-chapter under the VRTools chapter. 

4. All the fasteners are managed under the ‘Fasteners’ sub-chapter. 

5. Each of the tool sub-chapters has two families named as ‘All’ and ‘Applicable’. 

6. The ‘All’ family lists the description for all the tools of a particular type. 

7. ‘Applicable’ chapter is used to filter out the tools that are compatible with the current 

CATIA assembly on which the simulation is being run. 

8. Each description in the catalog also stores information such as the Designation, Pitch, 

Length and Name for the components. 
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9. The VRTools WorkBench has a search for suitable tools command, which filters out the 

relevant tools for a given model and adds them to the ‘Applicable’ chapter for each 

type of tool. 

 

 
Figure 6.9 VRToolsCatalog structure 

Updating the VRTools catalog 

CATIA V5 catalog documents are well structured and fairly easy to maintain. 

Following guidelines need to be followed to maintain the integrity of the catalog data: 

1. The VRToolsCatalog.Catalog is located in C:\Program Files\VRTools\Catalog\ 
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2. The Parts corresponding to the catalog entries are placed C:\Program 

Files\VRTools\Parts\. This is not an requirement and parts in the catalog can be located 

anywhere.  

3. New VR Tools compatible models for tools and fasteners need to be added to the 

VRToolsCatalog along with the necessary metadata in order to be able to use them with 

the VRTools workbench. 

4. A chapter or a family can be made current by double clicking on it in the tree view. The 

current node is highlighted in blue.  

5. A component can be added to a current family by clicking on the Add Component 

button on the Data toolbar. 

6. The user then needs to select a document for the component and populate the key word 

values for the component in the Description Definition dialog box as shown in figure 

6.10. 

7. The Name keyword for the component should match the PartNumber inside the 

CATIA document. 
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Figure 6.10 Add Component 

  
 
 
 
 

Modeling Guidelines 

The VRToolsCatalog contains all fasteners and tools that are compatible with VR 

Tools.  Tools and fasteners are mapped using the designation of the fastener.  The name 

(part number) of the tool should have the designation of the fastener appended at the end 

with an underscore before the designation.  For example, if a bolt has a designation of 

“M16”, any appropriate tool in the catalog that has “_M16” at the end of the name will be 

considered a matching tool.  This allows VR Tools to regulate the sizes of tools that can be 

used with specific fasteners. 

VR Tools Fasteners 

This section lists all the fastener types supported in VR Tools. Each fastener type has 

a list of requirements that needs to be met for making the fastener VR Tools compatible. 
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Hex Bolts 

1. Part Number should have “BOLT” in it 

2. A reference line should be created along the bolt axis and named VRT_Axis 

a. The axis should start at the base of the head and point downwards 

3. Reference planes should be created on the 6 flat faces of the hexagonal bolt head and 

named VRT_Plane1 through VRT_Plane6 

a. These planes should be created offset from the surfaces with an offset of 0.0 as 

shown in figure 6.11 

4. A reference plane VRT_A_Plane should be created at the base of the bolt head such 

that the plane normal points downward into the bolt shank 

 
Figure 6.11 Catalog Hex Bolt 
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Flathead Screws 

1. Part Number should have “F_SCREW” in it 

2. A reference line should be created along the bolt axis and named VRT_Axis  

a. The axis should start at the base of the head and point downwards 

3. Reference planes should be created on both the vertical faces of the screw head slot 

and should be named VRT_Plane1 and VRT_Plane2 as shown in figure 6.12 

a. These planes should be created offset from the surfaces with an offset of 0.0 

4. A reference plane VRT_A_Plane should be created at the base of the screw head 

slot such that the plane normal points downward into the screw shank 

 

 

Figure 6.12 Catalog Flathead Screw 
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Philip Screws  

1. Part Number should have “P_SCREW” in it 

a. A reference line should be created along the screw axis and named VRT_Axis  

2. The axis should start at the base of the head and point downwards 

3. Reference planes should be created on 4 flat faces of the screw head slot and named 

VRT_Plane1 through VRT_Plane4 as shown in figure 6.13 

a. These planes should be created offset from the surfaces with an offset of 0.0 

4. A reference plane VRT_A_Plane should be created at the base of the screw head slot 

such that the plane normal points into the screw shank 

 

Figure 6.13 Catalog Philips Screw 
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Allen Screws 

1. Part Number should have “A_SCREW” in it 

2. A reference line should be created along the screw axis and named VRT_Axis  

a. The axis should start at the base of the head and point downwards 

3. Reference planes should be created on the 6 flat faces of the hexagonal screw head slot 

and named VRT_Plane1 through VRT_Plane6 as shown in figure 6.14 

a. These planes should be created offset from the surfaces with an offset of 0.0 

4. A reference plane VRT_A_Plane should be created at the base of the screw head slot 

such that the plane normal points into the screw shank  

 
Figure 6.14 Catalog Allen Screw 
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CHAPTER 7 

IMPLEMENTATION AND RESULTS  

This chapter gives an overview of the implementation and deployment of the 

developed solution. It also describes the user interface and functionality details of VR Tools. 

Finally, it discusses the modeling guidelines for making tools and fasteners VR Tools 

compatible.  

Implementation and Deployment 

 VR Tools consists of three software modules namely, VRToolsWbench.dll, 

VRToolsCommands.dll and GHBridge.dll. VRToolsWbench.dll and VRToolsCommands.dll are 

developed in C++ using the CAA RADE (Rapid Application Development Environment) 

addin in Visual Studio 6.0.  

CATIA V5 Workshops and Workbenches 

The CAA V5 application window includes commands in menus and in the standard 

toolbars that are common to all document types (Parts, assemblies etc.). Each document 

type is associated with a workshop that includes commands pertaining to that document 

type, which are added to the common menus and to the standard toolbars. Changing the 

active document to another document changes the active workshop if the new active 

document's type is different from the type of the previous document. A workshop can 

include workbenches to gather commands dedicated to specific tasks to structure the end 

user interface. Only one workbench can be active at any time. 
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VRToolsWbench.dll implements the VRTools workbench. CATIA V5 application 

knows about the workbench through an environment file that is used while launching the 

application. The VRToolsCommands.dll implements all the commands exposed by the 

workbench to the end user via toolbars and menus.  

GHBridge 

The GHBridge as discussed in the earlier chapters uses the API for the haptic 

devices and implements the haptic scene graph. It is implemented as a C++ shared library 

using Visual Studio 6.0.  

VR Tools User Interface 

 The VRTools workbench exposes its functionality to the user via a set of commands 

made available through a docking VRTools Manage toolbar shown in figure 7.1.  

 
Figure 7.1 VR Tools Toolbar 

The toolbar provides buttons for the following commands. 

Component-Fastener Mapping 

This command enables the user to define associations between the assembly 

components and the fasteners used in the model.   
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Figure 7.2 Component-Fastener Mapping 

As shown in figure 7.2, the user can select one or more assembly components. If a 

single assembly component is selected, a list of fasteners associated with it is shown under 

the Mapped Fasteners list. The user can update the mapping by adding or removing mapped 

fasteners by selecting them from appropriate lists and clicking the Add/Remove buttons. 

The mappings defined using this utility are stored permanently with the CAD model as 

meta-data. Hence the user has to go through the process of mapping fasteners to assembly 

component only once for each assembly. 

Search for Suitable Tools 

 This command preprocesses the VRTools catalog and finds the tools that are 

compatible with the current assembly model. The tools are matched with the fasteners based 

on their type and designation and added to the Applicable chapter(s) as shown in figure 7.3.  
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Figure 7.3 Catalog preprocessing 

Select Tools/Fasteners 

This commands brings up the VRTools catalog and enables the user to add tools and 

fasteners from the catalog to the current model. The user can browse through the catalog 

tree structure and has access to all the information stored along with the models. Figure 7.4 

shows the contents of Allen Screws family under the Fasteners chapter. Any catalog 

component can be added to the current model by double-clicking on it. 
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Figure 7.4 Select Tools/Fasteners 

Simulation 

This command brings up the simulation setup and runtime dialog box. The user can 

select the haptic devices that will be used during the simulation. The hand-scaling factor can 

also be set on this dialog box. It also provides button for starting and stopping the 

simulation as shown in figure 7.5. 

 
Figure 7.5 Simulation Setup and Runtime 
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Demonstration 

 This section demonstrates a typical disassembly operation using a simple assembly.  

Figure 7.6 shows the assembly tree hierarchy for the demonstration model.  

 

Figure 7.6 Demonstration Model Assembly Structure 

The demonstration is depicted using a series of pictures taken during important 

stages of the simulation. Before starting the simulation, the component-fastener mapping 

has been defined for the simple 3-component assembly using the component-fastener 

mapping utility shown in figure 7.2. A compatible Allen wrench for one of the Allen screws 

is also imported from the catalog. Figures 7.7a through 7.7d walk through different steps of 

the simulation. 

In figure 7.7a the user has grasped the tool and is able to move it freely. At this point 

none of the assembly components can be disassembled as all the fasteners mapped to them 

are in place.  
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Figure 7.7a Demonstration: Tool in hand 

In figure 7.7b the tool (allen wrench) is engaged with the fastener (allen screw) when 

it gets in a close to the fastener. At this point the user can rotate the tool to unscrew the 

fastener. 

 
Figure 7.7b Demonstration: Tool Engaged 
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Figure 7.7c shows the fastener being removed after it is completely out of the hole. 

The user can now try to disassemble the components held down by this fastener. 

 
Figure 7.7c Demonstration: Fastener Removed 

 Figure 7.7d depicts the disassembly step where the component held down by the 

removed fastener can be displaced from its assembled location. 

 
Figure 7.7d Demonstration: Disassemble Component 
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CHAPTER 8 

SUMMARY AND FUTURE WORK  

This chapter summarizes the goals achieved while developing the open architecture 

for implementing virtual assembly tools functionality. It also gives a brief account of 

development of a prototype for VR cutting tools functionality to demonstrate the flexibility 

of the proposed architecture. Finally it lists limitations of the current architecture, which also 

provides a direction for future development of virtual assembly tools functionality. 

Summary 

 In this research we proposed and demonstrated an open architecture for integrating 

CAD systems and Haptic devices while developing virtual assembly environments 

supporting virtual tools. The high level architecture proposed the CAD plugin and the 

GHBridge as the two main software modules. We further developed a detailed architecture 

and defined key classes and their roles for the CAD Plugin and the GHBridge. Thus, the 

proposed model facilitates building of immersive environments for performing virtual 

assembly operations within CAD systems using various haptic devices for user interaction. 

Some of the key features of the proposed architecture are as follows: 

1. It converts the familiar CAD environment into virtual environment for assembly 

operations. 

2. It leverages off of the CAD system’s visualization capabilities.  

3. It is extensible and can be applied to various types of mechanical tools. 

4. It is flexible in facilitating usage of various haptic devices. 
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5. It provides a guideline for building and managing a library of virtual tools. 

In order to demonstrate the extensibility of the proposed architecture we 

implemented a prototype for supporting virtual cutting tools called VRCut. The following 

section gives a brief description of the prototype implementation for cutting tools 

functionality. 

VRCut Prototype 

The VRCut prototype is also developed for CATIA V5 and uses the CyberGlove 

from Immersion Corporation as the haptic device. In the Haptics Enabled Virtual Tools 

Environment, the user is able to grasp a cutting tool in a CATIA V5 environment with the 

virtual hand and perform a planar cut through the assembly. Thus, the intent is to allow the 

user to interactively split an assembly and manipulate the fragmented pieces.  The module 

developed has the capability to be used for any CAD assembly, thus providing a very wide 

range of applications. The cutting tools supported by the current version of the software are 

a circular saw and a jig saw.  The only preprocessing required for the simulation is that the 

cutting tool, with a certain naming convention, needs to be added at the top of the assembly 

that is being cut and manipulated.  

The focus of this phase was on developing algorithms for visualizing and 

implementing assembly cut operations for CAD models. An extensive literature review led 

to the possibility of using voxels. A test-case cutting program was developed in C++ to 

further investigate the use of voxels.  Since the algorithms had to be implemented for a CAD 

model, functionality supported by the CAD system (CATIA V5 in this case) was also taken 

into account. CATIA supports a variety of Boolean operation that can be used for emulating 

material removal operation. The “Remove” feature supported by the Assembly Workbench 
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in CATIA V5 enables the user to remove the intersecting geometry between two bodies. 

This prototype uses the “Remove” operation for simulating the cutting process. For any cut 

that results in two disjoint solids, the “Remove Lump” command from CATIA is used via a 

macro to create two separate bodies. These bodies can then be manipulated independent of 

each other. Figures 8.1 through 8.3 show various stages of the cutting operation.  

 

 

Figure 8.1 Cutting Saw in Hand 
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Figure 8.2 Assembly Cut 

 

Figure 8.3 Assembly cut into two halves 
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Use of the Open Architecture in VRCut 

 VRCut prototype adopts the open architecture proposed in this research. Except for 

the algorithms that were implemented to perform the cutting operations on the assemblies 

all the functionality from VR Tools implementation was used. The visualization scheme, 

scene graph management, constraints and state management were directly used without any 

changes. Thus we were able to demonstrate the extensibility of the proposed open 

architecture via implementation of the VRCut prototype. 

Future Work 

While implementing the VRTools functionality and the VRCut prototype we came 

across some of the limitations of the architecture proposed in this work. These limitations 

can be overcome by further developing the architecture. Following are some of the 

limitations in the current architecture that can be addressed in future work: 

• Current architecture for the CAD Plugin is designed to be tightly integrated with the 

CAD API. Implementing the VRTools functionality for a new CAD system will involve 

complete re-writing of the CAD Plugin code. This effort can be reduced to minimum by 

breaking down the CAD Plugin into a CAD-neutral component that has all the 

algorithms and logic and a utility library implementing the CAD API. 

• Current architecture does not allow design modifications to the assembly components 

while the simulation is running. The user has to stop the simulation to make design 

changes to the parametric CAD model. The architecture can be further developed to 

expose the CAD parameters in the virtual environment and allow the user to change 
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them while running the simulation. The simulation environment can then be 

automatically updated once the CAD system regenerates the updated CAD model. 
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