

40 Gbps SiGe PATTERN GENERATOR IC WITH

VARIABLE CLOCK SKEW AND OUTPUT LEVELS

By

MATTHEW JOHN ZAHLLER

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINERING

WASHINGTON STATE UNIVERSITY

Department of Electrical and Computer Engineering

DECEMBER 2006

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of

MATTHEW JOHN ZAHLLER find it satisfactory and recommend that it be

accepted.

 Chair

ii

ACKNOWLEDGMENT

 I would like to first acknowledge the help of my advisor Dr. George La Rue for

his help and guidance with formulating the idea for the pattern generator and its unique

components as well as for the answering of numerous questions.

 Also I would like to acknowledge Dirk Robinson for his guidance with design

issues, operating system problems, and most importantly test procedure and equipment

lessons.

iii

40 Gbps SiGe PATTERN GENERATOR IC WITH

VARIABLE CLOCK SKEW AND OUTPUT LEVELS

Abstract

by Matthew John Zahller, MS

Washington State University

December 2006

Chair: George S. La Rue

 A single-chip 40 Gbps pattern generator design in 0.18 µm SiGe BiCMOS

technology is described. An on-chip 128x128 bit RAM with an access time of 3 ns stores

the data pattern. A hybrid 128:1 CMOS/ECL multiplexer increases the output data rate

from the RAM to 40 Gbps. The output driver is back terminated with 50 ohms and

provides programmable levels in the range -2 V to 2 V into a 50 ohm load. The simulated

pattern dependent jitter is under 1 ps at all output levels. The clock can be delayed by a

programmable number of clock cycles plus a vernier delay of up to 50 ps in 0.2 ps steps

in simulation. Power dissipation is up to 1.5 W depending on the output amplitude and

termination voltage.

iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS... iii

ABSTRACT... iv

LIST OF TABLES.. vii

LIST OF FIGURES ...viii-ix

CHAPTER

 1. INTRODUCTION .. …1-4

 Vernier Generation Technique Notes……………………………………..1-2

 PRBS Generators in SiGe Bipolar ..………………………………………....3

 Silicon Bipolar IC..……………………………………………………….....3

 Outline...………………………………………....4

 2. RESEARCH DESIGN AND METHODOLOGY .. 5-14

 Circuit Architecture ………………………………………....5-10

 RAM Speed...................................………………………………………....10

 RAM Controller ………………………………………....11-13

 Test Architecture…………………………………………………………...14

 3. SIMULATIONS ... ………15-20

 Output Driver ………………………………………....15-16

 Vernier Delay Circuit…………………………………………………..16-18

 Ram Controller....………………………………………………………19-20

 4. MEASURED DATA………………………………………………………...21-32

v

 Output Swing Measurements…………………………...………………22-25

 High Level Measurements…...…………………………………………26-27

 Current Feedback Measurements…...………………………………...……27

 Level Shift Measurements ………………………………………....27-28

 Vernier Delay Circuit Measurements…...………………………………28-32

 5. NEEDED MODIFICATIONS……………………………………………….33-41

 Shift Register Input Buffer…...……...…………………………………33-34

 .Output Driver…..………………………………………….…………...34-39

 Vernier Delay..39

 Layout Issues40-41

 High Frequency Measurments ..41

BIBLIOGRAPHY..42

APPENDIX

 A. VERILOG CODE FOR RAM CONTROLLER.. .43-56

 B. TEST PROGRAMS... .57-63

vi

LIST OF TABLES

1. Inverter Chain Delay Values..16

2. Vernier Delay Values...17

3. Measured Current Levels during Output Swing Test ..25

4. Simulated vs. Measured Inverter Chain Delay ..30

vii

LIST OF FIGURES

1. Block diagram of the pattern generator IC ..5

2. Block diagram of the 128:1 Mux...6

3. Block diagram of the output driver..7

4-a. Block diagram of the Vernier Delay Circuit...8

4-b. Block diagram of the Inverter Delay Circuit combined with Vernier Delay9

5. Block diagram of the “N” cycle clock delay circuit ..10

6. Block diagram of Data Path...11

7. Block diagram of the Shift Register Path ..14

8. Output Jitter vs. Voltage Swing ...15

9. Simulated eye diagram at 40 Gbps and an output amplitude of .75V16

10. Inverter Chain Delay Plot ..17

11. Vernier Chain Delay Plot...18

12. Verilog Simulation of Full Column Code..19

13. Verilog Simulation of Partial Column Code..20

14. Picture of Test Setup..21

15. Pattern Generator Differential Outputs..22

16. Pattern Generator Differential Outputs ..22

17-a. Output Driver Output Swing Chip 1...23

17-b. Output Driver Output Swing Chip 2...23

18-a. Output Driver High and Low Level Chip 1..24

18-b. Output Driver High and Low Level Chip 2..24

19. High Level Output Voltage Measurement at Different Output Swing Values............26

20. High Level Set Circuitry..27

21. Level Shift Effect on Output Levels ..28

viii

22. Schematic of Vernier output before Bias T ...29

23. 3 GHz clock Input(Green) and Vernier Circuit Output(Purple)29

24. Measured Inverter Chain Delay...30

25. Measured Vernier block delays ...31

26. Vernier 1 INL...31

27. Vernier 2 INL...32

28. Vernier 1 and Vernier 2 INL..32

29. Shift Register Input Buffer...34

30. Simulated High Level Voltage...35

31. Simulated High Level Output Current ...35

32. Simulated High Level Input Reference Current to CMOS Current Mirror36

33. Simulated High Level Output Reference Current from CMOS Current Mirror..........36

34. Simulated Output Swing Bias..37

35. Simulated Bias Current at Output Differential Pair ...37

36. Simulated Output Voltage Swing ..38

37. Bipolar 4-1 Mux...40

38. 4-1 Mux Error Simulation..41

ix

Dedication

I would like to dedicate this to my wife Kimber for her patience, encouragement and

love. Without her I would never have completed my goals.

 1

CHAPTER ONE

INTRODUCTION

The continued advances in CMOS and bipolar integrated circuit technologies has

given rise to higher speed circuits and the need for low-cost high-speed pattern generators

to test these circuits. High speed SiGe BiCMOS technology, which combines very high

speed heterojunction bipolar transistors (HBTs) and high density CMOS, is a natural

choice for integrating pattern memory with high-speed multiplexers and output drivers.

InP and GaAs components at 40 Gbps [1] cannot provide a one-chip solution and the cost

is much higher. Available pattern generators include the DG2020, DG2030, DG2040

series from Tektronics; M2i.7021-Digital I/O from Spectrum; and Stressed Pattern

Generator from BERTScope.

The requirements for our high-speed pattern generator are 1) differential outputs with

50 ohm output impedance; 2) programmable output high and low levels; 3) a maximum

swing of 1.5 V into 50 ohm loads; 4) programmable delay with resolution of 0.2 ps; 5) a

memory depth of at least 64K bits; and 6) pattern dependent jitter less than 1 ps.

Vernier Generation Technique

 The creation of high speed data pattern generation has increased the need for high

accuracy delay techniques. High accuracy delays are utilized for use in multiple channel

pattern generation where individual channel delay paths may need to be aligned or

purposely delayed with respect to each other. Data pattern speed of 40Gps therefore

requires very fine timing resolution. The use of bipolar technology instead of CMOS

technology not only allows for much higher speed data pattern generation, but also allows

 2

the realization of data dependent jitter in the hundreds of femtoseconds region leading to

very high resolution.

Multiple methods have been developed to create a variable delay. The vernier

delay line method is extremely popular with multiple variations such as: two level,

oscillation mismatch, folding, self-sampled, component invariant, and built in self test

pulse width modulation calibration[2]-[7]. VDL techniques require very accurate

matching, PLL or DLL technology or additional manipulations to reduce clock jitter and

mismatch specifications. Using a single absolute delay at higher speeds will not give the

timing resolution required[8]. The two inverter current switching technique allows for a

differential delay approach rather than a single ended approach, and increases linearity

and common mode noise by having an inverter structure which utilizes differential input

pairs. Bipolar differential pairs also contribute to a more accurate delay value as long as

the current from the current sources are accurately controlled.

 The structure of the delay is to partially switch binary weighted currents between

a one inverter and two inverter path. This structure’s accuracy and reliability does not

rely on a clocking system, or flip flop timing.

 In addition, high speed data generation can be especially sensitive to noise. This

noise will be seen in the output data pattern as timing jitter. Again, by using differential

logic, we greatly reduce common mode noise, as well as increase power supply rejection.

Also all CMOS current sources were isolated with guard rings to protect them from

switching noise.

 3

PRBS Generators in SiGe Bipolar Technology

 PRBS generators can provide high bits rates without requiring the multiplexing of

lower speed data with multiple pipelined stages of multiplexers[9]. A significant

achievement for this pattern generator is the ability for it to have on chip RAM and the

ability to have clock delay control as well as control over the output levels.

 In the past PRBS generators have reached speeds of up to 100Gbps with a data

dependent jitter of 2ps[9]. At even lower rates of 80Gbps and 40Gbps output jitter of

700fs and less than 500fs were achieved[9]. There have also been variable current

sources which allow for variable output amplitude. But the actual output swings have

been limited to 300mVpp and 1Vpp[9]. The current output driver design can vary the

output levels from 2 volts to -2 volts, with a swing of 0 volts to 1.5 volts. It also has the

ability to have its outputs terminated to multiple voltages. An input buffer circuit

controls clock jitter. This more than doubles the available output amplitude swing and

allows for the pattern generator to drive multiple logic families without changing power

supply levels.

Silicon Bipolar IC

 Finally, the development of high speed components in the area of optical fibre

communications systems require high speed test equipment in the 20Gbps range and

higher[10]. The current design utilizes a clock input range of 10GHz to 20GHz, and

since it is a half rate clock system, our range is therefore up to 40Gbps. Characteristics

such as the ability to have on chip RAM and a wide range of variability in the output

levels and output swing would allow a low cost, versatile, high-performance solution for

testing high-speed communication, mixed-signal and other circuits.

 4

Outline

 This paper describes a one-chip solution for high speed and high accuracy data

pattern generation. Specifically, Chapter 2 contains the methodology used to design the

pattern generator as well as future components not yet included in the current fabrication.

Chapter 3 outlines multiple simulations done to test each system component and verify

specifications. Chapter 4 shows measured data of the fabricated prototype chip. Chapter

5 utilizes both measurements and additional post fabrication simulations to explain future

modifications needed to improve performance.

 5

CHAPTER TWO

DESIGN AND METHODOLOGY

Circuit Architecture

Fig. 1 shows the block diagram of the pattern generator IC. The pattern data is stored

in four 1024 x 128 bit SRAM, with an access time of about 3 ns. The 128 bit wide output

words are first multiplexed by sixteen 8:1 CMOS multiplexers to 2.5 Gbps and then by a

16:1 HBT ECL multiplexer to 40 Gbps. The final multiplexer uses the clock to directly

select the data thus reducing the maximum clock rate to 20 GHz. This puts a requirement

on the duty cycle to be 50% however.

Fig. 1 Block diagram of the pattern generator IC

 Fig. 2 shows the block diagram for the hybrid 128:1 multiplexer. A high speed

 clock is fed into a clock driver which drives the high speed bipolar components in the

final 16:1 mux. This clock signal is also divided down and converted to the CMOS

levels to drive the slower 128:16 mux logic.

 6

 Fig. 2 Block diagram of the 128:1 Mux

The high rate data is then fed into the output driver shown in Fig. 3 which contains a

variable level shift circuit, three variable high and low level current DACs, and an output

differential pair. The variable level shift circuit is utilized to change the amplitude of the

incoming signal driving to the output differential pair. The data dependent output jitter

can be reduced with this approach. The variable level shift circuit has a current source

that can vary from 0-6mA. An emitter follower stage provides adequate base current at

full output voltage swing. The output voltage swing is varied by controlling a 0-60mA

current source.

 7

VDD

Digital

in Level

Shift

DAC

VTT

VTT
DAC

5050 External

Out 50

50

VSS

VSS

VSS

Fig. 3 Block diagram of the output driver

Fig. 4-a shows the vernier differential delay circuit which delays the clock by one to

two inverter delays. Bipolar differential pairs steer the variable tail currents to either the

single inverter at the top of the diagram or the load inverter at the very right of the

diagram. If the top DAC was completely shut off, then the clock signal travels through

two inverter paths. However, if the top DAC is completely on and the DAC on the right

of the figure is completely off, the clock path consists only of a single inverter delay. By

choosing intermediate current values between the two paths a differential delay can be

achieved consisting of value greater than one inverter delay, but less than or equal to a

two inverter delay path. The sum of the two DAC controlled tail currents must remain

constant to obtain a constant signal amplitude. The vernier delay circuit provides a

programmable delay of up to 8 ps in 0.2 ps steps.

 8

 To achieve the total delay goal of 50 ps two vernier circuits were placed in series and

four additional paths were introduced which consisted of 0, 2, 4, or 6 series inverters.

The two vernier circuits in series allow for larger variability, while the inverter delay

paths allow for longer delay values without having to control more than two vernier DAC

registers. This method gives much longer delay values with far less power dissipation.

The specific circuit configuration is detailed in Fig. 4-b.

VDD VDD

Vin

Vin

nVin

nVin

VSS

nVdel

Vdel

DAC

VSS

DAC

VSS

VDD VDD

Fig. 4-a Block diagram of the Vernier Delay Circuit

 9

Fig. 4-b Block diagram of the Inverter Delay Circuit combined with Vernier Delay

Fig. 5 shows an additional delay circuit which extends the clock delay by a

programmable number of up to 255 clock cycles. An 8-bit counter is loaded with the

desired number of clock cycles to be delayed and then counts down to zero. The

detection logic block enables the clock feed-through logic to allow the half rate clock to

pass on to other circuits. This circuit has been designed, simulated, and laid out, but was

not included on the prototype due to lack of area.

Therefore, only the circuit structure in Fig. 4-b was implemented on the prototype

chip.

 10

Fig. 5 Block diagram of the “N” cycle clock delay circuit

RAM Speed

The SRAM is organized as 1024 columns of 128-bit words. Since the output word

width of the SRAM is large, the 8-bit counter that addresses the columns is only required

to operate at 300 MHz. The counter can perform looping to effectively extend pattern

length. The counter is initially reset and after the start signal is enabled, it will continue

until the counter output is equal to the variable end register. The counter will then jump

to the variable start register and repeat until reset is enabled.

The counter that addresses the RAM and multiplexers uses a combination of SiGe

bipolar and CMOS logic. The high speed clock is first divided using bipolar flip-flops

and then converted to CMOS levels when speeds are low enough. In order to provide

lower data rates without duplicating data in the memory, the CMOS clock that drives the

SRAM column counter can be divided by 1, 2, 4, or 8.

The prototype chip does not contain the SRAM or its control circuitry. A 128 bit shift

register line was constructed to load data and control values. This shift register

implementation shows the feasibility of the pattern generator due to the fact that it is

close enough to the RAM implementation from a speed point of view.

 11

RAM Controller

The purpose was to design a flexible RAM controller that would control a

minimum of 512MB of RAM with functions such as looping and partial column jumps.

This methodology was designed in verilog to verify functionality. Fig. 6 shows the data

flow control of four different SRAM banks into the 128 bit wide input of a single channel

data pattern generator.

Fig. 6 Block Diagram of Data Path

 12

The components of the system include 4 RAM blocks which have 128 rows and

1024 columns. Blocks A, B, and C are used to store the pattern data, while block D will

is used as a copy register in the event that a partial column jump is desired. Multiple 10-

bit counters control which column is allowed to write or read while each RAM block’s

128 outputs go to a 128:16 multiplexer. This 128:16 multiplexer is controlled by a 4-bit

mux counter. These multiplexers select 8-bits at a time and pass the data to the final 8-bit

wide 4:1 multiplexer, which determine which RAM block data should be allowed to

proceed to the bipolar multiplexer.

 Data pattern generators to test communication circuits usually use linear feedback

shift registers to generate pseudo-random sequences. Therefore, the bit sequences are

over a million bits long. 500kb of on-chip SRAM may not be adequate for these

applications. To achieve a longer pattern techniques such as looping and jumping can be

employed. Initially, a user may input into table entries the start address value, stop

address value, and number of cycles to complete before jumping to the next table entry

start value. Jump values need to be considered depending on which RAM bank they are

allowed to come from or go to. In addition control logic is needed to properly send the

data out of the correct RAM block. Two methods of control can be used. Either the

addressing scheme can be controlled to switch between the wanted data values, or the

addressing scheme can be made less complicated and the output data can be controlled.

This scheme uses a data control concept in which multiple data blocks can be sending out

data at the same time and multiplexers control which data is allowed to pass until all of

the data choices are reduced to one final correct 8-bit word.

 13

The basic operation of the system is that the user will enter information in 4 table

entries. The number of table entries can be easily increased if needed. The user will

enter for each cycle the start address, stop address, and number of cycles. It is assumed

that software will then place the data in memory depending on whether partial or full

column jumps are required. The responsibility of this code is to multiplex the data out

correctly. The start register is 12 bits. Two bits are dedicated to which RAM block the

start value is in, and the other 10 bits will address which column in that block should be

addressed. The stop value register is 16 bits. Four of the bits determine which row

contains the last of the data, 2 bits determine the stop block and the other 10 bits

determine what column. The stop register would only need to be 14 bits if there is a

restriction that the start and stop register values must be in the same block.

The basic operation of the code first initializes all counters and clock signals until

an enable signal is present. This code also determines when to switch from the previous

table entry to the next. In addition, for each table entry partial or full column stop values

are calculated to allow for the correct section of code to be activated. These separate

sections of code are then executed until all of the table entry values have been completed.

More detailed information of the specific operation of the initialization code, partial

column jumps and full column jumps is located in the beginning of Appendix A titled

“Detailed Operation.”

 14

Test Architecture

 Shift registers were implemented to load all of the needed DAC values for testing.

The shift register path is shown in Fig. 7. SR1 consists of only two bits which choose a

particular delay path. As mentioned above, there are four delay paths which can be

chosen to achieve up to 50ps of clock delay. These two bits control an equivalent 4:1

multiplexer which consists of three 2:1 multiplexers seen in Fig. 4-b. SR2 and SR3 load

the 8-bit DAC registers for each of the two vernier delay circuits. SR4 controls the bias

voltage for a cascade pair of bipolar transistors on the output differential pair of the

output driver. When the high level is lower than -1V these values must be changed in

order to not violate any breakdown voltages and also leave enough headroom for the

differential input pair. SR5-SR8 load the four variable DAC registers for the output

driver to set the high level, low level, output swing, and jitter reduction. SR_D consists

of the 16 8-bit registers which load the data inputs of the pattern generator.

Fig. 7 Block diagram of the Shift Register Path

 15

CHAPTER THREE

SIMULATIONS

Output Driver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5

Output Swing (V)

O
u
tp
u
t
J
it
te
r
(p
s
)

Vhi=-2

Vhi=-1

Vhi=0

Vhi=1

Vhi=2

Fig. 8 Output Jitter vs. Voltage Swing

 Fig. 8 shows the data dependent jitter simulations of the output driver at different

high level values and output swings. At each high level and output swing value, the level

shift circuit amplitude was modified to achieve the lowest possible jitter. It was seen that

the data dependent jitter was well under the 1ps specification.

 16

Fig. 9 Simulated eye diagram at 40 Gbps and an output amplitude of 0.75V.

 Fig. 9 shows an example eye diagram. The eye diagrams were used to measure

the data dependent jitter at the threshold point with an input data pattern of 1.5ns length

at a rate of 40Gbps.

Vernier Delay

Table. 1-Inverter Chain Delay Values

 del_0or4 ndel_0or4 del_low ndel_low Total Delay
Relative
Delay

Zero
Inverters 1 0 1 0 5.25152E-11 0

Two
Inverters 0 1 1 0 6.65217E-11 1.40065E-11

Four
Inverters 1 0 0 1 8.28986E-11 3.03834E-11

Six
Inverters 0 1 0 1 9.84058E-11 4.58906E-11

 17

Simulated Inverter Delay Chain

0.000000E+00

5.000000E-12

1.000000E-11

1.500000E-11

2.000000E-11

2.500000E-11

3.000000E-11

3.500000E-11

4.000000E-11

4.500000E-11

5.000000E-11

Zero Inverters Tw o Inverters Four Inverters Six Inverters

Number of Inverters

D
e
la
y
 (
s
e
c
o
n
d
s
)

Fig. 10 Inverter Chain Delay Plot

Table. 2-Vernier Delay Values
Input
Code Vernier 1 Vernier 2 Vernier 1 & 2

Vernier 1
Rel

Vernier 2
Rel

Vernier 1 & 2
Rel

11111111 5.725E-11 5.70E-11 6.370E-11 4.742E-12 4.527E-12 1.119E-11

10000000 5.338E-11 5.327E-11 5.532E-11 8.719E-13 7.647E-13 2.807E-12

00000001 5.278E-11 5.278E-11 5.295E-11 2.653E-13 2.653E-13 4.362E-13

 18

Measured Vernier Delays

0 2E-12 4E-12 6E-12 8E-12 1E-11 1.2E-11

Vernier 1 Delay

Vernier 2 Delay

Vernier 1 & 2 Delay

Delay (seconds)

00000001

10000000

11111111

Fig. 11 Vernier Chain Delay Plot

Simulations of the individual vernier circuitry as well as the inverter chain paths

in Fig. 4-b were completed. The intrinsic delay path was calculated as the path through

Fig. 4-b with both vernier circuits at their minimum delay value as well as choosing the

additional zero inverter path. This delay is recorded in Table 1 as approximately 52.5 ps.

Each subsequent Total Delay value was then simulated. To find the relative delay of

each path approximately 52.5 ps was subtracted from it. In addition, the combination of

the vernier 1 and vernier 2 were measured. This information gave linearity as well as

expected delay values to compare to measurements taken from the prototype chip. The

total delay range when combining the inverter chain and the vernier delay circuits was

simulated in the range of 0ps to 57.08508ps.

 19

RAM Controller

The following simulation is a functional simulation for a full column stop values.

Fig. 12 Verilog Simulation of Full Column Code

This simulation shows the basic function of full column operation. The four most

significant bits(1111) show that the stop value is at the end of the column and therefore a

full column stop. The next two bits(01) determine which counter values to look at; in this

case RAM block B seen in Fig. 6. The final ten bits of the stop value(0000011111) is the

stop column at which the specific table entry sequence should end. The counter output of

the counter which controls the addressing of RAM block B(countb) counts until it

reaches the final ten bits of the stop value. Upon the completion of that bit code setb and

resetb are triggered to start counter B back at the start value. Due to the fact that the start

value is 0000000000 all ten bits of resetb are triggered and no bits of setb are to reset the

counter back to the start value. The signal cycle_count is then incremented to show that

one completion of the table entry cycle has been completed. This value would then be

compared to the wanted cycle value and if equal, the transition to the next table entry

would activate. During this sequence the control of the multiplexers becomes very

simple and would be based on the stop value code for which RAM block to allow the

correct data to pass.

 20

Fig. 13 Verilog Simulation of Partial Column Code

This simulation shows the operation of a partial column code. The signal block_count is

used to determine which block section the code should be looking at. In this case 00

means block A. When the column counter for block A has read the last full column in

the sequence, the block counter for block A is reset to the start value. This event can be

seen in Fig. 13 when signals reseta and seta are triggered. This will allow the start value

and SRAM block D value to be read at the same time. The code then detects the stop row

of the data in SRAM block D and then resets the mux values to go back to the start value

in SRAM block A. The control will then trigger the signal delay_a_enable to determine

the counter delay so that the entire column can be multiplexed completely. The control

signals for the multiplexers follow the same pattern as the full column stop logic. In Fig.

13 the mux control can be seen switching to SRAM block D(set_fmux=11) and then back

to SRAM block A(reset_fmux=11) when the extra data stored in SRAM block D has

been read. More detailed information on the partial column code operation is located in

Appendix A.

 21

CHAPTER FOUR

MEASUREMENT DATA

 Measurement data was taken using the TDS8000 sampling scope. Shift register

read and write functions were executed by a Velleman test board. Level shift circuitry

was designed to shift the Velleman board values into the shift register data and clock

lines. DC probes provided the additional 4V supply for the output driver as well as for

the low speed shift register lines. The vernier circuit delay output was measured

separately from the data output using the crossing point measurement. The output driver

variations were measured using the maximum and minimum scope values. GPIB

recorded the measurements after adequate settling time had passed. In addition, the shift

register control data was verified during simulation time. Example GPIB programs are

contained in Appendix B. All high frequency outputs were measured using RF probes.

SMA cables connecting the RF probes to the TDS8000 are rated for frequencies up to

3GHz.

Fig. 14 Picture of Test Setup

 22

Fig. 15 Prototype Layout 1.131mm x 1mm

Output Swing Measurements

Fig. 16 Pattern Generator Differential Outputs

 23

Output Swing Variation

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Bit Transition from 00000000 to 11111100

Fig. 17-a Output Driver Output Swing Chip 1

Output Swing Variation

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Bit Transition from 00000000 to 11111100

Fig. 17-b Output Driver Output Swing Chip 2

 24

High and Low Level Variation

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Bit Transition from 00000000 to 11111100

High Level

Low Level

Fig. 18-a Output Driver High and Low Level Chip 1

High and Low Level Variation

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1.200000

1.400000

Bit Transition from 00000000 to 11111100

High Level

Low Level

Fig. 18-b Output Driver High and Low Level Chip 2

 Measurements were taken at 3GHz to measure the variation of the output driver

variables. The control of the output driver voltage swing obtained values that were half

of the expected values with both of the outputs terminated to 50 ohms and with ground as

the termination voltage. A max voltage swing of .75 volts and .88 volts was reached

approximately halfway and three quarters through the binary sequence respectively. The

swing should have continued to the simulation expectation of 60mA into an equivalent 25

ohms or 1.5V. This effect could be due to malfunctioning of the current mirror,

 25

temperature, parasitic inductance associated with the test setup, as well as the output

swing bias current not being switched positive to negative as fully as expected due to a

clock error in the data path which is explained in Chapter 5. In addition, further

temperature and power supply variations are looked at in more detail in Chapter 5. The

layout of the output driver also could have a contribution. Specifically, the distance of

the bias current to the differential pair, and the distance between the differential pair

outputs and the measurement pads. With further testing it was seen that the current level

change in the power supplies did not reflect the expected current change. Since all of the

bias current change would be seen in the -4V supply, the current levels at each end of the

binary sequence were measured.

Table. 3-Measured Current Levels during Output Swing Test

 Bit Pattern=00000000 Bit Pattern=11111100

Voltage Supply Current Measured Current Measured

4V 28.3mA 51.5mA

-2.2V 11mA 11.55mA

-4V 230mA 260mA

 The -4V currently supply changed by only 30mA, or half of the wanted current.

This deviation is consistent with half of the expected voltage swing being obtained. This

information then points to the DAC circuit malfunctioning or bias voltage variation. This

could be due to a parasitic IR drop of the bias voltage which feeds the binary weighted

transistors, resistor variation in the bipolar current mirror stage due to temperature or

power supply variation due to measurement cable inductance or IR drops.

 In addition, the high level did not remain at its peak value. The high level voltage

is created by using the 4V supply and two corresponding diode drops. The diodes are

simple bipolar transistors which due to the increase in output current have an increased

base to emitter voltage drop.

 26

High Level Measurements

Measured High Voltage (attenuated by 2) with

Constant Level Shift and Current Feedback Values at Input Clock

Frequency of 3GHz

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16 32 64 128

High Level DAC Bit Input

H
ig
h
 L
e
v
e
l
V
o
lt
a
g
e

os=10

os=20

os=30

os=40

os=50

os=60

os=70

os=80

Fig. 19 High Level Output Voltage Measurement at Different Output Swing Values(os given in hex format)

 The high level control of the output drive seemed fairly constant when using

multiple output swing values. But, the linearity of the different DAC values did seem too

dependent on the level of the output swing. This problem points again to the current

mirror topology, which in the case of the high level set circuitry is equivalent to the

output swing circuit. Minor oscillations were also noticed depending upon the value of

the high level DAC. The most common bits where this occurred were the lower three.

By changing the output swing the bias point of the output also changes and could

therefore affect the output pattern as well as increase the chances of some instability.

 In some cases the high level voltage would decrease dramatically when the input

to the high level DAC reached hex 08. Looking at the current sourced by the power

supplies when this crashed occurred, it was observed that the current through the 4V

supply dropped dramatically (38mA to 25mA), even though the high level lowered.

Current levels measured in the other two supplies remained constant. This indicates a

non ideal current path. The circuit diagram shows the same basic current mirror that is

used in the output swing current source. There is also a high voltage bipolar to help with

 27

breakdown issues due to the fact that the voltage swing at the negative end of the resistor

can be from 4V to -1V.

Fig. 20 High Level Set Circuitry

Current Feedback Measurement

 The feedback current source, which is used for the purpose of helping to set the

high level when the desired high level is less than the termination voltage, was tested to

determine if the correct amount of current was being created. This source simulated to

have a range of 0-40mA. By measuring the power supply current a change of only 26mA

was seen after counting though the corresponding DAC values.

Level Shift Measurement

 Due to the clock routing error, the level shift circuit could not be fully tested.

However, its effect on the output swing did give insight to the idea that perhaps the

output voltage swing was not reaching its full value because the current was not being

fully switched in the final differential pair.

 28

Level Shift Effect On Output Levels

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1.200000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Bit Pattern from 00000000 to 11111000

O
u
tp
u
t
V
o
lt
a
g
e

High Level

Low Level

Fig. 21 Level Shift Effect on Output Levels

Vernier Delay Circuit Measurements

 The direct output of the vernier delay circuit was measured at 3GHz. Both the

response of the four inverter chain paths as well as the response of the individual vernier

blocks was measured. A bias T was used to set the termination voltage to approximately

-1.6 V. When terminating the output through 50 ohms to ground the output of the vernier

circuit was connected equivalently to Fig. 22. With a bias current in the emitter follower

of 1mA, Vout was only allowed to swing as low as -.1V. This configuration did not

allow Vout to swing beyond a base-emitter drop of the input signal. Setting the

termination voltage to a -1.6V, the emitter follower was allowed to drop far enough to see

a significant voltage swing at Vout.

 29

VDD

0 to -.25V

Input

VSS

GND

1mA

50

Vout

Fig. 22 Schematic of Vernier output before Bias T

Fig. 23 3GHz clock Input(Green) and Vernier Circuit Output(Purple)

 30

Measured Inverter Chain Delay

0.000E+00

1.000E-11

2.000E-11

3.000E-11

4.000E-11

5.000E-11

6.000E-11

7.000E-11

Zero Inverters Two Inverters Four Inverters Six Inverters

Number of Inverters

M
e
a
s
u
re
d
 D
e
la
y
 (
s
e
c
o
n
d
s
)

Chip 1

Chip 2

Fig. 24 Measured Inverter Chain Delays

 The measurements were made using the positive crossing point measurement of

the sampling scope. Adequate settling time was given, and relative accuracy was seen to

be within 1ps or less. The inverter chain measurements matched up very closely to the

simulated values.

Table. 4-Simulated vs. Measured Inverter Chain Delay Chip 1

 Measured Simulated % Error

Zero Inverters 0.000E+00 0.000E+00 0.00

Two Inverters 1.328E-11 1.401E-11 5.19

Four Inverters 2.768E-11 3.038E-11 8.90

Six Inverters 5.289E-11 4.589E-11 -15.25

 Measurement of the individual vernier block showed expected behavior, but with

multiple linearity problems and poor reproducibility. The linearity could be an issue with

the timing of the scope due to the fact that the total inverter delay is only expected to be

around 6-8ps in simulation. Other contributing factors to the response of the vernier are

jitter from the clock source, slew rate limiting, and the 10mV amplitude of the signal

itself.

 31

Vernier Circuit Delay Measurements (3GHz)

0.0000E+00

5.0000E-12

1.0000E-11

1.5000E-11

2.0000E-11

2.5000E-11

1 2 3 4 5 6 7 8 9 10 111213 141516 171819 202122 2324 252627 282930 3132

Bit Pattern from 00000000 to 11111000

M
e
a
s
u
re
d
 D
e
la
y
 (
s
e
c
o
n
d
s
)

Vernier 1

Vernier 2

Vernier 1 & 2

Fig. 25 Measured Vernier block delays

Vernier 1 INL-2 bits

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 5 10 15 20 25 30 35

L
S
B

Fig. 26 Vernier 1 INL

 32

Vernier 2 INL-2 bits

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

0 5 10 15 20 25 30 35

L
S
B

Fig. 27 Vernier 2 INL

Vernier 1 and Vernier 2 INL-2 bits

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0 5 10 15 20 25 30 35

L
S
B

Fig. 28 Vernier 1 and Vernier 2 INL

 The INL measurements show that either of the vernier circuits alone, or combined

may have 8-bit resolution, but only 2-bit accuracy to approximately .5 LSB. Simulations

also indicated that the circuit topology itself does not have high bit accuracy. This fact

can be overcome and modified due to the higher resolution to be able to initiate the

wanted delay.

 33

CHAPTER FIVE

NEEDED MODIFICATIONS

Shift Register Input Buffer

The data shift register input circuit worked properly using the ideal power supply

voltages. The control shift register was seen to give data patterns that suggested multiple

unwanted clock pulses as well as random behavior. The control register path did work

when the CMOS power supplies were first lowered from -2.2 to -4 to -2.8 to -3.7. This

may have worked due to the fact that it gave the input inverter more headroom, while

giving the final CMOS inverters a smaller threshold value. The smaller threshold value

could have helped because the intermediate node tied to the resistor was not swinging

high enough to change the output. Reasons for this are the value of the resistor could be

significantly off, or that the drive strength of the second stage PFET connected before the

bipolar diode drops was too small. The location of the control register input buffer circuit

is also located near the high speed bipolar multiplexers as well as the current path of the

output driver. This area has a much higher power dissipation than that of the data path

buffer circuit and could therefore be at a much higher temperature. This temperature

factor could also be causing variations in the threshold values of the transistors as well as

the resistor value. During simulation and using worse case models it was seen that the

intermediate node voltage swing occurred from -4 to -2.8 volts. In simulation this was

still enough swing, but to give headroom for actual measurements the second stage PFET

could have its width increased to 2u from 1u. In simulation this increase in width showed

full power supply to power supply swings at that node using worst case simulation

conditions.

 34

Fig. 29 Shift Register Input Buffer

Output Driver

 The output driver’s output swing characteristics are consistent with the simulation

behavior at half of the bias current. Measurements of the prototype chip showed the

output swing reaching a maximum value halfway to three quarters through the entire bit

sequence rather than at the end of the bit sequence. The linearity problem is due to a

temperature dependence in the CMOS reference current mirrors and 8-bit current DAC’s;

which at a higher temperature reach the maximum reference current level earlier in the bit

sequence. The high level circuitry was simulated to be very sensitive to voltage drops in

the -4V supply. Inconsistent measured and simulated voltage swing values are due to the

source degenerated resistor pair in the bipolar current mirror stages. This resistor pair

was constructed using two different material classes which had extremely different and

opposite linear and quadratic temperature coefficients. Temperature and power supply

 35

variation simulations for both the high level and output swing circuitry are recorded in

Fig. 30-36.

Output Driver-High Level Simulations

High Level Voltage

-2.00E-001

0.00E+000

2.00E-001

4.00E-001

6.00E-001

8.00E-001

1.00E+000

1.20E+000

1.40E+000

1.60E+000

0.
00
E
+0
00

5.
60
E
-0
08

1.
12
E
-0
07

1.
68
E
-0
07

2.
24
E
-0
07

2.
80
E
-0
07

3.
36
E
-0
07

3.
92
E
-0
07

4.
48
E
-0
07

5.
04
E
-0
07

Time (full 8-bit sequence at freq=500MHz)

H
ig
h
 L
e
v
e
l
V
o
lt
a
g
e

ideal

vss375

temp100

Fig. 30 Simulated High Level Voltage

High Level Output Current

0.00E+000

2.00E-003

4.00E-003

6.00E-003

8.00E-003

1.00E-002

1.20E-002

1.40E-002

0.
00
E
+0
00

5.
60
E
-0
08

1.
12
E
-0
07

1.
68
E
-0
07

2.
24
E
-0
07

2.
80
E
-0
07

3.
36
E
-0
07

3.
92
E
-0
07

4.
48
E
-0
07

5.
04
E
-0
07

Time (full 8-bit sequence at freq=500MHz)

H
ig
h
 L
e
v
e
l
C
u
rr
e
n
t

ideal

vss375

temp100

Fig. 31 Simulated High Level Output Current

 The data contained in Fig. 28 and Fig. 29 was simulated from the circuit in Fig.

27. From this data it can be seen that a temperature rise caused the high level output

 36

current to increase and for the high level voltage to be pulled down at an earlier time in

the bit sequence. By raising the power supply from -4V to -3.75V the current mirror

output dropped by approximately 83%.

High Level Input Reference Current to CMOS Current Mirror

0.00E+000

2.00E-004

4.00E-004

6.00E-004

8.00E-004

1.00E-003

1.20E-003

0.
00
E
+0
00

5.
60
E
-0
08

1.
12
E
-0
07

1.
68
E
-0
07

2.
24
E
-0
07

2.
80
E
-0
07

3.
36
E
-0
07

3.
92
E
-0
07

4.
48
E
-0
07

5.
04
E
-0
07

Time (full 8-bit sequence at freq=500MHz)

C
u
rr
e
n
t ideal

vss375

temp100

Fig. 32 Simulated High Level Input Reference Current to CMOS Current Mirror

High Level Output Reference Current from CMOS Current Mirror

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

0.
00
E
+0
00

5.
60
E
-0
08

1.
12
E
-0
07

1.
68
E
-0
07

2.
24
E
-0
07

2.
80
E
-0
07

3.
36
E
-0
07

3.
92
E
-0
07

4.
48
E
-0
07

5.
04
E
-0
07

Time (full 8-bit sequence at freq=500MHz)

C
u
rr
e
n
t ideal

vss375

temp100

Fig. 33 Simulated High Level Output Reference Current from CMOS Current Mirror

 The CMOS portion of the current mirror topology was also simulated to see the

effects of power supply voltage drop and temperature. Again, a rise in temperature did

 37

not affect the end value of the current levels, but increased the rate at which the current

increased until its maximum value of approximately 1.0mA-1.2mA was met. A power

supply voltage drop of 250mV caused a dramatic decrease in the reference current to the

bipolar current mirror.

Output Driver-Output Swing Simulations

Output Swing Bias Current

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.
00
E
+
00
0

5.
60
E
-0
08

1.
12
E
-0
07

1.
68
E
-0
07

2.
24
E
-0
07

2.
80
E
-0
07

3.
36
E
-0
07

3.
92
E
-0
07

4.
48
E
-0
07

5.
04
E
-0
07

Time (full 8-bit sequence at freq=500MHz)

C
u
rr
e
n
t ideal

vss3_75

temp100

Fig. 34 Simulated Output Swing Bias Current

Bias Current at Output Differential Pair

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.
00
E
+0
00

5.
60
E
-0
08

1.
12
E
-0
07

1.
68
E
-0
07

2.
24
E
-0
07

2.
80
E
-0
07

3.
36
E
-0
07

3.
92
E
-0
07

4.
48
E
-0
07

5.
04
E
-0
07

Time (full 8-bit sequence at freq=500MHz)

C
u
rr
e
n
t ideal

vss3_75

temp100

Fig. 35 Simulated Bias Current at Output Differential Pair

 38

Output Voltage Swing

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.
00
E
+0
00

5.
60
E
-0
08

1.
12
E
-0
07

1.
68
E
-0
07

2.
24
E
-0
07

2.
80
E
-0
07

3.
36
E
-0
07

3.
92
E
-0
07

4.
48
E
-0
07

5.
04
E
-0
07

Time (full 8-bit sequence at freq=500MHz)

V
o
lt
a
g
e
 S
w
in
g

ideal

vss3_75

temp100

Fig. 36 Simulated Output Voltage Swing

 Simulations completed on the output bias current which ideally should swing

from 0-60mA into an equivalent 25 ohms when 50 ohm termination is used. From Fig.

32-34 the increase in temperature had the equivalent effect as was seen on the high level

circuitry. Equivalent final current values were recorded at both 27 degrees C and 100

degrees C, although at high temperature, the maximum current value was reached much

earlier in the bit sequence. Equivalent CMOS current mirrors were used in both the high

level circuitry as well as the output swing circuitry, giving both circuits the same

temperature dependence. However, the output swing circuitry was not found to be

susceptible to a 250mV power supply drop.

Output Driver-Modifications

The current method of using equivalent 8-bit current DAC’s and then using

current mirrors composed of PFETs can be altered to use specific current level DAC’s

that do not require current mirrors. This should increase the linearity of the current

 39

changes as well and remove the dependence upon the current mirror technology, which

may be causing multiple linearity problems due a possible temperature dependence of the

PFETs, parasitics, or even differences in the ideal and actual bias voltage value which

feeds each of the binary weighted current sources. Power supply voltage drops due to

either measurement line inductance or layout resistance can also be compensated for by

widening power lines and either using lower inductance cable or raising power supply

values to see any effects.

 The high level circuitry needs to be simulated further to determine what is causing

the sudden current drops in addition to further simulation of the output differential pair to

look at possible current switching issues and breakdown voltage problems.

 Resistor modifications need to be made so that the source degenerated resistor

pairs in the bipolar current mirror circuitry are the same class of resistor. In addition,

simulations were done using the worst case value of the resistors. Both the high level and

output swing circuitry’s response was greatly affected. More ideal current values form

the current mirrors can be improved by using common centroid layout techniques to

receive better resistor matching. This can help to improve the expected current

multiplication.

Vernier Delay

 Improvement of the vernier delay circuit need to be completed so that the overall

behavior of the circuitry at least becomes monotonic. Other issues that need to be

addressed are problems with clock drift and measurement accuracy.

 40

Layout Issues

 A clock routing error occurred during the layout that prevented the passage of the

random data sequence through to the final output. Specifically, the clock signals that

drive the first bipolar stage 4-1 Mux’s which should be differential and the same voltage

levels are non-differential and different voltage levels. This prevented measurement of

data dependent output jitter and correct operation of the multiplexer. This error can be

fixed with minor modifications. Below is a figure of the 4-1 mux along with a simulation

showing the result of the routing error and the result after the error had been corrected.

Fig. 37 Bipolar 4-1 Mux

 41

Fig. 38 4-1 Mux Error Simulation

 From the above simulation the first and third sets of signals are what the error in

layout is currently causing. By correcting the error, the second and fourth sets of signals

are created. The final two signals are firstly, the output of the mux with the error, and the

output of the mux after correction. This change again can be easily done by correcting

the clock generator layout.

High Frequency Measurements

 With the above mentioned corrections high frequency measurement will be able

to be taken. This will allow for the further characterization of the vernier circuit, output

driver, and jitter response of the overall pattern generator. Achieving measurements in

the 20GHz range will require a better setup to reduce power supply lead inductance and

better thermal capacity for temperature effects.

 42

REFERENCES

[1] M. Siddiqui, et al., “InP and GaAs components for 40 Gbps applications,” GaAs

MANTECH Conference, 2002.

[2] C. Hwang, et al., “A High-Precision Time-To-Digital Converter Using A Two-Level

Conversion Scheme,” IEEE 2004 0-7803-8257-9/04:174-176.

[3] T. Xia, et al., “Self-Referred on-chip Jitter Measurement Circuit Using Vernier

Oscillators,” IEEE 2005 0-7695-2365-X/05.

[4] V. Ramakrishnan, et al., “A Wide-Range, High-Resolution, Compact, CMOS Time to

Digital Converter,” IEEE 2006 1063-9667/06.

[5] K. Cheng, et al., “Self-sampled vernier delay line for built-in clock jitter

measurement,” IEEE 2006 0-7803-9390-2/06:1591-1594.

[6] A. Chan, et al., “A SYNTHESIZABLE, FAST AND HIGH-RESOLUTION TIMING

MEASUREMENT DEVICE USING A COMPONENT-INVARIANT VERNIER

DELAY LINE,” IEEE 2001 0-7803-7169-0/01:858-867.

[7] B. Nelson, et al., “ON-CHIP CALIBRATION TECHNIQUE FOR DELAY LINE

BASED BIST JITTER MEASUREMENT,” IEEE 2004 0-7803-8251-X/04:944-947.

[8] G.C. Moyer, et al., “The Delay Vernier Pattern Generation Technique,” IEEE 1997

Apr, 32(4):551-562.

[9] H. Knapp, et al., “100-Gb/s 2^7-1 and 54-Gb/s 2^11-1 PRBS Generators in SiGe

Bipolar Technology,” IEEE 2005 Oct, 40(10):2118-2125.

[10] F. Schumann, et al., “Silicon bipolar IC for PRBS testing generates adjustable bit

rates up to 25Gbit/s,” ELECTRONIC LETTERS 1997 Nov, 33(24):2022-2023.

 43

APPENDIX A

 44

Detailed Operation

The initialization state checks for certain global situations to make sure that the

correct section of code is working properly at all times. The initial purpose of the code is

to either reset and initialize all register values and counters when an enable signal is low,

and allow basic operation whenever the enable signal is high. When enable goes high the

operation of the circuit starts in the first cycle. When the first cycle has completed, a

variable c1 is set high. This tells the global code to switch to the second cycle code. As

the second cycle finished, another variable c2 is set high and correspondingly c1 is set

low. This behavior continues through each of the cycles until cycle four is finished.

Additional jump variables are also set. Detection of a partial jump is easily done by

checking bits 15 to 12 of the stop register value. If these four bits are not all logic 1, then

a partial jump is occurring. During initialization variables j1, j2, j3, and j4 are set either

high or low depending upon there being a partial jump detection or not. This will direct

the initiation of the correct function block to commence.

After each cycle has ended the operation of the full chip should continue to step

through the code until the next stop value is detected. This transition is over different

RAM blocks and therefore there needs to be additional logic to make sure that when the

final column in a RAM block has been loaded, the next column that will be read is the

first column of the next corresponding block. This code simply checks for the location of

the master signal and which RAM block counter it is currently clocking. It then checks

for the situation where the final column in that block has been loaded and subsequently

switches the master clock signal to the next RAM block.

 45

A jump occurs when the stop value of one table entry has been reached and

therefore the data multiplexers must switch back to the start value of that table entry or if

the wanted number of cycles has been completed the circuit should operate normally until

next table entry stop value. For this code a restriction is placed on a single table entry to

have the start and stop register address be in the same block. The data through can only

be multiplexed correctly if the data is ready at the outputs of the RAM. The simple way

to do this is to have the control circuitry of the SRAM on the opposite clock phase as the

actual multiplexers. During phase one of the clock signal the SRAM is allowed to have

the correct data read and ready at its outputs. During phase 2 of the clock the data is sent

through the multiplexer chain. Using basic flip flops will allow for the previous SRAM

data to be held constant while the input values are changed to the next data set. This

scheme works as long as the stop value of the table entry goes through the entire selected

column. This allows for a set clock period to allow for the entire 128 bits in that column

to be ready at the output and then multiplexed out while the entire next column value is

being read. The code operation looks for the stop_reg[9:0]+1. This is the time at which

the stop column for that table entry has had enough time to be read from the memory. At

this time the counter for the specific block that the table entry is associated with is reset

to the start value. In addition the cycle counter is clocked to show that cycle has been

completed. This value will be continually checked to determine if the next table entry

value should begin.

Operation with partial column stop values are a problem due to the fact that

during phase 1 of the clock cycle the block counters will be reading the entire stop

column. During phase 2 of the clock cycle the mux’s will be counting through the stop

 46

column partially, and then expect to go back to the start value of that table entry. This

will be happening at the same time as the read of the start value and could cause data

error. To combat this, an additional RAM block D is created to store the final stop

register value if it is determined that it is a partial column value. Then during phase 1 of

the clock cycle when the code has determined that the correct block counter has reached

the end of stop reg [9:0]-1, or it has been read, the next values to be read are the start

value of the table entry as well as the copied column of the stop value in RAM D. By

doing this, both the stop value and start value will be available to be read during clock

phase 2. Therefore, the mux detection will have to detect the final stop row and then

switch to the start value. In addition, the multiplexers will be to deal with the partial stop

column and the entire start column. This will require phase 2 of the clock to be longer by

the length of the partial stop column value. Therefore a clock delay will also have to be

inserted to ensure that the proper data values are multiplexed. This delay can be based on

a lookup table and a high speed clock.

//**

//Matthew Zahller

//Washington State University

//40 Gbps SiGe Data Pattern Generator Code for Full Column Operation

//This code is a simplified version for

//functionality testing and code checks.

//Code for a single full column stop cycle. This code is used for a simplified version for

//functionality testing and code checks.

//Important to operation that the counters controlled by the clock signals are only allowed

//to change values when a pos edge or neg edge is detected. Even in the case of a set or

reset

//**

 47

//Reference time is 1ns with a precision of 1ns

`timescale 1ns / 1ns

///////////////////////////////Input and Ouput Ports and Variables//

//Input and Ouput Ports

module cycle_full_column (

//Input Signals

 input enable, //Circuit Enable

 input partial_enable, //if 1 partial code executed, if 0 full column code executed (j1-j4)

 input cycle_enable, //high to enable code only during one of the four cycles

 input clk_fast, //High Speed Synchronization Clock

 input [9:0] counta, countb, countc, //Outputs from the four block counters

 input [9:0] start,

 input [15:0] stop, //Bits 15:12 tell stop row, 11:10 tell stop block, 9:0 tell stop column

 input [9:0] cycle, //Cycle registers hold the number of iterations for each cycle

 //Output Signals

 output reg [9:0] reseta, resetb, resetc, seta, setb, setc, cycle_count

);

//

always @(posedge clk_fast) //This section should be in state0

if(!enable)

cycle_count=10'b0000000000;

///

//**

//Note:

//All of these code sections need an external clock signal that is the same frequency

//as the counta or countb or countc outputs to allow for proper operation this is actually

//already done by using a counter block because the block itself will not allow the counter

//output to change unless it detects a rising or falling edge of the control clock along

//with the set and reset values

//**

 48

 //////////////////////////////////////SRAM Full Column Stop

Code///

always @(counta or countb or countc)

if(!partial_enable & cycle_enable & !(&(cycle_count ~^ (cycle+1))) & enable)

begin

case({stop[11], stop[10]})

2'b00 :

begin

if(&(counta ~^ stop[9:0]+1))

begin

seta=start;

reseta=~start;

cycle_count=cycle_count+1;

end

end

2'b01 :

begin

if(&(countb ~^ stop[9:0]+1))

begin

setb=start;

resetb=~start;

cycle_count=cycle_count+1;

end

end

2'b10 :

begin

if(&(countc ~^ stop[9:0]+1))

begin

setc=start;

resetc=~start;

cycle_count=cycle_count+1;

end

end

default :

begin

seta=10'b0000000000;

reseta=10'b0000000000;

setb=10'b0000000000;

resetb=10'b0000000000;

setc=10'b0000000000;

 49

resetc=10'b0000000000;

end

endcase

end

endmodule

///

//**

//Matthew Zahller

//Washington State University

//40 Gbps SiGe Data Pattern Generator Code for Partial Column Stop Values

//This code is a simplified version for

//functionality testing and code checks.

//Notes:

//Important to operation that the counters controlled by the clock signals are only allowed

//to change values when a pos edge or neg edge is detected. Even in the case of a set or

reset

//**

 50

//Reference time is 1ns with a precision of 1ns

`timescale 1ns / 1ns

///////////////////////////////Input and Ouput Ports and Variables//

module cycle_partial_column_single (

//Input Signals

 input enable, //Circuit Enable, when code is consolidated anything that depends on

enable=0

 //will be transferred to state0 code

 input partial_enable, //if 1 partial code executed, if 0 full column code executed (j1-j4)

 input cycle_enable,//high to enable code only during one of the four cycles

 input clk_fast, //High Speed Synchronization Clock

 input [9:0] counta, countb, countc, //Outputs from the three block counters

 input [1:0] block_count, //Logic to set which SRAM block code to use

 input [9:0] start, //10 bits which hold the starting column value

 input [15:0] stop, //Bits 15:12 tell stop row, 11:10 tell stop block, 9:0 tell stop column

 input [9:0] cycle, //Cycle registers hold the number of iterations for each cycle

 input [3:0] mux1, //128:16 Mux output

 input [9:0] Block_D_Storage, //User defined storage location for copied partial column

 //Output Signals

 output reg [9:0] reseta, resetb, resetc, seta, setb, setc, cycle_count,

 output reg [9:0] resetd, setd,

 output reg end1, end2, end3, delay1_dec,

 output reg [3:0] reset_mux, set_mux,

 output reg [1:0] reset_fmux, set_fmux, reset_count, set_count,

 output reg [3:0] delay_a, delay_b, delay_c,

 output reg delay_a_enable, delay_b_enable, delay_c_enable

);

//Variables

 reg x1, x2, x3;

//

always @(posedge clk_fast) //This section should be in state0 when consolidated

if(!enable)

cycle_count=10'b0000000000;

//////////////Code for Detection of the Completion of Read Time for Final Full Column

Value////////////////

always @(counta or countb or countc)

 51

case({stop[11], stop[10]})

2'b00 :

begin

end1=&(counta ~^stop[9:0]);

end2=1'b0;

end3=1'b0;

end

2'b01 :

begin

end1=1'b0;

end2=&(countb ~^ stop[9:0]);

end3=1'b0;

end

2'b10 :

begin

end1=1'b0;

end2=1'b0;

end3=&(countc ~^ stop[9:0]);

end

default :

begin

end1=0;

end2=0;

end3=0;

end

endcase

///

//**

//Note:

//All of these code sections need an external clock signal that is the same frequency

//as the counta or countb or countc outputs to allow for proper operation this is actually

//already done by using a counter block because the block itself will not allow the counter

//output to change unless it detects a rising or falling edge of the control clock along

//with the set and reset values

//**

 //////////////////////////////////////SRAM Block A Code///

always @(posedge counta[0] or negedge counta[0] or posedge mux1[0] or negedge

mux1[0])

 52

 if(!block_count[1] & !block_count[0] & partial_enable & cycle_enable &

!(&(cycle_count ~^ (cycle+1))) & enable)

 begin

 if(end1)

 begin

 x1=1'b1;

 seta=start;

 reseta=~start;

 set_fmux=2'b11;//Sets the final mux to block D

 reset_mux=4'b1111;

 setd=Block_D_Storage; //Sets column counter in block D to designated storage area

 resetd=~Block_D_Storage;

 end

 else if(!end1 & x1)

 begin

 //Allows normal operation until end1 is activated

 seta=10'b0000000000;

 reseta=10'b0000000000;

 set_fmux=2'b00;

 reset_fmux=2'b11; //Corresponds to block A

 reset_mux=4'b0000;

 set_mux=4'b0000;

 setd=10'b0000000000;

 resetd=10'b0000000000;

 //This code detects the completion of the partial column data and initiates the proper

 //resets to continue with normal operation

 if(&(stop[15:12]+1 ~^ mux1))

 begin

 reset_mux=4'b1111; //128 to 16 Block Mux Reset

 reset_fmux=2'b11; //end1 corresponds to block A

 cycle_count=cycle_count+1;//Corresponds to first cycle

 reset_count=2'b11; //Reset block counter to block A

 delay_a_enable=1'b1;//Signal finish of block D values

 end

 //Clock Delay Code which only initiates after block D values have been used

 delay_a=4'b1111-stop[15:12]; //Leftover delay for counter to stay in the current

column

 if(delay_a_enable & &(mux1 ~^ delay_a))

 begin

 53

 seta=counta; //If fed to a counter it should retain its current value

 reseta=~counta;

 end

 else if(&(mux1))

 begin

 seta=10'b0000000000;

 reseta=10'b0000000000;

 delay_a_enable=1'b0;

 x1=1'b0;

 end

 end

 end

 //////////////////////////////////////SRAM Block B Code///

always @(posedge countb[0] or negedge countb[0] or posedge mux1[0] or negedge

mux1[0])

 if(!block_count[1] & block_count[0] & partial_enable & cycle_enable &

!(&(cycle_count ~^ (cycle+1))) & enable)

 begin

 if(end2)

 begin

 x2=1'b1;

 setb=start;

 resetb=~start;

 set_fmux=2'b11;//Sets the final mux to block D

 reset_mux=4'b1111;

 setd=Block_D_Storage; //Sets column counter in block D to designated storage area

 resetd=~Block_D_Storage;

 end

 else if(!end2 & x2)

 begin

 //Allows normal operation until end2 is activated

 setb=10'b0000000000;

 resetb=10'b0000000000;

 reset_fmux=2'b10; //Corresponds to block B

 set_fmux=2'b01;

 set_mux=4'b0000;

 reset_mux=4'b0000;

 setd=10'b0000000000;

 resetd=10'b0000000000;

 54

 delay_b_enable=1'b1;

 //This code detects the completion of the partial column data and initiates the proper

 //resets to continue with normal operation

 if(&(stop[15:12]+1 ~^ mux1))

 begin

 reset_mux=4'b1111; //128 to 16 Block Mux Reset

 reset_fmux=2'b10; //end2 corresponds to block B

 set_fmux=2'b01;

 cycle_count=cycle_count+1;//Corresponds to first cycle

 reset_count=2'b10; //Reset block counter to block B

 set_count=2'b01;

 delay_b_enable=1'b1;//Signal finish of block D values

 end

 //Clock Delay Code which only initiates after block D values have been used

 delay_b=4'b1111-stop[15:12]; //Leftover delay for counter to stay in the current

column

 if(delay_b_enable & &(mux1 ~^ delay_b))

 begin

 setb=countb; //If fed to a counter it should retain its current value

 resetb=~countb;

 end

 else if(&(mux1))

 begin

 setb=10'b0000000000;

 resetb=10'b0000000000;

 delay_b_enable=1'b0;

 x2=1'b0;

 end

 end

 end

 //////////////////////////////////////SRAM Block C Code///

always @(posedge countc[0] or negedge countc[0] or posedge mux1[0] or negedge

mux1[0])

 if(block_count[1] & !block_count[0] & partial_enable & cycle_enable &

!(&(cycle_count ~^ (cycle+1))) & enable)

 begin

 55

 if(end3)

 begin

 x3=1'b1;

 setc=start;

 resetc=~start;

 set_fmux=2'b11;//Sets the final mux to block D

 reset_mux=4'b1111;

 setd=Block_D_Storage; //Sets column counter in block D to designated storage area

 resetd=~Block_D_Storage;

 end

 else if(!end3 & x3)

 begin

 //Allows normal operation until end3 is activated

 setc=10'b0000000000;

 resetc=10'b0000000000;

 reset_fmux=2'b01; //Corresponds to block C

 set_fmux=2'b10;

 set_mux=4'b0000;

 reset_mux=4'b0000;

 setd=10'b0000000000;

 resetd=10'b0000000000;

 delay_c_enable=1'b1;

 //This code detects the completion of the partial column data and initiates the proper

 //resets to continue with normal operation

 if(&(stop[15:12]+1 ~^ mux1))

 begin

 reset_mux=4'b1111; //128 to 16 Block Mux Reset

 reset_fmux=2'b01; //end2 corresponds to block C

 set_fmux=2'b10;

 cycle_count=cycle_count+1;//Corresponds to first cycle

 reset_count=2'b01; //Reset block counter to block C

 set_count=2'b10;

 delay_c_enable=1'b1;//Signal finish of block D values

 end

 //Clock Delay Code which only initiates after block D values have been used

 delay_c=4'b1111-stop[15:12]; //Leftover delay for counter to stay in the current

column

 if(delay_c_enable & &(mux1 ~^ delay_c))

 begin

 setc=countc; //If fed to a counter it should retain its current value

 resetc=~countc;

 end

 56

 else if(&(mux1))

 begin

 setc=10'b0000000000;

 resetc=10'b0000000000;

 delay_c_enable=1'b0;

 x3=1'b0;

 end

 end

 end

endmodule

///

 57

APPENDIX B

 58

//This program steps through the feedback current source and

//measures its effects

#include <ni488.h>

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include "Pattern_Gen.h"

void wrt(int ud, char *x)

{ ibwrt(ud,x,strlen(x)); }

int main()

{

FILE *fptr;

fptr=fopen("Current Feedback.txt", "w");

char temp[80];

char temp2[80];

 int tds8000;

 // Initialize a GPIB device (voltage source)

 tds8000 = ibdev(0, // Board ID

 1, // Primary ID

 0, // Secondary ID

 12, // Timeout (1 second)

 1, // 'eoi on last byte' flag

 0); // end-of-string mode

 int hp6629;

 // Initialize a GPIB device (voltage source)

 hp6629 = ibdev(0, // Board ID

 5, // Primary ID

 0, // Secondary ID

 12, // Timeout (1 second)

 1, // 'eoi on last byte' flag

 0); // end-of-string mode

 unsigned char delay={0x00};

 unsigned char vern1={0x00};

 unsigned char vern2={0x00};

 unsigned char breakdown={0xff};

 unsigned char cfs;

 59

 unsigned char hls={0x00};

 unsigned char os={0xff};

 unsigned char ls={0xaa};

 OpenDevice(0);

 c

 int i;

 fprintf(fptr, "Current Feedback\n");

 //Vern1 Count

 for(i=0; i<256; i=i+8)

 {

 cfs=i;

 SetDigitalChannel(VDD);

 ClearDigitalChannel(SR_RESET);

 //Set Power Supplies to Needed Threshold Values

 wrt(hp6629, "VSET 3, 3.7");

 usleep(400000); // sleep for .4 second*/

 wrt(hp6629, "VSET 2, .9");

 usleep(400000); // sleep for .4 second*/

 control_serial(delay, vern1, vern2, breakdown, cfs, hls, os, ls);

 //Reset Power Supply to Full Swing and wait for settling

 wrt(hp6629, "VSET 3, 4");

 usleep(1000000); // sleep for 1 second

 wrt(hp6629, "VSET 2, 1.8");

 usleep(1000000); // sleep for 1 second

 usleep(10000000);

 wrt(tds8000, "Measu:Meas5:Val?");

 ibrd(tds8000, temp, 80);

 wrt(tds8000, "Measu:Meas6:Val?");

 ibrd(tds8000, temp2, 80);

 fprintf(fptr, "%s, %s\n ", temp, temp2);

 fflush(fptr);

 }

}

 60

//This file includes all control functions

//for the Velleman board interface

#include <k8055.h>

#define SR_CC 1

#define SR_RESET 2

#define VDD 3

#define SR_DATA 4

#define SR_DC 5

#define CHIP_CLK_RESET 6

#define SR_OUT 1

void control_reset()

{

 ClearDigitalChannel(SR_CC);

 SetDigitalChannel(SR_RESET);

 SetDigitalChannel(SR_CC);

 ClearDigitalChannel(SR_CC);

 ClearDigitalChannel(SR_RESET);

}

void data_reset()

{

 ClearDigitalChannel(SR_DC);

 SetDigitalChannel(SR_RESET);

 SetDigitalChannel(SR_DC);

 ClearDigitalChannel(SR_DC);

 ClearDigitalChannel(SR_RESET);

}

void gen_sendbit(int b, int clk)

{

 if(b) {

 SetDigitalChannel(SR_DATA);

 printf("1");

 }else {

 ClearDigitalChannel(SR_DATA);

 printf("0");

 }

 SetDigitalChannel(clk);

 ClearDigitalChannel(clk);

}

 61

void gen_sendbyte(signed char b, int clk)

{

 gen_sendbit(b&0x80,clk);

 gen_sendbit(b&0x40,clk);

 gen_sendbit(b&0x20,clk);

 gen_sendbit(b&0x10,clk);

 gen_sendbit(b&0x08,clk);

 gen_sendbit(b&0x04,clk);

 gen_sendbit(b&0x02,clk);

 gen_sendbit(b&0x01,clk);

}

void gen_sendbit2(signed char b, int clk)

{

 gen_sendbit(b&0x02,clk);

 gen_sendbit(b&0x01,clk);

}

void data_serial(signed char data[16])

{

 int i;

 for(i=0; i<16; i++)

 {

 gen_sendbyte(data[i], SR_DC);

 printf("\n");

 }

}

unsigned char send_read_byte(unsigned char b, int clk, int bits)

{

 int i, mask;

 unsigned char x=0;

 for(i=bits-1; i>=0; i--)

 {

 mask=1<<i;

 ReadDigitalChannel(SR_OUT);

 if(!ReadDigitalChannel(SR_OUT))

 62

 {

 x |=mask;

 }

 if(b & mask)

 {

 SetDigitalChannel(SR_DATA);

 }

 else

 {

 ClearDigitalChannel(SR_DATA);

 }

 SetDigitalChannel(clk);

 ClearDigitalChannel(clk);

 }

 printf("Wrote:%02x Read:%02x\n",b,x);

 return x;

}

void control_serial(signed char delay, signed char vern1, signed char vern2,

signed char breakdown, signed char cfs, signed char hls, signed char os, signed char ls)

{

 send_read_byte(ls, SR_CC, 8);

 send_read_byte(os, SR_CC, 8);

 send_read_byte(hls, SR_CC, 8);

 send_read_byte(cfs, SR_CC, 8);

 send_read_byte(breakdown, SR_CC, 2);

 send_read_byte(vern2, SR_CC, 8);

 send_read_byte(vern1, SR_CC, 8);

 send_read_byte(delay, SR_CC, 2);

// gen_sendbyte(ls, SR_CC);

// printf("\n");

// gen_sendbyte(os, SR_CC);

// printf("\n");

// gen_sendbyte(hls, SR_CC);

// printf("\n");

// gen_sendbyte(cfs, SR_CC);

// printf("\n");

// gen_sendbit2(breakdown, SR_CC);

// printf("\n");

// gen_sendbyte(vern2, SR_CC);

// printf("\n");

// gen_sendbyte(vern1, SR_CC);

// printf("\n");

 63

// gen_sendbit2(delay, SR_CC);

// printf("\n");

}

unsigned char readbyte(int clk)

{

 int i;

 unsigned char x=0;

 for(i=0; i<8; i++)

 {

 ReadDigitalChannel(SR_OUT);

 x=ReadDigitalChannel(SR_OUT) | (x<<1);

 SetDigitalChannel(clk);

 ClearDigitalChannel(clk);

 }

 return x;

}

unsigned char readbit2(int clk)

{

 int i;

 unsigned char x=0;

 for(i=0; i<2; i++)

 {

 ReadDigitalChannel(SR_OUT);

 x=ReadDigitalChannel(SR_OUT) | (x<<1);

 SetDigitalChannel(clk);

 ClearDigitalChannel(clk);

 }

 return x;

}

