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 A single-chip 40 Gbps pattern generator design in 0.18 µm SiGe BiCMOS 

technology is described. An on-chip 128x128 bit RAM with an access time of 3 ns stores 

the data pattern. A hybrid 128:1 CMOS/ECL multiplexer increases the output data rate 

from the RAM to 40 Gbps. The output driver is back terminated with 50 ohms and 

provides programmable levels in the range -2 V to 2 V into a 50 ohm load. The simulated 

pattern dependent jitter is under 1 ps at all output levels. The clock can be delayed by a 

programmable number of clock cycles plus a vernier delay of up to 50 ps in 0.2 ps steps 

in simulation. Power dissipation is up to 1.5 W depending on the output amplitude and 

termination voltage.   
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CHAPTER ONE 

INTRODUCTION 

 

The continued advances in CMOS and bipolar integrated circuit technologies has 

given rise to higher speed circuits and the need for low-cost high-speed pattern generators 

to test these circuits. High speed SiGe BiCMOS technology, which combines very high 

speed heterojunction bipolar transistors (HBTs) and high density CMOS, is a natural 

choice for integrating pattern memory with high-speed multiplexers and output drivers. 

InP and GaAs components at 40 Gbps [1] cannot provide a one-chip solution and the cost 

is much higher.  Available pattern generators include the DG2020, DG2030, DG2040 

series from Tektronics; M2i.7021-Digital I/O from Spectrum; and Stressed Pattern 

Generator from BERTScope.    

The requirements for our high-speed pattern generator are 1) differential outputs with 

50 ohm output impedance; 2) programmable output high and low levels; 3) a maximum 

swing of 1.5 V into 50 ohm loads; 4) programmable delay with resolution of 0.2 ps; 5) a 

memory depth of at least 64K bits; and 6) pattern dependent jitter less than 1 ps. 

Vernier Generation Technique 

 The creation of high speed data pattern generation has increased the need for high 

accuracy delay techniques.  High accuracy delays are utilized for use in multiple channel 

pattern generation where individual channel delay paths may need to be aligned or 

purposely delayed with respect to each other.  Data pattern speed of 40Gps therefore 

requires very fine timing resolution.  The use of bipolar technology instead of CMOS 

technology not only allows for much higher speed data pattern generation, but also allows 
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the realization of data dependent jitter in the hundreds of femtoseconds region leading to 

very high resolution.   

Multiple methods have been developed to create a variable delay.  The vernier 

delay line method is extremely popular with multiple variations such as: two level, 

oscillation mismatch, folding, self-sampled, component invariant, and built in self test 

pulse width modulation calibration[2]-[7].  VDL techniques require very accurate 

matching, PLL or DLL technology or additional manipulations to reduce clock jitter and 

mismatch specifications.  Using a single absolute delay at higher speeds will not give the 

timing resolution required[8].  The two inverter current switching technique allows for a 

differential delay approach rather than a single ended approach, and increases linearity 

and common mode noise by having an inverter structure which utilizes differential input 

pairs.  Bipolar differential pairs also contribute to a more accurate delay value as long as 

the current from the current sources are accurately controlled. 

 The structure of the delay is to partially switch binary weighted currents between 

a one inverter and two inverter path.  This structure’s accuracy and reliability does not 

rely on a clocking system, or flip flop timing.   

 In addition, high speed data generation can be especially sensitive to noise.  This 

noise will be seen in the output data pattern as timing jitter.  Again, by using differential 

logic, we greatly reduce common mode noise, as well as increase power supply rejection.  

Also all CMOS current sources were isolated with guard rings to protect them from 

switching noise. 
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PRBS Generators in SiGe Bipolar Technology 

 PRBS generators can provide high bits rates without requiring the multiplexing of 

lower speed data with multiple pipelined stages of multiplexers[9].  A significant 

achievement for this pattern generator is the ability for it to have on chip RAM and the 

ability to have clock delay control as well as control over the output levels.   

 In the past PRBS generators have reached speeds of up to 100Gbps with a data 

dependent jitter of 2ps[9].  At even lower rates of 80Gbps and 40Gbps output jitter of 

700fs and less than 500fs were achieved[9].  There have also been variable current 

sources which allow for variable output amplitude.  But the actual output swings have 

been limited to 300mVpp and 1Vpp[9].  The current output driver design can vary the 

output levels from 2 volts to -2 volts, with a swing of 0 volts to 1.5 volts.  It also has the 

ability to have its outputs terminated to multiple voltages.  An input buffer circuit 

controls clock jitter.  This more than doubles the available output amplitude swing and 

allows for the pattern generator to drive multiple logic families without changing power 

supply levels. 

Silicon Bipolar IC 

 Finally, the development of high speed components in the area of optical fibre 

communications systems require high speed test equipment in the 20Gbps range and 

higher[10].  The current design utilizes a clock input range of 10GHz to 20GHz, and 

since it is a half rate clock system, our range is therefore up to 40Gbps.  Characteristics 

such as the ability to have on chip RAM and a wide range of variability in the output 

levels and output swing would allow a low cost, versatile, high-performance solution for 

testing high-speed communication, mixed-signal and other circuits. 



 

 4 

Outline 

 This paper describes a one-chip solution for high speed and high accuracy data 

pattern generation.  Specifically, Chapter 2 contains the methodology used to design the 

pattern generator as well as future components not yet included in the current fabrication.  

Chapter 3 outlines multiple simulations done to test each system component and verify 

specifications.  Chapter 4 shows measured data of the fabricated prototype chip.  Chapter 

5 utilizes both measurements and additional post fabrication simulations to explain future 

modifications needed to improve performance.        
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CHAPTER TWO 

DESIGN AND METHODOLOGY 

 

Circuit Architecture 

Fig. 1 shows the block diagram of the pattern generator IC. The pattern data is stored 

in four 1024 x 128 bit SRAM, with an access time of about 3 ns. The 128 bit wide output 

words are first multiplexed by sixteen 8:1 CMOS multiplexers to 2.5 Gbps and then by a 

16:1 HBT ECL multiplexer to 40 Gbps. The final multiplexer uses the clock to directly 

select the data thus reducing the maximum clock rate to 20 GHz. This puts a requirement 

on the duty cycle to be 50% however.  

 

 

Fig. 1 Block diagram of the pattern generator IC 

 

 Fig. 2 shows the block diagram for the hybrid 128:1 multiplexer.  A high speed 

 clock is fed into a clock driver which drives the high speed bipolar components in the  

final 16:1 mux.  This clock signal is also divided down and converted to the CMOS 

levels to drive the slower 128:16 mux logic.     
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 Fig. 2 Block diagram of the 128:1 Mux 

 

The high rate data is then fed into the output driver shown in Fig. 3 which contains a 

variable level shift circuit, three variable high and low level current DACs, and an output 

differential pair.  The variable level shift circuit is utilized to change the amplitude of the 

incoming signal driving to the output differential pair.  The data dependent output jitter 

can be reduced with this approach.  The variable level shift circuit has a current source 

that can vary from 0-6mA.  An emitter follower stage provides adequate base current at 

full output voltage swing.  The output voltage swing is varied by controlling a 0-60mA 

current source. 
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Fig. 3 Block diagram of the output driver 

 

Fig. 4-a shows the vernier differential delay circuit which delays the clock by one to 

two inverter delays.  Bipolar differential pairs steer the variable tail currents to either the 

single inverter at the top of the diagram or the load inverter at the very right of the 

diagram.  If the top DAC was completely shut off, then the clock signal travels through 

two inverter paths.  However, if the top DAC is completely on and the DAC on the right 

of the figure is completely off, the clock path consists only of a single inverter delay.  By 

choosing intermediate current values between the two paths a differential delay can be 

achieved consisting of value greater than one inverter delay, but less than or equal to a 

two inverter delay path.  The sum of the two DAC controlled tail currents must remain 

constant to obtain a constant signal amplitude.  The vernier delay circuit provides a 

programmable delay of up to 8 ps in 0.2 ps steps. 
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  To achieve the total delay goal of 50 ps two vernier circuits were placed in series and 

four additional paths were introduced which consisted of 0, 2, 4, or 6 series inverters.  

The two vernier circuits in series allow for larger variability, while the inverter delay 

paths allow for longer delay values without having to control more than two vernier DAC 

registers.  This method gives much longer delay values with far less power dissipation.  

The specific circuit configuration is detailed in Fig. 4-b.    

 

VDD VDD

Vin

Vin

nVin

nVin

VSS

nVdel

Vdel

DAC

VSS

DAC

VSS

VDD VDD

 

Fig. 4-a Block diagram of the Vernier Delay Circuit 
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Fig. 4-b Block diagram of the Inverter Delay Circuit combined with Vernier Delay 

 

Fig. 5 shows an additional delay circuit which extends the clock delay by a 

programmable number of up to 255 clock cycles.  An 8-bit counter is loaded with the 

desired number of clock cycles to be delayed and then counts down to zero.  The 

detection logic block enables the clock feed-through logic to allow the half rate clock to 

pass on to other circuits.  This circuit has been designed, simulated, and laid out, but was 

not included on the prototype due to lack of area.    

Therefore, only the circuit structure in Fig. 4-b was implemented on the prototype 

chip. 
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Fig. 5 Block diagram of the “N” cycle clock delay circuit 

RAM Speed 

The SRAM is organized as 1024 columns of 128-bit words. Since the output word 

width of the SRAM is large, the 8-bit counter that addresses the columns is only required 

to operate at 300 MHz. The counter can perform looping to effectively extend pattern 

length. The counter is initially reset and after the start signal is enabled, it will continue 

until the counter output is equal to the variable end register. The counter will then jump 

to the variable start register and repeat until reset is enabled.              

The counter that addresses the RAM and multiplexers uses a combination of SiGe 

bipolar and CMOS logic. The high speed clock is first divided using bipolar flip-flops 

and then converted to CMOS levels when speeds are low enough. In order to provide 

lower data rates without duplicating data in the memory, the CMOS clock that drives the 

SRAM column counter can be divided by 1, 2, 4, or 8. 

The prototype chip does not contain the SRAM or its control circuitry.  A 128 bit shift 

register line was constructed to load data and control values.  This shift register 

implementation shows the feasibility of the pattern generator due to the fact that it is 

close enough to the RAM implementation from a speed point of view. 
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RAM Controller 

The purpose was to design a flexible RAM controller that would control a 

minimum of 512MB of RAM with functions such as looping and partial column jumps.  

This methodology was designed in verilog to verify functionality.  Fig. 6 shows the data 

flow control of four different SRAM banks into the 128 bit wide input of a single channel 

data pattern generator.   

 

Fig. 6 Block Diagram of Data Path 
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The components of the system include 4 RAM blocks which have 128 rows and 

1024 columns.  Blocks A, B, and C are used to store the pattern data, while block D will 

is used as a copy register in the event that a partial column jump is desired.  Multiple 10-

bit counters control which column is allowed to write or read while each RAM block’s 

128 outputs go to a 128:16 multiplexer.  This 128:16 multiplexer is controlled by a 4-bit 

mux counter.  These multiplexers select 8-bits at a time and pass the data to the final 8-bit 

wide 4:1 multiplexer, which determine which RAM block data should be allowed to 

proceed to the bipolar multiplexer.    

  Data pattern generators to test communication circuits usually use linear feedback 

shift registers to generate pseudo-random sequences.  Therefore, the bit sequences are 

over a million bits long.  500kb of on-chip SRAM may not be adequate for these 

applications.  To achieve a longer pattern techniques such as looping and jumping can be 

employed.  Initially, a user may input into table entries the start address value, stop 

address value, and number of cycles to complete before jumping to the next table entry 

start value.  Jump values need to be considered depending on which RAM bank they are 

allowed to come from or go to.  In addition control logic is needed to properly send the 

data out of the correct RAM block.  Two methods of control can be used.  Either the 

addressing scheme can be controlled to switch between the wanted data values, or the 

addressing scheme can be made less complicated and the output data can be controlled.  

This scheme uses a data control concept in which multiple data blocks can be sending out 

data at the same time and multiplexers control which data is allowed to pass until all of 

the data choices are reduced to one final correct 8-bit word.   
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The basic operation of the system is that the user will enter information in 4 table 

entries.  The number of table entries can be easily increased if needed.  The user will 

enter for each cycle the start address, stop address, and number of cycles.  It is assumed 

that software will then place the data in memory depending on whether partial or full 

column jumps are required.  The responsibility of this code is to multiplex the data out 

correctly.  The start register is 12 bits.  Two bits are dedicated to which RAM block the 

start value is in, and the other 10 bits will address which column in that block should be 

addressed.  The stop value register is 16 bits.  Four of the bits determine which row 

contains the last of the data, 2 bits determine the stop block and the other 10 bits 

determine what column.  The stop register would only need to be 14 bits if there is a 

restriction that the start and stop register values must be in the same block.  

The basic operation of the code first initializes all counters and clock signals until 

an enable signal is present.  This code also determines when to switch from the previous 

table entry to the next.  In addition, for each table entry partial or full column stop values 

are calculated to allow for the correct section of code to be activated.  These separate 

sections of code are then executed until all of the table entry values have been completed.  

More detailed information of the specific operation of the initialization code, partial 

column jumps and full column jumps is located in the beginning of Appendix A titled 

“Detailed Operation.”  
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Test Architecture 

 Shift registers were implemented to load all of the needed DAC values for testing.  

The shift register path is shown in Fig. 7.  SR1 consists of only two bits which choose a 

particular delay path.  As mentioned above, there are four delay paths which can be 

chosen to achieve up to 50ps of clock delay.  These two bits control an equivalent 4:1 

multiplexer which consists of three 2:1 multiplexers seen in Fig. 4-b.  SR2 and SR3 load 

the 8-bit DAC registers for each of the two vernier delay circuits.  SR4 controls the bias 

voltage for a cascade pair of bipolar transistors on the output differential pair of the 

output driver.  When the high level is lower than -1V these values must be changed in 

order to not violate any breakdown voltages and also leave enough headroom for the 

differential input pair.  SR5-SR8 load the four variable DAC registers for the output 

driver to set the high level, low level, output swing, and jitter reduction.  SR_D consists 

of the 16 8-bit registers which load the data inputs of the pattern generator. 

 

Fig. 7 Block diagram of the Shift Register Path 
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CHAPTER THREE 

SIMULATIONS 
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Fig. 8 Output Jitter vs. Voltage Swing 

 

 

 Fig. 8 shows the data dependent jitter simulations of the output driver at different 

high level values and output swings.  At each high level and output swing value, the level 

shift circuit amplitude was modified to achieve the lowest possible jitter.  It was seen that 

the data dependent jitter was well under the 1ps specification.    
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Fig. 9 Simulated eye diagram at 40 Gbps and an output amplitude of 0.75V. 

 

 Fig. 9 shows an example eye diagram.  The eye diagrams were used to measure 

the data dependent jitter at the threshold point with an input data pattern of 1.5ns length 

at a rate of 40Gbps. 

 

Vernier Delay 

 

Table. 1-Inverter Chain Delay Values 

  del_0or4 ndel_0or4 del_low ndel_low Total Delay 
Relative 
Delay 

Zero 
Inverters 1 0 1 0 5.25152E-11 0 

Two 
Inverters 0 1 1 0 6.65217E-11 1.40065E-11 

Four 
Inverters 1 0 0 1 8.28986E-11 3.03834E-11 

Six 
Inverters 0 1 0 1 9.84058E-11 4.58906E-11 
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Simulated Inverter Delay Chain
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Fig. 10 Inverter Chain Delay Plot 

 

 

 

 

 

 

 

Table. 2-Vernier Delay Values 
Input 
Code Vernier 1  Vernier 2  Vernier 1 & 2 

Vernier 1 
Rel 

Vernier 2 
Rel 

Vernier 1 & 2 
Rel 

11111111 5.725E-11 5.70E-11 6.370E-11 4.742E-12 4.527E-12 1.119E-11 

10000000 5.338E-11 5.327E-11 5.532E-11 8.719E-13 7.647E-13 2.807E-12 

00000001 5.278E-11 5.278E-11 5.295E-11 2.653E-13 2.653E-13 4.362E-13 
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Measured Vernier Delays
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Fig. 11 Vernier Chain Delay Plot 

 

 

Simulations of the individual vernier circuitry as well as the inverter chain paths 

in Fig. 4-b were completed.  The intrinsic delay path was calculated as the path through 

Fig. 4-b with both vernier circuits at their minimum delay value as well as choosing the 

additional zero inverter path.  This delay is recorded in Table 1 as approximately 52.5 ps.  

Each subsequent Total Delay value was then simulated.  To find the relative delay of 

each path approximately 52.5 ps was subtracted from it.  In addition, the combination of 

the vernier 1 and vernier 2 were measured.  This information gave linearity as well as 

expected delay values to compare to measurements taken from the prototype chip.  The 

total delay range when combining the inverter chain and the vernier delay circuits was 

simulated in the range of 0ps to 57.08508ps. 
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RAM Controller 

The following simulation is a functional simulation for a full column stop values.  

 

Fig. 12 Verilog Simulation of Full Column Code 

This simulation shows the basic function of full column operation.  The four most 

significant bits(1111) show that the stop value is at the end of the column and therefore a 

full column stop.  The next two bits(01) determine which counter values to look at; in this 

case RAM block B seen in Fig. 6.  The final ten bits of the stop value(0000011111) is the 

stop column at which the specific table entry sequence should end.  The counter output of 

the counter which controls the addressing of RAM block B(countb) counts until it 

reaches the final ten bits of the stop value.  Upon the completion of that bit code setb and 

resetb are triggered to start counter B back at the start value.  Due to the fact that the start 

value is 0000000000 all ten bits of resetb are triggered and no bits of setb are to reset the 

counter back to the start value.  The signal cycle_count is then incremented to show that 

one completion of the table entry cycle has been completed.  This value would then be 

compared to the wanted cycle value and if equal, the transition to the next table entry 

would activate.  During this sequence the control of the multiplexers becomes very 

simple and would be based on the stop value code for which RAM block to allow the 

correct data to pass.       
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Fig. 13 Verilog Simulation of Partial Column Code 

This simulation shows the operation of a partial column code.  The signal block_count is 

used to determine which block section the code should be looking at.   In this case 00 

means block A.  When the column counter for block A has read the last full column in 

the sequence, the block counter for block A is reset to the start value.  This event can be 

seen in Fig. 13 when signals reseta and seta are triggered.  This will allow the start value 

and SRAM block D value to be read at the same time.  The code then detects the stop row 

of the data in SRAM block D and then resets the mux values to go back to the start value 

in SRAM block A.  The control will then trigger the signal delay_a_enable to determine 

the counter delay so that the entire column can be multiplexed completely.  The control 

signals for the multiplexers follow the same pattern as the full column stop logic.  In Fig. 

13 the mux control can be seen switching to SRAM block D(set_fmux=11) and then back 

to SRAM block A(reset_fmux=11) when the extra data stored in SRAM block D has 

been read.  More detailed information on the partial column code operation is located in 

Appendix A.   

 



 

 21 

CHAPTER FOUR 

MEASUREMENT DATA 

 Measurement data was taken using the TDS8000 sampling scope.  Shift register 

read and write functions were executed by a Velleman test board.  Level shift circuitry 

was designed to shift the Velleman board values into the shift register data and clock 

lines.  DC probes provided the additional 4V supply for the output driver as well as for 

the low speed shift register lines.  The vernier circuit delay output was measured 

separately from the data output using the crossing point measurement.  The output driver 

variations were measured using the maximum and minimum scope values.  GPIB 

recorded the measurements after adequate settling time had passed.  In addition, the shift 

register control data was verified during simulation time.  Example GPIB programs are 

contained in Appendix B.  All high frequency outputs were measured using RF probes.  

SMA cables connecting the RF probes to the TDS8000 are rated for frequencies up to 

3GHz.       

 

Fig. 14 Picture of Test Setup 
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Fig. 15 Prototype Layout 1.131mm x 1mm 

Output Swing Measurements 

 

 

Fig. 16 Pattern Generator Differential Outputs 
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Output Swing Variation
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Fig. 17-a Output Driver Output Swing Chip 1 

Output Swing Variation
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Fig. 17-b Output Driver Output Swing Chip 2 
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High and Low Level Variation
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Fig. 18-a Output Driver High and Low Level Chip 1 

High and Low Level Variation
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Fig. 18-b Output Driver High and Low Level Chip 2 

 Measurements were taken at 3GHz to measure the variation of the output driver 

variables.  The control of the output driver voltage swing obtained values that were half 

of the expected values with both of the outputs terminated to 50 ohms and with ground as 

the termination voltage.  A max voltage swing of .75 volts and .88 volts was reached 

approximately halfway and three quarters through the binary sequence respectively.  The 

swing should have continued to the simulation expectation of 60mA into an equivalent 25 

ohms or 1.5V.  This effect could be due to malfunctioning of the current mirror, 
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temperature, parasitic inductance associated with the test setup, as well as the output 

swing bias current not being switched positive to negative as fully as expected due to a 

clock error in the data path which is explained in Chapter 5.  In addition, further 

temperature and power supply variations are looked at in more detail in Chapter 5.  The 

layout of the output driver also could have a contribution.  Specifically, the distance of 

the bias current to the differential pair, and the distance between the differential pair 

outputs and the measurement pads.  With further testing it was seen that the current level 

change in the power supplies did not reflect the expected current change.  Since all of the 

bias current change would be seen in the -4V supply, the current levels at each end of the 

binary sequence were measured. 

Table. 3-Measured Current Levels during Output Swing Test 

  Bit Pattern=00000000 Bit Pattern=11111100 

Voltage Supply Current Measured Current Measured 

4V 28.3mA 51.5mA 

-2.2V 11mA 11.55mA 

-4V 230mA 260mA 

 The -4V currently supply changed by only 30mA, or half of the wanted current.  

This deviation is consistent with half of the expected voltage swing being obtained.  This 

information then points to the DAC circuit malfunctioning or bias voltage variation.  This 

could be due to a parasitic IR drop of the bias voltage which feeds the binary weighted 

transistors, resistor variation in the bipolar current mirror stage due to temperature or 

power supply variation due to measurement cable inductance or IR drops. 

 In addition, the high level did not remain at its peak value.  The high level voltage 

is created by using the 4V supply and two corresponding diode drops.  The diodes are 

simple bipolar transistors which due to the increase in output current have an increased 

base to emitter voltage drop.   
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High Level Measurements 
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Fig. 19 High Level Output Voltage Measurement at Different Output Swing Values(os given in hex format) 

 The high level control of the output drive seemed fairly constant when using 

multiple output swing values.  But, the linearity of the different DAC values did seem too 

dependent on the level of the output swing.  This problem points again to the current 

mirror topology, which in the case of the high level set circuitry is equivalent to the 

output swing circuit.  Minor oscillations were also noticed depending upon the value of 

the high level DAC.  The most common bits where this occurred were the lower three.  

By changing the output swing the bias point of the output also changes and could 

therefore affect the output pattern as well as increase the chances of some instability.   

 In some cases the high level voltage would decrease dramatically when the input 

to the high level DAC reached hex 08.  Looking at the current sourced by the power 

supplies when this crashed occurred, it was observed that the current through the 4V 

supply dropped dramatically (38mA to 25mA), even though the high level lowered.  

Current levels measured in the other two supplies remained constant.  This indicates a 

non ideal current path.  The circuit diagram shows the same basic current mirror that is 

used in the output swing current source.  There is also a high voltage bipolar to help with 



 

 27 

breakdown issues due to the fact that the voltage swing at the negative end of the resistor 

can be from 4V to -1V.   

 

Fig. 20 High Level Set Circuitry 

Current Feedback Measurement 

 The feedback current source, which is used for the purpose of helping to set the 

high level when the desired high level is less than the termination voltage, was tested to 

determine if the correct amount of current was being created.  This source simulated to 

have a range of 0-40mA.  By measuring the power supply current a change of only 26mA 

was seen after counting though the corresponding DAC values.    

 

 

Level Shift Measurement 

 Due to the clock routing error, the level shift circuit could not be fully tested.  

However, its effect on the output swing did give insight to the idea that perhaps the 

output voltage swing was not reaching its full value because the current was not being 

fully switched in the final differential pair.   
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Level Shift Effect On Output Levels
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Fig. 21 Level Shift Effect on Output Levels 

 

Vernier Delay Circuit Measurements 

 The direct output of the vernier delay circuit was measured at 3GHz.  Both the 

response of the four inverter chain paths as well as the response of the individual vernier 

blocks was measured.  A bias T was used to set the termination voltage to approximately 

-1.6 V.  When terminating the output through 50 ohms to ground the output of the vernier 

circuit was connected equivalently to Fig. 22.   With a bias current in the emitter follower 

of 1mA, Vout was only allowed to swing as low as -.1V.  This configuration did not 

allow Vout to swing beyond a base-emitter drop of the input signal.  Setting the 

termination voltage to a -1.6V, the emitter follower was allowed to drop far enough to see 

a significant voltage swing at Vout. 
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Fig. 22 Schematic of Vernier output before Bias T 

 

 

 

Fig. 23 3GHz clock Input(Green) and Vernier Circuit Output(Purple) 
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Measured Inverter Chain Delay

0.000E+00

1.000E-11

2.000E-11

3.000E-11

4.000E-11

5.000E-11

6.000E-11

7.000E-11

Zero Inverters Two Inverters Four Inverters Six Inverters

Number of Inverters

M
e
a
s
u
re
d
 D
e
la
y
 (
s
e
c
o
n
d
s
)

Chip 1

Chip 2

 

Fig. 24 Measured Inverter Chain Delays 

 The measurements were made using the positive crossing point measurement of 

the sampling scope.  Adequate settling time was given, and relative accuracy was seen to 

be within 1ps or less.  The inverter chain measurements matched up very closely to the 

simulated values.   

Table. 4-Simulated vs. Measured Inverter Chain Delay Chip 1 

  Measured Simulated % Error 

Zero Inverters 0.000E+00 0.000E+00 0.00 

Two Inverters 1.328E-11 1.401E-11 5.19 

Four Inverters 2.768E-11 3.038E-11 8.90 

Six Inverters 5.289E-11 4.589E-11 -15.25 

 Measurement of the individual vernier block showed expected behavior, but with 

multiple linearity problems and poor reproducibility.  The linearity could be an issue with 

the timing of the scope due to the fact that the total inverter delay is only expected to be 

around 6-8ps in simulation.  Other contributing factors to the response of the vernier are 

jitter from the clock source, slew rate limiting, and the 10mV amplitude of the signal 

itself.     
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Vernier Circuit Delay Measurements (3GHz)
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Fig. 25 Measured Vernier block delays 
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Fig. 26 Vernier 1 INL 
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Vernier 2 INL-2 bits
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Fig. 27 Vernier 2 INL 
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Fig. 28 Vernier 1 and Vernier 2 INL 

 The INL measurements show that either of the vernier circuits alone, or combined 

may have 8-bit resolution, but only 2-bit accuracy to approximately .5 LSB.  Simulations 

also indicated that the circuit topology itself does not have high bit accuracy.  This fact 

can be overcome and modified due to the higher resolution to be able to initiate the 

wanted delay. 
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CHAPTER FIVE 

NEEDED MODIFICATIONS 

 

Shift Register Input Buffer 

The data shift register input circuit worked properly using the ideal power supply 

voltages.  The control shift register was seen to give data patterns that suggested multiple 

unwanted clock pulses as well as random behavior.  The control register path did work 

when the CMOS power supplies were first lowered from -2.2 to -4 to -2.8 to -3.7.  This 

may have worked due to the fact that it gave the input inverter more headroom, while 

giving the final CMOS inverters a smaller threshold value.  The smaller threshold value 

could have helped because the intermediate node tied to the resistor was not swinging 

high enough to change the output.  Reasons for this are the value of the resistor could be 

significantly off, or that the drive strength of the second stage PFET connected before the 

bipolar diode drops was too small.  The location of the control register input buffer circuit 

is also located near the high speed bipolar multiplexers as well as the current path of the 

output driver.  This area has a much higher power dissipation than that of the data path 

buffer circuit and could therefore be at a much higher temperature.  This temperature 

factor could also be causing variations in the threshold values of the transistors as well as 

the resistor value.  During simulation and using worse case models it was seen that the 

intermediate node voltage swing occurred from -4 to -2.8 volts.  In simulation this was 

still enough swing, but to give headroom for actual measurements the second stage PFET 

could have its width increased to 2u from 1u.  In simulation this increase in width showed 

full power supply to power supply swings at that node using worst case simulation 

conditions.   
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Fig. 29 Shift Register Input Buffer 

Output Driver 

 The output driver’s output swing characteristics are consistent with the simulation 

behavior at half of the bias current.  Measurements of the prototype chip showed the 

output swing reaching a maximum value halfway to three quarters through the entire bit 

sequence rather than at the end of the bit sequence.  The linearity problem is due to a 

temperature dependence in the CMOS reference current mirrors and 8-bit current DAC’s; 

which at a higher temperature reach the maximum reference current level earlier in the bit 

sequence.  The high level circuitry was simulated to be very sensitive to voltage drops in 

the -4V supply.  Inconsistent measured and simulated voltage swing values are due to the 

source degenerated resistor pair in the bipolar current mirror stages.  This resistor pair 

was constructed using two different material classes which had extremely different and 

opposite linear and quadratic temperature coefficients.  Temperature and power supply 
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variation simulations for both the high level and output swing circuitry are recorded in 

Fig. 30-36. 

Output Driver-High Level Simulations 

High Level Voltage
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Fig. 30 Simulated High Level Voltage 

High Level Output Current

0.00E+000

2.00E-003

4.00E-003

6.00E-003

8.00E-003

1.00E-002

1.20E-002

1.40E-002

0.
00
E
+0
00

5.
60
E
-0
08

1.
12
E
-0
07

1.
68
E
-0
07

2.
24
E
-0
07

2.
80
E
-0
07

3.
36
E
-0
07

3.
92
E
-0
07

4.
48
E
-0
07

5.
04
E
-0
07

Time (full 8-bit sequence at freq=500MHz)

H
ig
h
 L
e
v
e
l 
C
u
rr
e
n
t

ideal

vss375

temp100

 

Fig. 31 Simulated High Level Output Current  

 The data contained in Fig. 28 and Fig. 29 was simulated from the circuit in Fig. 

27.  From this data it can be seen that a temperature rise caused the high level output 
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current to increase and for the high level voltage to be pulled down at an earlier time in 

the bit sequence.  By raising the power supply from -4V to -3.75V the current mirror 

output dropped by approximately 83%.    
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Fig. 32 Simulated High Level Input Reference Current to CMOS Current Mirror  

High Level Output Reference Current from CMOS Current Mirror 
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Fig. 33 Simulated High Level Output Reference Current from CMOS Current Mirror  

 The CMOS portion of the current mirror topology was also simulated to see the 

effects of power supply voltage drop and temperature.  Again, a rise in temperature did 
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not affect the end value of the current levels, but increased the rate at which the current 

increased until its maximum value of approximately 1.0mA-1.2mA was met.  A power 

supply voltage drop of 250mV caused a dramatic decrease in the reference current to the 

bipolar current mirror. 

Output Driver-Output Swing Simulations 
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Fig. 34 Simulated Output Swing Bias Current  

Bias Current at Output Differential Pair 
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Fig. 35 Simulated Bias Current at Output Differential Pair 
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Output Voltage Swing
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Fig. 36 Simulated Output Voltage Swing  

 Simulations completed on the output bias current which ideally should swing 

from 0-60mA into an equivalent 25 ohms when 50 ohm termination is used.  From Fig. 

32-34 the increase in temperature had the equivalent effect as was seen on the high level 

circuitry.  Equivalent final current values were recorded at both 27 degrees C and 100 

degrees C, although at high temperature, the maximum current value was reached much 

earlier in the bit sequence.  Equivalent CMOS current mirrors were used in both the high 

level circuitry as well as the output swing circuitry, giving both circuits the same 

temperature dependence.  However, the output swing circuitry was not found to be 

susceptible to a 250mV power supply drop.     

Output Driver-Modifications 

The current method of using equivalent 8-bit current DAC’s and then using 

current mirrors composed of PFETs can be altered to use specific current level DAC’s 

that do not require current mirrors.  This should increase the linearity of the current 
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changes as well and remove the dependence upon the current mirror technology, which 

may be causing multiple linearity problems due a possible temperature dependence of the 

PFETs, parasitics, or even differences in the ideal and actual bias voltage value which 

feeds each of the binary weighted current sources.  Power supply voltage drops due to 

either measurement line inductance or layout resistance can also be compensated for by 

widening power lines and either using lower inductance cable or raising power supply 

values to see any effects.   

 The high level circuitry needs to be simulated further to determine what is causing 

the sudden current drops in addition to further simulation of the output differential pair to 

look at possible current switching issues and breakdown voltage problems. 

 Resistor modifications need to be made so that the source degenerated resistor 

pairs in the bipolar current mirror circuitry are the same class of resistor.  In addition, 

simulations were done using the worst case value of the resistors.  Both the high level and 

output swing circuitry’s response was greatly affected.   More ideal current values form 

the current mirrors can be improved by using common centroid layout techniques to 

receive better resistor matching.  This can help to improve the expected current 

multiplication.   

Vernier Delay 

 Improvement of the vernier delay circuit need to be completed so that the overall 

behavior of the circuitry at least becomes monotonic.  Other issues that need to be 

addressed are problems with clock drift and measurement accuracy. 
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Layout Issues 

 A clock routing error occurred during the layout that prevented the passage of the 

random data sequence through to the final output.  Specifically, the clock signals that 

drive the first bipolar stage 4-1 Mux’s which should be differential and the same voltage 

levels are non-differential and different voltage levels.  This prevented measurement of 

data dependent output jitter and correct operation of the multiplexer.   This error can be 

fixed with minor modifications.  Below is a figure of the 4-1 mux along with a simulation 

showing the result of the routing error and the result after the error had been corrected.  

 
Fig. 37 Bipolar 4-1 Mux  
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Fig. 38 4-1 Mux Error Simulation 

 

 From the above simulation the first and third sets of signals are what the error in 

layout is currently causing.  By correcting the error, the second and fourth sets of signals 

are created.  The final two signals are firstly, the output of the mux with the error, and the 

output of the mux after correction.  This change again can be easily done by correcting 

the clock generator layout.  

High Frequency Measurements 

 With the above mentioned corrections high frequency measurement will be able 

to be taken.  This will allow for the further characterization of the vernier circuit, output 

driver, and jitter response of the overall pattern generator.  Achieving measurements in 

the 20GHz range will require a better setup to reduce power supply lead inductance and 

better thermal capacity for temperature effects. 
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Detailed Operation 

The initialization state checks for certain global situations to make sure that the 

correct section of code is working properly at all times.  The initial purpose of the code is 

to either reset and initialize all register values and counters when an enable signal is low, 

and allow basic operation whenever the enable signal is high.  When enable goes high the 

operation of the circuit starts in the first cycle.  When the first cycle has completed, a 

variable c1 is set high.  This tells the global code to switch to the second cycle code.  As 

the second cycle finished, another variable c2 is set high and correspondingly c1 is set 

low.  This behavior continues through each of the cycles until cycle four is finished.  

Additional jump variables are also set.  Detection of a partial jump is easily done by 

checking bits 15 to 12 of the stop register value.  If these four bits are not all logic 1, then 

a partial jump is occurring.  During initialization variables j1, j2, j3, and j4 are set either 

high or low depending upon there being a partial jump detection or not.  This will direct 

the initiation of the correct function block to commence.   

After each cycle has ended the operation of the full chip should continue to step 

through the code until the next stop value is detected.  This transition is over different 

RAM blocks and therefore there needs to be additional logic to make sure that when the 

final column in a RAM block has been loaded, the next column that will be read is the 

first column of the next corresponding block.  This code simply checks for the location of 

the master signal and which RAM block counter it is currently clocking.  It then checks 

for the situation where the final column in that block has been loaded and subsequently 

switches the master clock signal to the next RAM block. 
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A jump occurs when the stop value of one table entry has been reached and 

therefore the data multiplexers must switch back to the start value of that table entry or if 

the wanted number of cycles has been completed the circuit should operate normally until 

next table entry stop value.  For this code a restriction is placed on a single table entry to 

have the start and stop register address be in the same block.  The data through can only 

be multiplexed correctly if the data is ready at the outputs of the RAM.  The simple way 

to do this is to have the control circuitry of the SRAM on the opposite clock phase as the 

actual multiplexers.  During phase one of the clock signal the SRAM is allowed to have 

the correct data read and ready at its outputs.  During phase 2 of the clock the data is sent 

through the multiplexer chain.  Using basic flip flops will allow for the previous SRAM 

data to be held constant while the input values are changed to the next data set.  This 

scheme works as long as the stop value of the table entry goes through the entire selected 

column.  This allows for a set clock period to allow for the entire 128 bits in that column 

to be ready at the output and then multiplexed out while the entire next column value is 

being read.  The code operation looks for the stop_reg[9:0]+1.  This is the time at which 

the stop column for that table entry has had enough time to be read from the memory.  At 

this time the counter for the specific block that the table entry is associated with is reset 

to the start value.  In addition the cycle counter is clocked to show that cycle has been 

completed.  This value will be continually checked to determine if the next table entry 

value should begin.     

Operation with partial column stop values are a problem due to the fact that 

during phase 1 of the clock cycle the block counters will be reading the entire stop 

column.  During phase 2 of the clock cycle the mux’s will be counting through the stop 
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column partially, and then expect to go back to the start value of that table entry.  This 

will be happening at the same time as the read of the start value and could cause data 

error.  To combat this, an additional RAM block D is created to store the final stop 

register value if it is determined that it is a partial column value.  Then during phase 1 of 

the clock cycle when the code has determined that the correct block counter has reached 

the end of stop reg [9:0]-1, or it has been read, the next values to be read are the start 

value of the table entry as well as the copied column of the stop value in RAM D.  By 

doing this, both the stop value and start value will be available to be read during clock 

phase 2.  Therefore, the mux detection will have to detect the final stop row and then 

switch to the start value.  In addition, the multiplexers will be to deal with the partial stop 

column and the entire start column.  This will require phase 2 of the clock to be longer by 

the length of the partial stop column value.  Therefore a clock delay will also have to be 

inserted to ensure that the proper data values are multiplexed.  This delay can be based on 

a lookup table and a high speed clock.   

 

//**********************************************************************

******************************** 

//Matthew Zahller 

//Washington State University 

//40 Gbps SiGe Data Pattern Generator Code for Full Column Operation 

//This code is a simplified version for 

//functionality testing and code checks. 

 

//Code for a single full column stop cycle.  This code is used for a simplified version for 

//functionality testing and code checks. 

 

//Important to operation that the counters controlled by the clock signals are only allowed 

//to change values when a pos edge or neg edge is detected.  Even in the case of a set or 

reset 

 

//**********************************************************************

************************** 
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//Reference time is 1ns with a precision of 1ns 

`timescale 1ns / 1ns 

 

///////////////////////////////Input and Ouput Ports and Variables////////////////////////////////////////// 

 

//Input and Ouput Ports 

module cycle_full_column ( 

//Input Signals 

    input enable,       //Circuit Enable 

    input partial_enable, //if 1 partial code executed, if 0 full column code executed (j1-j4) 

    input cycle_enable, //high to enable code only during one of the four cycles  

    input clk_fast,     //High Speed Synchronization Clock 

    input [9:0] counta, countb, countc,   //Outputs from the four block counters 

    input [9:0] start, 

    input [15:0] stop,  //Bits 15:12 tell stop row, 11:10 tell stop block, 9:0 tell stop column 

    input [9:0] cycle,  //Cycle registers hold the number of iterations for each cycle 

     

 //Output Signals    

    output reg [9:0] reseta, resetb, resetc, seta, setb, setc, cycle_count 

    ); 

  

//////////////////////////////////////////////////////////////////////////////////////////////////////////// 

  

  

     

always @(posedge clk_fast) //This section should be in state0 

if(!enable) 

cycle_count=10'b0000000000; 

 

 

///////////////////////////////////////////////////////////////////////////////////////////////////// 

 

//**********************************************************************

************************* 

//Note: 

//All of these code sections need an external clock signal that is the same frequency 

//as the counta or countb or countc outputs to allow for proper operation this is actually 

//already done by using a counter block because the block itself will not allow the counter 

//output to change unless it detects a rising or falling edge of the control clock along 

//with the set and reset values   

//**********************************************************************

************************* 
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 //////////////////////////////////////SRAM Full Column Stop 

Code///////////////////////////////////////////////// 

always @(counta or countb or countc) 

 

if(!partial_enable & cycle_enable & !(&(cycle_count ~^ (cycle+1))) & enable) 

begin 

     

case({stop[11], stop[10]}) 

     

2'b00 :  

begin 

if(&(counta ~^ stop[9:0]+1)) 

begin 

seta=start; 

reseta=~start; 

cycle_count=cycle_count+1; 

end 

end 

 

2'b01 :  

begin 

if(&(countb ~^ stop[9:0]+1)) 

begin 

setb=start; 

resetb=~start; 

cycle_count=cycle_count+1; 

end 

end 

 

2'b10 :  

begin 

if(&(countc ~^ stop[9:0]+1)) 

begin 

setc=start; 

resetc=~start; 

cycle_count=cycle_count+1; 

end 

end 

 

default :  

begin 

seta=10'b0000000000; 

reseta=10'b0000000000; 

setb=10'b0000000000; 

resetb=10'b0000000000; 

setc=10'b0000000000; 
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resetc=10'b0000000000; 

end 

endcase  

end 

 

endmodule 

///////////////////////////////////////////////////////////////////////////// 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

//**********************************************************************

******************************** 

//Matthew Zahller 

//Washington State University 

//40 Gbps SiGe Data Pattern Generator Code for Partial Column Stop Values 

//This code is a simplified version for 

//functionality testing and code checks. 

 

//Notes: 

//Important to operation that the counters controlled by the clock signals are only allowed 

//to change values when a pos edge or neg edge is detected.  Even in the case of a set or 

reset 

 

//**********************************************************************

******************************** 
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//Reference time is 1ns with a precision of 1ns 

`timescale 1ns / 1ns 

 

///////////////////////////////Input and Ouput Ports and Variables////////////////////////////////////////// 

 

module cycle_partial_column_single ( 

//Input Signals 

    input enable,        //Circuit Enable, when code is consolidated anything that depends on 

enable=0 

                         //will be transferred to state0 code 

    input partial_enable, //if 1 partial code executed, if 0 full column code executed (j1-j4)  

    input cycle_enable,//high to enable code only during one of the four cycles   

    input clk_fast,     //High Speed Synchronization Clock 

    input [9:0] counta, countb, countc,  //Outputs from the three block counters 

    input [1:0] block_count, //Logic to set which SRAM block code to use                    

    input [9:0] start,  //10 bits which hold the starting column value 

    input [15:0] stop,  //Bits 15:12 tell stop row, 11:10 tell stop block, 9:0 tell stop column 

    input [9:0] cycle,  //Cycle registers hold the number of iterations for each cycle 

    input [3:0] mux1,   //128:16 Mux output 

    input [9:0] Block_D_Storage, //User defined storage location for copied partial column  

     

 //Output Signals    

    output reg [9:0] reseta, resetb, resetc, seta, setb, setc, cycle_count, 

    output reg [9:0] resetd, setd, 

    output reg end1, end2, end3, delay1_dec, 

    output reg [3:0] reset_mux, set_mux, 

    output reg [1:0] reset_fmux, set_fmux, reset_count, set_count, 

    output reg [3:0] delay_a, delay_b, delay_c, 

    output reg delay_a_enable, delay_b_enable, delay_c_enable 

    ); 

     

//Variables 

    reg x1, x2, x3;    

 

 

//////////////////////////////////////////////////////////////////////////////////////////////////////////// 

 

always @(posedge clk_fast) //This section should be in state0 when consolidated 

if(!enable) 

cycle_count=10'b0000000000; 

 

 

//////////////Code for Detection of the Completion of Read Time for Final Full Column 

Value//////////////// 

     

always @(counta or countb or countc) 
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case({stop[11], stop[10]}) 

     

2'b00 :  

begin 

end1=&(counta ~^stop[9:0]); 

end2=1'b0; 

end3=1'b0; 

end 

2'b01 :  

begin 

end1=1'b0; 

end2=&(countb ~^ stop[9:0]); 

end3=1'b0; 

end 

2'b10 :  

begin 

end1=1'b0; 

end2=1'b0; 

end3=&(countc ~^ stop[9:0]); 

end 

 

default :  

begin 

end1=0; 

end2=0; 

end3=0; 

end 

endcase  

 

///////////////////////////////////////////////////////////////////////////////////////////////////// 

 

//**********************************************************************

************************* 

//Note: 

//All of these code sections need an external clock signal that is the same frequency 

//as the counta or countb or countc outputs to allow for proper operation this is actually 

//already done by using a counter block because the block itself will not allow the counter 

//output to change unless it detects a rising or falling edge of the control clock along 

//with the set and reset values   

//**********************************************************************

************************* 

  

 //////////////////////////////////////SRAM Block A Code///////////////////////////////////////////////// 

     

always @(posedge counta[0] or negedge counta[0] or posedge mux1[0] or negedge 

mux1[0])         



 

 52 

 

 

    if(!block_count[1] & !block_count[0] & partial_enable & cycle_enable & 

!(&(cycle_count ~^ (cycle+1))) & enable) 

        begin    

     

     

    if(end1) 

    begin 

        x1=1'b1; 

        seta=start; 

        reseta=~start; 

        set_fmux=2'b11;//Sets the final mux to block D 

        reset_mux=4'b1111; 

        setd=Block_D_Storage; //Sets column counter in block D to designated storage area 

        resetd=~Block_D_Storage; 

    end 

    else if(!end1 & x1) 

        begin  

        //Allows normal operation until end1 is activated 

        seta=10'b0000000000; 

        reseta=10'b0000000000; 

        set_fmux=2'b00; 

        reset_fmux=2'b11; //Corresponds to block A 

        reset_mux=4'b0000; 

        set_mux=4'b0000; 

        setd=10'b0000000000; 

        resetd=10'b0000000000; 

         

         

        //This code detects the completion of the partial column data and initiates the proper 

        //resets to continue with normal operation 

        if(&(stop[15:12]+1 ~^ mux1)) 

        begin 

        reset_mux=4'b1111; //128 to 16 Block Mux Reset 

        reset_fmux=2'b11; //end1 corresponds to block A 

        cycle_count=cycle_count+1;//Corresponds to first cycle 

        reset_count=2'b11; //Reset block counter to block A 

        delay_a_enable=1'b1;//Signal finish of block D values 

        end 

         

        //Clock Delay Code which only initiates after block D values have been used 

        delay_a=4'b1111-stop[15:12]; //Leftover delay for counter to stay in the current 

column 

        if(delay_a_enable & &(mux1 ~^ delay_a)) 

        begin 
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        seta=counta; //If fed to a counter it should retain its current value 

        reseta=~counta; 

        end  

         

        else if(&(mux1)) 

        begin 

        seta=10'b0000000000; 

        reseta=10'b0000000000; 

        delay_a_enable=1'b0; 

        x1=1'b0; 

        end       

    end 

    end 

     

 //////////////////////////////////////SRAM Block B Code///////////////////////////////////////////////// 

     

always @(posedge countb[0] or negedge countb[0] or posedge mux1[0] or negedge 

mux1[0])         

 

 

    if(!block_count[1] & block_count[0] & partial_enable & cycle_enable & 

!(&(cycle_count ~^ (cycle+1))) & enable) 

        begin    

     

     

    if(end2) 

    begin 

        x2=1'b1; 

        setb=start; 

        resetb=~start; 

        set_fmux=2'b11;//Sets the final mux to block D 

        reset_mux=4'b1111; 

        setd=Block_D_Storage; //Sets column counter in block D to designated storage area 

        resetd=~Block_D_Storage; 

    end 

    else if(!end2 & x2) 

        begin  

        //Allows normal operation until end2 is activated 

        setb=10'b0000000000; 

        resetb=10'b0000000000; 

        reset_fmux=2'b10; //Corresponds to block B 

        set_fmux=2'b01; 

        set_mux=4'b0000; 

        reset_mux=4'b0000; 

        setd=10'b0000000000; 

        resetd=10'b0000000000; 
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        delay_b_enable=1'b1; 

         

         

        //This code detects the completion of the partial column data and initiates the proper 

        //resets to continue with normal operation 

        if(&(stop[15:12]+1 ~^ mux1)) 

        begin 

        reset_mux=4'b1111; //128 to 16 Block Mux Reset 

        reset_fmux=2'b10; //end2 corresponds to block B 

        set_fmux=2'b01; 

        cycle_count=cycle_count+1;//Corresponds to first cycle 

        reset_count=2'b10; //Reset block counter to block B 

        set_count=2'b01; 

        delay_b_enable=1'b1;//Signal finish of block D values 

        end 

         

        //Clock Delay Code which only initiates after block D values have been used 

        delay_b=4'b1111-stop[15:12]; //Leftover delay for counter to stay in the current 

column 

        if(delay_b_enable & &(mux1 ~^ delay_b)) 

        begin 

        setb=countb; //If fed to a counter it should retain its current value 

        resetb=~countb; 

        end  

         

        else if(&(mux1)) 

        begin 

        setb=10'b0000000000; 

        resetb=10'b0000000000; 

        delay_b_enable=1'b0; 

        x2=1'b0; 

        end       

    end 

    end 

     

 //////////////////////////////////////SRAM Block C Code///////////////////////////////////////////////// 

     

always @(posedge countc[0] or negedge countc[0] or posedge mux1[0] or negedge 

mux1[0])         

 

 

    if(block_count[1] & !block_count[0] & partial_enable & cycle_enable & 

!(&(cycle_count ~^ (cycle+1))) & enable) 

        begin    
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    if(end3) 

    begin 

        x3=1'b1; 

        setc=start; 

        resetc=~start; 

        set_fmux=2'b11;//Sets the final mux to block D 

        reset_mux=4'b1111; 

        setd=Block_D_Storage; //Sets column counter in block D to designated storage area 

        resetd=~Block_D_Storage; 

    end 

    else if(!end3 & x3) 

        begin  

        //Allows normal operation until end3 is activated 

        setc=10'b0000000000; 

        resetc=10'b0000000000; 

        reset_fmux=2'b01; //Corresponds to block C 

        set_fmux=2'b10; 

        set_mux=4'b0000; 

        reset_mux=4'b0000; 

        setd=10'b0000000000; 

        resetd=10'b0000000000; 

        delay_c_enable=1'b1; 

         

         

        //This code detects the completion of the partial column data and initiates the proper 

        //resets to continue with normal operation 

        if(&(stop[15:12]+1 ~^ mux1)) 

        begin 

        reset_mux=4'b1111; //128 to 16 Block Mux Reset 

        reset_fmux=2'b01; //end2 corresponds to block C 

        set_fmux=2'b10; 

        cycle_count=cycle_count+1;//Corresponds to first cycle 

        reset_count=2'b01; //Reset block counter to block C 

        set_count=2'b10; 

        delay_c_enable=1'b1;//Signal finish of block D values 

        end 

         

        //Clock Delay Code which only initiates after block D values have been used 

        delay_c=4'b1111-stop[15:12]; //Leftover delay for counter to stay in the current 

column 

        if(delay_c_enable & &(mux1 ~^ delay_c)) 

        begin 

        setc=countc; //If fed to a counter it should retain its current value 

        resetc=~countc; 

        end  

         



 

 56 

        else if(&(mux1)) 

        begin 

        setc=10'b0000000000; 

        resetc=10'b0000000000; 

        delay_c_enable=1'b0; 

        x3=1'b0; 

        end       

    end 

    end 

 

 

endmodule 

///////////////////////////////////////////////////////////////////////////// 
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//This program steps through the feedback current source and  

//measures its effects 

 

 

#include <ni488.h> 

#include <stdio.h> 

#include <unistd.h> 

#include <stdlib.h> 

#include "Pattern_Gen.h" 

void wrt(int ud, char *x) 

{ ibwrt(ud,x,strlen(x)); } 

 

int main() 

{ 

FILE *fptr; 

fptr=fopen("Current Feedback.txt", "w"); 

char temp[80]; 

char temp2[80]; 

  int tds8000; 

    

    

    // Initialize a GPIB device (voltage source) 

    tds8000 = ibdev(0, // Board ID 

     1,   // Primary ID 

     0,   // Secondary ID 

     12,  // Timeout (1 second) 

     1,   // 'eoi on last byte' flag 

     0);  // end-of-string mode 

  

  int hp6629; 

    

    

    // Initialize a GPIB device (voltage source) 

    hp6629 = ibdev(0, // Board ID 

     5,   // Primary ID 

     0,   // Secondary ID 

     12,  // Timeout (1 second) 

     1,   // 'eoi on last byte' flag 

     0);  // end-of-string mode 

 

      

 unsigned char delay={0x00}; 

 unsigned char vern1={0x00}; 

 unsigned char vern2={0x00}; 

 unsigned char breakdown={0xff}; 

 unsigned char cfs; 
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 unsigned char hls={0x00}; 

 unsigned char os={0xff}; 

 unsigned char ls={0xaa}; 

 

  

 OpenDevice(0); 

 c 

 int i; 

  

 fprintf(fptr, "Current Feedback\n"); 

 //Vern1 Count 

 for(i=0; i<256; i=i+8) 

 { 

 cfs=i; 

  

 SetDigitalChannel(VDD); 

 ClearDigitalChannel(SR_RESET);  

  

 //Set Power Supplies to Needed Threshold Values 

 wrt(hp6629, "VSET 3, 3.7"); 

 usleep( 400000); // sleep for .4 second*/ 

 wrt(hp6629, "VSET 2, .9"); 

 usleep( 400000); // sleep for .4 second*/ 

  

 control_serial(delay, vern1, vern2, breakdown, cfs, hls, os, ls); 

  

 //Reset Power Supply to Full Swing and wait for settling 

  wrt(hp6629, "VSET 3, 4"); 

  usleep( 1000000); // sleep for 1 second 

 wrt(hp6629, "VSET 2, 1.8"); 

  usleep( 1000000); // sleep for 1 second  

 usleep(10000000); 

 wrt(tds8000, "Measu:Meas5:Val?"); 

 ibrd(tds8000, temp, 80); 

 wrt(tds8000, "Measu:Meas6:Val?"); 

 ibrd(tds8000, temp2, 80); 

 fprintf(fptr, "%s, %s\n ", temp, temp2); 

 fflush(fptr); 

  

 } 

  

 

 

} 
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//This file includes all control functions 

//for the Velleman board interface 

 

 

#include <k8055.h> 

 

#define SR_CC  1 

#define SR_RESET    2 

#define VDD  3 

#define SR_DATA  4 

#define SR_DC  5 

#define CHIP_CLK_RESET 6 

#define SR_OUT  1 

 

void control_reset() 

{ 

 ClearDigitalChannel(SR_CC); 

 SetDigitalChannel(SR_RESET); 

 SetDigitalChannel(SR_CC); 

 ClearDigitalChannel(SR_CC); 

 ClearDigitalChannel(SR_RESET); 

} 

 

void data_reset() 

{ 

 ClearDigitalChannel(SR_DC); 

 SetDigitalChannel(SR_RESET); 

 SetDigitalChannel(SR_DC); 

 ClearDigitalChannel(SR_DC); 

 ClearDigitalChannel(SR_RESET); 

} 

 

void gen_sendbit(int b, int clk) 

{ 

 if(b) { 

  SetDigitalChannel(SR_DATA); 

  printf("1"); 

 }else { 

  ClearDigitalChannel(SR_DATA); 

  printf("0"); 

 } 

 

  SetDigitalChannel(clk); 

  ClearDigitalChannel(clk); 

 

} 
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void gen_sendbyte(signed char b, int clk) 

{ 

 gen_sendbit(b&0x80,clk); 

 gen_sendbit(b&0x40,clk); 

 gen_sendbit(b&0x20,clk); 

 gen_sendbit(b&0x10,clk); 

 gen_sendbit(b&0x08,clk); 

 gen_sendbit(b&0x04,clk); 

 gen_sendbit(b&0x02,clk); 

 gen_sendbit(b&0x01,clk); 

} 

 

void gen_sendbit2(signed char b, int clk) 

{ 

 gen_sendbit(b&0x02,clk); 

 gen_sendbit(b&0x01,clk); 

  

} 

 

void data_serial(signed char data[16]) 

{ 

 

 int i; 

  

 for(i=0; i<16; i++) 

 { 

  gen_sendbyte(data[i], SR_DC); 

  printf("\n"); 

 } 

 

} 

 

unsigned char send_read_byte(unsigned char b, int clk, int bits) 

{ 

  

 

 int i, mask; 

 unsigned char x=0; 

 for(i=bits-1; i>=0; i--) 

 { 

  mask=1<<i; 

  ReadDigitalChannel(SR_OUT); 

  if(!ReadDigitalChannel(SR_OUT)) 
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  { 

   x |=mask; 

  } 

  if(b & mask)  

  { 

   SetDigitalChannel(SR_DATA); 

  }  

  else  

  { 

   ClearDigitalChannel(SR_DATA); 

  } 

   

  SetDigitalChannel(clk); 

  ClearDigitalChannel(clk); 

 } 

 printf("Wrote:%02x  Read:%02x\n",b,x); 

 return x; 

 

} 

 

void control_serial(signed char delay, signed char vern1, signed char vern2,  

signed char breakdown, signed char cfs, signed char hls, signed char os, signed char ls) 

{ 

 

 send_read_byte(ls, SR_CC, 8); 

 send_read_byte(os, SR_CC, 8); 

 send_read_byte(hls, SR_CC, 8); 

 send_read_byte(cfs, SR_CC, 8); 

 send_read_byte(breakdown, SR_CC, 2); 

 send_read_byte(vern2, SR_CC, 8); 

 send_read_byte(vern1, SR_CC, 8); 

 send_read_byte(delay, SR_CC, 2); 

//  gen_sendbyte(ls, SR_CC); 

//  printf("\n"); 

//  gen_sendbyte(os, SR_CC); 

//  printf("\n"); 

//  gen_sendbyte(hls, SR_CC); 

//  printf("\n"); 

//  gen_sendbyte(cfs, SR_CC); 

//  printf("\n"); 

//  gen_sendbit2(breakdown, SR_CC); 

//  printf("\n"); 

//  gen_sendbyte(vern2, SR_CC); 

//  printf("\n"); 

//  gen_sendbyte(vern1, SR_CC); 

//  printf("\n"); 
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//  gen_sendbit2(delay, SR_CC); 

//  printf("\n"); 

 

} 

 

 

unsigned char readbyte(int clk) 

{ 

 

 int i; 

 unsigned char x=0; 

 for(i=0; i<8; i++) 

 { 

  ReadDigitalChannel(SR_OUT); 

  x=ReadDigitalChannel(SR_OUT) | (x<<1); 

  SetDigitalChannel(clk); 

  ClearDigitalChannel(clk); 

 } 

 

 return x; 

 

} 

 

 

unsigned char readbit2(int clk) 

{ 

 

 int i; 

 unsigned char x=0; 

 for(i=0; i<2; i++) 

 { 

  ReadDigitalChannel(SR_OUT); 

  x=ReadDigitalChannel(SR_OUT) | (x<<1); 

  SetDigitalChannel(clk); 

  ClearDigitalChannel(clk); 

 } 

   

 return x; 

 

} 

 

 

 

 

 

 


