
LIGHTWEIGHT NETWORK MANAGEMENT DESIGN

FOR WIRELESS SENSOR NETWORKS

By

FENGHUA YUAN

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE

WASHINGTON STATE UNIVERSITY
School of Engineering and Computer Science

DECEMBER 2007

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of FENGHUA YUAN find it
satisfactory and recommend that it be accepted.

Chair

ii

ACKNOWLEDGEMENT

I would like to express my gratitude to my advisor, Professor WenZhan Song, for his

guidance, inspiration and supervision of this thesis. Thanks for his useful comments to improve

my thesis.

I would also express sincere appreciation to all the members on our team, who gave me so

many good suggestions when I did the implementation part for this thesis.

Many thanks to all my friends at WSU. Without their generous help, continuous

encouragement and moral support, this work could not have been completed.

FENGHUA YUAN

iii

LIGHTWEIGHT NETWORK MANAGEMENT DESIGN

FOR WIRELESS SENSOR NETWORKS

Abstract

by Fenghua Yuan, M.S.
Washington State University

December 2007

Chair: WenZhan Song

Wireless sensor networks (WSNs) play an increasingly important role in supporting a wide

range of applications for our daily life, such as disaster relief and environment control. They also

pose certain design and implementation challenges. One of the biggest challenges is the design of

an efficient network management system to provide management services to support WSNs for

various sensor applications. The unique features of WSNs, such as limited capacities of nodes,

unreliable communication media, and high diversity of applications, make the design of Sensor

Network Management System (SNMS) very different from traditional networks.

This thesis first proposes the general principles of how to design a management system for

WSNs. Then a lightweight SNMS is designed. It is called the “lightweight” SNMS because of

two reasons: First, the SNMS occupies a minimal amount of RAM and generates less network

traffic, which limit the management overhead and meet the resource constrains of sensor nodes.

Second, it requires a minimal effort from the application developer to add the SNMS into the

application. The generic framework of the SNMS allows the SNMS to be decoupled with the

application, and be transparent for the application. Since the SNMS is non-application-oriented, it

decreases the development overload for different applications. In this thesis, the RPC (Remote

Procedure Call) based SNMS architecture is presented, and the design of main functions,

including performance management, fault management, and configuration management, are

iv

described in detail.

Following the lightweight SNMS design proposed in this thesis, a generic SNMS is

implemented. It works in the client/server paradigm. The SNMS server is developed in

TinyOS/nesC language, and can be easily wired, through its generic interface, to the other

modules of the application running on the sensor node. The SNMS client is a java tool suite

running on a PC. It provides remote monitor and control and remote reprogramming for WSNs

through a friendly GUI. The testing of this lightweight SNMS is done on a 17-mote

MICAz/MIB600 TestBed to show the validity and efficiency of this SNMS design.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Wireless Sensor Networks . 1

1.1.2 Necessity of Network Management in WSNs 5

1.1.3 Challenges for Network Management in WSNs 6

1.2 Research Background . 7

1.3 Our Goal . 9

1.4 Thesis Outline . 10

2. SENSOR NETWORK MANAGEMENT . 12

2.1 Network Management Standards . 12

2.1.1 Definition . 12

2.1.2 Architecture . 14

2.2 Traditional Network Management . 15

2.3 Sensor Network Management . 17

vi

2.4 Principles of Sensor Network Management Development 21

3. SENSOR NETWORK MANAGEMENT SYSTEM (SNMS) DESIGN 24

3.1 SNMS Architecture . 24

3.2 SNMS Functionality . 27

3.3 Lightweight Framework . 28

3.4 Main Module Design . 31

3.4.1 Performance Management . 31

3.4.2 Fault Management . 33

3.4.3 Configuration Management . 35

4. SNMS IMPLEMENTATION . 36

4.1 Development Environment . 36

4.1.1 Software Development Environment . 36

4.1.2 Hardware Components . 38

4.2 SNMS Server . 40

4.2.1 Generic Interface . 40

4.2.2 SNMS Server Architecture . 42

4.2.3 SubModule Implementation . 43

4.3 SNMS Client . 46

4.3.1 Communication Interface . 46

4.3.2 SNMS GUI . 48

4.4 RPC implementation . 49

4.4.1 RPC Mechanism . 50

4.4.2 Memory Footprint . 52

vii

5. SNMS DEMONSTRATION AND TESTING . 54

5.1 Scenario . 54

5.2 TestBed Setup . 54

5.2.1 Hardware Setup . 54

5.2.2 Software Setup . 57

5.3 SNMS Demonstration . 58

5.3.1 Network Topology and Status Monitor and Control 59

5.3.2 Network Packet Trace and Debug . 64

5.3.3 Real-Time Data Display . 66

5.4 SNMS Testing . 66

6. CONCLUSIONS . 70

6.1 Main Contributions . 70

6.2 Future Work . 70

BIBLIOGRAPHY . 72

viii

LIST OF TABLES

Page

ix

LIST OF FIGURES

Page

1.1 Wireless Networks . 2

1.2 In-Situ Sensor-web Architecture . 8

3.1 SNMS Architecure . 26

4.1 Sensor Node . 38

4.2 Interfaces Provided by SNMS . 41

4.3 Apply SNMS to OasisSensing Application . 41

4.4 Component Architecture of SNMS Server . 42

4.5 EventReport interface provided by EventReport module 44

4.6 EventConfig interface provided by EventReport module 44

4.7 Deluge: Network Programming . 46

4.8 Class MoteIF . 47

4.9 MoteIF Interface . 48

4.10 Software Architecture of SNMS client . 49

4.11 Remote Procedure Call for Remote Control . 50

5.1 SNMS TestBed . 55

5.2 SNMS TestBed . 55

5.3 (a) MICAz (b) MIB600 . 56

5.4 Interface of SNMS module . 57

5.5 Topology monitoring for WSN . 59

5.6 Event Report Panel . 61

5.7 Set Event Report Level . 61

x

5.8 Remote Control . 62

5.9 Set Parameter by Remote Control . 63

5.10 Remote Programming . 64

5.11 RawData Page . 65

5.12 Oscope Page . 67

xi

CHAPTER ONE

INTRODUCTION

1.1 Motivation

1.1.1 Wireless Sensor Networks

Recall the computer revolutions, the one of the 1980s was the advent of the personal computer,

which gave rise to cheap computers, and made them become ubiquitous in homes, schools and

offices. The computer revolution of the late 1990s, now continuing to the 21st century, involves

computer networks, whose existence is enriching our society in countless different ways, such as

providing a good communication medium, sharing of available resources, improved reliability of

service, and cost-effectiveness [28].

A computer network consists of two major components: distributed applications and network-

ing infrastructure. The networking infrastructure provides support for data transfer among the

interconnected computers where the applications reside. Wireless radio is one of the physical me-

dia used in the present-day communication infrastructure, and the networks using wireless radio

waves are called wireless networks accordingly.

There are two categories of wireless networks based on whether they depend on the support

of any fixed infrastructure [40]. For example, the current cellular wireless networks are classified

as the infrastructure dependent networks; ad hoc wireless networks are defined as the category of

wireless networks that utilize multi-hop radio relaying, and are capable of operating without the

support of any fixed infrastructure.

Wireless Sensor networks (WSNs) [3] are a special category of ad hoc wireless networks

(shown in Figure 1.1). They are highly distributed networks of small, lightweight wireless nodes,

deployed in large numbers to monitor the environment or system by the measurement of physical

parameters such as temperature, pressure, or relative humidity.

1

Figure 1.1: Wireless Networks

Wireless Sensor networks combine micro electromechanical systems (MEMS) technology, new

sensor materials, low-power signal processing, computation, and low-cost wireless networking in

a compact system. The features that make sensor networks a distinct category of ad hoc wireless

networks are the following [3]:

• Mobility of nodes Mobility of nodes is not a mandatory requirement in sensor networks.

• Size of the network The number of nodes in the sensor network can be much larger than

that in a typical ad hoc wireless network.

• Density of deployment The density of nodes in the sensor network varies with the domain

of application.

• Power constraints The power constraints in sensor networks are much more stringent than

those in ad hoc wireless networks. This is mainly because the sensor nodes are expected

to operate in harsh environmental or geographical conditions, with minimum or no human

supervision and maintenance.

• Data/information fusion The limited bandwidth and power constraints demand aggregation

of bits and information at the intermediate relay nodes that are responsible for relaying. Data

fusion refers to the aggregation of multiple packets into one before relaying it. They aim at

reducing the bandwidth consumption.

2

• Traffic distribution The communication traffic pattern varies with the domain of application

in sensor networks.

Wireless Sensor networks are used in a variety of applications which require constant monitor-

ing and detection of specific events [34],[24]. The military applications of sensor nodes include

battlefield surveillance and monitoring, guidance systems of intelligent missiles, and detection of

attack by weapons of mass destruction, such as chemical, biological, or nuclear. Sensors are also

used in environmental applications such as forest fire and flood detection, and habitat exploration of

animals. Sensors can be useful in patient diagnosis and monitoring too. The applications of sensor

networks are endless, limited only by the human imagination. With the increasing development of

electronic components and advances in communication technology, wireless sensor networks have

an enormous economical potential in future.

Wireless Sensor Networks have the potential to benefit our society in numerous ways [14]. At

the same time, they also pose many scientific challenges due to the following reasons [40]:

• Sensor networks are infrastructure-less. Therefore, all routing and maintenance algorithms

need to be distributed. An important bottleneck in the operation of sensor nodes is the

available energy.

• Hardware design for sensor nodes should also consider energy efficiency as a primary re-

quirement. Sensor nodes should be able to synchronize with each other in a completely

distributed manner.

• A sensor network should also be capable of adapting to changing connectivity due to the

failure of nodes, or new nodes deployed.

• Real-time communication over sensor networks must be supported through provision of

guarantees on maximum delay, minimum bandwidth, or other QoS parameters.

3

• Sensor nodes are randomly deployed and hence do not fit into any regular topology. Once

deployed, they usually do not require any human intervention. Hence, the setup and mainte-

nance of the network should be entirely autonomous.

To meet these requirements, innovative mechanisms for wireless sensor networks have to be

found, as well as new architectures and protocol concepts. Some of the mechanisms that will form

typical parts of WSNs are [23]:

• Multihop wireless communication While wireless communication will be a core technique,

there is a limitation of the direct communication between a sender and a receiver. The use of

intermediate nodes as relays can reduce the total required power. Hence, for many forms of

WSNs, so-called multihop communication will be a necessary ingredient.

• Energy-efficient operation It is a critical technique to support long lifetimes of WSNs.

Options to look into include energy-efficient data transport between two nodes, or, more

importantly, the energy-efficient determination of requested information.

• Auto-configuration A WSN will have to configure most of its operational parameters au-

tonomously, independent of external configuration, which is the capability required in most

applications. For example, self-location, the ability to tolerate failing nodes, or to integrate

new nodes.

• Collaboration and in-network processing In some applications, several sensors have to

collaborate to detect an event and only the joined data of many sensors provides enough

information. Information is processed in the network itself to achieve this collaboration.

• Data centric Different from traditional address-centric (each device equipped with at least

one network address) network, in a WSN, the nodes are typically deployed redundantly to

protect against node failures or to compensate for the low quality of a single node’s actual

4

sensing equipment. What is important is the data, not which node has provided the data, thus

it is called a data-centric network.

1.1.2 Necessity of Network Management in WSNs

During the past few years, a lot of research efforts have focused on technologies of networking

these tiny sensor devices in wireless sensor networks, such as energy efficient media access con-

trol (MAC) protocol, topology control protocols and routing schemes. And usually, WSNs and

their applications using these techniques have been developed without considering a management

solution.

In general, WSNs are likely to operate under very dynamic and critical environments with

applications such as environment monitoring, public safety, medical, transportation and military.

Sensor nodes are usually difficult to access because of the geographical locations where they are

deployed or the large scale of the network. Thus, network maintenance for reconfiguration, recov-

ery from failure or technical problems become impractical [48].

In early days, this problem could be ignored as WSNs were suppose to operate cheaply and

nodes were disposable. If the system breaks or underperforms, more nodes would be deployed

to cover the failure. With the development of more and more powerful sensor nodes, this vision

is not always the case. In addition, we would like to get the most out of the system we have at

hand, which requires the WSN to cooperate with various applications rather than setting up a new

network environment for each application. In the future, multiple applications may be required to

be concurrently executed over a single network. Therefore, WSNs are indeed in need of some sort

of management mechanism.

Management of WSNs is a new research area that only recently started to receive attention from

the research community [30]. All the factors mentioned above make managing a WSN necessary.

Another expectation for the management mechanism in a WSN involves a disaster scenario where

the management software should be able to provide a real time network topology of the deployed

5

nodes without requiring checking by a human, which is expensive and, most of time, is even

impossible. At the same time, the WSN, running any application, should be able to reveal to a

human manager whether a deployed network is functioning. WSN should also be able to record

node failure events for post-mortem analysis, and this event record should also be accessible to a

human manager in real time.

Based on the requirements for the management mechanism mentioned above, the Sensor Net-

work Management is described as following: Sensor Network Management is a system or process

that seeks to manage and coordinate the sensor nodes in a dynamic and uncertain environment,

to accomplish specific mission objectives and improve the performance of perception, by using the

least amount of energy.

1.1.3 Challenges for Network Management in WSNs

The research challenges for WSNs make the network management design for WSNs much more

difficult than for traditional wired networks [35], [33].

• The management approaches must take the limited capabilities of the sensor nodes into ac-

count. The hardware limitations involving processor, memory, etc., with varying capabilities

may play a significant role in determining the management capabilities. The weak processor

(compared to those of a PC) limits the complexity of management functionality, and re-

quire it to be as simple as possible, but still reach the goal of monitoring and controlling the

WSNs; The limited storage capacity will not allow the extra code for management module to

occupy too much memory. So “lightweight” is one of the most important requirements when

designing management system for WSNs. The challenge is how to balance the management

protocol performance against its overhead.

• The transmission media related factors are important since transmission over the air in an

unpredictable environment with possibly intentional or unintentional interference impact the

link quality. The reliability of the transmission of management messages is another challenge

6

in management design for WSNs. Meanwhile, constrained wireless bandwidth requires that

a minimal amount of management messages be sent.

• The topology may also be an important factor in managing wireless sensor networks. Nodes

may be deployed by dropping them from a plane, and are expected to dynamically self-

configure depending on the environment to form the topology of the network. The topology

may also be quite dynamic due to the failure or newly joined nodes, thus, automated recon-

figuration is necessary, too.

• The WSNs are employed for a diverse set of applications ranging from military battlesite

networks to disaster relief applications. These different applications have different man-

agement requirements, and the management system should be able to adapt easily to the

characteristics of the situation.

1.2 Research Background

The research topic of this thesis comes from the Optimized Autonomous Space-In-situ Sensor-

web (OASIS) project funded by NASA [1]. The goal of OASIS project is to develop a prototype

dynamic and scalable hazard monitoring Sensorweb.

A Sensorweb is a coordinated observation infrastructure composed of a distributed collection

of resources (e.g. sensors, platforms, models, communications infrastructure) that can collectively

behave as a single, autonomous, task-able, dynamically adaptive and reconfigurable observing sys-

tem that provides raw and processed data, along with associated meta-data, via a set of standards-

based service-oriented interfaces.

Sensorweb related research spans multiple domains, including distributed systems, wireless

sensor networks, remote sensing, artificial intelligence, sensor web services and etc. A multidis-

ciplinary team involving computer scientists, space scientists, and earth scientists will work on

this project. The final self-configuring/ self-healing remote Sensorweb built by this project will be

7

applied to one of the most active volcanos - Mount St. Helens.

Among the environment monitoring applications, an erupting volcano provides a very chal-

lenging environment to examine and advance in-situ Sensorweb technology. The crater at Mount

St. Helens is a dynamic 3-dimensional communication environment. After the sensor nodes are

deployed in the crater area, various geophysical and geochemical sensors generate continuous

high-fidelity data, whose priority depends on volcano status. There is a compelling need for real-

time data, and sensors are destroyed occasionally by the eruption. Hence, an in-situ network must

be self-configuring and self-healing, with a smart power and bandwidth management scheme, and

autonomous in-network processing. The Figure 1.2 shows the in-situ network structure after the

deployment of sensor nodes.

Figure 1.2: In-Situ Sensor-web Architecture

As mentioned in section 1.1.2, the harsh environment in the crater of volcano makes the man-

agement function more necessary and important for this project. The Sensor Network Management

System should provide a way to monitor and control the WSN wirelessly from the control center,

instead of the human control in place. The main requirements for the management of In-Situ

wireless sensor network involve the following functional areas:

• Monitor the connectivity and status of network resources and provide indication of node

8

failures, resource depletion, and other abnormality. Such information can provide early

warning of system failure, and guidance for incremental deployment.

• Wirelessly reprogram the sensor nodes after the deployment when it is needed.

• Provide self-detect and self-healing mechanism for sensor nodes when some software or

hardware faults happen, and also provide a mechanism for modules of application to report

and log logic errors for the postmortem analysis.

1.3 Our Goal

As described in previous section, the objective of a WSN is to monitor and, eventually, control a

remote environment. For WSN management, the objective is to define a set of functions that intend

to promote productivity, as well as to integrate functions of configuration, operation, administration

in an organized way, and maintenance of all elements and services of a sensor network [36]. Since

network management for WSN is a relatively new research area, there are not many existing rules

to follow or experiences to refer to.

One main goal of this thesis is to investigate the related problems when design such a Sensor

Network Management System (SNMS), and seek to answer the following questions:

• What rules need to be followed specifically for designing a SNMS?

Could those rules for designing a management system for traditional wired networks be

applied directly to design a SNMS? What properties of WSNs need to consider when setting

up these design rules?

• What network management functions need to define according to the requirements of sensor

networks?

Considering unique characteristics that WSNs have, such as wireless communication be-

tween two nodes, diverse densities for different applications, and dynamic topology, what

9

are the important functions that the SNMS for WSNs should have? How to design the

SNMS for different applications running on the sensor nodes?

• How to design a lightweight SNMS?

The “lightweight” has several meanings here: First, the SNMS should be designed to occupy

a minimal amount of RAM and generate less network traffic in order to limit the management

overhead and get maximized overall performance. Second, adding SNMS into an application

of WSNs should require as less effort as possible from the developer of the application. The

SNMS should be designed to be decoupled with the application, and be transparent for the

developer.

In order to test the design rules which will be proposed, another goal of this thesis is to im-

plement a generic SNMS module, which can be easily combined into the application running on a

WSN to provide a management mechanism for the whole network.

Based on the generic SNMS module developed in this thesis, a real testing of our SNMS will

be done on a in-door WSN TestBed to verify its correctness, completeness, and validation. It

will show that the generic SNMS module can be easily customized to meet the requirements of

management system for OASIS project. And the work done in this thesis will be used as the

prototype of the management system for the OASIS project.

1.4 Thesis Outline

Wireless Sensor Networks (WSNs) are an emerging new research area in distributed computing. It

plays an increasingly important role in supporting a wide range of applications for our daily life. It

also poses certain design and implementation challenges. This thesis focuses on Sensor Network

Management System (SNMS), one of the most challenging topics of WSN research. The necessity

of SNMS for WSNs has been analyzed in Chapter 1, and the goal of design and implement a

lightweight SNMS has also been proposed.

10

The following chapters will start from the background theories of developing a network man-

agement system, then explain how to achieve the goals listed in section 1.3 step by step.

Chapter 2 recalls the history of the network management development, and lists the network

management standards defined by ISO as the guide of SNMS design. By comparing with the

network management of traditional wired networks, the differences of SNMS design are analyzed.

After the summary of related works on SNMS, the development principles of SNMS are proposed.

Chapter 3 follows the principles described in Chapter 2, and presents the idea of taking ad-

vantage of Remote Procedure Call (RPC) techniques to design a lightweight SNMS. The corre-

sponding software architecture is provided, and the way to define functions under this lightweight

framework is explained. Furthermore, the design of main functions of SNMS are provided in

detail.

Chapter 4 goes one more step based on the work in Chapter 3, and implements a generic

Sensor Network Management module. The developed SNMS consists of two parts: the SNMS

server, located on the sensor node, and the SNMS client, running on a PC in the control center.

The main techniques adopted to develop this SNMS, such as MoteIF communication interface and

RPC mechanism are explained in detail.

Chapter 5 presents an example of how to use the SNMS designed in this thesis to manage a

sensor network. The scenario of OASIS project (mentioned in Chapter 1) is taken as the application

that needs to be managed. After adding the customized SNMS to it, the enhanced application is

downloaded into the sensor nodes of a TestBed, and the functionality and validity of the SNMS

module are tested and evaluated.

Chapter 6 concludes the thesis. It discusses the advantages and shortcomings of current design

and implementation, and also notes several areas of future work.

11

CHAPTER TWO

SENSOR NETWORK MANAGEMENT

2.1 Network Management Standards

Recalling the development of management of traditional networks, there are several organizations

that have developed services, protocols and architectures for network management. The three most

important organizations are: The International Standards Organization (ISO), the International

Telecommunication Union (ITU), and the Internet Engineering Task Force (IETF). Of these three

ISO was the first who started, as part of its “Open Systems Interconnection”(OSI) program, the

development of an architecture for network management [32].

The first proposal for such an architecture appeared during the early 1980’s. The initial aim of

this proposal by ISO was to define management standards for datacom networks, and the recom-

mendations were self standing. During 1988 - 1992 study period, these recommendations have

been rewritten to include the ideas of OSI management. Based on the discussion of the OSI

management framework, IETF was requested to define an ad hoc management protocol, Sim-

ple Network Management Protocol (SNMP), which has become the de facto standard for network

management nowadays.

2.1.1 Definition

According to the definition by ISO, “Network management includes the deployment, integration,

and coordination of the hardware, software, and human elements to monitor, test, poll, configure,

analyze, evaluate, and control the network and element resources to meet the real-time, operational

performance, and Quality of Service requirements at a reasonable cost.” [23]

The ISO has also created a network management model that is useful for placing all scenarios

in a more structured framework. Five areas of network management are defined in that model [28]:

• Performance management

12

Quantify, measure, report, analyze, and control the performance of different network compo-

nents. Protocol standards such as the Simple Network Management Protocol (SNMP) [RFC

3410] play a central role in Internet performance management.

• Fault management

Log, detect, and respond to fault conditions in the network. Fault management is the imme-

diate handling of transient network failures, while performance management is the longer

term of performance. SNMP plays a central role in fault management too.

• Configuration management

Allows a network manager to track which devices are on the managed network and the

hardware and software configurations of these devices.

• Accounting management

Allows specifying, logging and controlling user and device access to network resources.

Usage quotas, usage-based charging, and the allocation of resource-access privileges all fall

under accounting management.

• Security management

Control access to network resources according to some well-defined policy. The main com-

ponents of security management includes the key distribution centers and certification au-

thorities, and the use of firewalls to monitor and control external access points to one’s

network.

First, the management should initialize the network system (configuration management). If no

errors occur, the network comes into service and the operational phase starts. During this phase, the

management monitors the network system to check errors. In case of failures, the malfunctioning

system will be identified, isolated and repaired. If the system can not be repaired, it will be replaced

by a new system, which also must be initialized (fault management). New systems may also be

13

added to allow the connection of new users, to increase performance or to add new functionality.

The addition of the new system usually implies reconfiguration. Monitoring the network is also

useful to detect changes in the traffic flow. Once such changes are detected, network parameters

may be modified to optimize the network’s performance (performance management).

2.1.2 Architecture

Based upon the information collection and communication strategy, there are three types of net-

work management architectures: Centralized, Distributed, and Hierarchical[11], [48], [25].

In a centralized network management system, management decisions will be taken from the

limited number of central locations. The management functionality that takes these decisions is

called the manager. To manage the operation of the primary functions, agents should be added

to the systems that perform primary functions. Such agents represent the management support

functionality through which manager(s) initialize, monitor and modify the behavior of the primary

functions. To allow managers to communicate with their agents, a management information pro-

tocol is necessary. Examples of such protocols are Common Management Information Protocol

(CMIP) and Simple Network Management Protocol (SNMP).

With distributed management, there are no central systems from which management decisions

are taken. Instead, functions that take such decisions will be added to the systems that already

perform the primary functions. Such addition will usually be performed on a proportional scale.

A distributed management system has multiple manager stations; each manages a subnetwork

and communicates with other manager stations in a peer-to-peer manner. This approach has been

adopted by the emphTelecommunication Management Network (TMN) and management model

for emphAsynchronous Transfer Mode (ATM) networks [22].

Hierarchical network management systems use intermediate managers to distribute the man-

ager tasks. Each intermediate manager has its domain; it collects and processes node information

of its domain and passes the information to the upper level manager if necessary. It also distributes

14

the messages from the upper level manager to nodes in its domain. There is no direct communica-

tion between intermediate managers.

A disadvantage of distributed management is that it will be difficult to change after the op-

erational phase has started the functionality that makes the management decisions, because such

changes require the modification of a large number of network systems, which will be expensive.

It would be better to use the centralized management approach and concentrate the management

functionality that makes the decisions within a single system. It is also easier to introduce Intelli-

gent Networks when using centralized management.

A disadvantage of centralized management is that the entire network may get out of control af-

ter the failure of a single manager. Compared to distributed management, centralized management

may also be less efficient: it is likely that more management information needs to be exchanged

and the central managers may become performance bottlenecks.

2.2 Traditional Network Management

The Simple Network Management Protocol (SNMP) [28] was developed in the late 1980’s to pro-

vide network operators with a simple tool they could use to manage their networks. It has gained

widespread acceptance since 1993, making it a standard to manage TCP/IP networks.

SNMP is based on the client-server centralized paradigm, where a central station collects and

analyzes data retrieved from physically distributed network elements. The SNMP Manager makes

the connections to an SNMP Agent which runs on a remote network device, and serves information

to the manager regarding the device’s status. The database, controlled by the SNMP agent, is

referred to as the SNMP Management Information Base (MIB), and is a standard set of statistical

and control values. Directives, issued by the network manager to an SNMP agent, consist of the

identifiers of SNMP variables (referred to as MIB object identifiers or MIB variables) along with

instructions to either GET the value for identifier, or SET the identifier to a new value. Through

the use of private MIB variables, SNMP agents can be tailored for a lot of specific devices, such as

15

network bridges, gateways, and routers. The definitions of MIB variables supported by a particular

agent are incorporated in descriptor files.

The popularity of SNMP is due to a number of features. It can cover a large range of devices

to be managed, and it is a very flexible and extensible management protocol. It is also proved to

be good under poor network conditions. However, SNMP is not a particularly efficient protocol.

Bandwidth is wasted with needless information, such as the SNMP version (transmitted in every

SNMP message) and multiple length and data descriptors scattered throughout each message.

The network management systems based on Client/Server paradigm normally requires trans-

ferring large amounts of management data between the manager and agents. The large amount of

data not only requires considerable bandwidth, but also can cause a processing bottleneck at the

management. As current networks grow larger and more complicated, the problem becomes more

severe.

The Management by Delegation (MbD) model was proposed in 1991 to address the difficult

to manage centralized systems. The key idea of the MbD approach is to delegate management

functions to remote devices in order to reduce communication costs, to avoid a single point of

failure, and to increase the scalability of management applications. The management architecture

of MbD still includes a management protocol and agents, yet an elastic process run-time support

is assumed on each device. Instead of exchanging simple messages, the management station can

specify a task by packing a set of commands to agents into a program and send it to the devices

involved, thus delegating the actual execution of the task to them. This execution is completely

asynchronous, enabling the management station to perform other tasks in the meantime and intro-

ducing a higher degree of parallelism in the management architecture. Moreover, since the code

fragments are not statically bound to devices, they can be changed and re-sent by the management

station at any time. This enables more flexibility, because the management station can customize

and enhance dynamically the services provided by the agents on the devices.

Remote Monitoring (RMON) assumes the availability of network monitoring devices called

16

monitors or probes. By monitoring packet traffic and analyzing the headers, probes provide in-

formation about links, connections among stations, traffic patterns, and status of network nodes.

Hence, RMON can be regarded as traffic-oriented approach because the status of the network is

determined by direct inspection of the packets flowing in it, rather than inspection of the status of

each device. A probe in RMON can detect failures, misbehaviors, and identify complex relevant

events even when not in contact with the management station, which is likely to happen when the

network is overloaded or in critical conditions. In addition, the agent on the probe can also do

periodic checking and semantic compression, which further increases decentralization.

Another solution for the problem of centralized management is the use of Mobile Agent (MA)

technology to distribute and delegate management tasks. The emergence of mobile agent frame-

works has led many researchers to examine their applicability to network management and control

environments. It is believed that mobile agents can provide better solutions to performance and

fault management problems, given the large amount of data that needs to be transferred in respec-

tive solutions based on traditional approaches[15]. Ten Mobile agent frameworks are currently

addressed by two standards bodies. The Federation of Intelligent Physical Agent (FIPA) looks at

high-level semantically rich interactions between software agents that deploy some form of intel-

ligent adaptability. It has its roots in Distributed Artificial Intelligence (DAI). OMG looks mostly

at the issue of mobility according to a standard interoperable framework through its Mobile Agent

System Interoperability Facility (MASIF) [4]. In the latter, the agent systems model the execution

environment able to host mobile agents.

2.3 Sensor Network Management

As described in section 1.1.2, network management becomes more and more necessary with the

development of applications running on WSNs. When the requirement of management in WSNs

first arose, the most natural way to do it was to try to apply what we have already had for tradi-

tional wired networks into WSNs, such as the traditional standard network management protocols,

17

SNMP. Before we try to apply those rules or methods for designing management system for wired

networks, the first question listed in section 1.3 should be answered, i.e., ”Could those rules for

designing a management system for traditional wired networks be applied directly to design a

SNMS?”

The answer is “No”, because the unique challenges posed by WSNs for network management

make traditional network management techniques impractical. For example, the following char-

acteristics of wireless sensor networks, which really matter to the design of network management

system, make SNMP not applicable to WSNs:

First, there is no address for each sensor, and specifying sensors is difficult. The only way

to transmit messages among WSNs is to broadcast the message to all sensor nodes no matter

the message is planned to be sent to all sensor nodes or only one specific node. The communi-

cation overhead becomes too high when applying SNMP directly to WSNs. Second, for some

self-configured WSNs, the management server does not have all information of sensor nodes. In

order to apply SNMP directly, it requires each sensor node to maintain a MIB, and the big size of

MIB makes it impractical for the storage-constrained sensor nodes. Third, due to the high density

of the deployment of sensor nodes, sensor-specific failures become very common. This is a unique

characteristic of WSNs, and is not handled by SNMP.

Ad Hoc Network Management Protocol ANMP[11] and Guerilla[38] are two protocols de-

signed for managing mobile wireless ad-hoc networks, but they can be used with certain types of

WSNs. ANMP uses hierarchical clustering of nodes to reduce the number of messages exchanged

between the manager and the agents. It is an extended SNMP with the differences including MIB

extensions, dynamic configuration of agents, dynamic extension of the agents, and an application-

specific security module. The main contribution of ANMP is to make SNMP work for wireless net-

works. Guerilla is another adaptive management architecture for ad hoc networks, which provides

management flexibility and continuity by making its nomadic managers adapt to dynamic network

conditions. It employs a two-tier infrastructure: the higher tier consists of groups of peer-to-peer

18

nomadic managers that process management intelligence, adapt to network dynamics, collaborate

among one another; the lower tier consists of active probes that may be dispatched to remote nodes

to perform localized management operations. The nomadic managers and active probes facilitate

disconnected management operations and reduce consumption of wireless bandwidth.

Management Architecture for Wireless Sensor NetworksMANNA [36], is a management solu-

tion specific for WSNs, but it adopts ad hoc network management techniques. It provides a general

framework for policy-based management of sensor networks. It collects dynamic management in-

formation, maps this into WSN models, and executes management functions and services based

on WSN models. MANNAs management policy specifies management functions that should be

executed if certain network conditions are met. WSN models maintain the information about the

state of the network. MANNA defines the relationship among WSN models in a Management In-

formation Base (MIB). MANNA adapts to dynamic WSN behaviors by analyzing and updating the

MIB. MIB update is a centralized operation and expensive in terms of energy consumption. More-

over, WSN uncertainties and delay may affect the accuracy of collected management information.

To keep the MIB up-to-date, it is critical to determine the right time to query for management

information and the right frequency for obtaining management information.

Another system based on traditional network management systems is BOSS[41]. It proposes

a service discovery management architecture for WSNs. The architecture is based on UPnP, the

standard service discovery protocol for network management. To make UPnP run on resource-

constrained sensor nodes Song et al [41]. implements an UPnP agent in the base station, called

Bridge Of the SensorS (BOSS), which provides a bridge between a managed sensor network and

a UPnP network. The proposed system consists of three main components: UPnP control point,

BOSS, and non-UPnP sensor nodes. The control point is a powerful logical device with sufficient

resources to run the UPnP protocol and manage a sensor network using the services provided by

BOSS, e.g. PCs, PDAs, and notebooks. BOSS is a base node that acts as the mediator between

non-UPnP sensor nodes and UPnP control point and is implemented in the base station. Each node

19

in a sensor network is a non-UPnP device with limited resources and sensing capability. The base

node carries the network management computation burden, rather than the resource-constrained

sensor nodes. The control point can specify which events of non-UPnP sensors it is interested in.

A management framework called Sensor Network Management Protocol, sNMP [12], is pro-

posed by Deb et al. The sNMP framework has two functions: First, it defines sensor models

that represent the current state of the network and defines various network management functions.

Second, it provides algorithms and tools for retrieving network state through the execution of the

network management functions. Models for sensors include network topology (node connectiv-

ity), energy map (node battery power), and usage patterns. Deb et al. suggest that sensor models

could be used for different network management functions. The human manager could use the

current knowledge of network topology for future node deployment. By measuring network states

periodically, the human manager can monitor and maintain the network by identifying which parts

of the network have a low performance, and taking corrective actions as necessary. From periodic

monitoring of network states, the human manager could also analyze network dynamics to predict

network failures and then take preventive actions.

Louis Lee et al. [31] propose an adaptive policy-based management system for WSNs, called

Wireless Sensor Network Management System (WinMS). The end user predefines management

parameter thresholds on sensor nodes that are used as event triggers, and specifies management

tasks to be executed when the events occur. A local network management scheme provides auton-

omy to individual sensor nodes to perform management functions according to their neighborhood

network state, such as topology changes and event detections. The central network management

scheme uses the central manager with a global knowledge of the network to execute corrective and

preventive management maintenance. The central manager maintains an MIB that stores WSN

models that represent network states. The central manager analyzes the correlation among WSN

models to detect interesting events such as areas of weak network health, possible network parti-

tion, noisy areas, and areas of rapid data changes. An advantage of WinMS is that its lightweight

20

TDMA (Time Division Multiple Access) protocol provides energy-efficient management, data

transport and local repair. Its systematic resource transfer function allows non-uniform and re-

active sensing in different parts of a network, and it provides automatic self-configuration and

self-stabilization both locally and globally by allowing the network to adapt to current network

conditions without human intervention. A disadvantage of WinMS is that the initial setup cost for

building a data gathering tree and node schedule is proportional to network density.

Tolle and Culler [45] propose Sensor Network Management System SNMS. It is an interactive

system for monitoring the health of sensor networks. SNMS provides two main management

functions: query-based network health data collection and event logging. The query system allows

the user to collect and monitor physical parameters of the node environment. The event-driven

logging system allows the user to set event parameters and nodes in the network will report their

data if they meet the specified event thresholds. The main advantage of SNMS is that it introduces

overhead only for human queries and so has minimal impact on memory and network traffic.

SNMS further minimizes energy consumption by bundling the results of multiple queries into a

single message instead of returning results individually. The main drawbacks of SNMS are that

the network management function is limited to passive monitoring only, requiring human managers

to submit queries and perform post-mortem analysis of management data. Furthermore, SNMPs

centralized-processing approach requires continuous polling of network health data from managed

nodes to the base station, and this can burden sensor nodes that should minimize transmissions in

order to extend network lifetime.

2.4 Principles of Sensor Network Management Development

In section 2.3, the reason why the traditional network management mechanism cannot be applied

directly to WSNs is analyzed. To continue to seek the answer to the first question listed in section

1.3, the rules or principles of developing a Sensor Network Management System (SNMS) should

be provided.

21

In general, the design of a SNMS can be divided into two categories: Define the SNMS frame-

work and define the supporting algorithms and tools[7]. Defining the SNMS framework includes

defining various network management functions (which may be required for sensor networks) and

designing a management architecture (which takes into account specific characteristics of WSNs).

Some specific characteristics of WSNs involve restrictive physical resources (such as energy and

computing power), frequent reconfiguration and adaptation, and faults caused by nodes. The de-

signing of supporting algorithms and tools needs to provide different algorithms and tools for

retrieving network state and maintenance of network using the network management functions. It

is mostly depending on the applications that SNMS will manage.

Since the SNMS framework will mainly decide what kind of supporting algorithms and tools

that SNMS needs to perform management functions, the design of SNMS framework becomes

the key part of the whole SNMS design. A good design of SNMS framework should easy the

management tasks and simplify the requirements for the supporting algorithms and tools.

The design of SNMS should follow the principles listed below, which take into account the

unique attributes of WSNs:

1. SNMS should be able to run with the application without wasting energy, considering the

energy-constraint of sensor nodes;

2. SNMS should occupy a minimal amount of memory, considering the memory constraint of

sensor nodes;

3. SNMS should generate network traffic only in response to the requests from the network

manager, considering the bandwidth constraint of sensor nodes;

4. SNMS should depend on the application as little as possible, and should not impose any

semantics of its own at the same time;

22

5. SNMS should not interfere with the operation of the application, i.e., should balance its

overhead with application’s performance;

6. SNMS should be simple and robust;

These principles will guide the design procedure of SNMS, and help the designer to reach the

final goal of designing a lightweight SNMS.

23

CHAPTER THREE

SENSOR NETWORK MANAGEMENT SYSTEM (SNMS) DESIGN

3.1 SNMS Architecture

Similar to traditional wired networks, there are also three main options for the architecture of

Sensor Network Management Systems: centralized, distributed, or hierarchical [10].

In centralized management systems, the base station acts as the manager that collects informa-

tion from all sensor nodes and controls the entire network. The base station (the central server)

with unlimited resources can perform complex management tasks, reducing the processing burden

on resource-constrained sensor nodes. Since the base station also has the global knowledge of the

network, it can provide accurate management decisions. But, this approach has some problems.

First, it incurs a high message overhead (bandwidth and energy) from data polling, and this limits

its scalability. Second, the central server is a single point of data traffic concentration and potential

failure.

There are multiple management stations in distributed management systems. Each station con-

trols a subnetwork and may communicate directly with other stations in order to perform manage-

ment functions together. Distributed management has lower communication costs than centralized

management, so it provides better efficiency in terms of energy. But the cooperation needed be-

tween multiple stations makes the management system more complex and difficult compared to the

centralized management system. The distributed management algorithms may be computationally

too expensive for resource-constrained sensor network nodes. Another disadvantage of distributed

systems is memory costs. It usually requires the sensor node to store extra information about the

subnetwork it belongs to, such as neighborhood state transition diagram, which is maintained in

TP [19]. It requires significant memory resources.

24

A mobile agent-based framework is an example of distributed management system implemen-

tation [47], [2]. Some special nodes (agents) are added to the network. The central manager

performs management tasks or retrieve network states of sensor nodes through these agent nodes.

The main advantage of this approach is that local processing reduces network bandwidth require-

ments and prevents network bottlenecks by reducing processing at the central server. Furthermore,

agents can be designed to distribute tasks in the network. For example, agents can relay some

tasks from overloaded nodes to other nodes with lower workloads. There are several drawbacks

of agent-based approaches. First, this approach requires a network to be configured manually in

order to cover all nodes in the network. Second, the agent-based approach introduces delays be-

cause the central manager needs to wait for an agent to visit the node first. Third, the agent-based

approach does not scale for large WSNs because as the number of sensor nodes increases, the

number of agents deployed must be increased. Finally, since the agent typically sends aggregated

management information from a set of managed nodes in a network, fine-grained information from

individual nodes is compromised.

Hierarchical network management is a hybrid between the centralized and distributed ap-

proach. Intermediate managers are used to distribute management functions, but do not com-

municate with each other directly. Each manager is responsible for managing the nodes in its

subnetwork. It passes information from its subnetwork to its higher-level manager, and also dis-

seminates management functions received from the higher-level manager to its sub-network. Some

common-nodes are selectively elected as cluster heads to act as distributed managers. There is a

non-trivial energy overhead for selecting cluster heads.

To follow the design principles described in section 2.4, avoid the expensive computation, high

memory cost in distributed network management, and architecture complexity in hierarchical net-

work management, this SNMS is designed to be in the form of improved centralized architecture,

which is shown in Figure 3.1.

The same as traditional centralized architecture, this SNMS consists of two parts: the SNMS

25

Figure 3.1: SNMS Architecure

server, which is located in sensor nodes, and the SNMS client, which is running on a PC in the

control center. The client/server based centralized architecture in this design is different in the

following ways:

• Multi-server, and single-client

In this design, each node is a SNMS server to provide information about current network

status to its client, and the base station (a PC in the control center) is the only client who

requests information from sensor nodes or sends control command to adjust the performance

of sensor nodes.

• Simple-server, and Powerful-client

It is a simple-server and powerful-client architecture because most operation are executed

on the client (base station, PC) to reduce the burden expected of the server (sensor nodes).

The PC client bears the full burden of managing all information of the application needed in

26

SNMS, and serializing network transmissions. The sensors only need to provide the mini-

mum support for SNMS.

3.2 SNMS Functionality

The second goal listed in section 1.3 is to define the network management functions according to

the requirements of sensor networks.

Usually, wireless sensor networks are application-oriented. Different applications have differ-

ent requirements for sensor network management functions [49]. Those requirements includes:

• Power management: power ON/OFF, power exhausting

• Reliability management: fault/reliability management

• Topology management: self-configuration

• Security management: security, privacy

• Traffic management: prevent congestion at or near base stations

• Context management: context-awareness management, task management, location-based

context management

Most previous sensor network management systems are a set or subset of these functions based

on the requirements of the application it manages, which are decided during the system design

phase; different management systems have different focuses and usually are not compatible with

each other after they are implemented. When a new application needs to be managed, a corre-

sponding management system has to be designed and implemented specific for it.

The idea of the solution for this problem is to provide a generic support for network manage-

ment, and make it customizable and extensible for different applications, but no change needed for

the basic SNMS mechanism when applying it to different applications.

27

As shown in Figure 3.1, the most commonly required functions of different applications are

included in this SNMS architecture, including the performance monitor and control, configuration

management, fault management, and data management. All of these management modules are de-

signed to be non-application-oriented, and provide generic support for SNMS services. For exam-

ple, in performance management module, it supports remote inquiry for all network performance

related parameters in an application. When it is applied to different applications, the network

manager can simply select which parameters are more important for the managed application, and

customize the SNMS to include the management for these parameters.

The design details for each management module will be described in the following sections in

this Chapter.

3.3 Lightweight Framework

”How to cooperate the management system with the application modules to limit the management

overhead and get maximized overall performance?” It is an extremely critical important concern

for management systems designed for wireless sensor networks. One of our goal, also the most

important one, is try to design a lightweight framework of SNMS (as mentioned in section 1.3).

Unlike the traditional wired networks, sensor nodes in WSNs generally operate with very tight

resources, such as limited battery power, limited storage capacity, and constrained wireless com-

munication. This is one of the unique attributes of WSNs.

Several schemes or mechanisms about how to minimize the overhead of SNMS, in terms of

network resources consumption and the development workload, are added to our SNMS during

the design process:

• 0-MIB in SNMS server

In the traditional network management design, for a centralized SNMS to do the network

management, both SNMS client and server need to maintain a local database of informa-

tion relevant to network management, known as the management information base (MIB).

28

MIB contains definitions and information about the properties of managed resources and the

services that the SNMS server supports. The information include the current configuration,

operation statistics, and parameters to be controlled of the managed resource. The SNMS

server also needs to implement some packet types and a Get/Set function on its MIB vari-

ables. The MIB at the SNMS client contains network management information extracted

from the MIBs of all the managed entities (sensor nodes) in the network. It is the respon-

sibility of the SNMS server to store and update MIB, receive control packets and do the

computation to perform the management action.

In this design, there is no MIB needed (called 0-MIB) in SNMS server (the sensor node). All

the management information are abstracted at compile time, and stored in the SNMS client

(the powerful PC). Only a small portion of code (which will handles the control packets) will

be stored in each node (that meets the requirement of SNMS design for WSNs in section 2.4,

i.e., try to occupy a minimal amount of memory).

It also minimizes the computation overhead for MIB management on sensor nodes. There

is no complex management mechanism for managed parameters needed in sensor nodes.

To respond to the inquiry from SNMS client, the sensor nodes simply get the value of in-

quired parameter directly based on the memory address provided in the inquiry message.

No computation needed in the whole response process. This mechanism makes the support

for updating of MIB in SNMS client very simple on sensor nodes, which meets the require-

ment of keeping the SNMS on the sensor nodes as simple as possible, and leaves all the

complexity to the powerful SNMS client (a PC).

• 0-Network stack for SNMS module

To support management function provided by SNMS, two transmission patterns are needed:

Collection and Dissemination. Collection is required to obtain management information

from the network, and Dissemination is required to distribute management commands and

29

queries.

Considering the Collection is such a typical traffic pattern for almost all applications running

on WSNs, this design allows SNMS to use the application’s networking stack instead of

containing its own networking stack that runs in parallel with the application’s. In this way,

it would require less RAM, less code in the resource-limited sensor node, and would prevent

redundant network maintenance traffic too.

For the Dissemination, we can choose one of the reliable broadcast protocols and combine

it into current networking stack, as a special traffic case handled by the application’s routing

module. It can still take advantage of current networking structures in sensor nodes, instead

of creating a complete separate one.

• Runtime configurable periodical message

It is a common process in sensor networks to periodically export interesting parameters. For

example, a collection tree component can periodically send a specific debug message, which

contains the current parent, current link estimates, and current path costs. This data can

be used to graph a network in realtime and study its stability. Usually, this kind of debug

message can only be enabled at compile time, and once enabled, is constantly sent at a fixed

period. From a developer’s point of view, it is not flexible enough. Think about in the severe

situation, when the application may need more bandwidth to gather more data, the overhead

of this periodical management traffic will not be ignorable.

An event-driven report system is incorporated into this SNMS design. There are two types

of event messages supported by this report system: one is the one-time urgent event, which

is used to report any fault happened on the sensor node; another type is the periodical event

message. The difference between this periodical message and the previous debug message

is, the report rate of this periodical event message is configurable during runtime. It even

can be turned off when the traffic in the network is really high. This infrastructure places

30

management at the user’s control, not at the compiler’s. It provides user flexibility to ex-

tract system status with different levels of detail, and alleviates the overhead of application

activities at the same time.

• Minimal effort for using SNMS

As discussed in section 3.2, wireless sensor networks are usually application-oriented. Dif-

ferent applications have different requirements for sensor network management functions.

To simplify the development of SNMS for WSNs, a generic framework is provided in this

SNMS design. Besides universality, another attractive advantage of this design is, only min-

imal effort is needed to customize the generic SNMS for a specific application. The user

only needs to mark the commands on the SNMS server which he/she wants to exposed to the

SNMS client. There is no extra code, specific interface, or fixed message types needed from

the user to support SNMS service. All the complex computation of management functions

is done in SNMS client, and add minimal overload to the SNMS server.

3.4 Main Module Design

3.4.1 Performance Management

The goal of performance management is to measure and make available various aspects of network

performance so that the network performance can be maintained at an acceptable level. Perfor-

mance management involves three main steps. First, performance data is gathered on variables of

interest to network administrators. Second, the data is analyzed to determine normal (baseline) lev-

els. Finally, appropriate performance thresholds are determined for each important variable so that

exceeding these thresholds indicates a network problem worthy of attention, and corresponding

adjustments might be sent out to the network.

As described before, due to application-specific characteristic, the performance management

is much different in WSNs. There are a wide range of applications for sensor networks with dif-

ferent requirements [39],[8],[43]. Different applications have different performance metrics, such

31

as identification accuracy, probability of loss-of-track, the status of the battery power (expected

remaining lifetime), link quality, and location (longitude and latitude). All this information might

need to be collected as (and when) it changes significantly.

The idea behind the design of our performance management module is to try to provide a

mechanism to abstract the management related information all at once, and then form a generic

information base. It is non-application-specific, that means different applications can base on it

to form their own information bases, and perform the network management through the same

mechanism. No change needed in SNMS when it is applied to different applications.

After the construction of the generic information base, the manager in control center, has the

full flexibility to decide which performance metrics need to be calculated and monitored for this

specific application. The computation and data process are the same as it is designed dedicated for

a specific application. The only difference (also the advantage of using this generic information

base) is the user can inquiry any variable of the application directly through the information base,

no pre-defined interface needed for each specific variable.

The underlying method beneath this mechanism is called Remote Procedure Call (RPC)[6],[5],[46].

It allows a PC to access the functions and variables of the statically-compiled program on a wire-

less embedded device at run-time. The client provides the equivalent of a remote terminal to an

embedded device: the network operator opens an interpreter on the PC and is presented with a set

of objects representing the software modules actually running on the node. Through these objects,

the node’s functions can be called, its variables on the node’s heap can be read and written, and its

enumerations and data structures can be accessed. With RPC, embedded applications seamlessly

span the PC and the sensor node.

No extra code must be written by the developer to use RPC; a minimal set of hooks is auto-

matically added to the application at compile time. The PC client software imports all information

from the application at compile-time. In contrast to batch programming in which the network pro-

gram runs autonomously, RPC allows the developer to observe or change the state of a node at a

32

runtime, and to compose the functions of a node application in new ways without downloading any

new code to the node.

In order to get or set variables on the heap of sensor nodes through RPC, when the embedded

application is compiled, the name and type of each variable declaration is extracted from the source

code, and the memory address on the heap is extracted from the symbol table of the executable.

The PC client is equipped with a mechanism that provides the ability to read and write directly any

memory address. Most of the work is done by the PC client, which reads the variable sizes and

memory addresses abstracted at the compiling time, and calls pre-created set/get functions on the

node using the RPC system described earlier. Because the client knows the type of the variable, it

is responsible for indexing into arrays, dereferencing pointers, and casting return arguments to the

appropriate type.

Supported by this mechanism, a sensor network management system can perform a variety

of management control tasks based on the abstracted network states. For example, the network

management system can provide remote power management by get/set a variable on the node’s

heap, called powerMode. When the user sends out a command through RPC to place a set of

nodes into a fully-awake state by setting powerMode to AWAKE; or to turn them to a sleep state

or a hibernation mode, by set powerMode to different values. The program on the node will check

on the current value of powerMode and adjust the status of node accordingly. Another example is

to monitor the battery voltage which is a variable in the heap of sensor node to predict node failure.

3.4.2 Fault Management

The goal of fault management is to detect, log, notify users of, and (to the extent possible) auto-

matically fix network problems to keep the network running effectively. Because faults can cause

downtime or unacceptable network degradation, fault management is perhaps the most widely

implemented of network management elements [37].

Compared to wired networks, the sensor nodes in WSNs always work in a harsh environments,

33

the failure happens much often than nodes in wired networks. So efficiently detecting the faults

and making the sensor nodes self-healing in most cases become more important for WSNs. The

fault management in this SNMS provides a set of mechanisms to handle different types of faults

that could happen in WSNs.

• Event-driven fault logging system

An important fault management function SNMS provided is event logging. It can be used to

record any unusual event for post-analysis and real-time monitoring of unexpected events.

Event messages generated on a running mote will be reported to SNMS module, and then be

delivered to base station by radio. In the base station, all event messages will be logged into

persistent local storage.

To make the program interface generic, the event logging system does not embed meaning

within the messages, nor does it interpret them in any way. Instead, every event is represented

by a programmer-created string, which is intended to be meaningful to a human manager of

the system. This string is associated with a set of values to be captured from variables at

runtime. This aspect of the design was inspired by the UNIX “syslog” facility, which has the

benefit of being time-tested.

The event logging in this SNMS is designed to be configurable. The manager at control cen-

ter can send a remote command using the command dissemination layer to set filter/trigger

for event to bound the network bandwidth consumed by event logging. By default, no peri-

odical event is allowed considering the communication constrain of sensor nodes. The alert

events are only triggered by sensor node modules in some urgent situation.

• Software fault recovery mechanism

For the software failures, SNMS provides a protection using WatchDog timer which is sup-

ported by the operating system on sensor motes [29]. This timer forcibly reboots the mote if

the application does not periodically reset a flag.

34

3.4.3 Configuration Management

The goal of configuration management is to monitor network and system configuration information

so that the effects on network operation of various versions of hardware and software elements can

be tracked and managed. Configuration management involves initialization and shutdown of the

network. It also involves maintaining, adding, and updating new network components [9].

Recall that wireless sensor networks represent a new computing class consisting of large num-

bers of highly resource-constrained nodes which are often embedded in their operating environ-

ments, distributed over wide geographic areas, or located in remote regions. These networks

must operate unattended for extended periods of time during which evolving analysis and require-

ments can change application semantics, creating the need to alter system behavior. Many such

changes are possible by varying management parameters, executing database queries, or down-

loading scripts. More substantial changes require installing new program binaries using single- or

multi-hop wireless network programming schemes[27].

Network programming provides the ability to wirelessly install a new program image. This is

accomplished by propagating a program binary over the wireless network and having each node

program themselves with the new image. It provides great flexibility and convenience for retasking

large-scale, embedded, distributed, and remote systems.

The SNMS provides the network programming by embedding Deluge 2.0 [20] into SNMS

module.

35

CHAPTER FOUR

SNMS IMPLEMENTATION

4.1 Development Environment

4.1.1 Software Development Environment

To implement the SNMS design proposed in chapter 3, two parts need to be developed separately:

the SNMS server and the SNMS client. Compared with the SNMS client, which will be developed

in high-level OOP language, Java, and run on powerful PC, the implementation of the SNMS server

is not that easy because of the critical embedded operating system in which it will be developed,

and the special properties of the developing language it uses.

As we know, the traditional tasks of an operating system are controlling and protecting the

access to resources and managing their allocation to different users as well as the support for

concurrent execution of several processes and communication between these processes [44]. These

tasks are, however, only partially required in an embedded system as the executing code is much

more restricted and usually much better harmonized than in a general-purpose system.

Rather, an operating system or an execution environment for WSNs should support the specific

needs of these systems. In particular, the need for supporting concurrency, which is crucial for

WSN nodes, as they have to handle data communing from arbitrary sources at arbitrary points in

time. A simple, sequential programming model is clearly insufficient, and a event-based program-

ming model is needed. Another need for energy-efficient execution requires support for energy

management. Also, external components - sensors, the radio modem, or timers - should be han-

dled easily and efficiently. All of these require an appropriate programming model, a clear way

to structure a protocol stack, and explicit support for energy management - without imposing too

heavy a burden on scarce system resources like memory or execution time.

The operating system TinyOS [18], along with the programming language nesC[16], meet the

36

above requirements of such embedded system like sensor node.

TinyOS supports modularity and event-based programming by the concept of components.

A component contains semantically related functionality, for example, for handling a radio inter-

face or for computing routes. Such a component comprises the required state information in a

frame, the program code for normal tasks, and handlers for events and commands. Both events

and commands are exchanged between different components. Components are arranged hierarchi-

cally, from lower-level components close to the hardware to high-level components making up the

actual application. Events originate in the hardware and pass upward from low-level to high-level

components; commands, on the other hand, are passed from high-level to low-level components.

In TinyOS, the actual computational work is done in the tasks, which have to run to comple-

tion, but can be interrupted by handlers. The advantage is twofold: there is no need for stack

management and tasks are atomic with respect to each other. Still, by virtue of being triggered by

handlers, tasks are concurrent to each other. Multiple tasks can be triggered by several events and

are ready to execute. It is done by a simple First In First Out (FIFO) scheduler, which shuts the

node down when there is no task executing or waiting.

To make clear the feedbacks from the handlers and tasks which are required to run to com-

pletion, the split-phase programming approach is adopted, which splits invoking a request and the

information about answers into two phases: the first phase is the sending of the command, the

second is an explicit information about the outcome of the operation, delivered by a separate event.

To handle a large number of commands and events especially when using split-phase program-

ming, the nesC language allows a programmer to define interface types that define commands and

events that belong together. This allows to easily express split-phase programming style by putting

commands and their corresponding completion events into the same interface. Components then

provide certain interfaces to their users and in turn use other interfaces from underlying compo-

nents. Furthermore, primitive components or modules can be combined into larger configurations

by simply “wiring” appropriate interfaces together in nesC. For this wiring to take place, only

37

components that have the correct interface types can be plugged together.

Using these component definition, implementation, and connection concepts, TinyOS and nesC

together form a powerful and relatively easy to use basis to implement both core operating system

functionalities as well as communication protocol stacks and application functions. Experience has

shown [16] that in fact programmers do use these paradigms and arrive at relatively small, highly

specialized components that are then combined as needed, proving the modularity claim. Also,

code size and memory requirements are quite small. Overall, TinyOS can currently be regarded as

the standard implementation platform for WSNs.

4.1.2 Hardware Components

The application of WSNs is usually running on a collection of wireless sensor nodes together with

a base station (PC). For the application with the SNMS support, the base station will work as the

control center, with the SNMS client running on it. The sensor nodes need to be selected as the

SNMS server.

Not surprisingly, there is not a single, “perfect” wireless sensor node; Different application will

require different trade-offs and different architectures. But to fulfill the principal tasks of a node,

such as computation, storage, communication, and sensing/actuation, a basic sensor node has to

include the following main components (Figure 4.1)[23]:

Figure 4.1: Sensor Node

• Controller A controller is the core of a wireless sensor node. It collects data from the

38

sensors, processes this data, decides when and where to send it, receives data from other

sensor nodes, and decides on the actuator’s behavior. It has to execute various programs,

ranging from time-critical signal processing and communication protocols to application

programs; it is the Central Processing Unit (CPU) of the node. Such a variety of processing

tasks can be performed on various controller architectures, representing trade-offs between

flexibility, performance, energy efficiency, and costs. Those processors which specifically

geared toward usage in embedded systems, are commonly referred as microcontrollers, such

as Intel StrongARM, Texas Instruments MSP 430, and Atmel ATmega.

• Memory Memory is used to store programs and data; usually, Random Access Memory

(RAM) is used to store intermediate sensor readings, packets from other nodes, and so on;

Program code can be stored in Read-Only Memory (ROM) or , more typically, in Electrically

Erasable Programmable Read-Only Memory (EEROM) or flash memory.Flash memory can

also serve as intermediate storage of data in case RAM is insufficient or when the power

supply of RAM should be shut down for some time.

• Sensors and actuators The actual interface to the physical world: devices that can observe

or control physical parameters of the environment. Sensors can be roughly categorized into

three categories: Passive omnidirectional sensors, Passive narrow-beam sensors, and Active

sensors. Most of the theoretical work on WSNs considers passive, omnidirectional sensors.

Narrow-beam-type sensors like cameras are used in some practical testbeds, but there is no

real systematic investigation on how to control and schedule the movement of such sensors.

Active sensors are not treated in the literature to any noticeable extent.

• Communication Turning nodes into a network requires a device for sending and receiving

information over a wireless channel. The choices of transmission medium include radio fre-

quencies, optical communication, and ultrasound. Radio Frequency (RF)-based communica-

tion is by far the most relevant one as it best fits the requirements of most WSN applications:

39

It provides relatively long range and high data rates, acceptable error rates at reasonable

energy expenditure, and does not require line of sight between sender and receiver.

• Power supply As usually no tethered power supply is available, some form of batteries are

necessary to provide energy. Sometimes, some form of recharging by obtaining energy from

the environment is available as well (e.g. solar cells).

There are quite a number of actual nodes available for use in wireless sensor network research

and development [17]. A few examples are the “MICA Mote” family, EYES nodes, BTnodes, and

Scatterweb.

As mentioned above, when choosing the hardware components for a wireless sensor node,

evidently the application’s requirements play a decisive factor with regard mostly to size, costs,

and energy consumption of the nodes. For example, in some extreme cases, an entire sensor node

should be smaller than 1cc, weigh (considerably) less than 100g, be substantially cheaper than US

1 dollar, and dissipate less than 100uW. In more realistic applications, the mere size of a node is

not so important; rather, convenience, simple power supply, and cost are more important.

4.2 SNMS Server

In our SNMS design, SNMS server has the responsibility to provide information requested by its

client, and perform the actions following the commands sent by its client. It also has the self-

managing function to trigger the one-time urgent report when any fault happens on itself. Besides

providing all these services and functions, the implementation of SNMS server should meet the

criteria, including generic, flexible and extendable.

4.2.1 Generic Interface

In order to provide a generic framework of SNMS, which can be easily wired to other application

modules, it is very important to design the interface provided by SNMS. We take advantage of

40

Interface design supported by nesC language, and design the interface of our SNMS, shown in

Figure 4.2.

Figure 4.2: Interfaces Provided by SNMS

Figure 4.3 shows the top-level configuration of an application which is wiring to SNMS.

Figure 4.3: Apply SNMS to OasisSensing Application

The figure is automatically generated by a TinyOS graphic tool based on the configuration

file TestOasisSNMS.nc of this application. Each circle in the figure represents a top-level com-

ponent with its name marked inside it. The solid arrow line represents a connection (wiring)

between two components. For example, OasisSensing component is connected to SNMSC

component through two solid arrow lines, it means OasisSensing uses the two interfaces, WDT

and EventReport, provided by SNMSC module.

The Main component finishes the initialization of all components through StdControl inter-

face provided by each component. OasisSensing is the main task of the sensor node. It gathers the

value of environment parameters and provides them to the routing module LQIMultiHopRouter,

41

which will find the path for the data to reach the sink node. SNMSC component provides support

for network management services to other modules. Routing module LQIMultiHopRouter and

CascadesC provide Collection and Dissemination routing for SNMSC module. GenericComm

component finishes the transmission of all data or control commands.

4.2.2 SNMS Server Architecture

The component architecture inside the SNMS server module is shown in Figure 4.4.

Figure 4.4: Component Architecture of SNMS Server

The following submodules are included in SNMS to management services:

• EventReportM module to provide event reporting mechanism

• DelugeC module to provide support for remote reprogramming

• WDTC module to provide support for WatchDog self-healing function

• RpcC module to provide support for remote control

42

The doted arrow line means the interface is not directly provided by the connected component.

For example, RpcC component uses two interfaces, Send and Receive from SNMSC compo-

nent. These two interfaces are not implemented in SNMSC component. SNMSC component

is just the intermediate component to connect RpcC component to the real provider of these two

interfaces (that relationship or connection can be reflected in the upper level figure.)

4.2.3 SubModule Implementation

Event Report Module

Event report module supports program-driven notification of on-time events. It provides a mech-

anism for post-mortem analysis and real-time monitoring of unexpected events. It provides two

interfaces: one for other modules in the application to report event with user assigned event level

(Figure 4.5); another for the SNMS client (on PC) to remotely configure the allowed event level for

each module, only the event with lower level (means more urgent) than the configured filter level

can be passed to the SNMS client by radio (Figure 4.6). The eventSend() command in EventReport

interface supports the formatted string (similar to the format definition in printf() in C language),

leaves the flexibility to the user to define and interpret the meaning of the reported events.

Network Programming Module

The core service required to enable network programming is the dissemination of a program image

over a multihop WSN and presents several problems. First, program images are much larger than

the data objects that previous dissemination protocols consider. Second, the dissemination must

tolerate node densities which can vary by factors of a thousand or more. Third, complete reliability

is required since every byte must be correctly received by all nodes that need reprogramming,

even in the presence of high loss rate and evolving link qualities common to WSNs. Fourth,

propagation must be a continuous effort to ensure that all nodes receive the newest code since

network membership is not static: nodes come and go due to temporary disconnections, failure,

and network repopulation. Finally, the dissemination process should require a minimal amount of

43

Figure 4.5: EventReport interface provided by EventReport module

Figure 4.6: EventConfig interface provided by EventReport module

44

time, reducing any service interruptions to a deployed application and the debugging and testing

cycle.

A number of bulk data dissemination protocols suitable for network programming have been

proposed. These protocols include Multi-hop Over-the-Air Programming [42], Deluge [21], Infuse

[26], and Multi-hop Network Programming [27]. The protocols differ in their design choices but

they all have one thing in common that they are used to disseminate a program over a one- or

multi-hop sensor network. Since Deluge is the de facto TinyOS network programming system, it

is selected to be combined into SNMS to provide network programming function.

Deluge is an epidemic protocol and operates as a state-machine where each node follows a

set of strictly local rules to achieve a desired global behavior: the quick, reliable dissemination

of large data objects to many nodes. In its most basic form, each node occasionally advertises

the most recent version of the data object it has available to whatever nodes that can hear its local

broadcast. If S receives an advertisement from an older node, R, S responds with its object profile.

From the object profile, R determines which portions of the data need updating and requests them

from any neighbor that advertises the availability of the needed data, including S. Nodes receiving

requests then broadcast any requested data. Nodes then advertise newly received data in order to

propagate it further.

Deluge 2.0 [20] works with a bootloader and a TOSBoot to reprogram a node. The main steps

of performing a network programming is described in the following flowchart (Figure 4.7).

The first three steps have to be done through the serial port when the sensor node connects

to PC. When “inject” or “reboot” command are sent from the SNMS client, the Deluge module,

which is combined in the SNMS server on sensor nodes, will responses to the command to finish

the network programming.

45

Figure 4.7: Deluge: Network Programming

4.3 SNMS Client

The client of SNMS will run on a PC working as a control center, and perform management to

sensor network. A Base Station (or called Sink or Root) sensor node is required to connect to the

PC. This node works as the bridge between PC (client) and other sensor nodes (servers) in sensor

network. All packets received by the Base Station node from other nodes through radio will be

forwarded to PC through serial port, from which the Base Station connects to PC. The Base Station

can also forward the packets to its TCP port. For the second case, the client can be set up at any

PC which is connected to the Ethernet.

4.3.1 Communication Interface

The key part of the SNMS client implementation is how to set up the communication between

the PC and the sensor network. In other words, we need a communication interface between the

SNMS server and client, which are written in different languages (i.e., one in nesC, and another in

46

Java), and running on different platforms (i.e., one on an embedded system of sensor nodes, and

another on cygwin of a PC).

As introduced in section 4.1.1, TinyOS is a component- oriented language that runs on embed-

ded systems, mainly sensor nodes. The software written with TinyOS is built using an event-driven

model and a large set of interfaces.

Java, on the other hand, is an object-oriented language that runs on a PC. Instead of interfaces,

many Java applications rely on object-oriented techniques to hide the implementation by using

public, private, and protected access to methods.

TinyOS typically dictates that a sensor node interacts with a Java application through a Seri-

alForwarder object. The SerialForwarder is written to read packets from the UART, and notify

any listeners of the packet with certain type. To use this object, the developer must create a class,

register the packet the user is interested in, and implement the functionality to process the packet.

MoteIF (Figure 4.8) provides an application-level Java interface for receiving messages from,

and sending messages to, a mote (sensor node) through a serial port, TCP connection, or some

other means of connectivity. MoteIF uses buildSource to create default source, PhoenixSource,

which is based on PacketSource and can automatically read and dispatch messages to all listeners

using Packetizer class, which implements a mote-PC protocol.

Figure 4.8: Class MoteIF

The default MoteIF constructor uses the MOTECOM environment variable to determine how

the Java application connects to the mote. For example, a MOTECOM setting of “serial@COM1”

connects to a base station using the serial port on COM1. In initialization of moteIF, it starts the

source (create if needed), and create receiver and sender for source. if source is specified by host

47

and port, moteIF will create an interface to SerialForwarder (create a SerialForwarderStub).

The default way to use MoteIF is to create an instance of this class and then register one or

more MessageListener objects that will be invoked when messages arrive. For example:

Figure 4.9: MoteIF Interface

Register a listener for given messages type. The message m should be an instance of a subclass

of Message, generated by MIG. MIG, which comes packaged with the nesC compiler, allows a

node to marshal data into a message and have it automatically unmarshaled and deserialized when

received at the PC. It allows a TinyOS message type to be quickly ported to a Java class.

When a message of the corresponding type is received, a new instance of m’s class is created

with the received message as data. This message is then passed to the given MessageListener.

Multiple MessageListeners can be registered for the same message type, and in fact each listener

can use a different template type if it wishes (the only requirement is that m.getType() matches the

received message).

4.3.2 SNMS GUI

The SNMS client is designed as a set of java tools which are organized in a multi-tabbed GUI

framework. A moteIF object is created at the same time the GUI is created, and the MessageLis-

teners are distributed among these tools. Each tool is triggered by the packets received through

these MessageListeners and acts correspondingly, such as refresh the displayed network topology

graph, update the network status calculated based on the received packets, and log the packets into

record file, etc.

The software architecture of SNMS GUI is shown in Figure 4.10. More details about SNMS

GUI design will be described in Chapter 5.

48

Figure 4.10: Software Architecture of SNMS client

4.4 RPC implementation

Remote procedure call (RPC) is a completely general abstraction that allows procedure calls across

language, protection, and machine boundaries. Compared with the traditional RPC, the design

constraints for the embedded networking domain are different:

• RPC commands need to cross machine boundaries, but not necessarily protection bound-

aries. Since the client and server are in the same administrative domain, they can trust each

other.

• The RPC client is generally several orders of magnitude more powerful than the RPC server.

• A single client may be interacting with multiple servers, all of which will probably be pro-

grammed in the same language.

Considering the unique attributes of this kind of client/server architecture, and following the

design principal of simplifying resource-constrained server and leaving complexity to the powerful

49

client, most work is done at compile time on the PC client, and the most complicated format

converting and interpreting are taken care of on the PC client too.

4.4.1 RPC Mechanism

Figure 4.11 shows the generation process of RPC during compile time, and the Remote Procedure

Calls during run time. The compile time actions are supported by Tinyos 1.x, which add the RPC

function stub in the SNMS server. The run time actions are implemented by our SNMS to form

a run time generic MIB for the remote control. The main steps of the whole procedure will be

explained in detail in the following subsections.

Figure 4.11: Remote Procedure Call for Remote Control

Compile Time Actions

At compile time, a RPC server stub is automatically generated and added to nesC application: the

hooks for each RPC function marked with “@rpc” tag by the application designer are automatically

added to the RPC module which is already wired to the application.

50

At the same time, all information necessary for a RPC client to use RPC is parsed from the

application source code and exported to an XML file by a Perl program. All extracted nesC dec-

larations are written to an XML file called nescDecls.xml, including enumerations, constants, data

structures, typedefs, message formats, and module and interface names. The names, fields and

byte alignment information of all C-structs are provided directly by the nesC compiler using tools

similar to those used for MIG.

Extracting this information from the application eases the burden on the programmer, who

no longer needs to repeat enumeration definitions in the RPC client or to manually perform type

casting or byte alignment.

Execution time Actions

At runtime, the RPC client imports all information from the XML file. Then, the user can send

commands to and receive responses from the nodes through the RPC client over a multi-hop routing

layer.

Since all data is transmitted over the network using the native types of the RPC server. This

adds complexity to the RPC client, which must be able to convert it to the format of CPU archi-

tecture on the PC. Besides the basic types, the RPC client also supports complex types such as

arrays and structs, which use the same type alignment used on the embedded processor. The RPC

client can also automatically parse nested message structures, such as when the MAC and routing

protocols each add header bytes to a packet. The work done by the RPC client relieves a significant

burden from the RPC server, which no longer must perform any serialization or deserialization.

Once the RPC client can generate variables and messages of the same types as those used on

the sensor nodes, it reads the RPC interface definition and makes new client objects with functions

identical to those on the node. These functions take nesC typed variables as arguments and, when

called, pack the arguments appropriately and unpack the response messages. A similar procedure

is performed for each variable on the heap. This set of objects provide a basis for user interaction

51

that use functions and variables from the sensor nodes.

RPC calls/response

RPC requires a transport layer to pass queries and responses between the RPC client (PC) and the

RPC server (network nodes).

At compile time, the user must enable RPC scripts, which parse the application code and

automatically generate a number of hooks into it. Once the compiled binary is installed on a

network, the user can open a RPC “terminal” into that network by specifying how to connect to

the network (e.g. through the serial port). Once the terminal is open, a single object called app is

available, through which the user can access the application installed on the nodes.

The app variable provides access to all software modules running on the node and their func-

tions and variables as well as types, enumerations, and messages defined in the application. All

variables of all nesC modules are available by default. Considering the cost of making all functions

available, only the functions or interfaces marked with the “@rpc” tag will be imported. Marking

functions and interfaces with this tag is the only effort required of the user in order to use RPC.

4.4.2 Memory Footprint

Based on the RPC mechanism, the size of our SNMS module on the sensor node is 558 bytes out of

the 4k of available RAM for MICAz mote. The total size of the data gathering application (basic

version of the OASIS application) that our SNMS is managing is 3257 bytes. As an important

function module in the application, our SNMS only occupies a small portion (around 1/6) of total

size of the application. Compared to the traditional management mechanism, our SNMS saves

around 1K RAM by not storing those performance related parameters on the sensor node to form

the MIB. To support RPC mechanism, only 160 bytes of RAM (out of 558 bytes) are needed for

buffering packets.

At the same time, instead of adding a complex MIB management mechanism, an RPC server

stub is added for each RPC function, which adds approximately 100 bytes of program memory

52

(ROM) for marshaling and unmarshaling the function arguments. Although ROM is not a strict

constraint of most types of the sensor nodes, the code size of our SNMS on the sensor node is only

2924 bytes of ROM out of 19744 bytes, which is the total size of the testing application.

53

CHAPTER FIVE

SNMS DEMONSTRATION AND TESTING

Based on the work in previous chapters, a generic SNMS module was designed and implemented,

which supports network status monitoring, remote control, attribute query, event logging and node

reconfiguration. To test the validity of these core set of management services in our SNMS de-

sign, we configured the generic SNMS for OASIS project scenario, and wired it into OASIS data

gathering application. Then make it run on a TestBed, which is setup for OASIS project.

5.1 Scenario

It is mentioned in section 1.2 that OASIS is a typical configuration for environmental monitoring

and consists of one or more base stations, also called sinks, and a large number of wireless sensors.

These sensors periodically report data to the sink. Specifically in OASIS, the different sensors

equipped in a node will sense and report Seismic, Infrasonic, Lightning data to the sink in different

frequency.

There are two main purposes of adding SNMS into this application: First, it provides a way

for network manager to monitor the network status, and make sure it works correctly. Second, it

allows geologists to adjust the focus of the sensor network to certain types of data or special spots

in the volcano area if something abnormal happens.

5.2 TestBed Setup

5.2.1 Hardware Setup

An in-door TestBed is setup for the software testing in the OASIS project. It is a 22-node wireless

sensor network installed on the ceiling in the VELS building on the WSU vancouver campus.

Figure 5.1 and 5.2 show the layout of the sensors in the TestBed and an sample of the sensor node

case in the TestBed separately.

54

Figure 5.1: SNMS TestBed

Figure 5.2: SNMS TestBed

55

In this TestBed, each node composes of two devices: the sensor MICAz and the programming

board MIB600, see Figure 5.3.

Figure 5.3: (a) MICAz (b) MIB600

The “MICA Mote” family has evolved out of research projects at the University of California

at Berkeley, partially with the collaboration of Intel, starting in the late 1990s. Different versions

(MICA, MICA2, MICA2Doc, MICAz) have been designed, and are commercially available via

the company Crossbow.

The MICAz is a 2.4GHz, IEEE 802.15.4 compliant, Mote module used for enabling low-power,

wireless, sensor networks, see Figure 5.3 (a). The MICAz Mote features several new capabilities

that enhance the overall functionality of Crossbow’s MICA family of wireless sensor networking

products. Using TOS, a single processor board (MPR2400CA) can be configured to run your

sensor application/processing and the mesh networking radio stack simultaneously. The MICAz

IEEE 802.15.4 radio offers both high speed (250 kbps) and hardware security (AES-128). The

MICAz 51-pin expansion connector supports Analog Inputs, Digital I/O, I2C, SPI, and UART

interfaces. These interfaces make it easy to connect to a wide variety of external peripherals.

A base station allows the aggregation of sensor network data onto a PC or other computer

platform. Any MICAz Mote can function as a base station by plugging the MPR2400CA Proces-

sor/Radio Board into an MIB510CA serial interface board. The MIB510CA provides an RS-232

serial interface for both programming and data communications.

Crossbow also offers a stand-alone gateway solution, the MIB600CA, for TCP/IP-based Ether-

net networks. The MIB600CA provides Ethernet (10/100 Base-T) connectivity to the MICAz/MICA2

56

family of motes for communication and in-system programming. The MIB600CA allows remote

access to sensor network data via TCP/IP. The MIB600CA serial server connects directly to a 10

Base-T LAN like any other network device.

In this TestBed, each sensor node connects to Ethernet through one MIB600CA board for the

power supply and for reset in case any serious fault happens. The nodes communicate with each

other through RF radio and collect environment status data and send it to sink node through a

multi-hop data gathering tree. Any PC that connects to Ethernet and can communicate with the

TCP port of the sink node can setup the SNMS client. We start a SerialForwarder on one of the PC

in our Sensorweb lab, then multiple SNMS client can be setup on different PCs at the same time.

5.2.2 Software Setup

The implemented SNMS Server is contributed to the directory shown in Figure 5.4: SNMS is the

server module written in nesC, and monitor is the SNMS client which consists of a set of java

tools.

Figure 5.4: Interface of SNMS module

To set up the SNMS server in the node, follow the steps described below:

1. Configure the application to include the SNMS module.

Before wiring SNMS to the application, first configure the Makefile of the application to

include the directory of SNMS related modules, including SNMS, RPC and RamSymbols

module.

57

2. Wire SNMS in the top-level configuration file of the application.

By wiring with SNMS module, the application has been equipped with the core manage-

ment mechanisms and can work as a SNMS server. For example, it can call the command

sendEvent() in the interface provided by SNSM to report network status to its client. The

requirements for the application itself is to provide two communication patterns, collection

and dissemination, to SNMS to support remote control. It is because the current version of

SNMS depends on the communication module in the application.

3. Customize SNMS for this specific application.

After wiring SNMS into application, the SNMS server is setup in the node. The other mod-

ules in the application have the responsibility to export important network attributes, such as

energy consumption level, link quality. It also needs to allow management related functions

to be visited remotely by SNMS, such as adjust data rate, turn on/off RFPower. This can be

simply done by marking the function with @rpc. Besides the responsibilities, the modules in

the application also can take advantage of the management services, such as the WatchDog

mechanism, to manage their own process, or customize the contents of the event message to

report the fault happened in the application module.

The SNMS client, called the monitor, can be easily installed on a PC. There are two options

for the installation: compile the source code of the monitor to get an executable file, or directly

run the .jar file. The usage of the monitor java tool will be explained in a SNMS demonstration

section.

5.3 SNMS Demonstration

As mentioned before, the SNMS client is actually a set of java tools that provide a Graphic User

Interface to the network manager to manage the sensor network. The SNMS server will run on

the sensor nodes to response to the requests or control commands from SNMS client and act

58

accordingly.

5.3.1 Network Topology and Status Monitor and Control

The panel named “Sensorweb Topology” is the first page of the three-paged MainFrame of monitor

tool suite, see Figure 5.5.

Figure 5.5: Topology monitoring for WSN

The functions provided in this panel is listed as following:

• Monitor real time topology of the whole WSN.

The topology is formed based on the data packets and routing packets the sink node receives.

Whenever a node successfully sends a packet to the sink node, the node (source of the packet)

59

will be displayed on the topology panel, and a link between the sender and the receiver of this

packet will also be displayed on the panel. If no packet can be received from a existing node

for awhile, the node will be deleted from the panel. In this way, the manager can monitor the

connectivity and the real time traffic among the whole network.

The first group of buttons and checkboxs on the ToolBar are used to control the layout of the

nodes in the topology. For example, you can switch between “manually deploy” and “fit to

screen” to decide the positions of the nodes on the panel; You can also configure the layout

using the save/load layout file if the locations of the nodes are fixed (e.g., the TestBed we

setup on the ceiling).

• Monitor network status.

Beside each node, there is a status box showing the main network status. In the current

version of monitor, most of them reflect the quality of the network communication, such as

data transmission rate, packet loss rate, and packet duplicated rate. It can be easy to include

more sensor node qualities, such as energy consumption, link quality, etc.

For the properties of monitoring a network with high density, status displaying can be turned

off by unchecking the “Node Status” checkbox on the ToolBar.

• Display real time reported events.

The “Log Event” checkbox on the ToolBar will control the display of the Event Report

panel. The Topology panel with the embedded event report panel is shown in Figure 5.6. In

the event report panel, the real time events reported by the modules in the sensor nodes will

be listed in the event table.

When the event report panel is shown in the topology panel, you can click on the table

header to set the event report level for different module in the application. The “Event Log

Configuration” dialog is shown in Figure 5.7. By default, the red color indicates an urgent

60

Figure 5.6: Event Report Panel

Figure 5.7: Set Event Report Level

61

event, which means a severe fault occurred in some module, and will always get through and

be reported here. At the same time, all reported event will be logged into event.log file as a

monitoring record.

• Remote control sensor nodes.

There are two subfunctions of remote control function in ControlPanel shown in Figure 5.8:

Remote Procedure Call, and Parameter Query and Adjustment.

Figure 5.8: Remote Control

“Remote Procedure Call” provides a list of all functions running on the sensor nodes that can

be called from SNMS client. After clicking the “Run” button, a RPC command will be sent

to the node and ask the node to run the selected function, and the result of that function will

be returned to the SNMS client and be displayed on the “Action and Response List” panel.

Similar for “Parameter Query and Adjustment,” instead of a function result, the current value

of the selected parameter will be returned and displayed here. The value of parameters on

62

Figure 5.9: Set Parameter by Remote Control

the node can be set from the SNMS client through the ControlPanel too.

As explained in Chapter 3 and 4, The information to support RPC mechanism is abstracted

from an XML file, which is generated during compile time of the application. To avoid the

faulty RPC action caused by the inconsistency of the XML files used in monitor and for

current application running on the nodes, XML version checking is added whenever a RPC

command is performed. After you receive “Wrong XML file” error message in the “Action

and Response List” panel, you should close ControlPanel, and select the correct XML by

clicking “Change XML to ...” button on ToolBar before you run Remote Control function.

• Remote Reprogramming.

This is another function provided in the ControlPanel. It allows the manager to reconfigure

a sensor node by remotely reprogramming it. You can reboot the node using the preloaded

programs located in the flash on the node, or download the new application into the node.

63

Figure 5.10: Remote Programming

5.3.2 Network Packet Trace and Debug

This subtool on the second page of MainFrame of monitor traces all types of packets transmitted

between the sensor nodes in the WSN,see Figure 5.11.

The functions provided in this page includes:

• Display all packets received from all nodes.

For each packet received in the SNMS client, if the packet type is known, besides the received

time and the sender, the content of the packet will be interpreted into packet header and

content too; otherwise, no content of the packet will be shown in the packet table.

• Display raw data for selected packet.

It is useful when the client receives any unknown type of packet. In this case, the user can

check the raw data of that packet directly and try to determine the format of it.

64

Figure 5.11: RawData Page

65

• Send out Raw Command.

It is the reverse function of Display raw data. If the user wants to send out any type of

packet through the SNMS client by broadcasting, he/she can directly write the raw data of

that packet on this panel, and send it out by clicking on “SendCmd” button.

Since this tool traces all the packets, including those other than data packets, such as Routing-

Beacon packets, the functions provided here are much more useful for debugging the communica-

tion module designed in the application. By checking the packets and their format, the designer

can verify the correctness of its mechanisms or strategies.

5.3.3 Real-Time Data Display

It displays the application-related data (i.e., raw data directly abstracted from data packet or derived

data defined by user) on a simulated Oscilloscope Screen. It can be used to display the changes

happened in the monitored environment, such as volcano environment in the OASIS case, which

is the final goal of this environment monitoring sensor network.

Figure 5.12 shows the simulated Oscilloscope with the randomly generated demo data.

5.4 SNMS Testing

After the basic functionalities of the SNMS designed in this thesis have been checked, the valid-

ity and efficiency of the following main functions of the SNMS have been tested under different

generated scenarios.

• Call Functions on SNMS Server by Remote Control.

In the scenario of a data gathering application, such as volcano monitoring, there are several

sensors collecting different types of data at different rates. The sensing module provides an

interface to adjust the sensing rate of each sensor. After exposing this interface to the SNMS

client, the user can remotely configure the sensing rate from the GUI of the SNMS client.

The changed sensing rate has been verified by checking the data log file. Furthermore, more

66

Figure 5.12: Oscope Page

67

functions with different type of parameters have been used as sample functions to test the

remote function calls. The correctness has also been checked.

• Get/Set Parameters on SNMS Server by Remote Control.

First, several useful multi-hop routing related parameters, such as currentParent of each

node, BeaconPeriod, and numSuccessTransmitPacket have been retrieved via “Get”,

the correctness have been checked by comparing with the topology graph and corresponding

debug information. Second, the packet sequence number “seqNo” has been changed by

“Set”, which is reflected by the newly received packets with the new seqNo. Finally, some

parameters of different types are sampled to be tested with the Get/Set by remote control,

the correctness is also checked accordingly. Note that if the length of the parameter exceeds

the maximum length which can be handled by remote control, a warning message will be

displayed to notify the user.

• EventReport Function.

By default, no filter is set for reported events, i.e., all events will be sent to the SNMS client.

Several dummy events with different levels and coming from different modules are set to

report in the testing application. By using remote configuration for the event report, the

user can turn on/off any specified event. The validity of this remote configuration has been

checked from the received events listed on the EventReport panel.

• Remote Programming.

This functionality is tested on a set of MICAz nodes, after they have finished flash formatting

and the bootloader has been downloaded onto them (these are required by Remote Program-

ming). Two different applications, called TestOasisSNMS and CntToLeds, are remotely

programmed into all nodes at the same time through the function provided on the Control-

Panel of the SNMS client GUI. After the downloading is finished, the nodes are remotely

rebooted to these applications alternatively, and can work correctly after each rebooting.

68

The problem of current version of Remote Control is, the reliable dissemination routing proto-

col is under development right now, and the remote control is currently using an unreliable broad-

casting protocol. So the remote command cannot be guaranteed to be delivered to all the nodes

in the network. In most cases, after a remote command is sent out from the SNMS client, the

client cannot get response from all nodes in the network. But it will not be an issue after the

implementation of the reliable dissemination routing protocol is done.

69

CHAPTER SIX

CONCLUSIONS

Due to the continuing advances in network and application design in WSNs, the development of a

sensor network management system is becoming necessary and possible. Because the significant

differences between traditional networks and WSNs, a different management solution for WSNs

is required.

6.1 Main Contributions

In this thesis, a lightweight SNMS based on RPC has been proposed. It considers the unique prop-

erties of WSNs, such as limited storage, limited communication bandwidth, and high variability of

applications. The main advantages of our SNMS design is:

• It provides a generic framework of SNMS for WSNs, which can be rapidly integrated into

applications, and no change for SNMS framework needed when it is added to different ap-

plications;

• It allows the user to do the customization for different applications with minimal effort (tag-

ging), and makes the SNMS development for a specific application much simpler;

• The framework is lightweight in terms of meeting the minimal resource requirements on

each sensor node, such as storage occupation, bandwidth occupation, etc, and yet still can

provide a rich management functionality.

6.2 Future Work

One limitation to the current designed SNMS is the dependency on the communication module

of the application. The quality of the Collection and Dissemination communication patterns will

directly effect the correctness and efficiency of management functions. This is also a common

70

concern about the effect of unreliable wireless transmission on SNMS. If the routing protocols

cannot guarantee against latency or loss, it may lead to unforeseen effects on the application such

as unsynchronized behavior between nodes. So more research needed for the supporting reliable

dissemination and collection protocols.

Another special issue related to our SNMS design is the security. By providing the RPC func-

tion to SNMS, the SNMS client can remotely access a node’s functions or variables over a wireless

network. The consistency of application information between client and server side is needed to

avoid faulty actions. For the current version, a hash-key checking mechanism has been added to

SNMS client, which will give a warning message to the SNMS client when the information on both

client and server sides are not matched during the remote command is processed. But the consis-

tency has to be maintained by the user himself. Some policy-based security mechanism needs to

be added to the current SNMS in the future.

For remote reprogramming, there is no verification mechanism for program authenticity and in-

tegrity incorporated in current version of network programming functions in SNMS. Since wireless

networks use a broadcast medium, an attacker can easily inject or corrupt a packet which passes

the CRCs used by link layers. Such an attack can be detected but not before the entire program has

been downloaded. There are already some research working on this problem[13]. We should think

about upgrading the reprogramming function in SNMS to a secured one.

Considering the efficiency of RPC calls and responses, current status query is limited by the

size of payload of Rpc message, and more flexible query mechanism needs to be developed, e.g.,

to support multi-page response message, or support compacted message with multiple queries in it

to reduce communication overhead.

71

BIBLIOGRAPHY

[1] Oasis: Optimized autonomous space in-situ sensor web. http://sensorweb.vancouver.wsu.edu.

[2] Agents for wireless sensor network power management, 2005.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a

survey. Computer Networks, 38:393–422, March 2002.

[4] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing multi-agent systems

with a fipa-compliant agent framework. Software: Practice and Experience, 31(2):103–128,

2001.

[5] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. Lightweight remote proce-

dure call. ACM Transactions on Computer Systems, 8(1):37–55, February 1990.

[6] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on

Computer Systems, 2(1):39–59, February 1984.

[7] Athanassios Boulis, Chih-Chieh Han, and Mani B. Srivastava. Design and implementation

of a framework for efficient and programmable sensor networks. In The 1st international

conference on Mobile systems, applications and services, 2003.

[8] Athanassios Boulis and Mani Srivastava. Node-level energy management for sensor networks

in the presence of multiple applications: Pervasive computing and communications (guest

editors: Mohan kumar, diane cook and anand tripathi). Wireless Networks, 10(6):737+.

[9] S. Brown and C. J. Sreenan. Updating software in wireless sensor networks: A survey.

Technical report, 2006.

72

[10] Yao-Chung Chang, S, and Jiann-Liang Chen. Cluster based self-organization manage-

ment protocols for wireless sensor networks. IEEE Transactions on Consumer Electronics,

56(1):75–80, 2006.

[11] W. Chen, N. Jain, and S. Singh. ANMP: Ad hoc network network management protocol,

1999.

[12] B. Deb and B.Nath. Wireless sensor networks management, 2005.

[13] Jing Deng, Richard Han, and Shivakant Mishra. Secure code distribution in dynamically

programmable wireless sensor networks. 2006.

[14] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with wireless

sensor networks. In IEEE ICASSP Conference, May 2001.

[15] Damianos Gavalas, Dominic Greenwood, Mohammed Ghanbari, and Mike O’Mahony. Ad-

vanced network monitoring applications based on mobile/intelligent agent technology. Com-

puter Communications, 23(8):720–730, April 2000.

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesc language:

A holistic approach to networked embedded systems. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2003.

[17] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The platform enabling wireless sensor

networks. Communication of the ACM, 47(6):41–46, 2004.

[18] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.

System architecture directions for networked sensors. SIGOPS Oper. Syst. Rev., 34(5):93–

104, December 2000.

[19] C. Hsin and M. Liu. A two-phase self-monitoring mechanism for wireless sensor networks.

Computer Communication special issue on Sensor Netowrks, 29(4):462–476, 2006.

73

[20] Jonathan Hui. Deluge 2.0 - tinyos network programming, July 2005.

[21] Jonathan Hui and David Culler. The dynamic behavior of a data dissemination protocol for

network programming at scale. In The 2nd ACM Conference on Embedded Networked Sensor

Systems (SenSys’04), 2004.

[22] M. Kahani and H. W. P. Beadle. Decentralized approaches for network management. Com-

puter Communication Review, 27:36–47, July 1997.

[23] Holger Karl and Andreas Willig. Protocols and Architectures for Wireless Sensor Networks.

John Wiley & Sons, Ltd, 2005.

[24] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steve Glaser,

and Martin Turon. Wireless sensor networks for structural health monitoring. In The 4th

international conference on Embedded networked sensor systems, 2006.

[25] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Fault-tolerant clustering in ad

hoc and sensor networks. In 26th IEEE International Conference on Distributed Computing

Systems, July 2006.

[26] S. S. Kulkarni and M. Arumugam. Infuse: A tdma based data dissemination protocol for

sensor networks. Technical report, 2004.

[27] S. S. Kulkarni and L. Wang. Mnp: multihop network reprogramming service for sensor

networks. In The 25th IEEE International Conference on Distributed Computing Systems,

June 2005.

[28] James F. Kurose and Keith Ross. Computer Networking: A Top-Down Approach Featuring

the Internet. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[29] Ali Lakhia, Hayley Iben, and Rachel Rubin. Watchdog designs for tinyos motes, May 2002.

74

[30] Winnie L. Lee, Amitava Datta, and Rachel Cardell-Oliver. Network Management in Wireless

Sensor Networks, chapter 2. 2006.

[31] Winnie L. Lee, Amitava Datta, and Rachel Cardell-Oliver. Winms: Wireless sensor network-

management system, an adaptive policy-based management for wireless sensor networks.

Technical report, June 2006.

[32] Allan Leinwand and Karen Fang. Network Management: A Practical Perspective, 2nd Edi-

tion. Addison-Wesley Professional, 2 edition, October 1995.

[33] Zhigang Li, Xingshe Zhou, Shining Li, Gang Liu, and Kejun Du. Issues of Wireless Sensor

Network Management, pages 355–361. Lecture Notes in Computer Science. Springer Berlin

/ Heidelberg, 2005.

[34] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John Anderson.

Wireless sensor networks for habitat monitoring. In The First ACM International Workshop

on Wireless Sensor Networks and Applications, 2002.

[35] Pedro J. Marrn, Andreas Lachenmann, Daniel Minder, Matthias Gauger, Olga Saukh, and

Kurt Rothermel. Management and configuration issues for sensor networks. International

Journal of Network Management, 15(4):235–253, 2005.

[36] Linnyer B. Ruiz, Jose M. Nogueira, and Antonio A. F. Loureiro. Manna: A management

architecture for wireless sensor networks. IEEE Communications Magazine, 41(2):116–125,

February 2003.

[37] Linnyer B. Ruiz, Isabela G. Siqueira, Leonardo, Hao C. Wong, Jos, and Antonio A. F.

Loureiro. Fault management in event-driven wireless sensor networks. In MSWiM ’04: Pro-

ceedings of the 7th ACM international symposium on Modeling, analysis and simulation of

wireless and mobile systems, pages 149–156, New York, NY, USA, 2004. ACM Press.

75

[38] Chien-Chung Shen, Chavalit Srisathapornphat, and Chaiporn Jaikaeo. An adaptive manage-

ment architecture for ad hoc networks. IEEE Communications Magazine, 41(2):108–115,

February 2003.

[39] A. Sinha and A. Chandrakasan. Dynamic power management in wireless sensor networks.

IEEE Design and Test of Computers, 18(2):62–74, 2001.

[40] Siva and B. S. Manoj. Ad Hoc Wireless Networks Architectures and Protocols. Communica-

tions Engineering and Emerging Technologies. Prentice Hall, 2004.

[41] Hyungjoo Song, Daeyoung Kim, Kangwoo Lee, and Jongwoo Sung. Upnp-based sensor

network management architecture. In The Second International Conference on Mobile Com-

puting and Ubiquitous Networking, April 2005.

[42] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update mechanism for wireless

sensor networks. Technical report, Los Angeles, CA, USA, 2003.

[43] Lakshminarayanan Subramanian and Randy H. Katz. An architecture for building self-

configurable systems. In MobiHoc ’00: Proceedings of the 1st ACM international symposium

on Mobile ad hoc networking & computing, pages 63–73, Piscataway, NJ, USA, 2000. IEEE

Press.

[44] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems Design and Implementa-

tion (3rd Edition) (Prentice Hall Software Series). Prentice Hall, January 2006.

[45] Gilman Tolle and David Culler. Design of an application-cooperative management system

for wireless sensor networks. 2nd European Workshop on Wireless Sensor Networks, January

2005.

[46] Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp, Sukun Kim, Jaein Jeong, Jonathan

Hui, Prabal Dutta, and David Culler. Marionette: Using rpc for interactive development and

76

debugging of wireless embedded networks. In IPSN2006: The Fifth International Conference

on Information Processing in Sensor Networks, April 2006.

[47] Z. Ying and X. Debao. Mobile agent-based policy management for wireless sensor networks.

In IEEE WCNM Conference 2005, September 2005.

[48] Mengjie Yu, Hala Mokhtar, and Madjid Merabti. A survey of network management archi-

tecture in wireless sensor network. In The 6th Annual PostGraduate Symposium on The

Convergence of Telecommunications, Networking and Broadcasting, June 2006.

[49] J. Zhang, E. C. Kulasekere, K. Premaratne, and P. H. Bauer. Resource management of task

oriented distributed sensor networks. In The 2001 IEEE International Symposium on Circuits

and Systems, May 2001.

77

