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SCHEMES TO REDUCE POWER IN FPGA IMPLEMENTATIONS OF THE 
ADVANCED ENCRYPTION STANDARD 

 
 

Abstract 
 

By Jason Daniel Van Dyken, M.S. 
Washington State University 

December 2007 
 
 
Chair: José G. Delgado-Frias 
 
 Since its introduction in 2001 the Advanced Encryption Standard has been the subject 

of vast amounts of research in such areas as speed of encryption, size of encryption device, 

ultra low power encryption, and algorithm integrity.  One area that has been relatively 

neglected is the area of power conscious encryption.  This focus is intended to reduce the 

average power consumption of an encryption core while maintaining a similar level of 

performance so that it can be easily and reliably integrated into systems with varying 

requirements.   

In this thesis three designs will be proposed to achieve this goal of power efficient 

encryption.  This includes a standard data in/data out design, a key storage design, and a 

multistage design.  These designs along with two reference designs, from NIST and the Open 

Cores project, will be analyzed to determine their power consumption rates utilizing Xilinx 

XPower and Mentor Graphics’ ModelSim software packages.  Once the preliminary analysis 

has been completed, the architecture of the designs will be examined along with the effects 
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of FPGA choice and clock rate to obtain a better understanding of how to satisfy the stated 

goal and to further optimize the proposed designs to meet that goal. 

 When analyzing the proposed designs, it was shown that the most promising design used 

201 mW or 20.7% less power then the best performing reference design when using a Virtex II 

FPGA.  Similarly when using a Spartan 3 FPGA the results showed the proposed design used 37.9 

mW or 18% less power than the best performing reference design.  Additionally by reducing the 

clock rate of an FPGA the design’s power can be reduced to less than six percent of the chip’s total 

required power, with 94% of the power being allocated to satisfy the quiescent power requirements.  

The proposed designs’ individual component power analysis also showed that no component 

consumed more power than was expected, based on the individual component’s complexity. 
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Chapter 1 

Introduction 

 With the advancement of modern technology, communications have not only 

become the norm, but have become a necessity.  Examining the many modern devices 

that historically have not utilized communications, but have begun to adopt and rely on 

this technology shows this.  Examples include modern appliances that can notify you if 

they need to be serviced and high-definition movie players providing extra content and 

system updates.  An additional area where improvements in communication technology 

have been applied is in the development of sensor networks, which have quickly adopted 

the growing wireless technologies to provide information about a given area without 

having to physically be there. 

 While all of these devices are continually expanding the uses for communications, 

one area that has not always been as thoroughly examined is the security of the 
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communications.  The most reliable and developed way to secure communications is 

through the encryption of the packet data, however most of the research being devoted 

to encryption is aimed at having the fastest encryption device possible.  This typically 

means that most of the developed encryption devices are not ideologically congruent 

with the needs and architectures of the growing number of basic systems requiring 

secured communications.  This helps to emphasize the need that the information in this 

study tries to fulfill, which is how best to build an encryption device that is power 

efficient while not dismissing its speed of encryption.  The encryption standard that will 

be used throughout this study is the advanced encryption standard (AES), which is 

formally introduced in the next chapter. 

 

1.1 Options for Implementation 

 When implementing a system for encryption there are typically two choices, which 

are to build software or hardware based systems.  A software based system is typically 

easy to implement, because a high level language may be used, with optimizations being 

dependent on the compiler.  This option is the most convenient since additional 

hardware is not needed for the device to encrypt its communications.  The downfall of 

software based encryption is that it is slow compared to hardware and requires the 

system to have more memory to store the code and lookup tables required to complete 

the encryptions.  Additionally some devices are built around a special purpose processor 
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and may not be suitable for carrying out encryptions. 

 The alternative to software based encryption is to utilize a hardware based 

encryption core.  There are two main options for building the core, the first of which is 

an application-specific integrated circuit (ASIC).  ASICs allow for both high optimization 

and fast performance through custom optimizations where both the design speed and 

power consumption may be considered.  The problem with ASICs though is that there is 

an extremely large overhead when it comes to design and fabrication, because the silicon 

must be laid out and a chip fabricated for physical testing to be possible. 

 The other hardware option for design implementation is to use field programmable 

gate arrays (FPGAs), which offer a balanced alternative to both ASICs and software based 

implementations.  While FPGA implementations are faster than software, they are 

typically slower than ASICs, because the designs are mapped into a series of look up 

tables that emulate logic gates.  The primary benefit of FPGAs is that they allow for cost 

effective and fast development, since the devices are programmable and fully 

reconfigurable.  With this in mind the focus of this study is geared toward FPGA 

development, because of the ease of development and that it can be used as a test bed for 

a future ASIC design if it was to become necessary.   
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1.2 Purpose and Thesis Organization 

As previously mentioned, when looking at the research that has been presented 

for encryption cores the vast majority seems to focus on developing high speed cores 

without regard to the device’s power consumption, this makes it irresponsible to use the 

devices in power limited systems or devices which do not need high throughput.  As a 

result it is the goal of this study to investigate how to design a power conscious 

encryption core that does not severely hamper the devices performance on an FPGA.  

With the purpose of this thesis now clearly stated, the rest of this section will be 

dedicated to outlining what the remaining chapters will cover and how the thesis is 

organized.   

Chapter two will serve as an introduction to the AES algorithm.  The history of 

the algorithm and some basic terms will first be covered.  This will be followed by a 

thorough description of the basic building blocks of the algorithm, and how they are 

assembled to make up an AES encryption device.   

Chapter three will begin with a discussion of the major design choices that were 

made that have affected each of the proposed designs.  This will be followed by formal 

introductions to the chosen reference designs.  Lastly the proposed designs will be 

introduced, which will include explanations about what sets them apart from the other 

designs, and the reason each design was made. 
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Chapter four focuses on the comparative analysis of the designs.  The choice of 

how best to analyze the designs will first be discussed.  The remainder of the chapter will 

then be dedicated to the results of the different analyses, including why each analysis was 

completed, as well as what its results were. 

Chapter five is the conclusion of the thesis and will begin with a discussion of the 

analytical results from chapter four.  This will include what was learned from the 

research, and how it could be applied.   The chapter will then conclude with a 

description of what direction future research should take to best use the knowledge 

gained through this research.   
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Chapter 2 

Advanced Encryption Standard 

Before the designs can be introduced it is important to understand what 

encryption method was chosen, why it was chosen, and how it functions.  In this chapter 

the Advanced Encryption Standard (AES) will be discussed.  This will begin with a 

history of AES, and why it is being used.  The chapter will then move to the basic 

components of the algorithm, describing how they function and their purpose.  Finally 

the Algorithm’s assembly will be described in terms of how the basic components are 

connected.   

 

2.1 AES Historical Background 

To properly introduce the AES cipher it is first important to understand why it 

was developed.  This is because to understand why the AES algorithm is designed the 
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way it is, you need to know what it was trying to improve upon and the problems it was 

trying to correct.  During the mid 1990’s the dominant private key encryption algorithm 

was the Data Encryption Standard (DES) developed by IBM in mid 1970’s.  DES was 

originally designed to be used for any commercial application requiring privacy, but as 

computer processing power continued to increase a number a problems with the DES 

algorithm were identified.  These problems include small block sizes (64-bits), poor 

architecture for software implementation and the biggest problem for any encryption 

algorithm, susceptibility to attacks through brute force, linear cryptanalysis, and 

differential cryptanalysis.  By the late 1990’s the National Institute for Standards and 

Technology (NIST) had advised that only the modified version of DES known as triple 

DES (3DES), due to its use of 3 keys and 3 rounds of DES encryption, be used for legacy 

systems and applications requiring security.   

During the time that 3DES algorithm was being finalized and published, NIST also 

put out a call for submissions for what would become AES.  In the request for 

submissions several key criteria were established for how the submissions would be 

judged, which included that it must be a symmetric cipher, be able to handle keys of at 

least 128-bits, efficient in both hardware and software, low memory requirements, and 

128-bit data blocks.  With these guiding factors it was also imperative that the algorithm 

provide a high level of general security by means of its output seeming random, while 

being based on sound mathematical principals and operations.  During the first round of 
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evaluations 15 algorithms were considered and narrowed to 5 possible algorithms.  In 

2001 NIST published FIPS 197 establishing the Rijndael algorithm, developed by Daemen 

and Rijmen as the AES cipher.   

Since its first introduction in 2001, AES has become the most widely used private 

key cryptographic algorithm, and in 2003 was given approval for use in encrypting 

classified material of the U.S. government.  It is because of this wide spread acceptance of 

the AES cipher and the fact that the only attack identified as being effective in 

weakening the security of the ciphertext is a side channel attack, that this algorithm has 

been chosen for use in this research. 

 

2.2 Basic Components of AES 

The basic structure of the AES cipher is a series of repeating operations, which 

when grouped together are termed rounds.  While mentioned in the previous section 

that the cipher had to be able to handle 128-bit keys the accepted AES cipher supports 

keys of 128, 192, and 256 bits, by increasing the number of rounds during an encryption 

or decryption, table 2.1 shows the correlation between the number of rounds in the 

encryption process and the key size.  Before the exact structure of the cipher can be 

explained it is first important to understand the basic functions of the cipher and their 

purpose, as well as some of the basic terms and concepts relied upon for the AES cipher.  
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2.2.1 Terms and Concepts 

To fully understand the components that make up the AES cipher a few terms 

must first be explained.  The first term that will be covered is adding, because it does not 

follow the standard mathematical definition of addition.  In cryptography the term 

addition is used in reference to the exclusive or (XOR) function.  The reason for this is 

because in digital system the size of stored values is limited and cannot expand to account 

for any carry out.  The solution to this problem was to treat the numbers as polynomial 

coefficients and when two polynomials are added in the set of Z2, the adding operation is 

identical to the XOR function [1]. 

 The next term that must be explained is the state, and this is a reference to how 

the AES cipher organizes data.  The basic structure of the state is a four by four matrix of 

8-bit values initially populated by the incoming data block as shown in figure 2.1.  The 

primary reason why the data block is organized like this is so that embedded system and 
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processing constrained systems, which typically use 8 or 16-bit microcontrollers, can 

implement the AES algorithm. 

 

2.2.2 Byte Substitution 

 The substitution transformation is a non-linear byte substitution [2] and is the 

most mathematically complex transformation of the cipher transformations.  The first 

step of the substitution is to take the multiplicative inverse of the byte in the finite field 

of 28, with the byte value {00} mapped to itself.  An affine transformation is then 

performed, which is shown in figure 2.2.  This process is not easily implemented in 

hardware and as a result is typically turned into the lookup table shown in table 2.2.  The 

combination of the multiplicative inverse and affine transform operations or the look up 

table is usually termed SBOX, as an abbreviation. 
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2.2.3 Shift Rows   

The shift rows transform is a straightforward transformation involving circularly 

left shifting the rows of the state by varying amounts.  This operation is shown in figure 

2.3.  As is described in the figure the rows of the state matrix are circularly shifted left by 

their index value, which means that the first row (index zero) is not shifted, the second 

row (index one) is shifted left one, and so on.  The main purpose of this is to further mix 

the original data together so that when subsequent blocks perform transformations 

requiring more that one 8-bit value the inputs are not always based on the same original 

data. 

 

2.2.4 Mix Columns   

The mix column transformation is designed to scramble the contents of a single 

column of the state.  This is accomplished by treating each column as a four-term 

polynomial [2] and carrying out the matrix multiplication shown in figure 2.4.  This is 
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the only transformation that requires more than one element of the input state to 

determine another element of the state and as a result is largely responsible for the 

scrambling of the state data, which contributes significantly to the level of security in the 

cipher. 

 

2.2.5 Add Round Key 

The add round key transformation is a very simple operation and is where the 

encryption key is used to further disassociate the state from the original data block.  The 

key expansion block, which will be described next, generates a 128-bit round key that is 

managed by a key scheduler and outputs the current round key, which added to the 

current state, as shown in figure 2.5.  This transformation is what makes decryption 

without the encryption key virtually impossible. 

 

2.2.6 Key Expansion 

The key expansion transformation is the largest transformation in the cipher.  A 

block diagram of the transformation is shown if figure 2.6.  When a key is sent to the key 
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expansion block the first thing that happens is that the values in the last key state column 

are circularly shifted up once, and transformed by the previously described substitution 

transform.  The first row value also is added with a round constant, which is unique to 

each round and outlined in table 2.3.  The result is then added with the first column of 

the original key state to generate the first column of the current round key state.  Adding 

the corresponding column from the original key state and the previous column from the 

new key state then generates the final three columns.   

 

2.3 Component Assembly 

Now having a firm understanding of the basic transformations the overall 

organization of the cipher can be described, including how the components are 

connected.  The first step to doing this is to describe the most used and depended upon 
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structure in the cipher, which is the round block and is shown if figure 2.7.  The round 

block is the repeated structure that handles most of the work during the encryption 
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process.  When a state is passed to a round block the first thing that happens is the 

substitution transformation is applied to the state.  The state is then transformed by the 

shift rows transformation.  From the shift rows transformation the state is sent to the mix 

columns transformation, and finally to the add round key transformation, where the 

unique round key is obtained from the key scheduler for the addition. 

As mentioned before there needs to be some form of a key scheduler to manage 

the key generation and ensure that the correct round keys are available at the appropriate 

time.  This component is not explicitly laid out in AES, which gives the designer some 

flexibility in deciding how to ensure proper key availability, as well as key generation 

timing.  One way in which this has been accomplished is to include a series of registers 

for storing the individual round keys generated by the key expansion transformation and 
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output the appropriate key when needed, as shown in figure 2.8.  Another option is to 

use the key expansion transformation to generate the needed round key while the round 

block is completing the first three transformation, so that it is ready for the add round 

key transformation as shown in figure 2.9.  

 

2.4 Cipher Organization 

While the most critical elements of the cipher have been laid out it is now time to 

discuss the overall organization of the AES cipher, which has been diagramed in figure 

2.10.  When the key and plaintext are set to be encrypted the first thing that happens is 

the original key and plaintext are added together to form the initial state, which is sent to 

the round block component while the key is sent to the key scheduler system.  The state 

is sent to nine consecutive round blocks while the key scheduler ensures that the proper 
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round keys are available to for each round block.  After the state has been processed by 

the nine round blocks it is then sent to a modified round block for the last round of 

processing.  This modified round block is identical to the standard round block except 

that it does not contain a mix column transformation to make the decryption process 

easier. 
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Chapter 3 

Implementation 

In this chapter the choices made in how to implement the designs will first be 

discussed.  This will be followed by a discussion of the critical design decisions and finally 

a formal introduction of the chosen reference designs and the proposed designs 

themselves.  The chapter will conclude with a brief description of the process used to 

verify that the designs functioned according to the AES guidelines. 

  

3.1 Design Medium 

To implement a design on a Xilinx FPGA there are typically 3 methods for doing 

so, all of which are contained in the ISE development studio.  The first method is through 

a block diagram design utility.  This method is very straightforward and allows for quick 

assembly of components, and can incorporate custom components.  However, to design a 
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custom component for use in the block diagram design utility that is more complex than 

a couple of basic logic gates typically requires the use of one of the other 2 design 

methods that are available to the designer.  This means that if the designer is capable of 

using either of those methods for designing custom blocks, it would be more beneficial to 

utilize that design medium, because both alternatives offer a greater amount of flexibility 

in design. 

The two other methodologies are very similar in that they are both are 

categorized as hardware description languages (HDLs).  The first one is the Verilog 

Hardware Description Language (Verilog HDL) and the other being Very High Speed 

Integrated Circuit Hardware Description Language (VHDL).  Verilog HDL was designed 

to be a C like language so the syntax is relatively straight forward, and all allowable data 

types have been predefined.  Comparatively VHDL syntax is not as intuitive as its Verilog 

counterpart and the designer is required to define the needed data types by how they are 

made from a set of basic predefined data types.   In contrast though the VHDL 

compilation process is much more flexible as files are free to have multiple components 

and the order of file compilation is not critical, as is the case with the Verilog HDL.  

Additionally VHDL also allows for design components to be put into packages and reused 

in other designs, which is not included in the standard Verilog HDL. 

The Strength of the HDLs compared to the block design method is that the 

designer is given a more complete control over how each component in the system will 
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be implemented.  Also as previously mentioned if a designer would like to specially 

design the components while using the block design method, the designer would need to 

use one of the HDLs, if the design is more complex than the assembly of basic logic gates 

such as ands, ors, and inverters.  Along with this greater amount of design control the 

HDLs also allow for a design that once verified on an FPGA can easily be transitioned to 

an application specific integrated circuit (ASIC) using design suites such as Cadence, 

Synopsys, and others.   

With the pros and cons of each design method in mind, VHDL was chosen as the 

primary design medium for the proposed designs.  This was primarily due to the ability to 

package components, which would allow for different architectures to be tested with out 

having to copy and paste the code describing the basic components of the design to 

different files every time a new system needed to be evaluated.  This would also allow for 

an easy transition to an ASIC for testing and further optimizations if it was deemed 

necessary.  In the following section the design choices that arose based on the decision to 

use VHDL will be discussed. 

 

3.2 Design Choices 

Before introducing the proposed designs for an efficient AES encryption core it is 

important to understand the varying options that were considered when implementing 

these designs.  In this section six of the major design choices will be outlined, with the 
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decisions that were made affecting all the designs being described.  If however a design 

was made using different choices the reason for the choice will be described that specific 

designs introduction. 

  

3.2.1 Data Path Width 

One of the first considerations when implementing an AES compatible device is 

how much data will be processed during a clock cycle.  As is outlined in the last chapter 

all operations produce an 8-bit output that is used to generate the next state in the 

encryption process.  This means that if a designer were trying to build a compatible 

encryption device with the smallest possible footprint on a chip, a design could be made 

which has only a single instance of each of the key components described in section 2.2.  

Using this fact it can be determined that if a designer wants to use all of the components 

consistently you can make designs with data path widths of 8, 16, 32, 64, or 128 bits.   As 

is shown in figure 3.1 there are proposals for different architectures that can utilize the 

different data path widths. 

For the proposed designs the choice was made to use full 128 bit data paths.  This 

was primarily due to the fact that when dealing with FPGAs there is a set number of 

gates than can be used and if the gates are not used, they are still present on the chip and 

factor in to the quiescent power consumption.  Additionally if one wanted to further 

reduce the footprint of any of the proposed designs the component implementations in 
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the VHDL package could be easily transitioned to another design that utilized one of the 

narrower data path architectures.  It should also be noted that when dealing with narrow 

data paths the control circuitry becomes much more complex as the data has to be stored 

and accessed at certain times. 

 

3.2.2 Design Organization 

Design organization is another critical area where choices have to be made 

regarding how the core AES components are assembled.  If a design was being solely 

optimized for speed the designer could insert registers in between the components to 
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allow for the highest possible clock rate.  Conversely if design speed was not a critical 

component a designer could simply link as many components together as clock cycle 

time allows or optimize individual components for low power consumption as was 

discussed in [3].  This leads to the need to decide how many rounds will be completed in 

one clock cycle and how the result of one cycle worth of work should be routed to the 

input for the next cycle. 

  Another component of design organization that needed to be considered is 

whether or not process sensitivity lists should be used to control when the round block or 

its basic components processes data.  This is one of the more straightforward ways to 

reduce power consumption because the designer can keep the system from constantly 

running memory access routines or any other power intensive tasks.  The downside of 

utilizing sensitivity list is that when coupled with a 128-bit data path the circuitry 

required to monitor the full data path is not trivial and if used too liberally could cause 

the design to become larger and more power hungry. 

The choices that were made with regards to questions raised in this section are 

part of what sets the proposed designs apart from each other and the reference designs.  

As a result the decisions will not be expounded upon here, but rather during their formal 

introduction in the following section. 
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3.2.3 SBOX Structure 

When implementing the SBOX designers typically have one choice, which is to 

make a 256-byte look up table.  This is due to the complex mathematical processes 

required to complete the multiplicative inverse, which significantly increase the time to 

complete an encryption.  There have been attempts to create an optimized, efficient, and 

small S-box as presented [4], which are significantly smaller than look-up tables, but 

remain much slower.  Satoh’s design when implemented on an ASIC were shown to be 

one third the size of a look up table, but takes 130% more time to complete the 

transform, however [4] gave no concrete numbers for power consumption.   

So the decision was made that since FPGAs are able to efficiently build and access look-

up-tables through optimized memory blocks, 256-byte lookup tables would be utilized. 

 

3.2.4 Mix Column Structure 

The next design component that offers two very different design paths is the mix 

column transformation.  As is laid out in its introduction the transform involves 

multiplications by two and three.  This could be done by simply instantiating a multiplier 

using the Xilinx library of tools, except that multipliers take up large amounts of chip 

space and for each 8-bit value in the state two multipliers would be needed, or additional 

clock cycles would have to be added to the encryption length.  The alternative to 

building multipliers is to use the properties of binary addition and simply remove the 
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multiplication by replacing it with XOR functions, which is possible because the 

incoming number is simply being scaled by a factor of two or three.  An efficient method 

for implementing the mix column (figure 2.4) is laid out it [5] and is shown in figure 3.2.   

As is shown in figure 3.3 instead of using specific logic to implement a multiplication by 

three, the optimized design makes use of a times two block, as shown in figure 3.3, for 

both numbers multiplied by two and then adds in the number which would be 

multiplied by three again to avoid more complicated logic. 
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The optimized mix column structure from [5] was chosen for use in all of the 

proposed designs presented in this study.  One reason for this was that after some analysis 

further optimization of the design would result in the inability to use this in systems with 

data paths of 8 and 16 bits, and while the design as laid out can not directly be put into a 

low bit data path system, it can be partitioned for use in those systems, and it was critical 

to keep the components as modular as possible for transitioning into other designs if 

needed. 

 

3.2.5 Number of Data Input and Output Pins 

One critical factor in the design process is how data will be sent to and from the 

device itself.  Options for controlling this component can range from using control 

signals and placing a multiplexer on the inputs and outputs to reduce the size of the I/O 

busses, to the use of full 128-bit busses to expedite the data transmission process.  This 

decision is a critical one, because if it is chosen to use a small input bus widths then the 

total time for encryption including data transmittal with rise dramatically.  Additionally 

if 128-bit busses are to be utilized there will need to be a very large number of pins on 

the FPGA, and that will limit the number of FPGAs that can be used when the design is 

implemented. 

For the proposed designs it was decided to use full 128 bit input and output busses, 

to reduce the overhead required to transmit the data and key to the chip and to receive 
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the results of an encryption.  This means that any chip must have at least 256 pins for just 

the plaintext and ciphertext transmissions.  Similarly a 128 pin bus would be needed for 

concurrent key transmittal; however, how this is handed is part of what sets the proposed 

designs apart and will be discussed in more detail in the next section.  Additionally there 

will need to be some pins available for transmitting control signals, and with full 128 bit 

busses the control signals can be minimized by not having to have signals for which part 

of a key or data is being transmitted.  

 

3.2.6 Key Input, Storage and Generation 

Another critical decision that has to be made when implementing an AES device 

is how to handle the encryption key.  This involves how to receive the key from other 

devices, whether to store the key for later use, and how to handle generating each of the 

round keys.  The issues of how to handle key input will be the first issue discussed, 

because the choices made in how to deal with this issue can affect both the number of 

input pins needed and the outcome of the other stated issues.  Possible choices for this 

issue are having a second input bus that mirrors the data input bus so that both the key 

and plaintext data are transmitted to the device at the same time.  Conversely a 

multiplexer with a register could also be used to allow the key and data to be transmitted 

over the same input bus, which keeps the pin count down.  This method for using a 



30 

multiplexer though, does increase the design footprint size, but also allows for chips with 

lower pin counts to be used.  

The question of whether to use a multiplexer to eliminate the need for a second 

bus also raises the question of if a multiplexer is used, why not save the key in the input 

buffer, so that if subsequent encryptions require the same key then it will not have to be 

retransmitted.  This option is particularly appealing when dealing with low power 

embedded systems where key changes occur rarely if at all, and the elimination of such 

transmissions would increase overall system performance and lessen the power consumed 

by key transmittal.  For this issue and the previously raised issue of how to receive the 

encryption key the proposed designs followed different paths, and as a result the 

reasoning behind these choices will be discussed during the designs formal introduction. 

The Final decision that must be made regarding key handling is how to generate 

the round keys.  Some designs generate all the round keys needed and save them to 

registers before the encryption process starts, while others generate each round key as 

needed throughout the encryption process.  Since both these methods rely on the same 

key expansion hardware it was decided to use the method of key generation as needed 

because it eliminates the need for registers to store those round keys and helps keep the 

design footprint small. 
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3.3 Current Designs 

Since the introduction of AES many designs have been proposed, with most of 

them attempting to carry out the encryption process as fast as possible without concern 

for the power consumed by the design.  Additionally the few designs meant to have small 

footprints and low power requirements use such small data paths that to send the 

plaintext and key to the device takes 16 clock cycles and 160 clock cycles to complete the 

whole encryption [6].  As a result there are very few designs that are freely distributed to 

use as reference designs with similar goals to those of this study, which meant that the 

reference designs had to be chosen carefully for other reasons.  The two designs that were 

settled on both try to fulfill different needs, the first being to be fully compatible with all 

AES specifications, meaning it was capable of handling all encryption key sizes.  This 

design was published by the NIST when the decision to adopt the Rijndael algorithm for 

AES was made and can be found at [7].  The second design which was chosen for a 

reference design came from the Open Cores project [8] and was published as example of a 

fast 128-bit AES device.  Both of these designs focus on different goals and made different 

choices for how to implement the encryption mechanism.  The following sections give a 

brief description of the two reference designs and how they are organized. 
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3.3.1 NIST Design 

The primary purpose of the NIST design was to demonstrate how to build an AES 

device that is fully compatible with all the AES encryption key sizes.  Since this design 

did not intend to be a demonstration of the fastest possible implementation or the most 

efficient it was chosen because it was representative of an average non-optimized 

implementation, which was concerned more about compatibility than speed or power 

consumption, and as a result this design requires the largest number of pins of any of the 

considered designs.  There is a 128-bit data input bus, 256-bit key input bus, 128-bit 

output bus, and seven control lines (figure 3.4).  Besides the standard clock, reset and data 

valid pins, there are key and data load pins along with a pin to specify encryption or 

decryption, and a 2-bit key size bus.  For an encryption to be completed a key must be 

sent to the design by writing the key, and the key size code to the appropriate busses, 

followed by setting the key load pin.  To begin an encryption or decryption the 

encryption or decryption pin must be set appropriately and the data store pin set to 

initiate the process.  This process is shown in figure 3.5.  In this design the key can be 

saved for multiple encryptions or stored concurrently with the data to allow for the most 

flexible key handling design of the designs tested. 

Unlike the proposed designs the NIST design’s round implementation is 

accomplished through function calls from a specially designed package file rather than 

through explicit round descriptions.  This means that the physical layout is very 
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dependant on the synthesizing, mapping, and routing functions of the design software, 

rather than the designer, a general basic diagram of this structure is shown in figure 3.6.  

Once the encryption process is started the design takes 12 cycles until the ciphertext is 

written to the data output bus.  When the ciphertext is written to the bus the data valid 

pin is raised and after one cycle the data output bus and data valid pin are cleared.   
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3.3.2 Open Core Design 

The Open Core design was made to be a strictly 128-bit key encryption and 

decryption core.  One of the things that sets this design apart from the NIST design and 

many of the other published designs is that the input bus for both the key and data is 

only 64-bits wide.  These busses are complimented by five control signals including an 

encrypt or decrypt select, start, load, clock, and reset, and the usual data valid and the 

128-bit data out busses (figure 3.7). This means that to enter the full 128-bits of the key 

and data a pulse must be sent over a load pin. The upper half of the key and data are 

stored when the transitions from low to high, with the lower halves are stored when the 

pin transition from high to low.  The falling edge of the load signal is also what signals 
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the core to commence its task.  This process is shown in figure 3.8.  The entire encryption 

processes takes 13 clock cycles for the data to written to the output bus.   

The architecture of the Open Core design is similar to the designs which are 

proposed in the next section, as they are not primarily based on function calls and 

software optimization.  The basic structure of this design is a round block which could be 

used for both encryption and decryption via a select bit, and the round’s output state is 

rerouted to its input for the start of subsequent rounds, with a multiplexer to route the 

state to the output bus at the proper time.  Similar to the previously mentioned choice for 

the proposed designs to use a key generation as needed system, this design continues in 

that endeavor, except that there are buffers to store the round keys if a decryption was 

required.  This basic architecture is shown in figure 3.9. 
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3.4 Proposed Designs 

The following section is a formal introduction to the designs that were built with 

the goal of achieving an efficient and flexible AES encryption device while not 

completely sacrificing performance.  Each design’s introduction will offer a formal 

description of how the device works and a block diagram showing the structure of the 

design.  A diagram showing the designs interface and a waveform of the signals required 

to initiate an encryption will also be shown, similar to the reference design introductions. 

 

3.4.1 Standard Design 

The First design that was built was meant to function as a benchmark, so that 

once analyzed the other designs could be modified to allow for improved performance 

and efficiency, as a result this design has been termed the Standard Design.  As was 
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previously explained in section 3.2.1 the design is based on using a full 128-bit data path 

width, which if needed could be modified to use narrower data paths.  The way that data 

is transferred to and from the device is through three 128-bit data busses, one for the 

data, one for the key, and finally one for the encrypted data’s output.  Besides the clock 

there are two control inputs, one for device reset and one for encryption start, and 1 

control output which is toggled to alert the receiving device that the data output is valid 

and the encryption completed.  This interface is shown in figure 3.10. 

The Standard Design was designed so that a single round would take only 1 clock 

cycle, which means that from the time the data and start signal are received it takes 11 

clock cycles for the result to show up on the output bus.  When the start signal is initially 

received the data and key signals are added together and sent to the state register, while 

the key is also sent to the key register.  Key generation is very simple in that for each 

clock cycle the hardware is active the data stored in the key register is sent to the key 

expansion block to generate the new round key and that is routed back to the key register 

for input during the next round.   

The output of the state register is connected to the round block through a 

multiplexer which routes either the state block or the round block’s output to the round 

block input, which is used 10 times to complete an encryption.  The input of the round 

block is tied directly to an array of 16 S-boxes, which are set so that a memory lookup 

occurs only if the input changes.  The output of the Substitution block is then connected 
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to the input of the mix column block.  The shift row transformation is accomplished by 

reordering of bus wires as they are connecting to the mix column block.  From the mix 

column block the data is then sent to the add round key block, which gets the round key 

from the output of key expansion unit and combines the two.   The result is the next state 

in the encryption process and can be routed back to the data register for saving for the 

next clock cycle or sent to the output.   

As explained in section 2.4 during the final round of an encryption the mix 

column transformation is not used, so rather than build a special round block that is only 

used during the final round a multiplexer has been added between the mix column block 

and the add round key block that can either pass through the input of the mix column 

block or its output based on the current round.  While this adds to the physical size of the 

round block it reduces the overall size of the design since a modified final round block is 

not needed that would include a SBOX array, shift rows, and add round key component.  

Once this final round has been completed the output state is written to the output bus, 
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the output valid pin is toggled and the encryption process is complete.  It should also be 

noted that as soon as the output valid bin is raised another encryption could be initiated. 

An example of the process required to start this encryption can be seen in figure 3.11, 

with a block diagram of the Standard Design’s architecture in figure 3.12. 

 

3.4.2 Hard Key Design 

The second design, which has been named Hard Key, is based on the Standard 

Design previously introduced, with modifications being made to the interface logic.  The 

goals of the modifications are to allow for the storage of an encryption key and to reduce 

the pin count so that smaller chips could be utilized if necessary.  The implementation of 
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the round hardware remains identical to the standard design’s implementation that is 

previously described.  The first modification was to add an initial key register which fed 

into the multiplexed key register input, this allows for multiple encryptions that share a 

single key to be completed without the need to repeatedly receive the encryption key.  

By eliminating the need to constantly transmit a key to the encryption core, the 

benefit of having a dedicated key input bus was lessened.  This meant that the goal of 

reducing the needed pin count could be accomplished by placing a multiplexer on data 

input bus and adding an extra control signal to indicate whether it is a key or plaintext 

data on the bus. The modified control logic, which is shown in figure 3.13, was then 

designed so that if the new pin called store key is raised the data on the bus is written to 

the initial key register and if the original start pin is toggled the data on the bus is added 

to the contents of the initial key register and sent to the state register for processing.  This 
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process is also shown in figure 3.14.  An additional change was made to the control logic 

 so that when the reset signal is sent the store key pin has to be set for the initial key 

register to be cleared; otherwise the stored key is retained during the device reset process. 

Just like the standard design the hard key design takes 11 cycles to encrypt data 

and on the 12th cycle the result will be present on the data out bus with the data valid pin 

being toggled.  The penalty incurred for changing keys is the one clock cycle needed to 

write data to the bus and raise the store key pin.  A block diagram showing the 

architecture of this design can be found in figure 3.15. 
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3.4.3 Dual Stage Design 

The last of the proposed designs has been termed the Dual Stage design, because 

this design was built with the intention of reducing the number of clock cycles required 

to complete an encryption.  To accomplish this it was decided that the most promising 

method would be to chain multiple rounds together.  After considering varying round 

depths it was decided that two rounds would be the most effective because it would cut 

the round completion cycles in half while being a number that easily factored to 10 and 

would not increase the size of the design by more than a factor of 2.  

The basic structure and interface of this design is identical to that of the hard key 

design, meaning the round block and key expansion units are identical to the standard 

design, but with the altered key storage and interface changes (figure 3.16).  To add 

another round to the design it was decided to simply chain one round and key expansion 

block to another, which would allow for the addition of more rounds if this design were 
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to show promise in its comparisons to the other designs.  This meant that instead of 

feeding the output of the first round back into the state register it was linked directly into 

the second round and key expansion blocks.  The output of the second round and key 

expansion blocks were then routed back to the state and key registers.  The multiplexer 

placed in the first round block to allow for the bypassing of the mix column hardware 

was then hard wired to zero so that the Xilinx ISE software could remove it during design 

optimization, while the multiplexer in the second round block was wired to the control 

logic to function as the final round.  A Block diagram of this design can be found in figure 

3.17. 
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By chaining two rounds together the cycles needed to complete an encryption 

would fall to six, from the start of the start pin being toggled.  Similarly the penalty for 

changing keys remained at a single clock cycle, and to clear the key a new key must be 

set or a system reset along with raised set key pin.  This along with the signals required to 

start an encryption are shown in figure 3.18. 

 

3.5 Design Verification 

Before any analysis of the three designs could be undertaken it was critical to 

ensure that that each of the designs constituted a valid implementation of an AES 

encryption device.  This was done using 300 test vectors from the NIST random vector 

files published with the initial release of the AES standard, which can be found at [7].  

Once test bench files were written for each of the designs Mentor Graphics’ ModelSim 

software was used to verify that each of the designs successfully completed all of the 

required test encryptions.  As can be seen in table 3.1 each of the proposed designs as well 

as the reference designs encrypted all of the test vectors successfully. 
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Chapter 4 

Performance Evaluation 

Having discussed the architectural differences between the proposed designs and 

the reference designs in their introduction, the actual performance of these designs must 

be analyzed and compared, which will be the focus of this chapter.  This will be 

accomplished by first discussing the different approaches that can be used, and followed 

by a discussion of what methodology was chosen.  This chapter will then transition to the 

results of the different analyses and a discussion of the how the designs preformed.  

 

4.1 Approach 

When looking at the options for gathering empirical data about the designs it was 

critical to decide what the empirical data needed to measure.  Since the focus of the 

proposed designs is Power conscious encryption it is imperative to understand what is 
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being looked at.  Power consciousness as this pertains to encryption designs for FPGAs 

would most easily encompass the speed of encryption and the power consumed by the 

design.  With these two metrics in mind the methods for obtaining these measures will 

be compared in the remainder of this section. 

The first option that was considered was physically testing each design by using a 

prototyping board.  Power measurements could be taken by setting up probes to monitor 

the chips power consumption. The problem with this method though, is that to 

implement the design on a prototyping board would require designing an additional 

interface wrapper to map the design to the board’s given architecture.  This could mean 

designing an enhanced parallel port (EPP) interface as is used for many Digilent Inc. 

boards [9].  This approach does not seem reasonable because the added interface wrapper 

would affect the overall design performance and add to the FPGA’s power consumption, 

which would lead to inaccurate and inconsistent results due to varying design interfaces 

requiring different wrappers.  Furthermore most prototyping boards do not have easily 

tapped power leads and so the boards would have to be modified to obtain accurate 

power consumption data. 

The second option that was considered was to physically test the designs by using 

a logic analyzer to control the inputs and monitor the outputs of the chip; this method 

would require a special circuit be made for each design interface and footprint to power 

and program the FPGA as well as to connect it to the logic analyzer.  It should be noted 
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that powering an FPGA requires 3 different voltage levels [10], which would mean 

building 3 separate power supplies and 3 probes for monitoring each supply.  This 

method although the most complicated of the options considered would provide the most 

accurate results possible.  However, the resources required to complete this type of 

analysis were too great in terms of both time and hardware. 

The final option to be considered was to utilize software based simulation models.  

The way these programs typically work is by determining the frequency of change on the 

inputs to a given design, and then the software calculates how the internal nodes will be 

affected.  Using these models, which are derived from physical testing, a result can be 

obtained that is an accurate estimation of a chip’s power consumption.  Additionally 

some simulators are able to use variable change dump (VCD) files, which are generated 

by simulators such as ModelSim by Mentor Graphics.  These files not only monitor the 

activity rates of the designs inputs and outputs, but also monitor the changes in the 

design internally, and when given to a power estimation simulator is the most accurate 

way to estimate the power consumed by the design.  Even though this technique 

produces only an estimation of the power consumption rate, it is able to provide more 

specific estimations than physical testing.  This includes categorizing the power 

consumed into areas such as input, output, logic, and quiescent.   
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4.2 Chosen Methodology 

Now having an understanding of the different ways in which the design’s power 

characteristics can be obtained.  A more in depth discussion of the method that was 

chosen for gathering the needed data will be outlined as well as the choices that needed 

to be made in this process.  When looking at the varying option it became clear that the 

option based on utilizing software simulation was the most promising.  This method 

would allow us to get reasonably accurate power estimations while not having the build 

the circuitry to program, and physically test the different FPGAs and designs.  In the 

remainder of this section a presentation of what was required to complete the simulations 

will be laid out. 

From the beginning of this research the provided hardware has always been 

Xilinx FPGAs and their ISE development suite, it for this reason that the all of the chips 

considered and used in this analysis were made by Xilinx.  The first step in running the 

power simulations was to use the Xilinx ISE suite to build a post place and route 

simulation model.  This model is a description of how the design would be physically 

programmed onto a chip, along with the delay constraints of each connection or path.  

Another output of this process besides the model is that it then calculated the minimum 

clock delay, which is easily converted to the maximum clock speed by taking its inverse.  

To accomplish this result the ISE suite first checks the syntax of the VHDL file and once 
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verified maps the design to the specific FPGA that is being tested.  The mapping process 

ensures that the FPGA has enough pins for the inputs and outputs as well as gates to 

ensure that the design can fit on the designated FPGA.   

After the mapping process completes the place and route process begins, and 

during this time the software tries to place the design onto the chip and route signals 

around the chip efficiently.  The Xilinx tools allow for emphasis to be placed on speed or 

design footprint while completing this process, which led to a dilemma because while the 

proposed designs were striving for efficiency the reference designs were not.  Since the 

primary constraint when deciding upon which FPGAs to use in analysis was the number 

of pins available for inputs and outputs and chips with a satisfactory number of pins were 

large enough for all the designs, it was decided to emphasize speed, because this would 

mean the components were being placed based on what came next which would help 

ensure small delay times.  This would also reduce the signal power consumption because 

logic block would be placed as close to each other as possible and not where they would 

fit to help keep the footprint small.   

Once the post place and route model had been generated it was time to use 

Mentor Graphics’ ModelSim to generate the VCD file.  Since the point of the simulations 

were to learn about power consumption it was important to design test benches that 

would complete as many encryptions as needed without containing a large number of 

clock cycles where no activity was to take place. This would help to shorten the 
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simulation time as well as ensure that the power analysis program would not be given a 

data file where there were large numbers of cycles with nothing happening.  Additionally 

all simulations were set so that ModelSim would stop two clock cycles after the final 

encryption was complete, which would allow for the done bit to return to zero on all the 

designs except the Open Core design where it would remain raised until another 

encryption was started. 

The final step to obtaining the power consumption characteristics was to use 

Xilinx’s XPower program contained in the ISE suite.  This program works by analyzing 

the design’s native circuit description (NCD) file and physical constraint file (PCF) 

generated by the ISE software and the VCD file from the ModelSim simulation to 

determine the power consumption of a chip programmed with the design to within 10% 

accuracy.  The XPower software also allows for the user to specify the ambient 

temperature and airflow around the chip for producing more accurate results for a given 

environment, but these values were left at their defaults of 25°C and zero respectively.  

Once the analysis has been completed, XPower generates a series of tables showing its 

results, which include but are not limited to input, output, internal, quiescent, logic, 

signal, and total power.  It is with theses estimations that the subsequent analyses will be 

based. 

Now that the method for obtaining the estimated power consumption has been 

outlined 3 issues must be covered.  The first is how many test vectors should be run per 
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simulation?  To determine an optimal number of test vectors simulations were run using 

the Open Core design and 10, 100, and 200 test vectors obtained from the random test 

vector file provided with the NIST design [7], the results are shown in table 4.1.  By 

examining this table it should be quite obvious that all of these simulations fall within the 

10% accuracy window, which means that any of the considered number of test vectors 

could be used.  For the rest of the simulations it was decided to use 100 test vectors, so 

that the VCD file would contain a representative account of the encryption process, 

while not dramatically increasing the overall simulation time and trace file sizes. 

The second issue that must be considered is what the results of the XPower 

simulation mean.  Since the units in the XPower tables are only labeled as milliwatts, 

does that mean it is the total power consumed by the design over 1 clock cycle, or is it 

the expected power consumption of the design lasting for an entire clock cycle as is 

shown in figure 4.1.  As with other simulators such as Synopsis it is the latter of the two 

options. 
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The final issue that needs to be addressed is how the reference designs that also 

contain decryption hardware are affected during power testing.  It is important to note 

that when a VCD file is generated by the ModelSim software the only time a value is 

recorded for a given design element is when its state changes.  This means that if no 

decryptions are executed during the simulation that the decryption hardware will not be 

a factor in the power estimation and allow for the power simulation results to be used for 

comparisons.  The one issue with this method is if a design is structured such that the 

data path is tied to both encryption and decryption blocks with a select bit on the output 

then both blocks will be active and the power consumption will increase greatly.  As was 

explained in section 3.3.2, the Open Core design is designed with a hybrid round block 

capable of encryptions or decryptions, which meant that if round components were not 
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segregated properly then certain parts of the decryption hardware could get factored into 

the power analysis.  However, it was decided to keep the Open Core design as a 

reference, because it could help to give insights into how to better design for efficiency in 

system design rather than in component design.  Similarly the NIST design is capable of 

256 bit encryption keys, but by limiting simulation keys to 128 bits the extra hardware 

required to handle the larger keys should not be factored into the power ratings and 

cause the simulation results to become irrelevant.   

 

4.3 Comparison Analysis 

To see how the proposed designs and reference designs functioned in comparison 

to each other, it was decided to use two simulations.  The difference between the two 

simulations was in which chip would be selected to contain the design.  In case an issue 

arose in the simulation process that would require physical testing to resolve the chips 

were chosen based on their physical availability for the research.  These chips were the 

Xilinx Spartan 3 and the Xilinx Virtex 2 Pro.  Additionally the use of these two chips 

allowed for another factor to be examined in the comparisons, which was whether 

having extra space in which to implement the design would make a difference in how the 

design would consume power.   The Spartan 3 chip is a standard FPGA with logic cell 

counts ranging from 1,728 to 74,880 and I/O pin counts ranging from 124 to 784, which 

allows for a chip package to be chosen that most closely fits the requirements for 
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implementing the designs.  The Spartan 3 chip that was chosen was the XC3S1000, 

because this was the smallest chip Xilinx offers in the Spartan 3 series that has enough 

I/O pins to satisfy the needs of all the presented designs after design optimizations.  

Conversely the Virtex 2 Pro is a full featured and flexible FPGA that contains two Power 

PC cores and logic cell counts ranging from 3,168 to 99,216 and I/O pin counts ranging 

from 204 to 1,164 [12].  A Virtex 2 Pro was chosen (XC2VP30-FF896) that contained 

30,816 logic cells and 556 I/O pins.  These two chips were then set to run at 25 MHz and 

5 MHz during the simulations because all of the designs could perform at these rates.  

It is also important to note that during the simulations all design used the 5fg676 

package for the Spartan 3, except the Hard Key and Dual Stage design during the 25 MHz 

simulation, which used the -5fg456 package.   This was done to gain an insight into 

whether there was a significant difference in the FPGAs power consumption rates within 

a specific model, based on its package type. 

The results of these simulations are shown in figure 4.2 and figure 4.3.  These 

results are also detailed in table 4.2 and table 4.3.   These results show that both the 

Standard and Hard Key designs are much more efficient than the two reference designs 

and the proposed Dual Stage design.  This is evident by the numbers for the total power 

consumption as well as the categorized power consumption numbers.  The most 

interesting results though were the high power consumption rates for the Open Core and 

Dual Stage designs.  After reexamining the design architectures it became apparent that  
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the reason for the high power consumptions is improperly implemented design 

segregations. For the open core design the use of multiplexers to route data from the 

appropriate encryption or decryption blocks such as the mix column block do not keep 

the unused part of the block from processing the data and consuming power, but just 
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ignore its output.  Similarly the reason for the increased power consumption in the dual 

stage design can be traced to the increased hardware size and the blocks not having 

triggers in certain areas to prevent them from continuously running.    

When studying the results of this round of simulations it was important not only 

to analyze the total power consumed result but also the categorized power consumed 

result, because these values could help to illuminate a given design’s strengths.  The first 

category that was examined was the logic power, because this is were the design 

components power would primarily be factored in.  As is shown in figure 4.4 the logic 

power of the standard and hard key designs is much lower than that of the other designs, 
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which means that the optimizations to the mix column blocks, the directly mapped shift 

rows function, and the general approach of trying to self optimize the data path while 

minimizing design size have produced promising results.   

Additionally when looking at the signal power consumed the Standard and Hard 

Key designs are consistently top performers, which is good because it meant that the 

designs were partitioned well enough for the ISE suite’s implementation functions to 

efficiently place and route the design on the chip.  The only simulation where the 

Standard and Hard Key designs did not perform the best was in the signal power 

consumed on the Spartan 3 chip; however the results were close enough that the 

consistency of the two proposed designs proved to be more promising than the 

inconsistently performing NIST design.   

The decision was made not to examine the input and output power consumed by 

these designs because they would have to deal with the same overheads involved in 
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receiving and transmitting data. The one exception to this is that the NIST, Hard Key, 

and Dual Stage design are able to store a key for a series of encryptions, which when 

completing a large number of encryptions would become a very positive addition, but 

would not offer as large a benefit in these simulations.  Another interesting observation 

that should be noted is that the quiescent power consumed in the FPGAs was constant 

regardless of design and typically was one of the largest areas of power consumption.  The 

results showed that while power consumption was dependant on the chip package as well 

as the model, the dominating factor was the model of FPGA chosen.  To further 

understand this and how vital FPGA choice was the next series of simulations were 

conducted. 

 

4.4 FPGA Choice Analysis 

When examining the results of the comparison simulations one thing that really 

stuck out was how much quiescent power was being consumed in the chips.  The 

quiescent power unlike other power consumption statistics was not dependent on the 

design being simulated but only what chip was being used.  This was not unexpected, as 

FPGAs are not known for excelling at power management.  The reason for this is that 

when FPGAs are designed they are almost always optimized for speed, which means 

large leakage currents across the entire chip that cannot be avoided.  With this in mind it 
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was decided to do a comparative simulation of which FPGAs offered the best power 

consumption traits.   

To complete this simulation 4 chips were chosen from different product lines to 

see which group’s performance was the most appealing and to see how detrimental a 

poorly chosen FPGA could be.  The choice of chips within each product group was 

primarily determined by which chip was supported in the XPower suite available for use.  

The chips that were chosen were the Spartan 2, Spartan 3, Virtex 2 Pro, and Virtex 4 LX.  

For each of these chips the smallest package that could accommodate the design was 

chosen.  During the simulation it was decided to use the Hard Key design because while 

it typically performed second only to the standard design in power consumption, it was 

able to fit on smaller chips and the appeal of key storage made this design the most 

favorable.   It was chosen to use a clock speed of 5 MHz, because in power conscious 

systems especially sensor networks high clock speeds are not typically used. 

The results of this series of simulations are shown in figure 4.5 and table 4.4.  As is 

shown the Spartan FPGAs, without the ability to add soft-core processors are much 

better suited than the Virtex FPGAs for power conscious systems.  It is interesting to note 

that the between the Spartan 2 and 3 chips the Spartan 2 had a low quiescent power 

consumptions which was 60% of what the Spartan 3 consumed.  However when it came 

to Internal dynamic power consumption the Spartan 2 consumed 741.5% more 

power
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than the Spartan 3 and almost double the worst performing Virtex chip.  Additionally the 

Virtex 2 Pro’s performance when ignoring the quiescent power consumption was very 

competitive with the Spartan 3, and if a system was to be designed with a processor and 

encryption core on a single chip the quiescent power consumption of the Virtex 2 Pro 

might be acceptable when compared to the cost of connecting and powering two separate 

chips.  Another observation that should be made is that both the Spartan 2 and Virtex 2 

Pro requite 500 and 600 mW of power to start up, which if used for a large series of 
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encryptions may become irrelevant.  But in a system were every milliwatt matters and 

only a few encryptions are required at random times this could be an issue. 

These results all help to show how important it is to know the pros and cons of 

each FPGA that could be used for a design before deciding on a specific FPGA.  It is also 

promising that in the last few years Xilinx and other FPGA manufacturers have started to 

put more of an emphasis on cutting the power that their chips consume.  This is shown 

by the release of the Spartan 3AN that is based on using non-volatile memory to help 

reduce static power consumption [13].  Similarly the Virtex 5 has been introduced with 

lower power I/Os in the LXT version, and being built using 65 nm technologies. 

 

4.5 Speed and Power Analysis 

The next area that needed to be examined was if there was an optimal clock cycle 

time that would allow for the programmed chip to perform with the highest degree of 

efficiency.  This is important to know, because if there is a range of optimal performance 

compared to power or a general model for performance compared to power then it would 

be possible to integrate a programmed FPGA into a system and tune its performance to 

meet the needs of the system without consuming an excessive amount of power.  It was 

decided that the best medium for this analysis was to use the Spartan 3 chip programmed 

with the Hard Hey design, because of their promising performance in the previous two 
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simulation sets.  Simulations would then be run starting near the designs minimum clock 

cycle time and increasing until clock cycle time was equivalent to a .5 MHz.   

The result of this set of simulations is shown in figure 4.6, figure 4.7, and table 4.4.  

It can easily be seen that the power decreases exponentially with regard to the clock 

cycle time and linearly with respect to clock rate.  As was noted during the comparison 

analysis in the previous sections, the quiescent power consumption is always a major 

factor, but in the simulations running at lower speeds the quiescent power consumption 

dominates the other components of power consumption.  While minimizing the 

quiescent power would be very desirable it is not possible in modern FPGAs and so when 

the clock cycle time reaches and then exceeds 5 µSec the power saved does not 

compensate for the increased amount of time for which the encryption takes.   

One of the applications for an encryption core as previously noted is to secure 

 communications between sensor nodes by encrypting packet payload.  In applications 
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such as this low power communication mediums are ideal, and as a result the medium is 

typically a low bandwidth medium also.  This means that to encrypt packets as they are 

being sent does not require a really fast clock to carry out a large the number of 

encryptions quickly, but rather a tuned clock which allows for as many packets to be sent 

over the medium as possible while not consuming too much power.  To get a better grasp 

of what speeds the encryption core would have to be running at to utilize the full 

bandwidth of a given communication medium, three standards have been researched.  

The three standards that were chosen are 802.11b, Zigbee, and Wibree.  To estimate the 

maximum number of packets per second, each standard’s packet structure was used with 

128 bits of data and then divided into the maximum bandwidth. As is shown in table 4.6 

the minimum speed that the core would have to function at to send the maximum 

number of packets possible is still under .3 MHz, which means that the majority of the 

power consumed by a tuned FPGA would be from quiescent currents.    
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4.6 Component Power Analysis 

Now having an insight into how the proposed designs and FPGAs function when 

compared to each other and how the power consumption of a design varies compared to 

clock cycle time, it is necessary to examine how power is consumed within the design.  

To accomplish this test a test bench was made that would that would send the same 128-

bit vectors to the logic as was sent to the encryption cores, which was again the Spartan 

3.  It was also decided to use the encryption elements from the Standard and Hard Key 

designs with there trigger protections, because the Dual Stage design’s performance was 

not acceptable in the comparison simulations.  The components were organized in the 

same way they were in the encryption core themselves to allow for a 128-bit wide data 

path.  A brief description of how each component was tested and its result is contained in 

the following sections, figure 4.8 and table 4.7. 
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4.6.1 Substitution Box 

The substitution box is able to operate independently on 8 bit blocks of data, and 

as a result all that was needed to test this component was to connect the inputs of the 

chip to an array of 16 substitution blocks and to then connect their output the FPGA’s 

output pins.  It should be noted that when the substitution blocks are optimized for the 

FPGA they are programmed into memory RAM blocks. The result of utilizing FPGA 

memory lookup is a very low amount of logic and signal power consumption for the 

substitution array, which is .26 and .84 mW respectively. 

 

4.6.2 Shift Rows 

The Shift rows operation in the designs is simply implemented in the designs by 

remapping the output of the substitution blocks to the inputs of the mix column blocks.  

The result should be that very little if any logic power is consumed and that the power 



73 

consumed be primarily signal power, because the operation are completed through 

physical remapping and not a series of logic operations.  As expected the signal power 

(.74 mW) was higher than the logic power (.61 mW), but it was interesting that the logic 

power was as high as it was.  After some consideration it was determined that the logic 

power consumed is the result of mapping the inputs and outputs of the FPGA to the 

design, and can be considered the overhead for the other designs. 

 

4.6.3 Mix Columns 

The mix column operation is the second most complicated block in the of AES 

encryption standard.  As is explained in section 2.2.4, the operation takes in 4 inputs and 

by tripling one input, doubling another, and adding the results with the other inputs 

produces a single 8-bit output.  To implement this design 16 of the optimized mix column 

units were connected to the proper inputs and outputs.  Since the logic involved in this 

operation is more complicated then the other round block components, it was expected 

that the logic power consumed would be the highest of the round operations, and it was 

at a value of 5.14 mW.  Similarly the signal power was also the highest of the round 

blocks with a power requirement of 9.58 mW, due to the cost of routing the data from 

one part of the operation to another.   
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4.6.4 Add Round Key 

The last round operation to be simulated was the add round key block, which 

takes in the two 128-bit values, one being the output of the mix column block and the 

other being the round key.  These values are added together and the result is the round’s 

output state.  To simulate this the 128 bit input to the FPGA was mapped both to the mix 

column input and the round key input, with the round key’s input being scrambled so 

that no 8-bits would be added with itself unless two separate and distinct 8-bit values 

contain the same content.  With the inputs mapped properly the simulation was carried 

out and resulted in a logic power of 2.4 mW and signal power of 3.4 mW. 

 

4.6.5 Key Expansion 

The final component to be tested was the key expansion block, which takes the 

previous round’s key or initial key and generates the current round key.  Due to the 

higher complexity of the expansion block a new test bench architecture had to be 

generated which sent the same test vectors to the core along with an round constant to 

properly simulate the actions of the expansion block.  Once the test bench had been 

designed it was found that the design required too many input and output pins to be 

simulated with.  The solution that was decided upon was to simulate the key expansion 

block and mix column block using a FPGA large enough to fit the expansion block.  Then 

using the results of these simulations a reasonable estimation of the key expansion’s 
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power consumption can be made.  The results of this process are shown in table 4.8, and 

as shown the key expansion consumes .04 mW more logic power and .02 mW less signal 

power than the mix column block.  With these results the power consumption of the key 

expansion block was scaled by the mix column block’s primary FPGA power 

consumption rate divided by the secondary FPGA’s power consumption rate.  The results 

show that the key expansion block consumes .04 mW more power than the mix column 

function when combining the logic and signal power consumption rates.   

By totaling the power consumption results of each component a good estimation 

can be made of where power is consumed in the FPGA.  This method shows that about 

40% or 9.02 mW of the logic power and 49% or 22.4 mW of signal power are consumed 

by the control and glue logic in the design.  This is a reasonable level because of the need 

for shifting the states and round key around the FPGA, as well as implementing a 

multiplexed bypass for the mix column function during the last round of the encryption 

process.  These results show that to further decrease the power consumed by the design 
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more attention should be paid to optimizing the key expansion process, as well as 

optimizing the control logic.  
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Chapter 5 

Concluding Remarks 

So far this study has provided a thorough introduction of the AES standard, 

followed by an outline of some of the currently published designs by NIST and on the 

Open Cores website.  A presentation of the proposed designs was presented next, 

including the Standard Design, Hard Key design, and the Dual Stage design.  The analysis 

procedures and results of the analysis were then presented.  In this chapter the insights 

that can be found by looking at the design analyses will be discussed and what work 

could be done to improve upon the results shown.  In the final section a brief discussion 

will take place about possible future work and what aspect future research should focus 

on. 
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5.1 Discussion 

Throughout this study the proposed designs and their analysis have helped to 

illustrate some significant things.  The first thing that can be found by the analysis is the 

competitiveness of the proposed designs to the reference designs.  Both the Standard 

design and the Hard Key design were able to be optimized to run faster and at much 

lower power levels than the other designs.  The Dual Stage design with its larger 

footprint and increased complexity however, had such high power requirements that 

made the design unappealing even with the decreased cycles per encryption.  While the 

reference designs also contained decryption hardware, if partitioned properly they would 

not have factored into the power consumption rates.  The Open Core design’s power was 

so high though, due to the fact that the decryption hardware was not properly 

partitioned away from the encryption hardware. 

Additionally it was shown that while the design is critical for efficient power 

usage the choice of FPGA is also a major contributing factor.  This shows that to properly 

implement a design with FPGAs it is crucial that the designer ensure that the possible 

startup power as well as the quiescent power is not too exorbitant for the power supply 

system.  Similarly it has been shown that as the clock cycle time is reduced (frequency 

increased) the power required for the FPGA to operate rises exponentially.  This means 

that in cases were the number of encryptions is being limited, such as secure 
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communications, the power saved by increasing the clock cycle time (reducing the 

frequency) could offer a greater benefit than the cost of adding another clock to the 

system or decreasing the overall system speed to reduce the FPGA’s power consumption. 

Finally it was shown that when implementing the AES algorithm for FPGAs 

utilizing the optimized memory structures provided by the design tools allows for 

reduced complexity of logic while not greatly affecting the power required by the whole 

design.  This is opposite of how application specific integrated circuits function, since 

memory takes up more space and raises the power requirements more than implementing 

a series of logic gates to complete a simple one-to-one mapped substitution. 

 

5.2 Future Work 

 Now having tested and analyzed the proposed designs there is a clear set of paths 

that could be taken to gain further insight into how best to design for and utilize FPGAs 

for efficient encryption cores.  The first and most obvious path is to analyze the 

performance of the Hard Key design when modified to run with various sized data path 

widths.  This would allow for even smaller FPGAs to be used which could help to lower 

the quiescent power required. 

 The next area which should be examined is the key expansion and storage 

architecture.  As was shown in the component analysis this part of the design was one of 

the most demanding blocks, in terms of power consumption.  Furthermore the designs 
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could be modified so that the key expansion process is carried out just once, and all round 

keys stored in memory.  There are a number of possible ways in which to implement the 

round key storage, including a series of registers feeding a multiplexer (shown in figure 

2.8), or a circular series of registers with a dedicated round key output as shown in figure 

5.1. 

 Any of these key storage modifications could also help to ease the addition of 

decryption hardware into the design and this is the last area of further research that will 

be discussed.  It is a reasonable assumption to expect that when the basic architecture and 

optimizations used in design of the encryption logic are applied to decryption hardware 

design that a balanced performing decryption device will be possible.  With this 

completed the partitioning of the two data paths can be optimized to eliminate 
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unnecessary power consumption when one part of the design is not needed during a 

given task.  Once that has been accomplished a well balanced and power efficient AES 

core should be within reach. 
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