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RULE HASHING FOR EFFICIENT PACKET CLASSIFICATION

IN NETWORK INTRUSION DETECTION

Abstract

by Atsushi Yoshioka, M.S.
Washington State University

December 2007

Chair: Min Sik Kim

An intrusion detection system (IDS) spends the majority of CPU time in packet classifica-

tion to search for rules that match each packet. A common approach is to build a graph such as

rule trees or finite automata for a given rule set, and traverse it using a packet as an input string.

Because of the increasing number of security threats and vulnerabilities, the number of rules often

exceeds thousands requiring more than hundreds of megabytes of memory. Exploring such a huge

graph becomes a major bottleneck in high-speed networks since each packet incurs many memory

accesses with little locality. In this thesis, we propose rule hashing for fast packet classification in

intrusion detection systems. The rule hashing, combined with hierarchical rule trees, saves mem-

ory by minimizing the number of redundant nodes in the graph, and thus improves response times

in finding matching rules. We implement our algorithm in Snort, a popular open-source intrusion

detection system, and compare the performance of our algorithm with that of Snort’s detection

engine using real packet traces. Experiments show that our implementation handles more packets

than Snort does while consuming an order of magnitude less memory.
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CHAPTER ONE

INTRODUCTION

Intrusion detection systems (IDSs) are important security tool for network administrators to protect

their network. IDSs work with other security tools such as firewalls and enable network adminis-

trators to monitor their networks, inspect packets in real time, and detect malicious attacks. In order

to determine whether packets are malicious, IDSs use rule (or signature) for packet classification.

A common approach to efficiently search for a matching rule is to build a graph such as rule trees

or finite automata for a given rule set, and traverse it using a packet as an input string. Because

of the increasing amount of traffic and threats, intrusion detection is very resource-intensive; with

today’s high-speed networks and large rule sets, an IDS often exhausts CPU time and memory.

In particular, searching the rule database and finding rules that match incoming packets consume

the majority of CPU time. For instance, Snort and Bro, popular open-source IDSs, spent all the

CPU time, consumed entire memory, and halted immediately when they were deployed under

high-speed network environment [3]. In our experiments, Snort spent up to 50% of CPU time on

traversing a DFA (deterministic finite automaton) for packet matching. When constrained by lack

of CPU time, an IDS may allow malicious packets. Therefore, reducing CPU time consumption in

packet matching is critical for overall intrusion detection performance.

When Snort starts up, Snort builds a rule tree by reading all the rules. Snort then builds

TCP, UDP, ICMP, and IP Portlists that consist of the pairs of either a source port, a destination

port, or an ICMP type and contents from the rule tree. Since some of Snort rules use a wildcard in

their port fields, Snort duplicates all the rules specifying a wildcard in the source port field and the

destination field to all the other nodes whose protocol type is the same so that Snort can find the

matching rules in O(1) time per packets. Therefore, because of rule duplications, Snort needs to
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consume a large amount of memory space to maintain all the rules.

Whenever Snort receives a packet, Snort checks the protocol type of the packet and tra-

verses the appropriate Portlist to inspect the packet. The main bottleneck of detection engine of

Snort is a string-pattern matching; the majority of CPU time spent on the detection engine is be-

cause of string-pattern matching. The main reason is that Snort performs string-pattern matching

against each packet by checking only port numbers.

When Snort receives a packet, Snort first searches for matching nodes in the Portlists and if

there is a matching node, Snort performs string-pattern matching using the set of strings maintained

by the matching node against the packet. It is clear that the more nodes exist in the Portlists the

more likely each packet matches the different node. Therefore, Snort needs a large number of

memory accesses to read a finite set of strings from the memory space for string-pattern matching

and a large number of memory accesses result in low overall performance. This bottleneck offers

the key to designing a fast intrusion detection: lower number of nodes in the Portlists and small

amount of memory that each node consumes for maintaining a set of strings are desirable to reduce

the number of memory accesses that Snort has to do and improve the performance of Snort.

In this thesis, we propose rule hashing for fast packet classification in network intrusion

detection. Rule hashing generates a hash value using five protocol fields of each rule to reduce

the number of redundant nodes in the Portlists. Snort checks the values of the source port and

the destination of each packet independently to determine whether Snort needs to perform string-

pattern matching against the packet. In our approach, we do not duplicate any rules. Instead of

rule duplications, our approach searches for the matching rules multiple times to cover all the

possibilities against each packet. The amount of memory consumed by each node to maintain a set

of finite strings and the time for searching for the matching nodes are the trade-off. Our approach

can save memory space and reduce the number of memory accesses to read a set of finite strings
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for string-pattern matching, but it may also need to perform string-pattern matching multiple times

against one packet although Snort only performs string-pattern matching at most twice against one

packet. We implement our algorithm in Snort, a popular open-source intrusion detection system,

and compare the performance of our algorithm with that of the detection engine of Snort using real

packet traces. Experimental results show that our implementation handles more packets than Snort

does while consuming an order of magnitude less memory.

The rest of the thesis is organized as follows. Chapter 2 gives an introduction to intrusion

detection system required to understand this work. Chapter 3 details the design of rule hashing

and how it works. Chapter 4 presents the experimental results and evaluation of rule hashing.

Chapter 5 introduces some of the researches that have been done on intrusion detection system.

Finally, Chapter 6 provides a summary of this work and the conclusions.
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CHAPTER TWO

BACKGROUND

This chapter gives an overview of the general IDSs and details of Snort: Snort rule, how Snort

maintains rules, and how Snort inspects packets. The goal of this chapter is to provide background

of the rest of the thesis.

2.1 Intrusion Detection System

Types of IDS IDS can be classified into three types: host-based IDS (HIDS), network IDS

(NIDS), and distributed IDS (DIDS). HIDSs are built in the host machine as software and moni-

tors whether abnormal behaviors occur in the machine. NIDSs are devices that monitor network

traffic from where they are deployed and match the traffic against rules. NIDSs detect malicious

activities such as unauthorized accesses, port scans, DoS (Denial of Service) attacks and so on.

DIDSs consist of multiple sensors and a centralized manager. Each sensor is an NIDS. By having

multiple sensors distributed on a network, network administrators can get a broader view of what

is occurring on their networks. The sensors report logs of network where they are deployed to the

centralized manager.

Types of intrusion detection techniques There are two types of intrusion detection techniques:

anomaly detection and misuse detection. Misuse detection systems contain signatures or rules

known as malicious behaviors and match them against network traffic. The advantage of misuse

detection is efficiency and false-positive rates are lower than those of anomaly detection. The

disadvantage is that they can not detect unknown attacks. If new attacks are discovered, the admin-

istrators of misuse detection systems must add them to the signatures. Anomaly detection systems
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have knowledge of the normal behavior of users and applications and search for anomalous behav-

ior from the normal behavior. The advantage of anomaly detection systems is that they provide

detections of previously unknown attacks. Since anomaly detection systems define what is normal,

they can detect any attacks whether it is a part of the threat model or not. However, this advantage

could cause high false-positive rates.

Rules Rules are descriptions of network state that network administrators look for. Misuse IDSs

use rules as inputs, match them against packets and generate alerts and create log messages ac-

cording to the results of matching.

Alerts and logs If an IDS detects a malicious packet, it generates an alert to notify the network

administrators of it and a log message is saved in a file with the information of the pair of matched

rule and the malicious packet.

Snort and Bro Snort [10] and Bro [9] are popular open-source IDSs based on rules. Snort and

Bro work with libpcap, a multiplatform interface for low-level network monitoring, to acquire

packets. Libpcap is a de facto library to acquire packets from the wire and is used by a number

of application software. They are capable of real-time packet analysis and can be used to detect

malicious attacks. If a suspicious behavior is detected, they log a message with information of the

pair of the suspicious packet and the matched rule.

2.2 Snort rules language

Snort uses a simple, flexible, and powerful language for rules to describe network behavior. Fig-

ure 2.1 below is an example of Snort rule. This rule means that if there is an established TCP

stream from HOME NET to EXTERNAL NET that contains the string Volume SerialNumber in its
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alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"ATTACK-RESPONSES di
rectory listing"; flow:established; content:"Volume SerialNumber"; classtype:bad-unknown;
sid:1292; rev:9;)

Figure 2.1: Snort Rule

payload, Snort should generate an alert and log a file entitled ATTACK-RESPONSES directory list-

ing. HOME NET and EXTERNAL NET are the variables that users can define their own networks

for HOME NET and EXTERNAL NET.

Snort rules can be classified into two portions: packet headers and a list of optional infor-

mation. The first line in Figure 2.1 is the first portion. The second portion such as flow and content

is optional information and is used for administrative purposes and to describe further network

statuses to detect malicious behaviors.

2.2.1 Rule headers

Rule headers consist of six elements: rule action, protocol type, source IP address, source port

number, destination IP address, and destination port number. These elements are mandatory and

if a rule does not contain any of them, Snort treats the rule as an invalid rule and does not add the

rule to the rule tree.

Rule Actions The first field in a Snort rule is the rule action which tells Snort what to do if a

packet matches one of the rules. Snort provides eight actions: alert, pass, drop, reject, sdrop (silent

drop), log, activation, and dynamic. alert and pass are the two common actions. alert generates an

alert and logs the matched packet. pass simply ignores the packet and does not process the further

packets which are identical to it.
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Protocols The second field describes the protocol types. There are four protocol types that Snort

in default can deal with: TCP, UDP, ICMP, and IP. IP means any of the other three protocol

types. If there is a packet that Snort can determine neither TCP, UDP, nor ICMP, then Snort checks

whether a matching IP rule against the packet exists or not.

IP addresses The third field and the sixth field represent the source IP address and destination

IP address respectively. Snort allows users to use the dot-slash notation to describe a subnetwork.

The set of subnetworks are also allowed. The value of IP address could be ANY, which indicates

a wildcard value for IP address field.

Port numbers The source port and the destination port are in the fourth field and the seventh

field respectively. As similar to the IP address fields, we can specify an individual port number or

a range of port numbers. Multiple ranges of port numbers are allowed as well. Port numbers also

could be ANY.

The direction operator The direction operator, →, indicates the direction of the packet in which

Snort is applying the rule. The left portion of IP address and port number defines the source host,

and the right portion defines the destination host. We can also use the bidirectional symbol, ↔,

which tells Snort to consider the rule as two different rules: the first rule is that the pair of IP address

and port number on the left side is the source host and right side is the destination host. The pairs

of IP address and port number in the second rule is reversed; the left side is the destination host

and the right side is the source host.
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2.2.2 Rule options

The rest of the part following the rule headers is rule options. Their order does not matter. Rule

options may consist of one or more options and each rule option is delimited by “;”. Most of

options are not related to packet analysis and they are just administrative options so that the load

of administrators can be lighted. However, the content field is an exception. It is greatly related to

packet analysis. The detail of the content field will be discussed in Chapter 3. In this section, some

of the frequently-used rule options are discussed.

Msg Msg stands for Message. Msg is a rule title that tells Snort to log the rule and the matched

packet.

Flow Flow is used to describe the flow stream of TCP packets. The following options can be

used with Flow: to server, from server, to client, from client, established, and stateless. to server

and from client are synonym and not allowed to use together. to client and from server are also

synonym. If we are interested only in established TCP session, established is used to apply for the

rules. stateless tells Snort to detect packets without considering a state of TCP sessions.

Content Content is very important option that provides a feature to search for a specific string

in the payload of each packet. Content is described by either ASCII string or binary data as in the

form of hexadecimal characters.

uricontent uricontent is very similar to Content. The difference is that uricontent looks for a

string only in the normalized output of the URLs.
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Depth Depth is used with Content to specify where in packets we want to look for to find whether

Content is there.

Sid Sid stands for Snort ID. It is a unique number that every rule must have. When an alert is

logged, Sid is used to identify rules.

Rev Rev describes a revision number for rules. Each rule might be updated so we can use Rev to

distinguish among them. Whenever a rule is updated, Rev of the rule is incremented.

2.3 Rule tree

The easiest way to check whether a packet matches any of rules is brute-force search: checking

each rule against the packet one by one. Brute-force search is easy to implement, but unfortunately

not efficient. Thus, Snort builds a rule tree by reading all the rules to reduce the number of rules

that Snort must examine. Snort parses each rule into two portions; the first portion, packet headers,

is stored in a rule tree node (RTN) and the second portion, a list of optional information, is stored

in an option tree node (OTN). OTNs are associated with a proper RTN. If the first portions of two

rules are identical, the OTNs of the rules are associated with the same RTN.

RTN RTN

OTN OTN OTN OTN OTN

Figure 2.2: Rule tree

Figure 2.2 shows the structure of Snort’s rule tree. The rule tree is fairy simple. An RTN
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is a structure including multiple variables. Thus, when Snort searches for a matching RTN, Snort

has to check whether all the variables in the RTN are matched against packets. Moreover, Snort

must examine all the RTNs against each packet. Even if Snort finds a matching rule, Snort does

not stop applying rules against the packet to cover all the possibilities of the rule tree. Therefore,

this search method is also not efficient. For faster matching, Snort builds detection engine.

2.4 Detection engine of Snort

The detection engine is the most important part of IDS. It detects a packet if suspicious behavior is

found in the packet. Snort and Bro uses rules to achieve this goal. If a packet matches any of rules,

an appropriate action is taken. The detection engine is very time-critical since IDSs must inspect

all the packets in real time. The workload of detection engine depends on the following factors:

the computational power of the machine on which IDS is installed, the number of rules that IDS

has, and the load of network where IDS is deployed. The computational power of the machine

which IDS is running and the load of network are not directly related to the structure of IDS but

the number of rules is greatly related to it since how to maintain rules and perform rule matching

against packets depends on the structure of IDS. The number of rules is increased whenever new

security threats are found so that IDS can deal with them. Thus, the number of rules keeps growing

very fast. The speed of network is also increased and IDS is required to handle more than Gigabit

network in some environments. Therefore it is desirable that the detection engine can maintain

a large number of rules and efficiently perform rule matching against packets in such high-speed

network environment.

In this section, we discuss two detection engines that are implemented in Snort: FastPacket

Detection Engine (FPDE) and Portlist. Prior to Snort 2.7.2, the default detection engine was FPDE,

but a new detection engine, Portlist, is introduced in Snort 2.8.0, which was released on October
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9th 2007, and the default detection engine has been changed to Portlist. The new features of Portlist

and how it works are also covered in this section.

2.4.1 FastPacket Detection Engine

Protocol type

Source port
Destination port
ICMP type

Content

Figure 2.3: Structure of FastPacket detection engine

Figure 2.3 shows the structure of FPDE. FPDE consists of three levels; the first level rep-

resents a protocol type, the second level represents source port numbers, destination port numbers

or ICMP types, and the third level represents contents. In this thesis, we denote the FPDEs whose

second level represents source port numbers and destination port numbers as SRC FPDE and DST

FPDE respectively. If protocol type is TCP or UDP, Snort uses source port numbers and destina-

tion port numbers in the second level. Thus, Snort creates two FPDEs for each of TCP and UDP:

a SRC FPDE and a DST FPDE. In addition, Snort creates one more FPDE called Generic FPDE

for TCP and UDP. Generic FPDE consists of two levels and does not have the notion of port num-

bers. Rules using ANY in the field of both source port and destination port are stored into Generic

FPDE. If the protocol type is ICMP, Snort uses ICMP types in the second level instead of source

port numbers or destination port numbers. FPDEs are created as Figure 2.4 shows. First of all,

Snort traverses the rule tree and reads all the rules one by one. Whenever Snort reads a rule, Snort

checks its protocol type and chooses the corresponding FPDE(s) to insert the rule. Suppose that the

protocol type of a rule is TCP and the values of the source port and destination port in the rule are

11



1234 and 80 respectively. Snort then checks whether the node corresponding to the value of port

1234 exists in SRC FPDE. If the node exists, Snort inserts the content of the rule into the content

node associated with the node. If the node does not exist, Snort creates the node corresponding to

the value of port 1234 and the content node associated with the port node and inserts the content

of the rule into the content node. Similarly, the content of the same rule is inserted into the DST

FPDE.

Snort stores the content of the rule in the appropriate FPDE according to the algorithm

shown in Figure 2.4. After reading all the rules, Snort duplicates all the contents in the Generic

FPDE of TCP rules and UDP rules to respective SRC FPDEs and DST FPDEs. Storing contents

are done by a string-searching algorithm. In default configuration, the Aho-Corasick algorithm [1]

is used to manage contents and operates string-pattern matching against each packet. Note that the

algorithm to insert rules into FPDEs leads to a large number of redundant nodes. We will discuss

this issue in the next subsection.

If there are TCP rules with value v in the destination port, Snort can reject all the other TCP

rules that do not have the value v or ANY in the destination port against any packets destined to

port value v. As opposed to the rule tree, Snort can reject many rules by just checking sour port,

destination port, or ICMP type.

All the packets are first sent to a FPDE. If a matching rule exists in the FPDE, the packet is

checked whether the packet is matched with all the information in the rule tree of the matching rule.

In this manner, FPDEs enable Snort to find a rule that might match the packet without checking all

the information in each rule.
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Check protocol type

Check SRC port
and DST port

If TCP or UDP Otherwise

Check ICMP type

Store content in
Generic FPDE Check SRC port

Store content in
SRC FPDE

Check DST port

Store content in
DST FPDE

If SRC port and
DST port are ANY Otherwise

If SRC port
is not ANY

If DST port
is not ANY

Otherwise

Store content 

Figure 2.4: algorithm of FastPacket detection engine
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2.4.2 Portlist

One of the important features introduced in Snort 2.8.0 is Portlist. Portlist is a new detection engine

of Snort that gives users more flexibility to write Snort rules. For example, FPDE only allows users

to write either an individual port number or a range of port numbers. If users want to specify two

different port numbers that are not consecutive, users had to write two rules. However, Portlist

accepts port lists as the name indicates so users can specify multiple individual port numbers and

different ranges of port numbers in a single rule. Portlist is used as a detection engine in Snort

2.8.0 in default configuration instead of FPDE. The way of Portlist to parse rules and store the

parsed protocol fields is similar to FPDE. The algorithm of FPDE shown in Figure 2.4 is the same

as what Portlist does.

2.5 The issues of FPDE and Portlist

One of the issues in the detection mechanism of Snort is that it duplicates rules. The algorithm

of FPDE and Portlist duplicate the content of each rule that specifies ANY in its source port and

destination port “the number of different source port nodes × the number of different destination

port nodes” times. Since these duplications increase the memory consumption of each content

node, when Snort uses FPDE or Portlist for packet classification, Snort needs to copy large amount

of memory for string-pattern matching. As a result, the processing time for finding matching rules

against each packet is increased. When the complete set of 8214 rules are included in Snort, Snort

consumes about 38.2 MB with default string-pattern matching algorithm, AC BNFA. Snort pro-

vides several string-pattern matching algorithms so that users can choose the best algorithm for

their purposes. All of the algorithms are based on the Aho-Corasick algorithm [1], but because of

the different ways of implementation, the memory consumption and the speed for packet classifi-
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cation of each algorithm vary. AC BNFA consumes small amount of memory by sacrificing the

speed of packet processing. Before Snort 2.8.0, the default string-pattern matching algorithm was

ACF whose speed of packet processing is faster than AC BNFA, but it consumes more than 1 GB

for maintaining the 8214 rules.

Another issue is that Snort does string-pattern matching at most twice because of redundant

content nodes. For TCP and UDP rules, Snort maintains the content of each rule by using the

source port number and the destination port number separately. Thus, the source port and the

destination port of each TCP and UDP packet is checked independently. It is clear that source port

and destination port should be checked hierarchically so that Snort does string-pattern matching

only when both source port and destination port are matched.

Dreger et al. [3] revealed that Snort and Bro did not work at all under high-speed network

environment. In such environment, Snort and Bro immediately consumed all the CPU time and the

entire memory space and then halted. This result brings us a question: which function in IDS is

the bottleneck. In other words, which function consumes the most CPU time. Figure 2.5 shows the

CPU time consumed by a function in Snort that performs string-pattern matching to search for the

matching rules. To measure the CPU consumption for string-pattern matching, we compiled Snort

with gprof option so that Snort outputs all the CPU times consumed by the used functions. We used

two-week testing traces in 1998 and 1999 from the DARPA Intrusion Detection Evaluations [7]

to measure the CPU consumptions. Figure 2.5 shows that string-pattern matching consumes up

to 50% of total CPU time. This function consumes the most CPU time among all the functions

in Snort except a function used for building the data structures such as the rule tree and Portlists.

Therefore, to improve the speed of packet processing, it is needed to reduce the number of memory

accesses that Snort must does for string-pattern matching.
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Figure 2.5: CPU time for string-pattern matching
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CHAPTER THREE

HASH BASED DETECTION ENGINE

This chapter describes aspects of the design of Hash based detection engine (HBDE) by evaluating

Portlist and Snort rules. HBDE is implemented in Snort 2.8.0 and used as a detection engine instead

of Portlist. In other words, when Snort receives a packet, Snort first rejects some of the rules by

using HBDE, and then does the full packet inspection using all the matching rules by the features

already implemented in Snort. The purpose of this chapter is to give a proper understanding of

how HBDE works and why HBDE is better than the current detection mechanism, Portlist. HBDE

is the main contribution of this thesis.

3.1 Design of Hash based detection engine

As shown in Figure 2.5, the string-pattern matching is an expensive operation in intrusion detec-

tion. From this result, we can say the following requirements to improve the packet-processing

time of Snort:

• A small number of times that Snort performs string-pattern matching to determine whether

packets are benign or not.

• A small number of memory accesses to read a set of finite strings maintained by a content

node when Snort performs string-pattern matching.

To reduce the number of times that Snort performs string-pattern matching, Snort needs

to check more protocol fields in addition to port numbers so that Snort can reject more packets

before string-pattern matching. The main issue of FPDE and Portlist is that both of them duplicate

the rules is ANY in the source port and the destination port to all the other content nodes whose
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protocol type are the same. Thus, Snort needs to consume a large amount of memory space to

maintain all the rules. If we can achieve both a small number of times that Snort performs the

string-pattern matching and a small number of memory accesses to read a set of finite strings for

string-pattern matching, the number of packets that Snort can deal with in real time would be

increased. However, the amount of memory consumed by each content node to maintain a set of

finite strings and the number of string-pattern matching that Snort performs are trade-off. If we

remove the rule duplications, then each node will consume less memory. However, the problem

is that Snort must perform string-pattern matching multiple times against each packet to cover all

the rules. Suppose that we check the port numbers before the string-pattern matching and do not

duplicate any rules. Now a packet whose source port is 1111 and destination port is 80 arrives at

Snort. This packet matches the following combinations of source and destination ports: (any, any),

(1111, any), (any, 80), and (1111, 80). Thus, in the worst case, Snort must perform string-pattern

matching four times.

The time for string-pattern matching is dominated by the number of memory accesses.

Suppose that Snort with rule duplications and Snort without rule duplications receive a packet.

Further suppose that Snort with rule duplications performs string-pattern matching once against

the packet and Snort without rule duplications performs string-pattern matching four times against

the packet. If the number of memory accesses for four times string-pattern matching is the same

as the number of memory accesses for single string-pattern matching, their computational times

are almost equivalent. Needless to say, the latter case is faster than the former case and since Snort

must handle a huge number of packets, the overall performance of the latter case becomes far better

than the former case. The important point here is if we use more protocol fields in addition to the

port fields to determine more packets as benign packets without string-pattern matching, the total

number of memory accesses without rule duplications would be smaller than with duplications

18



since Portlist checks only the source port numbers and the destination port numbers separately.

The key is how many rules we can reject by adding new protocol fields. Therefore, we first need

to analyze Snort rules.

3.2 Analysis of Snort rules

The goal of this section is to find new protocol fields that we can use for our algorithm so that

our algorithm can reject more packets by checking the new protocol fields. As we discussed in

Section 2.2.1 and Section 2.2.2, rule headers are necessary protocol fields that every rule must have

and rule options are list of optional information that is mainly used for administrative purposes.

That is, if we use the protocol fields in rule options, some of rule may not have such protocol fields.

Thus, the first criterion to add new protocol fields is that most or all of the rules have new protocol

fields. Otherwise, even if we add new protocol fields, our algorithm can not reject many rules by

checking the newly-added fields. The second criterion is that how many rules can be rejected by

checking those protocol fields. In other words, how uniformly the values of each new protocol

field are distributed. If a protocol field has three different values and one thousand rules use each

of them, Snort can reject two thousand rules by checking this protocol field. If a protocol field has

four different values and 750 rules use each of them, then this time, Snort can reject more than two

thousand rules by checking this protocol field. Therefore, it is ideal that our algorithm checks a few

protocol fields but most of or all the rules are rejected. Table 3.1 shows the analysis of complete

set of 8214 rules.
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Table 3.1: Analysis of complete set of 8214 rules
num of different values most frequently used values num of rules

TCP 7550
Protocol types 4 UDP 490

ICMP 135
IP 39

445 1574
$HTTP PORTS 1568

Destination port 314 any 1564
139 1464

$ORACLE PORTS 291
any 7056

Source port 196 $HTTP PORTS 737
1024 43

$HOME NET 5519
Destination IP 15 $EXTERNAL NET 1220

$HTTP SERVERS 959
$EXTERNAL NET 6952

Source IP 11 $HOME NET 1198
any 28

FROM CLIENT 6298
Flow 4 TO CLIENT 1182

STATELESS 35
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Table 3.1 includes only the protocol types, the IP address fields, the port fields, and the flow

field. Rule headers consist of rule action, protocol types, IP addresses, port numbers and direction

operators and the protocol fields that we can use from them are protocol types, IP addresses, and

port numbers. Rule action and the direction operators are not related to packet classification. Rule

options consist of a variety of options such as content, flow, sid, and etc. and the protocol fields

in rule options that are related to packet classification are content and flow. Therefore, we select

protocol types, IP addresses, port numbers, content, and flow for our algorithm.

The protocol type of most of rules is TCP. The number of TCP rules is 7550 out of 8214

and the ratio of TCP rules among all the rules is about 92 %. All of the TCP rules have the flow

field to describe the status of TCP stream. The destination port field has many different values,

and the four most common values are used by about 1500 rules. The rules that have one of these

four values in the destination port account for 75 % of all the rules. Although the source port field

has 196 different values, the value ANY accounts for about 86 % of all the rules. Contrary to

port numbers, IP addresses do not have many different values. The main reason is that most of

rules use variables that start with “$” symbol for IP address fields because the values of source IP

address and the destination IP address vary depending on which network each end point belongs

to. Thus, it is difficult to write specific IP addresses in the rules. On the other hand, application

software typically uses a specific number to communicate with each other. Thus, many individual

port numbers are used in the rules. The flow field has only four different types and most of them

are either FROM CLIENT or TO CLIENT.

The question that now arises is how to use these protocol fields to build a new detection

engine. Since our detection engine checks multiple protocol fields to reject as many rules as pos-

sible before string-pattern matching, it would take time to search for matching rules. The aim of

building a new detection engine is to handle a larger number of packets in real time than Snort
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does. Thus, to find matching rules quickly is also important.

3.3 Hash based detection engine

This section gives the details of how to build a new detection engine using the selected protocol

fields. What we want to achieve by building a new detection engine is to quickly determine whether

string-pattern matching should be performed against the packets without rule duplications. Thus,

we introduce hashing for our detection engine to handle multiple protocol fields at once. A hash

value is computed by the hash function that converts a string into a fixed-length numeric code. If

our detection engine can compute a hash value for a given input, then our detection engine can

immediately determine whether it needs to perform string-pattern matching against packets. The

question which we must consider next is that which protocol fields we can use for hashing. In other

words, how to design the hash function so that it can compute the same hash values for the packets

and their matching rules. If a packet has a matching rule, then the hash function must compute

the same hash value for the packet and the matching rule. The most important point to note is that

Snort allows users to use ANY and negations for port fields and IP address fields. Snort also allows

users to use a range of numbers for the port fields and a set of subnetworks for the IP address fields.

3.3.1 Analysis of flow field for hashing

The flow field does not have the notion of negation and ANY and has only four different types:

From server, From client, stateless, and established. In general, From server and From client

are used with established, but they are also used alone. Thus, there are five combinations of

these three types: established, From server, From client, established+From server, and estab-

lished+From client. Every TCP rule matches one of these five combinations, stateless, or nothing.

As of October 2007, all the TCP rules have the flow protocol field, but in the future, TCP rules
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without the flow protocol field would be created. Furthermore, since the protocol type of IP rules

could be TCP, UDP, and ICMP rules, the IP rules do not have the flow field so we also need to con-

sider the case that the flow field does not exist in the rules. Since there are only seven possibilities

in the flow field, we can use the flow field for hashing.

3.3.2 Analysis of port fields for hashing

The problem in the port fields is how to deal with ANY and the negation symbol in the port fields.

Snort also allows users to use a range of port numbers, but a range of port numbers can be said as

a subset of ANY.

In the case of ANY, all the port numbers are logically TRUE. If the negation symbol is used

with a port number, packets that do not match the port number are logically TRUE. If we apply

hashing to port numbers, the port numbers are converted to numeric codes. Thus, ANY and the

negation symbol are also treated as normal characters by the hash function. However, packets do

not have the notion of ANY and the negation symbol so we can not use these notions to compute

hash values. Therefore, if a rule uses ANY and/or the negation symbol in its port fields, our

detection engine ignores the port filed with ANY and/or the negation symbol; the hash function

does not use the port fields with ANY and/or the negation symbol to compute hash values.

Suppose that a rule uses the negation symbol for its source port field and destination field.

Against this rule, since the hash function does not consider the port fields, all the packets are

logically TRUE in terms of the port fields. However, this is wrong because if a packet has the port

number in the source field that is the same value with the negation symbol in the source field of the

rule, then the packet must be logically FALSE. I noted a little earlier that the aim of our detection

engine is to determine whether our detection engine needs to perform string-pattern matching

against packets as quickly as possible without rule duplications. The detection mechanism of

23



our detection engine is wrong at this point but later, if the packets have any matching rules, full

inspection is performed against the packets using the matching rules. That is, the port numbers in

the packets are carefully examined at this point. Therefore, as similar to a range of port numbers,

our detection engine can also treat the port numbers with the negation symbol as ANY.

Then a new problem arises here. Although every packet has certain port numbers in the

source port field and the destination port field, some of rules do not have the values in their source

port field and/or destination port field because of ANY. Thus, as we discussed in Section 3.1, we

need to consider the combinations of the values of the source port field and the destination field

to cover all the matching-rule possibilities. Table 3.2 shows the combinations of all of the four

possibilities. X and Y in the table mean certain values of port number. This table indicates that

against each packet, we must compute four hash values in the worst case. If the hash value of

X-ANY and ANY-Y exist in the hash table, then we also need to consider the hash value of X-Y.

If either the hash value of X-ANY or ANY-Y does not exist in the hash table, then we do not have

to consider the combination of X-Y. Therefore we can use the port fields for hashing.

Table 3.2: Combination of the values of source port and destination port
value of source port value of destination port

X ANY
ANY Y
ANY ANY

X Y

3.3.3 Analysis of IP address fields for hashing

In the case of IP address fields, the main problem is how to deal with the slash notation. Although

rules use the slash notation to denote prefix of source IP address and destination IP address, every

packet has 32-bit-long IP addresses. In other words, with respect to IP addresses, prefix matching

24



is necessary and it is difficult to use hashing. Since rules are predetermined when Snort starts up,

it is possible to extract all the subnet masks used in the rules. However, in the worst case, the

combination of subnet masks in source IP field and destination IP field is 24 × 24 = 576. It is

not acceptable to consider the 576 possibilities against each packet. The key to use hashing for IP

addresses is the number of combinations of the source IP address and the destination IP address.

As we have seen in Table 3.1, the number of different values in the source IP address field and

destination IP field are fifteen and eleven respectively. Table 3.3 shows the ratio of the three most

used combinations of the source IP address and the destination IP address. The summation of

ratios of these three combinations is 93.3 %. Thus, we only consider the following four combina-

tions: $HOME NET × $EXTERNAL NET, $EXTERNAL NET × $HOME NET, $HOME NET

× $HTTP SERVERS, and the others.

Table 3.3: Ratios of combination of source IP address and destination address
SRC IP DST IP num of rules Ratio

$HOME NET $EXTERNAL NET 5513 67.1 %
$EXTERNAL NET $HOME NET 1188 14.5 %

$HOME NET $HTTP SERVERS 959 11.7 %

Against each packet, we check whether the source IP address and the destination IP ad-

dress of the packet match the combination of $HOME NET × $EXTERNAL NET, $EXTER-

NAL NET × $HOME NET, or $HOME NET × $HTTP SERVERS. If there is a matching com-

bination, HBDE performs string-pattern matching against the packet. Regardless of this result,

HBDE always considers the case other than these combinations of IP addresses. Therefore, we can

not use the IP addresses for hashing.
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3.3.4 Detection mechanism of HBDE

As discussed in Section 3.3.1, Section 3.3.2, and Section 3.3.3, we can use the flow field and the

port fields for hashing but the IP address fields are not. Thus, we build a two-step detection mecha-

nism. In the first step, the hash function computes a hash value for each packet using the port fields

and flow field of the packet and checks whether the hash value is in the hash table. In the case

of ICMP packets, we use ICMP types instead of the port fields. If the same hash value does not

exist in the hash table, it means that no matching rules exist so HBDE stops inspection against the

packet. If the same hash value is in the hash table, then HBDE checks IP addresses of the packet

as discussed in Section 3.3.3. HBDE performs string-pattern matching at most twice: the first

time is against the rules maintained by the matching combination of IP addresses, and the second

time is against the rules maintained by the IP addresses other than the three combinations. Since

HBDE generates four different hash values against packets in the worst case, HBDE performs

string-pattern matching at most eight times. The evaluation of HBDE is discussed in Section 3.4.

3.3.5 Hash function

The hash function computes hash values for given rules or packets as follows. Figure 3.1 shows the

flow of the hash function. First of all, the hash function divides the source port and the destination

port into four portions respectively. That is, each portion is 4-bit long. If the value of source port

or destination port is ANY, the hash function treats ANY as the value of 0. Then the hash function

does XOR operation of the first portion of source port and the fourth portion of destination port, the

second portion of source port and the third portion of destination port, the third portion of source

port and the second portion of destination port and the fourth portion of source port and the first

portion of destination port. Next, the hash function combines the four results into one 16-bit long

value. The hash function then combines 4-bit long flow status. Therefore the hash value is 20-bit
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long numerical value. If the hash value is computed from a rule, the hash function checks whether

the same hash value is already inserted into the hash table and if it is not inserted, the hash function

inserts the hash value into the hash table.

Figure 3.1: Flow of hash function

3.4 Evaluation of HBDE

In this section, HBDE is evaluated with respect to the number of memory accesses in the worst

case. The first step of HBDE is compared with Portlist. The underlying goal of HBDE is to inspect

packets fast. To achieve this goal, in HBDE, the multiple protocol fields are checked before string-

pattern matching so that HBDE can reject all or most of the rules. Even if HBDE finds one or
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more matching rules and has to perform string-pattern matching multiple times, since HBDE does

not duplicate any rules and the amount of memory that the matching rules maintained is smaller

than that of Snort, the processing time for the packets should be faster than Snort. As discussed

earlier, the memory consumption of each content node is not related to the number of rules that

share the same content node but how different the content of each rule is. For example, suppose

that three rules share the same content node. Let the content of each rule be ABC, ABD, and

ABE respectively. They share the same prefix “AB” so the content node only needs to store the

five letters: A, B, C, D, and E. However, if the content of each rule is ABC, DEF, and GHI, then

the content node needs to store the nine letters. Moreover, even if a content node maintains only

one rule, if the content of the rule is ABCDEFGHIJ, the content node has to store the ten letters.

Therefore we make the following assumptions:

• Every rule has a content.

• Every rule has the same length of content.

• No rules have the common prefixes in their contents.

These three assumptions help us to make our model simple. Suppose that the number of

rules is n. There are four combinations of source port and destination port, and each rule belongs

to one of them. They are is defined as follows: F1(X, ANY ), F2(ANY, Y ), F3(ANY, ANY ),

and F4(X, Y ). Function Fi represents the frequency: the fraction of rules belonging to each case.

Thus, the summation of Fi is the following:

4∑

i=1

Fi = 1 (3.1)
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Let the length of content that each rule has be L. Let us now consider how the processing

time can be expressed by these variables. Since processing time is dominated by memory access

time, we simply compute the number of memory accesses in the worse case by Portlist and HBDE.

Portlist extracts the value of port fields if the protocol type of packets is TCP or UDP.

Then Portlist checks whether the SRC port-rule map has the content node corresponding to the

value of source port and the DST port-rule map has the content node corresponding to the value

of destination port. If one or both of the corresponding content nodes exist, Snort performs string-

pattern matching using associated content nodes. It is clear that the worst case scenario is when

both SRC port-rule map and DST port-rule map have a corresponding content node.

Before computing the processing time in the worst case, we must draw attention to the

number of duplications that Portlist makes. In the case of F1 and F2, Snort duplicates the content

of each rule to SRC port-rule map and DST port-rule map respectively. Thus, the number of

duplication is 1. In the case of F3, Snort duplicates each rule to all the content nodes in SRC port-

rule map and DST port-rule map. Thus, the number of duplication is the summation of number

of content nodes in SRC port-rule map, the number of content nodes in DST port-rule map and 1.

In the case of F4, Snort duplicates the content of each rule to both SRC port-rule map and DST

port-rule map. Thus, the number of duplication is 2.

In the worst case, all the rules have the same value of source port and destination port. In

this case, the SRC port-rule map and DST port-rule map have only one content node respectively,

and all the contents in the SRC port-rule map and DST port-rule map are associated with the

content node respectively. From the assumption, all the rules do not have the common prefixes in

their contents so the memory consumption of each content node can be calculated as follows:
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Memory consumption = Frequency × n × L × (the number of duplications) (3.2)

We can calculate the number of rules that belongs to each port combination by Frequency×

n. Thus, the summation of memory consumption will be Frequency × n × L. Since F3 and F4

duplicate the contents to the other content nodes multiple times, we also need to multiply the

summation of memory consumption by the number of duplications. As a result, the worst case

memory consumption can be formulated as follows:

The worst case memory consumption =

F1 × n × L + F2 × n × L +

F3 × n × L × (F1 + F2 + F3 + 1) +

F4 × n × L × 2 (3.3)

Since the amount of memory can be considered as the number of memory accesses that

Portlist needs to read the contents, the number of memory accesses in the worst case of Portlist is

equivalent to the formula 3.3.

Next, we derive the CPU time of the first step of HBDE in the worst case. As shown

in Table 3.2, in the worst case, HBDE must perform the string-pattern matching four times. As

opposed to Portlist, each rule exactly matches one of them in HBDE and Snort does not duplicate

the content of any rule to the other content nodes. Therefore, the number of memory accesses that

Snort must do to read the content in the worst case can be derived by the following formula:
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The number of memory accesses in the worst case =

F1 × n × L + F2 × n × L + F3 × n × L + F4 × n × L (3.4)

Similar to the worst case of Portlist, the amount of memory derived from the formula 3.4 is

equal to the number of memory accesses in the worst case.

Subtracting the formula 3.4 from the formula 3.3, we get the following.

Difference of the number of memory accesses =

F1 × n × L + F4 × n × L × (F1 + F2 + F3) (3.5)

The formula above shows that the first step of HBDE is better than the approach of Portlist

in the worst case. HBDE does further inspection at the second step, but when HBDE gets into the

second step, the amount of memory that the remaining rules maintains is smaller than the amount

of memory that Portlist reads in the worst case.
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CHAPTER FOUR

EXERIMENTAL RESULTS

We implemented hash based detection engine in Snort 2.8.0. To compare the performance of the

HBDE with the detection engine of Snort, we use two-week testing traces in 1998 and 1999 from

the DARPA Intrusion Detection Evaluations [7]. The testbed machine is Xeon 3.00 GHz with 3GB

memory running Linux 2.6.15. Both HBDE and Snort run with the default configuration. With

each dataset, we repeat the experiments twenty times and ignore the result of the first experiment

to reduce the effect of disk caching. The testbed machine needs to read the each dataset at the first

time, but from the second time, the content of the dataset is stored in disk cache and the machine

can read the same dataset faster.

4.1 Initialization time and memory consumption

The first experiment is about initialization time. During the initialization, Snort reads all the rules,

parses each rule by protocol fields, stores the parsed protocol fields into RTN and OTN, and builds

a rule tree and port-rule maps. HBDE builds the hash table instead of port-rule maps.

Table 4.1: Comparison of initialization time and memory consumption in different algorithms
Memory Consumption (MB) Initialization Time (seconds)

Algorithm Snort HBDE Snort HBDE
AC BNFA 38.2 2.8 9.5 1.4

ACF 1086.3 70.71 113.0 4.8
ACS 503.3 17.4 114.8 4.9
ACB 702.0 31.7 114.2 4.8

ACSB 586.0 18.8 112.8 4.8

Table 4.1 shows the comparison of initialization time and memory consumption to maintain
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a finite set of strings between Snort and HBDE using the complete set of 8214 rules. Snort provides

several string-pattern matching algorithms so that users can choose the algorithm that is the best

fit for their environments. The default algorithm is AC BNFA in Snort 2.8.0. Prior to Snort 2.8.0,

the default algorithm was ACF. All the string-pattern matching algorithms are based on Aho-

Chorasick algorithm [1] but their ways of implementation are different. From this table, we can

say that HBDE consumes considerably less memory with all of algorithms than snort does. The

main differences between Snort and HBDE are that HBDE does not duplicate the rules to the

other nodes while Snort duplicates the rules and builds redundant nodes. Due to the larger amount

of memory for maintaining contents, Snort spends more time in initialization. The result of this

experiment shows that HBDE helps Snort greatly to not allocate unnecessary memory space for

string-pattern matching.

4.2 Packet-processing time

The second experiment is to compare the packet-processing time of HBDE with that of Snort

using AC BNFA and ACF. Figure 4.1 shows the comparison of packet-processing time in the

case of AC BNFA. The graph was plotted based on the pair of the processing time of HBDE and

Snort. The diagonal line represents the points where the processing time of HBDE and Snort are

equivalent. In other word, the points plotted above the line means that Snort was faster than HBDE

and if the points are below the line, HBDE was faster. In the Figure 4.1, there are some points

above the line so with some of the datasets, Snort was faster than HBDE. However, Even if Snort

was faster than HBDE in those cases, since the distances between each point and the line are short,

there are not much difference in the processing time between them. On the other hand, there are

many points below the line that are plotted apart from the line. Although there are a few that Snort

is faster, HBDE is better from the point of view of overall performance.
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The reason that HBDE is slower than Snort is that the number of memory accesses in HBDE

is larger than in Snort because of multiple-time string-pattern matching. For example, suppose that

a packet arrives at Snort and 100 rules matches it. Let the length of strings that the matched content

node maintains be 100. In this scenario, Snort must read the 100-byte-long string to perform string-

pattern matching. Suppose that HBDE needs to perform string-pattern matching twice since the

100 rules are maintained by two different content nodes. Even if the two content nodes maintain

50 rules each, total number of memory accesses would be larger depending on the prefix that each

set of 50 rules share. Another important point to note is that if Snort uses AC BNFA algorithm,

Snort does not consume much memory space even if the complete set of 8214 rules is included

as shown Table 4.1. Therefore, because of the small difference of memory consumption between

Snort and HBDE, HBDE can not achieve higher performance in some datasets.

From Snort 2.8.0, the default algorithm is changed from ACF to AC BNFA. The reason

would be because in the case of ACF, Snort consumes too much memory. Although the speed of

packet processing is slower than ACF, AC BNFA reduces the memory consumption considerably.

We also compare the processing time of Snort with HBDE using ACF. Figure 4.2 shows that the

results are quite similar to Figure 4.1. However, the number of points above the line is reduced and

the overall performance of HBDE is better than that of Snort.

However, although HBDE using ACF only consumes about 70 MB memory, Snort using

ACF consumes more than 1 GB memory. Then the question is that if the memory consumption of

Snort and HBDE are similar how their packet-processing times are different. This question is im-

portant to find out whether memory consumption affects the packet-processing time of Snort and

HBDE. Thus, we use Snort with AC BNFA and HBDE with ACF since their memory consump-

tions are similar. Figure 4.3 shows the result of this experiment. There are still some points above

the line, but in the most of cases, the packet-processing time of HBDE is faster than that of Snort.
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Consequently, if the memory consumption of Snort and HBDE is similar, the overall performance

of HBDE is better that of Snort.

Table 4.2 shows the comparison of the number of execution times of string-pattern match-

ing using different datasets. The number of execution times of string-pattern matching of Snort is

smaller than the number of packets in all the datasets. In contrast, the number of execution times of

string-pattern matching of HBDE is larger than the number of packets when we use the datasets of

week 4 and week 5 in 1999. In addition, the number of execution times of string-pattern matching

of HBDE is always larger than Snort. The main reason that HBDE performs string-pattern match-

ing such a huge number of times is because HBDE performs string-pattern matching against each

packet at most eight times. Although HBDE performs string-pattern matching larger number of

times, the overall packet-processing time of HBDE is still better than that of Snort. This result in-

dicates that each content node in HBDE consumes only small amount of memory for maintaining

a set of strings so at each string-pattern matching, HBDE needs to access memory small number

of times.
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Figure 4.1: Comparison of packet-processing time in the case of AC BNFA
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Figure 4.2: Comparison of packet-processing time in the case of ACF
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Figure 4.3: Comparison of packet-processing time Snort using AC BNFA with HBDE using ACF
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Table 4.2: Comparison of number of execution times of string-pattern matching
dataset num of packets Snort HBDE
w1mon 2377402 1117777 1984574
w1tue 2567077 477142 1369108
w1wed 1908195 401861 1156515
w1thu 2401708 500387 1329443
w1fri 2236041 580894 1518625
w2mon 2948773 608695 1599320
w2tue 2066882 530647 1511123
w2wed 2233225 748439 1931642
w2thu 2798993 984520 2418688
w2fri 2233225 748439 1915443
w4mon 2959275 1935796 4587526
w4tue 1344608 720646 1964992
w4wed 3170937 1898058 4661633
w4thu 4090497 2543802 6098092
w4fri 3328634 2223365 5071032
w5mon 3728424 2688642 6000145
w5tue 6043656 5286539 13816440
w5wed 3564219 2294622 5286460
w5thu 5658038 3129746 7423971
w5fri 6276907 3253796 8393075
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CHAPTER FIVE

RELATED WORK

Because of high-speed network and the number of rules, IDSs have problems to handle a huge

amount of traffic in real time. Dreger et al. [3] revealed that Snort [10] and Bro [9] did not work

at all under high-speed network environment. In such environment, Snort and Bro immediately

consumed all the CPU time and the entire memory space and then halted. The main reason is

that the significant number of string-pattern matching. Researchers have suggested using regular

expressions so that users can easily write rules. Sommar and Paxson used regular expressions

for Bro and built a DFA [13]. They noticed that DFA may consume too much memory so Bro

computes a new state in DFA whenever the DFA needs to transit into the state and the states that

are not transited are removed to maintain the overall memory size small.

Researchers have proposed many fast string-pattern matching algorithms. One approach is

based on software implementation [1,2,15]. The Aho-Crasick algorithm [1], which is implemented

in Snort, matches a set of substrings against the payload of packets in O(n). Wu-Manber [15]

performs string-pattern matching efficiently using the multi-pattern optimization. The other ap-

proaches are based on hardware [4, 5, 8]. Some of the hardware implementations use FPGA to

build a DFA/NFA and reprogram it whenever the pattern is changed.

The Distributed IDS [6, 12, 14] is the fundamental approach to solve the problem of detec-

tion speed. Since each sensor in the DIDS monitors network from where it is deployed and works

as an independent device, our approach also helps DIDS to handle high-speed networks.

Another proposed approach is to take account of traffic patterns. Most of string-pattern

matching algorithm are independent of traffic pattern and may end up with longer matching time

depending on actual traffic. WIND [11] implements workload-aware intrusion detection. In this
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approach, an IDS collects the current traffics for a period of time, and then builds a rule tree based

on the collected data. This approach improves the performance of Snort up to 1.6 times.
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CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

The aim of building a rule tree is to reduce the number of rules that Snort must examine against

each packet. However, the current detection engine, Portlist, is designed to duplicate rules to find

a matching content node in O(1). We propose rule hashing for fast packet classification with

no duplications in intrusion detection. Rule hashing generates hash values using several protocol

fields to reduce the number of redundant nodes in Portlists. Instead of duplications, our approach

searches for the matching rules multiple times to cover all the possibilities against each packet.

The amount of memory consumed by each content node to maintain a set of finite strings and

the time for searching for the matching nodes are the trade-off. HBDE can save memory space

and reduce the number of memory access although HBDE may perform string-pattern matching

multiple times against each packet.

The experimental results show that the overall performance of packet processing of HBDE

is better than that of Snort using both AC BNFA and ACF. The memory consumption for string-

pattern matching in HBDE with the complete set of rules is considerably less than that of Snort

with all the string-pattern matching algorithms. The reason of such a less memory consumption

is because of no rule duplications. In other words, rule duplications greatly affect the memory

consumption of Snort.

Since the most of rules have the same values in their port fields, IP address fields, and flow

field, hash values are not uniformly distributed in the hash table and many rules share the same

hash values. However, there are no protocol fields that we can use for rule hashing. If we have

additional information that helps us to distribute hash values uniformly, the performance of HBDE

would be improved. One of the possibilities is traffic pattern. The current string-pattern matching
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algorithm is independent of traffic pattern and may end up with longer matching time depending on

actual traffic. Therefore, if HBDE takes account of traffic pattern as well as rules to generate hash

values, since the detection engine is optimized to the current traffic pattern, HBDE might be able

to deal with the packets more efficiently. In this case, HBDE is desirable to be able to regenerate

hash values while Snort is running in order to deal with the change of traffic pattern.
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