
DISTRIBUTED PARALLEL COMPUTATION USING STANDARD ML

By

VAISHALI CHATTOPADHYAY

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

DECEMBER 2007

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesisof VAISHALI

CHATTOPADHYAY find it satisfactory and recommend that it be accepted.

Chair

ii

Acknowledgments

I would like to thank my advisor Dr. Carl Hauser, for his invaluable support,

encouragement and guidance. But for him, this thesis would not have been possi-

ble.

I wish to thank the School of EECS for supporting my graduate study at WSU.

Thanks is due to Ms. Ruby Young for answering all my questionswith immense

patience and guiding me through the maze of administrative protocol.

I would like to thank Dr. David Bakken and Dr. Murali Medidi tobe on my

committee.

I would like to thank Dr. Sumanth JV for his encouragement andsupport. I

would also like to acknowledge Research Computing Facility(RCF) in University

of Nebraska, Lincoln for letting me run my experiments.

My friends (who’re far too many to name here) have been a greatsource of

encouragement and help both in and out of school. Thank you all for your support.

iii

DISTRIBUTED PARALLEL COMPUTATION USING STANDARD ML

Abstract

by Vaishali Chattopadhyay, M.S.

Washington State University
December 2007

Chair: Carl Hauser

This work describes the design and implementation of SMPI, the first native im-

plementation of a library of functions that support parallel programming in SML.

The intent of the proposed work is to provide the basic routines of MPI in SML

to facilitate programmers to use SML for parallel programming. We find that the

functional constructs available in SML aid in writing well structured, concise and

robust code. We also implemented the same algorithms in Python and C in order

to compare the performance of SML against it. This was necessary since the ex-

isting Python implementations are wrappers around MPICH. We chose to create a

lightweight C implementation in order to perform a fair comparison of SML with

C since MPICH, despite being implemented in C, incurs a significant overhead due

to its high portability.

iv

Contents

1 Introduction 1
1.1 Motivation . 2

1.2 Why SML? . 4

1.3 Main Goals . 5

1.4 Organization of the thesis . 5

2 Background and related work 7
2.1 Parallel Programming . 7

2.1.1 Message Passing Interface 10

2.1.2 Development of the MPI standard 11

2.1.3 Language bindings for MPI 13

2.1.4 MPI Implementations 13

2.2 Imperative and Functional programming16

2.2.1 Imperative programming 17

2.2.2 Functional programming 18

2.2.3 Standard ML (SML) . 20

v

2.2.4 Concurrent ML (CML) 20

2.3 Efforts in development of MPI for functional languages 21

2.3.1 OCamlMPI and ScaMPI 21

3 Native Implementation of MPI in SML 23
3.1 Introduction . 23

3.2 SMPI architecture . 23

3.3 SMPI . 25

3.3.1 Environment description 25

3.3.2 Communication handle 26

3.3.3 Communication Primitives 27

3.3.4 Structure of a SMPI program 31

3.4 Implementation issues . 32

3.5 SMPI Library . 32

4 Message Passing Algorithms 34
4.1 MPI Primitives . 34

4.1.1 Initialization and Finalization 34

4.1.2 Send and Receive . 37

4.1.3 Broadcast Algorithm . 38

4.1.4 Reduce . 39

4.1.5 Barrier . 41

5 Implementation Details 47
5.1 SML constructs . 47

vi

5.1.1 SML Module system . 47

5.1.2 Type Safe . 48

5.1.3 Higher-order Functions 48

5.1.4 Automatic tuple expansion 48

5.1.5 Automatic Garbage Collection 49

5.1.6 Error Handling . 49

5.1.7 Tail Recursion . 50

5.1.8 Interfacing with C . 50

6 Experimental Results 51
6.1 Experimental Setup . 51

6.2 Barrier . 53

6.3 Point to Point Primitive . 54

6.4 Collective Primitive . 57

6.4.1 Broadcast . 57

6.4.2 Reduce . 63

6.5 Numerical Integration Application69

7 Conclusion and Future Work 75
7.1 Conclusion . 75

7.2 Future Work . 76

A SML MPI Library API 77

A.1 SMPI Reference . 78

A.2 Starting an SMPI job . 84

vii

A.3 Examples . 85

B Patching and Installing SML/NJ 87

C C/Python MPI Library API and examples 90

C.1 Python MPI API . 90

C.1.1 Examples . 92

C.2 C MPI API . 94

C.2.1 Examples . 95

viii

List of Figures

2.1 Parallel execution . 8

2.2 Shared Memory System . 10

2.3 Distributed Memory System . 10

2.4 Some of the bindings in MPI for C 14

2.5 Factorial function in C . 18

2.6 Factorial function in SML . 19

3.1 SMPI architecture . 24

3.2 SMPI Environment . 26

4.1 Initialization Algorithm . 36

4.2 Race condition in improperly implemented initialization. 37

4.3 Broadcast Tree Algorithm . 39

4.4 Efficiency for Tree Algorithm is Higher than Sequential Transmission 39

4.5 Reduce Tree Algorithm . 44

4.6 2-Pass Barrier . 45

4.7 2-Pass Barrier with delay in process 3 45

4.8 1-Pass Barrier with delay in process 3 46

ix

6.1 Comparison of Barrier performance. 53

6.2 Comparison of MPICH and simple C MPIRecv() implementation. 54

6.3 Comparison of MPICH and simple C MPISend() implementation. 55

6.4 Wall Time for MPISend(). 56

6.5 Wall Time for MPIRecv(). 56

6.6 Relative difference of Python, SML and MPICH against C for

MPI Send(). 58

6.7 Relative difference of Python, SML and MPICH against C for

MPI Recv(). 59

6.8 Scaling of MPIBcast() in simple C implementation. 60

6.9 Scaling of MPIBcast() in Python implementation. 61

6.10 Scaling of MPIBcast() in SML implementation. 61

6.11 Performance of MPIBcast() in simple C implementation. 62

6.12 Performance of MPIBcast() in Python implementation. 62

6.13 Performance of MPIBcast() in SML implementation. 63

6.14 Relative Difference (wrt C) in scaling of MPIBcast(). 64

6.15 Relative Difference (wrt C) in performance of MPIBcast(). 65

6.16 Performance of MPIReduce() in simple C implementation. 66

6.17 Performance of MPIReduce() in Python implementation. 67

6.18 Performance of MPIReduce() in SML implementation. 67

6.19 Scaling of MPIReduce() in simple C implementation. 68

6.20 Scaling of MPIReduce() in Python implementation. 68

6.21 Scaling of MPIReduce() in SML implementation. 69

6.22 Performance of SML’s MPIReduce(), when reduce operation is

performed in C and SML. 70

x

6.23 Relative Difference in Performance of SML’s MPIReduce(), when

reduce operation is performed in C vs. SML. 71

6.24 CPI performance of C, MPICH and SML. 73

6.25 Efficiency of CPI in C, MPICH and SML. 73

6.26 CPI performance of Python. 74

6.27 Efficiency of CPI in Python. 74

xi

In the fond memory of my grandmother

Late Sabita Devi

xii

Chapter 1

Introduction

Large computational applications are complex in structureand have significant ex-

ecution time. However they can often be broken down into independent tasks that

can be done in parallel. Efforts are being expended in defining methodologies and

designing techniques which allow large complex applications to be constructed

more reliably and run more efficiently. Parallel programming significantly reduces

the elapsed computation time for programs while functionalprogramming intro-

duces structure into them making them easy to write, debug and re-use. Com-

bining these two ideas, this thesis presents a native implementation of a message

passing interface for parallel programming in a functionallanguage and compares

it to other native implementations in an imperative and an interpreted language.

For parallel programming, an efficient communication mechanism between the

processes is a must. Message Passing is one of the paradigms used to enable com-

munication between processors. The Message Passing Interface (MPI [41] [35])

is a library of routines which provides this mechanism to perform point-to-point

and collective communication between processors. Point-to-point communication

1

implies the communication between any two processors participating in the compu-

tation. Collective operations on the other hand imply the communication between

all the processors participating in the computation. Simple send and receive would

form a part of the point-to-point communication routines, while broadcast, reduce

and synchronization routines like barrier would form the collective operations.

This thesis describes a library of routines containing the basic communication

primitives of MPI using a functional language (Standard ML,[31]). This allows

programmers to use parallel programming constructs in a functional language. In

this thesis we first discuss the design and implementation ofthe message passing

interface using the advanced programming language, SML, and then compare the

performance of SMPI implementation with other native implementations in an im-

perative and interpreted language. Since most implementations available are only

wrappers to MPICH [20], traditional implementation of MPI using a conventional

language C, we had to implement a native implementation of MPI in Python, an in-

terpreted language and to avoid MPICH’s overhead performance cost a lightweight

implementation in C also had to be implemented.

1.1 Motivation

In recent decades much attention has turned to parallel programming due to its abil-

ity to speed up computations. MPI allows processes to communicate in a parallel

programming environment. Thus parallel programmers are now turning their focus

to the development of MPI for efficiently passing messages between the processes.

MPI has been implemented by several researchers successfully in conventional

languages like C, C++, FORTRAN and Java. These implementations support the

2

development of parallel programs written in these languages. Wrappers to these

implementations have been written for other languages likeCaml, Java, OCaml,

Python etc. which will be discussed in Chapter 2.

Significant advances in hardware have assisted in speeding up computations,

thus drawing the attention of programmers towards writing well-structured and

easy to understand programs rather than emphasizing on the performance alone.

Edoardo Biagioni [12] suggests that structured implementations of of the Transmis-

sion Control Protocol using an extension of the Standard ML (SML) language can

be made as efficient as comparable implementations in other languages. Ensem-

ble [48] a library of protocols used to build distributed application has been written

entirely in a functional language Objective Caml [1], a dialect of ML. To quote

Philip Wadler of Bell labs, ”Ensemble beats the performanceof its predecessor,

Horus, by a wide margin, even though Horus is written in C” [48]. He states that

the performance improvement was achieved only due to improved design rather

than through long hours of hand-coding the entire system in C. The common con-

ception until recent times that functional languages have poorer performance than

conventional languages like C was disproved by Philip Wadler in [49].

Previous efforts to develop MPI using functional style has been in providing

wrapper functionality to some traditional MPI implementations in conventional

languages like C, e.g. ScaMPI [8] which was a Caml [1] interface to MPI and

OCamlMPI [46] OCaml interface to MPI. The wrappers developed have limited

functionality as a result of the limitations of the languageused for the native im-

plementation over which the wrapper is built. Sava Mintchev[33] suggests that

functional style of programming can speed up MPI collectiveoperations and he

provides functional specifications for the improved operations. However he states

3

that due to the absence of implementation of MPI in functional language these

specifications were translated into a imperative programming language. Thus we

see that lack of native implementation of MPI in functional language has hindered

the development of parallel programs in functional languages.

In this thesis we address this problem by providing an implementation of MPI

using a functional language and compare its performance with our native C and

Python implementations.

1.2 Why SML?

We chose Standard ML (SML [31]) as the basis for the implementation of MPI

using a functional language because:

• SML module system makes the different parts of the program virtually inde-

pendent and easily modifiable

• Higher order functions of SML allow functions to be passed asarguments

which makes programming flexible

• SML has compile time type checking which facilitates writing error free

code

• SML allows the use of some of the features of imperative styleof program-

ming

• SML has a sophisticated exception handling mechanism facilitating debug-

ging

4

1.3 Main Goals

A native implementation of MPI in a functional language would encourage parallel

programmers to develop programs in that language. Functional languages with fea-

tures such as higher order functions, strong typing, modularity, polymorphism and

clear syntax allow it to have certain advantages over imperative languages. Thus

this thesis implements the message passing interface in a functional language and

studies its performance against other native implementation and also studies how

these features affect the MPI implementation and aid in developing well structured

programs. SMPI is the first native implementation of MPI in SML and provides

a library containing basic communication primitives to ease parallel programming

in SML. The aim of SMPI library is to aid programmers in writing well structured

parallel programs and assess the suitability of SML language mechanisms for use

in parallel programming.

1.4 Organization of the thesis

The first chapter has given a general introduction and has provided the motivation

and goals of this thesis. The second chapter describes the related and background

work related to this thesis. It introduces parallel programming concepts and gives

an overview of the message passing interface. It also introduces functional pro-

gramming and describes its advantages for parallel programming. A few existing

MPI implementations are discussed. Chapter 3 describes SMPI in detail from the

application programmerś perspective. Chapter 4 describes the message passing al-

gorithms used in the implementation of SMPI. Chapter 5 describes how functional

style affects the structure of the program. Chapter 6 discusses the experimental

5

setup and results of comparing SML implementation with MPICH and our native

implementations in Python and C. Finally the seventh chapter forms the conclusion

of the thesis providing a summary and a brief discussion about the future work.

6

Chapter 2

Background and related work

This chapter provides an overview of parallel programming,message passing in-

terface and a brief discussion of functional language programming. It gives an

overview of the history of the MPI standard and describes thebindings available

in it. This chapter also discusses the previous implementation efforts of message

passing interface in languages such as C, Caml, Python etc.

2.1 Parallel Programming

Parallel programming implies that a set of processors work cooperatively to solve

a large computational problem by breaking it up into smallertasks and executing

them simultaneously. It enables computation of larger quantities of data within

shorter execution time as compared to traditional sequential style of programming

where each task is performed in an ordered manner. A large number of unipro-

cessors together provide a great potential for parallelismthereby increasing com-

putation power. Babaoglu et al. in [10] suggest that there are some technical

issues, which include heterogeneity, high-latency communication, fault tolerance

7

and dynamic load balancing, that need to be addressed to efficiently exploit the

parallelism inherent in a distributed system. An application must manage all these

concerns in addition to computing a result. This necessitates efficient cooperation

between processors for parallel programming and adds to thecomplexity of the

programming task.

Fig. 2.1 shows us a pictorial representation of the processes executing in dif-

ferent processors communicating via a communication network.

0 2 31

Message Passing Interface

Processes

Communication Network

Figure 2.1: Parallel execution

Parallel programming can be implemented in a shared memory system or a

distributed memory system. In a shared memory system as depicted in Fig. 2.2 all

the processors have direct access to a common memory store through which they

communicate. On the other hand in a distributed memory system the nodes are in-

terconnected by a network where each node is a processor withits own local mem-

ory. Fig. 2.3 illustrates a distributed memory system. Eventhough shared memory

8

systems outperform and are easier to program than distributed memory systems,

the flexibility, scalability and low cost provided by the latter makes them more

prevalent, [14]. Communication between the processes can be achieved through:

Distributed Shared Memory (DSM) model

DSM allows sharing of data between processors that do not share

physical memory. This is achieved by having a common memory

segment which can be accessed by all the processors and whichis

updated regularly. Synchronization between processes is achieved via

locks and semaphores.

Message Passing Model

Message Passing model achieves communication between the nodes

by exchanging messages across the network.

Non-Uniform Memory Access (NUMA) model

In the NUMA model the memory of other processors can also be ac-

cessed along with its local memory. The time required to access these

different memory modules may differ.

Among these three communication mechanism the message passing model is

most widely used because of its scalability, security and cheap resource require-

ments, [14]. To improve performance in a distributed environment high perfor-

mance switches and fast access mechanisms can be used. More details on the

various models and parallel programming can be found in [14,17,42].

9

CPU

CPU

CPU

CPU

MEMORY

Figure 2.2: Shared Memory System

NETWORK

MEMORY CPU

MEMORY CPU

MEMORY CPU

MEMORY CPU

Figure 2.3: Distributed Memory System

2.1.1 Message Passing Interface

As programmers are turning toward parallel computing the need to ease parallel

programming is becoming more prominent. Performance of a parallel program

depends on how the computation is broken into smaller tasks and how efficiently

they are made to communicate, [18]. Message passing enablesthis communica-

tion between processors in a distributed memory environment by transmitting data

over an interconnected network. A message passing library is a collection of com-

munication primitives that parallel processes use to communicate and synchronize

10

with other parallel processes. Primitives include communication functions such as

send, receive, reduce and broadcast, and synchronization primitives such as bar-

rier, [19,42].

A standard library of function calls that can be used to implement a message

passing program is the Message Passing Interface (MPI), [21]. It provides an ab-

straction of how the underlying hardware is organized. Programmers can thus write

parallel programs containing MPI subroutines and functioncalls that will work on

any machine on which the MPI library is installed. These message passing libraries

relieve the developers from the cumbersome task of network programming, and al-

low them to concentrate on program development.

2.1.2 Development of the MPI standard

A workshop on “Standards for Message Passing in DistributedMemory Environ-

ment” was conducted by the Center for Research in Parallel Computation in 1992,

in which a MPI Forum consisting of eighty members from forty organizations dis-

cussed and defined an open and portable message passing standard. No efforts had

been put in defining a standard until then, [19]. This had led to various vendors

implementing their own message passing libraries and distributing them leading

to non-portable programs. The initial specification for theMPI-1 standard was

released in August 1994, [4]. This standard was developed byincorporating the

most useful features of then existing implementations of MPI, [25]. The features

that were included in the standard were point-to-point communication, collective

operations, process groups, communication contexts, process topologies, bindings

for Fortran 77 and C, environmental management and inquiry and profiling inter-

face. These features enabled efficient computing in multiprocessor environments

11

by defining a structure in which the various processors couldcommunicate and in

a collaborative manner perform computations. The featuresthat were not included

in the standard were explicit shared-memory operations, complex operations re-

quiring more operating system support, program construction tools and debugging

facilities, and explicit support for threads and task management. For more details

on these features refer to [4].

The standard facilitated the development of parallel programs with efficient

communication. The goals of the MPI design were portabilityand efficiency.

The MPI standard provides bindings only for conventional languages like C and

Fortran. The functionality provided includes point-to-point communication along

with collective communication (broadcast, reduce, barrier). The standard has been

changing ever since and several later versions have been released, [6]. Presently

MPI-2 is also available. It includes library functions for dynamic process man-

agement, input/output routines, one-sided operations andC++ bindings. Dynamic

process management provides a mechanism for newly created processes to com-

municate with existing MPI applications and for two existing MPI applications to

communicate. The input output routines allow efficient partitioning and collect-

ing of data between the various processors. The one sided operations were added

to avoid corresponding routines to be present in every copy of the MPI program

running on the various processors. Finally C++ bindings were introduced in the

MPI-2 standard to facilitate creation of object oriented parallel applications. De-

tailed description of the features in MPI-2 is provided in [6].

12

2.1.3 Language bindings for MPI

A language binding consists of one or more constructs in a programming language

that provides access to a defined service. MPI Language bindings for C, C++ and

Fortran allow MPI services in these languages.

The form of a language binding varies with the programming language. In pro-

cedural, imperative languages like C and Fortran the binding is commonly defined

by a library of procedures. However, in a binding for an object-oriented language,

such as C++, classes, types and templates are used. A good language binding

should preserve the semantic and conceptual model of the service and should not

introduce overhead, [15]. It should allow the application developer to use the bind-

ings easily and efficiently. If the execution cost of a language binding exceeds the

benefits of it as structuring mechanism then it may be rejected.

2.1.4 MPI Implementations

Several implementations of the MPI standard are available.One of the most widely

used implementations is MPICH (developed at Argonne National Laboratory and

Mississippi State University), [16,20,22]. The other implementations are LAM/MPI

developed at the Ohio Supercomputer Center, [3], CHIMP implementation from

Edinburgh Parallel Computing Center, [9], OOMPI implementation from Open

Systems Laboratory at Indiana University, [28] and Unify from Mississippi State

University, [13]. A brief overview of some of them are given below:

13

C bindings for Point-to-Point operations

int MPI Send(void* buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm)
int MPI Recv(void* buf, int count, MPI Datatype
datatype, int source, int tag, MPI Comm comm,
MPI Status *status)

C bindings for Collective operations

int MPI Barrier(MPI Comm comm)
int MPI Bcast(void* buffer, int count, MPI Datatype
datatype, int root, MPI Comm comm)
int MPI Reduce(void *sendbuf, void *recvbuf, int
count, MPI Datatype datatype, MPI Op op, int root,
MPI Comm comm)

C bindings for Groups, Contexts, and Communicators

int MPI Group size(MPI Group group, int *size)
int MPI Group rank(MPI Group group, int *rank)

Figure 2.4: Some of the bindings in MPI for C

2.1.4.1 MPICH

MPICH is an open-source C implementation of MPI-1 developedat the Argonne

National Laboratory and Mississippi State University by Gropp and Lusk in 1992,

[16,20,22]. This used the C bindings provided in the MPI standard and was devel-

oped with the aim of providing a reference implementation ofthe MPI standard.

Being the first complete implementation of the MPI standard and being freely avail-

able it is most widely used.

In an MPICH program, a global communicator MPICOMM WORLD consist-

ing of the details about the environment in which MPICH application is being run

is created. It identifies all the processors that are participating in the computation

along with the unique id that is assigned to it during initialization. This communi-

14

cator is passed as an argument to all the MPI routines. MPICH allows definition

of groups of processors. Communication within a group is classified as intra com-

munication while communication across groups is defined as inter communication.

MPICH supports both inter and intra group communication. The various types of

communications are point to point communication and collective communication.

Point-to-point communication include the basic send and receive primitives. The

prototype for these function calls is similar to the ones provided in Fig. 2.4. The

function calls have a long parameter list specifying the communicator, buffers to

hold the messages to be sent or received, datatype of the message, source and des-

tination of the message and the tags and status of the communication. The buffers

for the message are type casted tovoid * and then sent or received. This makes

this routinestype unsafe. The collective operations also have similar prototype

definition as illustrated in Fig. 2.4.

2.1.4.2 LAM/MPI

LAM/MPI developed at the Ohio Supercomputer Center [3],provides C, C++ and

Fortran 77 bindings for all MPI-1 functions, types and constants. It also supports

some of the features specified in MPI-2 like dynamic process creation, MPI input

output and one sided communications. The core feature of LAM/MPI is the Sys-

tem Service Interface (SSI) which provides a component framework for the LAM

run-time environment and the MPI communication layer. SSI allows the libraries

required by the MPI programs to be added during runtime.

LAM/MPI implements point-to-point communication [44], collective opera-

tions [43] and checkpoint/restart support [39,40] for MPI.The point-to-point com-

munication is also known as the Request Progression Interface(RPI).

15

2.1.4.3 OOMPI

OOMPI [29, 45] is an object-oriented interface to the MPI message passing li-

brary standard. It provides an MPI C++ class library that incorporates in it the

C++/object oriented abstractions for message passing. It is developed as a thin

layer that runs over the C bindings provided in the MPI-1 standard. Even though

C++ bindings were later provided in the MPI-2 standard, OOMPI does not use

those bindings as it was implemented before the MPI-2 was released officially.

In OOMPI data exists in the form of objects and communicationof objects

between the processes needs to take place. The C bindings provided in MPI-1 do

not deal with objects. Thus OOMPI had to built an interface init to communicate

objects. The base types supported by OOMPI are char, short, int, long, unsigned

char, unsigned short, unsigned, unsigned long, float and double.

2.1.4.4 Python Implementations

PyPar [34] and pyMPI [30] are the two current libraries that perform message pass-

ing in Python. However, they are both wrappers around MPICH and are primarily

responsible for tasks such as serializing Python objects and sending them as a C

char array. To the best of our knowledge, our MPI Python implementation is the

only pure Python implementation and can work on any platformwhere a basic

socket library is available.

2.2 Imperative and Functional programming

This section introduces two different approaches to programming:

16

• Imperative programming- A programming style that specifiesan explicit se-

quences of steps to follow to produce a result.

• Functional programming- A programming style that is based on defining

relationships between values in terms of functions.

2.2.1 Imperative programming

Imperative programming specifies a sequence of steps to produce a result. Most of

the languages developed have been imperative in style as most computers use the

von Neuman architecture, which is also imperative. FORTRAN, Basic, Pascal, C,

C++, Java are some of the high level imperative languages. High level imperative

languages allow five basic types of statements: assignment,looping, conditional

branching, unconditional branching and procedure calls.

Let us consider an example of a simple factorial program using a high level

imperative language C:

Imperative programming is a style of programming with side effects. The use

of global variables causes different parts of the program tochange due to changes in

other parts of the program. Thus even though imperative languages allow decom-

position of large problems into modules, these modules are not truly independent.

They may have side effects on each other. In most imperative programming lan-

guages memory allocation and deallocation for data items has to be implemented

manually by the programmer. This increases the scope of error and sometimes

causes memory leaks. Most imperative programming type checking is not very

strict most of the errors are not caught until runtime. Compiler cannot detect pro-

gramming error as it would in a type safe language. In other toprovide callback

17

int factorial(num:int){ /*function name */
int f; /*variable declaration */
for (f=1;num > 0;num--) /*looping statement */

f *= num; /*assignment statement */
return f; /*return statement */

}
int main()
{

...
factorial(10); /*procedure call */
...

}

Figure 2.5: Factorial function in C

functions that library functions call with certain parameters to obtain effects desired

by the programmer, imperative languages like C we need to usefunction pointers to

pass function addresses around. However the usefulness of these function pointers

is limited as we cannot dynamically alter the behavior of thefunction.

2.2.2 Functional programming

Functional programming is a programming paradigm that treats computation as

the evaluation of mathematical functions. In contrast to imperative programming,

functional programming emphasizes the evaluation of functional expressions, rather

than execution of commands and eliminates several constructs often considered

essential to imperative languages. For example, in strict functional programming,

there is no explicit memory allocation and no explicit variable assignment. How-

ever, these operations occur automatically when a functionis invoked thus remov-

18

ing any side effects of function evaluation. By disallowingside effects in func-

tions, the language provides referential transparency which ensures that the result

of a function will be the same for a given set of parameters no matter where, or

when, it is evaluated. A powerful mechanism available in functional languages are

higher-order functions which can take other functions as arguments, and/or return

functions as results. These higher-order functions enablepowerful abstractions and

operations to be constructed. Functional languages like SML also have first class

functions with closures meaning that when a function is passed as a parameter the

function pointers also have a set of values stored with them.Thus the same address

for the function pointer can be used with different sets of values unlike function

pointers in imperative languages.

Let us consider an example of a simple factorial program using a functional

language SML:

fun factorial(0) = 1 |
factorial(n) = n * factorial(n-1)

Figure 2.6: Factorial function in SML

We see that it uses a recursive call to the functionfactorial. We do not use any

variable and the return value of the function is the result. Unlike the imperative

program this does not have any side effects since it does not use any variables.

19

2.2.3 Standard ML (SML)

ML (standing for ”Meta-Language”) [36] [31] is a general-purpose mostly func-

tional programming language developed by Robin Milner and others in the early

1980s at Edinburgh University. ML is an impure functional language, because it

permits imperative programming, unlike pure functional programming languages

such as Haskell, [23]. Features of ML include automatic memory management

through garbage collection, a static type-safe polymorphic type system, type infer-

ence, algebraic data types, pattern matching, and a sophisticated module system

with functions on modules (functors).

Type inference is a technique which allows the compiler to determine from the

code the type of each variable and symbol used in the program,without having

to explicitly declare them. This allows for a compact, yet easily readable code.

Algebraic data types allow to define new types as data structures, and combine

them in a hierarchical fashion. Pattern matching is the capacity for a function to

deconstruct algebraic data types, into its different subtypes, in order to apply a

particular computation for each subtype. Today there are several languages in the

ML family; among them the most popular are SML (Standard ML) [32], F# [2]

and Caml [1].

2.2.4 Concurrent ML (CML)

Concurrent programming is the task of writing programs consisting of multiple

independent threads of control called processes. These processes are executed in

parallel on a single processor. Concurrent ML (CML) [38] is an extension to SML

that facilitates concurrent programming. CML is completely written in SML and

20

is implemented on top of SML/NJ.

The basic modes of communication and synchronization in CMLare shared

memory access or explicit message passing. The messages arepassed between the

threads through a “typed” communication channel. By “typed” we mean that the

thread can receive information of only single type through achannel. However

union types can be used to allow multiple types of messages.

Unlike parallel programming which achieves parallel execution in a multi-

processor environment, concurrent programming achieves parallel execution in a

uniprocessor environment.

2.3 Efforts in development of MPI for functional languages

Wrappers to traditional implementation of MPI in conventional language like C

are available in Caml such as OCamlMPI and ScaMPI. A brief overview of the

wrappers implemented in functional languages is provided in the following section.

2.3.1 OCamlMPI and ScaMPI

OCamlMPI [46] provides Caml bindings for a large subset of MPI functions.

OCamlMPI was implemented for the Starfish project at Technion - Israel Insti-

tute of Technology. Starfish which is written in OCaml is a fault-tolerant system

for running parallel MPI programs on clusters of workstations/PCs. OCamlMPI

was implemented specifically for the Starfish architecture.It supports point-to-

point and collective operations. Even though OCaml has higher order functions

OCamlMPI does not make use of them as it is a wrapper around C and C does not

support this feature. The MPICollective Operations are restricted to a predefined

21

set as in MPICH.

Another MPI interface for Caml is ScaMPI. ScaMPI (Simple Caml to MPI

interface) [8] is a library allowing Caml programs to make calls to MPI-1 commu-

nication routines. It is not a complete implementation of the MPI and provides a

few calls for basic communication primitives. These primitives include send, re-

ceive, scatter and gather. ScaMPI maps function calls from Caml to C and supports

three datatypes: integer, float and strings. Caml being a functional language has

automatic storage. During type conversion from Caml to C, memory has to be

allocated for the data items. The function calls in Caml are identical to the ones

available for C. This limits the functionality of ScaMPI. Itis restricted from taking

advantage of the constructs available in Caml.

Some of the function prototype definitions for ScaMPI are:

external ssendint: int→ pid→ tag→ unit = “mpi ssendint”

external ssendfloat: int→ pid→ tag→ unit = “mpi ssendfloat”

external ssendstring: int→ pid→ tag→ unit = “mpi ssendstring”

These function calls take the same arguments as MPICH. An overhead is present

to translate these calls into C calls.

We observe that there is a lack of native implementations of MPI in a functional

language and there is none available in SML. This has restricted the development of

parallel programs in SML and programmers have not been able to take advantage

of the functional style in parallel programming. This has provided us with the

motivation for development of SMPI, a native implementation of MPI in SML

which will be discussed in detail in the following chapters.

22

Chapter 3

Native Implementation of MPI in SML

3.1 Introduction

Traditionally, conventional languages have been used for developing MPI as they

offer compatibility with existing systems along with high performance. However,

they have some inherent defects at the most basic level making the implementa-

tions ”fat and weak”, [11]. Such languages do not provide strict type checking and

automatic storage management for dynamic data, thus makingthem unsafe. They

also, to some extent, lack modularity, [12]. SMPI, a messagepassing interface de-

veloped using an advanced programming language, addressesthese shortcomings

by incorporating the functional style. It provides a well structured implementation

of MPI using SML of New Jersey.

3.2 SMPI architecture

In this section we briefly explain the SMPI architecture (seeFig. 3.1)

The SMPI architecture is divided into four distinct layers.These layers are:

23

Message Passing Layer

 Application

 Sockets

 Network Layer
 TCP/IP

 SMPI

Figure 3.1: SMPI architecture

Application layer

Theapplication layerconsist of programming code and sets of rules

to solve problems. SMPI supports the Single Program Multiple Data

(SPMD) model of parallel computing, wherein a group of processes

cooperate by executing identical program images on local data values.

The SMPI application program makes calls to SMPI communication

routines to communicate between processes.

Message Passing Layer

24

The message passing layerprovides the communication mechanism

required by processes to pass messages between them. In thisarchi-

tecture the SMPI library acts as the Message Passing Layer. It consists

of functions that facilitate the transfer of messages between the pro-

cesses.

Socket Layer

The socket layerprovides the application program interface for the

Network layer. Reliable communication is ensured by the useof TCP/IP

sockets as it is connection-oriented service.

Network Layer

The network layerforms the underlying communication channel for

transporting the messages from one processor to another. The Ethernet

channel is used for this purpose.

3.3 SMPI

SMPI is a library for parallel programming in SML. It allows users to develop

parallel applications while reaping the benefits of a functional language. SMPI

provides functions for performing communication between different processes run-

ning on different machines.

3.3.1 Environment description

SMPI application programs are executed over a set of processors which are spec-

ified during startup. The processor that initiates the execution of the application

25

program is called theroot processor. When a program begins execution, TCP con-

nections between the processors are set up and these connections last throughout

the execution of the program. Each processor is connected toevery other processor

taking part in the computation. The identities of the processors participating in the

computation are provided as a argument when starting the application program.

Fig.3.2 illustrates a four node environment for a parallel program using SMPI.

Each node is connected to each of the other three nodes by a TCPconnection. As

the root processor,N1 starts a copy of the program in all other processors. The

results of collective operations are returned to the root processor.

N3 N4

N2N1

Figure 3.2: SMPI Environment

3.3.2 Communication handle

Every SMPI function’s argument list includes a communication handle. The com-

munication handle represents the set of processors participating in the computation.

At each node the communication handle contains informationneeded to commu-

nicate with all the other participants. A communication handle is a list of machine

26

names, rank i.e an unique identifier that is assigned to the machine and array of

sockets used to communicate. The processors are assigned unique identifiers and

this information is stored in an handle of the type ”comm”.

type comm ={nodes:string list, rank:int,

sockets:SOCK.clientSocket option ref array}

Here

• rank is the unique identifier assigned to the machine

• nodesis the list of all the nodes involved and

• socketsis the list of sockets used for communicating

The nodes and the unique identifier rank are assigned during the initialization pro-

cess. The socket handles are populated after all the connections are made. For

details refer to chapter 4.

3.3.3 Communication Primitives

Like other MPI architectures SMPI provides both point-to-point communication

and collective operations.

3.3.3.1 Point-to-Point communication

Point-point communication is achieved through simple MPI.Send and MPI.Recv

functions.

val Send : string * int * comm→ unit

val Recv: int * int * comm→ string

27

The parameters for the MPI.Send function are

• buffer to be sent (string)

• destination identifier

• the communication handle

The parameters for the MPI.Recv are the:

• length of the buffer to be received

• source identifier

• the communication handle

The return type of this function is the value being received.

3.3.3.2 Collective operations

SMPI collective operations are performed by calling the point-to-point commu-

nication functions i.e. MPI.Send and MPI.Recv. It is just a set of calls to the

point-to-point communication primitives grouped together. The various collective

operations have been modeled after those used in MPICH, [7].The algorithms

used are tree based algorithms, which are discussed in detail in chapter 4.

val Barrier : comm→ unit

val Bcast : string * int * comm→ string

The parameter for Barrier is the communicator handle. This blocks the program

running in all the processors until all have reached the point where this Barrier call

28

is made. Broadcasting values to all the processors is achieved by the Bcast function

call. Bcast takes the communication handle,the value to be broadcasted along with

its length as parameters and returns the value it receives.

3.3.3.3 Array Operations

SMPI supports all the point to point and collective operations mentioned above

for arrays. Additionally, the collective operation Reduceis also supported for an

array. The current implementation of SMPI only supports Real arrays. We defined

the type MPI.REAL64 which is a tuple consisting of functionsused to manipulate

Real64Array and Real64ArraySlice.

val SendArr : ’a * int * comm * dt→ unit

val RecvArr : ’a * int * comm * dt→ int

val BcastArr : ’a * comm * dt→ ’c

val ReduceArr : ’a * (’b * ’b→ ’c) * comm * dt→ ’b

The parameters for the MPI.SendArr function are

• ’a ArraySlice to be sent

• destination identifier

• the communication handle

• datatype of the ArraySlice (eg. MPI.REAL64)

The parameters for the MPI.RecvArr are the:

• ’a ArraySlice to be populated with the received array

29

• source identifier

• the communication handle

• datatype of the ArraySlice (eg. MPI.REAL64)

The parameters for the MPI.BcastArr function are

• ’a ArraySlice to be sent

• the communication handle

• datatype of the ArraySlice (eg. MPI.REAL64)

The parameters for the MPI.ReduceArr are the:

• ’a ArraySlice to be reduced

• custom function defining the reduce operation

• the communication handle

• datatype of the ArraySlice (eg. MPI.REAL64)

In order to efficiently send and receive Real arrays we had to modify the SML

Basis library and SML runtime library to support the required operations on Real

arrays. To the Socket structure in the SML Basis Library we added the following

calls:

val sendRealArr :′af, activestream sock * Real64ArraySlice.slice→ int

val recvRealArr :′af, activestream sock * Real64ArraySlice.slice→ int

30

We modified both the signature and the implementation for theSocket struc-

ture. The implementation of the Socket structure in the SML Basis library uses the

Unsafe C Interface [37] to call the required functions in theSML runtime library.

The SML runtime library is written in C and is dynamically called by the SML ba-

sis library. In the SML runtime library we have added functions to efficiently send

and receive the bytes of a SML Real array. Modifications to theSML Basis Library

and the SML runtime library are available as a patch file in oursource distribution.

Our Reduce algorithm is a tree based algorithm and is discussed in detail in

chapter 4. We added commonly used Reduce operations MAXREAL64,

MIN REAL64, MUL REAL64, ADD REAL64 and SUBREAL64 to SMPI li-

brary. In order to improve the performance of these we implemented them in the

SML runtime library and called them using the Unsafe C Interface. In addition

to these the user is allowed to define their own custom reduce operation and pass

them to the Reduce method.

3.3.4 Structure of a SMPI program

Every SMPI program must essentially have the following structure.

structure Test =struct
fun main(pgmName, argv) =
let

val MCW = MPI.Init(argv)
...

in
...
end
val = SMLofNJ.exportFn(”test”,main)

end(*test*)

31

We provide a script mpirun used to run the heap image created by the above

sml program. More details in chapter 4.

3.4 Implementation issues

SML does not inherently have any constructs that supports parallelism. SMPI adds

multiprocessor support to SML by providing a set of routinesthat can be included

in the form of a library. Since there are no bindings for SML inthe MPI standard

the design of SMPI is modeled after MPICH, a C implementationof MPI, [7].

In large computation nearly all the data that is passed around are reals. How-

ever the Socket structure in the SML Basis Library supports only sending and re-

ceiving of Word8VectorSlice and Word8ArraySlice. We addedthe ability to send

and receive Real64ArraySlice by modifying the SML Basis Library and SML run-

time library.

The SML Basis library does not use the MSGWAITALL flag for the receive

call in the runtime Socket implementation. This ensures that we do not have to

loop until we receive the required number of bytes. So we modified the runtime

library to use the MSGWAITALL flag. In our modifications to runtime we also

loop around the send call to ensure that all the required bytes are sent.

Modifying the Basis library and runtime required boot strapping the compiler.

For more details refer B.

3.5 SMPI Library

The SMPI library provides a set of structures that can be included in SML pro-

grams to incorporate MPI features into SML. The structures defined in this library

32

are listed below:

Structure Description

MPI Main structure containing all the user calls

SOCK Socket utility

MYTIMER Used for timing calls

The MPI structure contains the function calls described in section 3.3 along

with several other constructs to setup the SMPI environment, perform the initial-

ization process and perform the termination process by closing all the connections.

It also contains the functions required to perform the point-to-point and collective

operations. The SOCK structure defines the underlying reliable communication

interface using sockets. The MYTIMER structure defines the calls to calculate

elapsed time for function calls. The interface for all thesestructures along with the

description is provided in the the appendix.

33

Chapter 4

Message Passing Algorithms

This chapter describes the implementation details for various MPI primitives and

explains the algorithms used for communication operations. The collective opera-

tions described here are: broadcast, reduce and barrier. Broadcast and reduce use a

tree based algorithm which is similar to the one used in MPICH. Our C, SML and

Python implementations are based on the following algorithms.

4.1 MPI Primitives

4.1.1 Initialization and Finalization

The initialization routineMPI Init() is responsible for creating sockets between

all pairs of participating processes. Since a single socketis to be created between

any pair of processes, this can be achieved by ensuring that every process connects

to processes with rank greater than itself. This is illustrated in Algorithm 1. The

sending and receiving of a 1-byte message in Algorithm 1 is toensure that a race

condition does not occur. Figure 4.1 illustrates the relative timing of the commu-

34

nication steps involved when initializing a group of six processes. Solid arrow

indicate matchingconnect() andaccept() calls (the arrow points to theaccept()

call). The shaded areas correspond to the periods of time when a process is blocked

on arecv() call waiting for a 1-byte synchronization message. The synchroniza-

tion message is essential in order to ensure that theaccept() call in each process

receivesconnect() requests from processes with monotonically increasing ranks.

The synchronization message is depicted by a dashed arrow from the previous rank

process. If not for this synchronization message, it might be possible that the solid

arrow from process 1 to process 2 arrives at process 2 before the arrow from pro-

cess 1 as illustrated in Figure 4.2.

Algorithm 1 MPI Initialization
size← Size(MCW)

myrank← Rank(MCW)

for r = 0 to myrank do

SockVec[r] = accept()

end for

if myrank > 0 then

Receive 1 byte message on socketSockV ec [myrank − 1]

end if

for r = myrank + 1 to size do

Connect to noder

end for

if myrank < size− 1 then

Send 1 byte message on socketSockV ec [myrank + 1]

end if

35

1 2 3 4 50

Figure 4.1: Initialization Algorithm

36

0 1 2 3 4 5

Figure 4.2: Race condition in improperly implemented initialization.

MPI Finalize() is responsible for cleaning shutting down all the open sockets.

In order to do this, for each socket, either process can closethe socket.

4.1.2 Send and Receive

Our MPI Send() and MPIRecv() functions utilize the send() and recv() socket

calls respectively. Additionally, they have to ensure thatthe required number of

bytes have been sent and received and check for any error conditions. MPI Send()

additionally has to loop until the required number of bytes has been sent. MPIRecv()

does not need to do this since we utilize the MSGWAITALL socket option (dis-

cussed in more detail in Chapter 6).

37

4.1.3 Broadcast Algorithm

Broadcast function when called broadcasts a message from the root process to all

other processes participating in the computation. The algorithm used for broadcast-

ing values to all the processors as mentioned above is a power-of-two based algo-

rithm. It is also known as the broadcast tree algorithm. The root processor sends a

data item to all the processes in the communicator handle MPICOMM WORLD.

This is a very efficient way to send information as messages are sent in parallel.

Since a tree algorithm is used, the number of communication phases required is

proportional to the logarithm of the number of processes. Ifa sequential algo-

rithm is employed, the number of communication phases required will be linearly

proportional to the number of processes.

The broadcast is initiated by the root processor. At each time unit the number of

processors receiving the information doubles since we use the commonly used bi-

nary tree based broadcast [47] as shown in Algorithm 2. Data transmission among

processes that have already received the entire array (represented byigot = 1) is

overlapped. Figure 4.3 illustrates the operation of the broadcast algorithm when

there are 32 processes. The horizontal lines in each of the columns depicts when

the process has finished receiving the array being broadcast. Algorithm 2 works

even if the number of processors is not an exact power of two. Variableb keeps

track of which level in the broadcast tree we are in sincelog2 b represents the

current step (assuming steps are counted from zero).

If the same communication was to be achieved by transmittingdata from the

root processor to all the other processors serially then thetime taken to achieve

this would be exponentially greater. The tree based algorithm allows for parallel

transmission which reduces the execution time of this function as illustrated in Fig.

38

4.4.

igot

14 16 17 181 3 4 5 6 7 8 9 11 12 13 15 232210 2019 28 2930 3120

b = 16

b = 8

b = 4

b = 2

b = 1

2421 25 26 27

Figure 4.3: Broadcast Tree Algorithm

Tree Broadcast

2 30 4 5 6 7

1 2 30 4 5 6 7

Serial Broadcast
7 time units

3 time units

1

Figure 4.4: Efficiency for Tree Algorithm is Higher than Sequential Transmission

4.1.4 Reduce

The reduce operation reduces values on all processes to a single value. In the

context of an array, the reduction is performed on a per-element basis resulting in a

39

Algorithm 2 Broadcast from root to all other processes
size← Size(MCW)

myrank← Rank(MCW)

igot← 0

b← 1

if size = 1then

return

end if

while b < size do

b = b ∗ ∗2

end while

if myrank = 0then

igot← 1

end if

while b > 1 do

b← b/2

if igot = 1 then

if myrank + b < size then

Use MPISend() to send entire array to rankmyrank + b

end if

else if myrank%b = 0 then

Use MPIRecv() to receive entire array from rankmyrank − b

igot← 0

end if

end while

40

reduced array with the same length of the source arrays. The implementation uses

a simple tree algorithm as illustrated in Algorithm 3.

The Reduce algorithm works by having all processes at the lowest level of the

tree send their arrays to their parent processes. The parentprocesses reduce the

received arrays with their own array using either a pre-defined function or a user-

defined function and pass on the results to their parents and so on until the root

process receives the fully reduced array.

Figure 4.5 illustrates this process in a system with 15 processes. The reduce

operation is performed in a bottom-up fashion. The number ofcommunication

phases required is proportional to the logarithm of the number of processes. At

each phase, nodes at a certain level communicate with nodes at the higher level.

The ordering of the phases is illustrated by the labels of thearrows in the figure.

The reduce operation is performed on all the non-leaf nodes (depicted with a +

sign in the node). At the end of the algorithm, the root process contains the fully

reduced array.

4.1.5 Barrier

The Barrier function synchronizes all the processes. When this function is called,

the processes are blocked until all the processors reach this point. This is achieved

by the following algorithm.

The algorithm synchronizes the processes by performing twocircular passes

[47]. In each pass, every processor waits to receive a token from the previous pro-

cess and after receiving the token sends it to the next process. Process 0 performs

the same steps in reverse order to avoid a deadlock. The first pass ensures that

all processes arrive at the same point in the code. The secondpass allows all the

41

Algorithm 3 Reduce arraybuf on root-process
size← Size(MCW)

myrank← Rank(MCW)

if size = 1then

return

end if

myparent←
⌈

myrank
2

⌉

− 1

child1← 2 ∗myrank + 1

child2← child1 + 1

if child1 ≥ size then {If I am a leaf node}

Use MPISend() to send entire array to rankmyparent.

else {If I am an internal node}

Definetmpbufandresbuf to be arrays of length equal to that ofbuf.

Let op be the reduce operation to be performed.

if child1 < size then {If child1 exists}

Use MPIRecv() to receive the array sent from processchild1 into resbuf.

resbuf ← resbuf op buf

end if

if child2 < size then {If child2 exists}

Use MPIRecv() to receive the array sent from processchild2 into tmpbuf.

resbuf ← resbuf op tmpbuf .

end if

if myrank > 0 then {If I am a non-root process}

Use MPISend() to send the arrayresbuf to process with rankmyparent.

end if

end if

42

Algorithm 4 Barrier Synchronization Algorithm
size← Size(MCW)

myrank← Rank(MCW)

next = (myrank + 1) MOD size

prev = (myrank + size + 1) MOD size

if myrank == 0 then

Send a 1-byte message to ranknext.

Receive a 1-byte message to rankprev.

Send a 1-byte message to ranknext.

Receive a 1-byte message to rankprev.

else

Receive a 1-byte message to rankprev.

Send a 1-byte message to ranknext.

Receive a 1-byte message to rankprev.

Send a 1-byte message to ranknext.

end if

43

1 1 1 1 1 1 11

22 2 2

33

Figure 4.5: Reduce Tree Algorithm

processes to continue execution.

Figure 4.6 illustrates the relative communication timing when MPI Init() is

invoked for a system with 4 processes. The horizontal dashedlines depict when

a process has completed its barrier and can proceed with execution. Figure 4.7

illustrates the effect of a delay in reaching the barrier in process 3. Despite the

delay, all the processes exit the barrier at nearly the same time. Figure 4.8 illustrates

the effect of a delay if a single pass barrier was used and a similar delay in process

3 existed. In this case, process 1 exits the barrier much before the other processes.

44

30 1 2

Figure 4.6: 2-Pass Barrier

30 1 2

Figure 4.7: 2-Pass Barrier with delay in process 3

45

30 1 2

Figure 4.8: 1-Pass Barrier with delay in process 3

46

Chapter 5

Implementation Details

This chapter discusses the features of SML that can be utilized in user programs

and have been used in the SMPI implementation to make it efficient, concise and

robust.

5.1 SML constructs

5.1.1 SML Module system

SMPI takes advantage of the advanced module system providedby SML and pro-

vides a clear logical separation. The structures MPI, SOCK,TIMER defined in

SMPI are logically separate and are developed and tested independently. The struc-

tures contain functions which define the various layers of SMPI. The MPI structure

provides the application programming interface while the SOCK structure provides

the underlying reliable communication interface. The structuring mechanism used

in SMPI makes the implementation easy to understand.

47

5.1.2 Type Safe

Since SML is a type safe languages most of the errors can be detected at compi-

lation time. Due to this a SML program rarely crashes unless asevere fault like

running out of memory occurs, [5].

5.1.3 Higher-order Functions

SML features include higher order functions. This allows functions to be passed as

arguments, stored in data structures and returned as results of function calls. This

provides the ability to pass custom functions at runtime. C provides a similar con-

cept through function pointers. However type of the function needs to be specified

in C which is not required in SML. In our SMPI implementation MPI.ReduceArr

are higher order functions since they accept user defined functions at runtime. Re-

duce functions apply the user defined function to the array contained at each node

to successively reduce the array until the fully reduced array is received at the root

node.

5.1.4 Automatic tuple expansion

Tuples can be expanded automatically into their componentsin SML. For example

in SMPI the functionRankis defined to obtain the rank when the communication

handle which is defined as a tuple containing the rank, the list of nodes and an array

of sockets is passed to it. The function Rank:

fun Rank({rank=r,nodes,sockets}) = r

In the calling program the functionRank:

MPI.Rank(comm)

48

The above example illustrates how automatic tuple expansion can make functions

concise and easy to read.

5.1.5 Automatic Garbage Collection

SML has an automatic garbage collector in which data that is no longer referenced

is automatically deallocated. We do not need to free or allocate memory explicitly

like in C. This makes the code simpler, cleaner and more reliable.

5.1.6 Error Handling

SMPI uses the exception handling mechanism provided by SML.During runtime

the exception handling mechanism which is similar to the ones available in C++

and Java throws exceptions whenever an error or a faulty state is reached. C does

not support exception handling. The exception handling used in SMPI enhances

its functionality.

fun createServerSocket() =
let

val serverSocket = INetSock.TCP.socket()
val = Socket.Ctl.setREUSEADDR(serverSocket,true)
val = Socket.bind(serverSocket, INetSock.any PORT)
val = Socket.listen(serverSocket, 5)

in
serverSocket

end
handle => raise ”Fail: Could not create server socket”

49

5.1.7 Tail Recursion

Recursive functions are used widely in functional languages. These functions con-

sume stack and can fail if the recursion goes on for too long. However by using tail

recursion [24], where we do not maintain the return state in the call stack we can

improve efficiency. In the SMPI implementation we have used tail recursion in all

the places where we iterate.

5.1.8 Interfacing with C

Using Unsafe.CInterface structure C functions can be registered into SML. In

SMPI, we modified the Socket structure provided by the SML Basis library to

include routines that enable efficient sending and receiving of Real arrays. We im-

plemented these routines as part of the SML runtime in C and included them in

the SML basis library using the Unsafe.CInterface. Our MYTIMER module also

uses the Unsafe C Interface to call the getTimeOfDay function provided by the C

standard library.

50

Chapter 6

Experimental Results

6.1 Experimental Setup

We compared the performance of C, SML and Python implementations of

MPI Send(), MPIBcast(), MPIReduce() and MPIBarrier(). Despite MPICH [16]

already being a complete C implementation of the MPI-1 standard [4], we decided

to implement these primitives in our own C implementation, since it would be un-

fair to compare the performance against MPICH, since MPICH is a highly portable

implementation and in order to work with numerous architectures such as SMP sys-

tems, Myrinet and InfiniBand etc., it has numerous layers of abstractions, which

has a noticeable impact on performance. MPI primitives can be classified as Point-

to-Point or Collective operations. MPISend() is representative of Point-to-Point

operations. These operations are between two processes andthe performance is

linear function of the message length. MPIBcast() is a collective operation since

it can involve two or more processes. Since most collective operations use binary

tree based algorithms, the performance is a linear functionof the message size and

a logarithmic function of the number of participating processes. MPIBarrier() is a

51

also a collective operation. However, unlike other collective operations, its perfor-

mance is a linear function of the number of participating processes. Since we use a

double circular shift algorithm in the MPIBarrier() implementation, every process

only sends two bytes to its neighbor and received two bytes from its neighbor.

We evaluated the performance of our implementations on a moderately hetero-

geneous cluster. The cluster comprised of 13 nodes. 10 nodeswere Athlon MP

2200+s, 1 was an Athlon MP 1600+ and 2 were an Athlon MP 1900+s.The nodes

were connected via a 100Mbps ethernet network. All nodes had2 GB of RAM.

The same network was also used for the shared network filesystem (NFS) between

the nodes. The operating system on all the nodes was Fedora Core 6 Linux. We

used python-2.4.4-1 and smlnj-110.59 to run our Python and SML implementa-

tions respectively.

In order to be consistent, we used the gettimeofday() function in all our imple-

mentations, since all the implementations eventually use the gettimeofday() present

in glibc (standard C library). In our SML implementation, wedid this by using the

unsafe C interface. In Python, gettimeofday() is already available as part of the

standard library.

In our C and Python implementations, we used the MSGWAITALL flag. This

flag ensured that an entire message is received with a single call to the recv() socket

function. However, in SMLNJ, this flag has not been implemented. In order to

remain consistent with the C and Python implementations, wemodified the source

code for the SML runtime library to support the MSGWAITALL flag.

All the data points in all the plots were chosen as the minimumof 20 trials in

order to improve accuracy.

52

2 4 6 8 1 0 1 2 1 4 1 6N u m b e r o f P r o c e s s o r s0 . 0 0 0 00 . 0 0 0 20 . 0 0 0 40 . 0 0 0 60 . 0 0 0 80 . 0 0 1 00 . 0 0 1 20 . 0 0 1 40 . 0 0 1 60 . 0 0 1 8
Ti me(secs)

T i m e f o r M P I _ B a r r i e r ()CP y t h o nS M L

Figure 6.1: Comparison of Barrier performance.

6.2 Barrier

Figure 6.1 depicts the execution time for the MPIBarrier() in the C, Python and

SML implementations. Since, our Barrier call sends only four bytes of data among

the nodes, the time for the barrier call significantly depends on performance of the

language. Since, Python is purely interpreted, it performsslightly worse than our C

implementation. On the other hand, the performance of SML very closely follows

the performance of our C implementation. It can also be observed that for all the

implementations, the time is linearly proportional to the number of processors.

53

0 5 1 0 1 5 2 0 2 5 3 0M s g L e n (M B)91 01 11 21 31 41 51 61 71 8
R elDiff(%)

R e l D i f f o f M P I C H a g a i n s t C f o r M P I _ R e c v ()

Figure 6.2: Comparison of MPICH and simple C MPIRecv() implementation.

6.3 Point to Point Primitive

Figures 6.2 and 6.3 illustrate the performance of our C implementation against that

of MPICH. The relative difference in wall time was determined by equation 6.1. A

positive relative difference indicates that MPICH is performing worse than our C

implementation.

Relative Difference=
tx − tc

tc
, where x is either MPICH, SML or Python. (6.1)

It can be observed that for small message sizes, MPICH performs much worse

than our C implementation. This is due to a constant cost involved in setting up

MPICH. However, as the message size increases, the performance gap reduces.

MPICH has a very large code base since it is a complete implementation of the

54

0 5 1 0 1 5 2 0 2 5 3 0M s g L e n (M B)02 04 06 08 01 0 0
R elDiff(%)

R e l D i f f o f M P I C H a g a i n s t C f o r M P I _ S e n d ()

Figure 6.3: Comparison of MPICH and simple C MPISend() implementation.

MPI-1 standard. Further, MPICH has also been designed to work over multiple

architectures. Hence, it is understandable for it to have a larger overhead. We as

well as others [26,27] have observed that message passing using native TCP sock-

ets performs much better than MPICH. MPICH has been designedto work with

heterogeneous workstations. It is even capable of working in a mixed endianness

environment. Further, MPICH is capable of working with various network hard-

ware. It achieves this by using an ADI (abstract device interface), which abstracts

the underlying physical communication layer. Typically, MPICH’s MPI calls are

mapped onto MPID (MPI Device) calls and the MPID layer make calls to the ADI

corresponding to the required physical communication layer. Due to the above rea-

sons, we decided to compare our Python and SML implementations against our C

implementation for the rest of this work.

55

0 2 4 6 8 1 0 1 2 1 4M s g L e n (M B)0 . 00 . 20 . 40 . 60 . 81 . 01 . 21 . 4
Ti me(secs)

T i m e f o r M P I _ S e n d ()CP y t h o nS M LM P I C H

Figure 6.4: Wall Time for MPISend().

0 2 4 6 8 1 0 1 2 1 4M s g L e n (M B)0 . 00 . 20 . 40 . 60 . 81 . 01 . 21 . 4
Ti me(secs)

T i m e f o r M P I _ R e c v ()CP y t h o nS M LM P I C H

Figure 6.5: Wall Time for MPIRecv().

56

Figures 6.4 and 6.5 plot the wall time of MPISend() and MPIRecv() for all

four implementations. It can be observed that the wall time is a linear function of

the message size. The performance of MPICH is noticeably worse than the other

implementations. In order to obtain a better comparison, weplotted the relative

difference in wall time with respect to C. The relative difference was computed

using equation 6.1. A positive relative difference indicates how much worse the

implementation is compared to our C implementation.

Figures 6.6 and 6.7 plot the relative difference in wall timefor Python, SML

and MPICH against C. MPIRecv() internally uses the recv() socket call. A non-

blocking recv() call has to initially wait for data to be present in the operating

system buffer. However, a send() socket call can immediately begin sending data.

Due to this, we see slight irregularities in Figure 6.7.

6.4 Collective Primitive

In order to test the performance of collective operations, we implemented two of

the most common MPI collective operations - MPIBcast() and MPIReduce().

MPI Bcast() broadcasts the buffer from a root node to other nodesin the group

of processes, while MPIReduce() performs a collective reduce operation and the

fully reduced array is received at the root node.

6.4.1 Broadcast

Figures 6.8, 6.9 and 6.10 illustrate the wall time for MPIBcast in our C, Python and

SML implementations respectively, when the number of processors is increased for

a fixed message size. Since our Python, C and SML implementations use a binary

57

4 6 8 1 0 1 2 1 4M s g L e n (M B)� 1 0 0� 5 00
5 01 0 0

R elDiff(%)
R e l D i f f o f P y t h o n , S M L a n d M P I C H a g a i n s t C f o r M P I _ S e n d ()P y t h o nS M LM P I C H

Figure 6.6: Relative difference of Python, SML and MPICH against C for

MPI Send().

58

0 2 4 6 8 1 0 1 2 1 4M s g L e n (M B)� 1 0 0� 5 00
5 01 0 0

R elDiff(%)
R e l D i f f o f P y t h o n , S M L a n d M P I C H a g a i n s t C f o r M P I _ R e c v ()P y t h o nS M LM P I C H

Figure 6.7: Relative difference of Python, SML and MPICH against C for

MPI Recv().

59

2 4 6 8 1 0 1 2 1 4N u m b e r o f P r o c e s s o r s0 12 34 56
Ti me(secs)

C B r o a d c a s t S c a l i n g

L e n = 1 0 . 5 0 M BL e n = 1 2 . 5 0 M BL e n = 1 4 . 5 0 M B
Figure 6.8: Scaling of MPIBcast() in simple C implementation.

tree based algorithm (as described in Chapter 4), the wall time of the MPIBcast()

call increases distinctly when the number of processes becomes a power of two.

As soon as the number of processors exceeds a power of two, a new level in

the tree is created, creating another level of sends/recvs to be performed. Figures

6.11, 6.12 and 6.13 illustrate the wall time for MPIBcast in our C, Python and

SML implementations respectively, when the message size isincreased for a fixed

number of processes. It can be observed that the wall time is proportional to the

binary log of the number of processes. P=2 corresponds to thelowest line, P=3, 4

corresponds to the next line, P=5, 6, 7, 8 corresponds to the next line and P=9, 10,

11, 12 and 13 corresponds to the highest line depicting the distinct characteristic

of the binary tree based broadcast algorithm.

In order to portray the relative performance of the three implementations, we

60

2 4 6 8 1 0 1 2 1 4N u m b e r o f P r o c e s s o r s0 12 34 56
Ti me(secs)

P y B r o a d c a s t S c a l i n g

L e n = 1 0 . 5 0 M BL e n = 1 2 . 5 0 M BL e n = 1 4 . 5 0 M B
Figure 6.9: Scaling of MPIBcast() in Python implementation.

2 4 6 8 1 0 1 2 1 4N u m b e r o f P r o c e s s o r s0 12 34 56
Ti me(secs)

S M L B r o a d c a s t S c a l i n g

L e n = 1 0 . 5 0 M BL e n = 1 2 . 5 0 M BL e n = 1 4 . 5 0 M B
Figure 6.10: Scaling of MPIBcast() in SML implementation.

61

0 5 1 0 1 5 2 0 2 5M e s s a g e L e n (M B)0 12 34 56 789
Ti me(secs)

C B r o a d c a s t P e r f o r m a n c eP = 2P = 3P = 4P = 5P = 6P = 7P = 8P = 9P = 1 0P = 1 1P = 1 2P = 1 3

Figure 6.11: Performance of MPIBcast() in simple C implementation.

0 5 1 0 1 5 2 0 2 5M e s s a g e L e n (M B)0 12 34 56 789
Ti me(secs)

P y B r o a d c a s t P e r f o r m a n c eP = 2P = 3P = 4P = 5P = 6P = 7P = 8P = 9P = 1 0P = 1 1P = 1 2P = 1 3

Figure 6.12: Performance of MPIBcast() in Python implementation.

62

0 5 1 0 1 5 2 0 2 5M e s s a g e L e n (M B)0 24 68
1 0

Ti me(secs)
S M L B r o a d c a s t P e r f o r m a n c eP = 2P = 3P = 4P = 5P = 6P = 7P = 8P = 9P = 1 0P = 1 1P = 1 2P = 1 3

Figure 6.13: Performance of MPIBcast() in SML implementation.

the plot the relative difference in wall time for the MPIBcast() call for our Python

and SML implementations against our C implementation. The relative difference is

computed by equation 6.1 Figure 6.14 plots the relative difference for an increasing

number of processors and a fixed message size. As the message size increases,

the plots stabilize and it can be observed that the SML implementation performs

marginally better than the Python implementation. Figure 6.15 plots the relative

difference for an increasing message size and a fixed number of processors.

6.4.2 Reduce

Figures 6.16, 6.17 and 6.18 illustrate the wall time for MPIReduce() in our C,

Python and SML implementations respectively when the message size is increased

for a fixed number of processes. The bands that were observed in MPI Bcast()’s

63

2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0R elDiff(%) M s g L e n = 6 . 5 0 M B
S M LP y 2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 7 . 5 0 M B

S M LP y 2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 8 . 5 0 M B
S M LP y

2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0R elDiff(%) M s g L e n = 9 . 5 0 M B
S M LP y 2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 1 0 . 5 0 M B

S M LP y 2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 1 1 . 5 0 M B
S M LP y

2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0R elDiff(%) M s g L e n = 1 2 . 5 0 M B
S M LP y 2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 1 3 . 5 0 M B

S M LP y 2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 1 4 . 5 0 M B
S M LP y

2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0R elDiff(%) M s g L e n = 1 5 . 5 0 M B
S M LP y 2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 1 6 . 5 0 M B

S M LP y 2 4 6 8 1 0 1 2 1 4� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 1 7 . 5 0 M B
S M LP y

2 4 6 8 1 0 1 2 1 4N u m b e r o f P r o c e s s o r s� 4 0� 3 0� 2 0� 1 001 02 03 04 0R elDiff(%) M s g L e n = 1 8 . 5 0 M B
S M LP y 2 4 6 8 1 0 1 2 1 4N u m b e r o f P r o c e s s o r s� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 1 9 . 5 0 M B

S M LP y 2 4 6 8 1 0 1 2 1 4N u m b e r o f P r o c e s s o r s� 4 0� 3 0� 2 0� 1 001 02 03 04 0 M s g L e n = 2 0 . 5 0 M B
S M LP y

R e l D i f f (w r t C) i n B r o a d c a s t S c a l i n g

Figure 6.14: Relative Difference (wrt C) in scaling of MPIBcast().

64

5 1 0 1 5 2 0 2 5� 4 0� 3 0� 2 0� 1 001 02 03 04 0R elDiff(%) P = 3
S M LP y 5 1 0 1 5 2 0 2 5� 4 0� 3 0� 2 0� 1 001 02 03 04 0 P = 4

S M LP y 5 1 0 1 5 2 0 2 5� 4 0� 3 0� 2 0� 1 001 02 03 04 0 P = 5
S M LP y 5 1 0 1 5 2 0 2 5� 4 0� 3 0� 2 0� 1 001 02 03 04 0 P = 6

S M LP y
5 1 0 1 5 2 0 2 5� 4 0� 3 0� 2 0� 1 001 02 03 04 0R elDiff(%) P = 7

S M LP y 5 1 0 1 5 2 0 2 5� 4 0� 3 0� 2 0� 1 001 02 03 04 0 P = 8
S M LP y 5 1 0 1 5 2 0 2 5� 4 0� 3 0� 2 0� 1 001 02 03 04 0 P = 9

S M LP y 5 1 0 1 5 2 0 2 5M s g L e n (M B)� 4 0� 3 0� 2 0� 1 001 02 03 04 0 P = 1 0
S M LP y

5 1 0 1 5 2 0 2 5M s g L e n (M B)� 4 0� 3 0� 2 0� 1 001 02 03 04 0R elDiff(%) P = 1 1
S M LP y 5 1 0 1 5 2 0 2 5M s g L e n (M B)� 4 0� 3 0� 2 0� 1 001 02 03 04 0 P = 1 2

S M LP y 5 1 0 1 5 2 0 2 5M s g L e n (M B)� 4 0� 3 0� 2 0� 1 001 02 03 04 0 P = 1 3
S M LP y

R e l D i f f (w r t C) i n B r o a d c a s t P e r f o r m a n c e

Figure 6.15: Relative Difference (wrt C) in performance of MPI Bcast().

65

0 5 1 0 1 5 2 0 2 5M e s s a g e L e n (M B)0 12 34 56 7
Ti me(secs)

C R e d u c e P e r f o r m a n c eP = 2P = 3P = 4P = 5P = 6P = 7P = 8P = 9P = 1 0P = 1 1P = 1 2P = 1 3

Figure 6.16: Performance of MPIReduce() in simple C implementation.

performance (Figures 6.11, 6.12 and 6.13) are not so distinct in the case of the

MPI Reduce() function. The reason for this is that heterogeneity in the CPUs of

the nodes in the cluster. The MPIReduce() function is a lot more CPU intensive

than the MPIBcast() function due to the arithmetic operation that is performed on

the entire array at each processor. In the case of a homogeneous cluster, a banding

similar to that of MPIBcast() can be expected even in the case of MPIReduce().

Figures 6.19, 6.20 and 6.21 illustrate the wall time for MPIReduce() in our C,

Python and SML implementations respectively, when the number of processors is

increased for a fixed message size. The step pattern is not as distinct as in the case

of MPI Bcast() due to the heterogeneity of the cluster.

Our MPI Reduce function provides for a few predefined operations that can be

performed such as addition, subtraction, multiplication,minimum and maximum.

66

0 5 1 0 1 5 2 0 2 5M e s s a g e L e n (M B)0 12 34 56 7
Ti me(secs)

P y R e d u c e P e r f o r m a n c eP = 2P = 3P = 4P = 5P = 6P = 7P = 8P = 9P = 1 0P = 1 1P = 1 2P = 1 3

Figure 6.17: Performance of MPIReduce() in Python implementation.

0 5 1 0 1 5 2 0 2 5M e s s a g e L e n (M B)0 12 34 56 7
Ti me(secs)

S M L R e d u c e P e r f o r m a n c eP = 2P = 3P = 4P = 5P = 6P = 7P = 8P = 9P = 1 0P = 1 1P = 1 2P = 1 3

Figure 6.18: Performance of MPIReduce() in SML implementation.

67

2 4 6 8 1 0 1 2 1 4N u m b e r o f P r o c e s s o r s0 12 34 5
Ti me(secs)

C R e d u c e S c a l i n g

L e n = 1 0 . 5 0 M BL e n = 1 2 . 5 0 M BL e n = 1 4 . 5 0 M B
Figure 6.19: Scaling of MPIReduce() in simple C implementation.

2 4 6 8 1 0 1 2 1 4N u m b e r o f P r o c e s s o r s0 12 34 5
Ti me(secs)

P y R e d u c e S c a l i n g

L e n = 1 0 . 5 0 M BL e n = 1 2 . 5 0 M BL e n = 1 4 . 5 0 M B
Figure 6.20: Scaling of MPIReduce() in Python implementation.

68

2 4 6 8 1 0 1 2 1 4N u m b e r o f P r o c e s s o r s0 12 34 5
Ti me(secs)

S M L R e d u c e S c a l i n g

L e n = 1 0 . 5 0 M BL e n = 1 2 . 5 0 M BL e n = 1 4 . 5 0 M B
Figure 6.21: Scaling of MPIReduce() in SML implementation.

We have defined these operations internally in C in the SML runtime library for

speed. The user can also provide an SML function that can be used to perform a

custom reduce operation. Figure 6.22 illustrates the performance of MPIReduce

when the reduce operation is performed in C and in SML (both inthe SML MPI im-

plementation) when 13 processors are used. Figure 6.23 illustrates the correspond-

ing relative difference i.e. it shows by what percentage theC version is better than

the SML version. The performance difference of about 7.5% isquite acceptable in

most applications.

6.5 Numerical Integration Application

We also tested our message passing libraries with a real world application. For this

we chose to implement the parallel algorithm to calculate the value ofπ which uses

69

5 1 0 1 5 2 0 2 5M e s s a g e L e n g t h (M B)12 34 56 78
W allTi me(secs)

P e r f o r m a n c e o f R e d u c e o p e r a t i o n p e r f o r m e d i n C a n d S M L (P = 1 3)S M L R e d u c e i n S M LC R e d u c e i n S M L

Figure 6.22: Performance of SML’s MPIReduce(), when reduce operation is per-

formed in C and SML.

the Broadcast and the Reduce MPI operations. For the MPICH implementation we

used the example programcpi.c that is provided with the MPICH distribution and

rewrote the same algorithm using our C, SML and Python MPI libraries. This

program determines the value ofπ by evaluating the following definite integral

∫

1

0

4

1 + x2
dx = π

We tested our application using 8 homogeneous nodes from thesame cluster. Fig-

ure 6.24 illustrate the execution time for our SML and C implementation along

with MPICH. In the case of SML, C and MPICH, we used8 × 108 samples for

the numerical integration and observed that the performance of SML is between 1

and 2 times slower than C. Python being an interpreted language is many orders

of magnitude slower than C and SML which are compiled languages. Our python

70

5 1 0 1 5 2 0 2 5M e s s a g e L e n g t h (M B)6 . 06 . 57 . 07 . 58 . 08 . 59 . 0
R el ati veDiff erence(%)

R e l a t i v e D i f f e r e n c e i n R e d u c e o p e r a t i o n p e r f o r m e d i n C v s S M L (P = 1 3)

Figure 6.23: Relative Difference in Performance of SML’s MPI Reduce(), when

reduce operation is performed in C vs. SML.

71

implementation takes 526 seconds when8×108 samples are used with two proces-

sors. This is because the loop that evaluates the integral isevaluated by the python

interpreter at every iteration causing it to be much slower than the compiled lan-

guages that we used. So for Python we reduced the number of samples to8× 106

for the numerical integration and plotted its performance separately in 6.26.

We also plotted the parallel efficiency (η) of our implementations using the

formula

η =
T1

pTp

where,T1 is the time it takes to execute the application on a single processor and

Tp is the time it takes to execute the same application with the same problem size

on p processors. Figures 6.25 and 6.27 illustrate the parallel efficiencies for our

implementations. The efficiencies drop off from 100% due to the additional com-

munication overhead involved in using more than one processor. The efficiency of

our SML implementation is very similar to that of our C implementation.

This application illustrates that SML strikes a better balance between ease of

use and performance than Python.

72

1 2 3 4 5 6 7 8N u m b e r o f P r o c e s s o r s0 51 01 52 02 53 0
Ti me(secs)

C P I P e r f o r m a n c e (8 e 0 8 s a m p l e s) M P I C HCS M L

Figure 6.24: CPI performance of C, MPICH and SML.

1 2 3 4 5 6 7 8N u m b e r o f P r o c e s s o r s4 05 06 07 08 09 01 0 0
Effi ci ency(%)

P a r a l l e l E f f i c i e n c y o f C P I (8 e 0 8 s a m p l e s) M P I C HCS M L

Figure 6.25: Efficiency of CPI in C, MPICH and SML.

73

1 2 3 4 5 6 7 8N u m b e r o f P r o c e s s o r s4 68
1 01 21 41 6

Ti me(secs)
C P I P e r f o r m a n c e f o r P y t h o n (8 e 0 6 s a m p l e s)

Figure 6.26: CPI performance of Python.

1 2 3 4 5 6 7 8N u m b e r o f P r o c e s s o r s4 05 06 07 08 09 01 0 0
Effi ci ency(%)

P a r a l l e l E f f i c i e n c y o f C P I f o r P y t h o n (8 e 0 6 s a m p l e s)

Figure 6.27: Efficiency of CPI in Python.

74

Chapter 7

Conclusion and Future Work

This chapter summarizes the work presented in this thesis and explores the possi-

bilities of expanding the realm of SMPI.

7.1 Conclusion

This thesis has provided a native implementation of a message passing interface

in an advanced programming language Standard ML. The main contribution of the

thesis is the design of the SMPI implementation and its realization in SML. The

structured implementation is based on the four layered architecture of SMPI. This

implementation encourages programmers to do parallel programming in functional

languages. We also implemented the same MPI primitives in Python and C in order

to compare the performance of our SML implementation. We chose not to use

existing Python MPI implementations since they are wrappers around MPICH. We

have also compared our implementation with MPICH.

For small message sizes, our SML implementation performs much better than

MPICH since in order to be highly portable, MPICH has a higheroverhead. For

75

most of our experiments, the performance of our SML implementation is better

than that of the Python implementation and closer to that of the C implementation.

We have demonstrated how SMPI allows a programmer to use parallel pro-

gramming constructs in a functional programming language.This allows the ap-

plication developer to use higher order functions, automatic storage management,

strong typing and exception handling mechanism provided bySML to write well

structured, concise and robust code.

7.2 Future Work

This thesis provides only the basic communication primitives for MPI in SML and

currently supports string and real datatypes. This librarycan be extended to include

all the function defined in the MPI standard and other data types. The collective

operations are implemented using the tree based algorithms. Other algorithms can

be implemented to further optimize the performance. This work, along with MPI

implementations in other functional languages, will form the basis for the defining

language bindings for functional languages in the MPI standard.

76

Appendix A

SML MPI Library API

This appendix provides a reference for the SMPI library. This can be included as

an extension to the Standard ML Basis Library. SMPI providesa set of structures

that can be included in SML programs to incorporate MPI features into SML. The

structures defined in this library are listed below:

structure MPI

This module contains all the basic primitives including primitives for point-

to-point communication and collective operations required for a Message

Passing Interface.

structure SOCK

This module defines the underlying reliable socket interface which is used to

communicate messages.

structure MYTIMER

This module contains calls to calculate elapsed time using system calls to

the C interface.

77

A.1 SMPI Reference

The MPI structure

The MPI structure is a collection of library functions whichis essential

for any message passing program. It contains all the essential func-

tions required to write any MPI program. Functions includedin this

structure are the functions to to create and destroy the communicator

handle MPICOMM WORLD which is basically a tuple containing

rank, the host name list, and an array of socket handles. It also de-

fines the data type MPI.REAL64 which is tuple of functions used to

manipulate Real64Array an Real64ArraySlice.

Interface

type comm ={nodes:string list, rank:int,
sockets:SOCK.clientSocket option ref array}

val Rank : comm → int

val Size : comm → int

val Init : string list → comm

val Send : string * int * comm → unit

val Recv: int * int * comm → string

val SendArr : ’a * int * comm * dt → unit

val RecvArr : ’a * int * comm * dt → ’b

val Barrier : comm → unit

val Bcast : string * int * comm → string

val BcastArr : ’a * comm * dt → ’b

val ReduceArr : ’a * (’b * ’b -> ’c) * comm * dt → ’b

val Finalize : comm → unit

78

Description

type comm ={nodes:string list, rank:int,

sockets:SOCK.clientSocket option ref array}

This is an user defined datatype which acts as the communication handler. It

consists of the host name list, the rank and an array of sockethandles.

val Rank : comm → int

This returns the rank of the host.

val Size : comm → int

This returns the number of processors participating in the computation i.e.

the number of hosts stored in the handler comm.

val Init : string list → comm

This function is called by all MPI programs. This sets up the MPI COMM WORLD

and makes all the server and client connections. There must exist a corre-

sponding Finalise function for every Init function.

val Send : string * int * comm → unit

Sends the message (string) to the destination specified.

val Recv: int * int * comm → string

Receives a message and returns it as a string.

val SendArr : ’a * int * comm * dt → unit

Sends the array to the destination specified. dt represents the data type of the

elements in the array e.g MPI.REAL64

79

val RecvArr : ’a * int * comm * dt → ’b

Receives an array and populates the array passed to it.

val Barrier : comm → unit

This function ensures that all the processors have executedtheir program

upto the point where Barrier is called.

val Bcast : string * int * comm → string

This function is used to broadcast a message to all the processors.

val BcastArr : ’a * comm * dt → ’b

Broadcasts the array of datatype dt to all the processors.

val ReduceArr : ’a * (’b * ’b -> ’c) * comm * dt → ’b

Reduces arrays from all the processors by applying the function passed into

it as the second parameter. The fully reduced array is obtained at the root

processor. dt is the data type of the elements in the array e.g. MPI.REAL64

val Finalize : comm → unit

This function is called at the end of each MPI program. The communicator

handle is given as input. It closes all the open sockets in thehandle.

80

The Sock structure

The Sock structure provides a collection of utility functions for cre-

ating and closing sockets. It also provides functions for reading and

writing into sockets. This is essential part of MPI as all communica-

tion between processes takes place with this socket interface. INet-

Sock i.e. Internet domain sockets are used for this purpose.

Interface

val PORT : int

type clientSocket =(INetSock.inet,Socket.active
Socket.stream) Socket.sock

val createClientSocket : string → clientSocket

val createServerSocket : unit → Socket.passive
INetSock.stream sock

val acceptServerSocket : (INetSock.inet,Socket.passive
Socket.stream) Socket.sock → clientSocket * string

val close : (’a,’b Socket.stream) Socket.sock → unit

val send : clientSocket * Word8Vector.vector → unit

val receive : (’a,Socket.active Socket.stream)
Socket.sock * int → Word8Vector.vector

val sendArr : clientSocket * ’a * (’a -> ’’b) *
(clientSocket * ’a → ’’b) → unit

val recvArr : ’a * ’b * (’a * ’b → ’c) → ’c

Description

type clientSocket =(INetSock.inet,Socket.active

Socket.stream) Socket.sock

data type to define client sockets

81

val createClientSocket : string → clientSocket

reads the network host database and gets the internet address which is then

converted to socket address (in the INet address family). Creates a socket of

the type clientSocket and connects it to the previously acquired address and

returns the clientSocket entry.

val createServerSocket : unit → Socket.passive

INetSock.stream sock

creates a stream socket in the INet address family in passivemode with the

default protocol. It binds the socket to a socket address andcreates a queue

(of size n) for pending questions associated to the socket. Connections (via

connect) to the socket are queued, and later accepted by a call to accept.

Raises SysErr if there are too many sockets in use.

val acceptServerSocket : (INetSock.inet,Socket.passive

Socket.stream) Socket.sock → clientSocket * string

calls Socket.accept and extracts the first connection from the queue of pend-

ing connections of the socket, which must be a passive streamsocket bound

to an address via bind and listening to connections after a call to listen. If

a connection is present, Socket.accept returns a pair(s,sa)with s a new ac-

tive socket with the properties of the socket passed to the method andsa the

corresponding socket address. If no pending connections are present on the

queue and the socket is not marked as non-blocking, accept blocks until a

connection is requested; if the socket is marked as non-blocking, a SysEr-

ror exception is raised. Returnss and the host name of the socket address

returned.

82

val close : (’a,’b Socket.stream) Socket.sock → unit

closes the connection to the socket.

val send : clientSocket * Word8Vector.vector → unit

send calls Socket.sendVec and blocks until all the bytes in the vector are sent

across.

val receive : (’a,Socket.active Socket.stream) Socket.sock

* int → Word8Vector.vector

receives the number of bytes specified on the socket using thecall Socket.recvVec

and blocks until all the bytes are successfully received. Wemodified the

SML runtime to use the MSGWAITALL flag for all receive calls. This flag

ensures that an entire message is received with a single callto the receive()

socket function.

val sendArr : clientSocket * ’a * (’a -> ’’b) * (clientSocket

* ’a → ’’b) → unit

sends an array over the socket handle passed to it. Second parameter is the

ArraySlice that needs to be sent across. Third parameter is afunction that

returns the length of the array slice. Fourth parameter is the function thats

supports sending an array slice of the required data type. Ithas been imple-

mented this way so that it can be extended to support multipledata types.

val recvArr : ’a * ’b * (’a * ’b → ’c) → ’c

receives an array and populates the array slice supplied to it. The first param-

eter is the server socket, second parameter is the array slice to be populated

and third parameter is the function that receives the required data type and

populates the array slice.

83

The MyTimer structure

The MyTimer structure is used to calculate elapsed time.

Interface

val getTimeOfDay : unit → Int32.int * int

val start timer : unit → real

val elapsed timer : real → real

Description

val getTimeOfDay : unit → Int32.int * int

This function uses Unsafe C Interface to call getTimeofDay provided by C

standard library.

val start timer : unit → real

Starts the timer.

val elapsed timer : real → real

Calculates the elapsed time from the time the timer was started.

A.2 Starting an SMPI job

The list of available hosts is assumed to be in a text file whoselocation is specified

in ourmpirun script. If not specified, the script defaults to using the machines file

used by MPICH usually located at/usr/local/mpich/share/machines.LINUX.

mpirun has to be provided with the number of hosts to use and the program to run

as arguments. The script then connects to the required number of hosts via SSH

and starts an instance of the specified program on each of them.

84

The command used to run a SMPI program is :

./mpirun -np<num hosts> sml @SMLload=exec.x86-linux<arg 1> <arg 2> ...

where

exec.x86-linuxis the executable heap image that is created by compil-

ing the application program

num hostsis the number of hosts that will participate in the computa-

tion

arg 1, arg 2, ...are arguments to the application program

Whenmpirun starts up the application program on all the required hosts,it

also appends the list of all participating hosts, port and rank for each host to the

command line arguments sent to the application program. These additional argu-

ments are used by the MPIInit() call.

A.3 Examples

Listing A.1 illustrates how to use the MPI primitives described above.

Listing A.1: Demo using our SMPI Library
1 s t r u c t u r e DEMO = s t r u c t

3 fun addRealAr ray (s l , out , 0) = (R ea l 6 4 A r ray S l i ce . u p d a t e (out, 0 , R ea l 6 4 A r ray S l i ce . sub (s l , 0)
+ R ea l 6 4 A r ray S l i ce . sub (out , 0)))

5 | addRealAr ray (s l , out , i) = (R ea l 6 4 A r ray S l i ce . u p d a t e (out, i , R ea l 6 4 A r ray S l i ce . sub (s l , i)
+ R ea l 6 4 A r ray S l i ce . sub (out , i)) ; addRealAr ray (s l , out , i−1))

7
fun op2 (x , y) = addRealAr ray (x , y , R ea l 6 4 A r ray S l i ce . l e n g t h (x)−1)

9
fun main (pgmName , argv) =

11 l e t
(∗ I n i t i a l i z e MPI ∗)

13 v a l COMM = MPI . I n i t (a rgv)

15 (∗ Determine my rank and s i z e∗)
v a l rank = MPI . Rank (COMM)

17 v a l s i z e = MPI . S i ze (COMM)

19 (∗ Number o f e l em e t s i n t h e array∗)
v a l n = 3

21

85

(∗ Create array t o be used∗)
23 v a l buf = Real64Array . a r r a y (n , 1 . 0)

v a l recvBuf = R ea l 6 4 A r ray S l i ce . f u l l (Rea l64Array . a r r a y (n , 0. 0))
25

(∗Sample Send and Rece i ve∗)
27 v a l = i f (rank = 0) then

MPI . SendArr (R ea l 6 4 A r ray S l i ce . f u l l (bu f) , 1 , COMM, MPI . REAL64)
29 e l s e ()

v a l = i f (rank = 1) then
31 i g n o re (MPI . RecvArr (recvBuf , 0 , COMM, MPI . REAL64))

e l s e ()
33

(∗ Sample Broadcast∗)
35 v a l a = MPI . B cas t A r r (buf , COMM, MPI . REAL64)

37 (∗ Sample Reduce w i t h p r e d e f i n e d o p e ra t o r∗)
v a l b = MPI . ReduceArr (buf , MPI . ADDREAL64 , COMM, MPI . REAL64)

39
(∗ Sample Reduce w i t h u se r d e f i n e d o p e ra t o r∗)

41 v a l c = MPI . ReduceArr (buf , op2 , COMM, MPI . REAL64)

43 (∗ Sample Ba r r i e r c a l l ∗)
v a l = MPI . B a r r i e r (COMM)

45 in
MPI . F i n a l i z e (COMM) ;

47 OS . P ro cess . su ccess
end

86

Appendix B

Patching and Installing SML/NJ

In order to use our SML/NJ MPI library, it is necessary to apply ourmpi-smlnj.patch

patch. Our patch has been tested with SML/NJ versions 110.59to 110.65. The

patch modifies the SML/NJ runtime as well as the Basis library’s implementation.

The SML/NJ compiler is also written in SML/NJ. Hence, in order to install the

patched Basis library, one has to first install an unpatched SML/NJ compiler and

bootstrap the new compiler. The required steps to install version 110.59 on an x86

Linux system are detailed below.

The source code, examples and patch can be downloaded at

http://mindspawn.unl.edu/vaishali/thesis-v0.3.tar.bz2.

1. Download theconfig.tgzfile from the SML/NJ website into a suitably named

folder.
$ mkdir smlnj
$ cd smlnj
$ wget http://smlnj.cs.uchicago.edu/dist/working/\
110.59/config.tgz

$ tar -zxf config.tgz

2. Editconfig/targetsand uncomment the linerequest src-smlnj. This instructs

87

the build process that all the source files are to be downloaded to the local

system.

3. Build and install the SML compiler and runtime system.

$ config/install.sh

4. Now, thebin and lib folders in the current directory contain the SML/NJ

compiler and runtime. The source code to all the other packages is installed

in thesrc folder.

5. Before bootstraping the new compiler, in case you alreadyhave an SML/NJ

installation, unset the environment variableSMLNJHOME.

$ unset SMLNJ_HOME

6. Download ourmpi-sml.patchpatch to the current directory. The patch can

be applied as follows:

$ patch -p0 < mpi-sml.patch

7. Build the new compiler and Basis library. The $ corresponds to the shell

prompt and the - corresponds to the SML/NJ interpreter’s prompt.

$ cd src/system
$../../bin/sml ’$smlnj/cmb.cm’
Standard ML of New Jersey v110.59
[built: Sun Aug 26 00:16:25 2007]
[library $smlnj/cmb.cm is stable]
- CMB.make();
- <Ctrl>+D
$./makeml
$ rm -rf ../../lib
$./installml
$ cd ../..

8. Build the runtime system.

88

$ cd src/runtime/objs
$ make clean
$ make -f mk.x86-linux
$ cp run.x86-linux run.x86-linux.so run.x86-linux.a \

../../../bin/.run/
$ cd ../../..

9. Thebin and lib folder in thesmlnj folder now contain the newly built SM-

L/NJ compiler and runtime system. If desired, these two folders can be

copied to a different location and the SMLNJHOME environment variable

can be made to point to the new location.

When patching and building newer versions of SML/NJ such as 110.65, the

build process does not create thesrc folder described above. The source code is

directly downloaded to the current directory. In this case,the src folder can be

manually created and thecm.tgz, compiler.tgz, system.tgzand runtime.tgzcan be

copied into it from thesmlnjdirectory. If the build process fails complaining about

not being able to downloadlexgen, the fileconfig/allsourcescan be edited and the

line containinglexgenshould be commented. Other than these changes, the build

process is identical to that of SML/NJ 110.59.

89

Appendix C

C/Python MPI Library API and

examples

C.1 Python MPI API

Currently, all socket operations are blocking.

• MPI Init(argv)

Initialize the MPI environment. The command line argumentsare passed

into this functions so that participating nodes can be determined. The return

value is a handle to the current communication group.

• MPI Finalize(comm)

Close open sockets between the participating nodes in communication group

comm. Nothing is returned from this call.

• MPI Send(buf, dest, comm)

Send stringbuf to process with rankdestin the communication groupcomm.

90

If other datatype such as arrays are used, theirtostring()method can be used

to convert the array into a string representation. Similarly, any object can

be serialized into a string with Python’s pickling modules.The lengh of the

buffer can be automatically determined and does not have to be specified.

Nothing is returned from this call.

• MPI Recv(len, src, comm)

Receive a string of lengthlen from process with ranksrc in the communi-

cation groupcomm. The received string is returned. If expecting an object

such as an array, thefromstring()method can be used to create an array from

the received string.

• MPI Barrier(comm)

Ensure that all processes in communication groupcommhave reached this

call before proceeeding.

• MPI Bcast(buf, len, comm)

Broadcast the stringbuf from the root process (rank=0) to all the other pro-

cesses in communication groupcomm. The received string is returned to

all processes (although it is not required on the root process). The non-root

processes should pass an empty string for the argumentbuf, since it is mean-

ingful only for the root process to pass in data that is to be broadcast.

• MPI Reduce(buf, len, fn, comm)

Perform the operationfn on a stringbuf contained in all processes in com-

munication groupcomm. The operation is performed in a bottom up fashion

from the leaves to the root. The non-root processes receive only partial re-

sults and only the root process contains the fully reduced buffer. fn is a

91

function object that is to be of formfn(x, y), where x and y are two strings

that are passed in. The function objectfn is expected to perform an arbi-

trary operation on the strings and return a new string. As described in the

above operations, thetostring(), fromstring() and pickling utilities can be

used when arrays or other arbitrary objects are used.

C.1.1 Examples

Listing C.1 illustrates how to use the MPI primitives described above.

Listing C.1: Demo using our Python MPI Library
! / b i n / env python

2
import mpi

4 import sy s
import numpy

6
d ef f n (x , y) :

8 ” ” ” User d e f i n ed f u n c t i o n t o add two a r r a y s ” ” ”
Conver t b y t e s t o a doub le p r e c i s s i o n array

10 xr = numpy . f r o m s t r i n g (x , numpy . f l o a t 6 4)
y r = numpy . f r o m s t r i n g (y , numpy . f l o a t 6 4)

12
Add t h e two a r ra ys

14 z r = numpy . add (xr , y r)

16 # Conver t a r ray t o b y t e s and r e t u r n i t
re t u rn z r . t o s t r i n g ()

18

20 d ef main () :
I n i t i a l i z e MPI

22 MPICOMM WORLD = mpi . M P I I n i t (sy s . argv)

24 rank = mpi . MPIComm rank (MPICOMM WORLD)
s i z e = mpi . MPI Comm size (MPICOMM WORLD)

26
NumReals = 5

28
Co n s t ru c t an array

30 X = numpy . ones (NumReals , numpy . f l o a t 6 4)
X s t r = X. t o s t r i n g ()

32
Sample Ba r r i e r Ca l l

34 mpi . M P I B a r r i e r (MPICOMM WORLD)

36 # Sample Send and Rece i ve
i f rank == 0 and s i z e > 1 :

38 mpi . MPI Send (Xst r , 1 , MPICOMM WORLD)
i f rank == 1 :

40 recv b u f = mpi . MPIRecv (l en (X s t r) , 0 , MPICOMM WORLD)

42 # Sample Broadcast
i f rank == 0 :

44 mpi . MPI Bcast (Xst r , l en (X s t r) , MPICOMM WORLD)
e l s e :

46 recv b u f = mpi . MPIBcast (’ ’ , l en (X s t r) , MPICOMM WORLD)

48 # Sample Reduce
Y s t r = mpi . MPI Reduce (Xst r , l en (X s t r) , fn , MPICOMM WORLD)

50

92

Only ro o t p ro cess r e c e i v e d t h e f u l l y reduced array
52 i f rank i s 0 :

Y = numpy . f r o m s t r i n g (Yst r , numpy . f l o a t 6 4)
54 # P r i n t t h e reduced array

p r i n t Y
56

58 # Cleanup MPI en v i ro n m en t
mpi . M P I F i n a l i ze (MPICOMM WORLD)

60

62 i f n am e == ’ m a i n ’ :
main ()

93

C.2 C MPI API

Our C MPI library defines the following datatypes for use withthe functions de-

fined below MPIINT, MPI FLOAT, MPI DOUBLE and MPICHAR.

• COMM* MPI Init(int argc, char **argv)

Initialize the MPI environment. The command line argumentsargv and the

number of argumentsargc are passed into this function so that participat-

ing nodes can be determined. The return value is a handle to the current

communication group.

• void MPI Finalize(COMM *comm)

Close open sockets between the participating nodes in communication group

comm. Nothing is returned from this call.

• int MPI Send(void *buf, int count, int dest, COMM *comm, int datatype)

Sendcountelements of arraybuf of typedatatypeto process with rankdest

in the communication groupcomm. On successful completion, a positive

integer is returned.

• int MPI Recv(void *buf, int count, int src, COMM *comm, int datatype)

Receive an array of lengthcountelements of typedatatypefrom process with

rank src in the communication groupcomminto buffer buf. On successful

completion, a positive integer is returned.

• int MPI Barrier(COMM *comm)

Ensure that all processes in communication groupcommhave reached this

call before proceeeding.

94

• int MPI Bcast(void *buf, int count, COMM *commm, int datatype)

Broadcast the arraybuf with countelements of typedatatypefrom the root

process (rank=0) to all the other processes in communication groupcomm.

The received array is returned to all non-root processes (inbuf). The non-

root processes should pass the address of an allocated blockof memory for

the argumentbuf, since it is meaningful only for the root process to pass in

data that is to be broadcast.

• int MPI Reduce(void *sbuf, void *rbuf, int count, void (*op)(void *, void *,

int, int), COMM *comm, int datatype)

Perform the operationopon an arraybuf with countelements of typedatatype

contained in all processes in communication groupcomm. The operation is

performed in a bottom up fashion from the leaves to the root. The non-root

processes receive only partial results and only the root process contains the

fully reduced buffer.op is a pointer to a function of formfn(void *in, void

*inout, int count, int datatype), wherein and inout are two arrays that are

passed in and the newly computer array is placed ininout. The type and

number of elements in the two arrays are specified by arguments datatype

andcountrespectively.

C.2.1 Examples

Listing C.2 illustrates how to use the MPI primitives described above.

Listing C.2: Demo using our C MPI Library
1 # i n c l u d e <s t d i o . h>

i n c l u d e ”mpi . h ”
3

vo id Add (vo id ∗ in , vo id ∗ i n o u t , i n t count , i n t d a t a t y p e) {
5 double ∗d i n =(double ∗) in , ∗d i n o u t =(double ∗) i n o u t ;

i n t i ;
7

/ / Add t h e two a r ra ys and s t o r e r e s u l t s i n i n o u t []

95

9 f o r (i =0 ; i<count ; i ++)
d i n o u t [i] += d i n [i] ;

11 }

13 i n t main (i n t argc , char ∗∗argv) {
/ / I n i t i a l i z e MPI

15 COMM ∗MPI COMM WORLD = M P I I n i t (a rgc , argv) ;

17 / / Determine my rank and s i z e
i n t rank = MPI Comm rank (MPICOMM WORLD) ;

19 i n t s i z e = MPI Comm size (MPICOMM WORLD) ;

21 / / Sample Ba r r i e r Ca l l
M P I B a r r i e r (MPICOMM WORLD) ;

23
i n t NumElements = 3 ;

25 / / Crea te a r ra ys t h a t we w i l l use
double X[] = {1.0 , 1 .0 , 1 .0} ;

27 double Y[NumElements] ;

29 / / Sample Send and Rece i ve
i f (rank == 0 && s i z e > 1)

31 MPI Send (X, 3 , 1 , MPICOMM WORLD, MPI DOUBLE) ;
i f (rank == 1)

33 MPI Recv (X, 3 , 0 , MPICOMM WORLD, MPI DOUBLE) ;

35 / / Sample Broadcast
MPI Bcast (X, 3 , MPICOMM WORLD, MPI DOUBLE) ;

37
/ / Perform a sample reduce o p e r a t i o n

39 MPI Reduce (X, Y, NumElements , &Add , MPICOMM WORLD, MPI DOUBLE) ;

41 / / Make t h e ro o t p r i n t o u t t h e reduced array
i f (rank == 0)

43 p r i n t f (”%g %g %g\n” , Y[0] , Y [1] , Y [2]) ;

45 M P I F i n a l i ze (MPICOMM WORLD) ;

47 re t u rn 1 ;
}

96

Bibliography

[1] The caml language. Accessed from http://caml.inria.fr/.

[2] F #. Accessed from http://research.microsoft.com/fsharp/fsharp.aspx.

[3] Lam/mpi parallel computing. Accessed from http://www.lam-mpi.org/.

[4] The message passing interface (mpi) standard. Accessedfrom http://www-

unix.mcs.anl.gov/mpi/standard.html.

[5] Ml language. Accessed from http://www.hprog.org/fhp/MlLanguage.

[6] Mpi-2: Extensions to the message-passing interface. Accessed from

http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[7] Mpich-a portable implementation of mpi. Accessed from http://www-

unix.mcs.anl.gov/mpi/mpich/.

[8] The scampi library. Accessed from http://www-lasmea.univ-

bpclermont.fr/Personnel/Jocelyn.Serot/scampi.html.

[9] R. Alasdair, A. Bruce, J. Mills, and A. G. Smith. Chimp/mpi user guide.

Technical report, Edinburgh Parallel Computing Centre, 1994.

97

[10] O. Babaoglu, L. Alvisi, A. Amoroso, R. Davoli, and L. A. Giachini. Paralex:

an environment for parallel programming in distributed systems. In6th ACM

International Conference on Supercomputing, pages 178–187, Washington,

D.C., 1992.

[11] J. Backus. Can programming be liberated from the von Neumann style?: a

functional style and its algebra of programs.Communications of the ACM,

21(8):613–641, 1978.

[12] E. Biagioni. A structured TCP in standard ML. InSIGCOMM, pages 36–45,

1994. citeseer.nj.nec.com/biagioni94structured.html.

[13] F. Cheng, P. Vaughan, D. Reese, and A. Skjellum.The Unify System. Engi-

neering Research Center, Mississippi State University, 1 1994.

[14] G. Coulouris, J. Dollimore, and T. Kindberg.Distributed Systems: Concept

and Design. Addison-Wesley, 3rd edition, 2000.

[15] D.Kafura and L.Huang. mpi++: A c++ language binding formpi. Accessed

from http://www.osl.iu.edu/download/mpidc95/papers/html/huang/.

[16] N. Doss, W. Gropp, E. Lusk, and A. Skjellum. A model implementation of

mpi. Technical report, Argonne National Laboratory, 1993.

[17] I. Foster.Designing and Building Parallel Programs. Addison-Wesley, 1995.

[18] Gerasoulis and T. Yang. Scheduling program task graphson MIMD architec-

tures. In R. Paige, J. Reif, and R. Wachter, editors,Algorithm Derivation and

Program Transformation. Kluwer, To appear.

98

[19] W. Gropp and E. Lusk. The MPI communication library: itsdesign and a

portable implementation. InProceedings of the Scalable Parallel Libraries

Conference, October 6–8, 1993, Mississippi State, Mississippi, pages 160–

165, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,USA, 1994.

IEEE Computer Society Press.

[20] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable

implementation of the MPI message passing interface standard. Parallel

Computing, 22(6):789–828, Sept. 1996.

[21] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Pro-

gramming with the Message-Passing Interface. MIT Press, Cambridge, MA,

1994.

[22] W. D. Gropp and E. Lusk.User’s Guide formpich, a Portable Implementa-

tion of MPI. Mathematics and Computer Science Division, Argonne National

Laboratory, 1996. ANL-96/6.

[23] K. Hammond, J. Peterson, et al.Report on the Programming Language

Haskell: A Non-strict, Purely Functional Language. Yale University, New

Haven, Connecticut, USA, 1997. Version 1.4.

[24] J. Harrison. Introduction to functional programming. URL =

http://www.cl.cam.ac.uk/teaching/Lectures/funprog-jrh-1996/, 1997.

[25] A. Hey. The mpi standard: A progress report.

[26] U. Kumar, V. Rajasekaran, M. Chetlur, G. D. Sharma, R. Radhakrishnan, and

P. A. Wilsey. Addressing communication latency issues on clusters for fine

grained asynchronous applications - a case study, 1999.

99

[27] U. Kumar, V. Rajasekaran, R. Radhakrishnan, and P. A. Wilsey.

Tcpmpl a tcp/ip based message passing library for warped. URL =

http://www.ece.uc.edu/ paw/warped/tcpmpl/.

[28] B. C. McCandless, J. M. Squyres, and A. Lumsdaine. Object-oriented mpi

(oompi): A class library for the message passing interface.In MPIDC ’96:

Proceedings of the Second MPI Developers Conference, page 87, Washing-

ton, DC, USA, 1996. IEEE Computer Society.

[29] B. C. McCandless, J. M. Squyres, and A. Lumsdaine. Object oriented MPI

(OOMPI): a class library for the Message Passing Interface.In IEEE, editor,

Proceedings. Second MPI Developer’s Conference: Notre Dame, IN, USA,

1–2 July 1996, pages 87–94, 1109 Spring Street, Suite 300, Silver Spring,

MD 20910, USA, 1996. IEEE Computer Society Press.

[30] P. Miller. pympi: An introduction to parallel python. URL =

http://pympi.sourceforge.net, 2006.

[31] R. Milner, M. Tofte, and R. Harper.The Definition of Standard ML. MIT

Press, Cambridge, MA, USA, 1990.

[32] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Standard

ML (Revised). The MIT Press, 1997.

[33] S. Mintchev. Functional programming helps speed up mpicollective opera-

tion. citeseer.nj.nec.com/mintchev97functional.html.

[34] O. Nielsen. Pypar - building a parallel program step-by-step. URL =

http://datamining.anu.edu.au/ ole/pypar, 2007.

100

[35] P. S. Pacheco.Parallel programming with MPI. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 1996.

[36] L. Paulson.ML for the Working Programmer. Cambridge University Press,

1992.

[37] R. Pucella. Notes on programming in sml/nj. URL =

http://www.cs.cornell.edu/riccardo/prog-smlnj/notes-011001.pdf, 2001.

[38] J. H. Reppy. Concurrent Programming in ML. Cambridge Univ Pr (Trd),

December 1999.

[39] S. Sankaran, J. M. Squyres, B. Barrett, and A. Lumsdaine. Checkpoint-restart

support system services interface (SSI) modules for LAM/MPI. Technical

Report TR578, Indiana University, Computer Science Department, 2003.

[40] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J.Duell, P. Har-

grove, and E. Roman. The LAM/MPI checkpoint/restart framework: System-

initiated checkpointing. InProceedings, LACSI Symposium, Sante Fe, New

Mexico, USA, October 2003.

[41] M. Snir and S. Otto.MPI-The Complete Reference: The MPI Core. MIT

Press, Cambridge, MA, USA, 1998.

[42] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra.MPI:

The Complete Reference. MIT Press, November 1995.

[43] J. M. Squyres, B. Barrett, and A. Lumsdaine. MPI collective operations

system services interface (SSI) modules for LAM/MPI. Technical Report

TR577, Indiana University, Computer Science Department, 2003.

101

[44] J. M. Squyres, B. Barrett, and A. Lumsdaine. Request progression interface

(RPI) system services interface (SSI) modules for LAM/MPI.Technical Re-

port TR579, Indiana University, Computer Science Department, 2003.

[45] J. M. Squyres, B. C. McCandless, and A. Lumsdaine. Object oriented MPI

reference. Technical Report TR 96-12, Department of Computer Science and

Engineering, University of Notre Dame, Notre Dame, IN, USA,1996.

[46] Technion-Israel Institute of Technology.OCamlMPI Tutorial. Accessed from

http://www.cs.technion.ac.il/Labs/dsl/projects/starfish/release/htmldocs/

OCamlMPI.html.

[47] D. Turner, S. Selvarajan, X. Chen, and W. Chen. The mplite message-passing

library. In S. G. Akl and T. F. Gonzalez, editors,IASTED PDCS, pages 429–

434. IASTED/ACTA Press, 2002.

[48] P. Wadler. How to solve the reuse problem? functional programming. pages

371–372.

[49] P. Wadler. Why no one uses functional languages.SIGPLAN Notices,

33(8):23–27, 1998.

102

