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DISTRIBUTED PARALLEL COMPUTATION USING STANDARD ML
Abstract
by Vaishali Chattopadhyay, M.S.

Washington State University
December 2007

Chair: Carl Hauser
This work describes the design and implementation of SMtel first native im-

plementation of a library of functions that support paidgiegramming in SML.
The intent of the proposed work is to provide the basic ragiof MPI in SML
to facilitate programmers to use SML for parallel programgi We find that the
functional constructs available in SML aid in writing wethsctured, concise and
robust code. We also implemented the same algorithms inoRyahd C in order
to compare the performance of SML against it. This was nargssnce the ex-
isting Python implementations are wrappers around MPICE cfAbse to create a
lightweight C implementation in order to perform a fair coanigon of SML with
C since MPICH, despite being implemented in C, incurs a St overhead due

to its high portability.
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Chapter 1

| ntroduction

Large computational applications are complex in structur@ have significant ex-
ecution time. However they can often be broken down intopedelent tasks that
can be done in parallel. Efforts are being expended in defimrthodologies and
designing techniques which allow large complex applicetidto be constructed
more reliably and run more efficiently. Parallel programgsgignificantly reduces
the elapsed computation time for programs while functigeralgramming intro-
duces structure into them making them easy to write, debugresuse. Com-
bining these two ideas, this thesis presents a native ingéation of a message
passing interface for parallel programming in a functioiaalguage and compares
it to other native implementations in an imperative and derpreted language.
For parallel programming, an efficient communication maisra between the
processes is a must. Message Passing is one of the paradigth&lenable com-
munication between processors. The Message Passingabiegiif1PI [41] [35])
is a library of routines which provides this mechanism tofgen point-to-point

and collective communication between processors. Poipbint communication



implies the communication between any two processorsqgiaating in the compu-
tation. Collective operations on the other hand imply thegwnication between
all the processors participating in the computation. Sexgagind and receive would
form a part of the point-to-point communication routinesyile broadcast, reduce
and synchronization routines like barrier would form thdexiive operations.
This thesis describes a library of routines containing thgidocommunication
primitives of MPI using a functional language (Standard NR1]). This allows
programmers to use parallel programming constructs in atiomal language. In
this thesis we first discuss the design and implementatidtheofmessage passing
interface using the advanced programming language, SMl lean compare the
performance of SMPI implementation with other native inmpéstations in an im-
perative and interpreted language. Since most implemengaavailable are only
wrappers to MPICH [20], traditional implementation of MRAing a conventional
language C, we had to implement a native implementation dfiMPython, an in-
terpreted language and to avoid MPICH's overhead perfocmanst a lightweight

implementation in C also had to be implemented.

1.1 Motivation

In recent decades much attention has turned to paralletgmmoging due to its abil-
ity to speed up computations. MPI allows processes to conuatmin a parallel
programming environment. Thus parallel programmers avetaoning their focus
to the development of MPI for efficiently passing messagésdoen the processes.
MPI has been implemented by several researchers sucdgssfulonventional

languages like C, C++, FORTRAN and Java. These implementwsupport the



development of parallel programs written in these langsag&'rappers to these
implementations have been written for other languagesdigenl, Java, OCaml,
Python etc. which will be discussed in Chapter 2.

Significant advances in hardware have assisted in speeg@ingmputations,
thus drawing the attention of programmers towards writingllsstructured and
easy to understand programs rather than emphasizing oretf@mpance alone.
Edoardo Biagioni [12] suggests that structured implententa of of the Transmis-
sion Control Protocol using an extension of the Standard BMI() language can
be made as efficient as comparable implementations in athgubhges. Ensem-
ble [48] a library of protocols used to build distributed &pation has been written
entirely in a functional language Objective Caml [1], a d@lof ML. To quote
Philip Wadler of Bell labs, "Ensemble beats the performaatés predecessor,
Horus, by a wide margin, even though Horus is written in C"|[48e states that
the performance improvement was achieved only due to inggralesign rather
than through long hours of hand-coding the entire system i@ common con-
ception until recent times that functional languages haargr performance than
conventional languages like C was disproved by Philip Waidl§49].

Previous efforts to develop MPI using functional style haerbin providing
wrapper functionality to some traditional MPI implemeittas in conventional
languages like C, e.g. ScaMPI [8] which was a Caml [1] inteaféo MPI and
OCamlIMPI [46] OCaml interface to MPI. The wrappers devetbpave limited
functionality as a result of the limitations of the languageed for the native im-
plementation over which the wrapper is built. Sava Mintcf&®] suggests that
functional style of programming can speed up MPI collectiperations and he

provides functional specifications for the improved operat. However he states



that due to the absence of implementation of MPI in funclidgaaguage these
specifications were translated into a imperative programgnfinguage. Thus we
see that lack of native implementation of MPI in functioremdduage has hindered
the development of parallel programs in functional langsag

In this thesis we address this problem by providing an imgletation of MPI
using a functional language and compare its performande ot native C and

Python implementations.

12 Why SML?

We chose Standard ML (SML [31]) as the basis for the impleat#ont of MPI

using a functional language because:

e SML module system makes the different parts of the progrataally inde-

pendent and easily modifiable

e Higher order functions of SML allow functions to be passedagiments

which makes programming flexible

e SML has compile time type checking which facilitates wigtierror free

code

e SML allows the use of some of the features of imperative stflerogram-

ming

e SML has a sophisticated exception handling mechanismitédizig debug-

ging



1.3 Main Goals

A native implementation of MPI in a functional language wbahcourage parallel
programmers to develop programs in that language. Furaltianguages with fea-
tures such as higher order functions, strong typing, madulgolymorphism and
clear syntax allow it to have certain advantages over inperéanguages. Thus
this thesis implements the message passing interface inctidnal language and
studies its performance against other native implememtaind also studies how
these features affect the MPI implementation and aid inldpireg well structured
programs. SMPI is the first native implementation of MPI in ISkhd provides
a library containing basic communication primitives toegarallel programming
in SML. The aim of SMPI library is to aid programmers in wriinvell structured
parallel programs and assess the suitability of SML languagchanisms for use

in parallel programming.

1.4 Organization of thethesis

The first chapter has given a general introduction and hasd®d the motivation
and goals of this thesis. The second chapter describeslgtedeand background
work related to this thesis. It introduces parallel prognaimg concepts and gives
an overview of the message passing interface. It also intesl functional pro-
gramming and describes its advantages for parallel progriagn A few existing
MPI implementations are discussed. Chapter 3 describes $Mfetail from the
application programmers perspective. Chapter 4 descililemessage passing al-
gorithms used in the implementation of SMPI. Chapter 5 diessow functional

style affects the structure of the program. Chapter 6 dsesishe experimental



setup and results of comparing SML implementation with MiRl&hd our native
implementations in Python and C. Finally the seventh chidpitms the conclusion

of the thesis providing a summary and a brief discussion &eufuture work.



Chapter 2

Background and related wor k

This chapter provides an overview of parallel programmimgssage passing in-
terface and a brief discussion of functional language @Enogning. It gives an
overview of the history of the MPI standard and describesbindings available
in it. This chapter also discusses the previous implemiemtagfforts of message

passing interface in languages such as C, Caml, Python etc.

2.1 Parallel Programming

Parallel programming implies that a set of processors wodperatively to solve
a large computational problem by breaking it up into sméabesks and executing
them simultaneously. It enables computation of larger tties of data within

shorter execution time as compared to traditional seqalesiifle of programming
where each task is performed in an ordered manner. A largebaui unipro-

cessors together provide a great potential for paralletiseneby increasing com-
putation power. Babaoglu et al. in [10] suggest that theee smme technical

issues, which include heterogeneity, high-latency comoation, fault tolerance



and dynamic load balancing, that need to be addressed t@&eeffjcexploit the
parallelism inherent in a distributed system. An applimatmnust manage all these
concerns in addition to computing a result. This necegsitafficient cooperation
between processors for parallel programming and adds tedheplexity of the
programming task.

Fig. 2.1 shows us a pictorial representation of the proseegecuting in dif-
ferent processors communicating via a communication ndtwo

Processes

Message Passing Interface

Communication Network

Figure 2.1: Parallel execution

Parallel programming can be implemented in a shared mematgs or a
distributed memory system. In a shared memory system astddpn Fig. 2.2 all
the processors have direct access to a common memory stotglthwhich they
communicate. On the other hand in a distributed memory sy#te nodes are in-
terconnected by a network where each node is a processoitsvittvn local mem-

ory. Fig. 2.3 illustrates a distributed memory system. Etvemugh shared memory



systems outperform and are easier to program than distdbotemory systems,
the flexibility, scalability and low cost provided by the tkat makes them more
prevalent, [14]. Communication between the processes eatlhieved through:

Distributed Shared Memory (DSM) model

DSM allows sharing of data between processors that do natsha
physical memory. This is achieved by having a common memory
segment which can be accessed by all the processors and ishich
updated regularly. Synchronization between processezhis\aed via

locks and semaphores.
M essage Passing M odel

Message Passing model achieves communication betweerodas n

by exchanging messages across the network.
Non-Uniform Memory Access (NUMA) model

In the NUMA model the memory of other processors can also be ac
cessed along with its local memory. The time required to seteese

different memory modules may differ.

Among these three communication mechanism the messagegassdel is
most widely used because of its scalability, security areaphresource require-
ments, [14]. To improve performance in a distributed enwinent high perfor-
mance switches and fast access mechanisms can be used. &faite dn the

various models and parallel programming can be found in]242].



MEMORY

Figure 2.2: Shared Memory System

MEMORY

MEMORY

CPU

NETWORK

MEMORY

MEMORY

CPU

Figure 2.3: Distributed Memory System

2.1.1 Message Passing I nterface

As programmers are turning toward parallel computing thedn® ease parallel
programming is becoming more prominent. Performance ofrallgh program
depends on how the computation is broken into smaller tasééshaw efficiently
they are made to communicate, [18]. Message passing erthidesommunica-
tion between processors in a distributed memory environrgtransmitting data
over an interconnected network. A message passing libsaaycbllection of com-

munication primitives that parallel processes use to conmioate and synchronize

10




with other parallel processes. Primitives include comroation functions such as
send, receive, reduce and broadcast, and synchronizatimitiges such as bar-
rier, [19,42].

A standard library of function calls that can be used to imm@at a message
passing program is the Message Passing Interface (MPI), [2@rovides an ab-
straction of how the underlying hardware is organized. Roogners can thus write
parallel programs containing MPI subroutines and functalfs that will work on
any machine on which the MPI library is installed. These ragegassing libraries
relieve the developers from the cumbersome task of netwagiramming, and al-

low them to concentrate on program development.

2.1.2 Development of the MPI standard

A workshop on “Standards for Message Passing in Distribiedhory Environ-
ment” was conducted by the Center for Research in Paralleipgation in 1992,
in which a MPI Forum consisting of eighty members from fortganizations dis-
cussed and defined an open and portable message passirayctdnmlefforts had
been put in defining a standard until then, [19]. This had tedarious vendors
implementing their own message passing libraries andildising them leading
to non-portable programs. The initial specification for #@l-1 standard was
released in August 1994, [4]. This standard was developeihdnyrporating the
most useful features of then existing implementations of NiB&]. The features
that were included in the standard were point-to-point camication, collective
operations, process groups, communication contextsepsotopologies, bindings
for Fortran 77 and C, environmental management and inquidypaofiling inter-

face. These features enabled efficient computing in moltggsor environments

11



by defining a structure in which the various processors coafimunicate and in
a collaborative manner perform computations. The featilmaswere not included
in the standard were explicit shared-memory operations)ptex operations re-
quiring more operating system support, program conswuadiols and debugging
facilities, and explicit support for threads and task mamagnt. For more details
on these features refer to [4].

The standard facilitated the development of parallel paogy with efficient
communication. The goals of the MPI design were portabiihd efficiency.
The MPI standard provides bindings only for conventionalglzages like C and
Fortran. The functionality provided includes point-toktocommunication along
with collective communication (broadcast, reduce, baxri€he standard has been
changing ever since and several later versions have beesseal, [6]. Presently
MPI-2 is also available. It includes library functions foyréhmic process man-
agement, input/output routines, one-sided operationgCaridbindings. Dynamic
process management provides a mechanism for newly createdgses to com-
municate with existing MPI applications and for two exigtikPI applications to
communicate. The input output routines allow efficient itiarting and collect-
ing of data between the various processors. The one sidedtmpes were added
to avoid corresponding routines to be present in every cdghe MPI program
running on the various processors. Finally C++ bindingseniatroduced in the
MPI-2 standard to facilitate creation of object orientedatial applications. De-

tailed description of the features in MPI-2 is provided ih [6

12



2.1.3 Language bindingsfor MPI

A language binding consists of one or more constructs in graroming language
that provides access to a defined service. MPI Languagengisdor C, C++ and
Fortran allow MPI services in these languages.

The form of a language binding varies with the programmimgylaage. In pro-
cedural, imperative languages like C and Fortran the bgndirtommonly defined
by a library of procedures. However, in a binding for an obj@iented language,
such as C++, classes, types and templates are used. A gapghdpn binding
should preserve the semantic and conceptual model of thizsemd should not
introduce overhead, [15]. It should allow the applicati@veloper to use the bind-
ings easily and efficiently. If the execution cost of a largridinding exceeds the

benefits of it as structuring mechanism then it may be regecte

2.1.4 MPI Implementations

Several implementations of the MPI standard are availabie of the most widely
used implementations is MPICH (developed at Argonne Natibaboratory and
Mississippi State University), [16,20,22]. The other ieplentations are LAM/MPI
developed at the Ohio Supercomputer Center, [3], CHIMP émgntation from
Edinburgh Parallel Computing Center, [9], OOMPI implenatian from Open
Systems Laboratory at Indiana University, [28] and Unifgrfr Mississippi State

University, [13]. A brief overview of some of them are givealtw:

13



C bindings for Point-to-Point operations

int MPI_Send(voi d* buf, int count, MPI _Datatype
dat atype, int dest, int tag, MPlI _Comm conm

i nt MPI_Recv(void* buf, int count, MPI _Datatype
dat atype, int source, int tag, MPI_Conm conm
MPI _St at us *st at us)

C bindingsfor Collective operations

i nt MPI_Barrier( MPI _Conm conm )

i nt MPI_Bcast(voi d» buffer, int count, MPI _Datatype
dat atype, int root, MPI_Conm conm )

i nt MPI_Reduce(voi d *sendbuf, void *recvbuf, int
count, MPI _Dat atype datatype, MPI _Op op, int root,
MPI _Conm conmm)

C bindings for Groups, Contexts, and Communicators

i nt MPI_Group_size( MPl _Group group, int =*size)
i nt MPI_Group_rank( MPl _Group group, int *rank)

Figure 2.4: Some of the bindings in MPI for C

2141 MPICH

MPICH is an open-source C implementation of MPI-1 develogethe Argonne
National Laboratory and Mississippi State University byo@y and Lusk in 1992,
[16,20,22]. This used the C bindings provided in the MP| dgad and was devel-
oped with the aim of providing a reference implementatiorihef MPI standard.
Being the first complete implementation of the MPI standawdizeing freely avail-
able it is most widely used.
Inan MPICH program, a global communicator MEDMM_WORLD consist-

ing of the details about the environment in which MPICH agatiion is being run
is created. It identifies all the processors that are pp#taig in the computation

along with the unique id that is assigned to it during iniiation. This communi-

14



cator is passed as an argument to all the MPI routines. MPI@sdefinition
of groups of processors. Communication within a group isgifeed as intra com-
munication while communication across groups is definedtas communication.
MPICH supports both inter and intra group communicatione Various types of
communications are point to point communication and ctifteccommunication.
Point-to-point communication include the basic send acdive primitives. The
prototype for these function calls is similar to the onesvted in Fig. 2.4. The
function calls have a long parameter list specifying the mamicator, buffers to
hold the messages to be sent or received, datatype of thegeesource and des-
tination of the message and the tags and status of the coroation. The buffers
for the message are type castedvid * and then sent or received. This makes
this routinestype unsafe The collective operations also have similar prototype

definition as illustrated in Fig. 2.4.

2142 LAM/MPI

LAM/MPI developed at the Ohio Supercomputer Center [3jjaes C, C++ and
Fortran 77 bindings for all MPI-1 functions, types and cangs. It also supports
some of the features specified in MPI-2 like dynamic procesation, MPI input
output and one sided communications. The core feature of MM is the Sys-
tem Service Interface (SSI) which provides a component éwank for the LAM
run-time environment and the MPI communication layer. S8 the libraries
required by the MPI programs to be added during runtime.

LAM/MPI implements point-to-point communication [44], ltective opera-
tions [43] and checkpoint/restart support [39,40] for MPhe point-to-point com-

munication is also known as the Request Progression loa{RPl).
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2143 OOMPI

OOMPI [29, 45] is an object-oriented interface to the MPI szgge passing li-
brary standard. It provides an MPI C++ class library thabmporates in it the
C++/object oriented abstractions for message passings developed as a thin
layer that runs over the C bindings provided in the MPI-1 déad. Even though
C++ bindings were later provided in the MPI-2 standard, OOQM®é&es not use
those bindings as it was implemented before the MPI-2 wasseld officially.

In OOMPI data exists in the form of objects and communicatibrobjects
between the processes needs to take place. The C bindingdgaton MPI-1 do
not deal with objects. Thus OOMPI had to built an interfacé to communicate
objects. The base types supported by OOMPI are char, shgrtping, unsigned

char, unsigned short, unsigned, unsigned long, float andlieou

2.1.4.4 Python Implementations

PyPar [34] and pyMPI [30] are the two current libraries thetfprm message pass-
ing in Python. However, they are both wrappers around MPI@tHaxre primarily
responsible for tasks such as serializing Python objedissanding them as a C
char array. To the best of our knowledge, our MPI Python imgetation is the
only pure Python implementation and can work on any platferhere a basic

socket library is available.

2.2 Imperative and Functional programming

This section introduces two different approaches to prognang:

16



e Imperative programming- A programming style that speciéis€xplicit se-

guences of steps to follow to produce a result.

e Functional programming- A programming style that is basaddefining

relationships between values in terms of functions.

2.21 Imperative programming

Imperative programming specifies a sequence of steps taipeca result. Most of
the languages developed have been imperative in style ascooputers use the
von Neuman architecture, which is also imperative. FORTRB&kic, Pascal, C,
C++, Java are some of the high level imperative languagegh tdvel imperative
languages allow five basic types of statements: assignruaming, conditional
branching, unconditional branching and procedure calls.

Let us consider an example of a simple factorial programgusirhigh level
imperative language C:

Imperative programming is a style of programming with siffeas. The use
of global variables causes different parts of the prograohtmge due to changes in
other parts of the program. Thus even though imperativedagegs allow decom-
position of large problems into modules, these modules aré¢raly independent.
They may have side effects on each other. In most imperativgramming lan-
guages memory allocation and deallocation for data itersgdée implemented
manually by the programmer. This increases the scope of armd sometimes
causes memory leaks. Most imperative programming typekihgds not very
strict most of the errors are not caught until runtime. Cderpgtannot detect pro-

gramming error as it would in a type safe language. In otheréwide callback
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int factorial (numint) { /*function nane */

int f; /*variabl e declaration =*/
for (f=1;num > O; num-) /x| ooping statenent */
f *= num /*assi gnnent statement =/
return f; /*xreturn statenent */
}
int mai n()
{
factorial (10); / *procedure call */
}

Figure 2.5: Factorial function in C

functions that library functions call with certain paramstto obtain effects desired
by the programmer, imperative languages like C we need téumstion pointers to
pass function addresses around. However the usefulnelsesef function pointers

is limited as we cannot dynamically alter the behavior offtiection.

2.2.2 Functional programming

Functional programming is a programming paradigm thatt$reamputation as
the evaluation of mathematical functions. In contrast tpénative programming,
functional programming emphasizes the evaluation of fonei expressions, rather
than execution of commands and eliminates several comstaften considered
essential to imperative languages. For example, in stiiettional programming,
there is no explicit memory allocation and no explicit vateaassignment. How-

ever, these operations occur automatically when a fundsiamoked thus remov-

18



ing any side effects of function evaluation. By disallowisige effects in func-
tions, the language provides referential transparencyghvbnsures that the result
of a function will be the same for a given set of parameters atten where, or
when, itis evaluated. A powerful mechanism available ircfional languages are
higher-order functions which can take other functions gsierents, and/or return
functions as results. These higher-order functions eraierful abstractions and
operations to be constructed. Functional languages liké 8I8b have first class
functions with closures meaning that when a function is @aiss a parameter the
function pointers also have a set of values stored with tHEms the same address
for the function pointer can be used with different sets dtiga unlike function
pointers in imperative languages.
Let us consider an example of a simple factorial programgusiriunctional

language SML.:

fun factorial (0)
factorial (n)

1]
n = factorial (n-1)

Figure 2.6: Factorial function in SML

We see that it uses a recursive call to the funcfamtorial. We do not use any
variable and the return value of the function is the resulhliké the imperative

program this does not have any side effects since it doessecamny variables.
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2.2.3 Standard ML (SML)

ML (standing for "Meta-Language”) [36] [31] is a generalfpose mostly func-
tional programming language developed by Robin Milner atiebis in the early
1980s at Edinburgh University. ML is an impure functionatdaage, because it
permits imperative programming, unlike pure functionabgmamming languages
such as Haskell, [23]. Features of ML include automatic mmgrmeanagement
through garbage collection, a static type-safe polymarppe system, type infer-
ence, algebraic data types, pattern matching, and a sigalést module system
with functions on modules (functors).

Type inference is a technigue which allows the compiler tewheine from the
code the type of each variable and symbol used in the prograthout having
to explicitly declare them. This allows for a compact, yesigareadable code.
Algebraic data types allow to define new types as data stestiand combine
them in a hierarchical fashion. Pattern matching is the cipéor a function to
deconstruct algebraic data types, into its different sodsy in order to apply a
particular computation for each subtype. Today there areraklanguages in the
ML family; among them the most popular are SML (Standard MRJ][ F# [2]
and Caml [1].

224 Concurrent ML (CML)

Concurrent programming is the task of writing programs @stitey of multiple
independent threads of control called processes. Thesegses are executed in
parallel on a single processor. Concurrent ML (CML) [38] isextension to SML

that facilitates concurrent programming. CML is complgtetitten in SML and
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is implemented on top of SML/NJ.

The basic modes of communication and synchronization in Givishared
memory access or explicit message passing. The messagessaesl between the
threads through a “typed” communication channel. By “typ&@ mean that the
thread can receive information of only single type througbhannel. However
union types can be used to allow multiple types of messages.

Unlike parallel programming which achieves parallel exgpuin a multi-
processor environment, concurrent programming achieaesllpl execution in a

uniprocessor environment.

2.3 Effortsin development of M PI for functional languages

Wrappers to traditional implementation of MPI in conventib language like C
are available in Caml such as OCamIMPI and ScaMPI. A briehvis® of the

wrappers implemented in functional languages is providete following section.

2.3.1 OCamIMPI and ScaM Pl

OCamIMPI [46] provides Caml bindings for a large subset of IMifhctions.

OCamIMPI was implemented for the Starfish project at Teamnidsrael Insti-

tute of Technology. Starfish which is written in OCaml is alfd@alerant system
for running parallel MPI programs on clusters of worksta?Cs. OCamIMPI
was implemented specifically for the Starfish architectultesupports point-to-
point and collective operations. Even though OCaml hasdriginder functions
OCamIMPI does not make use of them as it is a wrapper aroundlCaloes not

support this feature. The MRZollective Operations are restricted to a predefined
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setas in MPICH.

Another MPI interface for Caml is ScaMPIl. ScaMPI (Simple CamMPI
interface) [8] is a library allowing Caml programs to maké<#o MPI-1 commu-
nication routines. It is not a complete implementation & MPI and provides a
few calls for basic communication primitives. These privgis include send, re-
ceive, scatter and gather. ScaMPI maps function calls framl@ C and supports
three datatypes: integer, float and strings. Caml being etifumal language has
automatic storage. During type conversion from Caml to Cioy has to be
allocated for the data items. The function calls in Caml dentical to the ones
available for C. This limits the functionality of ScaMPl.istrestricted from taking
advantage of the constructs available in Caml.

Some of the function prototype definitions for ScaMPI are:

external ssendht: int — pid — tag— unit = “mpi_ssendint”
external ssendloat: int— pid — tag— unit = “mpi_ssendfloat”

external ssendgtring: int— pid — tag— unit = “mpi_ssendstring”

These function calls take the same arguments as MPICH. Ahead is present
to translate these calls into C calls.

We observe that there is a lack of native implementations®f i a functional
language and there is none available in SML. This has restribe development of
parallel programs in SML and programmers have not been aliigke advantage
of the functional style in parallel programming. This hasyided us with the
motivation for development of SMPI, a native implementatmf MPI in SML

which will be discussed in detail in the following chapters.
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Chapter 3

Native | mplementation of MPI in SML

3.1 Introduction

Traditionally, conventional languages have been useddueldping MPI as they
offer compatibility with existing systems along with higkeniormance. However,
they have some inherent defects at the most basic level gak@aimplementa-
tions "fat and weak”, [11]. Such languages do not providetstype checking and
automatic storage management for dynamic data, thus méhkamg unsafe. They
also, to some extent, lack modularity, [12]. SMPI, a mesgapsing interface de-
veloped using an advanced programming language, addrgEsesshortcomings
by incorporating the functional style. It provides a wetlstured implementation

of MPI using SML of New Jersey.

3.2 SMPI architecture

In this section we briefly explain the SMPI architecture (&g 3.1)

The SMPI architecture is divided into four distinct layeffiese layers are:
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Application

Message Passing Layer
SMPI

S — -

Sockets | !

Network Layer
TCP/IP

Figure 3.1: SMPI architecture

Application layer

The application layerconsist of programming code and sets of rules
to solve problems. SMPI supports the Single Program Maltipata
(SPMD) model of parallel computing, wherein a group of pgsEs
cooperate by executing identical program images on lodal ¢ues.
The SMPI application program makes calls to SMPI commuitinat

routines to communicate between processes.

M essage Passing L ayer
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The message passing layerovides the communication mechanism
required by processes to pass messages between them. dncthiis
tecture the SMPI library acts as the Message Passing Layemnsists
of functions that facilitate the transfer of messages betwde pro-

cesses.
Socket L ayer

The socket layemrovides the application program interface for the
Network layer. Reliable communication is ensured by theafi§&CP/IP

sockets as it is connection-oriented service.
Network L ayer

The network layerforms the underlying communication channel for
transporting the messages from one processor to anotheEfhlernet

channel is used for this purpose.

3.3 SMPI

SMPI is a library for parallel programming in SML. It allowssers to develop
parallel applications while reaping the benefits of a fumwi language. SMPI
provides functions for performing communication betwed#feckbnt processes run-

ning on different machines.

3.3.1 Environment description

SMPI application programs are executed over a set of procesghich are spec-

ified during startup. The processor that initiates the etieawof the application
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program is called theoot processarWhen a program begins execution, TCP con-
nections between the processors are set up and these dongadast throughout
the execution of the program. Each processor is connectexkty other processor
taking part in the computation. The identities of the preoes participating in the
computation are provided as a argument when starting thiicappn program.
Fig.3.2 illustrates a four node environment for a paralteigpam using SMPI.
Each node is connected to each of the other three nodes by adr@ection. As
the root processorN1 starts a copy of the program in all other processors. The

results of collective operations are returned to the rootessor.

N1 N2

N3 N4

Figure 3.2: SMPI Environment

3.3.2 Communication handle

Every SMPI function’s argument list includes a communmathandle. The com-
munication handle represents the set of processors patiicg in the computation.
At each node the communication handle contains informateeded to commu-

nicate with all the other participants. A communication dileris a list of machine
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names, rank i.e an unique identifier that is assigned to thehima and array of
sockets used to communicate. The processors are assiginge uthentifiers and

this information is stored in an handle of the type "comm”.
type comm ={nodes: string list, rank:int,

socket s: SOCK. cl i ent Socket option ref array}

Here
e rankis the unique identifier assigned to the machine
e nodess the list of all the nodes involved and
e socketds the list of sockets used for communicating

The nodes and the unique identifier rank are assigned durenmitialization pro-
cess. The socket handles are populated after all the coonecire made. For

details refer to chapter 4.

3.3.3 Communication Primitives

Like other MPI architectures SMPI provides both point-tofp communication
and collective operations.

3.3.3.1 Point-to-Point communication

Point-point communication is achieved through simple MEhd and MPI.Recv

functions.

val Send : string * int * comm— unit
val Recv: int * int * comm— string
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The parameters for the MPI.Send function are
e buffer to be sent (string)
e destination identifier
e the communication handle
The parameters for the MPIl.Recv are the:
e length of the buffer to be received
e source identifier
e the communication handle

The return type of this function is the value being received.

3.3.3.2 Collective operations

SMPI collective operations are performed by calling thenpto-point commu-
nication functions i.e. MPIL.Send and MPI.Recv. It is justed af calls to the
point-to-point communication primitives grouped togethEhe various collective
operations have been modeled after those used in MPICH,TAg algorithms

used are tree based algorithms, which are discussed i idethapter 4.

val Barrier : comm— unit

val Bcast: string * int * comm— string

The parameter for Barrier is the communicator handle. Tluisks the program

running in all the processors until all have reached thetpolrere this Barrier call
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is made. Broadcasting values to all the processors is aathieythe Bcast function
call. Bcast takes the communication handle,the value tadedoasted along with
its length as parameters and returns the value it receives.

3.3.3.3 Array Operations

SMPI supports all the point to point and collective opernagionentioned above
for arrays. Additionally, the collective operation Reduse&lso supported for an
array. The current implementation of SMPI only supportsIReays. We defined
the type MPI.REAL64 which is a tuple consisting of functiarsed to manipulate

Real64Array and Real64ArraySlice.

val SendArr: ’a*int* comm * dt— unit

val RecvArr:’a*int* comm * dt— int

val BcastArr: 'a* comm * dt—'c

val ReduceArr:’'a*('b*’'b—'c)*comm*dt —"'b
The parameters for the MPIl.SendArr function are
e 'a ArraySlice to be sent
e destination identifier
e the communication handle
o datatype of the ArraySlice (eg. MPI.REAL64)
The parameters for the MP1.RecvAIrr are the:
e 'a ArraySlice to be populated with the received array
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e source identifier

e the communication handle

e datatype of the ArraySlice (eg. MPI.REAL64)
The parameters for the MPI.BcastArr function are
e 'a ArraySlice to be sent

e the communication handle

e datatype of the ArraySlice (eg. MPI.REAL64)
The parameters for the MPI.ReduceArr are the:
e 'a ArraySlice to be reduced

e custom function defining the reduce operation
e the communication handle

e datatype of the ArraySlice (eg. MPI.REAL64)

In order to efficiently send and receive Real arrays we hadddiiy the SML
Basis library and SML runtime library to support the reqdi@perations on Real
arrays. To the Socket structure in the SML Basis Library waealdthe following

calls:

val sendRealArr /af, activestream sock * Real64ArraySlice.slice- int

val recvRealArr af, activestream sock * Real64ArraySlice.slice- int
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We modified both the signature and the implementation forSbeket struc-
ture. The implementation of the Socket structure in the SNisiB library uses the
Unsafe C Interface [37] to call the required functions in 8ML runtime library.
The SML runtime library is written in C and is dynamically k&l by the SML ba-
sis library. In the SML runtime library we have added funo8do efficiently send
and receive the bytes of a SML Real array. Modifications t&3hi. Basis Library
and the SML runtime library are available as a patch file ingmurce distribution.

Our Reduce algorithm is a tree based algorithm and is disdussdetail in
chapter 4. We added commonly used Reduce operations IREXL64,

MIN _REAL64, MUL REAL64, ADD_REAL64 and SUBREAL64 to SMPI [i-

brary. In order to improve the performance of these we imjgleted them in the
SML runtime library and called them using the Unsafe C lateef In addition
to these the user is allowed to define their own custom redpeeation and pass

them to the Reduce method.

3.34 Structure of aSMPI program

Every SMPI program must essentially have the followingctite.

structure Test =struct
fun main(pgmName, argv) =
let
val MCW = MPI.Init(argv)

end
val _ = SMLofNJ.exportFn("test”,main)
end(*test*)
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We provide a script mpirun used to run the heap image creatdtidbabove

sml program. More details in chapter 4.

3.4 Implementation issues

SML does not inherently have any constructs that supportdlpism. SMPI adds
multiprocessor support to SML by providing a set of routitiest can be included
in the form of a library. Since there are no bindings for SMLilie MPI standard
the design of SMPI is modeled after MPICH, a C implementatibiIPI, [7].

In large computation nearly all the data that is passed arewe reals. How-
ever the Socket structure in the SML Basis Library supponiy sending and re-
ceiving of Word8VectorSlice and Word8ArraySlice. We addled ability to send
and receive Real64ArraySlice by modifying the SML Basisraily and SML run-
time library.

The SML Basis library does not use the MSEBAITALL flag for the receive
call in the runtime Socket implementation. This ensure$ W& do not have to
loop until we receive the required number of bytes. So we ffigdlithe runtime
library to use the MSGNAITALL flag. In our modifications to runtime we also
loop around the send call to ensure that all the requiredstate sent.

Modifying the Basis library and runtime required boot spaqg the compiler.

For more details refer B.

3.5 SMPI Library

The SMPI library provides a set of structures that can beuthadl in SML pro-

grams to incorporate MPI features into SML. The structurefingd in this library
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are listed below:

Structure | Description

MPI Main structure containing all the user calls
SOCK Socket utility
MYTIMER | Used for timing calls

The MPI structure contains the function calls describedeictisn 3.3 along
with several other constructs to setup the SMPI environmastform the initial-
ization process and perform the termination process byraaal the connections.
It also contains the functions required to perform the ptoApoint and collective
operations. The SOCK structure defines the underlyingbigliasommunication
interface using sockets. The MYTIMER structure defines thkésdo calculate
elapsed time for function calls. The interface for all thesectures along with the

description is provided in the the appendix.
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Chapter 4

M essage Passing Algorithms

This chapter describes the implementation details forovariMPI primitives and
explains the algorithms used for communication operatidie collective opera-
tions described here are: broadcast, reduce and barrieadBast and reduce use a
tree based algorithm which is similar to the one used in MPIOHr C, SML and

Python implementations are based on the following algarith

41 MPI Primitives

4.1.1 Initialization and Finalization

The initialization routineM PI_Init() is responsible for creating sockets between
all pairs of participating processes. Since a single sockit be created between
any pair of processes, this can be achieved by ensuringuegt process connects
to processes with rank greater than itself. This is illusglain Algorithm 1. The
sending and receiving of a 1-byte message in Algorithm 1 enisure that a race

condition does not occur. Figure 4.1 illustrates the re¢atiming of the commu-
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nication steps involved when initializing a group of six pesses. Solid arrow
indicate matchingonnect() andaccept() calls (the arrow points to theccept()
call). The shaded areas correspond to the periods of tima a/lpeocess is blocked
on arecv() call waiting for a 1-byte synchronization message. The Byortza-
tion message is essential in order to ensure thatthept() call in each process
receivesconnect() requests from processes with monotonically increasingsan
The synchronization message is depicted by a dashed awawtifte previous rank
process. If not for this synchronization message, it mighpbossible that the solid
arrow from process 1 to process 2 arrives at process 2 bdferartow from pro-

cess 1 as illustrated in Figure 4.2.

Algorithm 1 MPI Initialization
size «— Size(MCW)

myrank «— Rank(MCW)
for r = 0 to myrank do
SockVec]r] = accept()
end for
if myrank > 0 then
Receive 1 byte message on sock&bckVec [myrank — 1]
end if
for r = myrank + 1 to size do
Connect to noder
end for
if myrank < size — 1 then
Send 1 byte message on sock&bckVec [myrank + 1]

end if
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Figure 4.1: Initialization Algorithm
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Figure 4.2: Race condition in improperly implemented aligation.

MPI_Finalize() is responsible for cleaning shutting down adl ipen sockets.

In order to do this, for each socket, either process can theseocket.

4.1.2 Send and Receive

Our MPLSend() and MRPRecv() functions utilize the send() and recv() socket
calls respectively. Additionally, they have to ensure ttegt required number of
bytes have been sent and received and check for any erroitioosd MPLSend()
additionally has to loop until the required number of bytas been sent. MBERecv()
does not need to do this since we utilize the MBBITALL socket option (dis-

cussed in more detail in Chapter 6).
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4.1.3 Broadcast Algorithm

Broadcast function when called broadcasts a message femodh process to all
other processes participating in the computation. Theritgo used for broadcast-
ing values to all the processors as mentioned above is a pafvweo based algo-
rithm. It is also known as the broadcast tree algorithm. T processor sends a
data item to all the processes in the communicator handle GAPMIM_WORLD.
This is a very efficient way to send information as messagesant in parallel.
Since a tree algorithm is used, the number of communicatias@s required is
proportional to the logarithm of the number of processesa Hequential algo-
rithm is employed, the number of communication phases reduiill be linearly
proportional to the number of processes.

The broadcast is initiated by the root processor. At each timt the number of
processors receiving the information doubles since wehsedmmonly used bi-
nary tree based broadcast [47] as shown in Algorithm 2. Datesinission among
processes that have already received the entire arrayegeptied bygot = 1) is
overlapped. Figure 4.3 illustrates the operation of theatloast algorithm when
there are 32 processes. The horizontal lines in each of thienos depicts when
the process has finished receiving the array being broadédgorithm 2 works
even if the number of processors is not an exact power of twariakleb keeps
track of which level in the broadcast tree we are in siheg b represents the
current step (assuming steps are counted from zero).

If the same communication was to be achieved by transmittatg from the
root processor to all the other processors serially thertithe taken to achieve
this would be exponentially greater. The tree based alyoriallows for parallel

transmission which reduces the execution time of this fonas illustrated in Fig.
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Figure 4.3: Broadcast Tree Algorithm
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Figure 4.4: Efficiency for Tree Algorithm is Higher than Seqtial Transmission

414 Reduce

The reduce operation reduces values on all processes tgle sialue. In the

context of an array, the reduction is performed on a per-etgrbasis resulting in a
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Algorithm 2 Broadcast from root to all other processes

size — Size(MCW)
myrank «— Rank(MCW)
1got «— 0
b—1
if size = 1then
return
end if
whileb < size do
b=0bxx%2
end while
if myrank = Othen
igot «— 1
end if
whileb > 1 do
b b/2
if igot = 1 then
if myrank + b < size then
Use MPLSend() to send entire array to rankyrank + b
end if
eseif myrank%b = 0 then
Use MPLRecv() to receive entire array from rankyrank — b
tgot «— 0
end if

end while
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reduced array with the same length of the source arrays. Mmpkmentation uses
a simple tree algorithm as illustrated in Algorithm 3.

The Reduce algorithm works by having all processes at thedblevel of the
tree send their arrays to their parent processes. The pprec¢sses reduce the
received arrays with their own array using either a pre-@efifunction or a user-
defined function and pass on the results to their parents @rh sintil the root
process receives the fully reduced array.

Figure 4.5 illustrates this process in a system with 15 mees. The reduce
operation is performed in a bottom-up fashion. The numbetashmunication
phases required is proportional to the logarithm of the nemdf processes. At
each phase, nodes at a certain level communicate with nadke higher level.
The ordering of the phases is illustrated by the labels ofatinews in the figure.
The reduce operation is performed on all the non-leaf nodepi¢ted with a +
sign in the node). At the end of the algorithm, the root precamntains the fully

reduced array.

415 Barrier

The Barrier function synchronizes all the processes. Whenftinction is called,
the processes are blocked until all the processors reaglpoit. This is achieved
by the following algorithm.

The algorithm synchronizes the processes by performingdivoular passes
[47]. In each pass, every processor waits to receive a taken the previous pro-
cess and after receiving the token sends it to the next o&ascess 0 performs
the same steps in reverse order to avoid a deadlock. The #isst @nsures that

all processes arrive at the same point in the code. The squasglallows all the
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Algorithm 3 Reduce arraypuf on root-process

size «— Size(MCW)
myrank «— Rank(MCW)
if size = 1then
return
end if
myparent «— [%ﬂnlﬂ -1
childl < 2 x myrank + 1
child2 « childl + 1
if childl > size then {If | am a leaf nodé
Use MPLSend() to send entire array to ramkyparent
else {If | am an internal nodg
Definetmpbufandresbufto be arrays of length equal to thatmif.
Let op be the reduce operation to be performed.
if childl < size then {If childl existg
Use MPLRecv() to receive the array sent from procekgdl into resbuf
resbuf < resbuf opbuf
end if
if child2 < size then {If child2 exists
Use MPLRecv() to receive the array sent from procebgd2 into tmpbuf
resbuf « resbuf optmpbuf.
end if
if myrank > 0then {If | am a non-root procegs
Use MPLSend() to send the arragsbufto process with ranknyparent
end if

end if
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Algorithm 4 Barrier Synchronization Algorithm

size «— Size(MCW)

myrank «— Rank(MCW)

next = (myrank + 1) MOD size

prev = (myrank + size + 1) MOD size

if myrank == 0then
Send a 1-byte message to ranket.
Receive a 1-byte message to ranicv.
Send a 1-byte message to ranket.
Receive a 1-byte message to raniv.

else
Receive a 1-byte message to ranicv.
Send a 1-byte message to ranket.
Receive a 1-byte message to ranicv.
Send a 1-byte message to ranket.

end if
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Figure 4.5: Reduce Tree Algorithm

processes to continue execution.

Figure 4.6 illustrates the relative communication timingem MPLInit() is
invoked for a system with 4 processes. The horizontal daihed depict when
a process has completed its barrier and can proceed withutéxec Figure 4.7
illustrates the effect of a delay in reaching the barrier ingess 3. Despite the
delay, all the processes exit the barrier at nearly the sanee Figure 4.8 illustrates
the effect of a delay if a single pass barrier was used and itasidelay in process

3 existed. In this case, process 1 exits the barrier muchrdédfie other processes.
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Figure 4.7: 2-Pass Barrier with delay in process 3
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Figure 4.8: 1-Pass Barrier with delay in process 3
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Chapter 5

| mplementation Details

This chapter discusses the features of SML that can beadiliz user programs
and have been used in the SMPI implementation to make itafficconcise and

robust.

51 SML constructs

5.1.1 SML Module system

SMPI takes advantage of the advanced module system prold8#1L and pro-
vides a clear logical separation. The structures MPI, SOUKIER defined in
SMPI are logically separate and are developed and testegeémdiently. The struc-
tures contain functions which define the various layers oPEMhe MPI structure
provides the application programming interface while tlieCXK structure provides
the underlying reliable communication interface. Theauting mechanism used

in SMPI makes the implementation easy to understand.
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5.1.2 Type Safe

Since SML is a type safe languages most of the errors can leetddtat compi-
lation time. Due to this a SML program rarely crashes unlesswvere fault like

running out of memory occurs, [5].

5.1.3 Higher-order Functions

SML features include higher order functions. This allowsdtions to be passed as
arguments, stored in data structures and returned asgegulinction calls. This
provides the ability to pass custom functions at runtimer@viodes a similar con-
cept through function pointers. However type of the functieeeds to be specified
in C which is not required in SML. In our SMPI implementatiorPMReduceArr
are higher order functions since they accept user definedtituns at runtime. Re-
duce functions apply the user defined function to the arrayained at each node
to successively reduce the array until the fully reducedyais received at the root

node.

5.1.4 Automatic tuple expansion

Tuples can be expanded automatically into their comporiei@8/1L. For example
in SMPI the functionrRankis defined to obtain the rank when the communication
handle which is defined as a tuple containing the rank, theflisodes and an array
of sockets is passed to it. The function Rank:

fun Rank({rank=r,nodes,sockets=r
In the calling program the functioRank

MPI.Rank(comm)
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The above example illustrates how automatic tuple exparsam make functions

concise and easy to read.

5.1.5 Automatic Garbage Collection

SML has an automatic garbage collector in which data that i®nger referenced
is automatically deallocated. We do not need to free or attoenemory explicitly

like in C. This makes the code simpler, cleaner and morehiglia

5.1.6 Error Handling

SMPI uses the exception handling mechanism provided by IMiting runtime
the exception handling mechanism which is similar to thescenailable in C++
and Java throws exceptions whenever an error or a faultg statached. C does
not support exception handling. The exception handlingl uiseSMPI enhances

its functionality.

fun createServerSocket() =

let
val serverSocket = INetSock.TCP.socket()
val _ = Socket.Ctl.setREUSEADDR(serverSocket,true)
val _ = Socket.bind(serverSocket, INetSock.any PORT)
val _ = Socket.listen(serverSocket, 5)

in
serverSocket

end

handle _ => raise "Fail: Could not create server socket”
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5.1.7 Tail Recursion

Recursive functions are used widely in functional langsadédiese functions con-
sume stack and can fail if the recursion goes on for too lormyvéver by using tail
recursion [24], where we do not maintain the return statdnédall stack we can
improve efficiency. In the SMPI implementation we have usealdecursion in all

the places where we iterate.

5.1.8 Interfacing with C

Using Unsafe.Clinterface structure C functions can be tegid into SML. In
SMPI, we modified the Socket structure provided by the SMLi8#brary to

include routines that enable efficient sending and recgivirReal arrays. We im-
plemented these routines as part of the SML runtime in C addided them in
the SML basis library using the Unsafe.Cinterface. Our MMER module also
uses the Unsafe C Interface to call the getTimeOfDay fungiimvided by the C

standard library.
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Chapter 6

Experimental Results

6.1 Experimental Setup

We compared the performance of C, SML and Python implementabf
MPI_Send(), MPIBcast(), MPIReduce() and MRPBarrier(). Despite MPICH [16]
already being a complete C implementation of the MPI-1 stechf#4], we decided
to implement these primitives in our own C implementatidngs it would be un-
fair to compare the performance against MPICH, since MPI€&lhighly portable
implementation and in order to work with numerous archiiezs such as SMP sys-
tems, Myrinet and InfiniBand etc., it has numerous layershbsftractions, which
has a noticeable impact on performance. MPI primitives @ol&ssified as Point-
to-Point or Collective operations. MBend() is representative of Point-to-Point
operations. These operations are between two processebaperformance is
linear function of the message length. MB¢ast() is a collective operation since
it can involve two or more processes. Since most collectperations use binary
tree based algorithms, the performance is a linear functidhe message size and

a logarithmic function of the number of participating preses. MPIBarrier() is a
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also a collective operation. However, unlike other coliecbperations, its perfor-
mance is a linear function of the number of participatinggesses. Since we use a
double circular shift algorithm in the MBBarrier() implementation, every process
only sends two bytes to its neighbor and received two bytas fts neighbor.

We evaluated the performance of our implementations on senately hetero-
geneous cluster. The cluster comprised of 13 nodes. 10 neeesAthlon MP
2200+s, 1 was an Athlon MP 1600+ and 2 were an Athlon MP 1900ks.nodes
were connected via a 100Mbps ethernet network. All nodeszh@&B of RAM.
The same network was also used for the shared network filay$FS) between
the nodes. The operating system on all the nodes was Fedoea6Qonux. We
used python-2.4.4-1 and sminj-110.59 to run our Python avd Bnplementa-
tions respectively.

In order to be consistent, we used the gettimeofday() fandti all our imple-
mentations, since all the implementations eventually isgéttimeofday() present
in glibc (standard C library). In our SML implementation, digl this by using the
unsafe C interface. In Python, gettimeofday() is alreadyilalle as part of the
standard library.

In our C and Python implementations, we used the MBAETALL flag. This
flag ensured that an entire message is received with a sialjl® the recv() socket
function. However, in SMLNJ, this flag has not been impleradntin order to
remain consistent with the C and Python implementationsnaeified the source
code for the SML runtime library to support the MS@AITALL flag.

All the data points in all the plots were chosen as the mininwir20 trials in

order to improve accuracy.
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Figure 6.1: Comparison of Barrier performance.
6.2 Barrier

Figure 6.1 depicts the execution time for the MBdrrier() in the C, Python and
SML implementations. Since, our Barrier call sends onlyrtoytes of data among
the nodes, the time for the barrier call significantly degead performance of the
language. Since, Python is purely interpreted, it perfostightly worse than our C
implementation. On the other hand, the performance of SMi. elsely follows
the performance of our C implementation. It can also be oleskthat for all the

implementations, the time is linearly proportional to thenber of processors.
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Rel Diff of MPICH against C for MPI_Recv()
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Figure 6.2: Comparison of MPICH and simple C MRé&cv() implementation.
6.3 Point to Point Primitive

Figures 6.2 and 6.3 illustrate the performance of our C imigletation against that
of MPICH. The relative difference in wall time was deternmdn®y equation 6.1. A
positive relative difference indicates that MPICH is pemfing worse than our C

implementation.

. . tx —t -
Relative Difference= Xt C, where X is either MPICH, SML or Python. (6.1)
c

It can be observed that for small message sizes, MPICH mesfaruch worse
than our C implementation. This is due to a constant costivedbin setting up
MPICH. However, as the message size increases, the perfoengap reduces.

MPICH has a very large code base since it is a complete impitatien of the
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Rel Diff of MPICH against C for MPI Send()
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Figure 6.3: Comparison of MPICH and simple C M®&&nd() implementation.

MPI-1 standard. Further, MPICH has also been designed t& awer multiple
architectures. Hence, it is understandable for it to hawergel overhead. We as
well as others [26, 27] have observed that message passimggnative TCP sock-
ets performs much better than MPICH. MPICH has been desitmaabrk with
heterogeneous workstations. It is even capable of workirgymixed endianness
environment. Further, MPICH is capable of working with wai$ network hard-
ware. It achieves this by using an ADI (abstract device fate), which abstracts
the underlying physical communication layer. TypicallyPMCH’s MPI calls are
mapped onto MPID (MPI Device) calls and the MPID layer makisd¢a the ADI
corresponding to the required physical communicationrlaee to the above rea-
sons, we decided to compare our Python and SML implementatigainst our C

implementation for the rest of this work.
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Figure 6.5: Wall Time for MPIRecv().
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Figures 6.4 and 6.5 plot the wall time of MBlend() and MRPRecv() for all
four implementations. It can be observed that the wall tima linear function of
the message size. The performance of MPICH is noticeablgewvitran the other
implementations. In order to obtain a better comparisonpletted the relative
difference in wall time with respect to C. The relative diface was computed
using equation 6.1. A positive relative difference indegsahow much worse the
implementation is compared to our C implementation.

Figures 6.6 and 6.7 plot the relative difference in wall tifoe Python, SML
and MPICH against C. MPRecv() internally uses the recv() socket call. A non-
blocking recv() call has to initially wait for data to be pess in the operating
system buffer. However, a send() socket call can immegidiegin sending data.

Due to this, we see slight irregularities in Figure 6.7.

6.4 Collective Primitive

In order to test the performance of collective operations,implemented two of
the most common MPI collective operations - MBtast() and MPReduce().
MPI_Bcast() broadcasts the buffer from a root node to other nauéise group
of processes, while MPReduce() performs a collective reduce operation and the

fully reduced array is received at the root node.

6.4.1 Broadcast

Figures 6.8, 6.9 and 6.10 illustrate the wall time for MBdast in our C, Python and
SML implementations respectively, when the number of pgsoes is increased for

a fixed message size. Since our Python, C and SML implemensatise a binary
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Rel Diff of Python, SML and MPICH against C for MPI_Send()
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Figure 6.6: Relative difference of Python, SML and MPICH iaga C for

MPI_Send().
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Rel Diff of Python, SML and MPICH against C for MPI_Recv()
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Figure 6.7: Relative difference of Python, SML and MPICH iaga C for
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C Broadcast Scaling
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Figure 6.8: Scaling of MRBcast() in simple C implementation.

tree based algorithm (as described in Chapter 4), the vadl 6f the MP1Bcast()
call increases distinctly when the number of processesrbes@ power of two.

As soon as the number of processors exceeds a power of tway &Eewvel in
the tree is created, creating another level of sends/reche performed. Figures
6.11, 6.12 and 6.13 illustrate the wall time for MBtast in our C, Python and
SML implementations respectively, when the message sinerisased for a fixed
number of processes. It can be observed that the wall timeoogional to the
binary log of the number of processes. P=2 corresponds tlowest line, P=3, 4
corresponds to the next line, P=5, 6, 7, 8 corresponds todkeline and P=9, 10,
11, 12 and 13 corresponds to the highest line depicting tstindt characteristic
of the binary tree based broadcast algorithm.

In order to portray the relative performance of the threelenpentations, we
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Py Broadcast Scaling
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Figure 6.9: Scaling of MRBcast() in Python implementation.
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Figure 6.10: Scaling of MRBcast() in SML implementation.
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C Broadcast Performance
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Figure 6.11: Performance of MMcast() in simple C implementation.

Py Broadcast Performance

3333

°
°
°

fa=Ra-Ra- == RalaRa- -l B - R}

5383

Time (secs)

0 5 10 15 20 25
Message Len (MB)

Figure 6.12: Performance of MHcast() in Python implementation.
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10 SML Broadcast Performance
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Figure 6.13: Performance of MHBcast() in SML implementation.

the plot the relative difference in wall time for the MBlkast() call for our Python
and SML implementations against our C implementation. Etedive difference is
computed by equation 6.1 Figure 6.14 plots the relativeedifiice for an increasing
number of processors and a fixed message size. As the mes$sagecseases,
the plots stabilize and it can be observed that the SML implaation performs
marginally better than the Python implementation. Figutkslots the relative

difference for an increasing message size and a fixed nunfilpeocessors.

6.4.2 Reduce

Figures 6.16, 6.17 and 6.18 illustrate the wall time for M®dduce() in our C,
Python and SML implementations respectively when the ngessize is increased

for a fixed number of processes. The bands that were obsem@Pi_Bcast()'s
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Figure 6.14: Relative Difference (wrt C) in scaling of MBtast().
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Figure 6.15: Relative Difference (wrt C) in performance oPNBcast().
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C Reduce Performance
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Figure 6.16: Performance of MEReduce() in simple C implementation.

performance (Figures 6.11, 6.12 and 6.13) are not so distinthe case of the
MPI_Reduce() function. The reason for this is that heteroggneithe CPUs of
the nodes in the cluster. The MRleduce() function is a lot more CPU intensive
than the MPIBcast() function due to the arithmetic operation that i$qgrened on
the entire array at each processor. In the case of a homogecater, a banding
similar to that of MPIBcast() can be expected even in the case of RBduce().

Figures 6.19, 6.20 and 6.21 illustrate the wall time for M&dduce() in our C,
Python and SML implementations respectively, when the rermobprocessors is
increased for a fixed message size. The step pattern is nitaedas in the case
of MPI_Bcast() due to the heterogeneity of the cluster.

Our MPI_Reduce function provides for a few predefined operationisciua be

performed such as addition, subtraction, multiplicatiorinimum and maximum.
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Py Reduce Performance
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Figure 6.17: Performance of MEReduce() in Python implementation.
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Figure 6.18: Performance of MEReduce() in SML implementation.
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C Reduce Scaling
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Figure 6.19: Scaling of MPReduce() in simple C implementation.
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Figure 6.20: Scaling of MPReduce() in Python implementation.
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SML Reduce Scaling
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Figure 6.21: Scaling of MPReduce() in SML implementation.

We have defined these operations internally in C in the SMltiman library for
speed. The user can also provide an SML function that can dx tasperform a
custom reduce operation. Figure 6.22 illustrates the padioce of MPIReduce
when the reduce operation is performed in C and in SML (botherSML MPI im-
plementation) when 13 processors are used. Figure 6.2%dkes the correspond-
ing relative difference i.e. it shows by what percentageGhersion is better than
the SML version. The performance difference of about 7.5%ulite acceptable in

most applications.

6.5 Numerical Integration Application

We also tested our message passing libraries with a reatiapglication. For this

we chose to implement the parallel algorithm to calculageviidue ofr which uses
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Performance of Reduce operation performed in C and SML (P=13)
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Figure 6.22: Performance of SML's MHReduce(), when reduce operation is per-

formed in C and SML.

the Broadcast and the Reduce MPI operations. For the MPIQ@iementation we
used the example prograapi.cthat is provided with the MPICH distribution and
rewrote the same algorithm using our C, SML and Python MRhties. This

program determines the value ohy evaluating the following definite integral

L4
_ dr =
/01+x2 e

We tested our application using 8 homogeneous nodes frosethe cluster. Fig-
ure 6.24 illustrate the execution time for our SML and C inmpéatation along
with MPICH. In the case of SML, C and MPICH, we us&dc 10® samples for
the numerical integration and observed that the performafSML is between 1
and 2 times slower than C. Python being an interpreted laggyisamany orders

of magnitude slower than C and SML which are compiled langaa@ur python
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Relative Difference in Reduce operation performed in C vs SML (P=13)
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Figure 6.23: Relative Difference in Performance of SML's MReduce(), when

reduce operation is performed in C vs. SML.
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implementation takes 526 seconds wBenl10® samples are used with two proces-
sors. This is because the loop that evaluates the integeahlsated by the python
interpreter at every iteration causing it to be much slowantthe compiled lan-
guages that we used. So for Python we reduced the number pfesmto8 x 106
for the numerical integration and plotted its performanegasately in 6.26.

We also plotted the parallel efficiency)(of our implementations using the

formula
Ty

T,
where,T7 is the time it takes to execute the application on a singlegssor and
T, is the time it takes to execute the same application with #ineesproblem size
on p processors. Figures 6.25 and 6.27 illustrate the pardfieiencies for our
implementations. The efficiencies drop off from 100% duent® additional com-
munication overhead involved in using more than one prace3$e efficiency of
our SML implementation is very similar to that of our C implentation.

This application illustrates that SML strikes a better bakbetween ease of

use and performance than Python.
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Figure 6.26: CPI performance of Python.
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Figure 6.27: Efficiency of CPIin Python.
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Chapter 7

Conclusion and Future Work

This chapter summarizes the work presented in this thesigaplores the possi-

bilities of expanding the realm of SMPI.

7.1 Conclusion

This thesis has provided a native implementation of a mespagsing interface
in an advanced programming language Standard ML. The maitnilsotion of the
thesis is the design of the SMPI implementation and itszatéin in SML. The
structured implementation is based on the four layereditectiire of SMPI. This
implementation encourages programmers to do parallekranogning in functional
languages. We also implemented the same MPI primitivestindyand C in order
to compare the performance of our SML implementation. Wesehaot to use
existing Python MPI implementations since they are wrappesund MPICH. We
have also compared our implementation with MPICH.

For small message sizes, our SML implementation performshrbetter than

MPICH since in order to be highly portable, MPICH has a higinegrhead. For
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most of our experiments, the performance of our SML impletagon is better
than that of the Python implementation and closer to that®fQ implementation.
We have demonstrated how SMPI allows a programmer to usdlgdgreo-
gramming constructs in a functional programming languatjeis allows the ap-
plication developer to use higher order functions, autérgtbrage management,
strong typing and exception handling mechanism provide&. to write well

structured, concise and robust code.

7.2 Future Work

This thesis provides only the basic communication priregifor MPI in SML and
currently supports string and real datatypes. This libcany be extended to include
all the function defined in the MPI standard and other datasyprhe collective
operations are implemented using the tree based algoritBtiner algorithms can
be implemented to further optimize the performance. Thiskwalong with MPI
implementations in other functional languages, will foime basis for the defining

language bindings for functional languages in the MPI stathd
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Appendix A

SML MPI Library API

This appendix provides a reference for the SMPI library.sTdan be included as
an extension to the Standard ML Basis Library. SMPI proviaegt of structures
that can be included in SML programs to incorporate MPI fesgunto SML. The

structures defined in this library are listed below:

structure MPI
This module contains all the basic primitives includingnitives for point-
to-point communication and collective operations reqliifer a Message

Passing Interface.

structure SOCK
This module defines the underlying reliable socket interfabich is used to

communicate messages.

structure MYTIMER
This module contains calls to calculate elapsed time usystes calls to

the C interface.
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A.1l SMPI Reference

The MPI structure

The MPI structure is a collection of library functions whishessential
for any message passing program. It contains all the eabdumtic-
tions required to write any MPI program. Functions includiedhis
structure are the functions to to create and destroy the aoriwator
handle MPICOMM_WORLD which is basically a tuple containing
rank, the host name list, and an array of socket handles.sdt dé-
fines the data type MPI.REAL64 which is tuple of functionsdise

manipulate Real64Array an Real64ArraySlice.

Interface

type conm ={nodes: string list, rank:int,

val
val
val
val
val
val
val
val
val
val
val
val

socket s: SOCK. cl i ent Socket option ref array}

Rank : comm — int

Size : comm — int

Init : string list — comm

Send : string * int * comm — unit
Recv: int * int * comm — string
SendArr @ 'a * int * comm=* dt — unit
RecvArr @ ’'a * int » comm+* dt — 'b
Barrier : comm — unit

Bcast : string * int * comm — string
BcastArr : 'a * comm=x* dt — 'b
ReduceArr : 'a* (b x "b ->"c) * coorm*» dt — 'b
Finalize : conmm — unit
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Description

type conm ={nodes: string list, rank:int,
socket s: SOCK. cl i ent Socket option ref array}
This is an user defined datatype which acts as the commuonidagindler. It

consists of the host name list, the rank and an array of stekatles.

val Rank : comm — int

This returns the rank of the host.

val Size : comm — int
This returns the number of processors participating in thaputation i.e.

the number of hosts stored in the handler comm.

val Init : string list — comm
This function is called by all MPI programs. This sets up theINNOMM_WORLD
and makes all the server and client connections. There mxisttacorre-

sponding Finalise function for every Init function.

val Send : string * int *» conm — unit

Sends the message (string) to the destination specified.

val Recv: int * int » conm — string

Receives a message and returns it as a string.

va SendArr @ 'a * int * conm=+ dt — unit
Sends the array to the destination specified. dt repredemtiata type of the
elements in the array e.g MPI.REAL64
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val

val

val

val

val

val

RecVvArr ax*int x coomx* dt — 'b

Receives an array and populates the array passed to it.

Barrier : comm — unit
This function ensures that all the processors have exedhtsd program

upto the point where Barrier is called.

Bcast : string * int * comm — string

This function is used to broadcast a message to all the pores

BcastArr : 'a * conm~* dt — 'b

Broadcasts the array of datatype dt to all the processors.

ReduceArr : 'a *x ("b* "b ->"c) » conm=* dt — 'b
Reduces arrays from all the processors by applying the fumgiassed into
it as the second parameter. The fully reduced array is odxdadt the root

processor. dt is the data type of the elements in the arrayMPd REAL64

Finalize : conm — unit
This function is called at the end of each MPI program. Theroamicator

handle is given as input. It closes all the open sockets ihamelle.
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The Sock structure

The Sock structure provides a collection of utility functsofor cre-
ating and closing sockets. It also provides functions fadneg and
writing into sockets. This is essential part of MPI as all coumica-
tion between processes takes place with this socket interféNet-

Sock i.e. Internet domain sockets are used for this purpose.

Interface

val

PORT : int

type cli ent Socket =(1 Net Sock. i net, Socket . active

Socket . strean) Socket.sock

val created ientSocket : string — clientSocket
val createServerSocket : unit — Socket.passive
| Net Sock. st reamsock
val accept Server Socket : (I Net Sock. i net, Socket . passi ve
Socket . strean) Socket.sock — clientSocket * string
val close : (’a,’'b Socket.stream Socket.sock — unit
val send : clientSocket * Wrd8Vector.vector — unit
val receive : (' a, Socket.active Socket.stream
Socket.sock * int — Wrd8Vector.vector
val sendArr : <clientSocket * "a » ("a ->"''h) =
(clientSocket * "a — ""b) — unit
val recvArr @ 'a* 'bx ("a* 'b - 'c) — ¢
Description

type cl i ent Socket =(1 Net Sock. i net, Socket. active

Socket . strean) Socket.sock

data type to define client sockets
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val createC ient Socket : string — clientSocket
reads the network host database and gets the internet addnésh is then
converted to socket address (in the INet address familygates a socket of
the type clientSocket and connects it to the previously medwaddress and

returns the clientSocket entry.

val createServer Socket : unit — Socket. passive
I Net Sock. st reamsock
creates a stream socket in the INet address family in passbge with the
default protocol. It binds the socket to a socket addresscegmtes a queue
(of size n) for pending questions associated to the socketn€xctions (via
connect) to the socket are queued, and later accepted by # @acept.

Raises SysErr if there are too many sockets in use.

val accept Server Socket : (I Net Sock. i net, Socket . passi ve

Socket . stream Socket.sock — clientSocket * string
calls Socket.accept and extracts the first connection frengtieue of pend-
ing connections of the socket, which must be a passive stsgaket bound
to an address via bind and listening to connections aftedldachsten. If
a connection is present, Socket.accept returns a(pa@)with sa new ac-
tive socket with the properties of the socket passed to thtbadeandsathe
corresponding socket address. If no pending connectianprasent on the
gueue and the socket is not marked as non-blocking, accegkslntil a
connection is requested; if the socket is marked as norkinlgca SysEr-
ror exception is raised. Returssand the host name of the socket address

returned.
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val close : (’a,’ b Socket.stream Socket.sock — unit

closes the connection to the socket.

val send : clientSocket » Word8Vector.vector — unit
send calls Socket.sendVec and blocks until all the bytdseivéctor are sent

across.

val receive : (’a, Socket.active Socket.stream Socket.sock
* int — Wrd8Vector.vector
receives the number of bytes specified on the socket usirgath®ocket.recvVvec
and blocks until all the bytes are successfully received. riidelified the
SML runtime to use the MSGVAITALL flag for all receive calls. This flag
ensures that an entire message is received with a singleodhke receive()

socket function.

val sendArr : clientSocket = "a = ("a ->""b) * (clientSocket
* 'a — ''b) — unit
sends an array over the socket handle passed to it. Seccetgter is the
ArraySlice that needs to be sent across. Third parametefusaion that
returns the length of the array slice. Fourth parameterasfaimction thats
supports sending an array slice of the required data tygeadteen imple-

mented this way so that it can be extended to support muliigie types.

val recvArr : 'a* 'b*x ("a*x 'b - 'c) —-'cC
receives an array and populates the array slice suppliedThé first param-
eter is the server socket, second parameter is the arraytelice populated
and third parameter is the function that receives the requitata type and

populates the array slice.
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The MyTimer structure

The MyTimer structure is used to calculate elapsed time.

Interface

val getTineOFDay : unit — Int32.int * int

val start tinmer : unit — real
val el apsed_tinmer : real — real
Description

val getTimeODay : unit — Int32.int * int
This function uses Unsafe C Interface to call getTimeofDeyiged by C

standard library.

val start_tinmer : unit — real
Starts the timer.
val el apsedtinmer : real — real

Calculates the elapsed time from the time the timer wasestart

A.2 Startingan SMPI job

The list of available hosts is assumed to be in a text file whmsaion is specified
in our mpirun script. If not specified, the script defaults to using the hiiaes file
used by MPICH usually located aisr /local /mpich/share/machines. LINU X .
mpirun has to be provided with the number of hosts to use and the gmogr run
as arguments. The script then connects to the required nuohlmsts via SSH

and starts an instance of the specified program on each of them
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The command used to run a SMPI program is :
Jmpirun -np<num hosts- sml @SMLload=exec.x86-linuxarg 1> <arg 2> ...
where

exec.x86-linuxs the executable heap image that is created by compil-
ing the application program

num hostdgs the number of hosts that will participate in the computa-
tion

arg 1, arg 2, ...are arguments to the application program

Whenmpirun starts up the application program on all the required hasts,
also appends the list of all participating hosts, port amk far each host to the
command line arguments sent to the application programs& additional argu-

ments are used by the Mit() call.

A.3 Examples

Listing A.1 illustrates how to use the MPI primitives debeil above.

Listing A.1: Demo using our SMPI Library

structure DEMO = struct

fun addRealArray(sl, out, 0) = (Real64ArraySlice.update(oud, Real64ArraySlice.sub(sl, 0)
+ Real64ArraySlice.sub(out, 0)))
| addRealArray(sl, out, i) = (Real64ArraySlice.update(qui, Real64ArraySlice.sub(sl, i)
+ Real64ArraySlice .sub(out, i)); addRealArray(sl, out,—1))

-
c
>

op2(x,y) = addRealArray(x, y, Real64ArraySlice.length{xl)

-
c
>

main (pgmName, argv) =

o
-

(x Initialize MPI x)
val COMM = MPI. Init (argv)

(x Determine my rank and sizex)
val rank = MPI.Rank(COMM)
val size = MPI. Size (COVM)

(x Number of elemets in the arraw)
val n = 3
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end

(x Create array to be usedx)
val buf = Real64Array.array(n, 1.0)
val recvBuf = Real64ArraySlice. full (Real64Array.array(n,.®))

(xSample Send and Receive)
val . = if (rank = 0) then
MPI.SendArr(Real64ArraySlice. full (buf), 1, COMM, MPIHAL64)
else ()
val _ = if (rank = 1) then
ignore (MPI. RecvArr(recvBuf, 0, COMM, MPI.REAL64))
else ()

(x Sample Broadcastx)
val a = MPI.BcastArr(buf, COMM, MPI.REAL64)

(x Sample Reduce with predefined operatoq)
val b = MPI.ReduceArr (buf, MPI.ADCREAL64, COMM, MPI.REAL64)

(x Sample Reduce with user defined operate)
val ¢ = MPI.ReduceArr(buf, op2, COMM, MPI.REAL64)

(x Sample Barrier call %)
val . = MPI. Barrier (COMM)

MPI. Finalize (COMM) ;
OS. Process.success
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Appendix B

Patching and I nstalling SML/NJ

In order to use our SML/NJ MPl library, itis necessary to gppir mpi-sminj.patch
patch. Our patch has been tested with SML/NJ versions 110.390.65. The
patch modifies the SML/NJ runtime as well as the Basis litsamplementation.
The SML/NJ compiler is also written in SML/NJ. Hence, in arde install the
patched Basis library, one has to first install an unpatchdd/SJ compiler and
bootstrap the new compiler. The required steps to instaflior 110.59 on an x86
Linux system are detailed below.
The source code, examples and patch can be downloaded at

http://mindspawn.unl.edu/vaishali/thesis-v0.3.tz2.b

1. Download theconfig.tgZile from the SML/NJ website into a suitably named

folder.
$ nkdir snlnj
$ cd sninj

$ wget http://smnj.cs.uchi cago. edu/ di st/ worki ng/\
110. 59/ config.tgz
$ tar -zxf config.tgz

2. Editconfig/targetsand uncomment the linequest src-sminjThis instructs
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the build process that all the source files are to be downbb&al¢he local

system.

. Build and install the SML compiler and runtime system.

$ config/install.sh |

. Now, thebin andlib folders in the current directory contain the SML/NJ
compiler and runtime. The source code to all the other pakéginstalled

in the srcfolder.

. Before bootstraping the new compiler, in case you alrdeaye an SML/NJ

installation, unset the environment variali®LNJHOME.

|$ unset SMLNJ_HOME ‘

. Download oumpi-sml.patchpatch to the current directory. The patch can

be applied as follows:

‘$ patch -p0 < npi-sni.patch ‘

. Build the new compiler and Basis library. The $ correspotathe shell

prompt and the - corresponds to the SML/NJ interpreter'snmio

$ cd src/system

$ ../../bin/sm *$sm nj/cnb.cm
Standard M. of New Jersey v110.59
[built: Sun Aug 26 00: 16: 25 2007]
[library $smnj/cnb.cmis stabl e]
- CMB. make();

- <Ctrl>+D

$ ./ makeni

$rm-rf ../../lib

$ ./installn

$cd../..

. Build the runtime system.
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$ cd src/runtine/objs

$ make clean

$ make -f nk.x86-1i nux

$ cp run. x86-1inux run.x86-11inux.so run.x86-1inux.a \
. .. Ibin/.run/

$cd../l..[..

9. Thebin andlib folder in thesminjfolder now contain the newly built SM-
L/NJ compiler and runtime system. If desired, these twoddddcan be
copied to a different location and the SMLIMIODME environment variable

can be made to point to the new location.

When patching and building newer versions of SML/NJ such 6B, the
build process does not create the folder described above. The source code is
directly downloaded to the current directory. In this catbe src folder can be
manually created and tham.tgz compiler.tgz system.tgand runtime.tgzcan be
copied into it from thesmlnjdirectory. If the build process fails complaining about
not being able to downloaeéxgen the fileconfig/allsourcexan be edited and the
line containinglexgenshould be commented. Other than these changes, the build

process is identical to that of SML/NJ 110.59.
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Appendix C

C/Python MPI Library API and

examples

C.1 Python MPI API

Currently, all socket operations are blocking.

e MPLInit(argv)
Initialize the MPI environment. The command line argumeants passed
into this functions so that participating nodes can be deitexd. The return

value is a handle to the current communication group.

e MPI_Finalize(comm)
Close open sockets between the participating nodes in concation group

comm Nothing is returned from this call.

e MPI_Send(buf, dest, comm)

Send strindouf to process with ranklestin the communication groupomm
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If other datatype such as arrays are used, tiosiring() method can be used
to convert the array into a string representation. Simjlaainy object can
be serialized into a string with Python’s pickling modul&e lengh of the
buffer can be automatically determined and does not have tepkcified.

Nothing is returned from this call.

MPI_Recv(len, src, comm)

Receive a string of lengtlen from process with ranisrc in the communi-
cation groupcomm The received string is returned. If expecting an object
such as an array, tHeomstring()method can be used to create an array from

the received string.

MPI_Barrier(comm)
Ensure that all processes in communication groammbhave reached this

call before proceeeding.

MPI_Bcast(buf, len, comm)

Broadcast the stringuf from the root process (rank=0) to all the other pro-
cesses in communication grogomm The received string is returned to
all processes (although it is not required on the root prs)ceBhe non-root
processes should pass an empty string for the argumdrgince it is mean-

ingful only for the root process to pass in data that is to l[watcast.

MPI_Reduce(buf, len, fn, comm)

Perform the operatiofn on a stringbuf contained in all processes in com-
munication grougcomm The operation is performed in a bottom up fashion
from the leaves to the root. The non-root processes receilepartial re-

sults and only the root process contains the fully reducdtebufn is a
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function object that is to be of forrn(x, y) where x and y are two strings
that are passed in. The function objéatis expected to perform an arbi-
trary operation on the strings and return a new string. A<rilesd in the

above operations, th®string(), fromstring() and pickling utilities can be

used when arrays or other arbitrary objects are used.

C.1.1 Examples

Listing C.1 illustrates how to use the MPI primitives debed above.

Listing C.1: Demo using our Python MPI Library

#!/bin/env python

import mpi
import sys
import numpy

def fn(x, y):
""" User defined function to add two arrays """
# Convert bytes to a double precission array
Xr = numpy. fromstring (x, numpy.float64)
yr = numpy. fromstring (y, numpy.float64)

# Add the two arrays
zr = numpy.add(xr, yr)

# Convert array to bytes and return it
return zr.tostring ()

def main():
# Initialize MPI
MPLCOMMWORLD = mpi. MPI_Init(sys.argv)

rank
size

mpi. MPLComm.rank (MPLCOMM_WORLD)
mpi. MPLComm.size (MPLCOMM_WORLD)

NumReals = 5

# Construct an array
X = numpy.ones(NumReals, numpy.float64)
Xstr = X.tostring ()

# Sample Barrier Call
mpi. MPI_.Barrier (MPLCOMM-WORLD)

# Sample Send and Receive
if rank == 0 and size > 1:
mpi.MPLSend(Xstr, 1, MPCOMMWORLD)
if rank == 1:
recvbuf = mpi.MPlRecv (len(Xstr), 0, MPCOMM_WORLD)

# Sample Broadcast
if rank == 0:
mpi. MPLBcast (Xstr, len(Xstr), MRCOMMWORLD)
else:
recvbuf = mpi.MPLBcast('’, len(Xstr), MPICOMMWORLD)

# Sample Reduce
Ystr = mpi.MPI.Reduce (Xstr, len(Xstr), fn, MECOMM.WORLD)
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# Only root process received the fully
if rank is 0:

reduced array

Y = numpy. fromstring (Ystr, numpy.float64)

# Print the reduced array
print Y

# Cleanup MPI environment
mpi. MPI_Finalize (MPLICOMM.WORLD)

if __name_. == '__main__":
main ()

93



C2 CMPI API

Our C MPI library defines the following datatypes for use wittle functions de-
fined below MPIINT, MPI_FLOAT, MPI_.DOUBLE and MPICHAR.

e COMM* MPI _Init(int argc, char **argv)
Initialize the MPI environment. The command line argumeartps and the
number of argumentargc are passed into this function so that participat-
ing nodes can be determined. The return value is a handlestoutrent

communication group.

e void MPI_Finalize(COMM *comm)
Close open sockets between the participating nodes in concation group

comm Nothing is returned from this call.

e int MPI_Send(void *buf, int count, int dest, COMM *comm, int datagjp
Sendcountelements of arrapuf of type datatypeto process with ranklest
in the communication groupomm On successful completion, a positive

integer is returned.

e int MPI_Recv(void *buf, int count, int src, COMM *comm, int datatyype
Receive an array of lengttountelements of typeatatypefrom process with
rank src in the communication groupomminto buffer buf. On successful

completion, a positive integer is returned.

e int MPI_Barrier(COMM *comm)
Ensure that all processes in communication groammbhave reached this

call before proceeeding.
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e int MPI_Bcast(void *buf, int count, COMM *commm, int datatype)
Broadcast the arralguf with countelements of typelatatypefrom the root
process (rank=0) to all the other processes in communit@ioupcomm
The received array is returned to all non-root processebyfin The non-
root processes should pass the address of an allocated dfloogmory for
the argumenbuf, since it is meaningful only for the root process to pass in

data that is to be broadcast.

e int MPI_Reduce(void *sbuf, void *rbuf, int count, void (*op)(void Yoid *,

int, int), COMM *comm, int datatype)

Perform the operatioapon an arrayouf with countelements of typelatatype
contained in all processes in communication groapnm The operation is
performed in a bottom up fashion from the leaves to the robe fon-root
processes receive only partial results and only the roatgs® contains the
fully reduced buffer.opis a pointer to a function of fornin(void *in, void
*inout, int count, int datatype)wherein andinout are two arrays that are
passed in and the newly computer array is placethaut The type and
number of elements in the two arrays are specified by arguswatatype

andcountrespectively.

C.21 Examples

Listing C.2 illustrates how to use the MPI primitives debed above.

Listing C.2: Demo using our C MPI Library

#include <stdio .h>
#include "mpi.h”

void Add(void xin, void *inout, int count, int datatype){
double xdin=(double *)in, xdinout=(double x)inout;
int i;

/l Add the two arrays and store results in inout[]
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for (i=0; i<count; i++)
dinout[i] += din[i];

int main(int argc, char =xargv) {

/1 Initialize MPI
COVMM *MPI.COMMWORLD = MPI_Init(argc, argv);

/! Determine my rank and size

int rank = MPLComm.rank (MPLCOMM.WORLD) ;
int size = MPLComm.size (MPLCOMM.WORLD) ;
/Il Sample Barrier Call

MPI_Barrier (MPLCOMM-WORLD) ;

int NumElements = 3;

I/l Create arrays that we will use
double X[] = {1.0, 1.0, 1.0G;
double Y[NumElements];

/I Sample Send and Receive
if (rank == 0 && size> 1)

MPI_Send(X, 3, 1, MRCOMM.WORLD, MPLDOUBLE);

if (rank ==

MPI_Recv (X, 3, 0, MPICOMMWORLD, MPLDOUBLE);

I/l Sample Broadcast
MPI_Bcast (X, 3, MPICOMM.WORLD, MPLDOUBLE);

I/l Perform a sample reduce operation

MPI_.Reduce (X, Y, NumElements, &\dd, MRIOMM-WORLD, MPLDOUBLE);

I/l Make the root print out the reduced array
if (rank == )

printf ("%g %g %d\n”, Y[O], Y[1], Y[2]);
MPI_Finalize (MPICOMM-WORLD) ;

return 1;
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