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ENHANCING SMART HOME RESIDENT ACTIVITY PREDICTION AND 

ANOMALY DETECTION USING TEMPORAL RELATIONS 

 

Abstract 
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Chair:  Diane J. Cook. 

 

 Technological enhancements aid development and research in smart homes and 

intelligent environments. The temporal nature of data collected in a smart environment 

provides us with a better understanding of patterns that occur over time. Predicting events 

and detecting anomalies in such datasets is a complex and challenging task.  To solve this 

problem, we suggest a solution using temporal relations. Our temporal pattern discovery 

algorithm, based on Allen’s temporal relations, has helped discover interesting patterns 

and relations on smart home datasets. We hypothesize that machine learning algorithms can 

be designed to automatically learn models of resident behavior in a smart home, and when 

these are incorporated with temporal information, the results can be used to enhance 

prediction and to detect anomalies. We describe a method of discovering temporal 

relations in smart home datasets and applying them to perform anomaly detection on the 

frequently-occurring events and enhance sequential prediction by incorporating temporal 

relation information shared by the activity. We validate our hypothesis using empirical 

studies based on the data collected from real resident and virtual resident (or synthetic) 

data.  
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CHAPTER O�E 

I�TRODUCTIO� 

 

Overview 

            

 The problems of representing, discovering, and using temporal knowledge arise 

in a wide range of disciplines, including computer science, philosophy, psychology, and 

linguistics [1]. Temporal rule mining and pattern discovery applied to time series data has 

attracted considerable interest over the last few years [2]. We consider the problem of 

learning temporal relations between event time intervals in smart home data, which 

includes physical activities (such as taking pills while at home) and instrumental 

activities (such as turning on lamps and electronic devices) and their results can be used to 

enhance prediction and to detect anomalies. The purpose of this work is to identify 

interesting temporal patterns in order to improve prediction of events based on observed 

temporal relations in a smart home environment and to detect whether the event which 

occurred is an anomaly. A simple sensor can produce an enormous amount of temporal 

information, which is difficult to analyze without temporal data mining techniques that 

are developed for this purpose. 

By 2040, a projected 26% of the US population will be 60+ and at least 45% of the 

populations of Japan, Spain and Italy will be 60 or older by then. Approximately 13% of 

these older adults suffer from dementia and related disabilities [3]. Given the costs of nursing 

home care and the importance residents place on remaining in their current residence as long 

as possible, use of technology to enable residents with cognitive or physical limitations to 

remain in their homes longer should be more cost effective and promote a better quality of 

life. Thus we see a strong need for smart homes in the near future.  As a long-term outcome 

of this investigation we expect to develop and to offer the community smart environment 
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technologies with data mining and machine learning algorithms that can effectively perform a 

variety of health monitoring and intervention strategies. 

Data collected in smart environments has a natural temporal component to it, and 

reasoning about such timing information is essential for performing tasks such as event 

prediction and anomaly detection. Usually, these events can be characterized temporally 

and can be represented by time intervals. These temporal units can also be represented 

using their start time and end time which lead to form a time interval, for instance when 

the cooker is turned on it can be referred to as the start time of the cooker and when the 

cooker is turned off it can be referred to as the end time of the cooker. The ability to 

provide and represent temporal information at different levels of granularity is an 

important research sub-field in computer science which especially deals with large 

timestamp datasets.  The representation and reasoning about temporal knowledge is very 

essential for smart home applications. Particularly people with disabilities, elder adults 

and chronically ill residents can take advantage of applications that use temporal 

knowledge.  In particular, we can model activities of these individuals, use this 

information to distinguish normal activities from abnormal activities and help make 

critical decisions to ensure their safety. 

 Researchers have different views on how to structure temporal data and how to go 

about mining temporal information. Each strategy can reflect different a perspective of 

the problem [1]. We propose one such framework to derive temporal rules from a time 

series representation of observed resident activities in a smart home, and validate the 

algorithm using both synthetic datasets and real data collected from the MavHome smart 

environment. This framework is based on Allen’s temporal logic [1]. Allen suggested that 

it was more common to describe scenarios by time intervals rather than by time points, 

and listed thirteen relations formulating a temporal logic (before, after, meets, meet-by, 

overlaps, overlapped-by, starts, started-by, finishes, finished-by, during, contains, equals) 

[1]. These temporal relations play a major role in identifying temporal activities which 
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occur in a smart home. The objective of this research is to identify temporal relations 

among daily activities in a smart home to enhance prediction and decision making with 

these discovered relations, and detect anomalies. We hypothesize that machine learning 

algorithms can be designed to automatically learn models of resident behavior in a smart 

home, and when these are incorporated with temporal information, the results can be used to 

enhance prediction and to detect anomalies. We describe a method of discovering temporal 

relations in smart home datasets and applying them to perform anomaly detection on the 

frequently-occurring events and enhance sequential prediction by incorporating temporal 

relation information shared by the activity. We validate our hypothesis using empirical 

studies based on the data collected from real resident and synthetic data.  

 The outcome of this research is a new algorithm for anomaly detection and event 

prediction, called TempAl.  TempAl differs from earlier work by incorporating temporal 

relation representation and discovery into the algorithm.  The resulting algorithm 

represents a contribution which is integrated into the MavHome smart home system and 

can also be used as a standalone method for temporally-enhanced data analysis. 

 

Illustrative Scenario 

 

In this section we illustrate instances of temporal relations [4], then illustrate as 

how they can be used for anomaly detection and prediction. Consider a scenario 

containing three events: A (turn on range top), B (turn on oven), and C (turn on toaster). 

Figure 1 represents the relationship among the three events A, B, and C.  Note that Event 

A occurs before Event B and Event B occurs before Event C.  We can see that A “before” 

B “before” C is a possible relationship label. However, an alternative representation 

consistent with the events is A “before” B; B “finishes-by” C. The second interpretation, 

or relationship, actually changes our perspective of the scenario. In this case when we use 

the relation B “before” C we know that the event B just occurs before C. In contrast, 
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when we interpret the relationship as B finished-by C, an anomaly can be flagged in cases 

where B and C do not finish at the same time.  Thus the relation of B “finished-by” C is a 

better fit for the relationship illustrated in Figure 1 between events A, B, and C.  Here we 

see an illustration of the temporal relation. 

 

Figure 1. Temporal intervals are labeled as A “before” B “before” C or A “before” B 

“finishes-by” C. 

 

Consider a simple scenario where these temporal relations play a vital role in 

anomaly detection. Consider a case where an elderly person takes pills after eating food. 

We notice that these two activities, taking pills and eating, share the temporal relation 

“after” between them. When this relationship is violated, the relationship is updated to 

“meets” and an anomaly in activity is noted. Similarly, temporal relations can enhance 

the smart home’s ability to predict events.  In our scenario, the algorithms can predict the 

taking of pills after consuming food. 

 

Thesis Layout 

 

 In this thesis we start by introducing the problem and approach in chapter one and 

current research trends in chapter two. In chapters three and four, we discuss our 

methodology. In chapter five we the results of our experimental validation and in the 

final chapter we conclude with observations and talk about possible future work. 
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CHAPTER TWO 

CURRE�T RESEARCH TRE�DS 

  

The research described in this thesis contributes toward the emerging domains of 

smart environments or smart homes. In this chapter we summarize recent advances in 

smart environment research and current trends in temporal relations-based data mining 

and knowledge discovery.  

 

Smart Environments 

 

   Mark Weiser gave his view of ubiquitous computing as the following: 

 

 “A physical world that is richly and invisibly interwoven with sensors, actuators, 

displays, and computational elements, embedded seamlessly in the everyday objects of 

our lives, and connected through a continuous network" 

- Mark Weiser [5] 

 

 We define a smart environment as a small world where all kinds of smart devices 

are continuously working to make residents' lives more comfortable. Smart environments 

aim to satisfy the experience of residents in every environment, by replacing the 

hazardous work, physical labor, and repetitive tasks with automated agents [6] and also 

ensure security, comfort and health & well-being of the resident. The general features 

which are incorporated into most smart environments include home automation such as 

remote control of devices, inter-device communication, information acquisition using 

sensors, enhanced services using intelligent devices, and task automations using 

prediction techniques and data mining algorithms [6]. Smart environment research efforts 

are by nature multi-disciplinary projects which make use of advances in wireless 
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communication, databases, algorithm design, speech recognition, image processing, 

computer networks, mobile computing, ubiquitous computing, tele-health, operating 

systems, assistive technologies, adaptive controls, sensor designs, software engineering, 

middleware architectures, parallel processing, pervasive computing, and ambient 

intelligence [5].  

 

 

 

Figure 2. Common goals of the smart environment. 

  

 Common goals of smart environments include adapting to the needs of residents, 

providing services which are cost effective and reliable, and providing maximum comfort 

and security to the resident. The contributions that have been offered by smart 

environment research projects are the design and implementation of interfaces, 

applications, and systems ranging from motion detection sensors to device automation in 

homes, which can be used by residents, anytime [7].  
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Types of Sensors used 

 

 The sensors used for our data collection mainly consist of an X-10 sensor network 

and an Argus sensor network. We have many X-10 sensor systems available in stores 

today. In our environment, we have specifically used RF transceivers, computer interface 

modules, light modules, appliance modules, motion detectors, and an HVAC thermostat. 

Figure 3 illustrates a simple x-10 lamp module [7] [8]. 

 

 
 

Figure 3. X-10 Lamp module [8]. 

 

Environment events are noted by the X-10 sensors, and are sent through the 

power line to an awaiting receiver. We note that the other part of the data collection 

sensor consist of the Argus sensor network which are devices that operate off of the 

software stored on chip. This Argus sensor system consists of slaves and dongles which 
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form the Master-Slave network for sensory reception. For more information on the smart 

home layout and sensor deployment, see Appendix A.  The Figure 4 illustrates the Argus 

sensor networks master slave system. 

 

 

 

Figure 4. Overview of Argus master slave system [8]. 

 

Challenges 

 

Current challenges in smart environments today include not only the need for 

innovative, user-friendly applications and techniques but also large amounts of 

interventions to setup, maintain and upgrade the environment, with new sensors, 

technologies and applications which suits out needs. We desire technologies which 

become a part of our everyday life and dissolve into our life to the point where they 

become unnoticeable but significantly improve our life and the way we lead it. 

Researchers are investigating the intelligent environment frameworks that could 

recognize natural human behaviors, interpret and react to these behaviors, and adapt to 
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residents in a non-intrusive manner. These features of an intelligent environment present 

difficult challenges to solve. Another challenge is to seamlessly integrate different fields 

of study and research such as computer science, digital devices, and wireless and sensor 

networking to create an intelligent environment. Some current challenges which are being 

explored are illustrated in Figure 5.  These challenges belong to the domains of smart 

devices (Intelligent devices), virtual pets, human-computer interaction, healthcare, 

sensors networks, learning and adaptation to users and their lifestyles.  

 

 

 

Figure 5. Current challenges in smart environments (smart devices, robotics, HCI, 

healthcare, sensors & communication, and learning & adaptation). 
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Examples with Physical Test beds 

 

 With the convergence of supporting technologies in artificial intelligence and 

pervasive computing, smart environment research is quickly maturing.  The goals of 

intelligent systems are to reason, predict, and make decisions that will automate a 

person’s physical environment (e.g., home, workplace, and so forth) in a way that adapts 

to the resident’s life style and makes the environment more supportive. Figure 6, 

illustrates some significant current projects being pursued in the research world. 

 

 

Figure 6. Current trends in smart environment and intelligent systems research at MIT 

House_n project, MavHome project and Intel Research [9] [10] [11]. 

 

MavHome Project 

 

 The MavHome project treats an environment as an intelligent agent, which 

perceives the environment using sensors and acts on the environment using powerline 

controllers [11]. At the core of its approach, MavHome observes resident activities as 
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noted by the sensors. These activities are mined to identify patterns and compression-

based predictors are employed to identify likely future activities [12]. Some current 

challenges in this project are better human-computer interactive applications, healthcare 

focus, advanced sensor systems and new algorithms for learning and adapting to residents 

of a smart environment including new parameters such as space and time. 

 Application of MavHome algorithms to healthcare includes anomaly detection, 

on health datasets to check for outliers and drifts in smart homes [14]. This approach is 

based on regression and correlation on numerical-based health datasets and would not 

apply to activities which consist of devices or actions, for instance, turning on and off of 

devices in smart home. Furthermore, this approach considers each event is occurring in a 

single instant, and therefore overlooks the time interval encompassed by an event. As a 

result, there is a need to design a more effective and more general anomaly detection 

model. Prediction and decision making has experienced significant success and could 

automate a resident’s activities, but this can be improved using time as a component. 

Currently this project is looking towards new sensor systems and trying to address the 

problem of multiple residents [13] [15] [16] [17] [18]. 

 

MIT Media Lab and House_n Project 

 

The MIT Media Lab is focused on gadget creation and specific implements of the 

future [20]. Many of these projects could be incorporated into an intelligent environment 

to enhance the resident’s experience, but they probably will not be commercially 

available for another decade. The work in this thesis does not incorporate any MIT Media 

Lab technology primarily due to their availability and the significant amount of 

engineering effort that would be required to duplicate and integrate their work; however, 

specific ideas such as those in the augmented reality kitchen, localized context awareness, 
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and the interactive nature of many of their projects could be incorporated into our 

environments.  

The Place Lab developed by the MIT House_n Consortium and TIAX, LLC 

currently is researching methods to validate performance of the activities of daily life and 

biometric monitoring. The rich sensing infrastructure of the Place Lab is being used to 

develop techniques to recognize patterns of sleep, eating, socializing, recreation, etc. 

Particularly for the elderly, changes in baseline activities of daily living are believed to be 

important early indicators of emerging health problems – often preceding indications 

from biometric monitoring [21]. There work on recognition of Activities of Daily Living 

in the Home Setting using Ubiquitous, Sensors when applied with pattern classification 

and context-based AI algorithms which involve time series based models can be 

considered [22]. 

Another group at MIT, called the Agent-based Intelligent Reactive Environments 

group (AIRE) [23] conducted research on pervasive computing and people centric 

applications to construct intelligent spaces or zones. Their work included an intelligent 

conference room, intelligent workspaces, kiosks, and oxygenated offices. 

 

Intel Research Lab 

 

Intel Corporation’s Proactive Health Lab is exploring technologies to help seniors 

“age in place” in order to help the increasing health care burden of the rapidly aging 

population of the United States by anticipating resident needs through observation with 

wireless sensors and taking action to meet those needs through available control and 

interactive systems. 

The goal of the Computer-Supported Coordinated Care (CSCC) project [24] at 

Intel Research is to identify the characteristics and needs of the care networks for elders 

who wish to remain at home ("age in place"). Ultimately, their goal is to develop 
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technology to help this population. In a three-phase study towards this end, they 

developed an empirical approach focused on the wide range of people involved with 

home elder care [25] [26]. Response time and more generally using time as a parameter is 

an important factor for most healthcare system, though there current work involves 

empirical approaches; data mining models should also be investigated.  

 

Medical Automation Research Center (MARC) Smart House Project   

 

 The Medical Automation Research Center (MARC) smart house  project [27]  at  

the  University  of Virginia  is  focused on the issue of in-home monitoring for the elderly 

in order to promote  the  concept  of  aging  in  place.  Their in-home monitoring system is 

made up of low-cost, non-invasive sensors (without cameras or microphones) and 

communications   to   establish   Telematics   to   authorized residents (for example, family, 

personal physician). 

 MARC is designed to perform health status monitoring by analyzing   behavioral   

patterns   of   its   residents   using collected metrics (Barger et al.  2003). The data logged 

is used to observe general health and activity levels and using data mining techniques such 

as analysis of mixture models to monitor what is called the Activities  of  Daily  Live  

(ADL) [28]. ADL also includes the measure of the index of well-being and a measure of 

the decline in ability over time. The data analysis component uses Estimation   

Maximization (EM) algorithms and Mixture Models (MM) to yield unique health status 

reports that can be made available to the residents, their medical advisors and family 

members. Monitoring ADLs can also be beneficial an as early indicators for an onset of 

a   disease.   Moreover, their system provides   identified activity levels, which could 

lead to reality-based decision making. Such a system would be beneficial if it were used 

to evaluate the quality of the day that a person could have, based on the previous 

observed activity levels, and suggest required changes and  modifications  in the daily 
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activities patterns  which would lead the  resident  to  experience  a better quality of life (for 

example, the home perceives that the  resident  has  irregular  sleeping  patterns and this 

observations   can   be   used   to   make   corrections   and suggestions, which could 

improve  the  resident  lifestyle and health) [29]. 

 

Gator Tech Smart Home Project 

 

 The Gator Tech Smart home is built from the ground up as an assistive 

environment to support independent living for older people and residents with disabilities 

[30]. Currently, the project uses a self-sensing service to enable remote monitoring and 

intervention for caregivers of elderly persons living in the house. Their current key 

contribution is the development of a middleware architecture which includes a physical 

layer of devices, a sensor platform layer to convert readings into service information, a 

service layer to provide features and operators to components, a knowledge layer that 

offers ontology and semantics, a context management layer to provide context 

information, and an application layer to support a rich set of features for resident living. 

The state of the project is still focused on integration and the middleware development, 

but they are beginning to focus on issues with eldercare and the aging in place initiatives 

[31]. 

 

Other Projects 

 

There  are  also  a  number  of  systems  which  have  been developed  to  help  

people  compensate  for  physical  and sensory needs. We see that most of them rely on 

computer based   technologies   incorporating   artificial   intelligence techniques (for 

example, schedule management using the Autominder system) [32].  
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A schedule management  system  for  the  elderly  helps  people  who suffer from 

memory  decline—an  impediment  that makes them  forget  their  daily  routine  activities  

such  as  taking medicine, eating meals, or personal hygiene. Autominder [32], an  

intelligent  cognitive  orthotic  system  for  people  with memory impairment, employs 

techniques such as dynamic programming and Bayesian learning, a web-based interface for 

plan initialization and update to construct rich models of  a  resident’s  activities—

including  constraints  on  the times and ways in which activities should be performed to 

monitor    the execution    of those activities, detect discrepancies between what a 

person is expected to do and what  he  or  she  actually  is  doing,  and  to  reason  about 

whether to  issue  reminders [33].  Assistive  technologies,  when combined   with   the   

monitored   information   on   daily activities  of  the  resident,  can  be  used  to  measure  

the quality  of  a  person's  performance  of  their  daily  routine activities.  A schedule 

management system such as this could   generate   an   improved   resident   lifestyle   

based on behavioral   patterns   designed   to   improve   their   daily performance [34].   

An extended application of anomaly detection is its use for reminder assistance. 

Autominder, an intelligent cognitive orthotic system for people with memory impairment, 

employs techniques such as dynamic programming and Bayesian learning to remind 

residents about their planned Activities for Daily Living.  Autominder includes a web-

based interface for plan initialization and constructs rich models of a resident’s 

activities—including constraints on the times and ways in which activities should be 

performed—to monitor the execution of those activities.  Autominder looks for 

differences between expected and observed activities, and reasons about whether to issue 

reminders.  

The University of Essex’s intelligent dormitory (iDorm) is a real ambient 

intelligent test-bed comprised of a large number of embedded sensors, actuators, 

processors and networks in the form of a two bed roomed apartment. Fuzzy rules are 



 

16 

 

learned from the observed resident activities [35] and are used to control select devices in 

the dorm room. 

The goal of the Point-of care Lab at the Oregon Health & Science University 

(OHSU) is to develop approaches and technologies that allow early detection and 

remediation of physical and cognitive decline [36]. Scientists there are creating unique 

artificial intelligence algorithms that combine information from a variety of sensors and 

tracking devices placed throughout the homes of seniors, to assess situations in which 

mobility or cognition problems may be occurring, and to provide intervention and health 

coaching to seniors to assure their health care needs are being met. Such systems can 

enhance their performance and improve accuracy, if time models designed with temporal 

data mining techniques are considered. 

 

Temporal Reasoning and Mining 

  

Temporal mining is a reasonably new area of research in computer science and 

has become more popular in the last decade due to the increased ability of computers to 

store and process large datasets of complex data. Some work on temporal data reasoning 

and mining has been done in the context of classical and temporal logics and have been 

applied to real-time systems to artificial intelligence projects.  In this section, we give a 

general overview of some current research trends in temporal reasoning and mining. 

Morchen argued that Allen’s temporal patterns are not robust and small 

differences in boundaries lead to different patterns for similar situations [37]. Morchen 

presents a Time Series Knowledge Representation (TSKR), which expresses the temporal 

concepts of coincidence and partial order. He mentions that Allen’s temporal relations are 

ambiguous in nature, making them not scalable and not robust. Morchen handles the 

problem of using ambiguous nature of Allen’s relations by applying constraints to define 

the temporal relations. Although this method appears feasible and computationally sound, 
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it does not suit our smart home application due to the granularity of the time intervals in 

smart homes datasets. We need to note that the time granularities here indicate the events 

in smart homes are instantaneous and some of them just occur for long periods and some 

just occur for a split second short, where as Morchen applies TSKR to muscle reflection 

motion and other such areas where time intervals are consistently similar in length. His 

approach does not involve ways to eliminate noise and the smart home datasets are so 

huge that computational efficiency would not be the only factor to be considered. 

Morchen also describes the temporal constraints using their description language.  

Overall they proposed a logic-based approach to describe temporal constraints with 

multiple time granularities related to events occurring in smart homes. Morchen 

identified time and sensor granularities as sequences of time points properly labeled with 

propositional symbols marking the starting and ending points in each granule.  Temporal 

constraints that are modeled describe temporal relationships related to sensors providing 

the right control of the environment of smart home. 

  In artificial intelligence, the event calculus is a frequently-used approach for 

representing and reasoning about events and their effects. Björn, et al. [38] also argue that 

space and time play essential roles in everyday lives and introduce time and space calculi 

to reason about these dimensions. They discuss several AI techniques for dealing with 

temporal and spatial knowledge in smart homes, mainly focusing on qualitative 

approaches to spatiotemporal reasoning.  

Ryabov and Puuronen in their work on probabilistic reasoning about uncertain 

relations between temporal points [39] represent the uncertain relation between two 

points by an uncertainty vector with three probabilities of basic relations (“<”, “+”, “>”).  

They also incorporate inversion, composition, addition, and negation operations into their 

reasoning mechanism. This model would not be suitable for a smart home scenario as it 

would not go into final granularities to analyze instantaneous events. The work of 

Worboys, et.al. [40] involves spatio-temporal-based probability models, the handling of 
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which is currently identified as future work. Dekhtyar, et. al.’s work on probabilistic 

temporal databases [41] provides a framework which is an extension of the relational 

algebra that integrates both probabilities and time. This work includes some description 

of Allen’s temporal relations and some of these are incorporated already in this current 

work.     

 

 

 

Summary 

 

In this chapter we discussed the current trends in smart environment research and the 

current trends in temporal reasoning and mining research. Smart homes are intelligent 

environments which are designed used to make the life of residents easier and aid them in 

everyday activities. In the next chapter we will present related work on temporal relations 

and give an introduction to our work. 
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CHAPTER THREE  

“TempAl” (TEMPORAL A�ALYZER): A� I�TRODUCTIO� 

 

In this chapter we introduce the concept of temporal relations and introduce 

principles for representing and reasoning about temporal relations.  In addition, we give 

an architectural overview of our analyzer and provide an overview of our data collection 

environment. 

 

Temporal Relations 

 

Activities in a smart home include resident activities as well as interactions with 

the environment.  These may include walking, sitting on a couch, turning on a lamp, 

using the coffeemaker, and so forth. Instrumental activities are those which have some 

interaction with an instrument which is present and used in a home. We see that these 

activities are not instantaneous, but have distinct start and end times.  We also see that 

there are well-defined relationships between time intervals for different activities. These 

temporal relations can be represented using Allen’s temporal relations and can be used 

for knowledge and pattern discovery in day-to-day activities. These discoveries can be 

used for developing systems which can act as reminder assistants and help detect 

anomalies and aid us in taking preventive measures. 

Allen listed thirteen relations (visualized in Table 1) comprising a temporal logic:  

before, after, meets, meet-by, overlaps, overlapped-by, starts, started-by, finishes, 

finished-by, during, contains, and equals [42]. These temporal relations play a major role 

in identifying time-sensitive activities which occur in a smart home. Consider, for 

instance, a case where the resident turns the television on before sitting on the couch. We 

notice that these two activities, turning on the TV and sitting on the couch, are frequently 

related in time according to the “before” temporal relation 
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Table 1: Temporal relations representation which includes all thirteen Allen’s relations. 

Temporal Relations Pictorial 

Representation 

Interval constraints 

X Before Y 

 

StartTime(X)<StartTime(Y); 

EndTime(X)<StartTime(Y) 

X After Y 

 

StartTime(X)>StartTime(Y); 

EndTime(Y)<StartTime(X) 

X During Y 

 

StartTime(X)>StartTime(Y); 

EndTime(X)<EndTime(Y) 

X Contains Y 

 

StartTime(X)<StartTime(Y); 

EndTime(X)>EndTime(Y) 

X Overlaps Y 

 

StartTime(X)<StartTime(Y); 

StartTime(Y)<EndTime(X); 

EndTime(X)<EndTime(Y) 

X Overlapped-By Y 

 

StartTime(Y)<StartTime(X);     

StartTime(X)<EndTime(Y); 

EndTime(Y)<EndTime(X) 

X  Meets Y 

 

StartTime(Y) = EndTime(X) 

X Met-by Y 

 

StartTime(X)= EndTime(Y) 

X Starts Y 

 

StartTime(X)=StartTime(Y); 

EndTime(X)≠EndTime(Y) 

X started-by Y 

 

StartTime(Y)=StartTime(X);           

EndTime(X)≠EndTime(Y) 

X Finishes Y 

 

StartTime(X)≠StartTime(Y); 

EndTime(X) =EndTime(Y) 

X Finished-by Y 

 

StartTime(X)≠StartTime(Y); 

EndTime(X)=EndTime(Y) 

X Equals Y 

 

StartTime(X)=StartTime(Y); 

EndTime(X)=EndTime(Y) 
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Modeling temporal events in smart homes is an important problem and offers 

advantages to residents of smart homes. We see that the temporal constraints can model 

causal activities; if a temporal constraint is not satisfied then a potential “abnormal” or 

“critical” situation may have occurred. Similarly, they can be used to form rules which 

can be used for prediction. For example, if there is a rule which states that there is a large 

propability of turning on the television after having dinner we can use it to predict turning 

on the television to be the next event and use this prediction to automate the turning on of 

the television after dinner. 

 

TempAl Definition 

 

“TempAl” (Pronounced as “temple”) is a suite of software tools which enrich 

smart environment applications by incorporating temporal relationship information for 

various applications including prediction and anomaly detection. In smart homes, the 

time when an event takes place is known and is recorded. The previous model in our 

smart home did not incorporate time for analysis purposes.  We felt that including this 

information would improve the strength of the smart home algorithms, which motivated 

our contributions of storing, representing, and analyzing timing information. The 

temporal nature of the data provides us with a better understanding of the nature of the 

data. We see that using a time series model is a common approach to reasoning about 

residents time-based events.  However, we consider events and activities using time 

intervals rather than time points, which is appropriate for home scenarios [43]. Thus we 

have designed a novel approach to solve the problem of incorporating time for various 

smart home applications.  We introduce the notion of temporal representation which is 

capable of expressing the relationship between interval-based events. We develop 

methods for finding interesting temporal patterns as well as for performing anomaly 

detection and prediction based on these patterns. 
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The contribution of this work is a new means of temporal representation for smart 

home activities and events which help with reasoning-related tasks, including planning, 

explanations and predictions. Our focus for this thesis is on anomaly detection and 

prediction. Figure 7 provides an architectural overview of this tool kit. In this Figure, we 

see the various components which comprise to form TempAl. We also propose a model 

to enhance prediction and a simple evidence-based anomaly detection model for 

computing whether the current event is anomalous or not in the chapter 4. The results for 

these experimentations are reported in chapter 5. 

 

 The Role of TempAl in the MavHome Smart Home Project 

 

The existing system MavHome architecture contains the software components 

ProPHeT [44], Ed [45], ALZ [46], and Arbiter [47] [8], as illustrated in Figure 7. Inside 

this system framework exists the core system architecture for our approach. We present 

the architecture of “TempAl” which enhances the Active LeZi predictor shown in Figure 

7. In this section we outline the components we utilize in our work and place those in a 

framework. We will now present the specific core architectural elements which we utilize 

to enhance the current architecture, and it will be analyzed in this chapter. The goals of 

our system are to learn a model of the inhabitants of the intelligent environment, 

automate devices to the fullest extent possible using this model in order to maximize the 

comfort of the inhabitant while maintaining safety and security, and adapt this model 

over time to maintain these requirements. In order to accomplish these goals, we must 

first learn a model of inhabitant activities, and then incorporate this into an adaptive 

system for continued learning and control. 
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Figure 7. MavHome software architecture [8]. 

 

ProPHeT 

 

Decision making is performed in the ProPHeT (Providing Partially-observable 

Hierarchical (HMM/POMDP) based decision Tasks) component [44]. The world 

representation at this level is the Hierarchical Hidden Markov Model (HHMM) [8] based 

upon a hierarchy of episodes of activity mined from stored observations. Episode 

Discovery (ED) [45] is used to generate low-level episode Markov chains and build the 

hierarchy of abstract episodes under the direction of ProPHeT. Learning is performed by 

extending the HHMM to a hierarchical Partially Observable Markov Decision Process 

(HPOMDP) and applying temporal-difference learning [12].  
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Episode Discovery (ED)  

 

The Episode Discovery (ED) data-mining algorithm [45] [47] [8] discovers 

interesting patterns in a time-ordered data stream. ED processes a time-ordered sequence, 

discovers the interesting episodes that exist within the sequence as an unordered 

collection, and records the unique occurrences of the discovered patterns.  

 

Active LeZi (ALZ) 

 

An intelligent environment must be able to acquire and apply knowledge about its 

residents in order to adapt to the residents and meet the goals of comfort and efficiency. 

These capabilities rely upon effective prediction algorithms. Given a prediction of 

resident activities, MavHome can decide whether or not to automate the activity or even 

find a way to improve the activity to meet the system goals. Specifically, the MavHome 

system needs to predict the inhabitant’s next action in order to automate selected 

repetitive tasks for the inhabitant. The system will need to make this prediction based 

only on previously-seen inhabitant interaction with various devices. It is essential that the 

number of prediction errors be kept to a minimum–not only would it be annoying for the 

inhabitant to reverse system decisions, but prediction errors can lead to excessive 

resource consumption. Another desirable characteristic of a prediction algorithm is that 

predictions be delivered in real time without resorting to an offline prediction scheme 

MavHome uses the TDAG Active-LeZi algorithm (ALZ) [48] to meet the prediction 

requirements. 

 

 

 ARBITER 
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When issues of safety and security are of the highest importance in a system there 

is the need for an enforcer of safety and user preference rules before actions are made. 

This system works by using a knowledge base of rules and evaluating each action event 

against these rules to determine if the action violates them. Before an action is executed it 

is checked against the policies in the policy engine, ARBITER (A Rule-Based InitiaTor 

of Efficient Resolutions). These policies contain designed safety and security knowledge 

and resident standing rules [8].  

 

TempAl 

 

TempAl, also known as temporal analyzer is a suite of tools which are used for 

identifying the temporal information in smart home activities, and use this information 

for the process of anomaly detection in smart home activities and also enhance the 

prediction of activities. TempAl’s prediction component is an extension to the ALZ based 

predictor. We see that, TempAl uses the raw sensor data and parses it to identify time 

intervals, using the constraints described in Table 1; TempAl forms the temporal relations 

which can be saved into a database, but currently is a text file, which later are used by the 

anomaly detection or the prediction components. This model can also apply to online data 

or live streaming data, and thus making this applicable to dynamic world. The basic 

architecture is illustrated in Figure 8.  This architecture gives us an overview of the tools 

which together form TempAl. We see that the raw data is read and parsed by a parser to 

identify interval data, which is later read by a temporal relations formulation tool, which 

associates all the time interval data to form temporal relations data. This temporal 

relations data is later used by the anomaly detection component or the prediction 

enhancing component, for achieving their goals and their basic functioning. 
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Figure 8. Architecture Overview of TempAl. 

 

MavHome Data Collection 

  

The sensors present in smart environments provide us information about the 

actions, events and activities happening in the smart space. Every time an event occurs 

the corresponding sensor or device provides information about the current state it is in 

and the timestamp as when that information was observed, read or collected.  

The algorithms described here are part of the MavHome multi-disciplinary 

project, which has been engaged in the creation of adaptive and versatile home and 

Raw 

Sensor 

Data 

 

 

Database or 

Live Stream 

Weka: 

Association 

Rules 

 

Anomaly Detection 

   ALZ 

Interval Formation 

Pre-Processing 

Parser 

Temporal 

Relation 

Formation Tool 

Enhancement 

Model: 
Temporal 

Enhanced ALZ.  

Mining Model: 

Uses Association 

Rules & Output of 

ALZ. 

 

ProPHeT (Decision-Maker) 



 

27 

 

workplace environments in the past few years [49]. The goal of the MavHome project is 

to create a smart home that can act as an intelligent agent. The home perceives the state 

of the environment and its residents using sensors, reasons about the state and possible 

actions using machine learning algorithms, and acts on the environment using power line 

controllers. In order to design a smart environment, we need to design machine learning 

algorithms that can identify, predict, and reason about resident behaviors. The objective 

of our initial MavHome study was to determine if our algorithms could learn an 

automation policy that would reduce the number of manual interactions the resident 

performed in a smart environment. Our machine learning algorithms did accurately 

predict resident activities and substantially reduce the average number of daily manual 

interactions [8] [48]. 

The MavHome algorithms are tested in two physical environments. One is a smart 

apartment called the MavPad and another is a smart workplace environment, the 

MavLab. Our experiments are based on two months of real activity data collected in the 

MavLab working environment. During that time, a student volunteer performed his 

normal daily work activities in this environment. All interactions with lights, blinds, fans, 

and electronic devices were performed using X10 controllers, so that all sensor and 

interaction events could be captured in a text file. The layout of sensors and controllers in 

the MavLab is shown in Fig. 9. The data collection system consists of an array of sensors 

and X10 power line controllers, connected using an in-house sensor network. As shown 

in Fig. 8, MavLab consists of a presentation area, a kitchen, student desks, a lounge, and 

a faculty room. There are over 100 sensors deployed in the MavLab that include motion, 

light, temperature, humidity, and reed switches.  
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Figure 9. MavLab Argus Sensor Network (M-Motion sensor, L-Light sensor, T-

Temperature sensor, H-Humidity sensor, R- Reed switch sensor, S-Smoke sensor, C- Gas 

sensor) [8]. For more information please visit the Appendix section A (information on 

sensors and there layouts). 

 

The Argus Sensor Network is the main perception system in MavLab. It is built 

around a core Argus Master Board. The Master in combination with Super slaves 

(separate component boards that relay sensor information to a Master board) and Dongles 

(separate component boards that host up to four sensors and connect to Super slaves) 

form the Argus Master-Slave (ArgusMS) network. The master is also extended into 

Argus and Argus Motor (ArgusMS) networks. Argus D allows only pure digital I/O form 

the network and ArgusMS allows control of stepper motors. An X-10 powerline/based 

controller is used to monitor electrical outlet usage, light usage and the overhead fan.  

Refer to Appendix A and B for the layout and other information. A simple illustration of 

how the data is collected is illustrated in Figure 10. 
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Figure 10. MavLab Argus and X-10 sensor network capture data as the resident takes a 

break and walks from a desk to the kitchen, opens the refrigerator [8]. 

 

Synthetic Data Collection 

 

In addition, we created a synthetic data generator to validate our approach. The 

data generator allows us to input event sequences corresponding to frequent activities, 

and specify when the sequences occur. Randomness is incorporated into the time at 

which the events occur within a sequence using a Gaussian distribution. We developed a 
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model of a user’s pattern which consists of a number of different activities involving 

three rooms in an environment and eight devices. Our synthetic data set contains about 

4,000 actions representing two months of activities. The synthetic data consist of 8 

devices which can be considered to be spread across a virtual environment of two rooms 

and simulates these device activities for a sixty day period. For more information on the 

synthetic data generation outputs, please visit Appendix B. 

 

Summary 

 

 In this chapter we introduced temporal relations and gave an overview of the 

TempAl architecture. We also gave a description of the environment in which we 

collected data for our algorithm validation.  The next chapter will include more details on 

the steps involved in capturing, reasoning about, and using temporal relationship 

information in smart environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 

 

 

CHAPTER FOUR  

“TempAl” (TEMPORAL A�ALYZER): DETAILED METHODOLOGY 

 

In this chapter we discuss the methodologies involved in “TempAl” in detail. We 

also talk about temporal relations and their benefits. Two algorithms which can benefit 

from temporal analysis, anomaly detection and prediction, are described here. In addition, 

we present a visualizer which includes a pattern search mechanism to identify interesting 

temporal patterns spanned across a single-day window size. 

 

Representing Temporal Relations 

 

“It is common to describe scenarios using time intervals rather than time points”                    

- James F. Allen [43]  

 

The relative positioning of two intervals can be described using Allen’s temporal 

relations. These relations are commonly used for formulating temporal rules involving 

intervals [50]. The ability of providing and relating temporal information Allen listed 

thirteen relations comprising a temporal logic: before, after, meets, meet-by, overlaps, 

overlapped-by, starts, started-by, finishes, finished-by, during, contains, and equals. 

These temporal relations play a major role in identifying temporal activities which occur 

in a smart home. Consider, for instance, a case where the resident turns the television on 

before sitting on the couch. We notice that these two activities, turning on the TV and 

sitting on the couch, are frequently related in time according to the “before” temporal 

relation. Therefore, when the relationship is violated, an anomaly is noted. 

Let us consider a scenario which involves a television, a fan and a lamp being 

used in a smart home. We see that the resident turns on the television and after some 

period of time turns on the fan. As time progresses, feeling cold, the resident turns the fan 
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off and the resident continues watching the television. Later on, the television is turned 

off and the resident turns on the lamp to illuminate the room. We see that this scenario 

involved three activities each defined by interacts with a single device, namely a 

television, a fan and a lamp. Now we apply Allen’s logic to establish the temporal 

relations among the activities which occurred. The scenario is illustrated in Figure 11.  

These activities can be represented as television “contains” fan and “meets” lamp. We 

can also represent these relationships as television “meets” lamp and fan “before” lamp. 

 

 

 

 

 

 

      

 

Figure 11. Illustration of time Intervals between three devices television, fan, and lamp. 

 

Modelling temporal events in smart homes is an important problem and offers 

great advantages to people with disabilities and the elderly. We see that temporal 

constraints can model normal activities; if a temporal constraint is not satisfied then a 

potential "abnormal" or "critical" situation may occur. The goal of this experiment is to 

identify temporal relations in smart home datasets and later use them for health 

monitoring; specifically for event prediction and anomaly detection 

We identify two major problems associated with using Allen’s temporal relations. 

The first problem is the failure of Allen’s approach to identify a single most descriptive 

relation between a pair of events.  The second challenge is how to process event 

relationships in smart home data, which by its nature has a minute time granularity. In 
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our implementation we try to resolve these problems and provide an alternate solution as 

to how the temporal relations can be identified and analyzed in smart home datasets. 

The best way to eliminate ambiguity in identifying the temporal relations is to 

identify and define the boundary conditions for the thirteen defined intervals before we 

use it in our algorithm. We illustrate these boundary conditions, using events X and Y as 

example events. The illustrations are represented by Figures 12 to 24. 
 

X before Y: The relation “before” is used between two events X & Y, when the event X 

occurs before event Y and satisfies the constraint that StartTime(X) is less than 

StartTime(Y) and EndTime(X) is less than StartTime(Y). This is illustrated in Figure 12. 

Constraint:-StartTime(X) <StartTime(Y) & EndTime(X) <StartTime(Y).                        

 

 

 

Figure 12. X before Y. 

 

X after Y: The relation “after” is used between two events X & Y, when the event X 

occurs after the event Y and satisfies constraint that Start Time(X) is greater than 

StartTime(Y) and  EndTime(Y) is less than StartTime(X). This is illustrated in Figure 13. 

Constraint: - StartTime(X)>StartTime(Y); EndTime(Y) < StartTime(X). 

 

 

 

Figure 13: X after Y. 
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Y X 
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 X during Y: The relation “during” is used between two events X & Y, when the event X 

occurs during the event Y and satisfies the constraint that StartTime(X) is greater than 

StartTime(Y) and  EndTime(X) is less than EndTime(Y). This is illustrated in Figure 14. 

Constraint: - StartTime(X)>StartTime(Y); EndTime(X) < EndTime(Y) 

 

 

                                        

 

 

Figure 14: X during Y. 

 

X contains Y: The relation “contains” is used between two events X & Y, when the event 

X occurs containing the event Y and satisfies the constraint that StartTime(X) is less than 

StartTime(Y) and EndTime(X) is greater than EndTime(Y). This is illustrated in Figure 

15. 

Constraint: - StartTime(X) < StartTime(Y); EndTime(X) > EndTime(Y)  

 

 

 

 

Figure 15: X contains Y. 

 

X overlaps Y: The relation “overlaps” is used between two events X & Y, when the event 

X occurs overlapping the event Y and satisfies the constraint that StartTime(X) is less 

than StartTime (Y), StartTime(Y) is less than EndTime(X) and EndTime(X) is less than 

EndTime(Y). This is illustrated in Figure 16. 

    X 

     Y 

                    X 

     Y 
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Constraint: - StartTime(X) <StartTime(Y); StartTime(Y) <EndTime(X); EndTime(X) < 

EndTime(Y). 

 

 

                                                

 

Figure 16: X overlaps Y. 

 

X overlapped-by Y: The relation “overlapped-by” is used between two events X & Y, 

when the event X occurs overlapped-by the event Y and satisfies the constraint that Start 

Time(Y) is less than StartTime(X), StartTime(X) is less than EndTime(Y) and the 

EndTime(Y) is less than EndTime(X). This is illustrated in Figure 17. 

Constraint: - StartTime(Y) <StartTime(X); StartTime(X) < EndTime(Y); EndTime(Y) < 

EndTime(X). 

 

 

 

 

Figure 17: X overlapped-by Y. 

 

X meets Y: The relation “meets” is used between two events X & Y, when the event X 

occurs meeting the event Y and satisfies the constraint that EndTime(X) is equal to Start 

Time(Y). This is illustrated in Figure 18. 

Constraints: - StartTime(Y) = EndTime(X)  
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Figure 18: X meets Y. 

 

X met-by Y: The relation “met-by” is used between two events X & Y, when the event X 

is met-by the event Y and satisfies the constraint that StartTime(X) is equal to 

EndTime(Y). This is illustrated in Figure 19. 

Constraint: - StartTime(X) = EndTime(Y) 

 

 

 

Figure 19: X met-by Y. 

 

X starts Y: The relation “starts” is used between two events X & Y, when the event X 

starts the event Y and satisfies the constraint that StartTime(X) is equal to StartTime(Y) 

and EndTime(X) is not equal to EndTime(Y). This is illustrated in Figure 20. 

Constraint: - StartTime(X) = StartTime(Y); EndTime(X) ≠ EndTime(Y)  

 

                  

 

 

Figure 20: X met-by Y. 

 

 X started-by Y: The relation “started-by” is used between two events X & Y, when the 

event X is started-by the event Y and satisfies the constraint that StartTime(Y) is equal to 

StartTime(X) and EndTime(X) is not equal to EndTime(X). This is illustrated in Figure 

21. 
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Constraint: - StartTime(Y) = StartTime(X); EndTime(X) ≠ EndTime(Y);  

 

                                

 

Figure 21: X started-by Y. 

 

X finishes Y: The relation “finishes” is used between two events X & Y, when the event 

X finishes by the event Y and satisfies the constraint that StartTime(X) is not equal to 

StartTime(Y) and EndTime(X) is equal to EndTime(Y). This is illustrated in Figure 22. 

Constraint: - StartTime(X) ≠ StartTime(Y); EndTime(X) = EndTime(Y); 

 

                   

 

 

Figure 22: X finishes Y. 

 

X finished-by Y: The relation “finished-by” is used between two events X & Y, when the 

event X is finished by the event Y and satisfies the constraint that StartTime(X) is not 

equal to StartTime(Y) and EndTime(X) is equal to EndTime(X). This is illustrated in 

Figure 23. 

Constraint: - StartTime(X) ≠ StartTime(Y); EndTime(X) = EndTime(Y) 

 

 

 

 

Figure 23: X finished-by Y. 
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X equals Y: The relation “equal” is used between two events X & Y, when the X occurs 

at the same time or equally with the event Y and satisfies the constraint that Start 

Time(X) is equal to StartTime(Y) and EndTime(Y) is equal to EndTime(X). This is 

illustrated in Figure 24. 

Constraint: - StartTime(X) = StartTime(Y); EndTime(X) = EndTime(Y). 

                                           

  

 

Figure 24: X equals Y. 

 

The thirteen temporal relations are well identified and defined by the boundary 

conditions as stated. These conditions or constraints are used in the algorithm for 

identifying temporal intervals. 

A question may arise as to why Allen’s temporal relations should be used for 

generating temporal intervals. The temporal relations defined by Allen form our 

representation of temporal intervals, which when used with constraints become a 

powerful method of expressing expected temporal orderings between events in a smart 

environment. In addition, they have an easy naming convention, making it easier to 

recognize, interpret and use the temporal relations that are identified. There are existing 

projects which employ sequential information to predict activities [12], and other 

methods for identifying suspicious states in a smart environment have been explored 

[14]. The current approach is unique and would incorporate time based relations for 

analyzing anomalies which is not present in other techniques. But the future work could 

include fusion these techniques for better analysis. The pseudo code for TempAl’s 

temporal analyzer tool is described in Algorithm 1. 

 

 

Y 

X 



 

39 

 

 

  Algorithm 1 Temporal Interval Analyzer  

 

 Input: data timestamp, event name and state 

     Repeat 

       While [Event && Event + i found in same day window] 

           Find paired “ON” or “OFF” events in data to   

   If found save the event name and start and end time of Interval & 

                 Increment i, Goto next event. 

 End while loop until end of events in the input   

       While [Interval && other Intervals found in same day window in earlier formed 

                    Interval dataset] 

          Find temporal range, satisfied by constraint and 

           Identify relation type between event pair from 

possible relation types (see Table 1). 

          Record relation type and related data. 

          Increment Pointer 

  Loop Until end of input. 

 

 

We extend these methods to incorporate valuable information about the interval 

of time each event spans.  While other methods treat each event as a separate entity 

(including, for example, turning on a lamp and later turning off the same lamp), our 

interval-based analysis considers these two events as members of one interval. Each 

interval is expressed in terms of start time and end time values.  As a result, temporal 

relationships between such intervals can be identified and used to perform critical 

anomaly detection. We see that there are a few limitations to this process of interval 

formation, it does not include any intermediate states if any and uses just the ON and 

OFF states to form interval relations. Some of the future work incorporates intermediate 

states too. We can find some additional information on this in the future work section too. 

 

Benefits of Temporal Relations 

 

Temporal relations are beneficial in many ways.  Reasoning about these 

relationships aids the processes of reminder assistance, anomaly detection, and temporal 
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need analysis.  In event prediction can be improved by incorporating temporal relation 

information. The benefits are illustrated in Figure 25, with examples describing scenarios 

where temporal relations can be applied and are most beneficial. 

They aid prediction, where given a description of a scenario, which includes 

actions and events related by temporal relations, we could predict what event will happen 

next. Temporal relations can also aid planning, where given a description of the world 

and a desired goal; we can find the course of action that will most likely need to be taken 

to achieve that goal. 

 

 

Figure 25.  The benefits of temporal relations with examples. Benefits include reminder 

assistance, anomaly detection, maintenance, temporary need analysis, and improvement 

of event prediction. 
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Anomaly Detection Using Temporal Relations 
 

The possibility of designing intelligent systems that can detect when an 

undesirable situation may arise would make smart homes an environment which can 

become more supportive of independence and more private than a traditional assisted 

care facility or a hospital. We define a smart environment as one that collects data about 

the residents and the environment in order to adapt the environment to the residents and 

meet the goals of safety, security, cost effectiveness, and comfort. In an environment that 

is equipped with sensors to detect motion, temperature, and other conditions, sensed 

events can be captured and associated with a time stamp.  These time intervals offer 

additional information about the relationships between timings of activities that improves 

the performance of health monitoring tasks such as anomaly detection. 

One of the major objectives of this study is to determine if anomalies can be 

effectively detected in smart home data using temporal data mining. Specifically, we 

introduce a temporal representation that can express frequently-occurring relationships 

between smart environment events. We then use the observed history of events to 

determine the probability that a particular event should or should not occur on a given 

day, and report as an anomaly the presence (or absence) of highly-likely events. To 

validate the approach, we test the algorithm on synthetic data as well as real data 

collected from a smart environment. We discuss the implications of this work for health 

monitoring and assistance.  

The need for a robust anomaly detection model is as essential as a prediction 

model for any intelligent smart home to function in a dynamic world. For a smart 

environment to perform anomaly detection, it should be capable of applying the limited 

experience of environmental event history to a rapidly changing environment, where 

event occurrences are related by temporal relations. For example, if we are monitoring 

the well being of a resident in a smart home and the resident has not opened the 
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refrigerator all day as they normally do, this should be reported to the resident and the 

caregiver. Similarly, if the resident turned on the bathwater, but has not turned it off 

before going to bed, the resident or the caregiver should be notified, and the smart home 

could possibly intervene by turning off the water.  

 

Table 2. Nine Temporal relations representation which aid anomaly detection (Before, 

contains, overlaps, meets, starts, started-by, finishes, finished-by, equals) [51]. 

Temporal relations Visualization Interval constraints 

X Before Y 

 

      Start(X)<Start(Y); 

End(X)<Start(Y) 

Y Contains X      Start(X)>Start(Y); 

End(X)<End(Y) 

X Overlaps Y 

 

    Start(X)<Start(Y); 

Start(Y)<End(X); 

End(X)<End(Y) 

X  Meets Y 

 

 Start(Y) = End(X) 

X Starts Y 

Y Started-by X 

 Start(X)=Start(Y); 

End(X)≠End(Y) 

X Finishes Y 

Y Finished-by X 

 Start(X)≠start(Y); 

End(X) = End (Y) 

 

X Equals Y 

 Start(X)=Start(Y); 

End(X)=End(Y) 

X 

Y 

X 

Y 

X 

X 

Y 

X 

Y 

X 

Y 

X 

Y 

Y 
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Anomaly detection is most accurate when it is based on behaviors that are 

frequent and predictable. As a result, we look for temporal interactions only among the 

most frequent activities that are observed in resident behavior. This filtering step also 

greatly reduces the computational cost of the algorithm. To accomplish this task, we mine 

the data for frequent sequential patterns using a sequence mining version of the Apriori 

algorithm [52] [53]. The input to the algorithm is a file of sensor events, each tagged with 

a date and time, and the result is a list of frequently-occurring events, which occur most 

frequently among the inputted file of sensor events. The Psuedocode for the algorithm is 

given in algorithm 2. 

 

 Algorithm 2 Psuedocode for Apriori Algorithm.  

Ck: Candidate itemset of size k 

Lk : frequent itemset of size k 

L1 = {frequent items}; 

For (k = 1; Lk !=∅; k++) do begin  

     Ck+1 = candidates generated from Lk; 

    For each day t in datasets do 

       increment the count of all candidates in Ck+1 that are contained in t  

    Lk+1  = candidates in Ck+1 with min_support  

    End  

Return ∪k Lk; 

 

 

Next, we identify temporal relations that occur between events in these frequent 

sequences. The final step involves calculating the probability of a given event occurring 

(or not occurring), which forms the basis for anomaly detection.  

The temporal relations that are useful for anomaly detection are the before, 

contains, overlaps, meets, starts, started-by, finishes, finished-by, and equals relations. 

Because we want to detect an anomaly as it occurs (and not after the fact), the remaining 
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temporal relations - after, during, overlapped-by, and met-by – are not included in our 

anomaly detection process.  

Let us focus now on how to calculate the probability that event C will occur (in 

this case, the start of the event interval). Evidence for this probability is based on the 

occurrence of other events that have a temporal relationship with C, and is accumulated 

over all such related events. First consider the probability of C occurring given that the 

start of the temporal interval for event B has been detected. The formula to calculate the 

probability of event C based on the occurrence of event B and its temporal relationship 

with C is given by Equation (1). Note that the equation is based on the observed 

frequency of the observed temporal relationships between B and C as well as the number 

of occurrences of B in the collected event history.  
 

P(C|B) = | Before (B,C)| + |Contains(B,C) | + |Overlaps(B,C) | + |Meets(B,C) | + 

|Starts(B,C) | + |StartedBy(B,C) | + |Finishes(B,C) | + |FinishedBy(B,C)| + |Equals(B,C)| / 

|B|  

     (1)  

In Equation 1, we compute the probability of the occurrence of C given that B 

occurred using the temporal relations frequency shared between the two events C and B. 

This probability count includes only those relations which aid anomaly detection. These 

values are added as they do not overlap and the constraints strictly enforces bounds to 

check that the relations are unique and thus the probability count includes the sum of 

their occurrences. The previous discussion showed how to calculate the likelihood of 

event C given the occurrence of one other event B. Now consider the case where we want 

to combine evidence from multiple events that have a temporal relationship with C. In 

our example we have observed the start of event A and the start of event B, and want to 

establish the likelihood of event C occurring. The combined probability is computed as:  
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P (C|A∪B) = P (C ∩ (A∪B)) / P (A∪B) = P (C∩A) ∪ P (Z∩Y)/ P (A) + P (B) –P (A∩B)  

  = P (C|A).P (A) + P (C|B) P (C) / P (A) + P (B) –P (A∩B)  

                                                                                                                                       (2)  

In Equation 2 we look at the calculation of the evidence of occurrence of C (here 

C is the most recently occurred event) when A and B are both frequent events and both 

have occurred, the “∪” symbol is the union symbol which is similarly used  here, but 

it can be termed to represent the occurrence of A, B or A&B with the occurrence of 

C, (where C is currently occurred event for which we are working to determine 

whether it is a anomaly or not) and the “∩” in “A∩B” represents the intersection 

operator or occurrence of the A and B (there occurrences together), we see that when we 

find the occurrences of A and B they might have some temporal relations in common 

where A involves B and B involves A and these can be removed so that there are no 

repetitive or additional counts involved. We also need to note that P(A&B|C) is a 

different causal approach and would be looked upon as given C occurred whether A and 

B are anomalies, this is a different way of approach for anomaly detection process. Our 

approach looks at “C” is the most current occurred event and finds evidence whether C is 

an anomaly or not. This would aid various decision making processes and later when 

fused with a decision maker, if an anomaly is found then the decision maker calls for the 

next highly predicted event and uses that for prediction or task automation rather than the 

current prediction which was found to be a anomaly. The role of C in this equation is that 

it is the most recent (the current) event which occurred or is predicted, we try to evaluate 

whether it is an anomaly or not. Using Equation 2 we can calculate the likelihood of 

event C occurring based on every event we have observed on a given day to that point in 

time. We also need to note that for the anomaly detection process we consider that each 

day starts with a blank slate and as the events occur new anomaly values are computed. 

We can also calculate the likelihood that an event C does not occur as P (¬C) = 1 – P (C), 
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or the inverse of the probability that event C does occur. Finally, we calculate the 

anomaly value of event C using Equation 3.  
 

AnomalyC = 1 - P (C) 

(3)  

Notice that if the event has an anomaly probability approaching 1 and the event 

occurred, this is considered an anomaly. We should note that if the probability is close to 

0 and the event does not occur then it is also considered anomaly. However, the current 

process only calculates the anomaly of the events which do occur and thus the calculation 

of the anomaly of the events which do not occur is considered to be extension to this 

work and is suggested for future work.  The point at which these anomalies are 

considered surprising enough to be reported is based somewhat on the data itself. If the 

probability of an event is based on the occurrence of other events which themselves 

rarely occur, then the evidence supporting the occurrence of the event is not as strong. In 

this case, if the event has a low probability yet does occur, it should be considered less 

anomalous than if the supporting evidence itself appears with great frequency. Consistent 

with this theory, we calculate the mean and standard deviation of event frequencies over 

the set of frequent events in the resident’s action history. Events are reported as 

anomalies (or, conversely, the absence of an event) if it does occur and its anomaly value 

is greater than the mean probability + 2 * standard deviations of the anomaly probability 

population which is observed. Two standard deviations away from the mean account for 

roughly 95 percent, so any value which falls out of this population would be reported as 

an anomaly. The synthetic and real datasets are processed for anomaly detection and the 

observations are reported as results in Chapter five. 
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Enhancing Prediction Using Temporal Relations 

 

Earlier work in the MavHome project researched methods of performing sequential 

prediction of smart home events [8]. We extend this work to incorporate valuable 

information about the time interval each event spans.  While other methods treat each 

event as a separate entity (including, for instance, turning on a lamp and later turning off 

the same lamp), our interval-based analysis considers these two events as members of one 

interval.  Each interval is expressed in terms of start time and end time values.  We see 

that the interval formulation has a few limitations, which includes limiting the interval 

formation to include pairs of ON and OFF states only.  In this study the intermediate 

states are currently discarded, but can be included in future work. Another limitation is 

related to how the states are formed.  We preprocess the event history to look for pairs of 

ON and OFF states which form an event interval.  If an end of the event is not found, 

TempAl considers the end of the day as when the event ends and considers the 

corresponding delay to be the length of the interval. To introduce the topic of prediction 

using temporal intervals, let us consider a typical activity in a smart environment, which 

includes a television, a fan and a lamp. Now we apply Allen’s logic to establish the 

temporal relations among the activities which occurred.  These activities can be 

represented as television “contains” fan and “meets” lamp. We can also represent these 

relationships as television “meets” lamp and fan “before” lamp. We can see that based on 

the occurrence of these actions we can use these for prediction. The nine out of thirteen 

possible temporal relations which aid the process of prediction are shown in Table 3. 

Consider two general events X and Y; we use these variables to represent relations in the 

table. In Table 3, the interval constraints compare the start time (StartTime) and end time 

(EndTime) of the activities, X and Y. In the table we can note that the visualization 

includes a line based representation of the time and only the end points of this line 

representation are to be considered as the start and end times of the event occurrence. 
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Table 3. Prediction aiding Temporal relations (After, During, Overlapped-By, Met-By, 

Starts, Started-By, Finishes, Finished-By, and Equals). 

Temporal Relations Pictorial 

Representation 

Interval constraints 

X After Y     Y             

               X 

StartTime(X)>StartTime(Y); 

EndTime(Y)<StartTime(X) 

X During Y           X 

 

          Y 

StartTime(X)>StartTime(Y); 

EndTime(X)<EndTime(Y) 

X Overlapped-By Y     Y 

       

       X 

StartTime(Y)<StartTime(X);     

StartTime(X)<EndTime(Y); 

EndTime(Y)<EndTime(X) 

X Met-by Y    Y   

     

          X 

 

StartTime(X)= EndTime(Y) 

X Starts Y   X 

 

  Y 

StartTime(X)=StartTime(Y); 

EndTime(X)≠EndTime(Y) 

X started-by Y   Y 

 

  X 

StartTime(Y)=StartTime(X);           

EndTime(X)≠EndTime(Y) 

X Finishes Y                  X 

 

                 Y 

StartTime(X)≠StartTime(Y); 

EndTime(X) = EndTime(Y) 

X Finished-by Y                  Y 

 

                 X 

StartTime(X)≠StartTime(Y); 

EndTime(X)=EndTime(Y) 

X Equals Y           X 

 

          Y 

StartTime(X)=StartTime(Y); 

EndTime(X)=EndTime(Y) 
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We consider two alternative approaches to enhancing prediction with temporal 

relation information.  In the first approach, we extract association rules which can be used 

for prediction.  Using the second approach, we integrate temporal information into the 

ALZ prediction algorithm [46]. For the first approach rules which are formed with 

association mining are actually used to predict the events. This can be done as follows: 

we run the ALZ algorithm then see if its output is found in any of the top association 

rules. Here we input that the most current occurred event and then check if it is an 

antecedent of any rule.   If the observed event matches the antecedent of a rule, then the 

corresponding rule’s consequent is output as TempAl’s prediction.  Association rule 

mining identifies correlations between events that occur frequently and occur often 

together. Association rule mining is used to form strong rules based on a set confidence 

and support.  Two events are associated by each rule and they are of the form (Event 1, 

Temporal Relations) � Event 2. If the predicted event is found on the left hand side of 

one of these rules, then we calculate the evidence of occurrence of event appearing on the 

right hand side of the rule. We need to note that there can be more than one event on the 

consequent of the rule. In this case, we see that both consequent events are considered as 

the possible next events.  We compute the evidence for all of the consequent events in the 

same order and if satisfied they are predicted in the same order present in the rule. We 

have a discussion on the issue of deciding on how to handle rules with similar confidence 

in the future work section. We also have some issues with the precision of the rules. The 

question is whether we should consider all of the rules or instead we should be selective.  

This issue is also discussed in the future work session. If this evidence is found to be 

greater than the sum of the mean evidence probability plus two times the standard 

deviation of the probability population, then we output the corresponding event as the 

predicted event. The evidence is calculated using the temporal rules and is discussed 

below in an elaborate manner. 
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The second approach we evaluate using TempAl is to include the temporal 

probability into the ALZ prediction calculations. We need to note that the window size of 

one day is considered for event interval formation and for calculating the probabilities of 

event occurrences, but when it comes to finding the association rules we see that we need 

to generate them over a moving window of four weeks would make the whole process 

more efficient and would adapt to the changing activities of the inhabitant. Now let us 

look at examples to illustrate both temporal-based prediction approaches. For the 

Association Rule Mining based approach let us consider a example where we have a 

strong rule identified which states the occurrence of a television event frequently 

coincides with the occurrence of lamp event.  We see that when the television event is the 

most recent observed event we can calculate the evidence of a lamp event.  If this 

condition is satisfied, the lamp event is output as the next prediction, In contrast, using 

the second approach we calculate the probability of the most likely event to occur based 

on historical information both for resident events as well as the temporal relationships 

between frequent events.  

 

Association Rule Mining Approach for Enhancing Prediction  

 

This model acts as a simple rule-based processing model. We mine frequent event 

sequences and use them to enhance prediction. In this step, we identify the best 

association rules using Weka [54] which can be used for prediction. The Weka 

implementation of an Apriori-type algorithm is used, which iteratively reduces the 

minimum support until it finds the required number of rules within a given minimum 

confidence. The final step involves calculating the evidence of the event occurrence, 

which can be used for calculating the prediction. This step is designed to detect whether 

the particular event satisfies the temporal relations that can be used for prediction. This 

method of prediction is based entirely on normative behavior as observed in the past and 
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on which basis a strong rule is identified. As a result, the likelihood of prediction 

increases when there are strong repetitions of resident patterns over time. This method is 

a probability-based model which involves calculating the evidence supporting the 

currently-occurring event with respect to the previously-occurred events. 

Association rule learners are used to discover elements that co-occur frequently 

within a data set [52] [53] [54] consisting of multiple independent selections of elements 

(such as purchasing transactions), and to discover rules, such as implication or 

correlation, which relate co-occurring elements. Apriori is a classic algorithm for learning 

association rules and we use the Weka implementation of Apriori for this experiment. As 

is common in association rule mining, given a set of transactions (for instance, sets of 

retail transactions each listing resident items purchased), the algorithm attempts to find 

rules that will predict the occurrence of an item based on the occurrences of other items 

in the transaction. Apriori uses a "bottom up" approach, where frequent subsets are 

extended one item at a time (a step known as candidate generation), and groups of 

candidates are tested against the data. The algorithm terminates when no further 

successful extensions are found. Now let us look at the various steps involved in this 

experiment process. Consider a simple instance where we have two events Q and R 

which also end up being members of a frequent itemset. 

 

Step A: Learn temporal relations from the observed event history by analyzing the 

resident’s events. Use this temporal relations dataset and mine for strong association rules 

(strong here refers to the best rule found for a given a confidence and support) which can 

be used for prediction. 

 

Step B: Determine the most recent event.  We use ALZ to do this for our experiments, by 

retrieving its most recent prediction and letting this event represent the recent event.   
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Step C: Once we have the set of events the the most recent event Q is associated with, 

we calculate the evidence supporting the occurrence of those events. Let us assume the 

event associated with Q is R. The formula to calculate the evidence using temporal 

relations is given by Equation (4).  

P(R|Q) = |After(Q,R)| + |During(Q,R)| +  |OverlappedBy(Q,R)| + |MetBy(Q,R)| + 

|Starts(Q,R)| + |StartedBy(Q,R)| + |Finishes(Q,R)| + |FinishedBy(Q,R)|+|Equals(Q,R)|/|Q|                                 

(4) 

EvidenceX = P(X)                                                                  

                     (5) 

Note that equation is based on the observed frequency of the temporal relations, 

specifically those that influence the occurrence of event X. The previous discussion 

showed how to calculate the likelihood of event X given the occurrence of one other 

event Y.  Notice that if the event has a probability approaching 1, this is considered most 

likely to occur. We calculate the mean and standard deviation of event frequencies over 

the set of events in the resident’s action history.  Events (or, conversely, the absence of an 

event) are reported as predicted if it does (does not) occur and its prediction value is 

greater than the mean probability + 2 * standard deviation (or less than the mean – 2 * 

standard deviation). We also need to note that, even if multiple events are identified as 

strongly associated with the most recent event, we calculate their probabilities 

individually with respect to Q and then calculate their respective evidences. And the rest 

of the process is performed as before. 

 

Step D:  In this final step we see if the computed probability is greater than or equal to 

the set bound (sum of mean and two * standard deviation).  If so, we use this event as the 

next predicted event and check for accuracy by comparing it with next event that 

occurred in the test data.  Next, the test set event is incremented and this event is inserted 

into the existing ALZ based prediction tree.  
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The pseudo code for this first approach is given in Algorithm 3, which is the 

simplest representation of the logic to be used for the experimentation of using 

association rule mining approach for incorporating temporal information for enhancing 

prediction.  

 

 Algorithm 3 Psuedocode Temporal Rules Enhanced prediction.  

 Input: Output of ALZ Predictor a, Best Rules r, Temporal Dataset 

     Repeat 

       If a! = null   

           Repeat 

Set r1 to the first event in the relation rule   

               If (r[i].relationoccur ==a) Then Read r[i].relationpredict, if any  

               Calculate evidence of r[i].relationpredict using temporal dataset. 

     If evidence > (Mean + 2 Std. Dev.)  

      Then predict;  

   Else   

   Continue; 

  End if. 

Until end of rules. 

End if. 

    Loop until End of Input. 

 

To evaluate the benefits of this approach, we compare the performance of ALZ 

with and without use of the association rules. We notice that many situations demand that 

the prediction algorithm be capable of analyzing information and delivering in real time. 

We currently plan to run real time analysis over large sets of data in the near future. The 

experimental results are displayed in chapter five. 
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Enhancing Prediction by Adding Temporal Relations-based Probabilities to ALZ  

 

The existing prediction model is a sequential predictor called ALZ [12]. In an 

event-driven system there is a need to predict the next action in order to provide a clear 

understanding of the current state. The system will need to make this prediction based 

only on previously-acquired knowledge.  Currently, we use the Active LeZi (ALZ) 

algorithm [12] with the Transaction Directed Acyclic Graph (TDAG) [48] algorithm to 

meet our prediction requirements. ALZ is also inherently an online algorithm, since it is 

based on the incremental LZ78 data compression algorithm [48]. ALZ incorporates a 

sliding window. The pseudocode of the basic algorithms which are a part of the ALZ is 

given in Algorithms 4 and 5. 

 

Algorithm 4 Psuedocode for LZ78 [48] 

Loop 

     Wait for next symbol v 

If ((w.v) in dictionary): 

w = w.v 

Else 

Add (w.v) to dictionary 

w = null 

Increment frequency for every 

Possible prefix of phrase 

Forever 

 

Algorithm 5 Psuedocode for ALZ [48] 

Initialize Max_LZ_length = 0 

Loop 
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Wait for next symbol v 

If ((w.v) in dictionary): 

w: = w.v 

Else 

Add (w.v) to dictionary 

Update Max_LZ_length if necessary 

w: = null 

Add v to window 

If (length (window) > Max_LZ_length) 

Delete window [0] 

Update frequencies of all possible 

Contexts within window that includes v 

Forever 

 

In order to predict the next event of the sequence for which ALZ has built a 

model, we calculate the probability of each state occurring in the sequence, and predict 

the one with the highest probability as the most likely next action. In order to achieve 

better convergence rates to optimal predictability, the predictor must “lock on” to the 

minimum possible set of states that is representative of the sequence. For sequential 

prediction, it has been shown that this is possible by using a “mixture” of all possible 

order models (phrase sizes) to assign the next symbol to its probability estimate. To 

consider different orders of models, we turn to the Prediction by Partial Match (PPM) 

family of predictors. This has been used to great effect by Bhattacharya and Das [55] for 

a predictive framework based on LZ78, but their method only concentrates on the 

probability of the next symbol appearing in the LZ phrase, as opposed to the next symbol 

in the sequence. 

Consider the sequence xz= aaababbbbbaabccddcbaaaa. An LZ78 parsing of this 

string would yield the phrases as displayed in Figure 26. As described above, this 
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algorithm maintains statistics for all contexts seen within the phrases wi. For example, the 

context a occurs 5 times (at the beginning of the phrases a, aa, ab, abc, aaa) and the 

context bb is seen 2 times (phrases bb and bba) [48]. 

 

 

 

 

 

 

 

 

Figure 26. Trie formed by the ALZ parsing of the sequence aaababbbbbaabccddcbaaaa. 

The selected path acts as the phrase for the context of each probability computation [48]. 

 

As the Active LeZi algorithm parses the sequence, larger and larger phrases 

accumulate in the dictionary. As a result, the algorithm gathers the predictability of 

higher and higher order Markov models, eventually attaining the predictability of the 

universal model. Let us now look at how the probability is computed. Suppose we need 

to compute the probability that the next symbol is an a. From Figure 3, we see that an a 

occurs two out of the five times that the context aa appears, the other cases producing 

two null outcomes and one b outcome. Therefore the probability of encountering an  a at 

the context aa is 2/5, and we now “escape” to the order-1 context (i.e., switch to the 

model with the next smaller order) with probability 2/5. This corresponds to the 

probability that the outcome is null, which forms the context for the next lower length 

phrase. At the order-1 context, we see an a five out of the ten times that we see the a 

context, and of the remaining cases, we see two null outcomes. Therefore we predict the 

a at the order-1(orange color in figure 3) context with probability 5/10, and escape to the 

   ^ 
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order-0 model with probability 2/10. Using the order 0 (blue color in figure 3) model, we 

see a ten times out of the 23 symbols processed so far, and we therefore predict a with 

probability 10/23 at the null context. As a consequence, the blended probability of seeing 

an a as the next symbol is computed as [48]: 

 

 

 

Now in this current technique we enhance this propability by incorporating the 

temporal probability at higher order level. Here we just add temporal information to the 

sequential information as at the higher order we should note that the temporal probability 

holds more information than sequential probability. The resulting probability can be the 

sum computed of both these probabilities as illustrated in Equation 6. Earlier we looked 

at an instance of sequential probability being calculated.  Now we look at how the 

temporal probability be calculated. We enhance existing ALZ prediction by incorporating 

the temporal probability with the sequential probability at each higher order-level of the 

phrase (for instance the phrase is BC) as follows: 

Predictionc =   P (C|B) =      P (C|B) SEQ: Order-0+ P (C|B) TEMPORAL: Order 1-n    (at each order in 

phrase) + P (C|B) SEQ: n-∞                          (6) 

Probabilities at the 0 context size are drawn from the ALZ trie.  Similarly, 

probabilities for context sizes greater than 1 are calculated from the ALZ trie.  The 

probability for the size 1 context, on the other hand, uses the TempAl calculation.  The 

TempAl formula uses all of the information available to ALZ plus the temporal 

relationship information.  The reason we fuse these two probabilities as we note that at 

the higher order we see that temporal probability would include more information 

compared to the sequential probability.  The sequential probability will only include the 
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“before” temporal relation in the calculation but the temporal probability will include 

information from all thirteen relationship types. 

Now consider the case where we want to combine evidence from multiple events, 

in the phrase which belongs to the current context window, that have a temporal 

relationship with X.  In our example we have observed the start of event A and the start 

of event B, and want to establish the likelihood of event X occurring.  From Equation 6 

we can calculate the evidence.  

 

Now we calculate the evidence of B as: 

 

P(B|A) = |After(B,A)| + |During(B,A)| + |OverlappedBy(B,A)| + |MetBy(B,A)| + 

|Starts(B,A)| + |StartedBy(B,A)| + |Finishes(B,A)| + |FinishedBy(B,A)| + |Equals(B,A)| /   

|A|                                         

                                 (7) 

We also use this information to calculate the evidence of the most recent occurred 

event.  

 

Similarly when we have the events occurred as follows: A B X 

Now the evidence of B is calculated as follows: 

P(X|AUB) = P(X  ∩  (AUB)) / P(AUB) = P(X ∩ A) U  P(X ∩ B)/ P(A) + P(B) –P(A∩B) 

                                                            [Distributive Rule] 

= P (X|A).P (A) + P (X|B).P (B) / P (A) + P (B) –P (A∩B) 

[Multiplication Rule]         

(8) 

We can use the previous calculated evidence for calculating newer evidence, 

based on Equation (7). We use the distributive and multiplicative rules to arrive at the 

final formula shown in Equation 8 which includes the previously- computed evidences of 
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occurred events. This evidence calculation helps to compute the temporal probability of 

the event to occur. This evidence is used for the temporal probability calculation which is 

incorporated into the Alz probability estimation. Now we finally calculate the temporal 

probability using Equation (9).  

 

             Temporal Prediction X = P(X)                                                   (9) 

 

Here we want to predict the event with greatest probability. We see that we have 

combined the temporal information with the existing sequential predictor enriching it to 

make better predictions. Similar to the above explanation of probability calculation we 

add temporal propability for that particular activity. Experimental results obtained with 

both of these approaches are summarized in Chapter five. 

 

 

Data Visualization 

 

In many application domains temporal data queries can help analysts understand data 

and reason about it over time and space.  The understanding is further enhanced when the 

temporal relationships can be visualized well. However it still would be a difficult 

challenge to describe and formalize time using physical symbols, characteristics and 

properties. In this chapter, we present an interface which helps us visualize activities 

using time intervals identified in smart home datasets [66].  We can also use this tool as a 

media for looking for patterns of interest and also act as a user-friendly data visualization 

tool. The end goal of this tool is to enable the resident to visualize interesting patterns 

over time and help his improve his lifestyle at home by identifying and changing 

activities which hinder his growth and health and identify activities which help him to 

have an improved lifestyle.  
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As we use temporal related datasets, and the window size is spanned across a 

single day, we mine using the longest common subsequence technique [56] [60] with 

maximal consecutive events, where we find a long subsequence or a common 

subsequence of all sequences in a set of sequences when we compare two days at a time.  

In our implementation, we look for maximal consecutive sequences within a two-day 

period. The reason for performing a maximal consecutive look up is that a three 

commonly-shared subsequence is of significant interest compared to one sequential 

subsequence. For instance, consider two strings X and Y, where X = “AA BB PP BB ZZ 

CC KK DD UU VV EE RR" and Y = "AA BB CC DD EE FF GG". Using this 

technique, finding that AA BB CC DD EE occurs more often is of more interest 

compared to finding a single occurrence of the sequence AA BB CC DD. This approach 

is a LCS sequence mining [62] method to find interesting temporal sequences, i.e. finding 

interesting temporal patterns among everyday activities in a smart environment. 

This tool was developed using C#.NET with Visual studio 2005 IDE and uses 

VARCHART Xgantt plotting library (a 3
rd
 party library) for visualization in the form of 

Gantt charts which help represent the activity intervals over a time period [58] [59]. 

Here the pattern search tool identifies common patterns for two days at a time for 

comparison. Later we analyze the attributes of interestingness over the longest common 

subsequences identified in the experimental datasets. The longest common subsequence 

problem is NP-Hard for a general case of arbitrarily long input sequences and the 

problem is solvable in polynomial time using dynamic programming [57].  The reason we 

are interested in longest length and not the shortest one is because the shortest ones just 

identify the simple temporal relations which can be identified using other frequent mining 

techniques but the interesting part is the longest non-sequential patterns because they are 

unique for most of the days based on the resident. The future work for this tool involves 

evaluation by the residents, where the resident uses this tool to look for patterns and later 

make changes accordingly and rate whether this particular tool did help them improve 
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their lifestyle. This is an additional tool and uses temporal intervals for visualization and 

also has a pattern search tool for finding common temporal relations. 

 

Summary 

 

In this chapter we had a detailed look at the techniques being used by “TempAl” 

for the process of anomaly detection and enhancing prediction. We also looked at a 

visualization tool which can be interfaced with a temporal pattern search tool to look for 

interesting patterns. In the next chapter we report the findings of experiments that analyze 

the effectiveness of these algorithms. 
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CHAPTER FIVE 

EXPERIME�TATIO� FI�DI�G A�D DISCUSSIO�S 

 

 In this chapter we report the results of experiments we conducted to evaluate the 

effectiveness of smart home algorithms enhanced with temporal relation information. We 

report the temporal relations that are discovered in real and synthetic smart home 

datasets, and report the results of anomaly detection and prediction applied to these 

datasets with the corresponding temporal relations. 

 

 

Temporal Relation Formation 

 

  Sensor data from a smart environment can be represented and mined as sequences 

or as time series data. A sequence is an ordered set of events, frequently represented by a 

series of nominal symbols [61]. All the sequences are ordered on a time scale and occur 

sequentially one after another. However, for some applications it is not only important to 

have a sequence of these events, but also a time interval as when these events occur.  

This is particularly true for smart homes. A time series is a sequence of continuous real-

value elements [17] [61].  This kind of data is obtained from sensors which continuously 

monitor parameters such as motion, device activity, pressure, temperature, brightness, 

and so forth. Each time stamped data point is characterized by specific properties. Table 

4 describes the number of events, number of events, and number of temporal intervals 

that were identified in the synthetic and real datasets used for our experiments. 

  In Table 5, we illustrate a sample of raw data collected from the sensor and 

include the data as how it looks after it is processed and temporal intervals are identified. 

Figure 27 shows the various stages involved in the conversion of the raw data to a 

temporal relations dataset. 
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Table 4. Parameter settings for experimentation. 

 

 

Datasets 

Parameter Setting 

No of Days 

No of different 

Events[Devices] 

No of Intervals 

Identified Size of Data 

Synthetic 60 8 1729 106KB 

Real 60 17 1623 104KB 

 

Table 5. Sample display of sensor data across various stages of temporal relation 

formation. (Note: Most experiment processes are performed on the temporal datasets). 

 

Raw Sensor Data 

     Timestamp                     Sensor State       Sensor ID 

3/3/2003 11:18:00 AM    OFF                   E16 

3/3/2003 11:23:00 AM    ON                     G12 

3/3/2003 11:23:00 AM    ON                     G11 

3/3/2003 11:24:00 AM    OFF                   G12 

3/3/2003 11:24:00 AM    OFF                   G11 

3/3/2003 11:24:00 AM    ON                     G13 

3/3/2003 11:33:00 AM    ON                     E16 

3/3/2003 11:34:00 AM    ON                     D16 

3/3/2003 11:34:00 AM    OFF                    E16 

Identify Time Intervals 

Date             Sensor ID    Start Time    End time 

03/02/2003   G11            01:44:00       01:48:00 

03/02/2003   G19            02:57:00       01:48:00 

03/02/2003   G13            04:06:00       01:48:00 

03/02/2003   G19            04:43:00       01:48:00 

03/02/2003   H9              06:04:00       06:05:00 

03/03/2003   P1              10:55:00       17:28:00 

03/03/2003   E16            11:18:00       11:34:00 

03/03/2003   G12            11:23:00       11:24:00 
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Temporal Relations 

  Date                           Sensor ID Temporal Relation Sensor ID 

3/3/2003 12:00:00 AM    G12          DURING               E16 

3/3/2003 12:00:00 AM    E16          BEFORE                I14 

3/2/2003 12:00:00 AM    G11          FINISHESBY       G11 

4/2/2003 12:00:00 AM    J10           STARTSBY           J12 

 

 

 

Figure 27. The steps involved in the processing of temporal relations formulations in 

datasets. 

 

The first step of the experiment is to process the raw data to find the temporal 

intervals.  This is done using a simple tool which takes the timestamp of the event that 

occurred and based on the state (ON or OFF) forms the intervals. Later this data is passed 

through the temporal analyzer tool which identifies the temporal intervals based on the 

constraints formulated. This process is illustrated in Figure 25. 

 

Anomaly detection 

 

We validate our algorithms by applying them to our real and synthetic datasets. 

We train the model based on 59 days of data and test the model on a single day of 

observed activities. We use the training set to form the frequent item sets to identify 

frequent activities which happen in the smart home. 

Next, we identify temporal relations in all of the datasets that are shared between 

events which occur in a smart home. The temporal relations formed in these data sets 
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show some interesting patterns and indicate relations that are of interest. Table 6 and 

Table 7 summarize the characteristics of the datasets we used for the experiments.  

Next, we perform frequent itemset mining and identify the most frequent 

activities in the training dataset. Then we read these temporal relations into our anomaly 

detection tool which calculates evidence for each possible event and outputs anomalies 

that are detected in the test set data. After manually inspecting the data, we report the 

number of true and false anomalies that are reported. Tables 6 and 7 display results from 

the synthetic and real datasets, respectively. Because anomalies are detected in real time 

as events are observed, we list anomalies in the order they are detected.  

 

Table 6.  Characteristics of the synthetic and real training datasets for anomaly detection. 

 

Datasets[Training] #Days #of different 

events[Devices] 

#Identified frequent 

intervals 

Size 

Synthetic 59 8 1703 105KB 

Real 59 17 1523 103KB 

 

Table 7. Characteristics of the synthetic and real test datasets for anomaly detection. 

Datasets [Test] #Days # of different 

events[Devices] 

#Identified frequent 

intervals 

Size 

Synthetic 1 8 17 2KB 

Real 1 17 9 1KB 

 

One of the reasons we use these MavLab datasets is due to the fact that the 

MavLab environment is full of X10-based devices which monitor resident activity, thus 
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we focus on evaluating these techniques on these datasets. We evaluate the algorithm 

using the available real and synthetic datasets. Tables 8 and 9 report the observations. 

Table 8 shows the observed results of the anomaly detection process on the real datasets. 

Table 9 shows the observed results of the anomaly detection process on the synthetic 

datasets. 

 

Table 8: Anomaly detection in the test set for the real dataset. 

 

Frequent Events 

in Chronological 

Order Frequent Event 

Computed 

Evidence 

Computed 

Anomaly 

Anomaly 

Detected 

1 J10 0.45 0.55 No 

2 J11 0.32 0.68 No 

3 A11 0.33 0.67 No 

4 A15 0.24 0.76 No 

5 A11 0.23 0.77 No 

6 A15 0.22 0.78 No 

7 I11 0.27 0.73 No 

8 I14 0.34 0.66 No 

Anomaly Mean 0.7  

Anomaly St. Dev. 0.07  

Anomaly Cut-off Threshold ( Mean + 2 * St. Dev) 0.84  

 

 

Table 9. Anomaly detection in the test set for the synthetic dataset  

 

Frequent Events 

in Chronological 

Order Frequent Event Evidence Anomaly Detected 

1 Lamp 0.30 0.70 No 

2 Lamp 0.23 0.77 No 

3 Lamp 0.01 0.99 Yes 

4 Fan 0.32 0.68 No 

5 Cooker 0.29 0.71 No 

6 Lamp 0.45 0.55 No 

7 Lamp 0.23 0.77 No 

8 Lamp 0.01 0.99 Yes 
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9 Lamp 0.23 0.77 No 

10 Fan 0.30 0.70 No 

11 Cooker 0.34 0.66 No 

12 Lamp 0.33 0.67 No 

13 Lamp 0.20 0.80 No 

14 Lamp 0.02 0.98 No 

15 Lamp 0.00 1.0 Yes 

16 Fan 0.34 0.66 No 

17 Cooker 0.42 0.58 No 

Anomaly Mean 0.76  

Anomaly St. Dev. 0.14  

Anomaly Cut-off Threshold ( Mean + 2 * St. Dev) 0.99  

 

Based on a manual inspection of the data we see that the anomaly detection 

algorithm performed well on synthetic data – all of the expected anomalies were detected 

and no false positives were reported. In the real data no anomalies are reported.  

We should note that synthetic test data has limited number of events and the 

scenarios are scripted in such a way that events occur weekly and some of them occur 

very frequently with a difference of couple of hours. We see the event occurrences are 

randomized and the occurrence can lead to an anomaly as the events could occur based 

on the time of occurrence and lead to a new set temporal relations rather than a found 

specific pattern, thus this could make the event in the synthetic data to occur as an 

anomaly. In the current synthetic test data we see that the occurrence of lamp was noted 

as an anomaly as in temporal relations history lamp shares weak temporal relations with 

events that are a part of the test set data and hence an anomaly is reported. 

The experiment is consistent with the nature of the data which does not contain 

anomalous events, and reflects the fact the anomalies should be, and are in fact, rare. We 

see that the approach is robust and does not report false anomalies in this case. The graph 

in Figure 28 visualizes the anomaly values for frequent events in the synthetic and real 

datasets. We notice that the spikes visible in the synthetic datasets are clear indications of 

anomalies, which is consistent with our expectation for the outcome of this experiment. 
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Figure 28. Anomaly detection on test sets of real and synthetic data in 3-D. The anomaly 

value is plotted for each possible activity as actual events are observed. 

 

Discussion on Anomaly Detection 

 

The experimental results [51] on synthetic data provide evidence that our 

algorithm is capable of identifying anomalous events based on temporal relationship 

information. The results applied to real data brought insights to the activities that were 

being performed in the MavLab setting. In both cases these types of surprising behaviors 

should be reported to the resident and possibly their caregiver. The caregiver could 

respond according to the health-critical nature of the anomaly and any additional 

information they may have available.  

An extended application of anomaly detection is its use for reminder assistance. If 

the resident queries the algorithm for the next routine activity, the activity or activities 

with the greatest probability will be provided. Similarly, if an anomaly is detected, the 

smart environment can first initiate contact with the resident and provide a reminder of 

the activity that is usually performed at that time. Autominder is an example of a 

reminder system that has already been developed using techniques such as dynamic 
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programming and Bayesian learning to remind individuals about their planned Activities 

for Daily Living. Unlike our approach, Autominder does not base its reminders on a 

model of behavior that is learned from actual observed events. 

  

Enhancing Prediction 

 

We validate our algorithm by applying it to our real and synthetic datasets. We 

train the model based on 59 days of data and test the model on one day of activities. We 

use the training set to form association rules using Weka for the association rule mining 

based model of prediction and identify temporal relations shared between them. The 

temporal relations formed in these data sets show some interesting patterns and indicate 

relations that are of interest. The parameter settings pertaining to the training set data are 

given in Table 10. The parameter settings pertaining to the test set data are given in Table 

11. These datasets are used for both the models of prediction experimentation. 

 

 

Table 10. Parameters setting for training set for prediction experiment. 

 

Datasets 

Parameter Setting 

No# Days 

No # of 

Different 

Events 

No# Intervals 

Identified 
Size of Data 

Synthetic 59 8 1703 105KB 

Real 59 17 1523 103KB 
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Table 11. Parameters setting for test set for prediction experiment. 

 

Datasets 
Parameter Setting 

No #  Days No # of Different Events Size of Data 

Synthetic 1 8 2KB 

Real 1 17 1KB 

 

 

Association Rule Mining Approach for Enhancing Prediction  

 

After the parameters are set and the training and testing data is identified, in the 

next step, we identify the association rules using Weka, which in-turn can be used for 

prediction. The Weka implementation of an Apriori-type algorithm is used, which 

iteratively reduces the minimum support until it finds the required number of rules within 

a given minimum confidence. Table 12 summarizes the parameters that were set and the 

number of rules generated with a given specified minimum confidence for the real 

dataset.  Table 13 summarizes the same for the synthetic dataset. 

 

Table 12.  Parameter settings and rules generated using Apriori-type algorithm in Weka 

for real dataset. 

 

Run# 
Minimum 

Support 

Minimum 

Confidence 

No of Best Rules 

Found 

1 0.00 0.5 100 

2 0.01 0.5 006 

3 0.02 0.5 002 

4 0.05 0.5 001 
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Figure 29. Association rule mining in real datasets. 

Table 13.  Parameter settings and rules generated using Apriori-type algorithm in Weka 

for synthetic dataset. 

 

Run

# 
Minimum Support 

Minimum 

Confidence 

No of Best Rules 

Found 

1 0.00 0.5 100 

2 0.01 0.5 010 

3 0.02 0.5 005 

4 0.05 0.5 003 

 

We see that the Figure 29 and Figure 30 represent the observations from tables 5 

and 6. We see that they represent various configurations which were used in Weka to find 

the best rules which can aid the prediction process. We observe here that when there is no 

minimum support the algorithm generates a large number and as the support is increased 

we see that the number of rules generated decreases. A sample of generated rules is given 

in Table 14. 
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Figure 30. Association rule mining in synthetic datasets. 

 

In Tables 12 and 13, the confidence level above 0.5 and support above 0.05 could 

not be used, as they could not result in any viable rules, due to the small size of the 

datasets being used. As we see that the datasets are small, we use the top rules generated 

with a minimum confidence of 0.5 and a minimum support of 0.01.  

 

Table 14. Display of a sample of best rules generated. 

 

Sample of best rules observed in real datasets: 

 

Activity=C11 Relation=CONTAINS 36 ==> Activity=A14 36     

Activity=D15 Relation=FINISHES 32 ==> Activity=D9 32     

Activity=D15 Relation=FINISHESBY 32 ==> Activity=D9 32     

Activity=C14 Relation=DURING 18 ==> Activity=B9 18 

 

The final step would involve calculating the evidence of the event occurrence, 

which can be used for calculating the prediction on a moving window. This purpose of 

this step is to detect whether the particular event satisfies the temporal relations which 

can be used for prediction given in a specified recent history of activities. More 
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discussion on this avenue of research can be found in the future work section. These 

temporal relations which can be used for prediction are listed in Table 3. Let us look at an 

example where we have three frequent activities which occur in the order of turning a 

toaster, table lamp and radio on and off in the morning. We see that the relation exhibited 

by them can be toaster “before” table lamp “finishes” radio. We need to note that the 

intervals are formed when a complete cycle of a device from an ON to OFF or an OFF to 

ON state is pursued within a window of a single day. Now when the toaster and the radio 

occur without the table lamp, we can note that this is an anomaly in activity and we can 

use the same relation as when the toaster occurred and table lamp occurred then we can 

predict that the radio is going to occur in the near future before the table lamp is turned 

off. This method of prediction is based entirely on normative behavior as observed in the 

past and a strong rule is identified. As a result, the likelihood of prediction increases 

when there are strong repetitions of resident patterns over time which are not anomalies. 

This method is a probability-based model which involves calculating the evidence 

supporting the currently- occurring activity with respect to the previously-occurred 

activates. 

Finally we enhance ALZ predictor [48] with incorporating temporal relations with 

the input data and compare the performance with and without these rules. We notice that 

many situations demand that the prediction algorithm be capable of analyzing 

information and delivering in real time. We currently plan to run real time analysis over 

large sets of data in the near future. These rules based system pose a challenge in terms of 

how do we differentiate rules using a interestingness measure and also would push such 

rule based systems into the domains of planning and reminder assisting systems. 
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   Table 15. Comparing ALZ based prediction with and without temporal rules in real 

datasets. 

 

Datasets Percentage Accuracy Percentage Error 

Real (Without Rules) 55 45 

Real (With Rules) 56 44 

 

Table 26. Comparing ALZ based prediction with and without temporal rules in synthetic 

datasets. 

 

Datasets Percentage Accuracy Percentage Error 

Synthetic (Without Rules) 64 36 

Synthetic  

(With Rules) 
69 31 

 

Tables 15 and 16 present the results of our prediction experiment. We need to note 

that percentage accuracy is computed as the ratio of the count of number of correct 

predictions to the total number of predictions. Both percentage accuracy and percentage 

error are rounded to the nearest unit value.  Illustrations of the observed accuracy and 

error values in the real and synthetic datasets are visualized in Figures 31 and 32, 

respectively. 
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Figure 31. Prediction percentage accuracy vs. percentage error in real datasets using 

association rule mining. 

 

 

Figure 32. Prediction percentage accuracy vs. percentage error in synthetic datasets using 

association rule mining. 
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Discussion on Association Rule Mining Approach for Enhancing Prediction  

 

In this approach [62] we deal with leveraging association rules for prediction, where 

we see that these rules are used in the form “IF X THEN Y”. The consequent part of this 

rule (Y) can be predicted based on occurrence of X. The main reason for a significant 

error rate is the smaller amount of data used. As we have larger datasets we see that the 

performance of the temporal relations enhanced prediction would also improve 

drastically over time. Another cause of the error rate and means to better performance is 

making the right trade-off while choosing the support and confidence levels for the 

discovery of these association rules. The refinement of association rules by including an 

interestingness factor would make the rules more precise and might push towards better 

prediction accuracy.  Table 15 and 16 summarize the observed accuracy of the prediction 

performance on real and synthetic datasets. We see that there was around 1% prediction 

performance improvement in the real data and around 7% improvement in the synthetic 

data.  This indicates an improvement of event prediction in a single day of the resident in 

smart environment.  

The main reason for the error rate is the small amount of training data. With larger 

datasets we would expect to see that the performance of the temporal relations enhanced 

prediction would also improve drastically over time. Overall we see a unique application 

of temporal relations based mining being applied. The basic idea of the association rule 

based prediction is to develop a rule based system which enhances performance of the 

event predictor.  

A possible next step for this approach would be to evaluate these association rules 

for interestingness which involves applying spatial techniques along with temporal 

analysis to determine which of the identified rules are of interest and would help 

prioritize the generated rules that have equal confidence and support values. 
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Enhancing Prediction by Adding Temporal Relations based Probability to ALZ  

 

 In this experiment we leverage the existing prediction using temporal information 

as an additional source to evaluate the next occurring event and thus aid prediction. For 

this approach we validate our algorithm by applying it to our real and synthetic datasets. 

We train the model based on 59 days of data and test the model on one day of activities. 

The temporal relations formed in these data sets show some interesting patterns and 

indicate relations that are of interest. The parameter settings pertaining to the dataset are 

given in Table 17.  

 

Table 17.  Dataset descriptions of training and test set used for experimentation. 

 

Datasets No # Days Total No # events 

Real (Train) 59 750 

Real(Test) 1 40 

Synthetic (Train) 59 13900 

Synthetic (Test) 1 1500 

Cross Validation (Real) 60 834 

Cross Validation (Syn.) 60 15000 

 

 

Table 18.  Comparing accuracy of prediction techniques using TempAl on real datasets 

 

Dataset 

(Learning Algorithm) Train Test Correct 

Prediction 

Accuracy 

(%) 

Prediction 

Error (%) 

Real (Alz) 100 1 0 0% 100% 

Real (Alz+Tempal) 100 1 1 100% 0% 

Real (Alz) 100 10 6 60% 40% 
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Real (Alz+Tempal) 100 10 6 60% 40% 

Real (Alz) 750 40 29 72.50% 27.50% 

Real (Alz+Tempal) 750 40 29 72.50% 27.50% 

Cross Validation (Alz) 787 83 48 57.96% 42.04% 

Cross Validation 

(Alz+Tempal) 787 83 49 58.92% 41.08% 

 

Table 19.  Comparing accuracy of prediction techniques using TempAl on Synthetic 

datasets. 

 

Dataset(Learning 

Algorithm) Train Test Correct 

Prediction 

Accuracy 

Prediction 

Error 

Synthetic (Alz) 100 1 1 100% 0% 

Synthetic (Alz+Tempal) 100 1 1 100% 0% 

Synthetic (Alz) 100 10 10 100% 0% 

Synthetic (Alz+Tempal) 100 10 10 100% 0% 

Synthetic (Alz) 1400 90 89 98.88% 1.12% 

Synthetic (Alz+Tempal) 1400 90 90 100% 0% 

Synthetic (Alz) 13905 1544 1532 99.22% 0.78% 

Synthetic (Alz+Tempal) 13905 1544 1532 99.22% 0.78% 

Cross Validation (Alz) 13905 1544 1292 83.68% 16.32% 

Cross Validation 

(Alz+Tempal) 13905 1544 1292 83.64% 16.36% 
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Figure 33. Percentage accuracy in real datasets in prediction experiment using Alz with 

TempAl. 

 

 
 

Figure 34. Percentage accuracy in synthetic datasets in prediction experiment using Alz 

with TempAl. 
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We see that Tables 18 and 19 present us with results observed in the prediction 

experiment. We need to note that accuracy values are computed as the ratio of the count 

of number of correct predictions to the total number of predictions. The cross validation 

performed on these datasets is k-fold cross validation [65]. For this we randomly divide 

the original dataset into 10 partitions and use 9 partitions for training and the last partition 

for testing.  This process is repeated for 10 folds and the average of the error noted is 

reported as the error. 

We observe that the Alz enhanced with TempAl did perform similarly to the 

original Alz-TDAG technique. This particular dataset did not make particular use of 

temporal relationships.  To illustrate the type of situation in which temporal analysis will 

specifically aid event prediction we test TempAl on a carefully constructed test case 

which is described next. 

 

Test Case Scenario: 

 

We observe that the previous datasets do not highlight the true potential of 

leveraging temporal relations for enhancing prediction. Thus we developed a scripted test 

case to observe as how the temporal relations would help make a better prediction. Let us 

look at a small example where temporal information does enhance prediction. Let us 

consider the example where the following events occur in the given sequence shown  as 

follows : (a ON), (a OFF),  (a ON), (b ON), (a ON), (b ON), (b ON), (b ON), (b ON), (b 

ON),(a  ON), (a ON), (b ON), (c ON), (c ON), (d ON), (d ON),(c ON),(b ON),(a ON),(c 

OFF), (a, OFF). In this scenario the next event that will occur is (a ON).  Now we see that 

when we run this training set on Alz and then load the test set and we see that it predicts 

“b” to be the next. We see that this is an incorrect prediction.  Now let us run the same 

experiment using Alz with TempAl and we see that on the test set it correctly predicts a 
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as the next event. Although (b ON) occurs most often overall, the temporal relationship 

of (a ON) AFTER (a OFF) is prevalent and should ultimately influence the predictor to 

output (a ON) as the most likely next event to occur.  Thus when we leverage the 

temporal relations we can enhance the prediction and therefore it would aid to improve 

the prediction accuracy. Let us look at this scenario in more detail. Table 20 gives us a 

description of the training set, test set and temporal relations formulation set. 

 

Table 30. Training, Test Set, Temporal relations for test case scenario 

Training Set: 

a ON 

a OFF 

a ON 

b ON 

a ON 

b ON 

b ON 

b ON 

b ON 

b ON 

a ON 

a ON 

b ON 

c ON 

c ON 

d ON 

d OFF 

c ON 

b ON 

a ON 

c OFF 

a OFF 

Test Set: 

a ON 

d OFF 

Temporal Relations on Training 

Set: 

[NOTE: Temporal relations are 

formed on complete device cycle 

.i.e. complete cycle of a device 

from an ON to OFF or an OFF to ON 

state is pursued within a window of 

a single day to form an event for 

associating temporal relation with 

another event.] 

 

a BEFORE a, a BEFORE b, a BEFORE b, 

a BEFORE b, a BEFORE a, a BEFORE b, 

a BEFORE c, a BEFORE d, a BEFORE c, 

a BEFORE a, a AFTER  a, a OVERLAPS 

b, a BEFORE b, a BEFORE b, a BEFORE 

a, a BEFORE b, a BEFORE c, a BEFORE 

d, a BEFORE c, a BEFORE a, b AFTER 

a, b OVERLAPPEDBY a, b MEETS b, b 

BEFORE b, b BEFORE a, b BEFORE b, b 

BEFORE c, b BEFORE d, b BEFORE c, b 

BEFORE a, b AFTER a, b AFTER a, b 

AFTER b, b METBY b, b BEFORE a, b 

BEFORE b, b BEFORE c, b BEFORE d, b 

BEFORE c, b BEFORE a, a AFTER a, a 

AFTER a, a AFTER b, a AFTER b, a 

AFTER b, a BEFORE b, a BEFORE c, a 

BEFORE d, a BEFORE c, a BEFORE a, b 

AFTER a, b AFTER a, b AFTER b, b 

AFTER b, b AFTER b, b AFTER a, b 

CONTAINS c, b CONTAINS d, b 

OVERLAPS c, b BEFORE a, c AFTER a, 

c AFTER a, c AFTER b, c AFTER b, c 

AFTER b, c AFTER a, c DURING b, c 

BEFORE d, c BEFORE c, c BEFORE a, d 

AFTER a, d AFTER a, d AFTER b, d 

AFTER b, d AFTER b, d AFTER a, d 

DURING b, d AFTER c, d BEFORE c, d 

BEFORE a, c AFTER a, c AFTER a, c 

AFTER b, c AFTER b, c AFTER b, c 

AFTER a, c DURING b, c AFTER c, c 

AFTER d, c FINISHES a, a AFTER a, a 

AFTER a, a AFTER b, a AFTER b, a 

AFTER b, a AFTER a, a AFTER b, a 

AFTER c, a AFTER d, a FINISHESBY c 
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Given in Table 20, when we use Alz-TDAG we see that it calculates b as the most 

likely event based on overall frequency without temporal relationship information, 

resulting in an incorrect prediction. When we incorporate temporal relations into the 

probability calculation we see that it correctly predicts (a ON) as the next event.  On the 

other hand, it later fails to predict event (d OFF) because it did not occur significantly 

anywhere in the training data, thus providing weaker temporal information. Thus this 

simple example stands as an illustration to check the performance of TempAl and Alz. 

Figure 35 shows a screenshot of the raw output collected from Alz on the test case and 

Figure 36 shows a screenshot of the raw output collected from TempAl + Alz prediction. 

 

 
Figure 35. Raw output on the test case dataset using Alz 
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Figure 36. Raw output on the test case dataset using Alz + TempAl. 

 

 

Discussion on Enhancing Prediction by Adding Temporal Relations based 

Probability to ALZ  

 

 

This experiment [63] differs from the earlier experiment vastly. In the earlier 

prediction experiment we used rule based prediction, where we generated rules where the 

antecedent of a rule is used to predict the consequent of the rule. This current experiment 

uses the temporal information to calculate the probability of next event to occur and 

leverages the existing sequential prediction technique by adding temporal information. 

The dataset used for the experiment plays a major role with the prediction experiments. 

We note that the main reason for a significant error rate is the amount of data used, which 

is small and covers a smaller set of training examples. As we have larger datasets we see 

that the performance of the temporal relations enhanced prediction would also improve 
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drastically over time. Tables 18 and 19 summarize the observed accuracy of the 

prediction performance on real and synthetic datasets. 

Another important point to discuss is that Alz stores observed events with 

frequencies in a trie.  The temporal relations can also be stored using a graph based 

approach where events are related by a temporal relation and the weight of the link or 

relation is the frequency of its occurrence.  This approach can be further investigated as 

future work. 

 

 

Activity visualization using Time Intervals 

 

The visualizer tool visualizes the identified activity intervals over time and is 

applicable to dynamic scenarios with real time data streams. It gives the resident 

complete control of visualization with scrolling and enabled to look for patterns. A 

screenshot of this tool is displayed in Figure 37. In this illustration, we can visualize the 

various activities with their event IDs, the name of the activity/sensor, its start time and 

end time and the corresponding time interval. Finally, this tool can acts as an Integrated 

Interface for visualization for search and discovery of temporal patterns with smart home 

datasets. We apply the longest subsequence search technique to find any interesting 

pattern. The reason we apply this technique is that we are apply it for patterns identified 

over a window of size of a single day and they would be interesting only when we try to 

look for patterns in a single day and compare those patterns to the following day or any 

other day. An illustration of how the tool would look is given in Figure 37.  Additional 

details of the visualizer are provided in Appendix B. 
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Figure 37. Interval Visualization Tool: A close-up screenshot which shows the daily 

events and how they are scaled and represented.  Event times are also displayed in a 

scrollable display which allows for observable comparison between days as well as 

between events that occurred on the same day.  
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Some interesting discovered patterns are reported in Table 21. Table 22 gives the 

total number of interesting temporal patterns which were identified in the dataset. 

Table 21. Interesting patterns found using the pattern recognition tool. 

 

Date Date LCS Identified 

3/2/2003 3/3/2003 g11equalg12 

3/3/2003 3/4/2003 d9equald9  

3/4/2003 3/5/2003 No 

3/5/2003 3/6/2003 No 

3/6/2003 3/7/2003 d9equald9  

3/7/2003 3/8/2003 d9equald9  

 

Table 22. Number of patterns found in real experiment dataset. 

 

 

No # 

Patterns 

Found 

No # 

Days 

Real Data 18 66 

 

In Table 17 we see a few interesting patterns which occur across multiple days. 

We note that the g11 is a lamp and g12 is a lamp. We also see that they are turned on at 

the same time. We report a sample of such identified relations in Table 17. One of the 

reasons to have d9 equals d9 is due to the fact that the events occur in millisecond time 

intervals and the sensor would either round off or record the time to the nearest second 

and thus would lead to have multiple events occurring with the same timestamp. Table 18 

reports that there were 18 different reoccurring patterns found in total 66 days. The next 

step to this representation would be enabling the resident to directly visualize the 

interesting temporal relations based patterns using a bubble plot view. 
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Summary 

 

In this chapter we present experimental results which evaluate anomaly detection 

and prediction algorithms which are enhanced using temporal relation analysis.  We also 

present visualization and pattern recognition evaluates results. In the next chapter we 

summarize our conclusions and discuss future directions for this research.  
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CHAPTER SIX 

CO�CLUSIO�S A�D DIRECTIO�S FOR FUTURE WORK 

 

 

Research has shown us that older Americans prefer an independent lifestyle [66]. 

With a growing aging population that desires to maintain their independent living styles 

and the increase in healthcare costs, the need for, smart and cost effective homes arises. 

 

Conclusion 

Smart environments are essential today, because of the feasible technology and 

networked computing, and also the need for home based healthcare and assistance rapidly 

rising. In this work, we have proposed a technique for the discovery of temporal rules in 

event sequences in a smart home. The aim of this study was to show the feasibility of 

leveraging temporal relations in activities in a smart environment and to propose a 

methodology for prediction and anomaly detection. The approach suggests that in cases 

where the event information is too general, it is possible to expose it using temporal 

interval representation and applying temporal relations. We have described an approach 

using temporal relations to detect anomalies, aid prediction and also look for interesting 

patterns. We have shown that temporal relations between events can be used effectively 

for smart home and smart environment domain problems. Now with anomaly detection, 

some anomalies may be detected without significant use of resources or techniques and 

for some additional techniques be needed based on resident (say the resident is an elderly 

individual and may have a very fixed pattern of events or if a teenager, which results in 

irregular activity pattern).  

The presented approach is a novel approach from a theoretical point of view and 

also the preliminary results seem promising. Obviously, parts of the method need some 

more polishing, and the need to extend the study to a larger data set for very promising 

results is clearly visible. Provided we can collect more data, it would be easy to improve 
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the model by (at least local) optimization on the space of possible rules. We hope that the 

measures of temporal information we have used will help in all aspects, but we are also 

planning to further investigate the temporal relations properties and that of other 

candidate measures not considered here for this current study. In this work we presented 

an approach to temporal pattern mining. One application of such is the prediction of 

events by using (temporal) association rules and incorporating temporal information. 

Besides evaluation future work on larger datasets one has to address further ways to 

reduce complexity of these techniques. 

Temporal reasoning enhances data mining in smart environments by adding 

information about expected temporal interactions between resident activities. Based on 

our study, we conclude that the use of temporal relations provides us with a new 

approach for anomaly detection. We tested our algorithm on relatively small datasets, but 

will next target larger datasets with real activity data collected. Other future directions of 

this work also include improving activity prediction using temporal relations in smart 

home data. One challenge this work introduces is determining which observed events 

belong to the same activity (say we have two lamp events back to back, the problem of 

grouping them as one or should be include them to be separate), and thus the same 

temporal interval. In this study we grouped events that turned a device on together with 

those that turned the same device off. However, for a more extensive study we need to 

determine a general method for grouping events. 

Temporal rule based pattern analysis is a niche area in temporal mining world. 

We notice that the use of temporal relations provides us with a unique approach for 

anomaly detection. We will also expand the temporal relations by including more 

temporal relations, such as until, since, next, and so forth, to create a richer collection of 

useful temporal relations. 

 The goal of the association rule mining based approach for prediction is to 

generate a rule-based prediction system, which can be integrated into a comprehensive 
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smart home architecture. We use the most recent observed event to identify which rules 

to use for prediction. Once the rule or a set of rules is identified then the rules are used for 

prediction. This approach showed some encouragement to use association rule mining to 

enhance prediction. Some disadvantages of this system include the identifying interesting 

rules and also handling multiple rules with safe confidence levels. Some possible 

solutions to the above mentioned problem are discussed in the future work section. 

The next prediction experiment involved a method of enhancing an existing 

sequential prediction technique by incorporating temporal information to improve 

prediction performance. We see that the fusion of the information is intuitively 

appropriate as the sequential prediction uses a trie-based prediction algorithm and this 

implicitly incorporates the temporal relation “before” and uses order-based analysis for 

computing the prediction probability. Now we also incorporate temporal information into 

event probability calculates at context sizes greater than 0 because at the higher orders in 

the phrase we have all the temporal information which would make it richer than the 

single existing “before” relation. Evaluation of this combined prediction approach shows 

encouraging results and opens the field to new ideas such as considering graph-based 

approaches and link analysis approaches for prediction in smart environment domains. 

Finally, it is worth remembering that human activities are need based and are thus 

clouded with the resident’s emotional state and the physical energy required for events to 

be performed.  As a result, smart home adaptive automation is by itself a difficult task, 

with potentially a lot of disagreement between multiple residents or the influence of a 

single resident through process. For now, our work have is bound by a single resident. 

We therefore have no measure of inter-inhabitant or multi-resident agreement which 

could serve as an upper bound of the performance of this system, although we are 

currently planning and setting up this smart environment to do this at a larger scale. 
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Future work 

 

A major enhancement to this work could consist of inclusion of interval analysis 

for intermediate states of devices. Intermediate states are those which exist between an 

ON and OFF state, for instance, we have a lamp controlled by a dimmer switch, we can 

see that there can be a maximum of dimmer adjustments or levels that can be supported 

by the dimmer, which form the intermediate states. Currently the interval formation only 

handles ON and OFF states of the devices and would include other intermediate states in 

the future work. 

Another major enhancement in the future would be investigating techniques to 

identify the cut-off or thresholds which could replace the existing cut-off evaluator which 

is the sum of average and two times standard deviation of the probability data. There also 

exists some future work to find better fusion techniques to help use temporal based 

prediction and normal sequential prediction for optimal prediction, where optimal 

prediction is the prediction of greatest accuracy. 

While making sense of sensor data can be challenging for smart environment 

applications, the problem is made even more complex when the environment houses 

more than one resident.  To aid the capabilities of our temporal data mining, and to reveal 

the complexities of multi-resident spaces, an entity discovery tool is needed. Enriching 

the raw data set provided by the smart environment gives the knowledge discovery tools 

more information to work with for determining features of the data during the mining 

stages.  In this case, we are enriching the data with information about entities moving 

within the space.  This comes in the form of an entity (in this case, resident) identification 

number that is attached to each event, matching events to entities. Thus using temporal 

activity models to identify patterns and later associate these patterns to behavior models 

and use them for entity identification and resident profiling would be one direction for 

this work. 
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Agents in dynamic environments have to deal with changes over time. We 

establish temporal statement from the observation or prevision of changes.  The 

relationship between space and time is the consequence of the observation of changes as 

the perception of spatial alternations denotes the existence of time. Temporal relations do 

not replace spatial relations but they just provide a different perspective and an integrated 

view supports the identification of both space and time. Enhancing this model for 

temporal to spatiotemporal models would be the next immediate step.  As reasoning of 

space and time plays a vital role in our everyday lives and this can be scheduling our 

work or the events that occur in homes. And especially smart homes can support us with 

these reasoning capabilities for certain events and actions associated to certain space in 

the smart home. This would directly aid the elderly with cognitive impairments. 

We did see an interesting application of association mining in the context of 

temporal relations in smart homes for prediction. For prediction we use the antecedent of 

a rule to predict the consequent of the rule. But for future work we should look at the fact 

that not all association rules may be suitable for prediction and the fusion of spatial 

knowledge with association rules would help decide interestingness in association rules 

and would help make better prediction.  We can define the precision or interestingness of 

the rules found as follows: Precision = # of interesting rules discovered / # of total rules 

discovered. Methods to find trade-off between different set support and confidence 

should also be investigated.  Thus the future works includes the development of 

appropriate metrics for rule quality and develop new techniques for rule post-processing. 

Regarding the rule mining itself, it is obvious that it is a computationally very costly 

process, and more work should be performed on how to optimize this part of the process. 

Another important future work would involve a moving window which would help track 

patterns on a shorter time and make the existing system more adaptable to the resident 

and changing patterns.  
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The prediction model which enhances ActiveLeZi based approach by 

incorporating temporal information needs more in-depth analysis by investigating fusion 

of graph based approaches with trie-based approach. Overall the temporal relations based 

prediction should investigate graph based and link prediction techniques.   

The problem of anomaly detection can take different approaches.  Currently we 

try to compute the evidence whether the current predicted event or the most recently 

occurred event is an anomaly or not. Future work could include adapting the temporal 

relations which aid anomaly detection based on resident history, for instance choosing 

among the nine anomaly detection aiding temporal relations the best one which could be 

used for anomaly detection. External events also contribute to anomalies in smart 

environment: one simple example would be a phone call which could trigger the resident 

into a thinking state and might turn on the lamp without his consent or conscious request. 

Emotional analysis techniques should also be investigated. Another future use of event 

prediction is its use for reminder assistance. If the resident queries the algorithm for the 

next routine activity, the activity or activities with the greatest probability will be 

provided. Similarly, if an anomaly is detected, the smart environment can first initiate 

contact with the resident and provide a reminder of the activity that is usually performed 

at that time. We can in the future enhance the visualizer with embedding different pattern 

recognition techniques for identifying of more patterns of interest. We would also then 

evaluate as how effective is this tool to the resident when the patterns were identified and 

changed to enhance the resident’s comforts or enrich the lifestyle. 

Overall we need to note that the temporal relations based techniques need to be 

fully developed and should incorporate richer collection of temporal relations to avoid 

discarding many details but they still stand to encourage anomaly detection and 

prediction techniques and stand as an novel method in smart environment domain. 
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APPE�DIX A 

THE MAVLAB 
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MavLab Description 

 

Figure A.1 illustrates the MavLab which was used for real data collection for this 

work. This lab consisted of X10 and ArgusD networks deployed covering ten zones 

which are illustrated in Figures A.2 and A.3.  

 

 
 

Figure A.1 MavLab in 250 Nedderman Hall at UTA [8]. 
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Figure A.2. MavLab configuration of X10 and ArgusMS actuators [8]. 
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Figure A.3. MavLab sensor layout [8]. 
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APPE�DIX B 

I�PUTS, OUTPUTS & SCREE�SHOTS 
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Data Generator 

 

The data used for the experimentation consists of real and synthetic data. The real 

data collection environment is given in Appendix A and the synthetic data generation 

screenshot and sample of the generated output file is given here. 

 

 

 
 

Figure B.1. Synthetic Data Generator Interface 

 

Figure B.1 gives us an illustration of the data generator user interface. This was a 

simple interface which gives us the option to input the input file which contains the 

scenario description such as the number of devices, their various states, scenarios, and 

whether they occur either hourly, daily or weekly. A sample input file is given in Table 

B.2. Future work can focus on displaying this input file in the graphical user interface 

itself. This would help the data generator to generate the required synthetic data and 
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would help us embed artificial scenarios for evaluation purposes. Figure B.3 illustrates 

the process of selecting an input file. 

 

 

Table B.2. Synthetic Data Generator sample input file. 

 

Sample Input File: 

4 

lamp 2 on off 

thermostat 10 65 66 67 68 69 70 71 72 73 74 

television 11 on off 2 3 4 5 6 7 8 9 10 

oven 6 on off 15 30 45 60 

1 

E1 hourly 7 2 oven on NoOrder thermostat on Uniform 30 

07/10/2002 09:30 

off off 10 off off 

10000 

 

 

 

 

Figure B.3. Synthetic Data Generator Interface when the Input file button is clicked. 
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Figure B.4. Synthetic Data Generator Interface when the output is generated.  The output 

is also written to a text file. 

 

A sample of the generated data set is given in Table B.5.A. We see that 

randomness is incorporated into the time at which the devices are used and into the 

inhabitant’s activities. We first created a synthetic data generator model user’s pattern 

which consists of different activities comprising different locations (e.g., kitchen, 

bathroom) and involving interaction with a variety of devices (e.g., TV, lamp). 
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Additional details are provided in Chapter 3. The table B.5.B shows a sample real data 

collected from a smart environment. 

 

Table B.5.A. Sample of the synthetic Data Generator output. 

 

Timestamp 

Device 

State 

Device 

Name 

2/1/2006 10:02 Off Oven 

2/1/2006 11:00 On Lamp 

2/1/2006 11:11 Off Thermostat 

2/1/2006 12:02 Off Lamp 

2/1/2006 12:35 Off Cooker 

2/1/2006 13:30 On Lamp 

2/1/2006 14:02 Off Fan 

2/1/2006 15:22 On Oven 

2/1/2006 16:09 Off Oven 

2/1/2006 16:13 Off Lamp 

2/1/2006 17:11 On Lamp 

2/1/2006 17:59 On Fan 

2/1/2006 18:23 Off Lamp 

2/1/2006 18:33 On Cooker 

2/1/2006 20:03 On Thermostat 

2/1/2006 20:14 Off Cooker 

2/1/2006 20:45 Off Fan 

2/1/2006 20:47 On Oven 

2/1/2006 21:12 On Cooker 

2/1/2006 21:20 Off Cooker 

2/1/2006 22:18 On Fan 

2/1/2006 23:03 Off Thermostat 

2/1/2006 23:14 On Cooker 

2/1/2006 23:45 Off Fan 

2/1/2006 23:47 Off Oven 

2/2/2006 00:12 Off Cooker 

2/2/2006 00:20 On Cooker 

2/2/2006 01:18 On Fan 

2/2/2006 02:03 On Thermostat 
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Table B. 5.B. Sample of the real dataset collected from a smart environment 

 

Timestamp Location Sensor Name Sensor State 

4/2/2003 10:36:0 PM (Conference Room) J11 ON 

4/2/2003 10:51:0 PM (Studio A) A14 OFF 

4/2/2003 11:2:0 PM (Studio C) C13 OFF 

4/2/2003 11:6:0 PM (Studio F) F12 ON 

4/3/2003 1:3:0 PM (Living Room) H9 ON 

4/3/2003 1:4:0 PM (Conference Room) J10 ON 

4/3/2003 1:8:0 PM (Dining Room) I14 ON 

 

 

 

TempAl: Interval Analysis Tools 

 

The experimentation tool consists of tools for analysis which are illustrated by 

these screenshots. The raw sensor data is processed for time intervals and later these 

intervals are used to find temporal relations between the data and used for knowledge 

discovery for anomaly detection and prediction.  
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Figure B.6. Time Interval Formation screenshot. 
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Figure B.7. Temporal Relation Formulation screenshot. 

 

 

Figure B.8. Temporal Relation Formulation screenshot (Note: at the end a brief summary 

of the discovered rules is displayed). 
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TempAl: Anomaly Detection 

 

 The anomaly detection process looks whether the current event is an anomaly or 

not based on the temporal relations. Figure B.9 is a screenshot of the tool. This tool 

would provide an enhancement to the decision making system (ProPHeT) and would aid 

in making better decisions. 

 

 

Figure B.9. Anomaly detection tool. 

   

In Figure B.9 we see that the anomaly detection tool is illustrated and this enables us to 

know whether the current event is an anomaly or not. We note that it gives us the event 

name followed by whether it is computed to be an anomaly or not. 
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TempAl: Prediction 

  

 The prediction screenshots consist of the original sequential prediction output as 

well as the rule based and temporal relations enhanced prediction outputs. These are 

illustrated in Figures B.10, B.11, and B.12, respectively. We note that only the numbers 

of correct predictions are outputted at the end. 

 

 

Figure B.10. Original sequential prediction output. (Note we pass the dataset and mention 

the training and testing samples and output the number of correct predictions.)   
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Figure B.11. Rule based prediction output.  

 

 

Figure B.12. Temporal relations based enhanced prediction screenshot.  
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TempAl: Visualization 

  

The visualizer is a new interface for visualizing daily activities and this is now 

fitted with the pattern search option. Future work would include different pattern analysis 

options to get more interesting patterns which would help the resident to understand 

activity patterns in a home. In this visualizer we can notice the event by name as well as 

the start and end times, which are grouped by the date they occur. These event time 

intervals are represented by a line representation similar to a Gantt chart representation 

and help us visually examine the event time intervals. 
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Figure B.13. Temporal relation visualization screenshot. 
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Figure B.14. Temporal relation visualization screenshot. 
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Figure B.15. Temporal relation LCS pattern search screenshot. 

 

 

Figure B.16. Temporal relation LCS pattern search screenshot where no pattern is found. 
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APPE�DIX C 

ADDITIO�AL TESTCASES 
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Test Cases with Varying Attributes  

 

We perform statistical tests on the results obtained and find that the prediction 

algorithm with TempAl performs better than Alz but not significantly better or does not 

out perform. We note this would lead to additional testing by varying the following 

attributes which include number of different devices or events, number of anomalies 

present, number of patterns and number of instances available for training and testing. 

The observed outputs are displayed in Table C.1. 
 

Table C.1 Final Test Case. 

 

We observe that Alz+TempAl would under perform when there is more number 

of events and less number of patterns as we see that the given patterns would not be 

sufficient for better analysis. Also, we see that while computing the probability of 

occurrence the more the number of distinct events lead to more temporal relations and the 

frequency of frequent relations decreases as newer and newer relations do come into 

existence and we see that the probability is measured by frequency counts of predictive 

temporal relations. 

            Alz + TempAl would perform better than Alz when more anomalies are included 

due to the fact that the temporal information is more than mere sequential probability, but 

the overall accuracy of prediction for both predictors is considerably low. 

Attributes Alz 

Alz+ 

TempAl Alz 

Alz+ 

TempAl 

# 

No of 

Instances 

Different 

Events 

No  

of 

Anomalies 

No of  

Pattern 

Train 

Days 

Test 

Days 

#  

Correct 

#  

Correct 

Accuracy 

% 

Accuracy 

% 

1 6000 25 5 20 5000 1000 603 582 60.3 88.2 

2 6000 10 15 20 5000 1000 411 425 41.1 42.5 

3 6000 10 5 50 5000 1000 757 763 75.7 76.3 

4 6000 10 5 20 5000 1000 913 914 91.3 91.4 

5 3250 10 5 20 2500 750 668 716 89.06 95.4 
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            More number of scenarios would not affect both the learners and they perform 

considerable well. But with more training examples the learning increases and they start 

doing a good job by predicting better. 

            Alz+TempAl would perform better than Alz if provided with fewer instances to 

learn or in a fewer instance scenario. We see that thought both the methods uses 

frequency as a means to measure we observe that the temporal relations based TempAl + 

Alz would have more information and would quickly learn compared to Alz which would 

require more instances to learn better. Thus we see that the Alz + TempAl  would be 

beneficial on smart home datasets.  


