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USE OF FINITE ELEMENT METHOD TO EVALUATE THE STRENGTH 

 RESPONSE OF NOTCHED COMPOSITE LAMINATES UNDER TENSION 

Abstract 

 

by Arjun Kothidar, M.S. 

Washington State University 

December 2008 

 

Chair:  Lloyd V. Smith 

Mechanical attachments can reduce the strength of composites substantially. The 

following considers the sensitivity of open-hole tension (OHT) test coupons to the 

laminate fiber orientation. Fiber orientation affects the stress distribution around the hole 

which can lead to improved laminate strength.  

The effect of the hole on the OHT strength was described numerically by using a 3D 

Finite Element (FE) model. The linear elastic model was used to predict the first ply 

failure (FPF). Maximum Stress and Maximum Strain failure criteria were found to 

correlate well with the measured FPF strength and location as verified by SEM.  

The results of the 3D model were used with Quadratic Delamination Criterion. The 

procedure was successful in identifying laminates with delamination failure modes as 

identified through SEM.  

An FE based Representative Volume Element (RVE) has been used to evaluate the 

homogenized elastic properties of a graphite/epoxy composite material from its 

constituent properties. The model agreed well with the experimentally obtained elastic 

properties of the composite lamina. The FE based RVE model approach was found to be 
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an improvement over the existing analytical and semi-empirical methods, as a single 

model could be used to generate all the elastic properties of the composite material.  
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An important problem when designing with composites is that of stress concentration

near discontinuities. Knowledge of the magnitude and extent of stress concentration

structures is crucial for determining the location 

propagation [1]. This work aims to establish the importance of matrix induced failure in form of 

the first ply failure in the design of notched laminated composites. 

A lamina or ply is a plane (or curved) layer of unidirectional fibers or woven fabric in a matrix. 

In the case of unidirectional fibers, it is also referred to as unidirectional lamina (UD). The 

lamina is an orthotropic material with principal material axes in the direction of fibers 

(longitudinal), normal to the fibers in the plane of lamina (in

plane of the lamina. The principal axes are designated as 1, 2 and 3 respective

1.2.1.

 

 

 

 

 

Fig. 1.2.1 Orthotropic lamina with principal 

and non-principal coordinate system [3]

 

A laminate is made up of two or more unidirectional laminae or plies stacked together at various 

orientations as shown in Fig.1.2.2. The laminae can be of various thicknesses and consist of 

1 

1. Literature Review 

1.1 Introduction 

problem when designing with composites is that of stress concentration

near discontinuities. Knowledge of the magnitude and extent of stress concentration

for determining the location of first failure and subsequent damage 

This work aims to establish the importance of matrix induced failure in form of 

the first ply failure in the design of notched laminated composites.  

1.2. Terminology 

A lamina or ply is a plane (or curved) layer of unidirectional fibers or woven fabric in a matrix. 

In the case of unidirectional fibers, it is also referred to as unidirectional lamina (UD). The 

orthotropic material with principal material axes in the direction of fibers 

(longitudinal), normal to the fibers in the plane of lamina (in-plane transverse) and normal to the 

plane of the lamina. The principal axes are designated as 1, 2 and 3 respectively as shown in Fig. 

Orthotropic lamina with principal 

principal coordinate system [3] 

 

 

 

 

 

Fig.1.2.2 Multidirectional laminate with 

reference (non-principal) coordinate system [3]

A laminate is made up of two or more unidirectional laminae or plies stacked together at various 

orientations as shown in Fig.1.2.2. The laminae can be of various thicknesses and consist of 

problem when designing with composites is that of stress concentrations arising 

near discontinuities. Knowledge of the magnitude and extent of stress concentrations in these 

of first failure and subsequent damage 

This work aims to establish the importance of matrix induced failure in form of 

A lamina or ply is a plane (or curved) layer of unidirectional fibers or woven fabric in a matrix. 

In the case of unidirectional fibers, it is also referred to as unidirectional lamina (UD). The 

orthotropic material with principal material axes in the direction of fibers 

plane transverse) and normal to the 

ly as shown in Fig. 

Multidirectional laminate with 

principal) coordinate system [3] 

A laminate is made up of two or more unidirectional laminae or plies stacked together at various 

orientations as shown in Fig.1.2.2. The laminae can be of various thicknesses and consist of 
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different materials. Since the orientation of the principal material axes varies from ply to ply, 

sometimes it is convenient to analyze laminates using a common reference coordinate system (x, 

y, z). The orientation of a ply is given by the angle between the reference and the major principal 

material axis measured in a counter clock wise direction on the x-y plane as shown in Fig. 1.2.2. 

The configuration of the laminate indicating its ply composition is called a lay-up. The 

configuration indicating, in addition to the ply composition, the exact location of the various 

plies is called the stacking sequence. Composite laminates are designated in a manner indicating 

the number, type, orientation and stacking sequence of plies. Some of the commonly used 

laminate configurations along with their names are provided in Table 1.2.1[3]. 

Table 1.2.1 Stacking sequence of some of the commonly used laminates [3] 
Nomenclature Stacking Sequence 

Unidirectional six-ply [ ]0 / 0 / 0 / 0 / 0 / 0 0
6

 =    

Cross Ply [ ] [ ]0 / 90 / 90 / 0 0 / 90
s

=  

Angle-ply symmetric [ ] [ ]/ / /
s

β β β β β− − = ±  

Angle-ply asymmetric [ ] [ ]/ / / / / 3β β β β β β β− − − = ±  

Multidirectional 
[ ] [ ]0 / / / / / 0 0 /

[0 / / / 90 / 90 / / / 0] [0 / / 90]

s

s

β β β β θ

β β β β θ

− − = ±

− − = ±
 

   

In Table 1.2.1 β is the ply angle that has values between 0 and 90 degrees and s indicates 

symmetric sequence. The slash mark is used to indicate separate lamina orientations with the 

subscript indicating the number of laminae of the same orientation. The laminae are specified 

with the one next to the mold surface written first [4]. The laminates used for this thesis are 

symmetric and balanced. Symmetric laminates are specified by listing only top half of the 

laminate and by using the subscript “s” outside the brackets. A laminate is balanced if it consists 

of pairs of layers with identical thickness but having + (plus) and – (minus) β orientation of their 
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principal material axes with respect to the laminate principal axes. This prevents warpage or 

unexpected distortions, after the cure cycle is complete and reduces interlaminar stresses. 

1.3 Effect of fiber orientation on stress concentration 

Investigators [5-13] have used two basic approaches to address the problem of stress 

concentration around circular cut-outs in composite plates. In one approach [1-5] the problem 

has been treated analytically by the theory of linear anisotropic elasticity as developed by 

Lekhnitskii [14]. Based on this approach models have been developed to predict the effect of the 

notch size on the tensile strength of composites [15-17]. In another approach [10-12], numerical 

methods such as finite element analysis have been employed. Greszezuk [7] observed that the 

strength of the composite plates with cut-outs is less sensitive to the stress concentration than 

plates made of isotropic materials. Tan [5] observed that the stress concentration factor in 

graphite/epoxy angle-ply laminates could be greater than that of the isotropic case depending on 

the fiber orientation.  

Whitworth, H.A. and Mahase, H. [17] investigated stress concentrations in graphite/epoxy 

composite plates containing a circular hole. The plates were subjected to unidirectional loading. 

The study was based on unidirectional laminates with oriented fibers, balanced symmetric angle-

ply, cross-ply and [0 / / 90]sβ± laminates.  The authors [17] used the approach of Lekhnitskii to 

evaluate the stress concentration in graphite/epoxy laminates of varying fiber orientation 

subjected to uniaxial tension. Some of the important details of their method are discussed below. 
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1.3.1 Stress Analysis 

According to classical lamination plate theory, the strain and resultant force per unit length 

relation in an orthotropic plate loaded in the plane of the plate is given by: 

 

(1.3.1) 

 

 

where 'A ij  is the elastic compliance matrix and is computed from the stiffness coefficient ijQ
−

transformed into the x, y, z coordinate system of the individual lamiae by 

( ) ( )
1

'
11

kn
A A Q h hijij ij k kk

−−
= = −∑ +=

 (1.3.2) 

where h is the plate thickness. 

From the Lekhnitskii’s theory of two dimensional anisotropic elasticity, the stress function F(x, 

y) satisfying the equilibrium and compatibility condition is the solution of the biharmonic 

equation 

 

(1.3.3) 

 

The laminates were loaded uniaxially (Nx= p, Ny= 0, Nxy= 0) at an angle φ  to the principal axis 

to the plate as shown in Fig.1.3.1 and Fig.1.3.2. The circumferential stress on the boundary of the 

hole is given by the expression 

( )
( ) ( )

2 2 2' cos sin cos
1 2 1 211

' 2 2 21 cos sin sin 1 sin cos sin cos
1 2 1 2

nA
p
A n n n

φ µ µ φ µ µ φ
σθ

φ µ µ φ φ µ µ φ θ φ θθ

  + −   
=  

  + + + − + −   

(1.3.4) 

' ' '
11 12 16

' ' '
12 22 26

' ' '
16 26 66

A A A
Nx x

A A A Ny y

Nxy xyA A A

ε
ε

γ

         =                

( )
4 4 4

' ' ' '2 0
22 12 66 114 2 2 4

F F F
A A A A

x x y y

∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
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where θ  is the location around the hole measured from the principal axis of the plate and 1
µ  and 

2
µ are roots of the characteristic equation 

( )4 2

11 22

' ' ' '2 0
66 12

A A A Aµ µ+ − + =    (1.3.5) 

In equation 1.3.4, the compliance 'Aθ  in a direction tangent to the opening can be obtained from  

 ( )' ' 4 ' ' 2 2 ' 4sin 2 sin cos cos
11 66 12 22

A A A A Aθ θ θ θθ = + + +   (1.3.6) 

The roots of the characteristic equation are related to the elastic compliance by 

 

'
22

1 2 '
11

A

A
µ µ = −   (1.3.7) 

 and ( )
'

2 211 cos 1 sin
1 2'

A
p n
A

σ µ µ φ φθ
θ

 = + +  
   (1.3.8) 

If the plate is loaded in a direction parallel to the principal axis of the plate, then 0φ = and 

equation (1.3.4) becomes equation (1.3.9).  

 

(1.3.9) 

 

Equation (1.3.4) was used to evaluate the stress distribution for both unidirectional and cross-ply 

laminates as shown in Fig.1.3.1 and Fig.1.3.2 respectively. From the curves in Fig.1.3.1 it is 

observed that the maximum stress concentration is obtained where the fibers are aligned with the 

load direction. As the fiber angle changes, the magnitude of the stress concentration is reduced. 

Also, the location of the stress concentration varies with the fiber orientation. The results for 

cross-ply laminates were obtained by varying the loading direction relative to principal axis. 

( )
'

2 211 cos 1 sin
1 2'

A
p n
A

σ µ µ φ φθ
θ

 = + +  



 

From Fig.1.3.2 it can be observed that as the load direction changes relative to the principal axis, 

the stress concentration is reduced.

Fig.1.3.1 Effect of fiber orientation on stress concentration 

Fig.1.3.2 Effect of loading direction

The stress distribution for symmetric angle

evaluated by equation (1.3.9) which is shown in Fig. 1.3.3 and Fig.1.3.4 respectively. From Fig. 

1.3.3 it is observed that unlike unidirectional laminates the location of 

6 

From Fig.1.3.2 it can be observed that as the load direction changes relative to the principal axis, 

the stress concentration is reduced. 

Effect of fiber orientation on stress concentration in a unidirectional laminate [17

loading direction on stress concentration in a cross-ply laminate [17

The stress distribution for symmetric angle-ply [ ]sβ±  and the [0 / / 90β±

evaluated by equation (1.3.9) which is shown in Fig. 1.3.3 and Fig.1.3.4 respectively. From Fig. 

1.3.3 it is observed that unlike unidirectional laminates the location of the 

From Fig.1.3.2 it can be observed that as the load direction changes relative to the principal axis, 

 

in a unidirectional laminate [17]. 

 

laminate [17]. 

]0 / / 90 s laminates was 

evaluated by equation (1.3.9) which is shown in Fig. 1.3.3 and Fig.1.3.4 respectively. From Fig. 

the maximum stress 



 

concentration for angle ply laminates didn’t

the maximum value of the stress concentration was

load axis. From Fig.1.3.1 and Fig.1.3.3 it can be observed that the maximum s

decreases more rapidly for symmetric angle ply laminates than for unidirectional laminates with 

similar fiber orientation. Thus it can be observed that the angle

maximum stress concentration. 

 

Fig.1.3.3 Effect of ply orientation on stress concentration in angle
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angle ply laminates didn’t shift with the ply orientation. In angle ply laminates 

the stress concentration was observed at a location 90 degrees relative to 

From Fig.1.3.1 and Fig.1.3.3 it can be observed that the maximum stress concentration 

decreases more rapidly for symmetric angle ply laminates than for unidirectional laminates with 

Thus it can be observed that the angle-ply laminates reduce the 

orientation on stress concentration in angle-ply laminate [17

ply orientation. In angle ply laminates 

observed at a location 90 degrees relative to 

tress concentration 

decreases more rapidly for symmetric angle ply laminates than for unidirectional laminates with 

ply laminates reduce the 

 

laminate [17]. 



 

Fig.1.3.4 Effect of fiber orientation of off

Fig. 1.3.4 shows that changing orientation of the 

location of the maximum stress concentration for 

maximum stress concentration in these laminate was

direction. The Stress concentration 

direction. However, after approximately 

again began to increase. For [0 / / 90

range of 45 to 60 degrees generate

motivates the study of non-traditional

subsequently observing the effect of reduced stress concentration on 

                                                           
1
 Non-traditional laminates are the ones where 

altered in such laminates. The name traditional laminates is given to the ones where the lay

and 45 degrees.  
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Effect of fiber orientation of off-axis plies on stress concentration in 

laminates [17]. 

 

1.3.4 shows that changing orientation of the β±  plies influences the magnitude but not the 

location of the maximum stress concentration for [ ]0 / / 90 sβ± laminates. The 

ncentration in these laminate was observed at 90 degree

Stress concentration was found to decrease as plies deviated from the loading 

direction. However, after approximately 60β = ± degrees, the maximum stress concentration 

]0 / / 90 sβ± laminates, the off-axis β± ply orientation within

generated the optimum design to reduce the stress concentration. This 

traditional
1
 laminates for reducing the stress concentration and 

subsequently observing the effect of reduced stress concentration on the laminate strength.

 

traditional laminates are the ones where β necessarily need not be 45 degrees. 0 and 90 degree can also be 

altered in such laminates. The name traditional laminates is given to the ones where the lay-up comprises of 0, 90 

 

axis plies on stress concentration in [ ]0 / / 90 sβ±

plies influences the magnitude but not the 

The Location of the 

observed at 90 degrees to the loading 

from the loading 

degrees, the maximum stress concentration 

ply orientation within a 

stress concentration. This 

stress concentration and 

laminate strength. 

necessarily need not be 45 degrees. 0 and 90 degree can also be 

up comprises of 0, 90 
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1.4 Effect of stacking sequence on the strength 

Failure in composites can be decomposed into two modes; in-plane failure and out- of- plane 

failure. The in-plane failure which is the focus of this study is tensile in nature. Out of plane 

failure is usually referred to as delamination. The aim of this section is to understand the effect of 

the stacking sequence of plies on these two modes of failure. 

1.4.1 Net tension strength 

Yan et al. [18] compared the response of notched composite laminates when subjected to open 

and filled hole tension. The authors considered the effect of ply orientation, lateral constraint and 

washer size in this study. T800/3900-2 graphite/epoxy prepreg was selected for the study and the 

laminates were divided into 2 groups. Group 1 comprised of laminates A, B, C and D while 

Group 2 included laminates E, F, G, H and I.  

 

Fig. 1.4.1 Comparison of net-tension strength between open and filled-hole laminates [18] 



10 

 

Fig. 1.4.1 provides a comparison between the 2 groups regarding the open and filled hole tensile 

strength. The details of the stacking sequence of the two groups are provided in Table 1.4.1. 

Table 1.4.1 Stacking sequence of group 1 and group 2[18]. 
G
R
O
U
P
 1
 

Laminates Stacking Sequence 

A [ ]0 / 90
S
 

B [ ]0 / 45 / 90 / 45
S

−  

C [ ]0 / 45 / 90
S

±  

D [ ]45 / 0 / 90
S

±  

G
R
O
U
P
 2
 

E [ ]45 / 0 / 0 / 45
S

−  

F [ ]45 / 0 / 0 / 45 / 0 / 90
S

−  

G [ ]45 / 0 / 0 / 45 / 0 / 90 / 0 / 90
S

−  

H [ ]45 / 0 / 0 / 45 / 0 / 0 / 90
S

−  

I [ ]45 / 0 / 0 / 45 / 0 / 0 / 90 / 0 / 0 / 90
S

−  

 

For group 1, no strength reduction was found for filled-hole specimens compared to open hole 

specimens. For group 2 the notch strength of filled hole laminates was lower than the open-hole 

laminates. It was observed that the change in stacking sequence in the quasi-isotropic 

configuration of [ ]0 / 45 / 90
S

±  had a small effect on the net tensile strength. Radiographic 

analysis of the two groups led to the conclusion that damage in group 1 was mostly confined 

near the stress concentration areas and propagated from the hole region toward the free edge. The 

damage was found to be in form of matrix cracks and fiber breakage. For group 2 additional 

damage modes like delamination and fiber-matrix splitting were found. Higher strength of group 

2 in net tension study is obvious due to presence of higher number of 0
0 
plies. However, it seems 



 

that a higher percentage of 0 degree plies also made the laminates of group 2 prone to 

delamination and fiber-matrix splitting. 

Delamination in laminated composites is a major cause of strength degradation. Interlaminar 

stresses generated near free edges are responsible for this mode of failure. Generally 

multidimensional laminates combining angle

both shear coupling and Poisson’s ratio mismatch. Thus in the case of multidirectional laminates 

all three interlaminar stresses (σ τ τ

role in governing the nature of these stresses. Pipes et al. [18] tested three stacking 

[ ]15 / 45 s± ± , [ ]15 / 45 / 15 s± − and 

zσ through the thickness is shown in Fig. 1.4.2. 

Fig.1.4.2 Effect of stacking sequence on the through thickness distribution of interlaminar stress 

It is evident that both the magnitude and sign of the stress can change drastically with stacking 

sequence. From a design point of view it seems that stacking sequences that result in minimum 

zσ stresses should be considered. In the case of notched laminates the effect of interlaminar 

stresses is more detrimental. In this case, edge effects were accentuated by the stress 

concentration on the edge of the hole. 
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that a higher percentage of 0 degree plies also made the laminates of group 2 prone to 

matrix splitting.  

1.4.2 Delamination strength. 

Delamination in laminated composites is a major cause of strength degradation. Interlaminar 

stresses generated near free edges are responsible for this mode of failure. Generally 

mbining angle-ply and cross ply sub laminates, exhibit effects of 

both shear coupling and Poisson’s ratio mismatch. Thus in the case of multidirectional laminates 

, ,
Z XZ YZ

σ τ τ ) are present and the stacking sequence plays a major 

role in governing the nature of these stresses. Pipes et al. [18] tested three stacking 

and [ ]45 / 15 s± ±  under a uniaxial tensile load. The distribution of 

through the thickness is shown in Fig. 1.4.2.  

Effect of stacking sequence on the through thickness distribution of interlaminar stress 

zσ near the free edge [18] 

 

itude and sign of the stress can change drastically with stacking 

sequence. From a design point of view it seems that stacking sequences that result in minimum 

stresses should be considered. In the case of notched laminates the effect of interlaminar 

stresses is more detrimental. In this case, edge effects were accentuated by the stress 

concentration on the edge of the hole. Denial et al. [19] used two boron/epox

that a higher percentage of 0 degree plies also made the laminates of group 2 prone to 

Delamination in laminated composites is a major cause of strength degradation. Interlaminar 

stresses generated near free edges are responsible for this mode of failure. Generally 

, exhibit effects of 

both shear coupling and Poisson’s ratio mismatch. Thus in the case of multidirectional laminates 

uence plays a major 

role in governing the nature of these stresses. Pipes et al. [18] tested three stacking sequences

under a uniaxial tensile load. The distribution of 

 

Effect of stacking sequence on the through thickness distribution of interlaminar stress 

itude and sign of the stress can change drastically with stacking 

sequence. From a design point of view it seems that stacking sequences that result in minimum 

stresses should be considered. In the case of notched laminates the effect of interlaminar 

stresses is more detrimental. In this case, edge effects were accentuated by the stress 

et al. [19] used two boron/epoxy panels of 



 

0 / 45 / 0
2

s

− ±  
and 245 / 0 / 0

− ±  

axial tension. The overbar over the 0 degree

about the mid plane of the ply. These two stacking sequences resulted in tensile and compressive 

interlaminar normal stress ( z
σ ) near the edge of the hole at the point of maximum stress 

concentration. Fig. 1.4.3 shows the fringe pattern in a photoelastic coating a

failure.  

Fig.1.4.3 Isochromatic fringe patterns in photoelastic coating around the hole in boron/epoxy 

specimens of two di

The pattern for the 0 / 45 / 0
2

 ±  

concentration. The pattern for the 

concentration. The failure surface of the two 

1.4.4.  

0 / 45 / 0
2

 ±  

12 

45 / 0 / 0
s

− 
  

stacking sequence with a circular hole and subjected them to 

The overbar over the 0 degree plies indicates that the laminates are symmetric 

These two stacking sequences resulted in tensile and compressive 

z ) near the edge of the hole at the point of maximum stress 

concentration. Fig. 1.4.3 shows the fringe pattern in a photoelastic coating around the hole near 

245 / 0 / 0
s

− ±  
 

Isochromatic fringe patterns in photoelastic coating around the hole in boron/epoxy 

specimens of two different stacking sequences [19] 

 

0 / 45 / 0
s

− ±  
specimen is fairly symmetric with a lower stress 

concentration. The pattern for the 245 / 0 / 0
s

− ±  
specimen skewed with the higher stress 

concentration. The failure surface of the two specimens is also very different as is shown in Fig. 

0 / 45 / 0
s

− 
  

stacking sequence with a circular hole and subjected them to 

plies indicates that the laminates are symmetric 

These two stacking sequences resulted in tensile and compressive 

) near the edge of the hole at the point of maximum stress 

round the hole near 

 

Isochromatic fringe patterns in photoelastic coating around the hole in boron/epoxy 

specimen is fairly symmetric with a lower stress 

specimen skewed with the higher stress 

is also very different as is shown in Fig. 



 

 245 / 0 / 0
 ±  

Fig.1.4.4 Failure patterns of boron/epoxy tensile panels with holes of two different stacking 

The 245 / 0 / 0
s

− ±  
specimen failed horizontally in catastrophic manner at an average applied 

axial stress of 61.7 Ksi. The 

catastrophic manner at an applied stress of 76.4 Ksi. The specimen then split in

carried a much higher ultimate stress of 105 Ksi. 

Park H.J. [20] used finite element analysis to study the effects of stacking sequence and 

clamping force on delamination bearing strength of mechanical fastened joints in carbon/epoxy 

composite laminates. 3D contact stress analysis was performed to mimic the bolt

interaction. His FEA procedure was based on a 

criterion. The problem was studied for 

sequence of [ ]90 / 0
S
 was more advantageous than 
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245 / 0 / 0
s

− 
  

 0 / 45 / 0
2

s

− ±  
 

Failure patterns of boron/epoxy tensile panels with holes of two different stacking 

sequences [19]. 

 

specimen failed horizontally in catastrophic manner at an average applied 

0 / 45 / 0
2

s

− ±  
specimen failed by vertical cracking in a non

catastrophic manner at an applied stress of 76.4 Ksi. The specimen then split in

carried a much higher ultimate stress of 105 Ksi.  

Park H.J. [20] used finite element analysis to study the effects of stacking sequence and 

clamping force on delamination bearing strength of mechanical fastened joints in carbon/epoxy 

mposite laminates. 3D contact stress analysis was performed to mimic the bolt

interaction. His FEA procedure was based on a layer wise theory along with the Ye

criterion. The problem was studied for [ ]0 / 90
S
&[ ]90 / 0

S
lay-up. Park found that a stacking 

was more advantageous than [ ]0 / 90
S
from the aspect of delamination 

 

Failure patterns of boron/epoxy tensile panels with holes of two different stacking 

specimen failed horizontally in catastrophic manner at an average applied 

specimen failed by vertical cracking in a non-

catastrophic manner at an applied stress of 76.4 Ksi. The specimen then split into two strips that 

Park H.J. [20] used finite element analysis to study the effects of stacking sequence and 

clamping force on delamination bearing strength of mechanical fastened joints in carbon/epoxy 

mposite laminates. 3D contact stress analysis was performed to mimic the bolt-hole 

theory along with the Ye-delamination 

up. Park found that a stacking 

from the aspect of delamination 
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strength. Similar conclusions were obtained by [21, 22, 23] with experimental and finite element 

analysis. Park [24] also investigated the effect of stacking sequence and clamping force on 

notched composites using an Acoustic Emission (AE) technique. The effect of stacking sequence 

on the ultimate and the delamination strength in bolted and pinned joints was compared. The 

results for both joints were quite similar. The study was based on a stacking sequence of quasi-

isotropic lay-ups [ ]3 3 390 / 45 / 0
S

± , [ ]3 3 390 / 0 / 45
S

± and[ ]3 30 / 45 / 90
S

± . The results indicated 

that lay-up [ ]3 3 390 / 45 / 0
S

± had the highest bearing strength and the lay-up [ ]3 3 390 / 0 / 45
S

± had 

the second highest one. The lay-up [ ]3 3 390 / 0 / 45
S

± had the highest delamination strength. Thus 

the stacking sequence [ ]3 3 390 / 0 / 45
S

± which had the highest delamination strength and second 

highest ultimate bearing strength should be preferred from the view point of its characteristics of 

fail-safe delamination failure. The 90
 
degree layers have been found to play a very important role 

in the bearing strength of composite laminates. Composite laminates with 90 degree
 
layers on the 

surface have higher delamination strength than the laminates with 90 degree plies in the center. 

Kaminski B.E. [25] has reported similar findings using [0/90] glass/epoxy coupons. He found 

with low scatter that the coupons with 90
 
degree layers on the surface were 9% stronger than the 

ones with 0
 
degree layers on the surface.  

1.5 Failure Criteria study 

Failure criteria for homogenous isotropic materials, such as the maximum normal stress 

(Rankine), maximum shear stress (Tresca) and maximum distortional energy (Von Mises) are 

well established. Macromechanical failure theories for composites have been proposed by 

extending and adapting isotropic failure theories to account for anisotropy in the stiffness and 

strength of the composites [3]. 

Lamina failure theories can be broadly classified into mode based and interactive.  
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1.5.1. Mode based 

Theories such as maximum stress, maximum strain, Hashin-Rothem in which specific failure 

modes are predicted by comparing individual lamina stress or strains with corresponding strength 

and ultimate strains are mode based or non-interactive failure theories. The maximum strain 

theory does allow for some interaction of stress components due to Poisson’s effect [3] but is still 

considered a mode based theory. 

 Jenkins [26] in 1920 was the first to use an extension of the maximum normal stress theory or 

Rankine theory for orthotropic laminae. Kelly [27] used the maximum stress theory in 1966 to 

predict the off axis strength of unidirectional composites as a function of fiber orientation by 

three different curves corresponding to 3 different failure modes. According to the maximum 

stress theory, failure occurs when at least one stress component along one of the principal 

material axes exceeds the corresponding strength in that direction. For a three dimensional state 

of stress with transverse isotropy on the 2-3 plane the following set of inequalities must be 

satisfied to avoid failure 

 

1 1 1

2 2 2

3 3 3

12 12 12

23 23 23

13 13 13

S S
C T

S S
C T

S S
C T

S S
C T

S S
C T

S S
C T

σ

σ

σ

σ

σ

σ

< <

< <

< <

< <

< <

< <
.

 (1.5.1)
 

In the above equations Si (for i = 1, 2, 3) denotes the ultimate value of stress in the principal 

normal directions and Sij (for ij= 12, 23 and 13) stands for ultimate shear value in the principal 

shear directions. C and T are used to distinguish between the strength parameters in compression 

and tension respectively.  
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In 1967 Waddoups [28] proposed the Maximum Strain Criterion for orthotropic laminae as an 

extension of the Maximum Normal Strain Theory (or Saint Venant’s Theory) for isotropic 

materials as 

1 1 1

2 2 2

3 3 3

12 12 12

23 23 23

13 13 13

C T

C T

C T

C T

C T

C T

ε ε ε

ε ε ε

ε ε ε

ε ε ε

ε ε ε

ε ε ε

< <

< <

< <

< <

< <

< <

    (1.5.2) 

Hashin and Rotem found that failure of a lamina under a general in-plane loading can be 

characterized by two failure criteria, one for fiber failure and the other for inter fiber failure [29] 

as  

  

1

1 1

1
T CS orS

σ 
= 

 
   (1.5.3)  

  

2 2

2 12

2 2 12

1
T CS orS S

σ σ   
+ =   
  

  (1.5.4) 

These criteria can be extended for a general three-dimensional state of stress in terms of stresses 

acting on the three principal material planes and related to the expected failure modes on those 

planes. 

 (1.5.5) 

 

2 2 2

232 12

2 2 23 12

1
T CS orS S S

σσ σ     
+ + =     

    
    (1.5.6) 

 

 

2 2 2

3 23 13

3 3 23 13

1
T CS orS S S

σ σ σ     
+ + =     

     
    (1.5.7)  

The strength parameters used in the equations should be based on the sign of the stresses. That 

1

1 1

1
T CS orS

σ 
= 

 
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means if the stress in the longitudinal or 1-direction is tensile (+) then the limiting strength 

should be tensile and for compressive stress (-) the strength parameter should be compressive. 

This holds true for transverse and shear stresses
2
 as well. In the criteria above, the strength values 

are the ultimate values when the stress-strain behavior is linear to failure. In case of non-linear 

behavior, the strength values can be defined as proportional limits of the corresponding stress-

strain curves. 

Hashin proposed a modification of Hashin-Rotem theory. He proposed more interactive criteria 

for tensile failure of the fiber and for combined transverse compression and shear. In the latter 

case he introduced the effect of transverse shear strength in the criterion.  

1.5.2 Quadratic Failure Theories 

The quadratic failure criteria are interactive and based on curve fitting considerations and not on 

physical failure modes [30]. The stress terms are included in one expression and failure is 

predicted without reference to particular failure mode.  

The deviatoric and distortional energy has been proposed by many investigators (e.g. Von Mises, 

Hencky, Nadai) in various forms as a failure criterion for isotropic ductile metals. For a two-

dimensional state of stress in the principal stress directions, the von Mises yield criterion has the 

following form [3] 

( ) ( ) ( )22 2

1 2 1 2 ypσ σ σ σ σ+ − =     (1.5.8) 

 

Hill modified this criterion for case of ductile metals with anisotropy and proposed the following 

form.  

  
2 2 2

1 2 1 2 12 1A B C Dσ σ σ σ σ+ + + =  (1.5.9) 

                                                           
2
 For in-plane and out of plane shear stress the sign of limiting stress is immaterial as the value of shear in tension 

and compression is same. Also for the current work S12= S23= S13. 
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 where A, B, C, D are material parameters characteristic of the current state of anisotropy. The 

modified form of the criterion led to Tsai-Hill criterion which in three dimensional form can be 

written as [31] 

 

2 2 2

31 2

1 1 2 2 3 3

1 22 2 2 2 2 2

1 1 2 2 3 3

2 32 2 2 2 2 2

2 2 3 3 3 3
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     

 (1.5.10) 

Failure is predicted by this theory when the left side of the equation is greater than or equal to 

one. The theory is similar to Hashin-Rotem theory in the sense that it also takes into account the 

sign of the stresses in the principal material direction. However unlike Hashin-Rotem theory it 

fails to provide information regarding the mode of failure. The quadratic nature of the theory has 

been criticized because it is based on Hill’s theory, which is suitable for homogenous, 

anisotropic and ductile metals, whereas most composites are strongly heterogeneous and brittle. 

One more problem with the Hill’s theory is that it predicts that failure will never occur in 

hydrostatic state of stress (σ1= σ2= σ3, σ12= σ23= σ13=0). Due to shear coupling in composites, 

however, a hydrostatic state of stress can produce shear strains and failure. Hoffman’s equation 

due to its linear terms, could predict failure for a hydrostatic state of stress. The three 

dimensional form of the Hoffman equation is given as. 
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 (1.5.11) 

However, all of the quadratic theories form special case of a more general quadratic interaction 

criterion. In 1971 Tsai and Wu [32] proposed an improved and simplified version of a tensor 

polynomial failure theory for anisotropic materials originally proposed by Gol’denblat and 

Kopnov [33]. The proposed criterion in contracted notation can be written as 

1i i ij i jF Fσ σ σ+ =  (1.5.12) 

where contracted notation i, j = 1, 2, ….. , 6. Fi and Fij are experimentally determined strength 

tensors of second and forth rank, respectively. In order to avoid failure, the left hand side of the 

equation (1.5.12) should be less than one. The details of finding the coefficients of the stress 

terms are in [34]. The three dimensional form of the Tsai-Wu criterion which is used for current 

work is given as 
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  (1.5.13) 

Farsakh et al. [35] proposed an energy based failure criterion for non-linear composite materials 

which was included as a part of the current work. The three dimensional form of the criterion in 

contracted notation can be written as 
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Where i, j = 1, 2, 3 and Ui , Uij correspond to extensional and shear strain energy densities 

respectively. According to the energy criterion, failure can be avoided if the left hand of equation 

1.5.14 is less than 1. The strain energy densities can be found as 

 

.  (1.5.15) 

The subscript m denotes the corresponding maximum value of strain energy density. The stress 

and strain terms in equation (1.5.15) can be replaced with the maximum strength and strain 

values for finding values of denominators of equation (1.5.14).  

1.6 Applicability of Laminate Failure Theories 

The validity and applicability of any failure theory depends on its agreement with experimental 

results. Recently two main efforts were aimed at evaluation of laminate failure theories. One of 

them was by Sun [36, 37] and the other by Hinton et al. [38].  

Sun [36, 37] reviewed six failure theories and compared theoretical predictions of the laminate 

strength with experimental results for six composite materials and various loading conditions. He 

found that for fiber dominated laminates the maximum strain, maximum stress and Hashin-

Rotem gave the best predictions. The interactive theories gave good predictions for matrix 

dominated strength. Hinton et al. [38] conducted a World Wide Failure Exercise (WWFE) over a 

twelve year period for the purpose of assessing the predictive capabilities of some of the most 

prominent failure theories of composite materials. The exercise covered nineteen theories, four 

composite material systems, six laminate configurations and four loading conditions. The leading 

theories (Tsai, Puck, Zinoviev, Bogetti, Cuntze) were compared. One observation of this exercise 
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was that even for unidirectional lamina, predictions of these theories differed by up to 200-300% 

from each other. The authors also found that these theories tended to underperform in situations 

where shear and matrix behavior plays a significant role in the failure process and where large 

deformations were present before final failure occurred in the experiment.  

One of the findings of the literature concerning failure criteria was that the theories that perform 

well for a certain set of material properties and under given loading condition may not do well if 

these variables are changed. This makes the task of generalizing the applicability of failure 

theories extremely difficult. The best practice is to compare the theoretical predictions with 

accurate and reliable experimental results. In the current work the strength predictions of seven 

prominent failure theories were compared with experimental data to check their accuracy in 

predicting the First Ply Failure strength for notched composite laminates under tensile loading 

condition.   

1.7 FEA Study 

 

A study of some of the established FEA methodologies was carried out to compare their 

advantages and disadvantages which would assist in the selection of a method most suitable for 

the current work. Tay et al. [39] presented a new FEA based approach known as the element 

failure method (EFM) which they claimed to be better than the traditional material property 

degradation method (MPDM) and the fracture mechanics approach. In the MPDM, the value of 

certain material properties in the constitutive relation is reduced when damage or failure is 

determined e.g. if failure is determined to have occurred in the fiber direction (as in the breaking 

of fibers in tension), the fiber direction Young’s modulus (E11) may be set to zero. This is a 

special case of MPDM and is called the Ply Discount Method. Normally in the published 

literature the authors set the degraded material properties to a small percentage of the original. 

This is done to avoid the stiffness matrix of the FEA model from becoming ill-conditioned which 
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is turn stops the FEA code from converging. MPDM has another major drawback. There is 

uncertainty regarding the property that should be degraded e.g. if transverse cracking or failure is 

predicted in a composite it is not clear if only the transverse Young’s Modulus E22 or both this 

and the in-plane Shear Modulus G12 should be reduced. Additionally, the effect of damage on the 

Poisson’s Ratio 
12
ν and 

21
ν is not obvious or easily determined.  

Fracture mechanics has been applied to composites although some have cited some major 

drawbacks in the traditional approach. First of all in composites it is not easy to clearly identify 

and define cracks and crack tips as is done with metals. In some exceptional situations a crack 

may be defined such as in the case of a single delamination in a laboratory fracture test 

specimen. However, even in such situations, mechanisms such as fiber bridging across crack 

surfaces, delamination kinking, or branching into other fracture planes greatly complicates the 

analysis and can lead to wrong results. 

The EFM modifies nodal forces to reflect changes in the stress bearing capability of the damaged 

material. The stiffness matrix remains untouched and drawbacks of MPDM are automatically 

avoided. The EFM along with the Strain Invariant Failure Theory (SIFT) have been recently 

proposed by Gosse [40]. An in house 2D FE code was used to implement the methodology. A 

three point bend test was used as test problem for damage prediction. EFM based approach was 

very attractive for predicting damage in composites. However the drawback of using EFM based 

approach for this thesis was the complexity to successfully incorporate it in commercially 

available software like ANSYS
TM

, which was used for the numerical work of this study. 

Wang et al. [41] used both; linear elastic and a progressive damage approach to predict the 

strength of un-notched and notched quasi-isotropic laminates. AS4/3501-6 material was used and 

laminates were subjected to tension and compression tests. It was found that the linear elastic 

approach underestimated the First Ply Failure strength (FPF) or overestimated the Last Ply 
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Failure (LPF) strength for un-notched laminates. The progressive damage was able to predict the 

un-notched strength, provided that the non-linear shear behavior was accounted for and the 

appropriate failure criterion was used. They used ABACUS FEA software and shell elements to 

implement material degradation. For the purpose of comparison, a characteristic distance 

approach was applied to the open-hole strength problem. In this approach the authors had to 

calibrate the model for tension and compression loading and for a particular hole size. Although 

they found that no consistent relationship existed between the characteristic distance and the hole 

size for the tension case, the compression characteristic distance was related to the hole diameter 

by the following relation 

 0.843 0.0606*
0
d d= +  (1.7.1) 

where d0 was the characteristic distance and d was the hole diameter. 

The predicted accuracy of the tensile test appeared satisfactory with a maximum discrepancy of 

2%. However, the prediction of the compression test was less accurate with a maximum error of 

15%. Thus this approach does not appear to be very robust. 

1.8 Conclusion 

The literature review pointed to the fact that stress concentration in composites with a circular 

hole is a function of the fiber angles. For traditional laminates [ ]0 / / 90 sβ±  the off axis 

orientation β±  has been found to generate an optimum design for reducing stress concentration 

where 45 60β≤ ≤ . Further, the effect of stacking sequence on the failure modes in laminates is 

quite evident. For multidirectional laminates which show shear coupling and Poisson’s 

mismatch, interlaminar stresses are present and thus a particular stacking sequence can be 

generated for resisting delamination growth. Seven failure theories (Max-Strain, Max-Stress, 

Hashin-Rothem, Tsai-Wu, Tsai-Hill, Hoffman and energy) were presented and would be applied 
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along with an appropriate FE method. Although some have proposed damage based FE models 

for strength prediction of laminated composites, but for the current study a linear elastic 

approach was chosen in order to determine the first ply failure (FPF).  
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 2. 3D FEA MODEL 

2.1 Introduction 

The literature review behind the current study provided a motivation to find the effect of 

tailoring fiber orientation and stacking sequence on the open-hole tension (OHT) strength of the 

laminates. This chapter aimed at introducing a 3D FE model that could show the through 

thickness strain field and the sensitivity of stress concentrations to the fiber orientation and 

stacking sequence of a laminated composite. A standard quasi-isotropic lay-up 

( )45 / 90 / 45 / 0 2 s
 −   was used as baseline and compared with other non-traditional lay-ups.  

 

 

Fig. 2.2.1 Geometry of the laminated plate along with the model geometry 
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2.2. Laminate Geometry 

The laminate geometry under consideration is shown in the Fig.2.2.1. The composite plate was 

12 inches in height, 1.5 inches in width and 0.07 inches in thickness with a 0.25 inch hole drilled 

in the center. The effect of the stress concentration due to the presence of circular notches 

diminishes at a distance of 9 radii from the edge of the hole [42]. Keeping this in mind, the 

height of the FE model was restricted to 1.25 inches i.e. ten times the radii of the hole. The 

model geometry shown in Fig. 2.2.1 is one eighth of the original plate.  

2.3 Material Properties 

The properties of T600:125-33 carbon/epoxy material were found using in-plane tests of five 

specimens of [0]6, [90]16 and ( )
3

45
s

±    laminates. The 0 and 90 degree coupons were used to 

determine the in-plane ultimate tensile strength in longitudinal and transverse direction 

respectively. Due to a linear relationship between stress and strain in unidirectional (i.e. 0 and 90 

degree) laminates, the ultimate stress and strain is equivalent to the yield stress and strain. 

However, the in-plane shear behavior is non-linear. For the non-linear shear behavior, the yield 

strength should be used in order to determine the First Ply Failure of a laminate [3]. To 

determine this yield point, two methodologies were considered. One is the double notch shear 

test and other is the cyclic loading and unloading of 45± degree coupons. The double notch shear 

test was found unsuitable for finding in-plane shear properties as described in detail in section 

2.6. The uniaxial loading of a 45± degree coupon can be used to find out the in-plane shear stress 

and shear strain. Using the stress transformation relation [34] and referring to Fig. 1.2.1 we get 

 [ ]
1

2 2

12

x

D y

xy

T

σσ

σ σ

τ τ

  
   =   
     

  (2.3.1) 



27 

 

where T2D is a two dimensional transformation matrix given by 

 [ ]
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2

2 2cos sin 2cos sin

2 2sin cos 2cos sin

2 2cos sin cos sin cos sin

DT

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ

 
 
 = −
 
 − −
 

 . (2.3.2) 

For uniaxial loading condition ( 0y xyσ τ= = ) of ( )
3

45
s

 ±  laminate,  

 
12

2

xστ =   (2.3.3) 

Using the transformation relation for strain we get 

 [ ]
1

2 2

12

2 2

x

D y

xy

T

εε

ε ε

γ γ

  
  
   =   
  
    

, (2.3.4) 

and solving for shear strain in the principal material direction we obtain 

12 x yγ ε ε= − + . (2.3.5) 

The stress-strain curve obtained by the repeated loading and un-loading of ( )
3

45
s

 ±  is shown in 

Fig.2.3.1. The 45± degree coupons were loaded in steps, starting from 3651 Psi to 14604 Psi. 

The material yielded well within a tensile stress of 14604 Psi. Hence, further increase in load was 

not necessary. At the end of each load step, the test was stopped and the load was allowed to 

drop to the initial value (approx. 3-4 lbs). The load was held at this stage and one of the grips 

holding the coupons was relaxed. The spike marked by O in Fig.2.3.1 indicates this sudden 

release of grip. This relaxation in the load allowed for viscoelastic strain recovery. This is 
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marked by V in Fig. 2.3.1. The time dependent recovery strain is shown in appendix A-1. Unlike 

metals, the 0.2% strain rule may provide misleading results for polymers. Few steps were 

followed to come up with a yield stress and corresponding yield strain suitable for this study. 

Firstly, damage induced in the material due to each loading cycle was found by plotting the 

recovered viscoelastic shear strain after each stress cycle with the shear stress. One of the 

recovered shear strain points is denoted as VP in Fig. 2.3.1. Ten such points could be extracted 

from Fig.2.3.1 and were plotted with respect to their corresponding shear stress values. This is 

shown in Fig.2.3.2. 

 

Fig.2.3.1 Shear Stress Vs Shear Strain curve for cyclic loading and unloading of ( )
3

45
s

 ± 
laminate. 

 

 

 

 

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

-100 6000 12100 18200 24300 30400

S
h

e
a

r 
S

tr
e

ss
 (

τ 1
2
),

 (
P

si
)

Shear Strain (γ12), (in/in)

1825

3651

4381

4564

5020

5476

5933

6389

6846

7302

Shear Stress (τ12)

V 

O 

VP 



29 

 

 
Fig.2.3.2 Viscoelastically recovered Shear Strain Vs Shear Stress 

 

Fig.2.3.3 Shear Stress Vs Shear Strain for defining Yield Stress 

 

 

From Fig. 2.3.2 it can be seen that up till the shear stress of 4381 Psi, the strain recovered 

completely. However, during the third repetitive load cycle there was some damage in the 

material. Thus the maximum shear stress corresponding to the third repetitive loading cycle can 

be assumed as the yield shear stress in the material. It is denoted by the Y axis value of point A 

in Fig. 2.3.3. Fig. 2.3.3 is same as Fig. 2.3.1 except that it shows only the first three stress cycles. 

The X axis value of point A in Fig. 2.3.3 denotes the yield shear strain of the composite material.  
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The properties from the in-plane tests and from Fig.2.3.3 were used to define the tensile 

orthotropic behavior of each lamina. 

assumption didn’t affect the results as during FEA it was observed that out o

smaller (10 times) as compared to in

from [43].  

Table 2.3.1 Material Properties of T600:125
6

1 19.73 10E = ×  

6

12 0.81 10G = ×  

12
0.298υ =  

3

1 332.8 10TS = ×  

3

1 209 10CS = ×  

Fig. 2.4

                                                           
3
 Modulus and strength properties are in Psi. 
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plane tests and from Fig.2.3.3 were used to define the tensile 

mina. From [55] we could assume that 13 23S S=

didn’t affect the results as during FEA it was observed that out of plane stresses were 

as compared to in-plane stresses. The compression propertie

Material Properties of T600:125-33 carbon/epoxy.
3

6

2 1.38 10E = ×  3 2
E E

13 12
G G=  

23
2 1

G =

23
0.35υ =  13 12

υ υ
3

2 6.28 10TS = ×  3 2C C
S S=

3

2 33 10CS = ×
, 3 2C C
S S=  

12 13 23 124.381 10 ,S S S S= × = =

 

 

2.4 Model Formulation 

 
Fig. 2.4.1 Geometry used for the FEA study. 

Modulus and strength properties are in Psi.  

plane tests and from Fig.2.3.3 were used to define the tensile 

13 23S S= . Further, this 

f plane stresses were 

The compression properties were obtained 

3
 

3 2
E E=  

( )
2

232 1

E

υ
=

+
 

13 12
υ υ=  

3 2C C
S S

3 2T T
S S=  

3

12 13 23 124.381 10 ,S S S S= × = =  
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The numerical simulation was carried out using the ANSYS
TM

 10.0 FEA package. A static 

tensile pressure P was applied on the top face of the model in the Y direction as shown in Fig. 

2.4.1.  The model geometry used 3 symmetric boundary conditions (BCs) on three mutually 

perpendicular planes. The front view in Fig.2.4.1 shows symmetric B.C. applied to the faces 

resting on the X-Z and the Y-Z reference plane. Thus the new width was half the original width 

of the plate i.e. W/2. The height was reduced to 10×R, R being the radius of the hole. The reason 

for choosing this height has been explained in section 2.2. Since the laminates were symmetric 

through the thickness, so the model thickness was reduced to half i.e. Thk/2. Thus, effectively, 

one-eighth section of the actual plate was used for the FEA.  

 
Fig. 2.4.2 Individual volumes representing each lamina through the thickness 

 

A one eighth model meant that only 8 plies needed to be created instead of 16 as shown in Fig. 

2.4.2. Each of the plies in the laminate geometry was represented by a single volume layer. The 

ANSYS
TM 

material model interface allows the stiffness matrix input to represent each lamina. 

The coefficients of the stiffness matrix are a function of fiber orientation. Since the model 
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geometry was in the global coordinate system (C.S.), represented by the X-Y-Z reference frame, 

the stiffness matrix for each lamina was transformed from the principal material to the global 

C.S. by the following relations [3]. 

     [ ] [ ][ ]31,2,3 , ,D x y z
Tσ σ=   (2.4.1) 

Or 

 [ ] [ ] [ ]1

3, , 1,2,3Dx y z
Tσ σ

−
= , (2.4.2) 

where [ ]
, ,x y z

σ  and [ ]
1,2,3

σ are the contracted 3D stress matrices in the global (X, Y, Z) and the 

principal material (1, 2, 3) C.S. respectively. [ ]3DT  
represents the three dimensional form of the 

coordinate transformation matrix given by 

[ ]

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

3

2 2

cos sin 0 0 0 2cos sin

sin cos 0 0 0 2cos sin

0 0 1 0 0 0

0 0 0 cos sin 0

0 0 0 sin cos 0

cos sin cos sin 0 0 0 cos sin

DT

θ θ θ θ
θ θ θ θ

θ θ
θ θ

θ θ θ θ θ θ

 
 

− 
 

=  
− 

 
 
− −  

 (2.4.3) 

From Hooke’s law  

  [ ] [ ] [ ]
1,2,3 1,2,3 1,2,3

Qσ ε= , (2.4.4) 

where [ ]
1,2,3

Q is the contracted form of 3D stiffness matrix in the principal material C.S. and can 

be expressed in terms of the material properties of Table 2.3.1 as 
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. (2.4.5) 

 

By substituting the value of [ ]
1,2,3

σ from equation (2.4.4) into equation (2.4.2), we get 

 

[ ] [ ] [ ] [ ]1

3, , 1,2,3 1,2,3Dx y z
T Qσ ε

−
=  (2.4.6) 

and replacing [ ]
1,2,3

ε by [ ][ ]3 , ,D x y z
T ε  we obtain 

[ ] [ ] [ ] [ ][ ]1

3 3, , 1,2,3 , ,D Dx y z x y z
T Q Tσ ε

−
=     (2.4.7) 

 

Equation (2.4.7) can also be written as 

 

   [ ] [ ] [ ]
, , , , , ,x y z x y z x y z

Qσ ε= ,  (2.4.8) 

 

 

  where [ ] [ ] [ ] [ ]1

3 3, , 1,2,3D Dx y z
Q T Q T

−
=   (2.4.9) 

 

[ ]
, ,x y z

Q was used as stiffness matrix in the FE model. Solid 64 brick element was used for this 

work. The element shown in Fig. 2.4.3 is defined by eight nodes having 3 degrees of freedom 

(D.O.F) at each node in the form of translations in the nodal x, y, z direction. The element has 

large deflection capabilities. The element coordinate system was set parallel to the global xyz 
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coordinates using the setting Keyopt (1)=0 as shown in the Appendix-A2. Then using equation 

(2.4.9) the orientation of the elements in each lamina was defined.  

 

Fig.2.4.3. Solid 64 element used for the FE model 

 

(a)       (b) 

Fig. 2.4.4 (a) Preliminary mesh of Baseline laminate with 3072 elements (b) Refined mesh of 

Baseline laminate with 55296 elements 

 

 

Fig. 2.4.5 Comparison of longitudinal direction (y) strain contours for meshes (a) and (b) of Fig. 

2.4.4. Stress P is acting along y direction. 

A 

B 

A 

B 

P P 



35 

 

The mesh refinement of the model was carried out in two stages. In the first stage, elements were 

increased in the XY plane of the laminate. The preliminary mesh as shown in Fig. 2.4.4 (a) had 

only 3072 elements. Progressive refinement was carried out until convergence was achieved and 

the final mesh had 55296 elements. The convergence study was carried out at two points, A and 

B on the surface of the laminate as shown in Fig. 2.4.5.  A static tensile stress of 30,000 Psi was 

applied throughout the convergence study. Longitudinal direction strain (εy) was used for 

checking convergence. 

 

Fig.2.4.6 Variation of longitudinal direction 

strain at point A ( yAε ) with increase in 

number of elements 

 

Fig.2.4.7 Variation of longitudinal direction 

strain at point B ( yBε ) with increase in 

number of elements 

Fig. 2.4.6 and Fig. 2.4.7 show the variation in the longitudinal direction strain ( yε ) at point A 

and B respectively with mesh refinement. After 55296 elements, further refinement didn’t seem 

to have any effect on the strain values.  
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(a) 

 

(b) 

Fig.2.4.8. (a) Through thickness mesh with one element per ply. (b) Mesh with two elements per 

ply. 

 

In the next stage, elements through the thickness were refined. Instead of one element per ply 

(Fig.2.4.8 (a)), two elements per ply were used (Fig.2.4.8 (b)). The result of increasing the 

elements in thickness direction is evident from Fig.2.4.9 (a) and Fig.2.4.9 (b), with 2 elements 

per ply mesh giving a better strain contour. The term “better” is qualitative in nature. Strain 

contours with a two elements per ply mesh were much smoother and thus meant reduced error 

estimation. Further refinement with 3 elements per ply was not possible as the aspect ratio
4
 of the 

elements was too large and so no mesh was generated. The final refinement thus comprised of 

110592 elements.  

                                                           
4
 Aspect ratio of an element in FE model is the ratio of the longest and the shortest side of the element. Typically 

this ratio should be between 2 to 4.  
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(a) (b) 

Fig.2.4.9 (a) Longitudinal direction strain contour of Baseline laminate for mesh with one 

element per ply (b) Longitudinal direction strain contour of Baseline laminate for mesh with 2 

elements per ply. 

 

 

2.5 Model Validation. 

The material properties of Aluminum 7075 from Table 2.5.1 were used in the 3D FE model. The 

strain concentration factors (Kt) from the FEA study were compared with the analytical results 

[43] for different hole diameter (d) to width (w) ratios. 

Table 2.5.1 Material properties of Aluminum 7075 [43] 
610.3 10E = × Psi 0.33υ =  

2(1 )

E
G

υ
=

+
 

 

 

Fig.2.5.1 Longitudinal direction strain ( yε ) contour of 3D model having Aluminum 7075 

properties 

P 

A 

B 

N 
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Fig.2.5.1 shows the contours of the longitudinal direction strain, when the 3D model with 

isotropic properties from Table 2.5.1 was subjected to a tensile stress (P) of 30,000 Psi. This 

corresponded to a load of 3150 lbs over an area of 0.105 square inches. The edge of the hole 

marked as A experienced a maximum longitudinal strain of 0.008124 while B had a minimum 

value of 0.000195. The symbol N is an approximate nominal strain location. 

 

 
 (a) (b) 

Fig. 2.5.2 (a) Through the thickness variation of longitudinal direction strain at location A (ε
YA
). 

(b) Through the thickness variation of longitudinal direction strain at location N (ε
YN
). 

 

Fig.2.5.2 (a) and (b) show the variation in the longitudinal direction strain through the thickness 

of the model at locations A and N respectively. Since the model is symmetric through the 

thickness so the results have been plotted for half the thickness i.e. 0.035 inch. From Fig.2.5.2 (a) 

we concluded that although the strain change through the thickness of the hole was small but 

unlike Fig.2.5.2 (b) it was not constant.  

Theoretically, the stress concentration factor can be defined as 

maxKt
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σ

σ
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where maxσ  is the stress near the point of highest stress concentration. In the Fig. 2.5.1 this point 

is represented by A. nomσ is to the nominal value of the stress and corresponds to the value of the 

stress in a plate without hole. Theoretically, nominal stress can be obtained as 

P
nom

Anet

σ =             (2.5.2) 

and A A Agrossnet hole
= −      (2.5.3) 

However, there is no way to get the stress or strain for the net area directly in Ansys. In Ansys 

the nominal stress is 

,

P

FEA nom Agross

σ =  (2.5.4) 

For this study ,FEA nom
σ is selected from the region marked N in Fig.2.5.1. This region 

approximately describes the stress state that is unaffected by the presence of hole. However, after 

applying correction factor Kt can be found as   

max max

,

A Anet netkt
A Agross grossFEA nom FEA

σ ε

σ ε
= =   (2.5.5)

 

For a 2D model, equation 2.5.5 can be applied to find the kt. However, from Fig.2.5.2 (a) it is 

evident that for a 3D model the strain through the thickness is not constant and an average of 

strain should be taken for finding maximum strain ( maxε ). Fig. 2.5.3 shows the variation of 

longitudinal and transverse direction strains through the thickness of baseline laminate when 

subjected to a tensile stress of 17040 Ksi (24% baseline UTS). It supports the argument of using 

average strain through the thickness of the laminate near the point A (Fig. 2.5.1). From both Fig. 

2.5.2 (b) and Fig. 2.5.3 it is observed that the nominal strain values from the FEA models remain 

almost constant throughout the thickness. But it is still advised to use the average of all the strain 
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values through the thickness near the region where nominal strain values are assumed (point N in 

Fig. 2.5.1). Point B, which also lies on the hole experiences minimum strain concentration.  

 
Fig. 2.5.3 Variation of longitudinal and transverse direction strain of baseline laminate through 

the thickness 

 

Thus the strain concentration factor (Kt) for the 3D model can be defined as 

 

  
.max

.

avg AnetKt Agrossavg nom

ε

ε
=   (2.5.6) 

which can be further simplified as  

( ).max

.

W davg
Kt W

avg nom

ε

ε

−
=    (2.5.7) 

where .maxavgε  and .avg nomε  are the average of the longitudinal direction strain values through the 

thickness of laminate at locations A and N (Fig. 2.5.1) respectively. W and d are the width of the 

plate and the diameter of the hole respectively.  
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Fig. 2.5.4 Strain concentration factor Vs hole diameter to width (d/w) ratio for Aluminum 7075. 

 

From Fig.2.5.4 it is clear that the strain concentration values from the 3D model closely follow 

those of the text book for isotropic material properties [43]. Another way of validating the 3D 

model is by comparing it with analytical solutions. Arjyal et al. [44] derived an expression for 

longitudinal direction stress ( yσ ) as a function of distance from the edge of the hole along x 

direction. The stress distribution is given as 

( )
( ) ( )
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  (2.5.8) 
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0
2

x
xy

xy

E

G
β υ= −    (2.5.12) 

, , ,x y xy xyE E Gυ
 
are obtained from classical lamination plate theory. In equation (2.5.8) the term 

FWC or finite width correction factor is a scale factor used to multiply the infinite plate solution 

for a notched plate to obtain the corresponding finite width plate solution. Tan [45] derived an 

expression for FWC applicable to the orthotropic plate solution  

 

( )

1
2

4 6

2
1

2 2
1 3

2
T

r

Wr r
FWC K

W W

−

∞

   −   
        = − + −    

    
 
 

,  (2.5.13) 

where r and W are the radius of the hole and the width of the plate respectively. 

and 
2

11 22 12
11 22 12

66 66

1 2
1

2
T

A A A
K A A A

A Aµ
∞  −
= + − + 

 
 , (2.5.14) 

where KT
∞ 
is the stress concentration at the opening edge on the axis normal to the applied load 

for an infinite plate.  for , 1,2,6ijA i j =
 
are the effective laminate in-plane stiffnesses with 1 and 2 

parallel and transverse to the loading direction, respectively. µ is defined as the ratio of the small 

axis over the large axis of an elliptical hole and therefore µ =1 for a circular hole. The stress 

distribution from equation (2.5.8) can be easily converted into a strain distribution by 

y

y

yE

σ
ε =  (2.5.15) 
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Fig.2.5.5 Comparison of longitudinal direction strain distribution between 3D FE model and 

analytical solution for stress state around the hole for baseline laminate 

 

Fig.2.5.5 shows the comparison between the longitudinal direction strain distribution of the 3D 

FE and analytical model along the X direction. The Baseline lay-up of ( )
2

45/ 90 / 45/ 0
s

 −  was 

subjected to a tensile load of 7000 lbs for this comparison. The comparison between the 3D and 

analytical model indicated that the linear elastic model had the ability to accurately predict the 

strain profile in the vicinity of the hole.  
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2.6 Double notch shear test 
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(a)    (b) 

Fig.2.6.1 (a) Geometry of double notch coupon (b) FE model geometry of double notch coupon 

 

Validation of the 3D FE model encouraged its use to determine the feasibility of a double notch 

shear test for estimating the in-plane yield strength of T600:125-33 material. The Double notch 

shear test was originally devised to find the interlaminar shear strength. However, for most cases 

the shears stress in principal material directions is assumed to be identical i.e. 12 13 23
τ τ τ= = . The 

laminate fabricated for this test comprised of 38 zero degree laminae with the fiber axis aligned 

with y direction (Fig. 2.6.1). The specimen as shown in Fig. 2.6.1 (a) was 7.5 inches in height 

(H+ 2Ht), 0.996 inches in width (W) and 0.1715 inches in thickness (T). Ht denotes the part of 

the coupon covered with tabbing. This portion of the coupon is held by the grips of the MTS 
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tensile test machine. Two grooves ran parallel to each other throughout the width of the sample. 

The notches were 0.089 inches in depth (D) and 0.16 inches in width (N). The gauge length (L) 

between the two notches was 0.55 inches. D and T are related by 

 D > T/2 (2.6.1) 

Equation (2.6.1) ensured that the gauge region remained under pure shear effect when the 

coupon was subjected to a tensile load.  

The FE model geometry is shown in Fig. 2.6.1 (b). Owing to symmetry along the YZ plane, only 

half width of the sample was modeled. The height of the FE model geometry was restricted to 

4.07 inches which is denoted by H in Fig. 2.6.1 (a).  

The other boundary conditions used for restricting the rigid body motion and to simulate the 

effect of grips are given by 

 
0, 0, / 2

0
0.5 , 0, / 2

y

x y z T
U

x W y z T

= = = 
=  

= = = 
 (2.6.2) 

  
0, 0,

0
0, ,

z

x y z T
U

x y H z T

= = = 
=  

= = = 
 (2.6.3) 
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(a) (b) 

 
Fig. 2.6.2 (a) FE mesh of the double notch test specimen (b) Interlaminar shear strain ( )13ε

contours of the double notch test specimen. 

 

The model was subjected to a static tensile stress (P) of 30000 Psi as shown in Fig. 2.6.1 (b). Fig. 

2.6.2 (a) shows the mesh of the FE model geometry. The two arrows point to the zoomed in 

image of the A and B regions. As per equation (2.6.1) the depth (D) of the 2 notches exceeded 

the line of symmetry by 0.00325 inches through the thickness creating a gauge region. The FE 

model divided this gauge region into 3 laminae. That meant that shear could occur along four 

paths depending where the shear strain was maximum. These four paths have been numbered as 

1, 2, 3 and 4 in the zoomed in image in Fig. 2.6.2 (a). Fig. 2.6.2 (b) shows the contours of the 

interlaminar shear strain ( )13ε in the gauge area. Fig. 2.6.3 shows the change in the interlaminar 

1 2 3 4 

1 2 3 4 

A 

B 
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shear strain ( )13ε along the nodes on the four paths. The nodes that formed these four paths were 

located on the surface of the gauge area.  Although there is a small decrease in strain values from 

path 1 to path 4 but the general trend is same. The strain field in the gauge area is non-uniform 

with a relatively high strain concentration at the two notch ends.  

 

Fig.2.6.3 Variation of interlaminar shear strain ( )13ε  along the gauge length (L) from A to B 

 

Fig.2.6.4 Variation of interlaminar normal strain ( )3ε  along the gauge length (L) from A to B 
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From Fig. 2.6.3 it is clear that the tensile loading condition created only little shear in the middle 

of the gauge region. From Fig. 2.6.4 it is observed that the interlaminar normal strain is tensile at 

the ends and compressive in the middle. This showed

to initiate near the notches due to both shear and normal forces and not pure shear alone. 

Shokrieh et al. [46] reported similar results by using a double notched coupon of 90 degree 

laminae.  For inducing pure interlaminar shear in the gauge area, Shokrieh et al. [46] 

FEA study to find out the influence of notch size, gauge length and coupon thickness on the 

interlaminar shear response of the coupon and also to come up with a geometry that best su

shear failure. The optimized geometry was subjected to compressive loading condition. The 

gauge region showed very little shear effect in the middle and high stress concentrations at the 

notched ends as shown in Fig.2.6.5. To reduce the notch effect, 

to compressive force in clamped condition as shown in Fig.2.6.6. The results improved a bit but 

the notch effect wasn’t totally eliminated as shown in Fig.2.6.7. Thus a double notch shear test is 

not the most reliable experiment for finding 

Fig.2.6.5 Interlaminar and normal stress in 

un-clamped double notch coupon [46]

Fig.2.6.7 Interlaminar and normal stress in clamped do
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From Fig. 2.6.3 it is clear that the tensile loading condition created only little shear in the middle 

of the gauge region. From Fig. 2.6.4 it is observed that the interlaminar normal strain is tensile at 

the ends and compressive in the middle. This showed that the failure in the gauge region is likely 

to initiate near the notches due to both shear and normal forces and not pure shear alone. 

Shokrieh et al. [46] reported similar results by using a double notched coupon of 90 degree 

re interlaminar shear in the gauge area, Shokrieh et al. [46] 

FEA study to find out the influence of notch size, gauge length and coupon thickness on the 

interlaminar shear response of the coupon and also to come up with a geometry that best su

shear failure. The optimized geometry was subjected to compressive loading condition. The 

gauge region showed very little shear effect in the middle and high stress concentrations at the 

notched ends as shown in Fig.2.6.5. To reduce the notch effect, the gauge region was subjected 

to compressive force in clamped condition as shown in Fig.2.6.6. The results improved a bit but 

the notch effect wasn’t totally eliminated as shown in Fig.2.6.7. Thus a double notch shear test is 

ent for finding yield shear stress in the composite.  

  

Fig.2.6.5 Interlaminar and normal stress in 

lamped double notch coupon [46] 

Fig.2.6.6 Clamped double notched coupon 

under compressive load [46].

 

ar and normal stress in clamped double notch coupon [46]

From Fig. 2.6.3 it is clear that the tensile loading condition created only little shear in the middle 

of the gauge region. From Fig. 2.6.4 it is observed that the interlaminar normal strain is tensile at 

that the failure in the gauge region is likely 

to initiate near the notches due to both shear and normal forces and not pure shear alone. 

Shokrieh et al. [46] reported similar results by using a double notched coupon of 90 degree 

re interlaminar shear in the gauge area, Shokrieh et al. [46] performed a 

FEA study to find out the influence of notch size, gauge length and coupon thickness on the 

interlaminar shear response of the coupon and also to come up with a geometry that best suited 

shear failure. The optimized geometry was subjected to compressive loading condition. The 

gauge region showed very little shear effect in the middle and high stress concentrations at the 

the gauge region was subjected 

to compressive force in clamped condition as shown in Fig.2.6.6. The results improved a bit but 

the notch effect wasn’t totally eliminated as shown in Fig.2.6.7. Thus a double notch shear test is 

 

Fig.2.6.6 Clamped double notched coupon 

under compressive load [46].

uble notch coupon [46] 
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2.7 Results 

The 3D linear elastic model proposed in section 2.4 demanded a computational time of 40 

minutes on a system running with a 3.14 GHz processor. This turned out to be a major drawback 

of the 3D model. For the current work, the strength optimization study was carried out by Stone 

[46] using a 2D FE model based on Classical Lamination Plate Theory. Because of a large 

number of runs required, 3D FE model for such a study was impractical. In order to use the 

results of 2D model in the current work it was necessary to compare its results with the proposed 

3D model. The basis of such a comparison was that the in-plane stresses were dominant in the 

optimized laminate configurations until the yield point. The relevance of 3D model to strength 

prediction of laminates became evident when delamination was considered.  

x

Y

P

x1 x2

y1

y2

 

(a) (b) 

Fig.2.7.1 (a) Variation of longitudinal direction strain (εy) along X direction using 2D and 3D FE 

model for Aluminum properties (b) Variation of longitudinal direction strain (εy) along Y 

direction using 2D and 3D FE model for Aluminum properties 
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(a) (b) 

Fig.2.7.2 (a) Variation of longitudinal direction strain (εy) along X direction using 2D and 3D FE 

model for T600:125-33 properties (b) Variation of longitudinal direction strain (εy) along Y 

direction using 2D and 3D FE model for T600:125-33 properties 

 

Fig.2.7.1 draws a comparison between the 2D and the 3D model for longitudinal direction strain 

along x (from x1 to x2 in Fig.2.7.1) and y (from y1 to y2 in Fig.2.7.1). Both models used 

isotropic properties of Aluminum (Table 2.5.1). Identical results were obtained using both 

models. A similar comparison was drawn in Fig.2.7.2, but using T600:125-33 carbon/epoxy 

material properties for the Baseline laminate. The 3D model prediction was 13% higher than that 

of the 2D model at point x1 and 137% higher at point y1. Point x1 is the point of the maximum 

strain concentration and point y1 corresponds to that of minimum strain concentration. Both the 

strain concentration (Kt) and the First Ply Failure (FPF) predictions were based on the point x1 

and hence the 137% difference in prediction of two models was of no consequence for the 

current work. The difference in the 2D and 3D models is a direct consequence of the free edge 

effect which seems to be more prominent at point y1 than at x1.  

For the strength optimization study two approaches were used. One of the approaches had strain 

concentration as the governing parameter and the other was based on First Ply Failure (FPF) 

methodology. In the former, ply angles were altered one angle at a time and the corresponding 
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strain concentration factors were observed. The assumption of such an approach was that the 

decrease in strain concentration would mean a corresponding increase in the open-hole tension 

(OHT) strength of the laminated composite. The laminate configurations that were obtained are 

given in Table 2.7.1 along with their strain concentration factors and the ultimate tensile 

strengths (UTS). 

Table 2.7.1 Kt optimized lay-ups 
Description Orientation Kt 3D FEA UTS

5
 (Ksi) 

Baseline (BL) [(45/90/-45/0)2]s 2.86 71 

Vary 45 (A) [(54/90/-54/0)2]s 2.79 73 

Vary 90 (B) [(45/51/-45/0)2]s 2.67 73 

Vary order 1 (C) [(45/0/-45/90)2]s 2.89 69 

Vary 0 (D) [(45/90/-45/57)2]s 2.22 29 

Vary 45 & 90 (E) [(54/54/-54/0)2]s 2.36 69 

Vary 0 & 90 [(45/52/-45/52)2]s 1.96 - 

Vary 0 & 45 [(62/90/-62/62)2]s 1.99 - 

 

Taking the baseline configuration and altering the 45 degree plies resulted in optimized 

configuration “vary 45”. Similarly, the nomenclature was given to the lay-ups depending on 

which ply or plies were altered. An exception is “vary order 1” which was obtained by changing 

the stacking sequence of the 90 and the 0 degree plies. Some of the laminates in Table 2.7.1 have 

also been designated as BL, A, B, C, D and E. Vary0&90 and Vary 0&45 laminates were not 

among the other laminates (BL-E) that were fabricated. That reason being that after analyzing 

the vary 0 laminate it was clear that altering the main load bearing plies
6
 caused drastic decrease 

in the OHT of the coupons.  

                                                           
5
 The UTS is average of 3 sets of coupons that were fabricated during the course of the research.  The fabrication 

process was completed by collaborating with Stone, D.P. [46]. 
6
 The load bearing plies are the one which have the fiber axis parallel to the loading direction. 



 

Fig. 2.7.3 Comparison of strength response of laminates using K

To compare the strength response of laminates their K

the baseline laminate (Fig.2.7.3). Laminates A (vary 45) and B (vary 90) had a 3% increase in 

the strength than the baseline. Laminate C (vary order 1) which showed a higher strain 

concentration than the baseline had a correspondingly lower UTS (3%). Both laminates D and E 

were expected to show higher strength than the baseline due to their reduced strain concentration 

factors. However, in both cases the results were lower, 2.8% and 59 % for E and D respectively. 

These results indicated that the strain concentration factor method is not

strength for composites.   

To improve the optimization, failure criteria were considered. This demanded that a suitable 

failure criterion be chosen that could predict the strength of the laminates accurately. The 2D and 

3D models were linear elastic in nature. Thus, First Ply Failure (FPF) Strength was considered 

since it occurs in the linear range of the composites. 
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Comparison of strength response of laminates using Kt and UTS. 

 

To compare the strength response of laminates their Kt and UTS were normalized with respect to 

). Laminates A (vary 45) and B (vary 90) had a 3% increase in 

the strength than the baseline. Laminate C (vary order 1) which showed a higher strain 

concentration than the baseline had a correspondingly lower UTS (3%). Both laminates D and E 

d to show higher strength than the baseline due to their reduced strain concentration 

factors. However, in both cases the results were lower, 2.8% and 59 % for E and D respectively. 

These results indicated that the strain concentration factor method is not a reliable measure of 

To improve the optimization, failure criteria were considered. This demanded that a suitable 

failure criterion be chosen that could predict the strength of the laminates accurately. The 2D and 

e linear elastic in nature. Thus, First Ply Failure (FPF) Strength was considered 

since it occurs in the linear range of the composites.  
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Fig. 2.7.4 Load strain curve for uniaxially 

loaded laminate showing multiple ply 

failures leading up to ultimate laminate 

failure [34] 

Fig.2.7.5 Comparison of predicted and 

measured stress-strain response of 

[ ]0 / 45 / 90
s

± glass/epoxy laminate [34]

 

The FPF of a laminate occurs when the first ply (or group of plies) fails. Thus the load 

corresponding to the FPF is not necessarily the laminate failure load. Fig.2.7.4 shows a piecewise 

linear laminate load-deformation curve with several “knee” points due to ply failure. The first 

knee point is considered to represent the FPF. Fig.2.7.5 shows a comparison between the FPF 

predicted by the maximum strain theory and the corresponding experimental data for a 

[ ]0 / 45 / 90
s

± glass/epoxy laminate. This curve has two knee points- the first one is at the strain 

corresponding to the failure of the 90 degree plies and the second one at the strain corresponding 

to the 45± degree plies. However unlike Fig. 2.7.4 these knee points are not clearly defined. At 

high strains the experimental data does not show as much change in slope at the knees as the 

theoretical curve does. The actual ply failure occurs gradually over a finite strain range, whereas 

instantaneous ply failure at a single strain level is assumed in the analysis.  

To find the FPF experimentally a new technique called the digital image correlation method 

(DICM) was used. This technique measures specimen displacements by finding correspondence 

between an image of the specimen in an undeformed or reference configuration and a second 
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image under load. The software for the current research was provided by Correlated Solutions, 

Inc. The system uses two high resolution digital cameras as shown in Fig.2.7.6 to record surface 

changes of the object under investigation. The cameras were placed at an angle to focus on the 

hole where damage was expected to occur. 

 

Fig. 2.7.6 Set up of the DICM instrument. 

 

DICM is based on the principle of matching the pixel grey level values of a reference image and 

the deformed image. To generate these pixels the surface of the specimen was coated with a 

layer of paint to form speckle pattern as shown in Fig. 2.7.7 (a). The speckle should be uniform 

throughout the specimen and should not degrade with the application of load.   

 

 

 

 

 

50 mm Schneider lenses 

Speckled composite 

plate 
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(a) (b) 

Fig. 2.7.7 (a) Speckle pattern near the hole of Baseline laminate (b) Longitudinal strain profile of 

3D model near the hole of baseline laminate at 70.5 Ksi (90 % UTS) 

 

Once the load is applied, the speckled images are registered by the software and discretized into 

subset. Each subset is an n×n pixel window that surrounds a data point forming a strain section. 

Each subset of a reference image is then matched with the corresponding subset of a deformed 

image creating a displacement field. The displacement field information is then used to calculate 

strain at each data point (Fig.2.7.8). There are algorithms and error functions that used to 

perform this correlation which are explained elsewhere [46, 47, 48, 49]. Fig. 2.6.7 (b) shows the 

longitudinal direction strain field near the hole of the baseline laminate at 18% UTS.  

 

Fig.2.7.8 Steps in extraction of strain field in DICM. 

The subsets are spaced by a step size. Each step size denotes the increment that should be applied 

to a subset. This is equivalent to the elements of FEA mesh with the exception that subsets can 

Subset 

P 

P 
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overlap if the step size is smaller than the subset size. A higher element density in the region of 

interest improves the accuracy of the solution. Similarly, a smaller step size yields more data 

points and better surface contours but requires more analysis time. For the current research a step 

size of 10 and subset size of 40 was chosen. The detailed description of the choice this subset 

and step size can be found somewhere else [46]. This combination resulted in higher accuracy 

with less computation time. From Fig.2.7.7 (b), the strain contours do not start from the edge of 

the hole. DICM can only go half a subset size from the edge of the hole, which is 0.022 inches 

for the subset of 40.  

a)  b)  

c) d)  

Fig.2.7.9 (a) DICM speckle pattern of baseline laminate with circular offset zone. (b) 

Longitudinal strain contour of baseline at 13 Ksi (18% UTS) (c) 3D model mesh of baseline 

laminate (d) Longitudinal strain contour of 3D FE model of baseline at 13 Ksi (18% UTS).  

 

X 

Y 
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Fig. 2.7.9 (b) and (d) compare the longitudinal strain contours of baseline laminate using DICM 

and 3D FEA respectively. The load in both cases was 18% of the UTS. The maximum strain 

concentration is 90 degrees to the loading direction (Y). To compare the FEA result the same 

offset was applied by calculating the node number which corresponded to the 0.022 inch distance 

from the edge of the hole. The best approximation of the required distance was achieved at the 

5
th
 node from the edge of the hole. DICM and 3D FEA predicted a longitudinal strain value of 

0.0031161 and 0.003014 respectively at the point of interest with a difference of 3.38%. 

a)  b)  

c) d)  

Fig.2.7.10 (a), (b) Longitudinal strain contour for ( )
4

45
s

 ±  at 7.5Ksi (41% UTS) using DICM 

&3D FEA respectively (c), (d) Longitudinal strain contour for A laminate at 9Ksi (13% UTS) 

using DICM &3D FEA respectively 
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Fig. 2.7.10 (a) and (b) compare the longitudinal direction strain contour of DICM and 3D FEA 

respectively at 41% UTS for a ( )
4

45
s

 ±  laminate. This laminate was introduced to compare the 

strain prediction of DICM and FEA and was not part of the optimization process. DICM and 

FEA predicted a strain of 0.055 and 0.005261 respectively at the offset distance of 0.022 inch 

from the point of the maximum strain concentration. A Similar process was repeated by using 

laminate A at 14% UTS as shown in Fig. 2.7.10 (c) and (d). In Fig. 2.7.9 and Fig. 2.7.10 DICM 

and FEA agreed well with each other in the zone of maximum strain concentration. 

x

Y

P

x1 x2

y1

y1

 

(a) 

 

Fig. 2.7.11 (a), (b), (c) Comparison of 3D FEA with DICM for longitudinal, transverse and in-

plane shear strain respectively along X direction of the hole for BL-1-4. 
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The coupons were fabricated in three groups with 4 to 5 coupons in each group. BL-1-4 stands 

for the forth coupon of group one of baseline series. Fig. 2.7.11 (a), (b), (c) provide a comparison 

between DICM and FEA strain predictions in longitudinal, transverse and in-plane shear 

direction respectively along X. The strains for FEA and DICM were extracted along the edge of 

the hole on the surface from x1 (0.125, 0) to x2 (0.5, 0) as shown in Fig. 2.7.10 (a). The 

comparison of the strain state along X was drawn for 3 load steps of 7ksi (9% UTS), 17 Ksi 

(24% UTS) and 60 Ksi (84% UTS). The longitudinal strain was positive for all load steps as 

expected for a tensile loading condition while the transverse strain was negative due to the 

Poisson’s effect. In Fig. 2.7.11 (a) the correlation between 3D FEA and DICM changed from 

12% at 7ksi (9%UTS) to 38% at 60Ksi (84% UTS). For the transverse strain the difference 

ranged from 10% at 7Ksi (9% UTS) to 56% at 60 Ksi (84% UTS). For the in-plane shear the 

difference corresponding to 84% UTS was 102% making it the worst case scenario. 

 

Fig.2.7.12 DICM Vs 3D FEA for laminate A 
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Fig. 2.7.12 compares the longitudinal direction strain between DICM and 3D FEA model for 

10%, 25%, 50% and 90% of the UTS. Laminate A was selected for this comparison. The 

longitudinal direction strain profile between DICM and 3D FEA agreed well till 25% UTS. At 

loads approaching 90% UTS the correlation deteriorated. From Fig. 2.7.11 (a), (b), (c) and Fig. 

2.7.12 it is clear that the DICM and 3D FEA correlate well with each other under 25% UTS. At 

higher loads (≥84) geometric and material non-linearity effects lead to poor correlation between 

the two methods.  

Using DICM, FPF was defined as the point where the proportional line and the stress-strain 

curve deviated from each other. Fig. 2.7.13 shows the applied stress Vs longitudinal strain curve 

for the three sets of baseline laminates that were fabricated for this work. In depth study of the 

use of DICM for obtaining the stress-strain curves and deriving FPF from them can be found in 

[46]. 

 

Fig.2.7.13 Applied stress Vs Longitudinal strain for set of Baseline laminates [46] 

 

The purpose behind using the DICM for OHT test was its ability to spatially extract strains near 

the edge of the hole where the damage was expected to occur. These predictions could then be 
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compared with the FPF prediction of the failure criteria introduced in sections 1.5.1 and 1.5.2. 

The failure criteria application for the current work was concentrated near point A (Fig. 2.3.5). 

The 3D model had two elements per ply as shown in Fig. 2.7.14 which meant that each ply along 

the edge of the hole had 3 nodes of which 2 were shared with the neighboring plies except for the 

free edge plies.  

.  

 

Fig.2.7.14 FE mesh of one-eighth model near the edge of the hole for baseline laminate. 

 

A static load applied to the FE model in the y direction produced a 3D strain state at each node 

along the edge. The strains extracted from ANSYS were in the reference coordinate system (X-

Y-Z). The values were converted into the principal material coordinate system by using 3D form 

of equation 2.3.4.  For a node shared by two plies this transformation resulted into two strains 

one for each of the plies that share it. It is because the transformation matrix 3
T
D  is a function of 

ply angle and would thus generate two sets of strains for the shared node. Principal stresses were 

obtained from principal strains from equation 2.3.3. Each failure criterion generated a failure 

index (f.i) at each node along the edge of the hole. The tendency of failure was governed by the 
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magnitude of f.i. The node with highest f.i would have the tendency to fail first and hence result 

in FPF. The FPF stress was calculated for each node by the equation. 

. .

P
FPF

f i
=  (2.7.1) 

where P is the applied tensile stress as shown in Fig. 2.7.14 and f.i is the failure index which is 

defined as 

.

. .

iFEA iFEAf i

iMax iMax

ε σ

ε σ
= =  (2.7.2) 

.

.

ijFEA ijFEA
f i

ijYield ijYield

ε σ

ε σ
= =  (2.7.3) 

where i, j = 1, 2, 3. Equations 2.7.2 and 2.7.3 were used for maximum strain and maximum stress 

failure theories. As explained in section 2.3 the normal stress and strain components show linear 

behavior and hence their ultimate or maximum stress and strain values can be used to find the 

failure index as shown in equation 2.7.2. However, we have found that the shear is non-linear in 

nature and hence to find the f.i. in this case the stress and strain values should be divided with the 

corresponding yield stress and yield strain as shown in equation 2.7.3. Failure index for the 

interactive criteria is the left hand side of their 3D failure criteria equations. 

Table 2.7.2 provides comparison between the FPF strength of lay-ups optimized by strain 

concentration method. Fig.2.7.15 provides the same comparison in graphical form. The error 

bars in Fig.2.7.15 are the standard deviations of 3 sets of coupons tested using DICM. The FPF 

predicted by the DICM [46] agreed well with that predicted by Max-Stress and Max-Strain 

theories. Hashin-Rotem, Tsai-Hill, Tsai-Wu and Hoffman under predicted the FPF strength of all 

the laminates. The energy criterion results were also conservative for all but one laminate 

(Laminate C), for which case the FPF strength was over predicted. 



 

Table 2.7.2 FPF strength values for Kt optimized laminates using DICM and 3D failure criteria. 

lay-up DICM Max-Stress Max

Baseline 10.88 9.43 

A 9.82 9.03 

B 16.51 14.7 

C 11.76 11.24 

D 6.68 6.12 

E 18.37 17.7 

Fig.2.7.15 Comparison of FPF strength of Kt optimized laminated using DICM and failure 

 

Of the two theories, Max-Strain was able to predict 

the optimization study was continued using the Max

governing parameter.  

Fig.2.7.16 Comparison of FPF of laminates optimized using Max
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FPF strength values for Kt optimized laminates using DICM and 3D failure criteria. 

Max-Strain Hashin-Rotem Tsai-Hill Tsai-Wu Hoffman

9.69 0.64 1.75 1.09 

9.183 0.88 2.48 2.32 

16.12 0.24 2.44 2.12 

11.30 3.1 0.45 0.21 

6.23 0.013 0.03 0.08 

17.02 0.2 0.45 0.31 

 

Comparison of FPF strength of Kt optimized laminated using DICM and failure 

theories. 

Strain was able to predict FPF more accurately than Max

the optimization study was continued using the Max-Strain theory with FPF 

 
Comparison of FPF of laminates optimized using Max-Strain theory with DICM. 

B C D ELay-up

DICM 
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Hashin-Rotem

Tsai-Hill
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F G H
Lay-up

DICM 
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FPF strength values for Kt optimized laminates using DICM and 3D failure criteria.  

Hoffman Energy 

1.06 4.76 

2.15 5.32 

2.3 2.88 

0.2 14.76 

0.012 0.23 

0.32 2.12 

 

Comparison of FPF strength of Kt optimized laminated using DICM and failure 

FPF more accurately than Max-Stress. Thus 

Strain theory with FPF strength as the 

Strain theory with DICM.  
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Fig.2.7.16 compares the FPF strength of the laminates optimized by the Max-Strain criterion. 

Laminate C (vary order 1) was found to have higher FPF strength than the baseline. This 

supported the theory than stacking sequence change can alter the FPF. Vary order 2 (Laminate F) 

was thus included in the current study to observe the effects of further change in the stacking 

sequence. It was not the part of Kt or FPF optimization methodology. Using the Max-Strain 

theory the orientation of 45 and 90 degree plies was altered to find maximum FPF. Laminate G 

was obtained by varying the 45 and laminate H was obtained by varying the 90 degree ply. 

Varying 0 degree layer reduced the FPF and UTS and thus was not considered. H had the 

greatest improvement in strength, 97% higher than the baseline FPF. It was followed by 

laminates E, B, G, and C with 69%, 52%, 31% and 8% increase in FPF strength respectively than 

the Baseline. Laminates A, D and F had FPF strength lower than the baseline by 9%, 38% and 

4% respectively. The final set of laminates is summarized as 

 

Table 2.7.3 Final set of fabricated laminates along with the method of optimization. 

Orientation lay-up Optimization method 

[(45/90/-45/0)2]S 
Baseline - 

[(54/90/-54/0)2]S A Kt 

[(45/51/-45/0)2]S B Kt 

[(45/0/-45/90)2]S C literature 

[(45/90/-45/57)2]S D Kt 

[(54/54/-54/0)2]S E Kt 

[(45/-45/90/0)2]S F literature 

[(21/90/-21/0)2]S G FPF 

[(45/0/-45/0)2]S H FPF 
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Table 2.7.4 Mode of first ply failure along with the ply failed. 

Orientation Lay-up FPF Stress (Ksi) Ply Failed at FPF Mode of FPF 

[(45/90/-45/0)2]S BL 9.69 90 ε2 

[(54/90/-54/0)2]S A 9.18 90 ε2 

[(45/51/-45/0)2]S B 16.12 45 ε12 

[(45/0/-45/90)2]S C 11.30 90 ε2 

[(45/90/-45/57)2]S D 6.23 90 ε2 

[(54/54/-54/0)2]S E 17.02 54 ε12 

[(45/-45/90/0)2]S F 9.23 90 ε2 

[(21/90/-21/0)2]S G 13.3 90 ε2 

[(45/0/-45/0)2]S H 23 -45 ε12 

 

Max-strain failure theory was also used to find out the modes of first ply failure and the laminae 

which were supposed to fail at FPF load (Table 2.7.4). According to Max-Strain failure theory 

FPF in most of the laminates was predicted to occur transverse to the fiber direction, indicating 

matrix cracking. However, as shown in Table 2.7.4 some laminates had tendency to have FPF in 

form of in-plane shear. From the optimization study and the mode of FPF failure of the laminates 

some conclusion could be drawn. In case of H laminate the 90 degree plies were replaced with 

the 0 degree plies that dramatically enhanced it load bearing capability. Apart from H the other 

laminates that showed increase in FPF strength were E, B, G and C. Again G was optimized by 

Max-Strain theory and thus its FPF strength increase was not surprising. However, the FPF 

results of laminates E, B and C that were optimized using Kt were quite surprising. In laminates 

B and E the FPF failure mode was in-plane share, the same as in case of laminate H. This can be 

due to shifting of 90 degree plies. In all other laminates with 90 degree plies, the FPF failure 

mode was transverse in nature which would mean matrix cracking and relatively lower resistance 

to applied stress than an in-plane shear mode where the fibers would redistribute some of the 

applied stress in the lamina and increase its resistance to failure. In laminate C it seems that 

moving the 90 degree laminate further inside and away from the free edge lead to higher FPF. 

Apart from these there were laminates that performed poorly in terms of FPF strength. As 
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mentioned earlier laminates A, D and F had FPF strength lower than the baseline. D laminate had 

the lowest Kt and still was the weakest of all the laminates. Due to removal of the primary load 

bearing plies this laminate basically behaved as a shear coupon and showed least FPF and UTS 

strength. In laminate A 45± degree laminae were replaced by 54± degree plies. This seems to 

have lowered the FPF strength as the plies were moved away from the main load bearing angle.   

 
Fig.2.7.17 Failure Indices (f.i) Vs X distance along the hole at the lamina location where FPF is 

predicted in transverse mode 

 

 
Fig.2.7.18 Failure indices (f.i) Vs X distance along the hole at the lamina location where FPF is 

predicted in in-plane shear mode 
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Fig.2.7.17 shows the variation in the failure indices (f.i) along the x axis at the location along the 

edge of the hole where Max-Strain theory predicted FPF in transverse direction. Fig. 2.7.18 

provides the similar comparison for laminates where FPF was expected in shear. Both these 

figures provide a qualitative method of comparing laminates having higher FPF when all lay-ups 

were exposed to the same load. In Fig.2.7.17 the D laminate showed the highest failure index in 

the transverse direction in a 90 degree ply. Laminate G showed a minimum failure index in the 

90 degree ply which obviously contributed to its high FPF. In Fig.2.7.18 the f.i of the 54 degree 

ply of B laminate was higher than that of -45 degree ply of E laminate which in turn was higher 

than the f.i. in -45 degree ply of H laminate. The FPF strength followed the reverse order with H 

being the strongest and B being the weakest.  

The plots in Appendix A-3 compare the failure indices (f.i) of the laminates involved in this 

study. These failure indices were determined at the location near the edge of the hole where 

Max-Strain failure theory predicted FPF. The failure indices have been derived for all six strains 

(3 normal and 3 shear) along X direction (Fig. 2.7.11 (a)) of the hole. By comparing the f.i. 

derived for strains in 1, 2, 3, 12, 23 and 13 directions one can observe that among all the 

laminates involved in this study, failure modes in transverse (2) and in-plane shear (12) direction 

dominated the FPF. An important observation was with regard to laminate G where the f.i in out 

of plane shear (23) direction was very close to the f.i of transverse (2) direction. This meant that 

the interlaminar shear in this laminate could affect its strength as the damage progressed. G 

laminate has been treated separately in section 4.4.   

The FPF mode was verified using SEM. The region of interest was the edge of the hole at 90 

degrees to the loading direction (y direction). The process of creating specimen for SEM analysis 

is explained in section 3.2 of chapter 3. Before sectioning, the laminates were subjected to the 

FPF load.  If the predicted FPF was correct, cracks would be visible at the desired location. 



 

 

Fig.2.7.19 Crack in the 90 degree ply of baseline laminate in 2

     

Fig.2.7.20 Crack in the 

Fig. 2.7.19 shows a crack in the 90 degree lamina in baseline laminate in 

The load was acting in the Y direction as shown in the same figure. The FE mode

FPF at the node shared between 45 and 90 degree lamina. From the image it can be assumed that 

the crack initiated at the interface of 45/90 lamina and propagate through the 90 degree lamina 

splitting it along transverse direction. Fig.2.7.2

degree lamina of the H laminate. The 3D FE model for H laminate using Max

predicted FPF at the interface of 

Y 

 0      45           0            -45              0              45
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Crack in the 90 degree ply of baseline laminate in 2 direction at FPF

 

 

   

Crack in the -45 degree ply of H laminate in 12 direction at FPF

 

shows a crack in the 90 degree lamina in baseline laminate in transverse (

The load was acting in the Y direction as shown in the same figure. The FE mode

FPF at the node shared between 45 and 90 degree lamina. From the image it can be assumed that 

the crack initiated at the interface of 45/90 lamina and propagate through the 90 degree lamina 

ransverse direction. Fig.2.7.20 shows a crack at the interface of 

degree lamina of the H laminate. The 3D FE model for H laminate using Max

predicted FPF at the interface of -45 and 0 degree lamina in form of in-plane (12

      45  90         -45          0

          0   -45 

X 

45              0              45 

 

 

direction at FPF 

 

direction at FPF 

transverse (2) direction. 

The load was acting in the Y direction as shown in the same figure. The FE model predicted the 

FPF at the node shared between 45 and 90 degree lamina. From the image it can be assumed that 

the crack initiated at the interface of 45/90 lamina and propagate through the 90 degree lamina 

shows a crack at the interface of -45 and 0 

degree lamina of the H laminate. The 3D FE model for H laminate using Max-Stain theory 

plane (12) shear.  

45          0  



 

Fig.2.7.21 Trend followed by FPF and UTS of laminates

Fig.2.7.21 compares the FPF predicted by Max

measured UTS. The FPF and the UTS reference lines are to compare with the baseline la

Lay ups A, D and F have FPF strength less than the Baseline. The UTS of lay

higher than the baseline while that of D is lower than the baseline. B, C, E, G and H have FPF 

strength higher than the baseline. The UTS of B, G and H is high

that of C and E is lower. This indicated that although increasing FPF is a novel method of 

finding laminates that can resist damage initiation but it is not a guarantee that the laminates 

having higher FPF will have a higher 

strength optimization is a conservative one.
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Trend followed by FPF and UTS of laminates 

 

compares the FPF predicted by Max-Strain theory of the 3D FE model with the 

measured UTS. The FPF and the UTS reference lines are to compare with the baseline la

FPF strength less than the Baseline. The UTS of lay

higher than the baseline while that of D is lower than the baseline. B, C, E, G and H have FPF 

strength higher than the baseline. The UTS of B, G and H is higher than the baseline UTS while 

that of C and E is lower. This indicated that although increasing FPF is a novel method of 

finding laminates that can resist damage initiation but it is not a guarantee that the laminates 

having higher FPF will have a higher UTS too. For most applications the FPF methodology of 

strength optimization is a conservative one. 
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er than the baseline UTS while 

that of C and E is lower. This indicated that although increasing FPF is a novel method of 

finding laminates that can resist damage initiation but it is not a guarantee that the laminates 

For most applications the FPF methodology of 

FPF Max-strain

UTS 

FPF Reference line 

UTS Reference line 
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2.8 Chapter Summary 

A 3D linear elastic model was proposed to capture the through thickness strain field near the hole 

of the composite plate. The model was linear elastic in nature and compared well with the 

analytical solution as well as with the experimental method (DICM). 3D model and DICM had 

good correlation for applied stresses less than 25% UTS. At stresses approaching 50% and 

higher this correlation degraded due to material and geometric non-linearity. The model 

evaluated the strength response of non-traditional laminates using strain concentration factor and 

FPF strength methodology. Strain concentration factor was not found to be a reliable test of the 

strength of a laminate e.g. the D laminate had the lowest strain concentration factor and was still 

the weakest of all the laminates. Hence, an FPF based study should be preferred. Seven failure 

criteria were used to estimate the FPF strength of the laminates. Max-Strain failure theory was 

found to correlate best with the FPF predicted by the DICM. Max-Strain failure theory was also 

able to predict the location and the mode of FPF near the hole of the composite laminate. SEM 

was used to verify the “mode of failure” results for baseline and H laminate. Both laminates had 

FPF at the locations and in the mode in which they were predicted by the 3D model. The chapter 

ended with a note of caution that the FPF and the UTS of a composite laminate may or may not 

be linearly related. Increase in FPF strength can lead to increase in UTS like in laminates B, G 

and H whereas in some laminates like C and E, the UTS was found to be lower than the baseline 

even though they had a comparatively higher FPF.  
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3. Manufacturing 

3.1 Fabrication 

 

 
Fig.3.1.1. Schematic of fabrication set up [50] 

The composite plates were fabricated using hand lay-up system. Fig.3.1.1 shows the schematic 

of a typical hand lay-up system. This system involved lying plies of precut prepreg into a mold. 

Prepreg stands for pre-impregnated materials. They are reinforcement fibers or fabrics into 

which a pre-catalyzed resin system has been impregnated by a machine. The prepreg resins can 

only be fully cured by heating them to the prescribed cure temperature. Prepreg is usually rolled 

into tape and kept in a freezer to slow down the cure process. Care should be taken while 

handling the prepreg material as direct contact with hand can contaminate them and degrade the 

material properties. Prepreg was cut to form plies of desired angles on a clean table to prevent 

contact with any impurities. The mold or tool was an aluminum plate of 30.5in×8in×0.25in 

dimensions. Before placing the plies on the mold it was cleaned with acetone. A water based 

P.T.F.E. mold release agent was applied on the mold. Care was taken than no air bubbles formed 

on the surface as this could lead to non-uniform application of release agent. Mold release agents 
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are thermally stable and can withstand a temperature of 450
0 
F. Mold release was allowed to dry 

up for 20 minutes.  

The plies were stacked on top of each other to form the part as shown in Fig.3.1.1. Pressure was 

applied on the stack of plies with a roller to take out any voids between two prepreg layers. 

Voids cause non-uniform properties and also reduce the fiber volume fraction. Release film or 

peel ply covered the laminate stack. The purpose of peel ply is to provide a simple method of 

removing the bagging material off the part after curing. Generally, the release film material is 

porous to permit excess resin to flow through it. As shown in Fig.3.1.1 a breather cloth covered 

the peel ply and a vacuum valve was placed on top of it. The breather material acted as 

distributor for air (vacuum) and for escaping volatile gases. Butyl tape was placed around the 

part. It acted as a sealant. The whole part was then covered by vacuum bagging. A small cross 

shaped cut was made on the vacuum bagging so that a vacuum valve would fit into vacuum 

nozzle.  

After the bagging system was assembled it was placed in the autoclave for curing. The curing 

process used both vacuum and heat. Vacuum helps in consolidating the laminate’s layers. This 

reduces the void content in the composite. This is important as interlaminar shear strength 

reduces by 7% for each 1% of void content present up to maximum of about 4%. A reasonable 

goal for void content in the finished laminate is 0.5% or less [50]. The curing was carried out at 

350 
0
F and 90 Psig. The process started with a 10 minute ramp period with a soaking time of 45 

minutes. This was followed by a slow cooling for another 45 minutes. After the part was cured 

the laminate plate was taken out and sent to WSU machine shop for cutting in 12in×1.5in plates.  

Waterjet system and an aerospace quality abrasive mixture was used for the cutting operation. 

The holes were drilled using a drill press. 
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3.2 SEM Sample Preparation 

 
Fig.3.2.1. Steps in preparing SEM sample for FPF and Delamination study 

Fig.3.2.1 shows the stages in preparing samples for analysis using SEM. The load was applied 

along Y direction. The laminates were first subjected to FPF  or Delamination initiation load and 

then taken to a diamond saw cutter where two pieces were cut near the hole marked as A and B 

in image 1 of Fig.3.2.1. Care was taken while cutting near the hole so that the cutting process 

itself won’t introduce any damage. The edge of the hole was not exposed to the cutter so the 

point was slightly depressed relative to the sample surface. Two white dots were put on the 

depressions as shown in image 2 of Fig. 3.2.1. An epoxy mold was prepared by mixing 6ml 

hardener with 35 ml resin. The two samples from image 2 were placed in 3M
TM

 Scotch-Weld
TM 

translucent epoxy adhesive with the dots facing down. Once the epoxy cured, the samples were 

ground to expose the dotted layer. Samples were polished with a 1µm solution, followed by a 

0.05µm solution and finally a 0.03µm solution. The samples were cleaned in an ultrasonic 

cleaner and then rinsed with alcohol. Pressurized air was used to dry the samples. Before 

mounting the samples in the SEM, a conductive link was placed between the samples and the 

A B A B 

X 

Y 

1 2 3 
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base of the sample. This was done by running a strip of carbon tape all the way round the epoxy 

so that it touched the samples and the holder on which it was to be mounted. Image 3 in Fig. 

3.2.1 was a sample for G laminate. The surface of the sample was sputtered with gold. Sputtering 

is a technique of applying a molecular layer of atoms to a surface. The image of the crack before 

sputtering was very blurry. Sputtering improved the electrical conductive of the sample and 

resulted in a much better image. Due to cost concerns this technique was used only for G 

laminate. The SEM images of other laminates used in this study (Baseline, H) were clearly 

visible without any sputtering treatment. Use of sputtering for other laminates (A, B, C, D, E, F) 

was redundant as damage due to manufacturing defects or during sample preparation made them 

unfit for further analysis.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

A limitation of 2D models is that stresses in the z

accuracy of the 2D model decrease

Free edge perturbations decay rapidly with the distance from the laminate edge. These out of 

plane stresses are responsible for premature failure of laminates in 

Pipes and Pagano [51] used a 3D elast

free edges.  

 

Fig.4.1.1 Pipes and Pagano model for analysis of interlaminar stresses in a laminate under 
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4. Delamination 

4.1 Introduction 

dels is that stresses in the z-direction are neglected (Fig

decreases in regions with geometric discontinuities and free edges. 

Free edge perturbations decay rapidly with the distance from the laminate edge. These out of 

plane stresses are responsible for premature failure of laminates in the form of delamination. 

3D elasticity approach to quantify interlaminar stress fields near 

Pipes and Pagano model for analysis of interlaminar stresses in a laminate under 

uniaxial tension [51] 

 

are neglected (Fig.4.1.1). The 

iscontinuities and free edges. 

Free edge perturbations decay rapidly with the distance from the laminate edge. These out of 

form of delamination. 

icity approach to quantify interlaminar stress fields near 

 

Pipes and Pagano model for analysis of interlaminar stresses in a laminate under 
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The three stress equilibrium equations from the theory of elasticity are [51]  

0X XY XZ

X Y Z

σ τ τ∂ ∂ ∂     + + =     ∂ ∂ ∂          

(4.1.1) 

0YX Y YZ

X Z Z

τ σ τ∂ ∂ ∂     + + =     ∂ ∂ ∂          

(4.1.2) 

0ZX YZ Z

X Y Z

τ τ σ∂ ∂ ∂     + + =     ∂ ∂ ∂          

(4.1.3) 

The laminate in the Pipes and Pagano model was loaded uniaxially in the x direction and stresses 

near the free edge y = ± b were considered. Since load does not vary along x, 0X

X

σ∂
=

∂
. Thus 

from equation 4.1.1, interlaminar shear stress ( )
XZ
zτ is given by 

2

( )
Z

XY
tXZ z dZ

Y

τ
τ

−

∂
= −

∂∫
     

(4.1.4) 

The in-plane shear XY
τ  has a constant value given by Classical Lamination Plate Theory in the 

interior regions of the laminate. As y approaches ± b, XY
τ  must decrease to zero. In other words 

as y→  ± b, XY

Y

τ∂
∂

 must increase. From equation 4.1.4 we can conclude that XZ
τ  must increase 

from zero in the interior of the laminate to large value as y→  ± b. From equations 4.1.2 and 

4.1.3, the other interlaminar stresses are 

2

( )
Z

Y
tYZ z dZ
Y

σ
τ

−

∂
= −

∂∫      (4.1.5) 

2

( )
Z

YZ
tZ z dZ

Y

τ
σ

−

∂
= −

∂∫         (4.1.6)            
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Pipes and Pagano [51] used a finite difference numerical scheme to solve the three governing 

equations. The distribution of in-plane and interlaminar stress in a 45± degree laminate by Pipes 

and Pagano’s elasticity solution is shown in Fig. 4.1.2. As explained earlier xyτ  is expected to 

decay to zero near the free edge of the laminate while xzτ is expected to progressively increase 

near the same edge. Both these stresses were calculated along the interfaces of +45/-45 degree 

lamina.  

 

Fig.4.1.2 Distribution of stress in free edge region by elasticity method [51] 

4.2. Finite Element Comparison 

Analytical results obtained by Pipes and Pagano [51] were compared with the 3D FEA solution. 

The model introduced in chapter 2 was for a composite plate with a hole in it. However, the 

analytical results derived by Pipes and Pagano were for an un-notched composite plate. Hence, 

the hole in the geometry of the 3D model was eliminated to obtain an un-notched geometry for 

FE analysis. In order to maintain consistency in the coordinate system used in chapter 2, the 

coordinate system of the unnotched laminated plate was not altered. It should thus be kept in 

mind that the X axis of the analytical solution used by Pipes and Pagano corresponds to Y axis of 

the 3D model. The interlaminar stresses were determined by FEA for the [ ]45 / 45 / 45 / 45
s

− −  
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laminate using the properties of T600/125-33 material given in Table 2.3.1. Fig.4.2.1 shows the 

geometry used for comparing the FEA results with the analytical results in Fig.4.1.2 [51]. The 

dimensions of the FE model of chapter 2 were retained for this analysis. Fig.4.2.1 also shows the 

BCs used for the un-notched FE model. Symmetry was used along the three mutually 

perpendicular faces of the model. Since the comparison was for the [ ]45 / 45 / 45 / 45
s

− − lay-up, 

only 4 layers were included in the FE. The width (b) of the model was 0.75 in, height was limited 

to 1.25 in and the thickness (h) of the 4 laminae was 0.0175 in. Solid 64 brick element was used. 

The model was subjected to a tensile stress (P) of 30,000 psi along y-direction. 

1.. 25 in

b=0. 75 in h=0. 0175 in
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Fig.4.2.1 Geometry and BCs used for FEA of un-notched [ ]45 / 45 / 45 / 45
s

− − laminate. 

The in-plane stress XY
τ  and interlaminar shear stress XZ

τ were plotted with respect to distance 

from free edge as shown in Fig.4.2.2. The coordinate system followed for the plots in Fig. 4.2.2 



79 

 

is shown in Fig. 4.2.1. Free edge is denoted by point A in Fig. 4.2.1 and B denotes a point at the 

plane of symmetry. Both A and B lie at the interface of +45 degree and -45 degree lamina. The 

region near the free edge where the change in stress field was appreciably higher is the boundary 

layer. This region was approximately twice the thickness of laminate. The results from Fig. 4.2.2 

were compared with the stress distribution in Fig.4.1.2. FEM results confirmed the predictions of 

Pipes and Pigano that as one moves closer to the free edges of a laminated composite, the in-

plane shear decreases rapidly and the interlaminar shear stress simultaneously increases. In 

Fig.4.2.2 y/b = 0 represents the free edge and y/b=1 represents the plane of symmetry.  

 

Fig.4.2.2 Distribution of stresses in the free edge region by FEM for 

[+45
0
/-45

0
/+45

0
/-45

0
]s 

 

 

Pipes and Pagano [52] also considered the [+15
0
/-15

0
/+45

0
/-45

0
]s laminate They kept the loading 

condition the same as that for [+45
0
/-45

0
/+45

0
/-45

0
]s which is shown in Fig.4.1.1. They used the 

elastic coefficients of Foye and Baker [53], namely, 
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630 10E Psi
L
= × , 62.15 10TE Psi= × , 60.68 10LTG Psi= × , 0.19LTυ =  

where L is fiber direction, T is transverse direction and LT
υ   is the major Poisson’s ratio. 

Placing ± 15
0
 on the outside they observed that for b/h > 10 the interlaminar stress ( Z

σ ) 

resembled the plot shown in Fig. 4.2.3. For small ratios the authors [2] predicted a steep gradient 

near the free edge with infinite stress value at / 1y b = ± . 

 

Fig.4.2.3 Predicted variation of interlaminar normal stress field along y [52] 

The stress field was compared with the FEM solution which was obtained by replacing the 

[+45
0
/-45

0
/+45

0
/-45

0
]s orientation by [+15

0
/-15

0
/+45

0
/-45

0
]s. Interlaminar normal stress between 

+15
0
/-15

0 
interface was plotted as a function of x/b (y axis of Pipes and Pagano corresponds to x 

of FE solution) for two b/h ratios. In Fig.4.2.4, x/b = 0 symbolizes the free edge and x/b=1 is the 

plane of symmetry. 

 
Fig.4.2.4 Variation of interlaminar normal stress along x for 2 different b/h ratios 
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4.3 Notch Effect: 

As shown in the preceding sections, analytical work has been done in the area of the free edge 

effect and delamination occurring in un-notched laminates. The FE model results agreed well 

with the analytical model predictions. However the main focus of this thesis was to estimate the 

effect of notches on interlaminar stresses and ultimately delamination. It has been found that the 

presence of discontinuities such as holes, ply drops and joints results in higher interlaminar 

stresses and thus increases the probability of delamination [54]. 

 
Fig.4.3.1 Interlaminar strain comparison between notched and un-notched coupon. 

 

Fig.4.3.1. provides a comparison of the interlaminar strain between the notched and unnotched 

baseline laminate. The interface between (0
0
/45

0
) lamina was considered in this case. Both plates 

were of the same half width b. The presence of high out-of-plane shear and normal stresses near 

the hole clearly indicates the sensitivity of interlaminar stress to the presence of any notch in the 

body.  
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4.4 Results 

Delamination is an initiation and growth process. After initiation, the delamination can undergo 

stable growth. Eventually due to unstable growth and interaction with in-plane failure modes, the 

final fracture occurs [55]. There are two basic approaches to predict delamination in laminates. 

Some use a mechanics of materials approach. Using strength parameters the local state of stress 

in the ]nterplay matrix layer where delamination occurs is found [56]. Others have used fracture 

mechanics techniques. The most common approach involves the strain energy release rate. 

O’Brian [57] derived a single equation for the calculation of the total strain energy released per 

unit delaminated area along a straight edge: 

( )
2

2
LAM W

t
G E E

ε×
= −      (4.4.1) 

where G is the strain energy release rate or energy per unit delaminated area, t is the laminate 

thickness, ε  is the longitudinal strain level, LAM
E  is the longitudinal modulus of the un-

delaminated laminate and W
E  is the weighted average longitudinal modulus of the sub laminate 

remaining after delamination.  

 O’Brian has shown that critical values of the strain energy release rate are in fact laminate 

dependent and has suggested that critical strain energy release rate (Gc) is a function of the 

percentage of the total strain energy release rate that can be attributed to mode І. However for the 

current work a mechanics of materials approach. The reason being that in composites a large 

number of failure modes co-exist and thus a fracture based approach would not be able to 

provide an accurate solution. Quadratic Delamination Criterion is based on mechanics of 

materials. 
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4.4.1 Quadratic Delamination Criterion  

Brewer and Lagace [55] proposed the Quadratic delamination criterion which can be written as 

2 2 2

13 23 3 3

13 23 3 3

1T C

T C

or
S S S S

σ σ σ σ     
+ + =     

       

(4.4.2) 

where 13
σ  and 23

σ  are interlaminar shear stresses, 3T
σ

 
and 3C

σ  are interlaminar tensile and 

compressive normal stresses respectively, 13
S  and 23

S  are interlaminar shear strengths, 3T
S and 3C

S  

are interlaminar tensile and compressive strengths respectively.  

Transverse isotropy was assumed, so that:  

3 2T T
S S=   (4.4.3) 

3 2C C
S S=  (4.4.4) 

where 2T
S and 2C

S  are ultimate transverse strengths in tension and compression.   

The authors in [55] also observed that: 

13 23 12
S S S= =      (4.4.5) 

where 12
S  is the in plane shear strength as given in Table 2.3.1. Fig.4.3.1 shows that interlaminar 

stresses near notches are higher than the interior of laminates. So, quadratic delamination 

criterion was applied near the edge of hole and throughout the thickness of the FE model as 

shown in Fig.4.4.1. The delamination initiation stress ( D
σ ) is predicted by 

/ .
D

P f iσ =
 

(4.4.6) 

where P is the applied tensile stress and f.i. stands for the failure index and is equal to the left 

hand side of the equation 4.4.2 for a given P. Delamination initiation was expected at the 
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interface separating two lamina. So the quadratic failure criterion was applied to the nodes 

separating two layers. 

 

Fig.4.4.1 Edge of the hole near the point of maximum strain concentration. 

Fig. 4.4.1 shows the elements of the 3D model stacked together through the thickness of the 

laminate near the edge of the hole. The numbers 1, 2, 3, 4 stand for the material layers of 45, 90, 

-45 and 0 respectively for a baseline laminate. The arrow points to the node which is shared by 

the 45 and 90 degree lamina and there are 7 such nodes shared by different lamina. These nodes 

were used to evaluate the quadratic delamination criterion using equations 4.4.6. 

Table 4.4.1 Delamination initiation stress along with the interfaces delaminated. 

Lay-up 

FPF using 

Max-Strain 

(Ksi) 

Delamination stress (Ksi) DICM UTS(Ksi) Interface delaminated 

BL 9.69 50.42 71 (-45/90) 

A 9.18 85.47 73 N/A 

B 16.12 73.89 73 N/A 

C 11.30 66.67 69 (0/-45) 

D 6.23 16.40 29 (45/90) 

E 17.02 303 68 N/A 

F 9.23 87 73 N/A 

G 13.3 15.79 91 (-21/90) 

H 23 202.70 100 N/A 

 

    0           -45         90       45         0          -45        90        45 



 

Table 4.4.1 provides a comparison of the delamination initiation stress

corresponding FPF and UTS. The lamina interfaces that showed 

assumed to delaminate first.  

 

Fig.4.4.2 Comparison between FPF, UTS and Delamination initiat
 

Fig.4.4.2 shows the comparison between the delamination initiation stress of different lay

with the FPF strength calculated by the max

strength (UTS). The laminates designated as BL, C,

71%, 96%, 57% and 17% of the UTS respectively. Laminates 

initiation stress higher than UTS which indicates that these laminates should not delaminate at 

all. Laminate D and G have a delamination 
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son of the delamination initiation stress of the lay

. The lamina interfaces that showed the highest failure ratio were 

Comparison between FPF, UTS and Delamination initiation stress of different lay

shows the comparison between the delamination initiation stress of different lay

FPF strength calculated by the max-strain theory of 3D model and the ultimate tensile 

laminates designated as BL, C, D and G show delaminatio

of the UTS respectively. Laminates A, B, F and H have 

higher than UTS which indicates that these laminates should not delaminate at 

all. Laminate D and G have a delamination initiation stress very close to the first ply failure. 

C D E F G

Lay-Ups

Delamination Initiation Stress UTS

of the lay-ups with their 

highest failure ratio were 

 

ion stress of different lay-ups 

shows the comparison between the delamination initiation stress of different lay-ups 

and the ultimate tensile 

lamination initiation at 

have delamination 

higher than UTS which indicates that these laminates should not delaminate at 

ress very close to the first ply failure.  
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Fig.4.4.3 Comparison of interlaminar strains between Baseline and G laminate 

 

 

Fig.4.4.3 compares the interlaminar strains between the [-45
0
/90

0
] interface of the baseline and 

the [-21
0
/90

0
] interface of the G laminate. FE models of both the laminates were subjected to a 

uniaxial tensile stress of 30000 Psi. As shown in Table 4.4.1, delamination was expected to 

initiate along these interfaces in these two laminates. The Baseline was chosen as a reference 

laminate and the G laminate was chosen as it showed the lowest delamination initiation stress. 

This made the G laminate prone to delamination. From Fig.4.4.3 it can be observed that G 

laminate experienced a lower interlaminar normal compressive stress and a higher interlaminar 

shear stress than the Baseline laminate. Interlaminar shear is always harmful for the delamination 

strength of the laminated composite. On the other hand normal compressive stress increases the 

resistance of the laminate against delamination failure. Keeping this in mind one can explain the 

lower delamination strength of the G laminate than the Baseline.  
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The accuracy of the predictions of the quadratic failure criterion was provided by SEM images. 

Laminates BL, C, D and G were loaded up to the delamination initiation stress and examined 

using SEM. Due to some damage while p

and D couldn’t be examined 

 

Fig.4.4.4 Crack between the 

Fig. 4.4.4 shows a hairline crack at the interface of 

side of the image shows a section of the crack where it

degree lamina. However, it is quite difficult to determine if the 

45/90 interface occurred first and then led to the crack propagation inside the 

or vice versa. The Quadratic delamination criterion for this research was based on linear elastic 

FE model. If delamination in a laminate occurs after the FPF, the accuracy of the predicted stress 

at which delamination initiation takes place would decrease. In such situation the qualitative 

results should be used to compare the relative response of laminates to Delamination. The 

Baseline laminate is one such example where delamination is supposed to set in at 71% of UTS. 
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The accuracy of the predictions of the quadratic failure criterion was provided by SEM images. 

Laminates BL, C, D and G were loaded up to the delamination initiation stress and examined 

using SEM. Due to some damage while preparing the sample for SEM the images of laminates C 

Crack between the -45/90 degree interface of baseline laminate

Fig. 4.4.4 shows a hairline crack at the interface of -45 and 90 degree laminae. The right hand 

a section of the crack where it can be seen to propagate into the 

degree lamina. However, it is quite difficult to determine if the delamination initiation at the 

45/90 interface occurred first and then led to the crack propagation inside the -45 degree lamina 

or vice versa. The Quadratic delamination criterion for this research was based on linear elastic 

a laminate occurs after the FPF, the accuracy of the predicted stress 

at which delamination initiation takes place would decrease. In such situation the qualitative 

results should be used to compare the relative response of laminates to Delamination. The 

Baseline laminate is one such example where delamination is supposed to set in at 71% of UTS. 
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The accuracy of the predictions of the quadratic failure criterion was provided by SEM images. 

Laminates BL, C, D and G were loaded up to the delamination initiation stress and examined 

reparing the sample for SEM the images of laminates C 
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45 and 90 degree laminae. The right hand 

an be seen to propagate into the -45 

delamination initiation at the -

45 degree lamina 

or vice versa. The Quadratic delamination criterion for this research was based on linear elastic 

a laminate occurs after the FPF, the accuracy of the predicted stress 

at which delamination initiation takes place would decrease. In such situation the qualitative 

results should be used to compare the relative response of laminates to Delamination. The 

Baseline laminate is one such example where delamination is supposed to set in at 71% of UTS.  

45                         90           
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Fig.4.4.5 Crack between the -21/90 degree interface in baseline laminate. 

 

 
 

Fig.4.4.6 G laminate at ultimate load 

 

Fig.4.4.5 shows a crack between the -21 and 90 degree layers of the G laminate when the 

laminate was subjected to a delamination initiation stress of 15.79 Ksi. In the right hand side 

image of Fig.4.4.5 it can be seen that the crack propagated through the -21/90 interface and then 

entered the 90 degree lamina. Fig.4.4.6 shows the ultimate failure mode of G laminate. The final 

failure was due to delamination resulting in separation of the individual laminae. This result 

 21             0            -21      90          21    -21              90                     



89 

 

confirms that the delamination initiation stress of the G laminate was very close to the FPF. The 

onset of delamination at such an early stage resulted into a catastrophic failure.  

 

Fig.4.4.7 Laminate A at ultimate load 

 

  

Fig.4.4.8 Laminate E at ultimate load 
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Fig.4.4.7 shows the front view and the side view of the laminate A (Vary 45) when subjected to 

ultimate tensile stress of 73 Ksi. Fig.4.4.8 shows the front and the side view of laminate E (vary 

45 & 90) when subjected to an ultimate tensile stress of 68 Ksi. According to Fig.4.4.2 quadratic 

delamination criterion predicted the delamination strength of both laminates A and E higher than 

their corresponding UTS. This result was used qualitatively to suggest that these laminates won’t 

delaminate. By comparing Fig.4.4.6, Fig.4.4.7 and Fig.4.4.8 it can be clearly seen that unlike G 

laminate, laminates A and E didn’t fail in delamination. This validates the methodology of 

estimating the response of a notched laminate to delamination failure.  

4.5 Chapter Summary 

The ability of a 3D model to capture free edge effects makes it an ideal tool for studying 

interlaminar stresses which may lead to delamination failure. For the current study, the linear 

elastic 3D model proposed for a composite plate with a circular notch was further used to predict 

delamination initiation stress. The laminates selected from the Kt and FPF optimization study 

were used as test samples. Sensitivity of interlaminar stresses to the presence of notch was shown 

which lead to the belief that the edge of the hole (the one perpendicular to the loading direction) 

should be prone to delamination failure if any. Quadratic delamination criterion was selected that 

allowed to compare the relative response of laminates to delamination. One particular laminate 

“G” was expected to show a final failure in form of delamination. SEM was used to validate the 

claim.  
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5. Computational Micromechanics 

5.1 Introduction 

Stress and deformation analysis of fiber reinforced composites is carried out at different levels. 

The detail necessary for the description of composite material depends on the level of post 

processing desired. Fiber reinforced composites can be studied as homogenous or heterogeneous 

bodies. When treated as homogenous, fiber and matrix are not considered separate and effective 

elastic properties like Young’s Modulus ( )E , shear modulus ( )G and Poisson’s Ratio ( )υ  of the 

whole lamina are used for numerical analysis. To determine the effective properties (as shown in 

Table 2.3.1) of the lamina, experimental procedures similar to the one described in section 2.3 

are used. Treating composites as heterogeneous media is a rather tedious and expensive process 

and in most cases homogenous models provide sufficient information to tackle design problems. 

However, by using heterogeneous models and the elastic properties of the constituent fibers and 

matrix, the homogenous properties of the lamina can be determined. This is intended to replace 

the experimental procedure for achieving the same results. The process of using the 

microstructure to determine the homogenous properties of the composite lamina is called 

micromechanics and the models proposed for this process are called micromechanical models. 

These models are classified as empirical, semi-empirical, analytical and numerical. This chapter 

is aimed implementing micromechanics as a FE based model. The model can be used to cross-

check the elastic properties of a composite material system and also to visualize the effect of the 

applied strain state at the fiber and matrix level. 
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5.2 Numerical Homogenization 

In most commercially fabricated composites, it is not possible to control the placement of fibers 

very precisely. Fig.5.2.1 shows the random distribution of fibers in the 90 degree lamina of the 

baseline laminate. The fiber diameter of T300 fibers in Fig.5.2.1 was found to be 6.95µm. For 

this work the fiber diameter was rounded off to 7µm. 

 

Fig.5.2.1 Random distribution of fibers in 90 degree lamina in baseline laminate 

Some [58, 59] have documented that a random microstructure results in transverse isotropic 

behavior at the meso-scale and a hexagonal array of fibers has been found to simulate this 

behavior at the micro-level. This is important from the point of view of this study as the stiffness 

matrices for different laminae in equation 2.3.8 depicted transverse isotropic behavior. From 

Hook’s law the transverse isotropic stiffness tensor © can be obtained given by  
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  

 (5.2.1) 

The subscripts 1, 2, 3 are the normal and 4, 5, 6 are the shear components of stress and strain 

with tensor strains 2 ,  2  and 2
54 23 13 6 12

γ ε γ ε γ ε
− − − − − −
= = = . The over bar denotes that average of the 

terms is computed over the volume of a representative volume element (RVE). For this study the 

RVE is a section of the hexagonal array which represents the behavior of the whole cell. Fig. 

5.2.2 shows a hexagonal array of fibers embedded in matrix. Fig. 5.2.2 also shows a section of 

the hexagonal array which formed the RVE for the current study.  

Fig.5.2.2 Composite material with a hexagonal array of fibers [58] 

RVE 
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The RVE based FE model was used to determine the components of the stiffness tensor © of the 

equation 5.2.1. The elastic properties of the homogenized material were then determined using 

the following relations [58] 

 

2

12
1 11

22 23

2C
E C

C C
= −

+
  (5.2.2) 

 

( ) ( )2

11 22 23 12 22 23

2 2
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+
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C C C
ν

−
=

−
 (5.2.5) 

 

12 66
G C=   (5.2.6) 

 

where 1
E and 2

E  are the longitudinal and transverse Young’s moduli, 12
ν and 23

ν are the 

longitudinal and transverse Poisson’s ratios and 12
G is the longitudinal shear modulus of the 

composite lamina. Since the body is transversely isotropic, therefore  

3 2
E E=   (5.2.7)  

 

12 13
ν ν=   (5.2.8)  

 

12 13
G G=   (5.2.9)  

 

and 
( )

2
23

232 1

E
G

ν
=

+
  (5.2.10)  
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5.3 RVE Geometry 

X

Y

Z

Matrix

Fiber

 

Fig. 5.3.1 Geometry of RVE  

The Fiber volume fraction ( )fν is defined as the ratio of the volume of fibers to the volume of 

composite. The dimensions a1, a2 and a3 of the RVE were chosen to obtain a particular fiber 

volume fraction with a hexagonal array. For the RVE in Fig. 5.3.1 with a fiber diameter df , the 

volume of fibers is  

 fV = 2

12 2
4

fd a
π 
 
 

   (5.3.1) 

 = 2

1 fa dπ  (5.3.2) 

The unit cell volume, c
V is   

c
V = 1 2 3

2 2 2a a a    (5.3.3) 

 = 1 2 3
8a a a  (5.3.4) 

From which the fiber volume fraction can be found as 

fν =

2

2 38

f f

c

V d

V a a

π
=  (5.3.5) 

2a2 

2a3 

2a1 

60
0 
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For most of the commercially available composites, a fiber volume fraction of 0.65 is used. 

Therefore, equation 5.3.5 can be rewritten as 

2

2 3

0.65
8

fd

a a

π
=  (5.3.6) 

From Fig. 5.3.1 the relationship between 2
a  and 3

a  can be established as 

0

3 2 tan 60a a=  (5.3.7) 

The dimension 1
a  is chosen arbitrarily. For the current study  

2
1

4

a
a =  (5.3.8) 

Using equations 5.2.6, 5.3.7 and 5.3.8 and assuming a fiber diameter of 7µm we get 

1 1.033a mµ= , 2 4.134a mµ=  and 3 7.16a mµ= . These dimensions were used to generate the 

geometry of the RVE. 

 

5.4 Material Properties 

The elastic properties of the constituent fiber and matrix of T600:125-33 were unavailable. From 

the literature [34] it was clear that both T300:934 and T600:125-33 had almost identical 

homogenized elastic properties. For the RVE model the elastic properties of the constituent 

fibers and matrix of T300:934 (Table 5.4.1) instead of T600:125-33 composite material were 

used.  

Table 5.4.1 Elastic properties of constituent fibers and matrix of T300:934 composite material 

Fiber 

6
32.0 10

1
E Psi
f

= ×  6
2.0 10

2
E Psi
f

= × , 
3 2

E E
f f

=  6
1.3 10

12
G Psi
f

= × , 
13 12

G G
f f

=  

6
0.7 10

23
G Psi
f

= ×  0.20
12f

υ =  0.25
23f

υ = , 13 12f fυ υ=  

Matrix 

6
0.5 10E Psim = ×  

( )
6

0.185 10
2 1

EmG Psim
mυ

= = ×
+

 
0.35

m
υ =  
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5.5 Boundary Conditions 

As stated earlier, the primary objective of the RVE model is to predict homogenized elastic 

properties of a lamina. Equations (5.2.2-5.2.10) established a relation between the elastic 

properties of a homogenous composite material and the terms of stiffness matrix. FE based RVE 

model first evaluates the terms of stiffness matrix. From equation 5.2.1 it is clear that the 

stiffness matrix can be defined in terms of stresses if the volume average strains ijε
−

 in the RVE 

are predefined. That means that if 1 and 0
51 2 3 4 6

ε ε ε γ γ γ
− − − − − −
= = = = = =  in equation 5.2.1 then

11 1
C σ

−
= ,

12 2
C σ

−
= . Similarly other terms can be evaluated. However volume average strain is not 

the parameter that the user can control. Instead we can use applied strain 0
ijε to induce a desired 

volume averaged strain ijε
−

 in the RVE. This follows from the relation between the volume 

averaged strain and the applied strain as [58] 

1 0

V

dvij ij ijV
ε ε ε
−

= =∫  (5.5.1) 

In the RVE six components of strain ( )0ijε  use the following boundary conditions on the 

displacement components.  

2 20( , , ) ( , , ) 2      
1 1 1 1

3 3

a x a
u a x y u a x y ai i i a y a

ε
− ≤ ≤ 

− − =  
− ≤ ≤  

 (5.5.2) 

1 10( , , ) ( , , ) 2    
2 2 2 2

3 3

a z a
u z a y u z a y ai i i a y a

ε
− ≤ ≤ 

− − =  
− ≤ ≤  

 (5.5.3) 

1 10( , , ) ( , , ) 2    
3 3 3 3

2 2

a z a
u z x a u z x a ai i i a x a

ε
− ≤ ≤ 

− − =  
− ≤ ≤  

 (5.5.4) 
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where i, j = 1..3 and the superscript ( )
0 
indicates the applied strain. The left hand of the equations 

(5.5.2-5.5.4) indicates the relative displacement between the two opposite faces of the RVE 

including edges and vertices. Furthermore, 02 ja ijε is the displacement necessary to enforce the 

strain 0

ijε over a distance 2 ja . Fig. 5.5.1 is a representation of the RVE block without the 

distinction between fiber and matrix components. It shows the coordinates of the sides of the 

RVE and acts as a visual aid in understanding the application of BCs using the equations (5.5.2-

5.5.4). As shown in the Fig. 5.5.1 Z represents the 1 (fiber direction) and X and Y represent 2 

and 3 directions respectively. 

X (2)

Y (3)

Z (1)

-a1
+a1

+a3

-a3

-a2

+a2

(z, -a2, y)

(z, +a2, y)

(z, x, -a3)

(+a1, x, y)

(-a1, x, y)

 
Fig. 5.5.1 Co-ordinates of six faces on the RVE block 

 

To determine the coefficients of stiffness matrix, the boundary conditions 5.2.2-5.2.4 were 

applied on the RVE in three stages. Each stage exposed the RVE to a particular boundary 

condition. This three stage condition is true for a transversely isotropic body. This is because in 

three stages all the necessary coefficients of stiffness matrix are obtained which are necessary to 
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find the elastic properties of the composite material. The coefficients of the stiffness matrix in 

equation 5.2.1 were evaluated column wise. The procedure of evaluating the stiffness 

coefficients in each of the six columns is explained in following steps.  

 

 First Column 

To determine components in the first column of equation 5.2.1, following strain was applied to 

the RVE in fiber direction (Z-direction).  

0 0 0 0 0 01 and 0
51 2 3 4 6

ε ε ε γ γ γ= = = = = =   (5.5.5) 

Equation 5.5.5 can be applied in terms of terms of DOF as 

1 1

2 2 3 3 2 2

3 3

( , , ) ( , , ) 2
1 1 1

( , , ) ( , , ) 0        ,
1 1

( , , ) ( , , ) 0
1 1

u a x y u a x y a

u a x y u a x y a y a a x a

u a x y u a x y

 − − =
  

− − = − ≤ ≤ − ≤ ≤ 
 

− − =  

  (5.5.6) 

X (2)

Y (3)

Z (1)

 
Fig. 5.5.2 Displacement BC on faces (a1, x, y) and (-a1, x, y) 

 

As shown in Fig. 5.5.2 unit strain is applied between the faces (a1, x, y) and (-a1, x, y) of the 

RVE in Z direction (1 direction) while the relative X, Y DOF between the two faces have been 

U1 (a1, x, y) 

U1 (-a1, x, y) 
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constrained to prevent rigid body rotation. From equation 5.5.6 the displacement necessary to 

cause this strain in fiber direction is 2a1. The FE model generates the first set of stiffness 

coefficients as
7
 

11 1
C zσ σ

− −
= =       (5.5.7) 

12 2
C xσ σ

− −
= =      (5.5.8) 

 

Second Column 

For the second column of the stiffness matrix of equation 5.2.1   

0 0 0 0 0 0
1 and 0

52 1 3 4 6
ε ε ε γ γ γ= = = = = =

     
(5.5.9) 

 

Equation 5.5.9 can be applied in terms of terms of DOF as 

1 1 3 3

( , , ) ( , , ) 0 
1 2 1 2

( , , ) ( , , ) 2   , 
2 2 2 2 2

( , , ) ( , , ) 0 
3 2 3 2

u z a y u z a y

u z a y u z a y a a z a a y a

u z a y u z a y

 − − =
  

− − = − ≤ ≤ − ≤ ≤ 
 

− − =  

  (5.5.10) 

X (2)

Y (3)

Z (1)

 
Fig.5.5.3 Displacement BC on faces (z,-a2, y) and (z, +a2, y) 

 

 

                                                           
7
 ANSYS

TM 
10.0 program used for generating the volume averaged stresses for the RVE has been be explained in 

sec.5.6.
 

U2 (z,-a2, y) 

U2 (z, +a2, y) 
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As shown in Fig. 5.5.3 unit strain is applied between the faces (z, -a2, y) and (z, +a2, y) of the 

RVE. From equation 5.5.10 the displacement necessary to cause this strain in X direction is 2a2. 

The stiffness coefficient that is needed from this column is 

22 2
C xσ σ

− −
= =     (5.5.11) 

23 3
C yσ σ

− −
= =  (5.5.12) 

 

Third Column 

From equation 5.2.1, all three stiffness matrix coefficients have been obtained from first and 

second column. Thus there is no need to evaluate any term from this column. 

Fourth Column  

From equation 5.2.1 it is evident that in the fourth column of the stiffness matrix only one non-

zero term (C44) exists which can be evaluated as 

( )1

44 22 33
2

C C C= −      (5.5.16) 

Fifth Column 

Again from equation 5.2.1 it is clear that only term C55 is non-zero. Also, relationship between 

C55 and C66  for transversely isotropic material is  

55 66
C C=       (5.5.17) 
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Sixth Column 

In order to evaluate C66 in the sixth and last column of the stiffness matrix the following relation 

should be satisfied 

0 0 0 0 0 0
1 and 0

56 1 2 2 4
γ ε ε ε γ γ= = = = = =   (5.5.18) 

But 
0 0 0

1
6 12 21
γ ε ε= + =      (5.5.19) 

0 0
 
12 21

and ε ε=      (5.5.20) 

From 5.5.19 and 5.5.20 it implies that 
10

21 2
ε = should be applied between faces (-a1, x, y) and 

(a1, x, y) and other half should be applied between (z, a2, y) and (z, -a2, y).  This can be simply 

understood from the equation 5.5.2 and equation 5.5.3 in which i takes values from 1..3. In 

equation 5.5.2 when  
10

21 2
ε =  is applied while keeping 

0 0

11 31
0ε ε= = we get  

1 1

2 2 1 2 2 3 3

3 3

( , , ) ( , , ) 0
1 1

( , , ) ( , , )         , 
1 1

( , , ) ( , , ) 0
1 1

u a x y u a x y

u a x y u a x y a a x a a y a

u a x y u a x y

 − − =
  

− − = − ≤ ≤ − ≤ ≤ 
 

− − =  

  (5.5.21) 

Similarly, using equation 5.5.3 the other half of the in-plane shear 
10

12 2
ε =

 
is applied between 

faces (z, a2, y) and (z, -a2, y) while keeping 
0 0

0
22 32
ε ε= =  we get  

1 1 2

2 2 1 1 3 3

3 3

( , , ) ( , , )
1 1

( , , ) ( , , ) 0        , 
1 1

( , , ) ( , , ) 0
1 1

u a x y u a x y a

u a x y u a x y a x a a y a

u a x y u a x y

 − − =
  

− − = − ≤ ≤ − ≤ ≤ 
 

− − =  

  (5.5.22) 
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The net effect of equations 5.5.21 and 5.5.22 is shown in Fig. 5.5.5. The FE model under 

boundary conditions 5.5.21 and 5.5.22 resulted in pure in-plane shear and provided C66 as 

66 6
C

xz
σ σ
− −

= =     (5.5.23) 

Fig. 5.5.5 shows the faces over which the shear is applied. The top view of the RVE block in Fig. 

5.5.5 shows the shear effect in 12 plane.  

X (2)

Y (3)

Z (1)

(+a1, x, y)

(-a1, x, y)

(z, -a2, y)

(z, +a2, y)

Top Face

Top Face

x (2)

z (1)

 
Fig. 5.5.4 Displacement BC on faces (+a1, x, y) and (-a1, x, y) and faces 

(z, -a2, y) and (z, +a2, y). Top face showing the shear effect in 12 plane. 
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5.6 FE Code Implementation 

 

Fig.5.6.1 Flow chart for the RVE model 

The flowchart in Fig. 5.6.1 lists the steps for proceeding with the Finite Element model of the 

RVE. First of all, the parameters - fiber volume fraction ( )fν  and fiber diameter ( )fd were 

fixed. As explained in section 5.3 the RVE dimensions (a1, a2, a3) were evaluated using fν and 
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fd . Ansys
TM 

10.0 FEA package was used for the numerical modeling of the RVE. Using a1, a2, 

a3 and fd , the geometry of the RVE model was created. The material model parameters were set. 

As shown in Table 5.4.1 orthotropic properties were selected for the fiber and isotropic 

properties were selected for the matrix.  

 

Fig.5.6.2 Full model of RVE  

 

 

Solid 186 was used for generating the mesh of the RVE. Fig.5.6.2 shows the FE mesh of the 

RVE model. Solid 186 is a 20 noded brick element with layered and non-layered option. For the 

RVE model, the non-layered option was chosen by setting Keyopt (3) = 0 in the element settings. 

After mesh generation the set of boundary conditions as described in sections (5.5.1-5.5.6) were 

applied. The CE command in the ANSYS Parametric Design Language (APDL) was used for 

defining BCs using degrees of freedom. After invoking the CE command the user is prompted 

for the input: CE, NEQN, CONST, NODE1, Lab1, NODE2, Lab2, NODE3, Lab3.  
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NEQN sets the equation reference number. CONST represents the constant term of the equation. 

E.g. if the first equation, 1 1( , , ) ( , , ) 2
1 1 1

u a x y u a x y a− − = of the equation set 5.5.6 is considered 

then the constant term is 2a1. This term will change if strain other than unity is applied. NODE1 

selects one node on one of the faces of the RVE. Lab1 represents the degree of freedom that is to 

be defined for the node selected in the previous step. NODE2 selects one node on the face 

opposite to the face selected in “NODE1” step.  Lab2 is the degree of freedom of NODE 2 and 

will remain same as in “Lab 1”. Since two faces were selected at a time resulting in only two 

sets of nodes to be defined, hence NODE3, Lab3 portion of the CE command was ignored for 

this case.  

The boundary conditions for each column were applied to the RVE and then saved as a load step. 

This made sure that while running the model a particular load step/boundary condition could be 

activated. For this case three sets of boundary conditions were needed to find all the coefficients 

of the stiffness matrix. Thus the process of creating the BC and saving it as a load step was 

repeated three times as shown in the flow chart in Fig. 5.6.1.  

From equations 5.5.7, 5.5.8, 5.5.11, 5.5.12, 5.5.15 and 5.5.23 the stiffness coefficients can be 

evaluated using volume averaged stress. Volume averaged stress can be mathematically 

represented as 

1

V

dvij ijV
σ σ
−

= ∫       (5.6.1) 

A macro was created in Ansys using “*create, Fname, Ext,” command to find the volume 

average stress and thus the stiffness coefficients. Fname refers to the name given to the 

macrofile and Ext is the file extension. The extension for a macro file is .mac. In the macro file, 

element volume and element stresses were tabulated using “Etable, Lab, Item, Comp” 
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command. Lab refers to any user defined label for use in subsequent commands. Item refers to 

the quantity that needs to be extracted into the table. For extracting element volumes Item can be 

set to Volu and for extracting stresses the Item is S. This stress is not for any specific node but 

represents the average of the stress for the gauss integral points in the element. Comp refers to 

the component of the item that needs to be extracted. For volumes this command is irrelevant but 

for stress there are six components ( ), , , , ,x y z xy yz xzσ σ σ σ σ σ that can be extracted. So each 

element stress component is stored separately. 

Element volumes were then multiplied with their corresponding element stresses (six 

components). This is the same as solving for the term dvijσ  of equation 5.6.1. The SMULT, 

LabR, Lab1, Lab2, FACT1, FACT2 command was used for this step. LabR is the label assigned 

to each results. Lab1 is the first labeled result item in operation. The element volume was 

assigned as Lab1. Lab2 is the second labeled result item in operation. Since volumes were to be 

multiplied by stresses hence Lab2 was element stress. Again, in this case six stress components 

were used.  

In the next step, the volume integral of the results of the previous step was calculated. This was 

same as the 
V

dvijσ∫  portion of equation 5.6.1. This was accomplished by SSUM and *get 

commands. After finding the volume integrals of the stresses, the last step was to calculate the 

volume average of the RVE stresses. This was same as finding 
1

V

dvijV
σ∫  of equation 5.6.1. The 

volume integrals of the stresses obtained in the previous step were divided by the total volume of 

the RVE which produced the volume average of the stresses. The macro explained above was 

named as “rve.mac” and is shown in Appendix A-4.  
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Post processing of results was carried out by running the macro for each load step and 

calculating the stiffness coefficients ( )11 22 23 12 66, , , ,C C C C C . Using these coefficients all the 

elastic properties of the composite were calculated.  

5.7 Model Validation 

The elastic properties ( )1 2 12 12, , ,E E Gυ predicted by the FE based RVE model were compared 

with other analytical models in Fig. 5.7.1 and Fig. 5.7.2. From [34] it was found that both 
1
E and 

12
υ agreed well with the experimental data when predicted by Rule of Mixtures (ROM) model.  

The ROM models for determining 
1
E and 

12
υ can be written as [34] 

1 1
E E Em mf f

ν ν= +      (5.7.1) 

12 12 m mf f
υ υ ν υ ν= +      (5.7.2) 

where , ,
1 1
E E E

f m
are the longitudinal moduli of the composite, the fiber and the matrix 

respectively. , ,
12 12 mf
υ υ υ are the major Poisson’s Ratios of the composite, the fiber and the 

matrix respectively. f
ν and mν  are the fiber volume fraction and the matrix volume fraction of 

the composite respectively with mν = 1- f
ν . From Fig. 5.7.1 (a) and (b) it is clear that RVE 

predictions for 
1
E are almost identical with those of ROM model and vary by a maximum of 

2.8% for 
12
υ .  
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Fig.5.7.1 (a) Comparison of longitudinal modulus predicted by rule of mixtures (ROM) model 

with RVE model (b) Comparison of Poisson’s Ratio predicted by rule of mixtures (ROM) with 

RVE model. 

From [34] it was also observed that the inverse Rule of Mixture models were not effective for 

predicting the transverse modulus ( )2E and the shear modulus ( )12G . The inverse rule of mixture 

models for estimating 2
E and 12

G can be written as [34]  

1

2 2

f m

E E Emf

ν ν
= +       (5.7.3) 

1

12 12

f m

G G Gmf

ν ν
= +      (5.7.4) 

 

where , ,
2 2
E E E

f m
are the transverse moduli of the composite, the fiber and the matrix 

respectively. , ,
12 12
G G Gmf

 
are the in-plane shear moduli of the composite, the fiber and the 

matrix respectively. 

Both ROM and inverse ROM models were based on simplified mechanics of materials approach 

and the equations were not tied to any particular fiber-packing geometry
8
. Since the results for 

1
E and 

12
υ were found so favorable in [34], it was safe to conclude that these properties would be 

                                                           
8
 Fiber volume geometry should not be confused with fiber volume fraction. Fiber volume geometry can be 

triangular, square or hexagonal. Fiber volume fraction is a factor that then depends on the fiber volume geometry. 
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independent of fiber packing geometry. But a poor co-relation of inverse ROM models for 
2
E

and 
12
G  with the experimental values lead to the conclusion that these properties were sensitive 

to fiber packing geometry [34]. To predict 
2
E and 

12
G of the composite materials, different 

models have been proposed. Semi-empirical models such as Halpin-Tsai and Tsai-Hahn were 

used for this study to compare the results from the RVE model. Halpin-Tsai model can be 

mathematically written as [34] 

1

2 1

f
E Em

f

ξην

ην

+
=

−

 
 
 
 

     (5.7.5) 

where 

2
1

2

E
f

Em
E
f

Em

η

ξ

−

=

+

 
 
 
 
 
 
 

     (5.7.6) 

and ξ  is a curve fitting parameter. Halpin-Tsai [60] found that 2ξ =  gave an excellent fit to the 

finite difference elasticity solution of Adams and Doner [61] for transverse modulus ( )2E . So  

2ξ = was used in equations 5.7.5 and 5.7.6.  Similar expression could be written for shear 

modulus as  

1

12 1

f
G Gm

f

ξην

ην

+
=

−

 
 
 
 

     (5.7.7) 
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where 

12
1

12

G
f

Gm
G
f

Gm

η

ξ

−

=

+

 
 
 
 
 
 
 

     (5.7.8) 

For finding 
12
G by Halpin-Tsai semi-empirical model 1ξ =  was used in equations 5.7.7 and 

5.7.8. This value was found to provide a good co-relation to the Adams and Doner [60] for shear 

modulus ( )12
G . Another semi-empirical model was used to determine 

2
E  and 

12
G . This model 

was proposed by Tsai and Hahn [62]. 
2
E  and 

12
G were evaluated by Tsai-Hahn model by the 

following expressions.  

1 1 2

2 2 2

f m

E E Em mf f

ν η ν

ν η ν
= +

+

 
 
 
 

     (5.7.9) 

1 1 2

12 2 12

f m

G G Gm mf f

ν η ν

ν η ν
= +

+

 
 
 
 

 (5.7.10) 

where 
2

η is the stress parameter. 1 and 0.5
2 2

η η= =  were used as inputs for equations 5.7.9 and 

5.7.10 respectively. 
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(a)        (b) 

Fig.5.7.2 (a) Comparison of Transverse Modulus predicted by Halpin-Tsai and Tsai-Hahn with 

the RVE model (b) Comparison of Shear modulus predicted by Halpin-Tsai and Tsai-Hahn with 

the RVE model 

 

From Fig.5.7.2 (a) it is observed that the transverse modulus ( )2E  predicted by RVE model 

agreed well with both Halpin-Tsai and Tsai-Hahn model. Maximum % error between the 

transverse modulus predicted by the RVE and that between Halpin-Tsai and Tsai-Hahn model 

was 5.22% and 9.3% respectively. From Fig.5.7.2 (b) it is observed that the shear moduli ( )12G

values predicted by the RVE model for different fiber volume fractions followed the values 

predicted by Tsai-Hahn closely with a maximum % error of 8.6%. However, the Halpin-Tsai 

model that showed good co-relation with the RVE model for the transverse modulus values 

didn’t co-relate well with it for the shear modulus values. The predicted shear modulus of the 

Halpin-Tsai model for the fiber volume fraction of 0.7 was 25% lower than that of RVE model. 

This poor co-relation can be attributed to the fact that the semi-empirical models are based on 

curve fitting parameters. A good co-relation of a semi-empirical model for a particular set of data 

may not necessarily guarantee a good co-relation with a different set. In this case when Halpin-

Tsai used 1ξ =  for estimating the shear modulus for E-glasss/epoxy material, it provided the an 

excellent fit to the finite difference elasticity solution of Adam and Doner [61]. However, the 
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same assumption didn’t hold true for our study. The elastic properties predicted by the FE based 

RVE model for T300-934 material were also compared with the experimental values available 

for the same material for a fiber volume fraction of 0.65 [34]. The comparison is shown in table 

5.7.1. 

Table 5.7.1 Elastic properties of T300:934 (graphite/epoxy) composite material by using 

experimental methods and RVE model for a fiber volume fraction of 0.65 

 ( )
1
E Msi  ( )

2
E Msi  

12
υ  ( )

12
G Msi  

RVE Model 21 1.07 0.24 0.89 

Experiment  19 1.03 0.22 1 

5.8 Chapter Summary 

From Table 5.7.1 it is observed that the RVE model predictions compare well with those of the 

experimental values. From the comparison of the RVE model with ROM models, semi-empirical 

models and the experimentally obtained values it is clear that FE based RVE model can be used 

as a tool for finding homogenized elastic properties of the composite materials. Further, all the 

elastic properties were obtained by a single model. This is a better numerical practice than using 

different models viz. ROM models for E1 and ν12 and semi-empirical models for E2 and G12.   
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6. Conclusion                

The strength of traditional laminated composites with a circular hole can be increased by 

changing the lay-ups and the stacking sequence of the constituent laminae. This study has shown 

the relevance of using a 3D model to optimize strength. The laminate strain concentration factor 

(Kt) was an unreliable indictor of lay-ups with increased strength. The stress-strain response 

showed material and geometric non-linearities. Thus, the linear 3D model was used to determine 

the FPF. Of all the seven failure theories used in this work only Maximum-Stress and Maximum-

Strain predicted FPF within 10% error of the measured values. By comparing the non-traditional 

laminates with the baseline, some observation could be made. When 90 degree plies were 

replaced by other angles both FPF and UTS of the laminates increased. Laminates where 90 

degree plies were changed showed a shift in the failure mode from transverse to shear. Changing 

0 degree plies had severe effect on the FPF as well as the UTS of the laminates. As far as the off 

axis plies are concerned, the FPF and the UTS increased when their angles approached the 

loading direction and decreased when they deviated away from it.  

The presence of circular notches exposed some laminates to high interlaminar stresses. A 3D 

model of un-notched specimen agreed well with qualitative analytical solution of Pipes and 

Pagano. A Quadratic Delamination Criterion used in conjunction with the FE model provided 

good agreement with experimental observations of delamination.  

Computational micromechanics was used as an FE based RVE model to predict elastic properties 

of composites without the need for experimentation. The model showed good correlation with 

the experimental values and proved to be a better numerical technique of determining the elastic 

properties of a composite lamina. For achieving the same results different analytical and semi-

empirical models had to be used which is not a very reliable approach.  
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APPENDIX 

Appendix A-1 

Recovery shear strain Vs recovery time 
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Appendix A-2 

!Code for linear static analysis of 1/8th notched composite plate   

!create geometry  

BATCH   

/PREP7 

PI=3.1415926 

H_radius=0.125 !hole radius (in) 

P_width = 0.75 !plate width (in) 

P_height = 1.25 !plate height (in) 

P_thickness = 0.07 ! plate thickness (in) 

B_point = 0.3 ! bifurcation point for mesh around the hole 

a= 16 ! Mesh refinement factor near hole 

b= 30 ! Mesh refinement factor away from the hole 

!Create keypoints  

/PREP7 

K,1,H_radius,0,0,   

K,2,B_point,0,0, 

K,3,P_width,0,0,   

K,4,P_width,B_point,0,  

K,5,P_width,P_height,0, 

K,6,B_point,P_height,0,  

K,7,0,P_height,0,   

K,8,0,B_point,0, 

K,9,0,H_radius,0, 

K,10,H_radius*cos (PI/4),H_radius*sin (PI/4),0,    

K,11,B_point,B_point,0,  

K,12,H_radius,0,-(P_thickness)/2,  

K,13,B_point,0,-(P_thickness)/2,    

K,14,P_width,0,-(P_thickness)/2, 

K,15,P_width,B_point,-(P_thickness)/2, 

K,16,P_width,P_height,-(P_thickness)/2,    

K,17,B_point,P_height,-(P_thickness)/2, 

K,18,0,P_height,-(P_thickness)/2,   
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K,19,0,B_point,-(P_thickness)/2,    

K,20,0,H_radius,-(P_thickness)/2,  

K,22,H_radius*cos (PI/4),H_radius*sin (PI/4),-(P_thickness)/2,    

K,23,B_point,B_point,-(P_thickness)/2,  

K,100,0,0,0, 

K,101,0,0,-(P_thickness)/2,    

!Create lines using keypoints 

LSTR,       1,       2   

LSTR,       2,       3   

LSTR,       3,       4   

LSTR,       4,       5   

LSTR,       5,       6   

LSTR,       6,       7   

LSTR,       7,       8   

LSTR,       8,       9   

LSTR,       8,      11   

LSTR,      11,       4   

LSTR,      12,      13   

LSTR,      13,      14   

LSTR,      14,      15   

LSTR,      15,      16   

LSTR,      16,      17   

LSTR,      17,      18   

LSTR,      18,      19   

LSTR,      19,      20   

LSTR,      19,      23   

LSTR,      23,      15   

LSTR,       9,      20   

LSTR,       8,      19   

LSTR,       7,      18   

LSTR,       6,      17   

LSTR,       5,      16   

LSTR,       4,      15   
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LSTR,       3,      14   

LSTR,       2,      13   

LSTR,       1,      12   

LSTR,      10,      22   

LSTR,      11,      23   

LSTR,       2,      11   

LSTR,      13,      23   

LSTR,      10,      11   

LSTR,      22,      23   

LSTR,      11,       6   

LSTR,      23,      17   

!Create arc for representing circular notch 

LARC,10,9,100,H_radius 

LARC,1,10,100,H_radius 

LARC,12,22,101,H_radius    

LARC,22,20,101,H_radius   

KDELE,100,101  !Delete keypoints initially needed for arc generation   

!Create Areas using lines 

AL,1,39,34,32   

AL,1,29,11,28    

AL,29,39,30,40  

AL,34,30,35,31  

AL,11,40,35,33  

AL,28,32,31,33  

AL,34,30,35,31  

AL,34,38,8,9     

AL,8,21,18,22   

AL,9,22,19,31   

AL,30,38,21,41  

AL,41,18,19,35 

AL,2,28,12,27  

AL,28,32,31,33     

AL,10,31,20,26   
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AL,27,3,26,13   

AL,3,2,32,10  

AL,13,12,33,20 

AL,9,22,19,31  

AL,22,7,23,17     

AL,6,23,16,24   

AL,36,24,37,31   

AL,9,7,6,36  

AL,19,17,16,37 

AL,10,31,20,26  

AL,31,36,24,37     

AL,5,24,15,25   

AL,4,25,14,26   

AL,10,36,5,4  

AL,20,37,15,14 

!Create volumes using areas 

VA,1,2,3,4,5,6 

VA,4,7,8,9,10,11 

VA,6,12,13,14,15,16 

VA,9,17,18,19,20,21 

VA,19,13,22,23,24,25 

wpstyle,0.004375,0.1,-1,1,0.003,0,2,,5   

!Dividing volume into layers for applying composite properties 

!current model which is one-eighth uses 8 plies and thus work 

!plane is called 7 times to create the desired number of layers. 

*do,i,1,7,1 

 wpof,,,-0.004375 

 VSBW,ALL 

*end do 

VGLUE, ALL !Glue all the volumes together 

!Use mathcad to calculate stiffness matrix for each ply 

!since four plies are repeated so 4 sets of stiffness matrices are used as input. 
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TOFFST,273    

TB,ANEL,1,1,21,0 

TBTEMP,28 

TBDATA,,1.59e6,6.429e5,5.7e5,0,0,0    

TBDATA,,2.011e7,6.429e5,0,0,0,1.59e6    

TBDATA,,0,0,0,1.624e6,0,0 

TBDATA,,1.624e6,0,1.624e6,,,   

TB,ANEL,2,1,21,0 

TBTEMP,28 

TBDATA,,1.59e6,6.429e5,5.7e5,0,0,0    

TBDATA,,2.011e7,6.429e5,0,0,0,1.59e6    

TBDATA,,0,0,0,1.624e6,0,0 

TBDATA,,1.624e6,0,1.624e6,,,   

TB,ANEL,3,1,21,0 

TBTEMP,28   

TBDATA,,1.59e6,6.429e5,5.7e5,0,0,0    

TBDATA,,2.011e7,6.429e5,0,0,0,1.59e6    

TBDATA,,0,0,0,1.624e6,0,0 

TBDATA,,1.624e6,0,1.624e6,,,   

TB,ANEL,4,1,21,0 

TBTEMP,28  

TBDATA,,1.59e6,6.429e5,5.7e5,0,0,0    

TBDATA,,2.011e7,6.429e5,0,0,0,1.59e6    

TBDATA,,0,0,0,1.624e6,0,0 

TBDATA,,1.624e6,0,1.624e6,,,   

!Define the element used. For this work Solid 64 which is 8 noded 

!brick element is used. The element coordinate system can be set 

!parallel to global. The y axis in this work corresponds to 1-dir. 

ET,1,SOLID64 

KEYOPT,1,1,0 

KEYOPT,1,5,0 

KEYOPT,1,6,0 
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!Assigning material properties to each layer. 

 FLST,5,10,6,ORDE,10    

FITEM,5,12,14,6,8,10,34,35,11,23,33,    

CM,_Y,VOLU   

VSEL, , , ,P51X  

CM,_Y1,VOLU  

CMSEL,S,_Y   

CMSEL,S,_Y1  

VATT,1, ,1,0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

FLST,5,10,6,ORDE,10   

FITEM,5,19,20,16,17,18,39,40,36,37,38     

CM,_Y,VOLU   

VSEL, , , ,P51X  

CM,_Y1,VOLU  

CMSEL,S,_Y   

CMSEL,S,_Y1  

VATT,2, ,1,0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

FLST,5,10,6,ORDE,10    

FITEM,5,24,25,9,13,21,44,45,15,41,43   

CM,_Y,VOLU   

VSEL, , , ,P51X  

CM,_Y1,VOLU  

CMSEL,S,_Y   

CMSEL,S,_Y1  

VATT,3, ,1,0    

CMSEL,S,_Y   

CMDELE,_Y    
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CMDELE,_Y1   

FLST,5,10,6,ORDE,10   

FITEM,5,29,30,26,27,28,32,42,7,22,31     

CM,_Y,VOLU   

VSEL, , , ,P51X  

CM,_Y1,VOLU  

CMSEL,S,_Y   

CMSEL,S,_Y1  

VATT,4, ,1,0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!Mesh the layers 

FLST,5,27,4,ORDE,27  

FITEM,5,2    

FITEM,5,5    

FITEM,5,10   

FITEM,5,12   

FITEM,5,15   

FITEM,5,20   

FITEM,5,62   

FITEM,5,65   

FITEM,5,77   

FITEM,5,82   

FITEM,5,85   

FITEM,5,93   

FITEM,5,114  

FITEM,5,117  

FITEM,5,127  

FITEM,5,134  

FITEM,5,137  

FITEM,5,145  

FITEM,5,164  
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FITEM,5,167  

FITEM,5,177  

FITEM,5,186  

FITEM,5,189  

FITEM,5,197  

FITEM,5,216  

FITEM,5,219  

FITEM,5,229  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,2*a, , , , ,1  

FLST,5,27,4,ORDE,27  

FITEM,5,4    

FITEM,5,7    

FITEM,5,14   

FITEM,5,17   

FITEM,5,36   

FITEM,5,-37  

FITEM,5,71   

FITEM,5,-72  

FITEM,5,76   

FITEM,5,89   

FITEM,5,-90  

FITEM,5,92   

FITEM,5,123  

FITEM,5,-124 

FITEM,5,126  

FITEM,5,141  

FITEM,5,-142 

FITEM,5,144  
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FITEM,5,173  

FITEM,5,-174 

FITEM,5,176  

FITEM,5,193  

FITEM,5,-194 

FITEM,5,196  

FITEM,5,223  

FITEM,5,-224 

FITEM,5,228  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,2*b, , , , ,1  

FLST,5,70,4,ORDE,61  

FITEM,5,1    

FITEM,5,6    

FITEM,5,9    

FITEM,5,11   

FITEM,5,16   

FITEM,5,19   

FITEM,5,23   

FITEM,5,-24  

FITEM,5,26   

FITEM,5,-28  

FITEM,5,34   

FITEM,5,-35  

FITEM,5,38   

FITEM,5,-42  

FITEM,5,44   

FITEM,5,47   

FITEM,5,-50  
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FITEM,5,52   

FITEM,5,-53  

FITEM,5,57   

FITEM,5,-58  

FITEM,5,60   

FITEM,5,66   

FITEM,5,-67  

FITEM,5,70   

FITEM,5,73   

FITEM,5,79   

FITEM,5,-81  

FITEM,5,83   

FITEM,5,88   

FITEM,5,94   

FITEM,5,97   

FITEM,5,105  

FITEM,5,109  

FITEM,5,-110 

FITEM,5,113  

FITEM,5,115  

FITEM,5,120  

FITEM,5,122  

FITEM,5,131  

FITEM,5,-133 

FITEM,5,135  

FITEM,5,140  

FITEM,5,146  

FITEM,5,149  

FITEM,5,157  

FITEM,5,159  

FITEM,5,161  

FITEM,5,-163 

FITEM,5,165  
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FITEM,5,170  

FITEM,5,172  

FITEM,5,183  

FITEM,5,-184 

FITEM,5,192  

FITEM,5,198  

FITEM,5,201  

FITEM,5,209  

FITEM,5,213  

FITEM,5,-214 

FITEM,5,222  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,2*a, , , , ,1  

FLST,5,70,4,ORDE,60  

FITEM,5,3    

FITEM,5,8    

FITEM,5,13   

FITEM,5,18   

FITEM,5,25   

FITEM,5,27   

FITEM,5,-29  

FITEM,5,31   

FITEM,5,-35  

FITEM,5,38   

FITEM,5,-41  

FITEM,5,46   

FITEM,5,-49  

FITEM,5,55   

FITEM,5,-56  
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FITEM,5,58   

FITEM,5,-59  

FITEM,5,64   

FITEM,5,66   

FITEM,5,-67  

FITEM,5,80   

FITEM,5,-81  

FITEM,5,83   

FITEM,5,-84  

FITEM,5,86   

FITEM,5,91   

FITEM,5,97   

FITEM,5,99   

FITEM,5,105  

FITEM,5,-106 

FITEM,5,108  

FITEM,5,110  

FITEM,5,112  

FITEM,5,-113 

FITEM,5,115  

FITEM,5,-116 

FITEM,5,132  

FITEM,5,-133 

FITEM,5,135  

FITEM,5,-136 

FITEM,5,143  

FITEM,5,149  

FITEM,5,151  

FITEM,5,157  

FITEM,5,-160 

FITEM,5,162  

FITEM,5,-163 

FITEM,5,165  
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FITEM,5,-166 

FITEM,5,169  

FITEM,5,184  

FITEM,5,188  

FITEM,5,201  

FITEM,5,203  

FITEM,5,209  

FITEM,5,211  

FITEM,5,-212 

FITEM,5,214  

FITEM,5,218  

FITEM,5,226  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    

!*   

LESIZE,_Y1, , ,2*a, , , , ,1  

FLST,5,88,4,ORDE,43  

FITEM,5,42   

FITEM,5,-43  

FITEM,5,45   

FITEM,5,47   

FITEM,5,50   

FITEM,5,-51  

FITEM,5,54   

FITEM,5,-55  

FITEM,5,61   

FITEM,5,63   

FITEM,5,68   

FITEM,5,-69  

FITEM,5,73   

FITEM,5,-75  
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FITEM,5,78   

FITEM,5,94   

FITEM,5,-105 

FITEM,5,107  

FITEM,5,111  

FITEM,5,-112 

FITEM,5,118  

FITEM,5,-121 

FITEM,5,125  

FITEM,5,128  

FITEM,5,-130 

FITEM,5,146  

FITEM,5,-157 

FITEM,5,159  

FITEM,5,168  

FITEM,5,-171 

FITEM,5,175  

FITEM,5,178  

FITEM,5,-182 

FITEM,5,198  

FITEM,5,-211 

FITEM,5,215  

FITEM,5,217  

FITEM,5,220  

FITEM,5,-221 

FITEM,5,225  

FITEM,5,-227 

FITEM,5,230  

FITEM,5,-234 

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,,_Y    
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!*   

LESIZE,_Y1, , ,2, , , , ,1   

MSHAPE,0,3D 

MSHKEY,1 

VMESH,ALL 

!Apply boundary condition 

/SOL 

FLST,2,16,5,ORDE,16  

FITEM,2,26   

FITEM,2,31   

FITEM,2,40   

FITEM,2,42   

FITEM,2,53   

FITEM,2,66   

FITEM,2,73   

FITEM,2,86   

FITEM,2,89   

FITEM,2,106  

FITEM,2,113  

FITEM,2,130  

FITEM,2,133  

FITEM,2,146  

FITEM,2,153  

FITEM,2,173  

DA,P51X,SYMM 

FLST,2,16,5,ORDE,16  

FITEM,2,35   

FITEM,2,50   

FITEM,2,59   

FITEM,2,70   

FITEM,2,77   

FITEM,2,98   

FITEM,2,110  
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FITEM,2,117  

FITEM,2,121  

FITEM,2,123  

FITEM,2,138  

FITEM,2,150  

FITEM,2,157  

FITEM,2,164  

FITEM,2,167  

FITEM,2,178  

DA,P51X,SYMM 

FLST,2,5,5,ORDE,5    

FITEM,2,5    

FITEM,2,11   

FITEM,2,16   

FITEM,2,21   

FITEM,2,25   

DA,P51X,SYMM 

!Apply load 

FLST,2,16,5,ORDE,16  

FITEM,2,49   

FITEM,2,57   

FITEM,2,76   

FITEM,2,80   

FITEM,2,97   

FITEM,2,100  

FITEM,2,116  

FITEM,2,120  

FITEM,2,137  

FITEM,2,140  

FITEM,2,156  

FITEM,2,160  

FITEM,2,163  

FITEM,2,171  
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FITEM,2,177  

FITEM,2,180  

/GO  

!*   

SFA,P51X,1,PRES,-30000    
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Appendix A-3 

Strain Vs X distance 
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Appendix A-4 

Macro to calculate volume averaged stress in ANSYS 

! Create macro to calculate average stress 

*create,rve !,mac   

/nopr  

! Get element volume 

ETABLE, ,VOLU 

! Get element stress 

ETABLE, ,S,X 

 ETABLE, ,S,Y 

ETABLE, ,S,Z 

ETABLE, ,S,XY 

ETABLE, ,S,XZ 

ETABLE, ,S,YZ 

! Stress by element volume 

!This is same as dvijσ  

SMULT,SXV,VOLU,SX,1,1,       

SMULT,SYV,VOLU,SY,1,1, 

SMULT,SZV,VOLU,SZ,1,1, 

SMULT,SXYV,VOLU,SXY,1,1, 

SMULT,SXZV,VOLU,SXZ,1,1, 

SMULT,SYZV,VOLU,SYZ,1,1, 

SSUM 

! Integer stress along total volume 

!This is same as 
V

dvijσ∫  

*get,totvol,ssum,,item,volu  

*get,totsx ,ssum,,item,sxv 

*get,totsy ,ssum,,item,syv 

*get,totsz ,ssum,,item,szv 

*get,totsxy ,ssum,,item,sxyv 

*get,totsxz ,ssum,,item,sxzv 

*get,totsyz ,ssum,,item,syzv 
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! Compute average RVE stress 

!This is same as 
1

V

dvijV
σ∫  

Sxx0 = totsx/totvol      

Syy0 = totsy/totvol 

Szz0 = totsz/totvol 

Sxy0 = totsxy/totvol 

Sxz0 = totsxz/totvol 

Syz0 = totsyz/totvol 

/gopr 

*end !srecover 

/POST1              ! Post-processor module 

SET,1               ! First column coefficients 

! First column coefficients 

!As explained in the sec. 5.5.1-5.5.6 only 3 load steps are needed to find all the 

!elastic properties of the composite.   

*use,Rve 

C11 = Szz0 

C12 = Sxx0 

SET,2               ! Second column coefficients 

*use,Rve 

C22 = Sxx0 

C23 = Syy0 

SET,3               ! Sixth column coefficients 

*use,Rve 

C66 = Sxz0 

E1=C11-2*C12*C12/(C22+C23) 

E2 = (C11*(C22+C23)-2*C12*C12)*(C22-C23)/(C11*C22-C12*C12) 

Nu12 = C12/(C22+C23) 

Nu23 = (C11*C23-C12*C12)/(C11*C22-C12*C12) 

G23 = (C22-C23)/2 ! or GT=E1/(2(1+Nu23)) 

G12=C66 

FINISH                  ! Exit post-processor module 


