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Chair:  Ananth Kalyanaraman 
 

The problem of identifying the sequence that constitutes a peptide or a 

protein molecule is referred to as “peptide identification” and is of 

fundamental importance in proteomics research. The most popular approach 

to identify peptides is through database search, in which an experimental 

spectrum generated from fragments of an unknown peptide using mass 

spectrometry is compared with a database of known protein sequences. The 

goal is to identify the unknown peptide by comparing to database sequences. 

The exponential growth rates and overwhelming sizes of sequence databases 

make this an ideal application for parallel computing. However, the present 

generation of software tools is not expected to scale to the magnitudes of data 

that will be generated in the next few years, as they are either serial algorithms 

or parallel strategies that are inherently serial. In this thesis, we present an 

efficient parallel approach for peptide identification through database search. 

Three key factors distinguish our approach from that of existing solutions: i) 

(space) Given þ processors and a database with N residues, we provide the first 

space-optimal parallel algorithm (O(N/þ)); ii) (time) By masking 

communication with computation and by using MPI one-sided 

communication primitives, our algorithm minimizes parallel overhead and 

ensures efficient scaling of run-time; and iii) (quality) The performance gains 

achieved using parallel processing has allowed us to incorporate highly 

accurate, albeit compute-intensive statistical models. We present the design and 
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evaluation of two different algorithms that implement our approach. 

Experimental results using 2.65 million microbial proteins show linear scaling 

up to 128 processors, with parallel efficiency maintained at ~50%. As a 

concrete demonstration of a real world application, we applied our approach 

for de novo identification of species from metagenomics data. To the best of our 

knowledge, this is the first time mass spectral data have been used for 

metagenomics species identification. Collectively, we expect that the 

approaches presented in this thesis will be critical to meet the data-intensive 

and qualitative demands stemming from this important application domain. 
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CHAPTER ONE 

INTRODUCTION 

Proteomics is the study of proteins – by their sequence, structure, 

function and interaction. It is a central topic in systems biology research, where 

the goal is to understand the composition and functioning of a biological 

system by its components. A fundamental problem in proteomics is the 

identification of proteins, or more generally peptides, that are expressed in a 

specific organism or a community of organisms. As proteins constitute the 

primary molecular basis for cellular functions, peptide identification is 

important for understanding the cellular dynamics of organisms under various 

environmental conditions. It also holds the key to advance our understanding 

of the molecular basis of diseases and thereby, for their treatment. Recently, 

peptide identification has also become critically important in the emerging area 

of metagenomics, where the goal is to understand the composition and functions 

of environmental microbial communities. 

A peptide is a fragment derived from a protein sequence.  For 

computational purposes, a peptide can be represented as a sequence (or string) 

of characters over the alphabet of 20 amino acids residues present in the 

nature. The problem of identifying an unknown peptide is therefore equivalent 
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to the problem of finding the sequence of amino acid residues that constitutes 

it. 

There are two primary approaches followed for peptide identification: i) 

De novo peptide identification [Chen et al., 2005; Dancick et al., 1999; Liu C. et 

al., 2006; Pevzner et al., 2001; Taylor et al., 1997] and ii) peptide identification 

through database search [Craig et al., 2003; Craig et al., 2004; Duncan et al., 

2005; Bjornson, 2008; Cannon et al., 2005]. Both approaches rely on the use 

of experimental spectral data obtained using mass spectrometry (aka mass 

spectroscopy).  

1.1 Mass Spectrometry 

Mass spectrometry (“MS”) is a powerful and now a standard technique 

used to generate experimental spectrum for an unknown peptide. In this 

technique, multiple copies of an unknown (target) peptide are experimentally 

fragmented and the number of occurrences of all the fragments generated 

along with their mass-to-charge ratio (m/z) is recorded. The abundance or 

frequency of these fragments is then plotted over a range of mass-to-charge 

ratio values.  The resulting plot of peak intensities (y-axis) to m/z values (x-

axis) is called an experimental spectrum for the target peptide. Along with the 

experimental spectrum, this technique also outputs total mass of the parent 

target peptide. From a sequence standpoint, MS tries to capture as fragments 
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corresponding to all prefixes and suffixes of the parent peptide. A typical 

graph (spectrum) produced by the spectrometer is as shown in Figure 1.1.  

The subsequent computational task is to deduce the peptide sequence 

from its experimental spectrum. For example, Figure 1.1 shows an 

experimental spectrum with several peaks. Here, each peak corresponds to a 

unique fragment and the location of the peak is determined by the sum total 

of mass and charge of its constituent amino acid residues. Therefore, by 

inspecting the differences of the m/z values between peaks, the sequence of 

 Figure 1.1 – A typical experimental spectrum generated from Mass 
Spectrometry. Figure Source:  
http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm Last Date Accessed: 
Nov11, 2009. 
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the parent peptide (and its individual fragments) could be reconstructed, as 

shown in the example of Figure 1.1. Such computational approaches are 

called de novo peptide identification approaches [Chen et al., 2005].  

There are a couple of limitations with de novo approaches. Experimental 

noise could manifest itself in the form of false peaks which could potentially 

render the computational identification infeasible. Also, the identification 

process is compounded by the need to take into account for a number of 

variations such as post-translational modifications or PTMs.  

A complementary and a more popular approach is to use database search 

[Craig et al., 2003; Craig et al., 2004; Duncan et al., 2005; Bjornson, 2008; 

Cannon et al., 2005], wherein an experimental spectrum is compared against 

model spectra generated from a database of already known protein 

sequences. The goal of this matching operation is to identify those protein 

sequences in the database that are most likely to have generated an 

experimental spectrum similar to that of the test spectrum of the unknown 

target peptide. However, this operation could become computationally 

cumbersome if each test spectrum is to be compared against the entire 

database. To reduce the burden on computation, a subset of database 

sequences is first shortlisted as “candidates” and the extensive evaluation by 

spectrum to sequence matching is performed only over the candidates. 
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Candidates are typically identified by a simple, computationally inexpensive, 

mass-based filtering scheme. The spectrum to sequence matching is 

performed by first generating a model spectrum for each of the candidate 

sequence and then comparing the two spectra using a scoring function that 

assigns a likelihood score. Subsequently, the results of matching are rank 

ordered and output by their likelihood scores.  

1.2 Computational Challenges in Peptide Identification 

1.2.1 Database Sizes and Growth Rates 

 Given the reliance of peptide identification on databases, the explosive 

growths observed in molecular sequence databases is of a primary and 

immediate concern. The databases used by peptide identification approaches 

typically include conventional protein sequences (e.g.,UniProt/Swiss-Prot 

[Boeckmann et al., 2003]) and/or unconventional peptide sequences derived 

from putative open reading frames (ORFs) of genomic/metagenomic DNA 

(e.g., CAMERA portal [CAMERA, 2009]). These collections are growing at 

exponential rates [Boeckmann et al., 2003; McCormack, 1994]. As seen from 

Figure 1.2, the Swiss-Prot database has grown from 1e+6 to 1e+7 in 5 years. 

Furthermore, nucleotide databases are also growing at an even faster rate, 
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Figure 1.2 – Growth of different databases from the year 1987. Figure source: 
http://www.dna.affrc.go.jp/growth/P-history.html. 
 
 

as shown in the Figure 1.3. The rapid growth of these databases has made peptide 

identification a data-intensive problem.  

Figure 1.4 depicts average number of candidates generated per spectrum for 

different set of sequences. For protein families this number is 1e+4, while 

for microbial communities this number is more than 1e+7. If a sample 

involves any unsequenced genome(s) corresponding to the target peptides, 

which is typically the case in metagenomic projects, the number of candidates  
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Figure 1.3 –Plot showing data growth in the NCBI GenBank nucleotide 
database. 
 

 

      
Figure 1.4 – Plot showing the number of peptide candidates to be evaluated 
per experimental spectrum generated from different data classes. 
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for evaluation increases by orders of magnitudes. Taking post translational 

modifications into (PTMs) into account increases it by 10 to100, depending 

upon the number of PTMs considered. The need for computing these large volumes 

of candidate comparisons makes peptide identification a compute-intensive application as 

well.  

1.2.2 Current State of Computational Tools 

 While all the above problem characteristics suggest that peptide 

identification is an ideal candidate to benefit from the application of high 

performance computing (HPC), there are hardly any HPC approaches in the 

current suite of software tools. The present generation of software tools 

[Craig et al., 2003; Craig et al., 2004; Duncan et al., 2005; Bjornson, 2008; 

Cannon et al., 2005] are all either serial programs or parallel programs that are 

built upon inherently serial algorithms. Due to this design limitation, both 

space and time pose a serious scalability bottleneck for their application in 

large-scale peptide identification. All current software that implement peptide 

database search store the entire database in the local memory of each 

compute node. For instance, a processor with 1GB RAM can store up to 

~1.27x106 sequences, assuming an average sequence length of 300 amino 

acid residues. Running the code on a machine with more memory is still not 

a scalable solution here, given the exponential growth rates the sequence 
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databases have been witnessing. One way to overcome this space bottleneck 

is to resort to hard disk. The database could be stored in hard disk and could 

be fetched part by part in memory. This would require frequent access to 

hard disk, which is an expensive operation. This could exacerbate the 

performance of a system. Multiple processors simultaneously accessing the 

databases would result in serialization issues as well.  

1.3 Motivation for New Development 

 This gap in computational tools coupled with the potential of the application 

to benefit from HPC, collectively sets the motivation for this thesis work – 

i.e., toward the development and application of novel, scalable HPC tools for 

large-scale peptide identification. 

1.4 Thesis Contributions 

 In this thesis, we investigate the problem of peptide identification from the 

perspective of large-scale application. We present a new algorithm and 

software that follows the databases search approach and solves the problem 

of peptide identification in parallel. Three key factors distinguish our 

approach from that of existing solutions: i) (space) Given p processors and a 

database with N residues, we provide the first space-optimal algorithm 

(O(N/p)) under distributed memory machine model; ii) (time) Our algorithm 
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uses a combination of parallel techniques such as one-sided communication 

and masking of communication with computation to ensure that the 

overhead introduced due to parallelism is minimal; and iii) (quality) The 

approach uses same techniques as MSPolygraph for peptide identification. 

These techniques include use of more accurate probabilistic scoring 

functions which ensure high quality output. Our experimental results using 

2.65x106 microbial protein sequences show linear scaling up to 128 

processors on a Linux commodity cluster, with parallel efficiency at ~50%. 

Finally, we also describe a real-world large-scale application of species 

identification in metagenomic data, which makes use of our peptide 

identification approach.  

Collectively, we expect that the work presented in this thesis will be critical to 

meet the data-intensive and qualitative demands stemming from this 

important application domain. 
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CHAPTER TWO 

BACKGROUND AND RELATED WORK 

2.1 Computational Peptide Identification 

There are two approaches primarily followed in peptide identification: i) De 

novo peptide sequencing approach ii) Database search approach. 

               In the de novo sequencing approach [Chen et al., 2000], an 

experimental spectrum is first converted into a spectrum graph, which is an 

acyclic directed graph. Each peak from the experimental spectrum is 

represented as two nodes, (called Ni and Ci for a peak i) in the graph to 

represent a possibility that a fragment could either be a prefix molecule or a 

suffix molecule derived from the target peptide. These nodes (Ni and Ci for 

each of the peaks i) are plotted on an m/z line one after another such that Ni 

is plotted at a distance equal to the mass of the corresponding fragment/peak 

(which is obtained from the experimental spectrum) and Ci is plotted at a 

distance equal to, total mass of the target peptide minus mass of the 

fragment/peak. Edges are then drawn from a node x to a node y if and only 

if all the following conditions are satisfied: i) x comes before y on the m/z 

line. ii) Their mass difference is equal to total mass of some amino acid 

sequence. iii) They are not originated from the same peak [Chen et al., 2000]. 
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Here, each path from start node to end node represents a possible sequence 

for the peptide. Such a path which goes through exactly one node (Ni or Ci) 

for each pair is then found out. This path corresponds to possible amino acid 

sequence of the target peptide. This approach however is sensitive to 

experimental noise and requires accurate data that current technologies are as 

yet incapable of producing. This approach is spectrometer specific too.  Each 

spectrometer has a different level of accuracy and produces different types of 

fragments. The de novo approach is therefore limited by its capability or the 

lack of it to take into account these differences. 

An alternative approach to peptide identification is through database search. 

Several programs exist for peptide identification through database search: 

Mascot [McCormack et al., 1994], Sequest [Perkins et al., 1999], Tandem [Craig et 

al., 2004], X! Tandem [Craig et al., 2003], Parallel Tandem [Duncan et al., 2005], 

X!!Tandem [Bjornson et al., 2008] and MSPolygraph [Cannon et al., 2005]. Out 

of these, Mascot [McCormack et al., 1994] and Sequest [Perkins et al., 1999] are 

commercially available and are serial programs. In 2004, Craig et al. [Craig et 

al., 2004] came up with an implementation of Tandem, which is again is a 

serial program. X!Tandem [Craig et al., 2003] is one of the most popular 

software tools available, and is a shared memory implementation of Tandem. 

X!Tandem executes parallel threads on shared memory multiprocessors 

(SMPs). However, to achieve significant speed up it requires large SMPs. 
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Since these machines are expensive. Duncan et al. [Duncan et al., 2005] came 

up with a parallel version of X!Tandem, called Parallel Tandem. Parallel 

Tandem makes use of either PVM or MPI along with X!Tandem. However, 

this version is a collection of ad-hoc scripts having following drawbacks: i) 

Results produced by parallel tandem differ significantly from that of 

X!Tandem. ii) The final sequential step puts limitations on parallelization. 

[Bjornson et al., 2008]. 

Bjornson et al. [Bjornson et al., 2008] created another implementation of 

Tandem using MPI, in which they addressed the issues discussed above. This 

version of Tandem, called X!!Tandem, produces identical results as 

X!Tandem and implements parallelism in a better way by parallelizing both 

the refined and unrefined steps of X!Tandem. X!!Tandem, therefore, has 

been observed to provide better speedup and decreased runtime than Parallel 

Tandem, as shown in Figure 2.1. The strength of this program is its speed. 

During experimentation, we found that X!!Tandem takes less than 2 minutes 

to evaluate 1210 experimental spectra against a database having 2.65x106 

sequences on 8 processors.  
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Figure 2.1 – Plots [Bjornson et al., 2008] showing a) Total runtime of the 
X!Tandem, X!!Tandem, and Duncan methods (Parallel Tandem), plotted log-
log and b) Speedup of the X!Tandem, X!!Tandem, and Duncan methods 
(Parallel Tandem), plotted log-log. The plots have been reproduced here with 
permission from the Journal of Proteome Research. 
 
2.2 Trade offs between Quality and Performance 

The superior performance shown by X!!Tandem is mainly because of the 

fast, fairly simple statistical model used by the algorithm and the aggressive 

filtering step followed at the beginning. In this step, a rapid survey of protein 

sequences is carried out to select potential candidates. This step does not take 

PTMs into account. This could miss out some true predictions, hence 

affecting quality and accuracy of the output. This is important, especially in 

case of complex data such as metagenomics data where spectra are to be 

compared with an overwhelmingly large number of candidates (Refer Figure 

1.4). The filtering step could miss out true predictions in this case. Due to 

this, models with more accuracy are required. However, these models would 

take significantly more amount of time for evaluation.  
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Cannon et al. [Cannon et al., 2005] came up with a more accurate method 

(MSPolygraph) that makes use of probability and log likelihood ratio for 

evaluation. MSPolygraph is unique in its flexibility to handle model spectra in 

that it combines the use of highly accurate spectral libraries, when available, 

with the use of on-the-fly generation of sequence averaged model spectra 

when spectral libraries are not available. This effort to enrich quality of 

prediction, however, comes with increased computation cost. For example, 

we found that MSPolygraph takes approximately 42 minutes for 1210 spectra 

with 2.65x106 sequences on 128 processors, while the same run of 

X!!Tandem on 8 processors takes less than 2 minutes.  

2.3 Memory Scalability: A Bottleneck 

The algorithmic steps in MSPolygraph can be summarized as follows: 

S1) Instantiate one master processor and þ−1 worker processors  (þ is the 

number of processors used). The master processor loads query set Q into its 

local memory, while all workers load the entire protein database D in its local 

memory [Gropp et al., 2009]. 

S2) The master processor starts by distributing small, fixed size batches of 

experimental spectra (or queries) to individual worker processors. 
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S3) Each worker processor works on the assigned batch of queries, 

processing one query at a time and reporting at most τ top matched 

sequences to an output file. After processing all the queries in the assigned 

batch, worker processor sends notification to master processor. Master 

processor then assigns a new batch of queries to that processor. 

S4) The process is continued iteratively until all the queries at the master 

processor have been processed. 

The above parallelization scheme has two main advantages: i) the processing 

of every query is strictly localized within each worker and generates 

practically no communication during processing, thereby saving on the cost of 

communication; and ii) the master processor plays the role of a load 

distributor and since the queries are allocated to worker processors in small 

batches based on demand, the workload is expected to be balanced. 

However, the underlying algorithm of MSPolygraph is such that each processor 

stores entire database in memory, resulting in an O(N) space complexity. 

Since each processor stores the entire database in memory it could result in a 

space bottleneck, especially considering the exponential growth rates of the 

public sequence databases. We observed that with 1 GB memory the current 

implementation could take 1.27x106 protein sequences, beyond which the 

code resorts to swap space or crashes out of memory. Space is at least as 
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important a consideration as run-time efficiency, given the need for analyzing 

metagenomics data sets containing peptides from many organisms is 

becoming increasingly common. This necessitates an efficient and memory 

scalable implementation such that the resulting tool would scale with 

processor size with respect to memory and time, and would produce high 

quality results. 

To address these issues, we developed a distributed memory algorithmic 

model for MSPolygraph. The idea here is to distribute database over available 

processors and then fetch the database by communicating with other 

processors. Each processor, in this case, will store a part of the database and 

not the entire database. In the thesis, we present and compare two different 

strategies that follow this model. 
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CHAPTER THREE 

SCALABLE PARALLEL ALGORITHMS AND SOFTWARE FOR 

LARGE-SCALE PEPTIDE IDENTIFICATION 

3.1 Definitions and Problem Statement 

Let q denote an unknown peptide sequence, which is fragmented using MS. 

A fragment of a peptide represents either a prefix or a suffix of q. MS 

generates an experimental spectrum of q, which is a plot of the relative 

abundance of its fragments binned by their m/z ratio values. The 

spectroscope also reports the m/z of the whole parent peptide q, denoted by 

m(q).  

Given q, a suffix or prefix of another (known) peptide sequence is said to be 

a candidate for q if the suffix’s/prefix’s m/z is m(q)±δ (where δ is a tolerance 

constant.) 

An experimental spectrum for q is said to match with a candidate peptide if it 

can be shown that the candidate is most likely to generate a model spectrum 

similar to that of the experimental spectrum. This is achieved in MSPolygraph 

by generating two different spectra [Cannon et al., 2005] — one a model 

spectrum for the candidate and the other being a spectrum generated for a 

random peptide — and then comparing both against the experimental 
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spectrum. The result is a likelihood ratio score, and if the score is above a 

user-specified cutoff then the corresponding matching peptide is reported as 

a “hit”. 

Let Q = {q1, q2 . . . qm} denote a set of m input experimental spectra 

generated from m unknown peptides, and let D = {d1, d2 . . . dn} denote a 

database of n already known peptide sequences. Let |di| denote the number 

of residues, i.e. sequence length in sequence di, and let N = ∑
=

n

i 1

|di|. We use þ 

to denote the number of processors. The processors are labeled P0, P1 . . . 

Pp−1. For ease exposition, the terms “experimental spectrum” and “query” are 

used interchangeably.  

3.1.1 The Peptide Identification Problem 

 Given sets Q and D, the peptide identification problem is to identify a list of 

at most τ top database hits for every input spectrum q є Q, where τ is a user 

defined constant. 

A value within [10...1,000] is used for τ in practice, although the software 

needs to treat is as a user-specified parameter. 
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3.2 Parallel Algorithms 

As reviewed in chapter 2, all current algorithms and software including 

MSPolygraph assume that the entire database D can fit in the local memory of 

every processor. This assumption may no longer be practical as sequence 

databases continue to grow at exponential rates. To circumvent this 

scalability bottleneck, we designed and investigated two space optimal 

parallel algorithms. Our underlying approach in both of these algorithms is to 

partition the database evenly among the þ processors, such that space-

optimal storage is achieved at every processor. Distributing the database, 

however, introduces new challenges related to communication overhead and 

data locality. If a database sequence can generate a candidate for a given 

query, then it has to be made available to the processor handling that query. 

In the worst case, a query may need the entire database and such a worst-case 

is not far from practical expectations (as corroborated in our experiments, 

presented in chapter 4). If a query on processor Pi requires a database 

sequence that is resident in a remote processor Pj’s memory, then there are 

two algorithmic design options:  
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Figure 3.1 – a) Query Transport Model, where query set Q0 is transported 
from P0 to other processors. b) Database Transport Model where database D0 
is transported from P0 to other processors. 
 
 
i) (Database transport model) Communicate the database sequence 

from Pj to Pi over the interconnect network so that the query can be locally 

processed at Pi and  

ii) (Query transport model) Communicate the query from Pi to Pj for 

remote query processing at Pj.  

The query transport model can help especially when m is expected to be 

much smaller than n. However, the challenge with such a scheme is that a 

query can get processed at multiple processor locations, thereby necessitating 

the need for communicating the results to one root processor for merging. 

This merge step could create bottleneck for scaling, for large number of 

queries. On the other hand, the database transport model does not generate 
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such kind of serialization issues as each processor takes full responsibility of 

a query, and does the processing locally. However, this model could 

potentially trigger large volumes of communications for large database sizes 

and could therefore introduce new challenges to maintain parallel scalability. 

 We chose the database transport model to develop our approach. The trick here is to 

efficiently mask the communication costs introduced by the transport of the 

database. The database and queries are distributed statically at the beginning. 

Hence, the model does not require master processor. In what follows, we 

propose two different algorithms that follow the database transport model. 

We call the algorithms simply as Algorithm A and Algorithm B.  

3.3 Algorithm A 

The pseudocode for this algorithm is shown in Figure 3.2. The first phase is 

the initialization phase which involves loading of the database and the 

queries. Since the database is distributed over all the processors involved, 

each processor Pi reads ith (N/þ) part of the database. This is done by 

calculating the size of the database file and then every processor Pi loading 

the database, starting from offset ((N/þ)*i) till ((N/þ)*(i+1)) in the database 

file. Special care is taken to fully read the sequences at the processor 

boundaries. This way, the database is evenly distributed, guaranteeing its 
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space complexity to be O(N/þ). Similarly, each processor then loads its 

O(m/þ) part of the queries into memory.  

The next phase is query processing. In this phase, each processor processes 

its share of queries in parallel. Processing a query involves i) generation of 

candidates from the database sequences, ii) Generation of model spectrum 

for those candidates ii) matching queries against the spectra generated for 

candidates. For each query, list of up to τ top hits is maintained throughout 

the process, where τ is specified by the user. List of up to τ top hits per query 

Figure 3.2 – Pseudocode for Algorithm A 
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is then output finally. This processing phase is implemented using þ 

iterations. During each iteration s, processor Pi fetches database from 

processor P[(i+s)modþ] , evaluates all the assigned queries against that part and 

generates a temporary list of at the most τ top hits, for each query. This list is 

then compared with the list from the previous iteration and top τ hits from 

both the lists are retained for next iteration. For the very first iteration this 

step is not required, as each processor starts by processing their queries 

against their locally stored database fragments. A processor then outputs final 

list of top τ hits after þ iterations. 

As sequences have to be fetched from other processors, it could lead to two 

possible problems: i) Increase in wait time, and ii) Processors being busy 

serving other processors as the number of processors and hence requests 

grow more.  To overcome these problems we use two techniques: i) Use of one 

sided communication primitive MPI_Get(), which is a non-blocking call and does not 

involve the processor holding the data in  communication. ii) Masking of communication 

with computation. At any iteration s, processor Pi evaluates all its queries against 

Dj, where j = (i+s) mod þ. Before the queries are processed, a non-blocking 

request to receive the database portion for the next iteration is issued. At the 

first iteration, each processor Pi issues a pending request from processor 

P(i+1)mod þ and processes queries against its local part of the database. This 
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overlapping of communication and computation is expected to mask the 

communication overhead incurred. 

3.3.1 Maintaining the Top τ Candidates at Every Iteration 

At any given processor, each iteration generates an arbitrary number of 

candidates along with their scores for every query from its local set. Since 

only top τ candidates are to be retained per query, a running list of top τ 

candidates is maintained and carried forward to every iteration. This running 

list is maintained as follows: the new batch of candidates generated at 

iteration s is merged with the old batch of τ hits carried over from the 

iteration s-1, and the top τ hits from that union is output as the new running 

list. Following are the steps taken at the end of each of the iteration s, to 

maintain the list. 

M1) At iteration s, the running list of top τ candidates per query generated at 

the end of the previous iteration is concatenated with the new batch of 

candidates generated for that query at iteration s. 

M2) A MinHeap data structure is then built of all these candidates, using the 

BuildHeap() procedure, based on the scores of the candidates. 

M3) The function DeleteMin() is then called τ times. This gives us the new 

running list of top τ candidates for iteration s.  
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The above procedure is then carried out for each query.  

3.4 Algorithmic Analysis of Algorithm A 

3.4.1 Space Complexity: 

Lemma: The space complexity of Algorithm A is O(
p

mN + ) at every 

processor. 

Proof: The space complexity to store local queries is O(
p
m ). As for the 

database storage, each Pi keeps three O(N/þ) buffers: i) Di stores the local 

portion of the database; ii) Drecv is the communication buffer. It is written 

into and reused by the non-blocking MPI_Get() primitive at every iteration; 

and iii) Dcomp is the buffer against which local queries are compared at any 

given iteration. This buffer is also reused over all the iterations. Therefore, 

the space complexity of this algorithm is O(
p

mN + ).  

3.4.2 Runtime Complexity: 

3.4.2.1 Computation Complexity 
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 Steps A1 and A3 in Figure 3.2 collectively take O( τ++
+

p
m

p
mN ) for input 

loading and output reporting. For step A2, let r be the total number of 

candidates evaluated against each query, on average. Let ρ be the constant 

time it takes to compare each query against each candidate. Then, the total 

computation complexity for query comparison at every processor is O(
p
m  × 

r × ρ). Before that, each of t he n database sequences is checked to see 

whether it can generate candidates based on its m/z value. In addition, the 

cost of maintaining a running list of the top τ hits for every query is 

O( )log( τττ +++
p
r

p
r

), where O( τ+
p
r

) is the time required for 

build_heap function and O( )log( ττ +
p
r

) is the time required for running the 

DeleteMin() function τ  times. For m/þ queries over þ iterations and 

assuming 
p
r

≥τ , the total time for merging would be O( )log(
p
r

p
rm τ+ ). 

Therefore, the overall computation complexity is: 

O(
p
rmn

p
mr

p
m

p
mN logτρ +×+××+

+ ).  
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3.4.2.2 Communication Complexity 

 Let λ be the network latency and μ be the time to transfer one byte over the 

network. Then the total communication complexity is O(λ×þ+μ×N). 

However, due to masking, the net observed communication cost is expected 

to be significantly less, as demonstrated by our experiments (see chapter 4). 

3.5 Algorithm B 

Algorithm A reads in the entire database, although over p separated 

iterations. However, it may so happen that the local set of queries need only 

a subset of database sequences as candidates. Therefore, in such scenarios it 

may be wasteful to read in all n sequences at each processor. We present here 

an alternate algorithm based on this simple observation: Given a query q, its 

candidates can originate only from database peptides d such that m(d) ≥ m(q). 

This condition for a database sequence to be a candidate could be used to 

reduce the volume of database sequences for communication. The main idea 

of Algorithm B is to sort database sequences based on mass and then store 

the sorted array of sequences in a distributed manner. This allows us to fetch 

data only from a subset of processors. The algorithm, as shown in Figure 3.3, 

is as follows: Prior to query processing, the database is sorted in parallel 

based on the sequences’ m/z values (step B2). The output is a non-

decreasingly sorted array, generated such that each processor receives 
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O(N/þ) characters from the sorted database. During subsequent query 

processing (B3), the sorted order could help pre-determine only that subset 

of processors which have sequences with candidates to offer the local batch 

of queries, implying that it is sufficient to restrict the communication to the 

identified subset. More specifically: Given a query q, its candidates can 

originate only from any database peptide d such that m(d) ≥ m(q). Therefore,  

Figure 3.3 – Pseudocode for Algorithm B 
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if processor Pi computes m(q)min =min ||
1

Qi
j= |m(qj)|, then candidates for any 

query in Qi can originate from only database sequences with m/z values m(d) 

≥ m(q)min. Let Pi' be the lowest ranked processor which has database 

sequences in the sorted order satisfying this property. Then the sender group 

for Pi is the subset {Pi' . . . Pþ−1}. 

3.5.1 Algorithm for Parallel Sorting 

We implemented the sorting step using parallel counting sort as the m/z 

values are bounded in practice ([1 . . . 300,000]). Our parallel sorting 

algorithm is as follows:  

S1) Each processor computes the parent m/z value of each sequence in Di. 

The processors then compute the global maximum of the m/z values 

(m/zmax) using the MPI Allreduce primitive. 

S2) Each processor creates a local “count” array of size m/zmax in which it 

records the frequency occurrence of each m/z value in Di. Subsequently, 

using the MPI_Allreduce primitive on the local count arrays, the processors 

compute a global count array, which they use as a reference to redistribute i) 

the sequences in Di. Sequences are redistributed such that those with the 

same m/z are sent to the same processor, and the sum of the lengths of the 

sequences resulting in each processor is O(N/þ). This data exchange is 
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implemented using the MPI_Alltoallv primitive. Let Ds
i denote the output of 

sorting in processor Pi. Based on the partitioning pivots used in sorting, all 

processors store an array of þ tuples of the form (begini, endi) to keep track of 

m/z boundary values at every other processor Pi. This tuple information can 

be used to determine the value of i'. The query processing step is almost 

identical to that of Algorithm A, with a minor addition: To accelerate 

identifying the range of queries that require any database sequence, we 

maintain the local query set Qi also sorted by their parent m/z values and 

then use binary search. 

3.6 Algorithmic Analysis of Algorithm B 

3.6.1 Space Complexity 

Lemma: The space complexity of Algorithm A is O( p
p

mN
+

+ ) at every 

processor. 

Proof: Along with the buffer to store Qi, this algorithm requires at most 

three of the following four database buffers, each of size O(N/þ), at any 

given execution point: Di, D
s
i, Dcomp, and Drecv. This, along with the þ tuples 

stored at every processor for indexing yields a net space complexity of 

O( p
p

mN
+

+ ).  
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3.6.2 Runtime Complexity 

3.6.2.1 Computation Complexity 

Relative to Algorithm A, the only addition to computation in this algorithm 

is the computation performed during sorting. As we use integer sorting, this 

additive factor is only O(n/þ) which is dominated by O(N/þ). In addition, as 

only those database sequences with at least one candidate to offer for a given 

query are compared against that query, the term O(
p
m × n) should be 

removed. Therefore, the overall computation complexity is:  

O(
p
rmr

p
m

p
mN logτρ +××+

+ ). 

3.6.2.2 Communication Complexity 

The communication complexity of parallel counting sort is dominated by the 

cost of the MPI_Alltoallv primitive. As each processor sends and receives 

approximately N/þ characters, this cost is O(
p
Np µλ +× ). During query 

processing, each processor performs at most þ−1 MPI Get function calls, and 

each such call fetches O(N/þ) characters. Therefore, the overall 

communication complexity of Algorithm B is O(λ × p’ + μ × N’), where p’≤p 

and N’≤N. 
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3.7 Implementation 

The code is written in C/MPI, and can be obtained by contacting one of the 

authors. In our implementation, a linear search as opposed to a binary search 

for queries was used in Algorithm B. Also, for the maintaining candidates list, 

instead of using a heap, two lists (current and previous iteration) 

corresponding to each query were combined and then sorted. Top τ 

candidates were then taken out for each query. 
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CHAPTER FOUR 

EXPERIMENTAL RESULTS  

All experiments were conducted on a 24-node, 192-processor Linux 

commodity cluster. Each node contains 8 2.33 GHz Xeon CPUs and a 

shared 8 GB RAM. The network interconnect is a gigabit Ethernet, and all 

nodes share an NFS mounted file system. To mimic a modest setting under 

most commodity clusters, we set the RAM usage limit to 1 GB RAM per 

MPI process. 

4.1 Input Data 

 We tested our implementations on two collections of data: i) (Human) 88,333 

human protein sequences; and ii) (Microbial) ~2.65x106 microbial protein 

sequences, both downloaded from NCBI GenBank. The human database was 

used for validating our results against MSPolygraph’s results as published in 

[Cannon et al., 2005]. The microbial database was used for large-scale 

performance studies. To conduct scalability tests, we extracted arbitrary 

subsets of sizes 1K, 2K, 4K and so on from both databases. A set of 1210 

spectra from peptides that were used as standards to weekly quality assessment 

purposes at PNNL was used as queries in all experiments. These peptides were 



 

35 
 

obtained from human, cow and bacterial peptides. Table 4.1 shows details of 

input data.  

4.2 Validation 

 The output produced by our approach is expected to be the same as 

MSPolygraph’s, as we internally use the same scoring functions and statistical 

modeling as MSPolygraph. Upon validation, we found that both algorithms A 

and B successfully reproduce MSPolygraph’s output on the human protein 

collection.  

 
 
 
Table 4.1. Input dataset statistics 
 Human Microbial 

#Protein Sequences 88,333 2,655,064 

Total seq. length (in 

residues) 

26,647,093 834,866,454 

Avg. seq. length (in 

residues) 

301.66 314.44 
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4.3 Performance Analysis of Algorithm A 

 The performance analysis was done using database of ~2.65x106 microbial 

protein sequences along with a collection of 1,210 human experimental 

spectra, used as queries. The runs were carried out on up to 128 processors.  

4.3.1 Runtime Analysis 

 Table 4.2 shows the parallel run-time of Algorithm A over the entire range of 

input sizes and processor sizes tested. Although the asymptotic run-time is 

data-dependent (depends on the number of candidates evaluated for all 

queries), the practical expectation is that the run-time scales linearly with the 

database size. This expectation is consistent with our observations within each 

column of Table 4.2. The run-time growth as a function of processor size can 

be explained as follows: Our parallel runtime can be broken down into two 

parts: computation time and “residual communication” time. Residual 

communication time is defined as the time spent by the code waiting for the 

next batch of data, and is equal to the total communication time minus its 

portion masked by computation. In practice, it is only the residual 

communication that matters for the total time. Figure 4.1 shows the effect of 

masking communication with computation for input 100K. We observed that 

the mean±std. deviation of the ratio of residual communication to 

computation time to be 0.36 ±0.11, for all processor sizes greater than 2 on all  
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Table 4.2. The Runtime for Algorithm A for Various Database and Processor 
Sizes. An entry ’ – ’ means the corresponding run was not performed. 
Database 

size (n) 

Number of processors (þ) 

1 2 4 8 16 32 64 128 

1K 36.14 20.08 17.37 9.54 6.55 5.04 4.58 14.95 

2K 66.85 34.87 31.58 16.09 9.37 6.14 5.18 8.69 

4K 132.25 67.9 61.04 30.93 14.95 9.54 6.94 9.26 

8K 255.02 131.19 116.15 55.62 28.70 16.64 9.46 10.86 

16K 590.18 327.38 234.77 121.40 59.36 33.89 17.92 14.64 

32K 1246.52 679.18 488.38 244.16 125.39 74.44 36.78 26.16 

64K 2102.74 1240.47 1034.38 463.45 239.71 137.65 69.37 39.98 

100K 3318.38 1963.77 1414.24 754.22 369.19 224.42 110.41 68.23 

200K 7413.12 3837.21 3152.60 1530.59 804.84 438.72 221.86 119.29 

400K - - - 2894.21 1459.62 840.85 436.36 236.99 

800K - - - 5823.06    2953.05 1580.39 840.82 478.66 

1M - - - 7089.82  3564.05 1948.99 1014.79 583.38 

2M - - - 14322.90 7308.14 4167.30 2056.01 1100.21 

2.6M - - - 17431.66  9495.18 4535.70 2661.97 1382.60 
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input sizes. In other words, the overhead due to communication is 

approximately 25% of the total time even for larger processor sizes.  

4.3.2 Speedup and Efficiency 

The parallel speedup and efficiency are shown in Figure 4.2 and 4.3 

respectively, for all input sizes. Because a 

Figure 4.3 shows the parallel efficiency. As shown, the efficiency is largely 

above 90% at þ = 2, but reduces to ~50% at þ = 4. Thereafter, it is maintained 

at roughly 50% until þ = 128. Maintaining parallel efficiency as high as 50% 

for a wide range of input and processor sizes as shown is a significant result. 

The only anomaly observed is when processor size increases from 2 to 4: At þ 

= 2, each processor has to communicate with just one other processor and 

masking of communication by computation in the first iteration ensures that 

the residual communication is practically negligible. However, at þ = 4 each 

processor is required to communicate with three other processors, which is a 

run of Algorithm A at þ = 1 is 

equivalent to the uni-worker run of MSPolygraph, the speedup values in Figure 

4.2 represent real speedup. As expected, the speedup reduces after 64 

processors for small inputs (1K to 8K), as the input becomes too small for the 

processor size. For input sizes 16K or more, we observed that the speedup is 

linear – i.e., it approximately doubles with doubling of processor size (with the 

only exception being when þ is increased from 2 to 4).  
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Figure 4.1 – A graph showing communication and computation time for 100K 
input 
 

3X-fold increase in communication as compared to communication for þ = 2 

case.  Due to the high latency costs involved, the contribution of the residual 

communication to the total runtime increases from almost 0% to nearly 35%, 

affecting the efficiency and speedup. Except for this anomaly, the efficiency 

for all processor sizes between 4 and 128 is maintained at ~50% — implying 

strong scaling. To assess the positive effect of masking, we implemented a 

second version of the algorithm that does not mask communication with 

computation. Results showed that the masking technique reduces the total run-

time by a factor of 72.75% ± 0.02%. For example, if the parallel run-time  

without masking for a given input is 100s, then the same analysis with masking 

will take only ~27.25s. 
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Figure 4.2 – Real Speedup of Algorithm A  

 

 

 

 
Figure 4.3 – Parallel Efficiency of Algorithm A  
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4.3.3 Candidates Evaluation Rate 

Finally, we also measured the candidate evaluation rate of our algorithm. This 

result is shown in Table 4.3. From an application point of view, this is likely to 

be the most interesting performance measure as it directly conveys the effect 

of parallel processing on peptide identification. As shown, our implementation 

achieves linear scaling of the number of candidates processed every second 

with processor size. 

4.4 Performance Analysis of Algorithm B 

We analyzed Algorithm B’s performance and observed that it was consistently 

outperformed by Algorithm A in speedup and efficiency. Table 4.4 shows a 

concrete example of this behavior, for 20K input. As shown in the Table, 

Algorithm B’s speedup drops down to 10.44 for 64 processors after starting at 

1, whereas the speedup for Algorithm A is equal to 31.02 for 64 processors. 

 
Table 4.3. Number of candidates evaluated per second as a function of 
processor size, for 2.6x106 Microbial dataset   

þ 8 16 32 64 128 

#Candidates per sec. 41,429 76,057 159,220 271,294 522,331 
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Algorithm A outperforms Algorithm B in terms of runtime as well. For 

example, Algorithm A’s runtime for 64 processors is 33.62s, while Algorithm 

B’s runtime is 97.51s for the same run. Upon investigation, we found that this 

decline in speedup and runtime for Algorithm B was because the overhead due  

Table 4.4. Comparative analysis of Algorithm A & Algorithm B for a database 
with 20K sequences 
 
 

Þ 

Algorithm A Algorithm B 

Run-time(s) Speedup Run-time(s) Speedup Sorting Time(s) 

1 1043.14 1.00 1018.74 1.00 1.03 

2  596.95 1.75 833.12 1.22 0.68 

4  514.66 2.02 366.8 2.77 1.29 

8  251.05 4.16 238.0 4.28 1.27 

16  118.97 8.76 124.96 8.10 4.33 

32  62.94 16.57 89.28 11.40 27.82 

64  33.62 31.02 97.51 10.44 65.44 
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to its sorting step. The sorting step was found to be taking a major part of the 

total runtime, with increase in processor size (up to ~67% of total time). For 

example, as shown in the table, for 64 processors the sorting time was found 

to be 65.44s out of the total runtime of 97.51s.  In addition to this, the input 

queries were such that each processor had to communicate and fetch database 

segments from a majority of the other þ − 1 processors, thereby defeating the 

purpose of sorting. However, note that the set of 1,210 experimental spectra 

used in our experiments are from a human spectral database. Therefore, each 

spectrum is expected to result in the evaluation of an order of magnitude larger 

number of candidates than for a spectrum from, say a bacterial genome (see 

Figure 1.4). Because of this property, we expect that the sorting-based 

approach will better serve its purpose of reducing the computation workload 

when applied on spectra generated from less complex data classes (e.g., when 

spectra are from a known protein family or a bacterial genome). 
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CHAPTER FIVE 

A NOVEL APPLICATION OF PEPTIDE IDENTIFICATION: 

SPECIES IDENTIFICATION FROM METAGENOMICS 

SAMPLES USING SPECTRAL DATA 

Species identification is one of the fundamental problems in 

metagenomics. In this chapter, we present a novel application of peptide 

identification to identify species in metagenomics samples using MS/MS 

spectral data. To the best of our knowledge, our approach represents the first 

effort to use MS/MS spectral data for metagenomics species identification, as 

all other existing approaches use DNA-based information.  

5.1 The Species Identification Problem 

The goal of the species identification problem is to identify all the species 

that inhabit a given environmental microbial community. 

5.2 Current Methods  

All current methods for metagenomic species identification use random 

samples of DNA sequenced from the target community as the primary 

source of information. These methods can be broadly classified into three 

different categories [McHardy et al., 2007]:  
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i) Phylogenetic marker methods: Here, the main idea is to use 

highly conserved DNA segments as phylogenetic markers to 

delineate a species present in a community. A widely used 

method of this class is the 16s rRNA based classification [Woese 

et al., 1977], in which the differences observed among 16s rRNA 

gene derived from multiple species is used as a means to 

discriminate among species of the community.   

ii) Composition based methods: This class of methods exploits 

the observation that different species have different DNA 

composition-based signatures such as short, fixed-length DNA 

oligomers (or substrings) [Abe et al., 2003; Abe et al., 2005; 

Deschavanne et al., 1999; Nakashima  et al. 1998; Sandberg  et al., 

2001; McHardy  et al.,2007 ]. 

iii) Homology-based methods: In this approach [Huson et al., 

2007], homology-detection tools such as BLAST [Altschul et al., 

1990] are used to compare the community DNA against already 

sequenced genomes. 

Even though the above approaches are frequently used, they have their 

respective limitations. For the 16s rRNA based method, it has been observed 

that the fragments having these marker genes tend to be less in number 
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[McHardy et al., 2007]. For example, rRNA fragments are found to be 

present in only 0.071% of agricultural soil samples [Mavromatis et al., 2007]. 

Similarly, only 0.06% of the fragments carry rRNA genes in the Sargasso Sea 

sample [Venter et al., 2004].  

For the homology detection and the compositional signature method, false 

contigs, which are artifacts of the assembly process, could lead to misleading 

results [McHardy et al., 2007].  The false positive rate increases as the 

underlying community structure becomes increasingly complex and/or as the 

contig length becomes shorter. The latter is increasingly a concern with next-

generation high throughput sequencing technologies, because the read 

lengths are much shorter than generated by traditional sequencing 

technologies. Furthermore, compositional signature methods have been 

observed to lack the ability to differentiate among sub-species [ DeSantis et 

al., 2006].  

5.3 Our Approach to Species Identification using Mass Spectral Data 

Despite the large amounts of proteomics data that are currently available, 

they are completely ignored by the current set of approaches toward 

metagenomics species identification. In this work, we propose a novel way to 

use proteomic data for metagenomics species identification. Our approach is 

based on the following simple observation: During peptide identification, the 
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MSPolygraph algorithm outputs a set of protein sequence hits from the 

database for each experimental spectrum. However, most of the protein 

sequences in public databases are already mapped and annotated to specific 

species from which they were originally sequenced. Therefore, the species 

source corresponding to an experimental peptide could be inferred from 

their respective database hits. This is the main idea of our approach. 

Henceforth, we refer to our approach as SpecPolygraph.  

Using proteomics data for metagenomics species identification has two 

advantages: 

a) It presents an alternative to currently known DNA-based methods 

for species identification, and could serve a complementary purpose 

to DNA-based methods; and 

b) It also gives additional information about proteins that were 

expressed in the community, and therefore could directly lead to the 

understanding of community functions and interactions.  This 

information is typically unavailable through DNA-based strategies. 

Even though the idea of our approach to use proteomics data is simple, it 

has to be supplemented with a thorough statistical method in order to ensure 

high prediction accuracy. For this reason, we developed an iterative method 
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whereby a null hypothesis is calculated using simulations and is evaluated 

against an alternate hypothesis corresponding to the output predictions made 

by SpecPolygraph.  The comparison yields the basis for a p-value that is 

calculated as a measure of significance for each species identified. 

5.3.1 Determining the Statistical Significance of SpecPolygraph:   

Let Q denote a set of m experimental spectra collected from a given 

metagenomic community. Let D denote a database with n protein sequences. 

Let q Є Q. Let S= {s1, s2…sk} denote the set of all species represented in D. 

Let p denote the protein sequence which is the topmost hit for q as output by 

MSPolygraph; and let si denote the species corresponding to p.  

(Alternate Hypotheis)  The species si is present in the target 

metagenomic community. 

(Null Hypothesis)  The prediction that species si is present in the 

metagenomic community is random. 

In what follows, we will describe a simulation strategy to generate the null 

hypothesis. The goal of each simulation is to randomly assign database 

matches, and hence species, to each individual experimental spectrum in Q. 

We achieved this by modifying the implementation of the original 
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MSPolygraph code as described below. For convenience, we refer to this 

modified implementation as SimPolygraph. 

For each (peptide, sequence) match, the original MSPolygraph code computes 

a legitimate score. We discard this score and instead assign a random score to 

the match. Following this manipulation, the original MSPolygraph code takes 

over and sorts all the matches by their scores, and reports only the top τ 

number of hits for each experimental spectrum. Subsequently, the 

SimPolygraph implementation interprets the ith significant hit as the prediction 

result for the ith simulation. This way, predictions for τ independent 

simulations are assigned using just a single run of the original MSPolygraph 

code. In our experiments, we assigned tau to 1,000. 

Using all the simulation results, we construct a matrix C of size k x τ, such 

that C[i,j] stores the number of times the species si was observed during the jth 

simulation. Alternatively, let ci denote the number of times the species si was 

observed by SpecPolygraph (alternate hypothesis). Let Nsim(i) denote the 

number of simulations in which species si was observed ci times or less – i.e., 

the corresponding C[i,j]≤ ci.  

Then the p-value for species si is given by: 1 – ( Nsim(i) /τ). 
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The above expression could be understood as follows: Intuitively, if a given 

species is observed numerous times in a majority of simulations, it implies 

that the observation made by SpecPolygraph of that species is not significant 

(i.e., p-value approaches 1). On the other hand, if the species is rarely 

observed to be abundant during simulations, then the significance of 

SpecPolygraph’s prediction for that species could be labeled as statistically 

significant (i.e., p-value approaches 0).  

5.3.2 The SpecPolygraph Algorithm 

Using the above method to calculate the statistical significance for a given 

species prediction, we developed an iterative algorithm as shown in Figure 

5.1.  Within each iteration, all the species identified by the SpecPolygraph code 

are assigned individual p-values. Subsequently, only those species which have 

a p-value less than or equal to a user-defined cutoff (0.1 in our experiments) 

are retained for further evaluation in subsequent iterations. Furthermore, the 

sequences that correspond to species that have been eliminated in a given 

iteration have to be removed from the database, so that only those sequences 

from the retained species are allowed to compete in future iterations. The 

method iterates until there is one or no species left satisfying the p-value 

cutoff – i.e., there is no more competition among species.  
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Figure 5.1 – Algorithm for SpecPolygprah. 
 

5.4 Experimental Results 

We validated our new approach for species identification, SpecPolygraph, by 

comparing its results against three different benchmark data sets. In each of 

these benchmark data sets, there already exists information about their 

respective species composition, although based on DNA evidence (e.g., 16s 

rRNA) methods. Hence, these data sets provide a reasonable benchmark to 

test the outcome of species prediction through our novel proteomics-based 

approach. The spectral data sets, in the increasing order of species 

complexity, are as follows: 
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i) (Shewanella DB) By selecting 30,000 experimental mass spectra 

originally obtained from the species Schewanella oneidensis MR-1, we 

constructed an artificial community with just one species.  

ii) (ERSP-01) This is a collection of 28,306 spectra corresponding to 

a metagenomic community containing the following species: 

Shewanella oneidensis, Deinococcus radiodurans, and QC proteins. The 

species are represented in varying proportions, the ratio of which 

is 4:1:0.5 respectively. 

iii) (ERSP-02) This is a collection of 27,146 spectra corresponding to 

another metagenomic community containing the same set of 

species as in ERSP-01, although with a different ratio of 

distribution: 1:4:0.5 respectively. 

In what follows, we present the results of running and evaluating the results 

of SpecPolygraph against each of the three benchmark data sets. For each run 

of SpecPolygraph, we used the entire collection of microbial proteins as the 

database and  a p-value cutoff of 0.1 for filtering within each iteration. The 

microbial protein database was downloaded from the NCBI GenBank 

repository and as of May 2009, it contained ~2.65x106 protein sequences. 

The total number of species represented in this microbial DB (k) is 728. 
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5.4.1 Shewanella DB 

 Table 5.1 shows the number of species that were selected and advanced, 

after each iteration of the SpecPolygraph run. The method, after its first 

iteration (I0), detected a total of 229 species with a “significant” p-value (≤ 

0.1), of which 109 species had a p-value of 0. These 229 species advanced to 

the next iteration, and the process was repeated until termination condition. 

Table 5.1 shows the results for the first four iterations. There were four 

species identified after iteration I3 with significant p-value. Those four 

species and their respective p-values are as follows:  i) Shewanella sp. W3-18-1: 

0.0; ii) Shewanella oneidensis MR-1: 0.0; iii) Kineococcus radiotolerans SRS30216: 

0.002; and iv) Frankia alni ACN14a: 0.085.  

Since Shewanella sp. W3-18-1 and Shewanella oneidensis MR-1 are closely 

related species, we continued with two more experiments, one by forcefully 

eliminating W3-18-1 and another by forcefully eliminating oneidensis MR-1. 

After subsequent iterations of these experiments, the Shewanella oneidensis MR-

1 outperformed all three species, and hence emerged the winner. This test 

confirmed the 100% specificity and sensitivity of SpecPolygraph for this 

benchmark data set. 
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Table 5.1. Results of SpecPolygraph on the Shewanella data set. The original 
number of sequences in the complete microbial database is 728. 
 #Species with p-value <= 

0.1 

#Species with p-value = 0 

I0 229 109 

I1 57 27 

I2 15 5 

I3 4 2  

 
 
 
 
 
 
5.4.2 ERSP-01 

 For this data set, the results of SpecPolygraph are shown in Table 5.2. In this 

experiment, the results were mixed. The species Shewanella oneidensis survived 

the first few iterations, but was eliminated out of contention at iteration I2. 

Instead, Shewanella sp. W3-18-1 progressed until iteration I3. Furthermore, 

the QC proteins was eliminated prematurely at iteration I0. On the positive 

side, Deinococcus radiodurans R1 emerged the final winner over all iterations, 

with a p-value of 0. These results reveal the challenge faced by SpecPolygraph 
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in maintaining sensitivity under circumstances where closely related species 

are competing against one another. It is also noteworthy that SpecPolygraph 

allowed the progression of a few other species which were not originally 

expected to be part of the ERSP-01 data set. This additional set could 

potentially represent species (or its close relatives) that were originally missed 

out by the DNA-based evidence, but has been discovered for the first time in 

this community using proteomics data.   

5.4.3 ERSP-02 

 For the ERSP-02 data set, we followed a slight variant of the SpecPolygraph 

algorithm, in which the species that were allowed to progress to the next 

iteration were selected from the top 50 percentile, ranked by the p-values. 

Table 5.2. Results of SpecPolygraph on ERSP-01 data set. 
 #species with p-val ≤ 0.1 #species with p-val = 0  

I0 228 62 

I1 25 7 

I2 2 2 

I3 1 1  
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This variant is a more conservative way to retain as much competition as 

possible without drastically increasing the number of iterations, and thereby 

the computation cost.  

The results of this modified experiment are shown in Table 5.3. It 

took 10 iterations (I0 through I9) for the program to complete. After 

iteration I8, the species selected were: i) Frankia alni ACN14a: 0.909; ii) 

Deinococcus radiodurans R1: 0.0; iii) Shewanella sp. W3-18-1: 0.0. This meant that 

Deinococcus radiodurans R1 and Shewanella sp. W3-18-1 advanced to the next 

iteration. At the end of the last iteration, Deinococcus radiodurans R1 was 

identified as the winner. In this experiment too, the results of SpecPolygraph do 

not directly match the DNA-based benchmark expectations. However, the 

results are overwhelming encouraging from the point of view of the high 

potential of a novel, complementary technique for metagenomics species 

identification. The results demonstrate the high value that can be expected to 

be added by incorporating proteomics data into the process of metagenomics 

species identification.  
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Table 5.3. Results of SpecPolygraph on ERSP-02 data set. 

 #Species with p-val = 0 #Species Used in the Iteration 

I0 50 762 

I1 14 381 

I2 31 191 

I3 10 96 

I4 6 48 

I5 4 24 

I6 3 12 

I7 3 6 

I8 2 3 

I9 1 2 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORK 

As public molecular databanks continue to be flooded with experimentally 

acquired data, significant scalability challenges are imminent in peptide 

identification. The current suite of software tools, however, are not designed 

to meet the constantly increasing computation demands owing to the 

increased data size and/or growing qualitative requirements. The state of 

analysis is further exacerbated by the growing interest among the research 

community for increasingly complex projects. For example, in 2007, a single 

project that studied ocean metagenomics [Yooseph et al., 2007] added over 

17x106 ORFs/peptides to the public databases.  

The primary strength of the approaches developed as part of this thesis is 

their combined effectiveness in addressing all three factors of critical 

importance to the peptide identification problem: space, time, and quality. 

Another strength is its design simplicity, thereby laying the foundation for 

further improvements and easy extensions.  

6.1 The Significance of the Space-Optimality Result 

The space-optimality result is significant in that it will allow application 

scientists to analyze very large input sizes that were beyond the reach of 
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previously used software. Our new algorithm overcomes this major 

scalability limitation by exploiting the vast, aggregate memory easily available 

from large-scale distributed memory supercomputers. For example, we were 

able to store and analyze 2.65x106 sequences using as little as 8 processors, 

with 1 GB RAM available to each processor. It is to be noted, however, the 

application of our approach is expected to be better suited where the data 

size does not fit into a single or few processor’s aggregate memory. For small 

inputs that fit within a processor’s memory, the older version of MSPolygraph 

is more appropriate because it will output the same result with no added 

communication delays. For medium and larger range inputs, however, it 

could be worth exploring an extension of our approach in which processors 

can divide themselves into smaller sub-groups, where the database is 

partitioned within each sub-group and the query set is partitioned across sub-

groups. 

6.2 Is Sorting Necessarily an Overhead?  

A dominant fraction of the query processing time is spent on generating 

candidates on-the-fly. Each query, in practice, may require generation of 

hundreds of thousands to even millions of candidates (as shown in Figure 

1.4). From this perspective, it may be worth exploring an alternative strategy 

in which already generated candidates, and not the database sequences, are 
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stored in-memory and are communicated on-demand to compute nodes. 

This strategy has the potential to drastically reduce the overall computation 

time, as it cuts down the need to generate candidates on-the-fly. However, 

the candidates generated are orders of magnitude times the actual database 

size. Current approaches are not designed to store such large magnitudes of 

candidates in memory. Our algorithm, because of its space-optimality, makes 

the investigation of this alternative approach feasible. Furthermore, the 

sorting version of our approach (Algorithm B) could prove more useful 

under this setting. The idea here is to store candidates in distributed and 

parallel sorted fashion. Each processor then fetches candidates from only 

those processors which contain candidates within the desired range dictated 

by the masses of the local query set. To further improve performance, the 

queries also could be stored sorted (by their masses) and this could help 

avoid redundant fetching of data.  

6.3 MapReduce Based Implementation 

The approach followed in our current implementation uses static query 

distribution. In practice, however, queries could take varying amounts of 

processing time, depending upon the number of candidates generated for 

matching. In this regard it would be worth exploring a MapReduce [Dean et 

al., 2004] implementation. The MapReduce paradigm is a new, emerging 
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model of parallel computing that is rapidly becoming the de facto standard 

for data-intensive cloud computing frameworks. Several open source libraries 

already exist for this model, and all of them provide a robust support for 

handling dynamic load balancing and fault tolerance. The model is also well 

suited for supporting Software-as-a-Service (SaaS) and coupled with 

virtualization, could be readily deployed inside clouds for scientific 

computing. Therefore, developing a MapReduce based implementation 

would allow us to simply inherit, without duplicating, the already available 

strengths of the MapReduce paradigm for peptide identification. However, 

developing a MapReduce based implementation entails algorithmic re-

engineering. 

A typical MapReduce paradigm consists of a master processor and 

two types of worker processors, called mapper and reducer. The mapper workers 

process input and emit a <key, value> pair, for each input unit. These pairs 

are then processed by the reducer processors, which gather results 

corresponding to the same key from across mapper processors. A dedicated 

master processor handles load balancing and task allocation.  

There could be different ways to assign roles to worker processors. 

One strategy could be to assign the task of generating and matching 

candidates to the mapper nodes, while the reducer nodes are responsible for 
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gathering and outputting the list of top candidates for each query. An 

alternative strategy is not to have reducer processors. Instead, all the worker 

processors are used as mapper nodes which completely evaluate the assigned 

queries.  

6.4 Metagenomics Species Identification  

Even though protein sequences and mass spectral libraries are being amassed 

at overwhelming rates, current methods hardly allow us to exploit and tap 

into these repositories. To this end, the SpecPolygraph proposed as part of this 

thesis, is a novel and important step which could close this critical data-to-

knowledge gap. It could serve as a viable, complementary approach to the 

other DNA-based methods, and also has the added advantage of shedding 

new light into the functional space of the metagenomics communities under 

study.  However, more experiments will have to be carried out to fine tune 

the prediction accuracy of the method. One way to achieve this qualitative 

improvement goal, is to study both techniques proposed (i.e., using a p-value 

cutoff against using a top percentile) in tandem. It will also be interesting to 

investigate the possibility of assigning abundance to species using p-values 

and hit-counts (frequency).  
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6.5 Conclusion 

In this thesis, we presented the design and development of a new parallel 

algorithm for conducting large-scale peptide identification using mass 

spectrometry data. The approach proposed here is better equipped than any 

other contemporary software tool for meeting the scalability demands of the 

peptide identification application. The highlights of our new algorithm are its 

space-optimality, the ability to maintain runtime efficiency, and its 

incorporation of accurate statistical models for improved accuracy. This 

approach has enabled us to begin conducting a full-scale application. We also 

presented here a novel application of peptide identification, namely for the 

purpose of species identification in unsequenced microbial communities. The 

species identification problem is one of the most pressing and challenging 

problems in metagenomics.  Our method, called SpecPolygraph, for the first 

time uses MS/MS spectral data for species identification. Our experiments 

demonstrate the promising qualitative aspects and the high potential in 

incorporating proteomic data for this novel purpose.  

In conclusion, we believe that the contributions made by this thesis 

toward peptide identification and species identification have laid out a strong 

foundation for the proteomics community to benefit from parallel processing 

and advance overall scientific pursuit. 
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