
APPROXIMATE XPATH

By

LIN XU

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2004

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of LIN XU

find it satisfactory and recommend that it be accepted.

Chair

ii

Acknowledgments

I would like to begin by thanking Dr. Curtis Dyreson, my thesis advisor and

mentor for the past years. Dr. Dyreson has been a wonderful advisor, providing me

with invaluable advice, support. His enthusiasm for research, breadth of knowledge

inspires me. His encouragement gives me confidence. I thank him for all the time

and energy invested into my research.

I would also like to thank Dr. Kevin Tomsovic who is also my doctoral disser-

tation advisor, and Dr. David Bakken for agreeing to be on my committee. I thank

them for reading my thesis and providing me helpful comments. I was fortunate

enough to work with them.

I would like to thank the graduate secretary Ms. Ruby Young, for all her help.

I would like to thank my family. I am forever indebted to my parents for ev-

erything that they have given me. Their unconditional support and encouragement

give me strengths to finish this work. I dedicate this work to them; to all the people

who love me and whom I love.

Last, but far from the least, I thank my wife, Jin Ding from bottom of my

heart. I thank her for all her patience and her never-ending encouragement when I

frustrated and stressed. She makes my life full of joy and love. I cannot imagine

that I could have completed this work without her support.

iii

APPROXIMATE XPATH

Abstract

by Lin Xu, M.S.
Washington State University

MAY 2004

Chair: Curtis Dyreson

As XML has been developed over the past few years, its role has expanded

beyond its original domain as a semantics-preserving markup language for online

document, and it is now the de facto format for data interchanging and integra-

tion among distributed, heterogeneous sources. Several query languages have been

proposed that are based on path expressions. Because of the inherent data het-

erogeneity in XML data, exact path expressions may not locate desired data. It

is more appropriate to have an approximate query system that can return relevant

results when exact path expressions fail to locate the data

This thesis proposes an approximate query language, ApproxXPath, that can

cope with data heterogeneity. It extends the popular XPath language by relaxing

its semantics. ApproXPath allows both content mismatch and structure mismatch.

ApproXPath queries can locate data that is within some number of errors away

from the original XML data. The distance away from the exact data is measured

by counting how many string edit and tree edit operations are needed to find the

data.

Our approach can be categorized as query relaxation. ApproXPath redefines

the semantics of axes, node test and predicates based on string/tree edit distance.

The algorithms we present use navigation-based query evaluation. We also sketch

iv

an index-based solution, which is useful for searching in a XML database. We

show that the complexity of ApproXPath is reasonable. The thesis also presents an

empirical evaluation.

ApproXPath is implemented in Java. It combines the front end of Apache

Xalan with our own approximate query engine as its back end. The thesis reports

the performance of AppproXPath, both exact matching with respect to Xalan and

inexact matching varying number of errors allowed. For many queries, the inexact

matching (with no errors) is as fast as exact matching and increases linearly with

the number of errors.

v

Contents

1 Introduction 1

1.1 XML . 1

1.2 Data Heterogeneity . 3

1.3 Query in XML . 3

1.4 XPath . 6

2 Background and Related Work 9

2.1 Semistructured Data . 9

2.2 XML . 10

2.3 Tree Representation of XML Document 13

2.3.1 Data Model . 14

2.4 XPath . 16

2.4.1 Location Path . 18

2.5 XPath Evaluation . 25

2.5.1 Navigation-Based . 26

2.5.2 Index-Based . 26

2.6 Edit Operation on String . 31

2.7 Approximate String Matching 32

vi

2.8 Edit Operations on Tree . 33

2.8.1 Cost Function . 36

2.9 Related Works . 38

2.9.1 Approximate String Matching 38

2.9.2 Approximate Tree Matching 38

2.9.3 Language Proposals for Approximate Matching 39

2.9.4 Specification and Semantics 40

2.9.5 Approximate Query Matching 41

3 ApproXPath 42

3.1 Overview . 42

3.2 Different Approaches . 43

3.2.1 XPath Query Rewriting 44

3.2.2 Query Plan Relaxation 45

3.3 ApproXPath . 45

3.3.1 Inexact Axes . 46

3.3.2 Inexact Node Test . 48

3.3.3 Inexact Predicate . 50

3.3.4 Glue Together . 51

3.4 ApproXPath Evaluation Plan . 52

3.4.1 Navigation-Based Approach 53

3.4.2 Algorithm for Navigation-Based Approach 57

3.4.3 Complexity Analysis for Navigation-Based Algorithm . . 59

3.4.4 Index-Based Approach 60

vii

4 Implementation and Empirical Performance Analysis 64

4.1 Implementation . 64

4.2 Capability Test . 65

4.3 Empirical Performance Analysis 67

4.3.1 Testing Suite . 67

4.3.2 Comparison ApproXPath to Xalan J-2.5.1 on Different Queries. 68

4.3.3 Vary Number of Errors Allowed 72

5 Conclusions 88

5.1 Conclusions . 88

5.2 Future Work . 89

Bibliography 91

viii

List of Tables

ix

List of Figures

1.1 An XML document . 4

2.1 The tree model for the XML document in figure 1.1 15

2.2 Fragment of T-index for XML document in figure 1.1 28

2.3 Fragment of E-index for XML document in figure 1.1 28

2.4 Node insertion . 34

2.5 Node deletion . 35

2.6 Node relabeling . 36

2.7 Subtree swapping . 36

3.1 The state diagram of ApproXPath evaluation 51

4.1 Execution time on bushy tree . 69

4.2 Execution time on tall tree . 71

4.3 Execution time on fat tree . 73

4.4 Execution time of query “/doc/level1” on bushy tree 74

4.5 Execution time of query “/doc/level1” on tall tree 75

4.6 Execution time of query “/doc/level1” on fat tree 77

4.7 Execution time of query “//level1” on bushy tree 78

x

4.8 Execution time of query “//level1” on tall tree 79

4.9 Execution time of query “//level1” on fat tree 80

4.10 Execution time of query “/doc/level1/level2/level3/level4/level5”

on bushy tree . 81

4.11 Execution time of query “/doc/level1/level2/level3/level4/level5”

on tall tree . 82

4.12 Execution time of query “/doc/level1/level2/level3/level4/level5”

on fat tree . 83

4.13 Execution time of query “//name[@first=‘Emily’]/preceding-sibling::*”

on bushy tree . 85

4.14 Execution time of query “//name[@first=‘Emily’]/preceding-sibling::*”

on tall tree . 86

4.15 Execution time of query “//name[@first=‘Emily’]/preceding-sibling::*”

on fat tree . 87

xi

Dedication

To my parents, Jianqiu Xu and Jimin Wang

xii

Chapter 1

Introduction

This thesis focuses on the problem of approximate retrieval in XPath. The problem

is to find the resulting node set of a XPath expression while allowing “errors.” First

we give some background and motivation for this problem. Then we discuss some

possible ways to address the problem as well as our approach. Finally there is a

summary on our contributions.

1.1 XML

XML–the eXtensible Markup Language–has recently emerged as a medium for

data representation and exchange. At its most basic level, XML is a document

markup language permitting tagged text (element), element nesting, and element

reference. Yet the potential impact is significant: Web servers and applications en-

coding their data in XML can quickly make their information available in a simple

and usable format, and such information providers can interoperate easily. Infor-

mation content is separated from information rendering, which makes it easy to

1

provide multiple views of the same data.

XML has gained much attention in both the information retrieval community

and in the field of database research. One reason is that XML offers a uniform and

standardized way to represent and exchange data. The other reason is that XML

is very flexible and has great expressiveness power. On one end of the spectrum

of XML usage are text-centric documents with only a few, interspersed markups.

On the other end of the spectrum are data-centric documents that are solely created

and interpreted by applications.

There are several characteristics that make XML an ideal medium of data rep-

resentation and exchange:

1. Simple and well-structured. It is easy to learn and implement. Also XML

can be easily parsed

2. Self-describing. Straightforward presentation makes it easy for human and

machine consumption.

3. Flexible. With user defined tags and separation of the content and rendering,

it allows users to encode a wide variety of information.

4. Standard. XML is vendor-neutral. A lot products from different vendors are

available that implement tools for XML.

5. Semi-structured. It can support structured, semi-structured and unstructured

data, making it an ideal choice for data exchange.

2

1.2 Data Heterogeneity

Some XML documents have a well defined structure and are stored in homoge-

neous collections. However, there is a lot of XML data that is inherently hetero-

geneous. The heterogeneity could be the result of integration of a wide range of

data or data that has evolved over time. One example is a federated digital library

that combines data from several repositories that have different schemas. Another

example is a data warehouse that stores all company-wide XML-formatted doc-

uments such as messages and database reports. Such document collections are

data-centric but do not have a common schema. Figure 1.1 is a simple XML frag-

ment that integrates data from two different libraries’ catalogs. The example shows

that data heterogeneity exists in data integration.

Since the data encoding in the XML document could range from data that has

a rigid schema to data with sparse markup, it is important for a query language to

be versatile.

1.3 Query in XML

With the advent of XML, querying tree-structured data has become a subject of

interest in the database community. However, there are several fundamental differ-

ences between well researched queries on relational tables and XML.

As we mentioned above, XML is inherently heterogeneous. Lacking of rigid

schema poses the biggest difference between a traditional relational database and

a XML document. We believe that approximate matching of queries and return a

result within a certain error bound is appropriate.

We summarize the necessity for approximate query as following:

3

<publication>
<books>

<author name ="Knuth, Donald Ervin">
<title>The Art of Computer Programming</title>
<title>Mathematics for the Analysis of Algorithms</title>

</author>

<author name="Jim Gray">
<title>

Transaction Processing: Concepts and Techniques
</title>

</author>
</books>

<book>
<Author>

<name>Knuth, Donald Ervin</name>
<title>The TEXbook</title>

</Author>
</book>

<paper>
<author name="E.F.Codd">

<date year = "1970">
<title>

A Relational Model of Data for Large
Shared Data Banks

</title>
</date>

</author>
<author>

<name>Jim Gray</name>
<date year="2003">

<title>Consensus on Transaction Commit</title>
</date>
<date year="1990">

<title>
An Adaptive Hash Join Algorithm for
Multiuser Environments

</title>
<title>

Parallel Database Systems: The Future
of Database Processing

</title>
<title>

Parity Striping of Disk Arrays: Low-Cost
Reliable Storage with Acceptable Throughput

</title>
</date>

</author>
</paper>

</publication>

Figure 1.1: An XML document

4

• Schema is heterogeneous, or may not be known. This makes it harder to

write queries for exact match.

• Schema is complex, which also makes it harder for many users to formulate

exact queries.

• There are few or no exact matches, but one may be interested in those similar

to the exact matches

• The data and schema evolve frequently, which means that queries need to be

flexible. Exact queries tend to be brittle.

Therefore, in order to deal with the above situations, the query must be relaxed.

We believe that an ideal approximate XML query engine should have the following

characteristics.

• A set of scoring mechanisms should be provided for users to specify the error

bound.

• The set of approximate matches to a query is a super set of the exact matches.

• Exact matches for a query must have the highest scoring.

• The result sets can be ranked by relevance order using scoring.

• The query language should be easy to use.

There are two possible ways to relax a query on XML data.

1. Rewrite the query to several possible ways and apply multiple query tech-

niques to those queries to find out common subqueries. This method quickly

becomes impractical since the number of relaxed queries increases exponen-

tially as the total number errors allowed increases.

5

2. Use some techniques to encoding the relax queries into one query and apply

post-pruning methods on the result set. This one usually results in a lot of

irrelevant results so it is sub-optimal.

1.4 XPath

XPath is a language for addressing parts of an XML document that was designed

for use by both the XSL Transformations(XSLT) and XPointer languages. XPath

provides a flexible way to specify path expressions. It treats XML document as a

tree of nodes. XPath expressions are patterns that can be matched in the XML tree.

Since almost all XML query language model an XML document as a tree, the

scoring system in ApproXPath is measured by the tree edit distance. Essentially,

there are four kinds of errors/tree edit operations we allowed:

1. Node insertion

2. Node deletion

3. Subtree swapping

4. Node renaming

The first three errors/tree edit operations change the shape of the tree. We say they

are structure errors. The fourth one, node renaming, does not change the shape of

the tree. It changes the content of the XML document node. We call it a content

error.

We present an approximate XML query system, ApproXPath, by allowing con-

tent and structure errors. ApproXPath finds the matches that exist in some XML

data tree that are within a given edit distance from the original XML data tree. It

6

returns the result grouped by different number of errors. The result with zero errors

is identical to traditional XPath, at least semantically.

In order to get the result, ApproXPath relaxes the semantics of the XPath lo-

cation step. Through proper relaxation, we find the result in the proximity of the

current position. Relaxation on an XPath expression is equivalent to applying edit

operations to the original XML document tree. More precisely, our query engine

returns nodes that would exist in some XML document that is within the given er-

ror bound from the original document and we could find an exact XPath match on

that modified document.

We treat structure error and content error a little different. We use a differ-

ent weight for structure errors and content errors. Each structure error counts as

one error while all content errors in a single successful inexact string matching

count as one error regardless the number of mismatched characters. A Finite State

Machine(FSM) is used internally in ApproXPath to trace the number of errors in-

troduced during each evaluation step and to calculate current errors for a node.

Nodes with more errors than allowed are eliminated from the result to achieve op-

timal performance. For structure errors, we relax the semantics meaning of the axis

in a location step. But we do not change the order of the axis, that is, forward or

backward. Each of our axes under new semantic meaning corresponds to one or

several traditional XPath axes. We built a layer on top of traditional XPath oper-

ators. This kind of approach could let us take advantage of the current evaluation

techniques in the XPath evaluation. Overall, we present two different approaches.

One is a navigation-based method using a Finite State Machine(FSM) approach to

keep track of error introduced; the other one is a index-based method that takes

advantage of an existing structure join algorithm.

7

The key contributions of our works are listed below:

• Create an approximate XML query engine based on XPath, a popular XML

query language.

• Query results are sound in the sense that nodes in the result are with the

specified edit distance.

• Eliminate irrelevant results as soon as possible to achieve the optimal speed.

The analysis and experiments show that ApproXPath performs well and is

highly scalable.

The remainder of the thesis is organized as follows: In chapter 2, we give a de-

tailed introduction of XML and XPath, as well as tree/string edit distance. Related

work is also discussed in chapter 2. In chapter 3, the details of our ApproXPath

algorithm and analysis of it are presented. Experimental results are given in chap-

ter 4. chapter 5 concludes the thesis and future work is discussed.

8

Chapter 2

Background and Related Work

Our work involves several parts. Semistructured data lays the foundation for the

XML data model. XML and XPath is the start point of our approximate XPath.

Edit operations on strings and trees give us the distance metrics for measuring the

degree of approximation in our matching.

2.1 Semistructured Data

The semistructured data model [1–3] sits right between the well structured data

such as a relational database, and totally irregular data, such as a prose. It plays a

special role in database systems:

• It serves as a model suitable for integration of database, that is, for describing

the data contained in two or more databases that contain similar data with

different schemas.

• It serves as a document model in notations such as XML, which are being

used to share information on the web.

9

Semistructured data model is usually represented as a labeled graph, such as

the OEM developed in Stanford University. All the previous research laid a solid

foundation to the XML data modeling.

2.2 XML

XML stands for Extensible Markup Language and it grew organically from the

need to improve the functionality of Web technologies through the use of a more

flexible and adaptable means to identify information. XML is a metalanguage.

That is, it is a language that describes other languages. While it may sound circular,

even Webopedia defines it as such. What this really means is that XML is more of

a standard and supporting structure than a standalone programming language. It is

a standard you can follow to create your own language and syntax that meets the

XML criteria.

XML provides the facility to define tags and the structural relationship between

them. As a result, developers can create their own customized tags (the extensi-

ble part of the puzzle) in order to define, share, and validate information between

computing systems and applications. Since everything a developer creates adheres

to the XML criteria and standard, it allows for customization without many of the

usual perils of customization (such as a lack of interoperability and extensibility).

The extensibility and structured nature of XML allows it to be used for com-

munication between different systems, which otherwise would be unable to com-

municate. While this sounds simple, the magnitude and impact of this benefit is

tremendous. Consider this. With the use of XML, you can now communicate not

only between internal computing systems but also external systems (vendors, cus-

10

tomers, partners, etc.) using a common technology irregardless of the platforms

and technologies used for each independent system. Phrased more simplistically,

it is like having a single omniscient translator that can work between and among

various nations and cultures seamlessly.

Besides the obvious benefit of information integration, sharing and system

interoperability, knowledge transfer between your different computing teams be-

comes easier as well. Since XML has a clearly defined set of standards, people

on team A can easily understand and work with information from team B. From

an internal resource standpoint, this enables easier staff rotation (and coverage)

with a shortened learning curve. From an external relationship standpoint (ven-

dors, consultants, partners), knowledge transfer time is shortened and the actual

understanding of the systems and information is enhanced.

From one source of XML-based information you can format and distribute it

via a multitude of different channels with minimal effort. Through the use of exten-

sible style language, XSL, developers can easily separate content from formatting

instructions. In this way, XSL files act as templates, allowing a single stylesheet

to be used to format multiple pages of information. Even more powerful is the

ability to use several of these templates to define formatting of the same content

for multiple distribution channels.

Many times with both intranet and Internet applications your audience requires

data through a variety of channels such as Web, e-mail, text, handheld, wireless

devices, and print. With the use of XML and the XSL technologies, you can use

a separate stylesheet to distribute the same content to multiple channels. Thus,

retrieve the content and data once, deliver many times and in many formats with

ease.

11

The XML has gained much attention in both the information retrieval com-

munity and in the field of database research. Originated from different intention

and baring different characteristics, there are so called data-centric and document-

centric XML.

Data-centric documents are documents that use XML as a data transport. They

are designed for machine consumption. Data-centric documents are characterized

by fairly regular structure, fine-grained data (that is, the smallest independent unit

of data is at the level of a PCDATA-only element or an attribute), and little or

no mixed content. The order in which sibling elements and PCDATA occurs is

generally not significant, except when validating the document. Data of the kind

that is found in data-centric documents can originate both in the database (in which

case you want to expose it as XML) and outside the database (in which case you

want to store it in a database). An example of the former is the vast amount of

legacy data stored in relational databases; an example of the latter is scientific data

gathered by a measurement system and converted to XML.

Document-centric documents are (usually) documents that are designed for

human consumption. The order in document is important. Examples are books,

email, advertisements, and almost any hand-written XHTML document. They

are characterized by less regular or irregular structure, larger grained data (that

is, the smallest independent unit of data might be at the level of an element with

mixed content or the entire document itself), and lots of mixed content. The or-

der in which sibling elements and PCDATA occurs is almost always significant.

Document-centric documents are usually written by hand in XML or some other

format, such as RTF, PDF, or SGML, which is then converted to XML. Unlike

data-centric documents, they usually do not originate in the database.

12

To summerize, there are several characteristics that make XML an ideal medium

of data representation and exchange:

1. Simple and well-structured. It is easy to learn and implement. Also XML

can be easily parsed.

2. Self-describing. Its straightforward presentation makes it easy for human

and machine consumption.

3. Flexible. With user defined tags and separation of the content and rendering,

it allows users to encode a wide variety of information.

4. Standard. XML is vendor-neutral. A lot of XML products are available from

different vendors.

5. Semi-structured. It can support structured, semi-structured and unstructured

data, making it an ideal choice for data exchange.

2.3 Tree Representation of XML Document

XML document can be modeled as a tree. Figure 2.1 is the tree represenation of

the XML document shown in Figure 1.1

There are seven different kinds of nodes in an XML document tree:

• root node

• element nodes

• text nodes

• attribute nodes

13

• namespace nodes

• processing instruction nodes

• comment nodes

2.3.1 Data Model

For every type of node, there is a way of determining a string-value for a node of

that type. For some types of nodes, the string-value is part of the node; for other

types of nodes, the string-value is computed from the string-value of descendant

nodes.

Some types of nodes also have an expanded-name, which is a pair consisting

of a local part and a namespace URI. The local part is a string. The namespace

URI is either null or a string. The namespace URI specified in the XML document

can be a URI reference; this means it can have a fragment identifier and can be

relative. A relative URI should be resolved into an absolute URI during namespace

processing: the namespace URIs of expanded-names of nodes in the data model

should be absolute. Two expanded-names are equal if they have the same local

part, and either both have a null namespace URI or both have non-null namespace

URIs that are equal.

There is an ordering, document order, defined on all the nodes in the document

corresponding to the order in which the first character of the XML representation

of each node occurs in the XML representation of the document after expansion

of general entities. Thus, the root node will be the first node. Element nodes

occur before their children. Thus, document order orders element nodes in order

of the occurrence of their start-tag in the XML (after expansion of entities). The

14

ro
ot

pu
bl

ic
at

io
n

bo
ok

s

au
th

or
au

th
or

da
te

tit
le

pa
pe

r

tit
le

tit
le

na
m

e
na

m
e

na
m

e

tit
le

tit
le

au
th

or

A
ut

ho
r

ye
ar

A Relational Model of
Data for Large Shared
Data Banks

Parity Striping of Disk Arrays: Low-Cost
Reliable Storage with Acceptable
Throughput

Parallel Database Systems: The
Future of Database Processing

Knuth, Donald Ervin

The Art of Computer
Programming

Mathematics for the
Analysis od Algorithms

Knuth, Donald Ervin

Jim Gray

Consensus on
Transaction Commit

Transaction Processing:
Concepts and Techniques

Gray, Jim

The TEXbook

1990

2003

An Adaptive Hash Join Algorithm for
Multiuser Environments

bo
ok

tit
le

ye
ar

da
te

da
te

na
m

e

tit
le

au
th

or tit
le

ye
ar 1970

E.F.Codd

na
m

e
tit

le

Figure 2.1: The tree model for the XML document in figure 1.1
15

attribute nodes and namespace nodes of an element occur before the children of

the element. The namespace nodes are defined to occur before the attribute nodes.

The relative order of namespace nodes is implementation-dependent. The relative

order of attribute nodes is implementation-dependent. Reverse document order is

the reverse of document order.

Root node and element nodes have an ordered list of child nodes. Nodes never

share children: if one node is not the same node as another node, then none of the

children of the one node will be the same node as any of the children of another

node. Every node other than the root node has exactly one parent, which is either

an element node or the root node. A root node or an element node is the parent of

each of its child nodes. The descendants of a node are the children of the node and

the descendants of the children of the node.

2.4 XPath

XPath [4] is the result of an effort to provide a common syntax and semantics for

functionality shared between XSL Transformations (XSLT) and XPointer [XPointer].

The primary purpose of XPath is to address parts of an XML document. In support

of this primary purpose, it also provides basic facilities for manipulation of strings,

numbers and booleans. XPath uses a compact, non-XML syntax to facilitate use

of XPath within URIs and XML attribute values. XPath operates on the abstract,

logical structure of an XML document, rather than its surface syntax. XPath gets

its name from its use of a path notation as in URLs for navigating through the

hierarchical structure of an XML document.

In addition to its use for addressing, XPath is also designed so that it has a

16

natural subset that can be used for matching (testing whether or not a node matches

a pattern); this use of XPath is described in XSLT.

XPath models an XML document as a tree of nodes. There are different types

of nodes, including element nodes, attribute nodes and text nodes. XPath defines

a way to compute a string-value for each type of node. Some types of nodes also

have names. XPath fully supports XML Namespaces. Thus, the name of a node

is modeled as a pair consisting of a local part and a possibly null namespace URI;

this is called an expanded-name. The data model is described in detail in section

2.2.

The primary syntactic construct in XPath is the expression. An expression

matches the production Expr. An expression is evaluated to yield an object, which

has one of the following four basic types:

• node-set (an unordered collection of nodes without duplicates)

• boolean (true or false)

• number (a floating-point number)

• string (a sequence of UCS characters)

Expression evaluation occurs with respect to a context. XSLT and XPointer specify

how the context is determined for XPath expressions used in XSLT and XPointer

respectively. The context consists of:

• a node (the context node)

• a pair of non-zero positive integers (the context position and the context size)

• a set of variable bindings

17

• a function library

• the set of namespace declarations in scope for the expression

The context position is always less than or equal to the context size.

2.4.1 Location Path

The most important construction of XPath expression is location path. A location

path selects a set of nodes relative to the context node. The result of evaluating an

expression that is a location path is the node-set containing the nodes selected by

the location path. Location path can recursively contain expressions that are used

to filter set of nodes.

There are two kinds of location path: relative location paths and absolute loca-

tion paths.

A relative location path consists of a sequence of one or more location steps

separated by /. The steps in a relative location path are composed together from left

to right. Each step in turn selects a set of nodes relative to a context node. An initial

sequence of steps is composed together with a following step as follows. The initial

sequence of steps selects a set of nodes relative to a context node. Each node in that

set is used as a context node for the following step. The sets of nodes identified by

that step are unioned together. The set of nodes identified by the composition of the

steps is this union. An absolute location path consists of / optionally followed by a

relative location path. A / by itself selects the root node of the document containing

the context node. If it is followed by a relative location path, then the location path

selects the set of nodes that would be selected by the relative location path relative

to the root node of the document containing the context node.

18

Location Paths

LocationPath ::= RelativeLocationPath

| AbsoluteLocationPath

AbsoluteLocationPath ::= ’/’ RelativeLocationPath?

| AbbreviatedAbsoluteLocationPath

RelativeLocationPath ::= Step

| RelativeLocationPath ’/’ Step

| AbbreviatedRelativeLocationPath

Location Steps [4]

A location step has three parts:

• an axis, which specifies the tree relationship between the nodes selected by

the location step and the context node,

• a node test, which specifies the node type and expanded-name of the nodes

selected by the location step, and

• zero or more predicates, which use arbitrary expressions to further refine the

set of nodes selected by the location step.

The syntax for a location step is the axis name and node test separated by a double

colon, followed by zero or more expressions each in square brackets. That is:

locationstep ::= axis :: nodetest[predicate]. (2.1)

The node-set selected by the location step is the node-set that results from

generating an initial node-set from the axis and node-test, and then filtering that

19

node-set by each of the predicates in turn.

The initial node-set consists of the nodes having the relationship to the context

node specified by the axis, and having the node type and expanded-name specified

by the node test. The meaning of some node tests is dependent on the axis.

The initial node-set is filtered by the first predicate to generate a new node-

set; this new node-set is then filtered using the second predicate, and so on. The

final node-set is the node-set selected by the location step. The axis affects how

the expression in each predicate is evaluated and so the semantics of a predicate is

defined with respect to an axis.

Location Steps

Step ::= AxisSpecifier NodeTest Predicate*

| AbbreviatedStep

AxisSpecifier ::= AxisName ’::’

| AbbreviatedAxisSpecifier

Axes

The following axes are available:

• The child axis contains the children of the context node.

• The descendant axis contains the descendants of the context node; a descen-

dant is a child or a child of a child and so on; thus the descendant axis never

contains attribute or namespace nodes.

• The parent axis contains the parent of the context node, if there is one.

20

• The ancestor axis contains the ancestors of the context node; the ancestors

of the context node consist of the parent of context node and the parent’s

parent and so on; thus, the ancestor axis will always include the root node,

unless the context node is the root node.

• The following-sibling axis contains all the following siblings of the con-

text node; if the context node is an attribute node or namespace node, the

following-sibling axis is empty.

• The preceding-sibling axis contains all the preceding siblings of the con-

text node; if the context node is an attribute node or namespace node, the

preceding-sibling axis is empty.

• The following axis contains all nodes in the same document as the context

node that are after the context node in document order, excluding any de-

scendants and excluding attribute nodes and namespace nodes.

• The preceding axis contains all nodes in the same document as the context

node that are before the context node in document order, excluding any an-

cestors and excluding attribute nodes and namespace nodes.

• The attribute axis contains the attributes of the context node; the axis will be

empty unless the context node is an element.

• The namespace axis contains the namespace nodes of the context node; the

axis will be empty unless the context node is an element.

• The self axis contains just the context node itself.

21

• The descendant-or-self axis contains the context node and the descendants

of the context node.

• The ancestor-or-self axis contains the context node and the ancestors of the

context node; thus, the ancestor axis will always include the root node.

NOTE: The ancestor, descendant, following, preceding and self axes partition a

document (ignoring attribute and namespace nodes): they do not overlap and to-

gether they contain all the nodes in the document.

Axes

AxisName ::= ’ancestor’

| ’ancestor-or-self’

| ’attribute’

| ’child’

| ’descendant’

| ’descendant-or-self’

| ’following’

| ’following-sibling’

| ’namespace’

| ’parent’

| ’preceding’

| ’preceding-sibling’

| ’self’

22

Node Tests

Every axis has a principal node type. If an axis can contain elements, then the

principal node type is element; otherwise, it is the type of the nodes that the axis

can contain. Thus,

• For the attribute axis, the principal node type is attribute.

• For the namespace axis, the principal node type is namespace.

• For other axes, the principal node type is element.

A node test that is a QName is true if and only if the type of the node is

the principal node type and has an expanded-name equal to the expanded-name

specified by the QName.

A QName in the node test is expanded into an expanded-name using the

namespace declarations from the expression context. This is the same way ex-

pansion is done for element type names in start and end-tags except that the default

namespace declared with xmlns is not used: if the QName does not have a prefix,

then the namespace URI is null (this is the same way attribute names are expanded).

It is an error if the QName has a prefix for which there is no namespace declara-

tion in the expression context.

A node test * is true for any node of the principal node type.

A node test can have the form NCName : ∗. In this case, the prefix is ex-

panded in the same way as with a QName, using the context namespace declara-

tions. It is an error if there is no namespace declaration for the prefix in the expres-

sion context. The node test will be true for any node of the principal type whose

23

expanded-name has the namespace URI to which the prefix expands, regardless of

the local part of the name.

The node test text() is true for any text node. Similarly, the node test com-

ment() is true for any comment node, and the node test processing−instruction()

is true for any processing instruction. The processing − instruction() test may

have an argument that is Literal. In this case, it is true for any processing instruc-

tion that has a name equal to the value of the Literal.

A node test node() is true for any node of any type whatsoever.

Node Test

NodeTest ::= NameTest

| NodeType ’(’ ’)’

| ’processing-instruction’ ’(’ Literal ’)’

Predicates

An axis is either a forward axis or a reverse axis. An axis that only contains the

context node or nodes that are after the context node in document order is a forward

axis. An axis that only contains the context node or nodes that are before the

context node in document order is a reverse axis. Thus, the ancestor, ancestor-

or-self, preceding, and preceding-sibling axes are reverse axes; all other axes are

forward axes. Since the self axis always contains at most one node, it makes no

difference whether it is a forward or reverse axis. The proximity position of a

member of a node-set with respect to an axis is defined to be the position of the

node in the node-set ordered in document order if the axis is a forward axis and

ordered in reverse document order if the axis is a reverse axis. The first position is

24

1.

A predicate filters a node-set with respect to an axis to produce a new node-

set. For each node in the node-set to be filtered, the PredicateExpr is evaluated

with that node as the context node, with the number of nodes in the node-set as

the context size, and with the proximity position of the node in the node-set with

respect to the axis as the context position; if PredicateExpr evaluates to true for that

node, the node is included in the new node-set; otherwise, it is not included.

A PredicateExpr is evaluated by evaluating the Expr and converting the

result to a boolean. If the result is a number, the result will be converted to true if

the number is equal to the context position and will be converted to false otherwise;

if the result is not a number, then the result will be converted as if by a call to the

boolean function.

Predicates

Predicate ::= ’[’ PredicateExpr ’]’

PredicateExpr ::= Expr

2.5 XPath Evaluation

Formally, for any location path Expath() applied to context node c we can break it

down to a sequence of smaller location step S1, S2, ..., Sm, that is:

Expath(T, {c}) = Sm(T, ...S2(T, S1(T, {c}))) (2.2)

Each step S takes the initial context node-set or previous step as input, and

produces a node-set as the input of the next step. Each node in the previous result

25

set serves as the context node of the next step. The result of the last location step

is the result node-set of the location path.

2.5.1 Navigation-Based

Navigation-based method is a straightforward way to evaluate XPath query. It

traverses top-down from the document root to get the result. It generally follows the

XPath definition, since the XPath definition itself gives a strong hint on navigation-

based approach.

If there are multiple XPath queries to be processed, there are simple prefix

sharing method and state-of-art Y − Filter [5] that arguments the prefix tree rep-

resentation and utilizes a Non-deterministic Finite Machine(NFA).

2.5.2 Index-Based

There are some novel indexes and join algorithms developed by mainly the database

community. They generally consist of:

• ELEMENT, TEXT tuples that store XML document

• Indexes for tree structure and inverted indexes for content

• Novel join algorithms that take advantage of the indexes

There are several papers discuss this kind of approach. For our best knowledge,

the novel method to evaluate XML containment query presented by [6] at SIG-

MOD 2001 is the first paper of this kind of method. It includes modified inverted

index and join algorithm that suitable for XML query. In following paragraphs, we

briefly introduce this method, since one of our ApproXPath evaluation method can

built on it.

26

Inverted Index

Inverted index is not an alien. It is around for Information Retrieval(IR) community

for quite a while, and is widely used in the web search engines. The content of the

documents may stored in somewhere in disks, and the inverted index itself consists

of a set of (word, pointer) pairs. The word is the search key for the index while

the pointer points to a bucket that contains a set of the physical locations of the

occurrence of the word.

In order to process structured documents such as XML, the inverted index can

be extended in a simple way: text words are indexed in a T-index similar to that

used in a traditional IR system, and elements are indexed in an E-index,which maps

elements to inverted lists. Each inverted list records the occurrences of a word or

an element.

Structure Index [6]

Each term in a XML document is indexed by its document number (docno), its po-

sition (begin : end or wordno) and its nesting depth (level) within the document.

This is denoted as (docno; begin : end; level) for an element and (docno;wordno; level)

for a text word. The position, begin, end or wordno, in a document can be gener-

ated by counting word numbers. Alternatively, if the document is in a parsed tree

format, the position can be generated by doing a depth first traversal of the tree and

sequentially assigning a number at each visit. Since each non-leaf node is always

traversed twice, once before visiting all its children and once after, it has two num-

bers assigned, while leaf nodes have only one number. An inverted list is sorted in

the increasing order of docno, and then in the increasing order of begin and end.

The E-index and T-index can be mapped into the following two relations:

27

name (1, 4, 3), (1, 25, 3), (1, 39, 3) . . .

author (1, 3, 2), (1, 15, 2), (1, 24, 2). . .

Figure 2.2: Fragment of T-index for XML document in figure 1.1

<books> (1, 2:36, 1) . . .

<title> (1, 8:14, 3), (1, 15:22, 3), (1, 28:34, 3) . . .

<author> (1, 3:23, 2), (1, 24:35, 2) . . .

Figure 2.3: Fragment of E-index for XML document in figure 1.1

ELEMENTS (term, docno, begin, end, level)

TEXTS (term, docno, wordno, level)

The ELEMENTS table stores occurrences of XML elements, while the TEXTS

table stores occurrences of text words. Each occurrence is stored as a table row.

Figure 2.2 and figure 2.3 show the T-index and E-index for the XML document in

figure 1.1.

Term occurrences indexed in this way have the following properties:

1. Containment Property(Descendant). An occurrence of a term T1, encoded as

(D1;P1;L1), contains an occurrence of a term T2, encoded as (D2;P2;L2),

if and only if: (1)D1 = D2, and (2) P1 nests P2. For example, (1; 1 :23; 0)

contains (1; 9 : 13; 2).

2. Direct Containment Property(Parent-Child). An occurrence of a term T1(D1;P1;L1)

direct contains T2(D2;P2;L2) if and only if: (1) D1 = D2, (2) P1 nests P2,

and (3) L1 + 1 = L2. For example, (1; 1 : 23; 0) direct contains (1; 2 : 7; 1).

3. Tight Containment Property. An occurrence of a term T1(D1;P1;L1) tight

contains T2(D2;P2;L2) if and only if: (1) D1 = D2, and (2) P1 nests P2

28

and nothing else. For example, (1; 14 : 21; 2) tight contains (1; 15 : 20; 3).

Because of the nesting structure of XML, tight containment implies direct

containment but not vice versa.

4. Proximity Property. An occurrence of a term T1(D1, P1, L1), is within dis-

tance k of a term T2(D2, P2, L2), if and only if: (1) D1 = D2, and (2)

|P1 − P2| ≤ k. For example, (1,2,3) and (1,4,2) are within distance of 1(ap-

pear next to each other).

The above properties allow us to have a variety of operations on inverted lists.

To process the expression “a//b”,the inverted lists of “a” and “b” are retrieved.

Occurrences from the two lists are merged if they satisfy the Containment Prop-

erty. The expression “a/b” can be similarly processed by merging the inverted

lists using the Direct Containment Property. The Proximity Property can be used

to process string queries such as query processing with distance k = 1. Finally

the Tight Containment Property can be used to process expressions such as “

<month>=‘January’ ” (element ‘<month>’ has only “January” in it and nothing

else) involving a self-join on the ELEMENTS table.

Multi-Predicates Merge Join Algorithm [6]

The merge algorithm takes advantage of the index. It is a variation of the merge

join that could handle multiple predicates.

This is the algorithm in [6] called Multi-Predicates Merge Join(MPMGJN).

procedure containment merge (list1, list2)

begin

29

1. set cursor1 at beginning of list1

2. set cursor2 at beginning of list2

3. while (cursor1 �= end of list1 and

4. cursor2 �= end of list2) do

5. if (cursor1.docno < cursor2.docno) then

6. cursor1++

7. else if (cursor2.docno < cursor1.docno) then

8. cursor2++

9. else

10. mark = cursor2

11. while (cursor2.position < cursor1.position and

12. cursor2 �= end of list2) do

13. cursor2++

14. if (cursor2 == end of list2) then

15. cursor1++

16. cursor2 = mark

17. else if (cursor1.val (directly)contains cursor2.val) then

18. mark = cursor2

19. do

20. merge cursor1 and cursor2 values

21. cursor2++

22. while (cursor1 value (directly)contains cursor2 value

23. and cursor2 �= end of list2)

24. cursor1++

25. cursor2 = mark

30

26. endif

27. endwhile

28. endif

29. endwhile

end

This algorithm has an edge over traditional join algorithm since it can handle

multiple predicate. It outperforms traditional join in most cases.

There are some other improved versions such as “Structure Join” [7]. These

algorithms are all belong to this index-based category.

2.6 Edit Operation on String

A string s is a sequence of alphabets, that is s = Σ∗.

We consider only those defined in the following form: The distance d(x, y)

between two strings x and y is the minimal cost of a sequence of operations that

transform x into y (and 1 if no such sequence exists). The cost of a sequence of

operations is the sum of the costs of the individual operations. The operations are

a finite set of rules of the form δ(z,w) = t, where z and w are different strings and

t is a nonnegative real number. Once the operation has converted a substring z into

w, no further operations can be done on w.

Note especially the restriction that forbids acting many times over the same

string. Freeing the definition from this condition would allow any rewriting sys-

tem to be represented, and therefore determining the distance between two strings

would not be computable in general.

31

If for each operation of the form δ(z,w) there exists the respective opera-

tion delta(w, z) at the same cost, then the distance is symmetric (i.e. d(x, y) =

d(y, x)). Note also that d(x, y) ≥ 0 for all strings x and y, that d(x, x) = 0, and

that it always holds d(x; z) ≤ d(x; y) + d(y; z). Hence, if the distance is sym-

metric, the space of strings forms a metric space. General substring replacement

has been used to correct phonetic errors. In most applications, however, the set of

possible operations is restricted to:

• Insertion: δ(′′, a), i.e. inserting the letter a.

• Deletion: δ(a,′′), i.e. deleting the letter a.

• Replacement or Substitution: δ(a, b) for a �= b, i.e. replacing a by b.

2.7 Approximate String Matching

There are numerous algorithms that can match strings with errors. We only intro-

duce the one that based on AGrep [8] that is based on [9].

Its basic idea is to:

1. Encoding each letter in the pattern/text string into a set of bit string with 0/1

indicating if corresponding letter presents at the specified position or not

2. Matching is an AND operation with corresponding pattern and text bit string

and advancing is a Shift operation.

3. A set of bit strings is maintained corresponding to matching status under

different number of errors.

32

The detail is described in [8]. Its time complexity is of O(kn) where k is the

number of errors allowed and n is the text length.

2.8 Edit Operations on Tree

Definition 2.8.1 (Rooted Tree) A rooted tree is a structure T = (V,E, root(T))

that satisfies E ⊆ V × V and root(T) ∈ V . V is a nonempty finite set whose

elements are called nodes or vertices, while set E is a set of pairs (u, v) ∈ V × V

whose elements are called edges. If (u, v) ∈ E, then u is the parent of v and v is

the child of u, that is,

u = parent(v) and v = child(u).

A graph is called labeled when the n vertices are distinguished from one an-

other by names such as v1, v2, ..., vn.

Consider a node x in a rooted tree T with root r = root(T). Any node y on the

unique path from r to x is called an ancestor of x. If y is an ancestor of x, then x

is a descendant of y. (Every node is both an ancestor and a descendant of itself.) If

y is an ancestor of x and x �= y, then y is a proper ancestor of x and x is a proper

descendant of y. The subtree rooted at x is the tree induced by descendants of x,

rooted at x.

If the last edge on the path from the root r of a tree T to a node x is (y, x), then

y is the parent of x, and x is a child of y. The root is the only node in T with no

parent. If two nodes have the same parent, then they are siblings.

An ordered tree is a rooted tree in which the children of each node are ordered.

That is, if a node has k children, then there is a first child, a second child, ..., and

the kth child.

33

a

b

c

d

a

b c

Figure 2.4: Node insertion

There is a value and type associated with each node u, namely, value(u),

type(u).

We first define four types of edit operations [10–12] for a rooted tree: context

change(Echange), node delete(Edelete), node insert(Einsert) and subtree swap(Eswap).

Node Insertion

Insert operation on edge (a, c) means inserting a node d as a child of node a and

parent of node c , as shown in figure 2.4.

Definition 2.8.2 (Node Insertion) Let T = (V,E,L, root(T)) be a rooted label

tree. the insertion of node v /∈ V in edge (u,w) ∈ E is a function of T such that

insert(T, v, (u,w)) = T ′ = (V ′, E′, L, root(T))

where V ′ = V ∪ {v},

E′ = E − {(u,w)} ∪ {(u, v), (v,w)}

Node Deletion

The delete operation on node c means letting the children of c becoming the chil-

dren of parent of c and removing c, as shown in figure 2.5.

34

a

b

d

c

a

b d

Figure 2.5: Node deletion

Definition 2.8.3 (Node Deletion) Let T = (V,E,L, root(T)) be a rooted label

tree. the deletion of node v ∈ V from T is a function of T such that delete(T) =

(V ′, E′, L, root(T))

where V ′ = V − {v},

E′ = E − ({(x, y)|(x, v) ∈ E ∨ (v, y) ∈ E} ∪ {(u,w)|(u, v) ∈ E ∧ (v,w) ∈
E})

Node Label Change: Change the Context of the Node

The context change operation on node c changes the label of the node, as shown in

figure 2.6.

Definition 2.8.4 (Node Relabeling) Let T = (V,E, root(T)) be a XML tree and

v ∈ T be a node. A relabeling of v is the change its label of its label from li to lj .

that is,

relabel(T, v) = (V, E, L’, root(t))

where if ∀u ∈ V :

label′(u) =

lj if u = v

label(u) otherwise
(2.3)

35

a

b d

a

b c

Figure 2.6: Node relabeling

a

c b

a

b c

t1 t2t2 t1

Figure 2.7: Subtree swapping

Subtree Swapping

Subtree swap is to swap the subtree rooted at siblings of same parent, as shown in

figure 2.7.

Definition 2.8.5 (Subtree Swapping) Let T = (V,E,L, root(T)) be a rooted la-

bel tree. the subtree swap of node u, v ∈ V is a function of T such that swap(T, u, v) =

T ′ = (V,E′, L, root(T))

where subtree′(u) = subtree(v), subtree′(v) = subtree(u)

2.8.1 Cost Function

An arbitrary nonnegative cost function cost() is associated with each type of the

edit operation, node context change, node insertion, node deletion and subtree

swap. Without loss of generality, assume:

1. cost() ≥ 0

36

2. cost(T → T) = 0

3. cost(T → T ′) = cost(T ′ → T)

4. cost(T → T ′) + cost(T ′ → T ′′) ≥ cost(T → T ′′)

The above is easily satisfied if we assign each kind of basic operation with

same nonnegative cost.

Definition 2.8.6 (Cost of Edit Operation) The cost of a sequence of edit opera-

tions S = s1, s2, ..., sn is defined as
∑n

i=1 cost(si)

Definition 2.8.7 Definition: The edit distance between two trees T , T′ is defined

by the minimum edit operations that transform one tree to another.

dist(T, T ′) = min{∑m
i=0 cost(Si)|Si is a sequence of edit operations that

bring tree T to tree T ′, i.e. T ′ = Sm(...(S1(S0(T)))}

As a distance metric, dist() satisfies the triangle inequality:

Theorem 2.8.1 dist(T1, T3) ≤ dist(T1, T2) + dist(T2, T3)

Proof According to the definition of the distance, there exists a sequence of edit

operations s1, s2, ..., sn, that bring tree T1 to T2, and a sequence of edit operations

sn+1, sn+2, ..., sm, that bring tree T2 to T3. Thus s1s2...snsn+1sn+2...sm bring

tree T1 to T3. Again, using the definition of the distance, since dist(T1, T3) is

the minimum of all possible sequence of edit operations. Thus dist(T1, T3) ≤
cost(s1s2...snsn+1sn+2sm), that is dist(T1, T3) ≤ dist(T1, T2) + dist(T2, T3)

QED.

37

2.9 Related Works

Our work has two related areas: distance metrics in string/trees, query language

for XML.

2.9.1 Approximate String Matching

The idea of edit distance and matching with errors were first introduced to the

strings and were investigated in [8,13–15]. It is still a very hot topic since its great

application in DNA matching and Web searching. The [16] is a very good survey

on approximate string matching. Our idea is inspired by Wu and Manber’s work

on Agrep [8,15], but fundamental difference exists between these two approaches.

First, Wu and Manber’s work is dealing with string, and our work is on trees.

Second, in Wu and Manber’s work, in each step, there is only one error can be

introduced due to the characteristics of the string, but in trees, each step could

introduce more than one error.

2.9.2 Approximate Tree Matching

The idea of approximate string matching was extended to the tree case. For our best

knowledge, Tai’s paper [10] is the first one to address the tree distance problem.

Tree matching problem is useful for compiler code gen and recently it is relatively

well researched due to the advent of tree-structure document such as XML, etc.

Several papers on this ares are [11,12,17]. In [17], Kilpelainen gave an prove that

unordered tree embedding is NP-Hard.

38

2.9.3 Language Proposals for Approximate Matching

There exist many language proposals for approximate query matching. These pro-

posals can be classified into two main categories: content-based approaches and

approaches based on hierarchical structure. In the first category, we find text search

and extensions to it for querying position of text (using predicates such as near) in

documents (e.g, [18–22]). In the second category, we find [21]. In [21], the au-

thor proposes a pattern matching language called approXQL, an extension to XQL

[23]. In [19], the authors describe XIRQL, an extension to XQL [23] that inte-

grates IR features. XIRQL’s features are weighting and ranking, relevance-oriented

search (where only the requested content is specified and not the type of elements

to be retrieved) and datatypes with vague predicates (e.g., search for measurements

that were taken at about 30 feet). In [22], the authors develop XXL, a language

inspired by XMLQL [24] that extends it for ranked retrieval. This extension con-

sists of similarity conditions expressed using a binary operator that expresses the

similarity between a value of a node of the XML data tree and a constant or an

element variable given by a query. This operator can also be used for approximate

matching of element and attribute names. Our work is different from them in that

we consider both hierarchical structure and content approximation and our result

are grouped according to edit distance metrics. Instead of based on XQL, our work

is based on XPath. Form our point of view, it has more expressiveness ability and

is more widely used than XQL.

39

2.9.4 Specification and Semantics

A query can be relaxed in several ways. In [25], the authors describe querying

XML documents in a mediated environment. The query language is similar to

our tree patterns. The authors are interested in relaxing queries whose result is

empty. They propose three kinds of relaxations: unfolding a node (replicating

a node by creating a separate path to one of its children), deleting a node and

propagating a condition at a node to its parent node. Unfortunately, this work

does not consider any weighting and does not discuss evaluation techniques for

relaxed queries. Another interesting work is the one presented in [21] where the

author considers three relaxations of an XQL [23] query: deleting nodes, inserting

intermediate nodes and renaming nodes. By allowing only stylized sequences of

deleting nodes (in a bottomup fashion), [21] avoids the combinatorial effects of

permitting arbitrary combinations of deletions.

Recently, Kanza and Sagiv [26] proposed two different semantics, flexible

and semiflexible, for evaluating graph queries against a simplified version of the

Object Exchange Model (OEM). Intuitively, under these semantics, query paths

are mapped to database paths, so long as the database path includes all the labels

of the query path; the inclusion need not be contiguous or in the same order; this is

quite different from our notion of tree pattern relaxation. They identify cases where

query evaluation is polynomial in the size of the query, the database and the result

(i.e., combined complexity). However, they do not consider scoring and ranking of

query answers.

In IR, there are three ways of controlling the set of relaxations that are ap-

plied to a query: threshold, top-k and boolean (e.g., [20] and [22]) approaches.

Most often, query terms are assigned weights based on some variant of the tf*idf

40

method [27] and probability independence between elementary conditions is as-

sumed. ApproXPath does not use any post-pruning method to limits the result set

of relaxation. All the irrelevant results are eliminated as soon as possible.

2.9.5 Approximate Query Matching

There exist two kinds of algorithms for approximate matching in the literature:

post-runing and rewriting-based algorithms. The complexity of post-runing strate-

gies depends on the size of query answers and a lot of effort can be spent in eval-

uating the total set of query answers even if only a small portion of it is relevant.

Rewriting-based approaches can generate a very large number of rewritten queries.

For example, in [21], the rewritten query can be quadratic in the size of the origi-

nal query. [28] presents a query that based on tree pattern relaxation and Zhang’s

MPMGJN [6] algorithm. Her approach is close to our approach, both are query

relaxation. But we take different approach to the error measurement and provide

more precise measurement on “similarity”. She assigned different weight on the

different nodes in the query tree and allowed limited relaxation on the query tree.

Our approach utilizes tree distance metrics and relatively rich transformation on

the tree.

41

Chapter 3

ApproXPath

3.1 Overview

In this chapter, we present our approach for approximate XML query. Our ap-

proach can be categorized as query plan relaxation. The ApproXPath we proposed

is based on the popular XML query language, XPath, as we mentioned before.

It uses the same syntax as the conventional XPath expression and relaxes its se-

mantics. It apples approximate matching techniques to find the result in the XML

document while exact XPath may fail. Approximate XPath widens its search range

by allowing edit operation, i.e. allowing both structure and content errors, in XML

tree while matching.

Given an XML document, an error bound n, and an XPath location expression

e, the result of Approximate XPath expression is those nodes in both the original

XML document tree T and some XML document tree T′ that is within n edit

distance away from tree T . Precisely, we have the following definition:

Definition 3.1.1 (Result Set of ApproXPath) Given XML document tree T, an er-

42

ror bound n, an XPath expression e, let R represent the result set of ApproXPath

expression Eaxpath(T, e, n) from context node c. Then set R satisfies,

R = EApproXPath(T, e, n) = {x|∃T ′[x ∈ Expath(T ′, e)∧x ∈ node(T)∧dist(T ′, T) ≤ n]}
(3.1)

where Expath(T, {c}) denotes the conventional XPath expression e applied on doc-

ument T from context node c.

There are several things to be clarified in the definition above.

1. There is not requirement that tree T′ for each element in R should be the

same. That means we could have different tree T′ for each element in R

2. The result should be in the original tree T , ApproXPath does not introduce

additional node to the result set. That is, although we permit inserting spuri-

ous node in the original tree, but that node is not returned as a result.

3. The tree distance is measured by each individual node. That is, a result node

set R with error n means each node in R has error n, and that dist(T′, T)

for each node may be measured by different T′ at each step. That is, we get

x error from tree T ′ at step i and y error from tree T ′′ at step i + 1, T ′ �= T ′′

3.2 Different Approaches

There are several possible approaches to the ApproXPath. One approach is trying

to rewrite XPath expression such that applying rewritten XPath expression to the

XML document can find out all the nodes that are within given distance away from

the original tree; the other is relaxing the query plan for the conventional XPath

expression. Our approach is based on the latter one.

43

3.2.1 XPath Query Rewriting

Query rewriting is used extensively in the relational database query evaluation and

optimization. This approach does not modify the existing XPath evaluation engine.

Instead, it tries to get the approximate result by rewriting the query and feed the

rewritten query(s) to the conventional XPath query engine to get the result. A

post-pruning technique may be needed to select the “most similar matching result”

based on certain error metrics. The benefit of this approach is that it can take

advantage of the existing XPath query engine. The query rewriter is just a layer

above the existing XPath engine.

To achieve this, a naive approach is to blindly rewrite the query trying to find

as many approximate matches as possible. However, the size of the rewritten query

could be exponential, especially if one wants to find queries to cover all the possi-

ble structure errors and content errors. The better approach is to rewrite the query

based on the schema of the XML data. This is similar to the tree embedding prob-

lem. But unfortunately, a large body of XPath query can not be modeled as a query

tree. And the schema sometimes is not available due to such as administrative,

security reasons.

Since the rewritten query can return a large set of result that only a small portion

of it is relevant. A Top-k or post pruning methods is needed to rank/filter the result.

Our ApproXPath uses another approach, query plan relaxation, which we will

introduce in section 3.2.2.

44

3.2.2 Query Plan Relaxation

The relaxation tries to include the relevant result not by rewriting the query, instead

it relaxes the specification and semantics of the query. The relaxation for the XPath

can be one of the two ways: structure relaxation and content relaxation. Structure

relaxation relaxes the relationship between two nodes in the tree. For example, any

exact matching result for query /child :: book/child :: title should be those nodes

with name title that are the child of those nodes with name book. To include more

possible result, we relax the semantic of axis child. So the axis child contains not

only the child but also the grandchild, grandgrandchild, ... of the current node. On

the other hand, the content relaxation relaxes the string matching in the evaluation.

We still take /child :: book/child :: title for example. Relaxation on string

matching let us include nodes with name “titles”, “titled”, “Books”, “Boot”, etc in

the result.

The advantage of query relaxation is that it can greatly reduce the computation

effort. Since it is built in the query engine, it includes more results while eval-

uate the XML data. This avoids blindfold rewrite all possible queries since it is

confined by the tree it evaluating. It can also take advantage of some optimization

technology that specifies to the approximate matching.

3.3 ApproXPath

ApproXPath takes the query plan relaxation approach. By relaxing the conven-

tional exact Axis and NodeTest, we introduce the InexactAxis and InexactNodeTest

that relax the semantics of the exactAxis and exactNodeTest by allowing struc-

ture and content errors.

45

The semantics for InexactAxis, InexactNodeTest and InexactPredicate

are discussed in the following sections. The design goals for them are:

1. The result of InexactAxis, InexactNodeTest and InexactPredicate should

be a superset of the conventional Axis, NodeTest and Predicate.

2. InexactAxis, InexactNodeTest and InexactPredicate with error 0 should

be exact the same as conventional Axis, NodeTest and Predicate.

3. InexactAxis and InexactNodeTest should map to a set of conventional

Axis and NodeTest.

3.3.1 Inexact Axes

By relaxing the search criteria, the inexact axes are as follows:

1. InexactAxis, InexactNodeTest and InexactPredicate with error 0 should

be exact the same as conventional Axis, NodeTest and Predicate.

2. For (number of error allowed) >= 1 (k >= 1)

• ancestor, ancestor-or-self, have no inexact match.

ancestorinexact(k) → ∅
ancestor-or-selfinexact(k) → ∅

• an attribute has one error match, a child:

attributeinexact(1) → child.

This corresponds to a label change of the XML tree. The type of the

node is changed from attribute to other non-attribute type. The cost of

this change is 1.

46

• child has several inexact matches.

Inexact match with k errors is:

childinexact(k) → child/.../child︸ ︷︷ ︸
k+1

.

There are k+1 child axes on the right hand side. This corresponds to a

series of deletions to the XML tree.

Especially, beside child/child, one error inexact child axis also in-

cludes the context node itself,

childinexact(1) → self .

And this corresponds to an insertion of a spurious child to context node

in the XML tree.

• descendant and descendant-or-self do not have inexact match.

descendantinexact(k) → ∅.

descendant-or-selfinexact(k) → ∅.

• following-sibling has one error inexact match sibling:

following-siblinginexact(1) → following-sibling|preceding-sibling.

This corresponds to the swap of subtree of the parent of the context

node.

• following does not have inexact match.

followinginexact(k) → ∅.

• name-space does not have inexact match.

name-spaceinexact(k) → ∅.

• parent has k errors inexact match:

parentinexact(k) → parent/.../parent︸ ︷︷ ︸
k+1

.

47

There are k+1 parent axes on the right hand side. This corresponds to

a series of deletions in the XML tree.

Especially, beside parent/parent, one error inexact parent axis also

includes the context node itself. This corresponds to an insertion of a

spurious parent to context node in the XML tree.

• preceding-sibling has one error inexact match sibling:

preceding-siblinginexact(1) → preceding-sibling|following-sibling

• preceding and self do not have inexact match.

precedinginexact(k) → ∅.

selfinexact(k) → ∅.

Possible Opimizations

If we take a closer look at those axes that have inexact match, such as the most used

child axis, we are actually doing some redundant work. When we try to get result

with errorn, in fact, we already get the result with n − 1 errors as a byproduct.

Actually, in navigation-based approach, we need travel nodes with n − 1 errors in

order to get those nodes with n errors. Thus, we can return all those nodes within

given error in one shot. Therefore, the result of each InexactAxis is an array

of node set. Each node set in the array represents a result that corresponds to a

specified error.

3.3.2 Inexact Node Test

A name test can be one of the following three: name test, node type test or processing-

instruction test. We only allow error in the name test. The name test in a node test

48

is essentially a string matching. So an error in node test can be categorized as a

label change for that node.

An error in name test is a content error. We can apply inexact string matching

here. Inexact string matching is a hot topic, since it closely related to the area

such as web searching, DNA and protein matching. There are already several good

existing inexact string matching algorithms. We take advantage of one of them.

The algorithm used here is the agrep algorithm developed in University of Arizona.

There is a threshold for the content errors (mismatched characters) in the name

test. If there is no matching within the given amount of errors then we consider

the name test failed. It is more reasonable to define the threshold as a percentage

of the string length of the QName of that node, since the length of the QName can

vary greatly. This threshold is adjustable. We choose 40% in our ApproXPath.

From another point of view, as we mentioned above, we can model the error

in node test as a label change to that node. So, regardless how many mismatched

characters in the inexact string matching, if there is a match within given bound ,

we count them as one error (a label change).

In summary,

1. Inexact Node Test can have one of the three kinds of results: successful with

error 0, successful with 1 error or failed.

2. For name test:

• For name test in node test, if an exact matching is achieved, we say it

is successful with 0 error.

• Or if an inexact matching within given error bound is achieved, we say

it is successful with 1 error.

49

• Otherwise, the name test fails.

3. There are no inexact node test for nodetype(), and processing-instruction().

So they are identical to the conventional Node Test. There are only two

outcomes for the evaluation: successful with 0 erroror failed.

3.3.3 Inexact Predicate

Predicate expression is evaluated for each node in the result of the node test. Each

node from the result acts as a context node for the predicate expression. The num-

ber of nodes in the result is the context size and the proximity position of a node

in the result is the context position for the predicate expression. Since it basically

just another XPath expression, the inexact matching discussed previously is also

applied here.

1. For the case there are more than one predicates, InexactPredicates are

evaluated from left to right.

2. For the case that the Predicate contains a LocationPath, InexactPredicate

is evaluated as described in InexactAxis and InexactNodeTest

3. For the Equality expression in Predicate that compares a position (position(),

etc) to a number one error inexact match is true for any case other than exact

match(subtree swap). No inexact match for more than one error.

4. For the Equality expression in Predicate that compares between two strings,

one error inexact match is true for inexact string match with specified errors.

No inexact match for more than one error.

50

S0 SnS3S2S1 ...

0 0 0

111

00

11

2

3

2

Figure 3.1: The state diagram of ApproXPath evaluation

3.3.4 Glue Together

The result of ApproXPath is the result of InexactAxis, InexactNodeTest and

InexactPredicate. A series of node sets is returned. Each node set corresponds

to the result of a specific number of error allowed. That is, if we specify that we

allow 5 errors in the evaluation, a total of 6 node sets are returned, corresponding

to 0 error (exact match) to 5 errors (5 errors introduced during the evaluation).

Similar to the conventional XPath evaluation, each intermediate result node set is

the start point for the next step. However, the difference between the ApproXPath

and conventional XPath lies in that the intermediate result is maintained in a set of

the node set. Each node in those sets generate the next step of node set according

to a Finite State Machine(FSM) shown in Figure 3.1.

From the FSM, one can find out that if a node in an intermediate result set is

with k errors then the result of next step of evaluation starting from this node is in

the intermediate result set of k + i errors, if i errors is introduced during the next

evaluation step. If k + i > n, n is the total number allowed, the result is discarded.

51

3.4 ApproXPath Evaluation Plan

Due to the similarity between ApproXPath and conventional XPath, the evaluation

of the conventional XPath can shed some light on the evaluation of our ApproX-

Path.

Basically, we divide the XPath query into a sequence of atomicsteps.

Atomic Step

A atomic step is an indivisible step in ApproXPath evaluation that can introduce

an error. The following steps are atomic step:

1. Axis

2. NodeTest

3. Equality expression with both side evaluated

There are two categories of methods on the evaluation those XPath steps. One

is the navigation based technology, the other is the index based method that utilizes

some novel join algorithms.

Due to the flexibility of our ApproXPath, our ApproXPath can be implemented

using the methods in either category.

Before we present the method for each category, we need to discuss some

method that prevents our algorithm becoming exponential.

Consider the following problem, suppose that one have m errors to distributed

among n steps, there are

 n + m − 1

m

 ways to do that, that is, it is exponential

to m, the number of errors .

52

In order to avoid the exponential cost, we introduce the Merge step at proper

stage in the evaluation. Merge is essentially rearranging the intermediate result set

to avoid unnecessary redundant calculation. The idea for merge is that, since a

node could appear in different intermediate result set with different error number,

we do a set difference operation to ensure that a node is only appear in one node set

(with least number of error) and the intersection of any two different intermediate

result set is empty. The cost of set difference varies by the implementation of the

set itself. For a sorted set or hash set, the cost is O(n), while for others, the cost is

O(log(n)), where n is the size of the set.

The following sections discuss two different implementations of ApproXPath.

3.4.1 Navigation-Based Approach

Navigation is a very natural way to evaluate the XPath query. It starts from the

document root and performs a top-down traverse on the XML document tree to

get the result. It is straight-forward, easy to implement, but sometimes suffer per-

formance penalties. This approach is used in many XPath query engine such as

Apache Xalan.

Here are the general steps of the navigation-based ApproXPath with error

bound n:

1. Break the ApproXPath location path into atomic steps, each LocationStep

may be broken into Axis, NodeTest, etc.

2. Initialize a collection of set R0...n corresponding to the given number of

errors. Assign context node to R0 and initialize sets R1...n to empty set

3. For each of the atomic step:

53

(a) Apply appropriate InexactAxes, InexactNodeTest and InexactPredicate

to each node in sets R0...n. Store the result in a series of set R′
0...n.

(b) Apply Merge operation on sets R′
0...n. The result is put back to sets

R0...n.

Therefore, similar to the conventional XPath expression, for any approximate

location path LApproXPath() applying to context node c, we can break it down to a

sequence of atomic steps s1, s2, ..., sm, and with each step, there is a error bound

ei associate with it,

R0 = (e0, e1, ..., en) = ({c}, ∅, ...∅) (3.2)

Ri = Si(T,Ri−1) (3.3)

LApproXPath(T,R0) = Sm(T, ...(S2(T, S1(T,R0))) (3.4)

The result set of the intermediate step is: Suppose that location path expression

Expath(T, c) could be divided into m location step s1, s2,..., sm, and totally n

errors are allowed. The set Ri for location step si satisfies:

Ri = {x|∃T ′
j [j ∈ (0, ..., i)∧x ∈ LXPath(T ′

i , ri)∧x ∈ node(T)∧
i∑

j=0

dist(T ′
j , T) ≤ n]}

(3.5)

and the result set is set R = Rm

From the definition of the intermediate result set, one can find that we do not

require that the tree Ti should be the same for each node. Therefore the tree uses

for node v may not necessary be the same tree used for node u.

54

Memory or Memory-less?

In the navigation-based approach, we always start from the nodes in the original

XML tree and intermediate result is also in the original XML tree. However, for

each node in the intermediate or final result set, there are different ways to get to

that node. Therefore, based on whether to remember the path leading to the node

in those result set, there are two approaches we can use, memory and memory-

less. Memory approach is to remember the intermediate step, that is, remember

the path and the error introduced in the way that leads to the current node. The

way of doing this is to associate each node with a set of traces that can lead to

the current node. This could be very expensive. The cost of building these traces

could be exponential, since there are potentially exponential ways to reach a certain

node. For example, if the node matched is at nth step of ApproXPath, and m

error is allowed, for exact m error alone, there are

 n + m − 1

m

 ways to get

to the current node. The advantage of memory approach is that it makes precise

calculation of the introduced error possible. The other approach is memory-less.

This approach does not record any trace of previous steps. Thus, the only thing

differentiate nodes is the errors introduced to get to those nodes. This approach

is very efficient, since it does not need to store the paths to get to that node. On

the next matching, the choice is also very simple, since it just based on the node

itself, not considering how to get to that node. The disadvantage is that it may

miscalculate the error introduced. It could over count errors when backward and

forward axes are mixed. An edit operation is introduced in previous step may be

count again in the next match in such situation, since no history information is

recorded.

55

In memory approach, Ti in the matching process is identical, while in the mem-

oryless approach, Ti could be different. Comparing this to the initial goal of ap-

proximate XPath, one can find that difference between the stepwise approach and

the original approximate XPath definition is that in stepwise approach, a sequence

of XML trees Ti is used in matching for one node instead of a single tree T used in

original approach. The question is that whether there is an XML tree T′ such that

T ′ = T1 = T2 = ... = Tm, that is, the two approach is equivalent.

If XPath location path contains only forward or backward location axes, that is,

they are one direction, we have the following claim for memory-less approximate

Xpath approach:

Claim: If the XPath location expression is of one direction, and each of its loca-

tion steps does not involve nodes beyond its intermediate result set and navigation-

based ApproXPath evaluation is used, then for any node in the result set, there

exists a tree T ′ such that dist(T, T ′) ≤ ∑m
i=1 di, and T ′ ∩ Ti = Ti, where m

is the total evaluation steps, and d1, d2, ...dm are the edit distance introduced in

evaluation step 1,2, ... m.

Justification: Suppose Ti is the tree used in evaluation step i. From the way of

stepwise approach works, there are some errors introduced in between the context

node ci and the result set Ri and no more. By definition, Ti should include such

changes. Since both ci and Ri are in the original tree and the edit operation is

localized except swap operation, and swap operation does not change the subtree

of the Ri, one can find that the edit operation is localized between ci and Ri in

the original tree. Therefore, except the region between ci and Ri, the rest of the

Ti tree could be identical to the original tree T. If not, construct a tree in this way,

retaining the region between the context node ci and the result set Ri of tree Ti,

56

the rest of the tree is identical to the original tree T . One can find a Ti that is

only different from tree T in the region between context node ci and the result set

Ri, while still satisfying stepwise approach requirement. Then, the edit operation

is localized in between ci and Ri, one could concatenate them to form a tree T′′

which is an approximation to original error tree T′.

The equality is the nature sequence of the triangle inequality of dist().

3.4.2 Algorithm for Navigation-Based Approach

The inputs of the navigation algorithm are XML document tree T , the XPath ex-

pression l and the error bound n. The return value of the algorithm is a node-set

that each node in it satisfies the condition of equation.

This algorithm maintains a series of sets, Si
j , where j = 0...m and i = 1...n,

m is the total number of the location steps. The nodes in Si
j are the intermediate

result of step j with minimum error if i.

NodeSet[] InexactAxis(R:node set, a:axis, n:max error allowed)

{
1. initialize NodeSet array S[n] = ∅
2. foreach node c in R

3. T = result of applying inexact axis a on context node c

4. for i = 0 to n

5. S[i] = S[i]
⋃

T[i]

6. return S

}
NodeSet[] InexactNodeTest(c:node, t:nodeTest)

57

{
1. NodeSet S[2]

2. S = result of applying inexact node test t on the context node c

3. return S

}
approLocationPath (l:LoactionPath, n: maximum error permitted, R[]:input/output Node Set)

{
1. Divide the XPath LocationPath l into a sequence of m location steps, l = s1, s2, ..., sm

2. Initialize temporary array S

3. for i = 1 to m

4. S = R

5. for j = 0 to n

6. V = InexactAxis(R[j], axis[i], n − j)

7. for k = 0 to n-j

8. S[j + k] = S[j] ∪ V [k]

9. for j = 0 to n

10. S[j] = S[j] − ⋃j−1
k=0 S[k]

11. for j = 0 to n

12. V = InexactNodeTest(S[j], axis[i], n − j)

13. for k = 0 to min(n-j, 1)

14. S[j + k] = S[j] ∪ V [k]

15. R = S

16. foreach (predicate p)

17. set S to array of empty set ∅
18. for j = 0 to n

58

19. foreach node c in R[j]

20. B = approPredicate(c, p, n − j)

21. for k = 0 to n-j

22. if(B[k] == true)

23. S[j + k] = S[j + k] ∪ {c}
24. R = S

}
boolean[] approPredicate (c:context node-set, p:predicate, n:maximum error permitted)

{
1. parse the Predicate p

... ...

2. Initialize array R to ∅, set R[0] = {c}... ...

3. foreach LocationPath l in p

4. approLocationPath (l, n, R)

... ...

}

3.4.3 Complexity Analysis for Navigation-Based Algorithm

Time Complexity

In approLoactionPath function, statements inside loop starting from line 3 ex-

ecute m (number of location steps) times. line 8 executes n2 (n is the total num-

ber of errors allowed) times. But considering that S[i] are mutual exclusive and
⋃

S[i] = V , all nodes in a XML tree. Thus, line 8 has time complexity of O(nv).

59

The same thing applies to line 14. The cost for InexactAxis is O(v2). Therefore,

the total time complexity for the algorithm is of O(m ∗ n ∗ v + m ∗ v2).

On the other hand, we care about the extra cost of ApproXPath over the con-

ventional navigation XPath evaluation engine. In worst case, the time will be n

times of the conventional XPath evaluation time. Our experiments demonstrate

that our analysis is correct.

Space Complexity

Since the maximum size of all the internal result set can not exceed the total number

of the node in XML document tree, thus, the space complexity is O(v).

3.4.4 Index-Based Approach

The previous section describes the navigation approach of ApproXPath implemen-

tation. The second approach of ApproXPath is based on the algorithm [6].

The works lie in following two areas:

1. Replace exact inverted index to approximate inverted indexes

2. Including error number and relax predicate in join.

A natural extension to the MPMGJN is that we include one more field called

errno in the ELEMENT and TEXT records we use in join. The errno works in

this way, if two records with errno1 and errno2 are joined, the result errnor is

the sum of the two. i.e. errnor = errno1 + errno2.

The above is for structure error. As for content error, if the record is an exact

match for the string, the errno is set to 0; if it is a match within specified error

bound, it is set to 1.

60

Also, the inverted index needs to extend to approximate inverted index. There

are several out there. They are the same as the original one. Only difference is in

the lookup algorithm. Exact match can take advantage of B-Tree, hash table etc,

while inexact match is essentially a linear search. It compares every record in the

index to find the “close” one.

So overall the algorithm is:

1. Populate the XML document in the database in the format mentioned in

2, i.e., ELEMENT and TEXT tuples, with one additional field call errno

indicating the error number involved with the current record. Treat attribute

as child.

ELEMENTS (term, docno, begin, end, level, errno)

TEXTS (term, docno, wordno, level, errno)

2. Break the XPath expression into a set of select, containment join, etc. A

query compiler is needed here.

3. For any query of style: “a/b[pred]” , do the following:

(a) Lookup approximate inverted index to find ELEMENT/TEXT records

with name matching “a” or “b” within given error bound. Mark field

errno 0 for exact matching and 1 for inexact matching.

(b) Using join algorithm indicated in the following example.

(c) Eliminate the records with errno field larger than given error bound.

There are already some implementations of the approximate inverted indexes.

We can take advantage of them. So we devote effort on how to extend the MP-

MGJN algorithm.

61

We use an example using pseudo SQL code to explain our algorithm. Query

execution engine uses the following way to execute the expression: “term LIKE

‘SomeString’”: uses inverted indexes to fetch any the element exactly matches

term ‘SomeString’ or inexactly matches ‘SomeString’ within a specified edit dis-

tance and increases errno of those inexact matching tuples by 1.

/a//b/c

1. Join. Store result in temporary table/view T1 (term, docno, begin, end, er-

rno).

SELECT e2.term, e2.docno, e2.begin, e2.end,
errno AS (e1.errno + e1.errno)

FROM element e1, element e2
WHERE e1.term LIKE ‘a’

AND e2.term LIKE ‘b’
AND e1.docno = e2.decno
AND e1.begin < e2.begin
AND e2.end < e1.end

2. Merge. Store result in temporary table/view T2 (term, docno, begin, end,

errno).

SELECT T1.term, T1.docno, T1.begin, T1.end,
errno AS min(T1.errno)

FROM T1
GROUP BY T1.term, T1.docno, T1.begin, T1.end

3. Join. Store result in temporary table/view T3 (term, docno, begin, end, er-

rno)

(SELECT e2.term, e2.docno, e2.begin, e2.end,
errno AS (e1.errno + e2.errno + e2.level - e1.level - 1)

FROM T2 e1, element e2
WHERE e2.term LIKE ‘c’

AND e1.docno = e2.decno
AND e1.begin < e2.begin

62

AND e2.end < e1.end
)
UNION
(SELECT e3.term, e3.docno, e3.begin, e3.end,

errno AS (e3.errno + 1)
FROM element e3
WHERE e3.term LIKE ‘c’
)

4. Merge. The result is the final result with schema (term, docno, begin, end,

errno).

SELECT T3.term, T3.docno, T3.begin, T3.end,
errno AS MIN(T3.errno)

FROM T3
GROUP BY T3.term, T3.docno, T3.begin, T3.end

63

Chapter 4

Implementation and Empirical

Performance Analysis

4.1 Implementation

Our Approximate XPath is implemented in Java using Sun J2SE 1.4.2 03. Its front

end, the XPath language parser, is based on Apache Xalan J-2.5.1 XPath package.

The back-end is our own Approximate XPath query engine implementing the al-

gorithm described in chapter 3. It is a relative complete implementation of XPath

Location Path.

This approach is to demonstrate how adaptable of our algorithm to existing

XPath implementation. This also makes the comparison with Apache Xalan rea-

sonable because we share the same front end.

64

4.2 Capability Test

In this section, we run a set of queries on the example XML file, foo.xml that

comes with Apache Xalan J-2.5.1.

<?xml version="1.0"?>
<doc>
<name first="David" last="Marston"/>
<name first="David" last="Bertoni"/>
<name first="Donald" last="Leslie"/>
<name first="Emily" last="Farmer"/>
<name first="Joseph" last="Kesselman"/>
<name first="Myriam" last="Midy"/>
<name first="Paul" last="Dick"/>
<name first="Stephen" last="Auriemma"/>
<name first="Scott" last="Boag"/>
<name first="Shane" last="Curcuru"/>

</doc>

Query 1

The query tests the ability of ApproXPath to handle content errors.

Query:

/docs/name[@name = “david′′]

Command:

java ApplyAXPath foo.xml "/docs/name[@first=‘dvid’]" 2

comment: The query has two errors, doc → docs and David → dvid both

content errors.

Result:

ApproXPath result with error 0:

<output0>

</output0>

65

ApproXPath result with error 1:

<output1>

</output1>

ApproXPath result with error 2:

<output2>
<name first="David" last="Marston"/>
<name first="David" last="Bertoni"/>
</output2>

Query 2

The query tests the ability of ApproXPath to handle the situation of mixing content

errors and structure errors.

Query:

/name[@first = ‘sctt′]

Command:

java ApplyAXPath foo.xml "/name[@first=‘sctt’]" 2

comment: The query has two errors, name promoted to the root child, which

is a structure error and Scott → sctt, which are content error.

Result:

ApproXPath result with error 0:

<output0>

</output0>

ApproXPath result with error 1:

<output1>

66

</output1>

ApproXPath result with error 2:

<output2>
<name first="Scott" last="Boag"/>
</output2>

From the above two query tests, the ApproXPath demonstrate that it can handle

both structure and content errors well.

4.3 Empirical Performance Analysis

The performance tests are carried out on three different trees with different shapes

and relative large size. The comparison between Apache Xalan J-2.5.1 and Ap-

proXPath are presented. And the execution time of ApproXPath on different num-

ber of errors allowed are also presented and discussed.

4.3.1 Testing Suite

The testing suite for our approximate XPath engine is a set of randomly generated

trees. We tested our engine by varying the following parameters:

1. Degree of the document node. This factor represents the number of the chil-

dren of the document root. It controls the top level bushiness of the XPath

document tree.

2. Depth of the tree. This factor represents the level of the nesting of elements

in the XML document. It controls the depth of the XML tree.

3. The Bushy factor. This factor describes the number of children (degree) in

a non-leaf node in the XML tree. The bushiness can be fixed or chosen

67

randomly from a range.

In [29], one can find more details on benchmark on XPath engine.

From the result one can find that our relaxed XPath query engine outperforms

Apache Xalan j-2.5.1 and scales well with the total number of error allowed.

4.3.2 Comparison ApproXPath to Xalan J-2.5.1 on Different Queries.

Bushy Tree

The XML document size is 9.04 MB (9,480,448 bytes), with bush factor being 5,

depth being 6 and leaves per internal nodes being 30.

Seven different queries are used to test the performance between Apache Xalan

J-2.5.1 and ApproXPath:

Query 1: /doc/level1/level2/level3/level4

Query 2: /doc/level1[@pos=‘1’]/level2[@pos=‘2’]/level3[@pos=‘3’]/level4[@pos=‘4’]

Query 3: /doc

Query 4: /doc/level1

Query 5: //name[@first=‘Emily’]/preceding-sibling::*

Query 6: /doc/level1/level2/level3/level4/level5/level6

Query 7: /doc/level1[@pos=‘1’]/level2[@pos=‘2’]/level3[@pos=‘3’]/level4[@pos=‘4’]/

level5[@pos=‘5’]/level6[@pos=‘5’]/name[@first=‘David’][@last=‘Marston’]

From Figure 4.1, we can find that ApproXPath is on par with Xalan when the

result is printed, but consistently faster than Xalan when no result is printed out.

On those cases with result printed out, ApproXPath is slightly faster than Xalan on

query 2, 5, 6, 7. The reason for that is the node set for print out on these queries

is small. Xalan has a better way to traverse XML tree and print out result than

ApproXPath.

68

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14
S

ec
on

d

Query

Execution Time with Printing(bushy tree)

ApproXPath
Xalan

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

S
ec

on
d

Query

Execution Time without Printing(bushy tree)

ApproXPath
Xalan

Figure 4.1: Execution time on bushy tree

69

Tall Tree

The XML document size is 247 KB (253,401 bytes), with the number of root child

being 5, depth being 500, bush factor being 1 and leaves per internal nodes being

30.

Seven different queries are used to test the performance between Apache Xalan

J-2.5.1 and ApproXPath:

Query 1: “/doc/level1/level2/level3/level4”

Query 2: “/doc/level1[@pos=‘1’]/level2[@pos=‘1’]/level3[@pos=‘1’]/level4[@pos=‘1’]”

Query 3: “/doc”

Query 4: “/doc/level1”

Query 5: “//name[@first=‘Emily’]/preceding-sibling::*”

Query 6: “/doc/level1/level2/level3/level4/level5/level6”

Query 7: “/doc/level1[@pos=‘1’]/level2[@pos=‘1’]/level3[@pos=‘1’]/level4[@pos=‘1’]/

level5[@pos=‘1’]/level6[@pos=‘1’]//name[@first=‘David’][@last=‘Marston’]”

From Figure 4.2, we can find that ApproXPath performs very close to or slightly

better than Xalan when the result is printed, but consistently faster than Xalan when

no result is printed out. As mentioned above, since the node set for printing out is

smaller, ApproXPath shows its strength, especially on query 2, 5, 6, 7.

Fat Tree

The XML document size is 5.73 MB (6,012,005 bytes), with number of root child

100, depth 2, bush factor 1, leaves per internal nodes are 30.

Seven different queries are used to test the performance between Apache Xalan

j-2.5.1 and ApproXPath:

Query 1: “/doc/level1/level2”

70

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
S

ec
on

d

Query

Execution Time with Printing(tall tree)

ApproXPath
Xalan

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
ec

on
d

Query

Execution Time without Printing(tall tree)

ApproXPath
Xalan

Figure 4.2: Execution time on tall tree

71

Query 2: “/doc/level1[@pos=‘1’]/level2[@pos=’1’]”

Query 3: “/doc”

Query 4: “/doc/level1”

Query 5: “//name[@first=’Emily’]/preceding-sibling::*”

Query 6: “/doc/level1/level2/name”

Query 7: “/doc/level1[@pos=‘1’]/level2[@pos=‘1’]/name[@first=‘David’][@last=‘Marston’]”

The same situation as the previous two cases can be found in figure 4.3. On

those cases with result printed out, ApproXPath is still faster than Xalan on query

2, 5, 6, 7. We can notice that on query 6, ApproXPath is significantly faster than

Xalan. The reason for that is ApproXPath has a better algorithm on printing out a

large number of disjoint short subtrees. But ApproXPath still falls short on travel-

ing the whole tree such as query 3.

4.3.3 Vary Number of Errors Allowed

The tests are carried out on three different trees used in the above tests: bushy tree,

tall tree and fat tree. For each query, we present the data on the overall execution

time, the result set size and the execution time per result node when varying the

number of error allowed.

Query: /doc/level1

In figure 4.4, it seems that query “/doc/level1” does not exercise ApproXPath en-

gine too much. The curve for total execution time remains flat when the error

number is less than 5, due to the small resulting node set. The time cost per result

node is relative flat. The initial fluctuation in the time per node curve is caused

by the small result node set and other factor such as loading, memory allocation

dominated the time cost in that case.

72

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16
S

ec
on

d

Query

Execution Time with Printing(fat tree)

ApproXPath
Xalan

1 2 3 4 5 6 7
0

1

2

3

4

5

6

S
ec

on
d

Query

Execution Time without Printing(fat tree)

ApproXPath
Xalan

Figure 4.3: Execution time on fat tree

73

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

S
ec

on
d

Error Allowed

Execution Time. Query ="/doc/level1" on Bushy Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Error Allowed

Result Set Size. Query ="/doc/level1" on Bushy Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="/doc/level1" on Bushy Tree

Time per Result Node

Figure 4.4: Execution time of query “/doc/level1” on bushy tree
74

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

S
ec

on
d

Error Allowed

Execution Time. Query ="/doc/level1" on Tall Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

Error Allowed

Result Set Size. Query ="/doc/level1" on Tall Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="/doc/level1" on Tall Tree

Time per Result Node

Figure 4.5: Execution time of query “/doc/level1” on tall tree
75

Basically, we have the same situation in figure 4.5. The size of the result node

set grows linearly, since as more error allowed, the query just explores deeper and

deeper in the XML tree. Also, the tree is tall enough so that it can keep on providing

new nodes. The initial fluctuation in the time per node curve is caused by the small

result node set and other factor such as loading, memory allocation dominated the

time cost in that case.

In this case (figure 4.6), the tree is too short to provide any more nodes when

more error is allowed.

Query: //level1

This test (figure 4.7) the ApproXPath engine on wildcard queries. When given

more errors, //level1 just returns all nodes with name beginning with “level”. As

usual, the time grows linearly. The initial fluctuation in the time per node curve is

caused by some irrelevant factors.

The exact same situation can be found on tall tree case (figure 4.8) and fat tree

case (figure 4.9).

Query: /doc/level1/level2/level3/level4/level5

This query put some stress on the query engine, since it has a lot of steps, and

there are some chores on each step. From figure 4.10, we can find that the curve is

steeper than other cases, but it still remains its linearity.

The time per node curve on tall tree case (figure 4.11) is declining, if we ignore

the initial couple of points. This is because there is less work on the tall skinny tree

when try to evaluate “child” axis.

The time per node curve on fat tree case (figure 4.12) becomes flat when error

number is growing. This is because the tree is short and child axis quickly runs

76

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

S
ec

on
d

Error Allowed

Execution Time. Query ="/doc/level1" on Fat Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Error Allowed

Result Set Size. Query ="/doc/level1" on Fat Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="/doc/level1" on Fat Tree

Time per Result Node

Figure 4.6: Execution time of query “/doc/level1” on fat tree

77

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

S
ec

on
d

Error Allowed

Execution Time. Query ="//level1" on Bushy Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Error Allowed

Result Set Size. Query ="//level1" on Bushy Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="//level1" on Bushy Tree

Time per Result Node

Figure 4.7: Execution time of query “//level1” on bushy tree
78

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ec

on
d

Error Allowed

Execution Time. Query ="//level1" on Tall Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

Error Allowed

Result Set Size. Query ="//level1" on Tall Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="//level1" on Tall Tree

Time per Result Node

Figure 4.8: Execution time of query “//level1” on tall tree
79

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

S
ec

on
d

Error Allowed

Execution Time. Query ="//level1" on Fat Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Error Allowed

Result Set Size. Query ="//level1" on Fat Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="//level1" on Fat Tree

Time per Result Node

Figure 4.9: Execution time of query “//level1” on fat tree
80

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

S
ec

on
d

Error Allowed

Execution Time. Query ="/doc/level1/level2/level3/level4/level5" on Bushy Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Error Allowed

Result Set Size. Query ="/doc/level1/level2/level3/level4/level5" on Bushy Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="/doc/level1/level2/level3/level4/level5" on Bushy Tree

Time per Result Node

Figure 4.10: Execution time of query “/doc/level1/level2/level3/level4/level5” on
bushy tree 81

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
ec

on
d

Error Allowed

Execution Time. Query ="/doc/level1/level2/level3/level4/level5" on Tall Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Error Allowed

Result Set Size. Query ="/doc/level1/level2/level3/level4/level5" on Tall Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="/doc/level1/level2/level3/level4/level5" on Tall Tree

Time per Result Node

Figure 4.11: Execution time of query “/doc/level1/level2/level3/level4/level5” on
tall tree 82

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

S
ec

on
d

Error Allowed

Execution Time. Query ="/doc/level1/level2/level3/level4/level5" on Fat Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

1.009

1.01
x 10

4

Error Allowed

Result Set Size. Query ="/doc/level1/level2/level3/level4/level5" on Fat Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="/doc/level1/level2/level3/level4/level5" on Fat Tree

Time per Result Node

Figure 4.12: Execution time of query “/doc/level1/level2/level3/level4/level5” on
fat tree 83

out of nodes.

Query: //name[@first=‘Emily’]/preceding-sibling::*

This query tests the query engine on combination of wildcard, predicate and con-

tent matching. From figure 4.13, figure 4.14, figure 4.15 , we find that ApproXPath

handles them very well. The execution times, total and per node, are still growing

linearly.

From all the testing results, we can claim that

1. Navigation-based ApproXPath with 0 error allowed has better or similar per-

formance when comparing to Xalan. This means there is little overhead in

ApproXPath when no error is allowed.

2. Navigation-based ApproXPath scales well with the number of error allowed.

In all test cases, it grows linearly with the number of error allowed at worst.

This demonstrates our theoretical analysis in chapter 3 is correct.

From the experiments, it is clear shown that we can claim the ApproXPath a

good approach to approximate XML query.

84

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

S
ec

on
d

Error Allowed

Execution Time. Query ="//name[@first=’Emily’]/preceding−sibling::*" on Bushy Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

5

Error Allowed

Result Set Size. Query ="//name[@first=’Emily’]/preceding−sibling::*" on Bushy Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="//name[@first=’Emily’]/preceding−sibling::*" on Bushy Tree

Time per Result Node

Figure 4.13: Execution time of query “//name[@first=‘Emily’]/preceding-
sibling::*” on bushy tree 85

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ec

on
d

Error Allowed

Execution Time. Query ="//name[@first=’Emily’]/preceding−sibling::*" on Tall Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
40

60

80

100

120

140

160

180

200

220

240

Error Allowed

Result Set Size. Query ="//name[@first=’Emily’]/preceding−sibling::*" on Tall Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
1.6

1.8

2

2.2

2.4

2.6

2.8

3

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="//name[@first=’Emily’]/preceding−sibling::*" on Tall Tree

Time per Result Node

Figure 4.14: Execution time of query “//name[@first=‘Emily’]/preceding-
sibling::*” on tall tree 86

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

S
ec

on
d

Error Allowed

Execution Time. Query ="//name[@first=’Emily’]/preceding−sibling::*" on Fat Tree

Total Time
Time w/o Print

0 1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16
x 10

4

Error Allowed

Result Set Size. Query ="//name[@first=’Emily’]/preceding−sibling::*" on Fat Tree

Result Node Set Size

0 1 2 3 4 5 6 7 8 9 10
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

M
ill

is
ec

on
d

Error Allowed

Time per Result Node. Query ="//name[@first=’Emily’]/preceding−sibling::*" on Fat Tree

Time per Result Node

Figure 4.15: Execution time of query “//name[@first=‘Emily’]/preceding-
sibling::*” on fat tree 87

Chapter 5

Conclusions

Over the past several years, there has been a tremendous surge of interest in XML

as a universal, queryable representation for data. This has in part been stimu-

lated by the growth of the Web and e-commerce, where XML has almost in-

stantly emerged as the de facto standard for information interchange and integra-

tion. Nearly every vendor of data management tools has added support for export-

ing, viewing, and in some cases even importing, XML formatted data. Tools for

querying and integrating XML are still in their infancy. There are still more need

to be done in the XML query area.

In this chapter, we conclude this thesis by summarizing the research and con-

tributions discussed in the previous chapters, followed by a section on direction for

future research.

5.1 Conclusions

In this thesis, we proposed an approximate XML query language. This language

is compatible with existing XPath language and could be used in place where con-

ventional XPath is used. Our approach is query relaxation based on tree distance

metrics and approximate string matching. By revising conventional definition of

88

the conventional XPath location step, we defined inexact axes, inexact node test

and inexact prediction. We presented two different approaches to ApproXPath,

navigation-based and index-based. The experiments show that our algorithm is

linear to the error number and on par or better than Xalan when no error is al-

lowed.

The key contributions of the thesis are:

1. An Approximate XML query language proposal, ApproXPath, is introduced.

This allows users can specify XML queries with limited knowledge of XML

documents precise structure, which sometimes difficult to get.

2. ApproXPath can handle both structure and content errors. Sound results are

returned based on the tree edit distance and string edit distance metrics. The

result is grouped by the error introduced with evaluating.

3. ApproXPath is build with full backwards compatibility with conventional

XPath. It has the same syntax and semantics with conventional XPath. This

allows our approximate query engine be used where conventional XPath is

used. This also ease the learning curve of the user, they don’t need to learn a

whole new tool.

4. Two implementations are presented. Experiments show that navigation-

based ApproXPath performs well.

5.2 Future Work

There is still a lot of work could be done in the approximate XML query. Since

XML query itself is still in its early age, every thing is rapid changing. The lan-

89

guage proposal for XML query is not finalized. It is highly possible that one may

extend our current work to reflect the changes on the query requirement.

On the other hand, the algorithm of approximate tree matching is a hot area

in both database and information retrieval communities. There is still room left

for time and space complexity to improve. New algorithms keep on coming out,

especially due to the current interests in the tree like structure (XML) and World

Wide Web information retrieval.

In our point of view, improvement still can be made in the following areas.

1. With the stream-like processing becoming more and more important, we

should make our ApproXPath implementation suitable for that situation.

There are still more work to be done in that area, since it is different to

handle the reverse axis in stream processing environment. There are already

some researches on that area, such as revise reverse axis(not applicable to all

reverse axis), using stack to store temporary XML fragments. etc. We need

extend our research on that area.

2. Index for approximate string matching. Currently, the cost is still O(n),

which is suboptimal comparing to the traditional index on exact string match-

ing, which is O(log(n)), a big difference.

90

Bibliography

[1] S.Abiteboul, “Querying semi-structured data,” in Proc. Intl. Conf. on Database Tho-
ery (F.Afrati and P.Kolaitis, eds.), no. 1187 in Lecture Notes in Computer Science,
(Berlin), pp. 1–18, Springer-Verlag, 1997.

[2] S. Abiteboul, D. Suciu, and P.Buneman, Data on the Web: From Relations to
Semistructured Data and XML. San Francisco: Morgan-Kaufmann, 1998.

[3] D. Suciu, “Special issue on management of semistructured data,” SIGMOD Record,
vol. 26, no. 4, 1997.

[4] “XML path language (XPath) version 1.0,” (http://www.w3.org/TR/xpath).

[5] Y. Diao, M. Franklin, H. Zhan, and P. Fischer, “Path sharing and predicate evalua-
tion for high-performance XML filtering,” ACM Transactions on Database Systems
(TODS), vol. 28, pp. 467–516, December 2003.

[6] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman, “On support-
ing containment queries in relational database management systems,” in SIGMOD
Conference, 2001.

[7] S. Al-Khalifa, H. V. Jagadish, N. Koudas, and J. M. Patel, “Struc-
tural joins: A primitive for efficient XML query pattern matching,”
(http://citeseer.nj.nec.com/476845.html).

[8] S. Wu and U. Manber, “Text searching allowing errors,” Communication of the ACM,
vol. 35, pp. 83–91, October 1992.

[9] R. Baeza-Yates and G. Gonnet, “A new approach to text searching,” in Proceedings
of the 12th Annual ACM-SIGIR Conference on Information Retrieval, (Cambridge,
MA), pp. 168–175, June 1989.

[10] K.-C. Tai, “The tree-to-tree correcting problem,” Journal of the Assciation for Com-
puting Machinery, vol. 26, July 1979.

[11] D. T. Barnard, G. Clarke, and N. Duncan, “Tree-to-tree correction for document
trees,” Tech. Rep. 95-372, Department of Computing and Information Science,
Queen’s University, January 95.

91

[12] K. Zhang, D. Shasha, and J. T. L. Wang, “Approximate tree matching in the presence
of variable length don’t cases,” Journal of Algorithms, vol. 16, pp. 33 – 66, January
1994.

[13] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” Journal
of ACM, vol. 21, pp. 168–173, Jan 1974.

[14] R. Lowrance and R. A. Wangner, “An extension of the string-to-string correction
problem,” Journal of ACM, vol. 22, pp. 177–183, April 1975.

[15] S. Wu and U. Manber, “Fast text searching with errors,” Tech. Rep. TR91-11, De-
partment of Computer Science, University of Arizona, 1991.

[16] G. Navarro, “A guided tour to approximate string matching,” ACM Computing Sur-
veys, vol. 33, no. 1, pp. 31–88, 2001.

[17] P. Kilpelainen, Tree Matching Problems with Application to Structured Text
Database. PhD thesis, Department of Computer Science, University of Helsinki,
November 1992.

[18] Y. Chiaramella, P. Mulhem, and F. Fourel, “A model for multimedia information
retrieval,” Tech. Rep. FERMI ESPRIT BRA 8134.

[19] N. Fuhr and K. Großjohann, “XIRQL: An extension of XQL for information re-
trieval,” July 2000. In ACM SIGIR Workshop On XML and Information Retrieval,
Athens, Greece.

[20] “Searching text-rich XML documents with relevance ranking,” (Athens, Greece),
July 2000. ACM SIGIR 2000 Workshop on XML and Information Retrieval.

[21] T. Schlieder, “Similarity search in XML data using cost-based query transforma-
tions,” May 2001. ACM SIGMOD 2001 Web and Databases Workshop.

[22] A. Theobald and G. Weikum, “Adding relevance to XML,” Lecture Notes in Com-
puter Science, vol. 1997, pp. 105–131, 2001.

[23] J. Robie, J. Lapp, and D. Schach, “XML query language (XQL),” 1998. Proceedings
of QL’98 – The Query Languages Workshop.

[24] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, “A query language
for XML,” Computer Networks (Amsterdam, Netherlands: 1999), vol. 31, no. 11–16,
pp. 1155–1169, 1999.

[25] C. Delobel and M. Rousset, “A uniform approach for querying large tree-structured
data through a mediated schema,” 2001. International Workshop on Foundations of
Models for Information Integration(FMII).

[26] Y. Kanza and Y. Sagiv, “Flexible queries over semistructured data,” 2001. Proceed-
ings of the ACM Symposium on Principles of Database Systems.

[27] G.Salton and M.J.McGill, Introduction to Modern Information Retrieval. New York:
McGraw-Hill, 1983.

92

[28] S. Amer-Yahia, S. Cho, and D. Srivastava, “Tree pattern relaxation,” in International
Conference on Extending Database Technology (EDBT), 2002.

[29] H. Jin and C. Dyreson, “XPath benchmark.” School of EECS, Washington State
University, Pullman, WA, 99163.

93

