# URANIUM IMMOBILIZATION BY CELLULOMONAS SP. ES6

By

# VAIDEESWARAN SIVASWAMY

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

WASHINGTON STATE UNIVERSITY Department of Chemical Engineering

May 2005

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of

VAIDEESWARAN SIVASWAMY find it satisfactory and recommend that it be accepted.

Chair

### ACKNOWLEDGEMENTS

Subsurface environmental science research involves the understanding of important concepts from a variety of specialties. I was privileged to have worked with accomplished scientists and engineers from various disciplines. I would like to thank my faculty advisor and research guru, Dr. Brent M. Peyton, for his support and guidance throughout this project. He has played a major role in molding my ability to think scientifically and find solutions for complex research problems. I would also like to thank the other members of my committee, Dr. Bernard Vanwie, Dr. David Yonge, and Dr. William Apel for their valuable research insights throughout the duration of graduate studies. I would also like to thank Dr. Robin Gerlach, who has given innumerable suggestions to overcome many of my research problems. I would also like to extend special thanks to Dr. Rajesh Sani and Dr. Sridhar Viamajala who have been a great motivation for me to pursue environmental research, taught me the fundamentals of environmental bioremediation and various analytical techniques. I would also like to thank Alice Dohnalkova who has been courteous to analyze samples using electron microcopy. I would also like to thank Dr. Thomas Borch, Stanford University who has been courteous to analyze samples using XANES. Additionally I would like to thank Dr. Chris Davitt and Dr. Valerie Lynch-Holm for teaching me electron microscopy techniques. I would also like to thank Ms. Kriti Arora for her suggestions on microbiology techniques. I would also like to acknowledge the helpful tips and moral support of co-workers: Dr. Ranjeet Tokala, Dr. Victor Alva, Carrie Gillaspie, Dr. Mahbub Alam, Maya Place, Abbie Aiken, Catherine Albaugh and Mike VanEngelen. Jo Ann McCabe, Diana Thornton, Ellen Yeates, Naomi Calkins and Paul Golter provided logistic support during my research. This work was supported by the U.S. Department of Energy, Office of Science, Environmental Management Science Program under Grant No. DE-FG02-03ER63582 and DOE-

iii

NE Idaho Operations Office Contract DE-AC07-05ID14517, and also was supported by the Inland Northwest Research Alliance under contract WSU 005. Finally, I would also like to thank the Department of Chemical Engineering for providing me an opportunity to fulfill my dream of pursuing a Masters degree. The accomplishments described herein are the shared responsibility of all members of the research team.

### **URANIUM IMMOBILIZATION BY CELLULOMONAS SP. ES6**

#### Abstract

## by Vaideeswaran Sivaswamy M.S. Washington State University May 2005

Chair: Brent M. Peyton

Removal of uranium (U) from aqueous solution was studied using a Gram-positive facultative anaerobe, Cellulomonas sp. strain ES6, under anaerobic, non-growth conditions in bicarbonate and PIPES buffer. During aerobic growth on tryptic soy broth, cells accumulate excess phosphate, which can be hydrolyzed and released as inorganic phosphate (P<sub>i</sub>) under anaerobic starvation conditions. Inorganic phosphate released by the cells precipitated U from the medium as uranyl phosphate. The saturation concentration of phosphate required to initiate U precipitation from solution was dependent on the buffer and the amount of U present in solution. A Monod-based kinetic model was used to describe the P<sub>i</sub> release process. Examination of the cultures by high-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) showed both extracellular and intracellular U accumulation. The uranyl phosphate precipitates were nanometer sized needle-like fibrils and EDS analysis suggested a 1:1 molar ratio of U and phosphorus in these precipitates. Studies of U immobilization with strain ES6 and anthraquinone-2,6-disulfonate (AQDS), a model humic substance, showed that U reduction is the predominant mechanism and not precipitation by phosphate ligands. X-ray absorption near-edge spectroscopy (XANES) analysis showed that the predominant oxidation state of U precipitates was +4 in bicarbonate buffer, +6 in PIPES buffer

and +4 in AQDS treatments. Uranium immobilization by *Cellulomonas* sp. was previously reported as reduction, however present work suggests that strain ES6 can precipitate U via both precipitation with phosphate ligands and enzymatic reduction, depending on geochemical conditions. In the presence of AQDS, complete reduction of U(VI) to U(IV) by *Cellulomonas* sp. ES6 was observed. *Cellulomonadaceae* are environmentally relevant subsurface bacteria and for the first time we report U immobilization by multiple mechanisms using the Gram positive subsurface organism *Cellulomonas* sp. ES6.

| AC | CKNOWLEDGEMENTSiii                                              |
|----|-----------------------------------------------------------------|
| Ał | BSTRACTv                                                        |
| LI | ST OF TABLESix                                                  |
| LI | ST OF FIGURESx                                                  |
| Dł | EDICATIONxi                                                     |
| 1. | BACKGROUND1                                                     |
| 2. | REFERENCES FOR BACKGROUND16                                     |
| 3. | INTRODUCTION                                                    |
| 4. | MATERIALS AND METHODS                                           |
|    | 4.1 Cultivation of Culture                                      |
|    | 4.2 Preparation of cells and experimental design                |
|    | 4.3 Analytical Methods                                          |
|    | 4.4 Transmission Electron Microscopy                            |
|    | 4.5 XANES analysis                                              |
|    | 4.6 Statistical Analysis                                        |
| 5. | RESULTS AND DISCUSSION                                          |
|    | 5.1 U(VI) precipitation experiments with PIPES buffer           |
|    | 5.2 U(VI) precipitation experiments with bicarbonate buffer     |
|    | 5.3 Effects of AQDS on P <sub>i</sub> release and U(VI) removal |
|    | 5.4 XANES analysis42                                            |
|    | 5.5 TEM and EDS analysis                                        |
|    | 5.6 Kinetic modeling45                                          |

# **TABLE OF CONTENTS**

| 6.  | REFERENCES  | .49 |
|-----|-------------|-----|
| 7.  | FUTURE WORK | 66  |
| 8.  | APPENDIX A  | 68  |
| 9.  | APPENDIX B  | .78 |
| 10. | APPENDIX C  | 83  |

# LIST OF TABLES

| Table 1. Kinetic parameter values determined from experimental data         | 57 |
|-----------------------------------------------------------------------------|----|
| Table A 1. Inorganic phosphate (Pi) data in PIPES buffer                    | 68 |
| Table A 2. Soluble U(VI) data in PIPES buffer                               | 70 |
| Table A 3. Inorganic phosphate (Pi) data in bicarbonate buffer              | 71 |
| Table A 4. Soluble U(VI) data in bicarbonate buffer                         | 75 |
| Table A 5. Model predicted P <sub>i</sub> data in PIPES buffer              | 77 |
| Table A 6. Model predicted P <sub>i</sub> data in bicarbonate buffer        | 77 |
| Table B 1. Inorganic phosphate (Pi) data in PIPES buffer                    | 78 |
| Table B 2. Soluble U(VI) data in PIPES buffer                               | 79 |
| Table B 3. Inorganic phosphate (P <sub>i</sub> ) data in bicarbonate buffer | 80 |
| Table B 4. Soluble U(VI) data in bicarbonate buffer                         | 82 |
| Table C 1. Inorganic phosphate (Pi) data                                    | 83 |
| Table C 2. Soluble U(VI) data                                               | 84 |

# LIST OF FIGURES

### **DEDICATION**

"It is the divine presence that gives value to life. This presence is the source of all peace, all joy and all security. Find this presence in yourself and all your difficulties will disappear."

# ANNAI 🕉

This thesis is dedicated to my parents Mrs. Meenakshi and Mr. Sivaswamy, my sisters Mrs. Thaiyalnayagi and Mrs. Anuradha, my brother-in-laws Mr. Girish and Mr. Balaji who have always believed in me, given me their unwavering love & support and are a source of inspiration.

I am grateful to god for giving me such a wonderful and loveable family.

# **CHAPTER 1**

## **INTRODUCTION**

### **Overview**

This research was conducted to describe the potential of *Cellulomonas* sp. ES6 to immobilize uranium by precipitation with phosphate and enzymatic reduction of U(VI) to U(IV). In this thesis work, we elucidate the dependence of phosphate release and uranium precipitation on buffer pH and also the ability of *Cellulomonas* sp. ES6 to immobilize uranium using multiple mechanisms namely reductive precipitation and precipitation with phosphate ligands based on environmental conditions. We have also developed kinetics of phosphate release by *Cellulomonas* sp. ES6 and its ability to reductively precipitate U(VI) in the presence of AQDS. The goal for conducting this research was to gain a fundamental understanding of U(VI) immobilization by environmentally relevant bacterium (particularly to the Department of Energy, Hanford, Washington site). This thesis is organized in the Washington State University manuscript format. This introductory chapter is followed by a manuscript that has to be submitted for publication.

Chapter 2 describes U(VI) immobilization by *Cellulomonas* sp. ES6 in two different buffers, PIPES and bicarbonate. This chapter also includes the effect of a model humic acid, Anthroquinone-2,6-disulfonate (AQDS) on phosphate release and U immobilization, elucidated by Transmission Electron Microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Xray absorption near-edge spectroscopy (XANES) and a Monod-based kinetic model to describe the P<sub>i</sub> release process.

### Background

### Subsurface Soil and Groundwater contamination

Heavy metals and radionuclide contamination presents a significant environmental problem worldwide. Release of radionuclides to the subsurface has been due to both natural and anthropogenic activities. Natural radionuclides are released to surface and ground waters from rocks and ores by dissolution and desorption, during radioactive decay. Some chemolithotrophic and heterotrophic microorganisms are able to leach uranium and other radioactive elements from minerals in both acidic and alkaline water solutions (Groudev et al. 2001). Uranium (U) is an important radionuclide contaminant in ground water, soils and subsurface sediments at nuclear weapons manufacturing and uranium mining sites, due to processing of uranium ore, mining, milling and tailing operations (Spear et al. 1999, Anderson et al. 2003). Milling and processing of uranium ores is accomplished by crushing the host rock, leaching it in strongly acidic or alkaline solutions to dissolve uraniferous materials, and recovering soluble uranium from solution. The process produces large volumes of acidic or alkaline tailings which are disposed as a slurry to tailing piles, most of which were not lined. Leachates from these tailings contain high concentrations of several metals and radionuclides (Barton et. al. 1994).

A survey by Riley and Zachara (1992) showed that 11 of 18 U.S. Department of Energy sites examined had groundwater and soil contaminated by U. The U.S. Environmental Protection Agency (EPA) promulgated a groundwater concentration limit of 30 pCi/L (approximately 44 µg/L) and a maximum contaminant level goal (MCLG) of 0.0 µg/L for U under the Safe Drinking Water Act to ensure protection of human health and environment near these sites (Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings, Code of Federal Regulations; National Primary Drinking Water Regulation). The

solubility of U is strongly dependent on its chemical oxidation state. Under oxidizing conditions, U usually exists as U(VI) and forms highly soluble uranyl-carbonate complexes  $[UO_2CO_3^o, UO_2(CO_3)_2^{2^2}, \text{ or } UO_2(CO_3)_3^{4^-}]$  when carbonate is present in the system (Brookins, 1988). However, under reducing conditions, U(VI) is most often reduced to U(IV) forming the insoluble  $UO_{2(S)}$  (uraninite) phase (Tucker et al. 1998). U(VI) is highly soluble and mobile within groundwater. Uranium's mobility can threaten down-gradient water resources and can pose difficult remediation challenges. According to the National Research Council (2000), cleanup across the DOE complex is expected to cost at least \$200 billion dollars and will take decades to complete.

#### Passive reactive barriers (PRB)

Physical and chemical methods exist for treatment of U(VI) in soils, including excavation and off-site disposal, soil washing, soil flushing, vitrification, anion exchange, lime softening, conventional coagulation and activated alumina. Some of the above methods namely anion exchange, activated alumina are also used for treating groundwater contaminated with U. Such ex-situ and pump-and-treat technologies are usually very expensive, and involve extensive manual labor. One possible alternative approach is building a permeable reactive barrier (PRB) across the aquifer contaminated with U (Figure 1). A permeable reactive barrier (PRB) is an engineered, subsurface zone of reactive material that treats contaminated groundwater flowing through it using various physical, chemical, or biological reactions (Morrison et al. 2001). When contaminated water passes through the PRB, contaminants are either immobilized or chemically transformed to a less toxic state by the reactive material contained within the barrier (USEPA, 1997). Operational and maintenance costs are lower because water flow across the PRB is driven by the natural hydraulic gradient and the treatment system does not require continual operational maintenance. The main costs of reactive barriers are in the characterization, design, and construction, after which the primary cost involved is compliance monitoring to characterize contaminant removal. Potential limitations to PRB include re-release of contaminants after aging of reactive material, removal and disposal of the reactive material after breakthrough, and deleterious effects of barrier material on downgradient water quality (Naftz et al. 2000).



Source: www.powellassociates.com/ sciserv/3dflow.html

Figure 1 – Schematic representation of Passive Reactive Barrier

PRBs are beginning to be used to treat groundwater contaminated by U. All PRBs designed for field demonstration of U immobilization have zero valent iron [Fe(0)], amorphous ferric oxyhydroxide (AFO), or phosphate ( $PO_4^{3-}$ ) as the reactive media. Morrison et al. (2001) and Gu et al. (1998) have demonstrated reductive precipitation of U by zero valent iron. Zero valent iron, a scrap-metal product that is available from the automative industry, is being used as a reactive material in these PRBs. Sufficient contact with Fe(0) causes U concentrations in groundwater to decrease to nondetectable levels (less than 1 µg/L). The potential effectiveness of

phosphate-bearing, reactive barrier systems for U removal from ground water is demonstrated by the work of Fuller et al. (2002) and Naftz et al. (2000). A funnel and gate design was chosen as PRB. In this design, the groundwater was directed by the funnel structure to flow through a gate, which contained reactive material. Some of the advantages of such design are 1) multiple PRB's can be placed side by side, 2) low construction cost, 3) conducive to shallow ground water system, and 4) transferability to other remote, abandoned mine sites with shallow contaminated ground water. The PO<sub>4</sub> barrier material consisted of pelletized bone charcoal used as phosphate source to facilitate formation of insoluble uranyl phosphate compounds. Naftz et al. (2000) has shown that phosphate based PRB and zero-valent iron based PRB removed approximately 99.9% of input uranium, while AFO based PRB removed more than 90% of the input uranium during the first 3 months of operation.

#### In-situ bioremediation using passive reactive barriers

Biological treatment of groundwater containing uranium offers an alternative to physical/chemical methods. Indigenous subsurface microorganisms are being studied for their potential to immobilize heavy metals and radionuclides by reductive precipitation. Such microorganisms are ubiquitous in the environment, and their populations in the subsurface can be increased by adding electron donors and other nutrients. Bioremediation works by either transforming or degrading contaminants to nonhazardous or less hazardous chemicals. Over the past two decades, bioremediation has become widely accepted as a viable technology to transform and degrade many types of contaminants. It has been shown that many organic contaminants such as hydrocarbon fuels can be biodegraded to relatively harmless products like CO<sub>2</sub>. Similarly some microorganisms can change the valence of some heavy metals and

radionuclides (e.g., Cr(VI) to Cr(III) and U(VI) to U(IV)). Natural attenuation, biostimulation, and bioaugmentation are the three basic bioremediation methods widely used.

Natural attenuation means dilution, dispersion, irreversible sorption, volatilization, chemical and biochemical stabilization and/or radioactive decay of contaminants to reduce contaminant toxicity, mobility, or volume effectively to levels that are protective of human health and the ecosystem (Criddle et al. 1990). However rates of natural attenuation are usually slower and insufficient. Biostimulation is the addition of electron donors and acceptors, and/or nutrients to increase the number or activity of naturally occurring microorganisms available for bioremediation. Bioaugmentation is the addition of microorganisms with desired characteristics to the subsurface followed by the addition of electron donors or nutrients for their growth, when indigenous bacteria are unable to mediate the desired transformation. The basic idea of building a biobarrier is that the pumping of nutrients into the subsurface results in formation of a reactive treatment zone or "biocurtain" or "permeable reactive barrier". One of the basic design is a series of evenly spaced wells separated by certain distance arranged across the contaminated aquifer. If the odd numbered wells act as injection wells, the even numbered wells act as extraction wells and vice versa. In this fashion a biocurtain is developed.

To maintain microbial activity within the treatment zone, inorganic nutrients, electron acceptors or electron donors, collectively referred to here, as "substrates" should be delivered at an optimal rate and in the case of bioaugmentation, the microorganism is added along with the nutrients. Inappropriate addition of substrates results in either low/no contaminant degradation or plugging of injection wells due to profuse microbial growth. Biostimulation of indigenous flora may be successful if active organisms are widely distributed at the site of interest, whereas microbes with rare metabolic capabilities whose ecophysiology is compatible with *in situ* 

conditions may be suited for bioaugmentation approaches (Barkay and Schaefer, 2001). Although micro-organisms cannot destroy metals, they can alter their chemical properties by different mechanisms such as biosorption, bioleaching, enzyme-catalyzed transformation (bioreduction) and biomineralization (Lloyd JR, 2002). In this thesis, we present enzymatic reduction (bioreduction) of U and microbially mediated U precipitation by phosphate ligands by *Cellulomonas* sp. ES6. Microorganisms can be an effective alternative to zero valent iron or phosphate as reactive media in PRBs. Three basic mechanisms by which bacteria can immobilize U are the following: 1) direct and indirect microbial reduction of U(VI), 2) uptake and accumulation by cells, and 3) precipitation of U as uranyl phosphate with inorganic phosphate released by cells.

### Enzymatic reduction of U(VI) to U(IV)

Several organisms common to soil and subsurface environments have been identified to enzymatically reduce U(VI) to U(IV) under anoxic conditions. These include dissimilatory Fereducing bacteria, *Geobacter metallireducens* and *Shewanella oneidensis* MR-1 (previously known as *Shewanella putrefaciens* MR-1) (Gorby and Lovley, 1992). In addition to Fe(III), these organisms use U(VI) as a terminal electron acceptor (Lovley et al. 1991). To obtain energy for growth these organisms oxidize acetate with the reduction of U(VI) to U(IV). Various species of sulfate-reducing bacteria, including *Desulfovibrio desulfuricans, D. vulgaris, and D. baculatum*, are able to reduce U(VI) to U(IV) however, these organisms do not grow on uranium (Lovely and Phillips, 1992; Lovley et al. 1993a,b). Tebo and Obraztsova (1998) have shown that a sulfate-reducing bacterium, *Desulfosporosinus* sp. (formerly *Desulfotomaculum reducens* sp.) can grow not only with Fe(III) and also with Cr(VI), U(VI) and Mn(IV).

Apart from Fe-reducing and sulfate-reducing microorganisms, cultures of *Clostridium* sp., *Deinococcus radiodurans* R1, *Pseudomonas* sp. CRB5, and *Thermus* sp. have been shown to reduce U(VI) to U(IV) (Francis et al. 1994; Fredrickson et al. 2000; McLean and Beveridge, 2001; Kieft et al. 1999). Most of these metal-reducing microorganisms couple the oxidation of organic matter to reduction of heavy metals and radionuclides, and this coupling may be an important process affecting the organic and inorganic geochemistry of anaerobic sediments (Nealson and Saffarini, 1994; Lovley 1997).

Lojou et al. (1998a,b) have shown that metal-reductase activity is exhibited by several c-type cytochromes of bacterial origin in the case of Fe(III), Mn (IV), and Cr(VI). Studies of uranium reduction by DvH cytochrome  $c_3$  indicates that this metalloprotein acts as a U(VI)reductase in D. vulgaris (Lovley et al. 1993). Cytochrome  $c_3$  can be directly reduced electrochemically without the aid of intermediary electron carriers (Niki et al. 1977). Cytochrome  $c_3$  can be readily mass produced and could be employed in fixed-enzyme reactor for U(VI) reduction. Lojou et al. (1999) has demonstrated that the efficiency of the U(VI) electroreduction process originates in the presence of hemin-containing groups, such as low redox-potential polyheme cytochromes. Payne et al. (2002) developed a cytochrome  $c_3$  mutant of D. desulfuricans G20 to test the involvement of these proteins in in-vivo reduction of U(VI). It was found that the microorganism was able to reduce U(VI) with lactate or pyruvate as the electron donor at rates about one-half of those of the wild type. With electrons from hydrogen, the rate was more severely impaired. The results showed that cytochrome  $c_3$  may be a part of an in-vivo electron pathway to U(VI), but additional pathways from organic donors can apparently bypass this protein. Payne et al. (2004) suggested that periplasmic cytochrome  $c_3$  of D. desulfuricans G20 is unlikely to function as an significant extracellular electron carrier to U(VI).

Studies of U reduction in batch experiments with pure cultures of microorganisms give a fundamental understanding of the mechanism and effect of electron donors, acceptors and geochemical conditions on U reduction. However field conditions are complex and includes mixed culture. Groudev et al. (2001) has demonstrated that an efficient remediation of the soils from agricultural lands (Vromos Bay area, near the Black Sea coast, Southeastern Bulgaria) contaminated with radioactive elements can be achieved by an in-situ treatment method based on the activity of the indigenous soil microflora. It was observed that dissolution of contaminants was connected with the activity of both heterotrophic and chemolithotrophic aerobic microorganisms and the immobilization was due mainly to the anaerobic sulphate-reducing bacteria. The treatment involved dissolution of the contaminants in the upper soil horizons (0 – 25 cm) and their transfer into the deeply located soil horizons (26 – 80 cm) where they were immobilized as different insoluble compounds. Under field conditions, with suitable nutrients, the contents of radioactive elements and toxic heavy metals in the soil at the upper horizon were decreased below the relevant permissible levels within 8 months of treatment.

Anderson et al. (2003) demonstrated that in situ bioremediation of uraniumcontaminated groundwater is feasible by stimulating activity of dissimilatory metal-reducing microorganisms in a uranium-contaminated aquifer located in Rifle, Colorado. It was shown that addition of acetate can stimulate microbial growth to consume dissolved oxygen and/or promote active anaerobic respiration resulting in effective reductive precipitation of U(VI). Acetate was used as electron donor and was injected into the subsurface over a 3-month period via a series of injection wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days U concentration declined from 1.4 µM to 0.18 µM. U(VI) was reduced concurrently with Fe(III) and prior to reduction of sulfate (Finneran et al. 2002a). It was

observed that U(VI) and Fe(III) was associated with an increase in the number of *Geobacteraceae*, by several orders of magnitude. *Geobacter* species were the predominant *Geobacteracea* in groundwaters with freshwater salinities.

Although stimulation of dissimilatory metal reduction to promote reductive precipitation of uranium has been shown to successfully remove uranium from some aquifer sediments, Nevin et al. (2003) has shown that organisms in the family *Geobacteraceae* can grow at high salinities with addition of acetate coupled to U(VI) reduction. Analysis of microorganisms associated with U(VI) reduction using 16S rRNA gene sequencing revealed that most of these microorganisms were closely related to *Pseudomonas* and *Desulfosporosinus* species.

These metal/radionuclide reducing bacteria use several strategies to access extracellular metal terminal electron acceptors (TEA) in the environment (Hernandez and Newman, 2001). Payne et al. (2004) proposed some possible modes to access TEA which include: (1) direct contact of an oxidized metal with an outer-membrane electron transfer component (Beliaev and Saffrini, 1998; Lower et al. 2000; Magnuson et al. 2000); (2) the release of siderophores that complex the metal TEA (Ledyard and Butler, 1997); or (3) the use of extracellular electron-shuttling molecules, such as quinone-containing compounds or c-type cytochromes, to transfer electrons from the cellular electron-transport chain to the metal TEA (Newman and Kolter, 2000; Seeliger et al. 1998). The extracellular electron shuttles may either be already present in the environment due to decomposition of organic material or intentionally produced by cellular processes and excreted into the environment (Payne et al. 2004).

One important type of extracellular electron shuttles are humic substances. Humic substances also called *humus*, are yellow to dark brown polymers formed by microbial mediated

reactions, which can function as catalysts for bacterial metal reduction. Lovley et al. (1996) reported that microorganisms can donate electrons to humic acids, which can shuttle electrons between the microbe and Fe(III) oxide. Anthraquinone 2,6-disulfonate (AQDS) has been proposed as a model humic compound and has been shown to catalyze microbial reduction of Cr(VI), U(VI), Fe(III) and Mn(VI) (Fredrickson et al. 2000; Lovley et al. 1996; Gounot, 1994). Even though microbial reduction of U(VI) offers various advantages over conventional physical/chemical methods, there are some limitations in using this strategy. U(IV) can potentially re-oxidize to U(VI) in the presence of oxygenated water.

Senko et al. (2002) showed that intermediates of dissimilatory nitrate reduction (denitrification or dissimilatory nitrate reduction to ammonia), nitrite, nitrous oxide, and nitric oxide were all capable of oxidizing and mobilizing U(IV). Waste streams from the nuclear industry typically contain high concentrations of anions, heavy metals, organic solvents and chelators (Mackaski et al. 1991; Riley et al. 1992). Nitrate is a common co-contaminant with uranium. Finneran et al. (2002b) showed that nitrate can act as competitive electron acceptor with U(VI) and can anaerobically oxidize U(IV) to U(VI). Generation of dissimilatory nitrate reduction intermediates apparently creates a highly oxidizing environment, leading to the oxidation of U(IV), reversing the reducing conditions required for uranium immobilization. Hence, it will be necessary to stimulate the removal of nitrogen from systems via denitrification before the immobilization of U(VI) can commence (Senko et al. 2002). Brooks et al. (2003) showed that calcium can cause a significant decrease in the rate and extent of bacterial U(VI) reduction as U is a less energetically favorable electron acceptor when Ca-UO<sub>2</sub>-CO<sub>3</sub> complexes are present.

Mn(III/IV) oxides are common secondary phases in soils and sediments. Liu et al.

(2002) showed that pyrolusite ( $\beta$ -MnO<sub>2(S)</sub>) can abiotically reoxidize uraninite that was precipitated as a result of microbial reduction. Iron (hydr)-oxides are common in the subsurface and can act as competitive electron acceptor for U reduction. Wielinga et al. (2000) showed that the presence of U(VI) retarded the reduction of crystalline iron (hydr)oxides (goethite and hematite), while the reduction of U(VI) was unaffected or slightly enhanced by the presence of the crystalline Fe (hydr)-oxides. Conversely, the reduction of ferrihydrite appeared to be unaffected by the presence of U(VI), whereas uranyl reduction was inhibited by the amorphous iron hydroxide. Sani et al. (2005) showed that in the absence of electron donor, microbially reduced U(IV) can serve as an electron donor to reduce Fe(III) present in Fe (III) (hydr)oxides resulting in the reoxidation of reduced uranium.

### Accumulation of uranium by microorganisms

The second important mechanism of uranium immobilization is uptake, accumulation, and sorption by microbial cells. Bacterial sorption may affect the fate and transport of uranium in many near-surface environments. Laboratory and field studies have demonstrated that microbes have the ability to facilitate the removal of uranium from the aqueous phase through the sorption of U(VI) to bacterial cell walls (Suzuki et al. 1999). Many researchers have investigated uranium sorption onto microbial cell wall surfaces (Friis and Keith, 1986; Cotoras et al. 1992).

Marques et al. (1991) showed that *Pseudomonas* sp. EPS-5028 can take up uranium rapidly. The uptake of uranium was affected by pH, but not by temperature, metabolic inhibitors, culture time or the presence of various cations and anions. Even though the mechanism of U transport into the cell is unknown, transmission electron micrographs of cells treated with U

showed U bound in the cytoplasmic fraction of *Pseudomonas* sp. EPS-5028. The cells were then washed with water and one of the following solutions: Na<sub>2</sub>CO<sub>3</sub>, sodium citrate, EDTA, potassium oxalate or HNO<sub>3</sub>. It was found that Na<sub>2</sub>CO<sub>3</sub> was very effective in extracting most uranium from the cells, without an apparent effect on the cell surface (verified by subsequent U uptake) and without loss of viability (verified by reculturing of cells from treated cell preparation).

Similar to Marques et al. (1991), Fowle et al. (2000) also observed a change in U sorption capacity with pH using Bacillus subtilis. It was found adsorption increased with increasing pH and solid:solute ratio, presumably due to the deprotonation of cell wall functional groups and the increasing number of surface reactive sites. The adsorption of U was both rapid and reversible. Deprotonation of the cell wall functional groups creates negatively charged surface sites for metal adsorption. The deprotonation also leads to the development of a negative electrical potential associated with the bacterial cell wall. This potential in turn affects the interactions of ions with the bacterial surface sites. Nakajima and Sakaguchi (1986) investigated uranium uptake by 83 species of microorganisms: 32 bacteria, 15 yeasts, 16 fungi and 20 actinomycetes. Of these 83 species of microorganisms tested, extremely high uranium-absorbing ability was found in Pseudomonas stutzeri, Neurospora sitophila, Streptomyces albus and Streptomyces viridochromogenes. These organisms were also found to be more stable after immobilization and could be used repeatedly. Studies with Mycobacterium smegmatis showed that adsorption of U was accompanied by partial release of magnesium from the cell wall, indicating that exchange reactions occurred at magnesium (Mg)-bonding sites (Andres et al. 1993).

#### Strandberg et al. (1981) used Saccharomyces cerevisiae and Pseudomonas

*aeruginosa* as biosorbents for uranium accumulation. The rate and extent of accumulation was found to be dependent on environmental parameters, such as pH, temperature, and interference by certain anions and cations. Rothstein and Meier (1951) observed that monovalent cations had no effect on U accumulation while divalent cations interfered with uranium uptake by *S. cerevisiae*. However Strandberg et al. (1981) observed no interference of  $Ca^{2+}$  on U uptake by *P. aeruginosa*. The accumulation of U can be either intracellular or extracellular depending on the culture. Bacterial adsorption may significantly affect the distribution and, hence, mobility of uranium in groundwater systems.

### Precipitation of uranium by microbially mediated phosphate ligands

The third important mechanism of U immobilization is precipitation with inorganic phosphate released by cells. U(VI)-phosphate interactions are important in governing the subsurface mobility of U(VI) in both natural and contaminated environments. Natural immobilization of U in many phosphate minerals as U(VI) phosphates occur extensively at the Kongarra deposit, Australia (Duerden, 1990). Solubility products of U(VI) phosphates vary between 4.73 x  $10^{-47}$  and 2.14 x  $10^{-11}$  (Palie, 1970). Arey et al. (1999) reported that addition of phosphate minerals (e.g. hydroxyapatite) can reduce the solubility and bioavailability of U in contaminated soils from the US-DOE Savannah River Site. Jerden et al. (2003) reported that the low solubility of stable U(VI) phosphate minerals can limit U concentrations to less than  $15\mu g I^{-1}$  and phosphate-based strategies for in situ stabilization of U in oxidizing, fluid rich environments may be effective for long-term containment. Uranyl phosphate minerals are stable over a wide range of solution compositions and there is no re-oxidation problem.

Cultures of Citrobacter sp. (Yong and Macaskie, 1998), Acidithiobacillus

*ferrooxidans* (Merroun et al. 2002), *Bacillus sphaericus* (Knopp et al. 2003), and *Acinetobacter johnsonii* (Boswell et al. 1999) have been demonstrated to remove uranium from water using a phosphate release mechanism. Aerobically, these microorganisms accumulate phosphate as polyP. Polyphosphate is a phosphate polymer with chain lengths of three to a thousand P<sub>i</sub>. Polyphosphate is reversibly synthesized by polyphosphate kinase (PPK) with the addition of a phosphate from a high-energy phosphoryl donor, such as ATP, and hydrolyzed by exopolyphosphatase (PPX) (Kornberg et al. 1999). Subsequent exposure to anaerobic conditions promotes polyP degradation with concomitant release of phosphate into the medium. This release has been coupled to bio-precipitation of heavy metals as cell-bound metal phosphates (Boswell et al. 1998). The release of phosphate via the hydrolysis of an organic phosphate has been shown to be an effective method for the precipitation of metals on cell membranes (Yong and Macaskie, 1995; Boswell et. al. 1999; Renninger et al. 2001).

Yong et al. (1995) showed that localized phosphate release in close proximity to nucleation sites on the cells promotes the bio-crystallization of metals as MHPO<sub>4</sub> (M, divalent metal cation). Phosphate groups on the surface of many bacterial species are found to be the main nucleation site for precipitation (Panak et al. 2000). Cell wall components with phosphate residues e.g., polysaccharides, teichoic and teichuronic acids or phospholipid layers of the membranes are responsible for the uranium binding. Joeng et al. (1997) suggested that phospholipid outer and inner membrane bilayers are possibly involved in the formation of metal phosphate nucleation foci. Studies of U removal from solution by *Acinetobacter johnsonii* (Boswell et al. 1999) showed that phosphate release increased with pH between pH 5.5 and 8.0, and also increased with temperature between 4°C and 37°C. However, the presence of nitrate at

concentrations of 10mM and above inhibited anoxic phosphate release. Yong et al. (1995) showed that the efficiency of uranium removal by *Citrobacter* sp. can be increased by incorporating ammonium acetate (NH<sub>4</sub>Ac) into solution. This was attributed to the generation of a modified form of uranyl phosphate precipitate (NH<sub>4</sub>UO<sub>2</sub>PO<sub>4</sub>), which has a lower solubility product ( $3.6 \times 10^{-27}$ ) than HUO<sub>2</sub>PO<sub>4</sub> and NaUO<sub>2</sub>PO<sub>4</sub>.

Sani et al. 2002, previously reported uranium immobilization by *Cellulomonas* sp. as enzymatic reduction. However in this thesis, it is proposed that uranium immobilization by *Cellulomonas* sp. ES6 involves multiple mechanisms namely precipitation with inorganic phosphate released by cells and enzymatic reduction based on geochemical conditions. Immobilizing heavy metals  $(Cd^{2+})/radionuclides$  using this precipitation mechanism is advantageous over microbial reduction as this produces thermodynamically and chemically stable form of metals and its use is not limited to reducible metals.

## **References for Chapter 1**

- Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003), Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69(10), 5884-5891
- Andres Y, MacCordick HJ, Hubert J (1993) Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by *Mycobacterium smegmatis*. Appl. Microbiol. Biotech. 39, 413-417
- Arey JS, Seaman JC, Bertsch PM (1999) Immobilization of uranium in contaminated sediments by hydroxyapatite addition, Environ. Sci. Technol. 33, 337-342

- Barkay T, Schaefer J (2001), Metal and radionuclide bioremediation: issues, considerations and potentials, Curr. Opi. Microbiol. 4, 318-323
- Barton LL, Choudhury K, Thomson BM, Steenhoudt K, Groffman AR (1996), Bacterial reduction of soluble uranium: The first step of in situ immobilization of uranium, Radioact. Waste Manage. Environ. Restor. 20, 141-151
- Beliaev AS, Saffrini DA (1998). *Shewanella putrefaciens mtrB* encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol. 180, 6292-6297
- Boswell CD, Hewitt CJ, Macaskie LE (1998). An application of bacterial flow cytometry evaluation of the toxic effects of four heavy metals on *Acinetobacter* sp. with potential for bioremediation of contaminated wastewaters. Biotechnol Lett. 20, 857-863
- Boswell CD, Dick RE, Macaskie LE (1999) The effect of heavy metals and other environmental conditions on anaerobic phosphate metabolism of *Acinetobacter johnsonii*, Microbiology, 145, 1711-1720
- Brooks SC, Fredrickson JK, Carroll SL, Kennedy DW, Zachara JM, Plymale AE, Kelly SD, Kemner KM, Fendorf S (2003). Inhibition of bacterial U(VI) reduction by calcium. Environ. Sci. Technol. 37, 1850-1858
- 10) Brookins D (1988), Eh-pH diagrams for geochemistry, pp. 104-105, 151-157. Springer, New York.
- Cotoras D, Viedma P, Cifuentes L, Mestre A (1992). Sorption of metal ions by whole cells of Bacillus and Micrococcus. Environ. Technol. Lett. 13, 551-559
- 12) Criddle CS, Dewitt JT, Grbic-Galic D, McCarty PL (1990) Transformation of Carbon tetrachloride by Pseudomonas sp. strain KC under denitrification condition. Appl. Environ. Microbiol. 56, 3240-3246

- 13) Duerden P (1990) Alligator river analogue project, 1<sup>st</sup> Annual Report 1988-89, Australian Nuclear Science and Technology Organization (ANSTO)
- 14) Finneran KT, Anderson RT, Nevin KP, Lovley DR (2002a) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil. Sed. Contam. 11, 339-357
- 15) Finneran KT, Housewright ME, Lovley DR (2002b). Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ. Microbiol. 4(9), 510-516
- 16) Fowle DA, Fein JB, Martin AM (2000). Experimental study of uranyl adsorption onto *Bacillus subtilis*. Environ. Sci. Technol. 34, 3737-3741
- 17) Francis AJ, Dodge CJ, Lu F, Halada GP, Clayton CR (1994). XPS and XANES studies of uranium reduction by *Clostridium* sp. Environ. Sci. Technol. 28, 636-639
- 18) Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000a). Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by *Deinococcus radiodurans* R1. Appl. Environ. Microbiol. 66(5), 2006-2011
- Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li SW, Krupka KM (2000b), Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metalreducing bacterium, Geochim. Cosmochim. Acta. 64(18), 3085-3098
- 20) Friis N, Keith MP (1986). Biosorption of uranium and lead by *Streptomyces longwoodensis*.Biotechnol. Bioeng. 28, 21-28
- 21) Fuller CC, Bargar JR, Davis JA, Piana MJ (2002), Mechanisms of uranium interactions with hydroxyapatite: implications for ground water remediation, Environ. Sci. Technol. 36, 58-65

- 22) Gorby YA, Lovley DR (1992) Enzymatic uranium precipitation, Environ. Sci. Technol. 26, 205-207
- 23) Gounot AM (1994), Microbial oxidation and reduction of manganese: consequences in groundwater and applications, FEMS Microbiology Rev. 14(4), 339-349
- 24) Groudev SN, Georgiev PS, Spasova II, Komnitsas K (2001), Bioremediation of a soil contaminated with radioactive elements, Hydrometallurgy. 59, 311-318
- 25) Gu B, Liang L, Dickey MJ, Yin X, Dai S (1998), Reductive precipitation of uranium(VI) by zero-valent iron, Environ. Sci. Technol. 32, 3366-3373
- 26) Hernandez ME, Newman DK (2001). Extracellular electron transfer. Cell Mol Life Sci.58,1562-1571
- 27) Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings.Code of Federal Regulations, Part 192, Title 40; Federal Register, 1995, 53, 2854-2871
- 28) Jerden JL, Sinha AK (2003) Phosphate based immobilization of uranium in an oxidizing bedrock aquifer, Appl. Geochem. 18, 823-843
- 29) Joeng BC, Hawes C, Bonthrone KM, Macaskie LE (1997). Localization of enzymatically enhanced heavy metal accumulation by *Citrobacter* sp. and metal accumulation *in vitro* by liposomes containing entrapped enzyme. Microbiology. 143, 2497-2507
- 30) Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kenney DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999). Dissimilatory reduction of Fe(III) and other electron acceptors by a *Thermus* isolate. Appl. Environ. Microbiol. 65(3), 1214-1221

- 31) Knopp R, Panak PJ, Wray LA, Renninger NS, Keasling JD, Nitsche H (2003) Laser spectroscopic studies of interactions of U<sup>VI</sup> with bacterial phosphate species, Chem. Eur. J. 9, 2812-2818
- 32) Kornberg A, Rao NN, Ault-Riche D (1999). Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem. 68, 89-125
- 33) Ledyard KM, Butler A (1997). Structure of putrebactin, a new di-hydroxamate siderophore produced by *Shewanella putrefaciens*. J Biol Inorg Chem. 2, 93-97
- 34) Lloyd JR (2002), Bioremediation of metals; the application of micro-organisms that make and break minerals, Microbiology Today, 29, 67-69
- 35) Lojou E, Bianco P, Bruschi M (1998a). Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides. J. Electroanal. Chem. 452, 167-177
- 36) Lojou E, Bianco P, Bruschi M (1998b). Kinetic studies on the electron transfer between various c-type cytochromes and iron (III) using a voltammetric approach. Electrochim. Acta. 43, 2005-2013
- 37) Lojou E, Bianco P (1999) Electrocatalytic reduction of uranium by bacterial cytochromes:
  biochemical and chemical factors influencing the catalytic process. J. Electroanal. Chem.
  471, 96-104
- 38) Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991), Microbial reduction of uranium, Nature, 350, 413-415
- 39) Lovley DR, Phillips EJP (1992), Reduction of uranium by *Desulfovibrio desulfuricans*. Appl. Environ. Microbiol. 58, 850-856
- 40) Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips JE, Gorby YA, Goodwin S (1993a). *Geobacter metallireducens* gen. Nov. sp. nov., a microorganism capable of coupling

the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336-344

- 41) Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993b). Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol. 113, 41-53
- 42) Lovley DR, Widman PK, Woodward JC, Phillips EJP (1993). Reduction of uranium by cytochrome *c*<sub>3</sub> of *Desulfovibrio vulgaris*. Appl. Environ. Microbiol. 59(11), 3572-3576
- 43) Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC (1996), Humic substances as electron acceptors for microbial respiration, Nature, 382(1), 445-448
- 44) Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev. 20, 305-313
- 45) Lower SK, Hochella MF, Beveridge TJ (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between *Shewanella* and alpha-FeOOH. Science. 292, 1360-1363
- 46) Mackaski LE (1991) The application of biotechnology to the treatment of waste produced from nuclear fuel cycle: biotechnology and bioaccumulation as a means of radioactive treating radioactive materials containing streams. Crit. Rev. Biotechnol. 11(1), 4-112
- 47) Magnuson TS, Hodges-Myerson AL, Lovley DR (2000) Characterization of a membranebound NADH-dependent Fe<sup>3+</sup> reducing bacterium *Geobacter sulfurreducens*. FEMS Microbiol Lett. 185, 205-211
- 48) Marques AM, Roca X, Simon-Pujol MD, Fuste MC, Congregado F (1991). Uranium accumulation by *Pseudomonas* sp. EPS-5028. Appl. Microbiol. Biotechnol. 35, 406-410
- 49) McLean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol. 67(3), 1076-1084

- 50) Merroun M, Hennig C, Rossberg A, Geipel G, Reich T, Selenska-Pobell S (2002) Molecular and atomic analysis of uranium complexes formed by three eco-types of *Acidithiobacillus ferrooxidans*, Proceedings in Biometals 2002: Bioremediation, Biochem. Soc. Trans. 30 (4), 669-672
- 51) Morrison SJ, Metzler DR, Carpenter CE (2001) Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zero valent iron, Environ. Sci. Technol. 35, 385-390
- 52) Naftz DL, Morrison SJ, Feltcorn EM, Freethey GW, Fuller CC, Piana MJ, Wilhelm RG, Rowland RC, Davis JA, Blue JE (2000) Field demonstration of permeable reactive barriers to remove dissolved uranium from groundwater, Fry Canyon, Utah, Interim Report, EPA, USGS, EPA 402- C-00-001, published on web: <u>www.epa.gov</u>
- 53) Nakajima A, Sakaguchi T (1986). Selective accumulation of heavy metals by microorganisms. Appl. Microbiol. Biotechnol. 24, 59-64
- 54) National Primary Drinking Water Regulation; Radionuclides, Advanced Notice of Proposed Rulemaking. Federal Register. 1991, 56, 138(40), CFR Parts 141 and 142
- 55) National Research Council (2000) Research needs in subsurface science, National Academy Press, Washington, D.C.
- 56) Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology and regulation. Annu Rev Microbiol. 48, 311-343
- 57) Nevin KP, Finneran KT, Lovley DR (2003) Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment. Appl. Environ. Microbiol. 69(6), 3672-3675

- 58) Newman DK, Kolter R (2000). A role for excreted quinines in extracellular electron transfer. Nature. 405, 94-97
- 59) Niki K, Yagi T, Inokuchi H, Kimura K (1977). Electrode reaction of cytochrome c<sub>3</sub> of *Desulfovibrio vulgaris*. J. Electrochem. Soc. 124, 1889-1892
- 60) Palie PN (1970) Analytical chemistry of uranium, Translated by Kaner N, Ann Arbor-Humphrey Science Publishers, Inc.
- 61) Panak PJ, Raff J, Selenska-Pobell S, Geipel G, Bernhard G, Nitsche H (2000), Complex formation of U(VI) with *Bacillus*-isolates from a uranium mining waste pile, Radiochem.
   Acta, 88, 71-76
- 62) Payne RB, Gentry DM, Rapp-Giles BR, Casalot L, Wall JD (2002). Uranium reduction by *Desulfovibrio desulfuricans* strain G20 and a cytochrome c<sub>3</sub> mutant. Appl. Environ. Microbiol. 68(6), 3129-3132
- 63) Payne RB, Casalot L, Rivere T, Terry JH, Larsen L, Giles BJ, Wall JD (2004). Interaction between uranium and the cytochrome c<sub>3</sub> of *Desulfovibrio desulfuricans* strain G20. Arch Microbiol. 181, 398-406
- 64) Renninger N, McMahon KD, Knopp R, Nitsche H, Clark DS, Keasling JD (2001) Uranyl precipitation by biomass from an enhanced biological phosphorus removal reactor.Biodegradation 12, 401-410
- 65) Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface research. DOE/ER-0547T, United States Department of Energy, Washington, D.C.

- 66) Rothstein A, Meier R (1951). The relationship of the cell surface to metabolism. VI, The chemical nature of uranium-complexing groups of the cell surface. J. Cell. Comp. Physiol. 38, 245-270
- 67) Sani RK, Peyton BM, Smith WA, Apel WA, Petersen JN (2002) Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by *Cellulomonas* isolates, Appl. Microbiol. Biotechnol. 60, 192-199
- 68) Sani RK, Peyton BM, Dohnalkova A, Amonette JE (2005) Reoxidation of reduced uranium with iron(III) (hydr)oxides under sulfate-reducing conditions. Environ. Sci. Technol. 39(7), 2059-2066
- 69) Seelinger S, Cord-Ruwisch R, Schink B (1998). A periplasmic and extracellular *c*-type cytochrome of *Geobacter sulfurreducens* acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol. 180, 3686-3691
- 70) Senko JM, Istok JD, Suflita JM, Krumholz LR (2002). In-situ evidence for uranium immobilization and remobilization. Environ. Sci. Technol. 36, 1491-1496
- 71) Spear JR, Figueroa LA, Honeyman BD (2000), Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria, Appl. Environ. Microbiol. 66(9), 3711-3721
- 72) Strandberg GW, Shumate II SE, Parrott JR (1981). Microbial cells as biosorbents for heavy metals: Accumulation of uranium by *Saccharomyces cerevisiae* and *Pseudomonas aeruginosa*. Appl. Environ. Microbiol. 41(1), 237-245
- 73) Suzuki Y, Banfield JF, Geomicrobiology of Uranium. In Uranium: Mineralogy,
  Geochemistry and the Environment; Burns PC, Finch R. Reviews in Mineralogy 38;
  Mineralogical Society of America, Washington, DC, 1999, pp 393

- 74) Tebo BM, Obraztsova AY (1998). Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV) and Fe(III) as electron acceptors. FEMS Microbiology Letters. 162, 193-198
- 75) Tucker MD, Barton LL, Thomson BM (1998), Removal of U and Mo from water by
   immobilized Desulfovibrio desulfuricans in column reactors, Biotechnol. Bioeng. 60(1), 88 96
- 76) USEPA (1997), Permeable reactive subsurface barriers for the interception and remediation of chlorinated hydrocarbon and chromium (VI) plumes in groundwater, EPA/600/F-97/008, Washington DC: Office of Research and Development, National Risk Management Research Laboratory
- 77) Wielinga B, Bostick B, Hansel CM, Rosenzweig RF, Fendorf S (2000). Inhibition of bacterially promoted uranium reduction: Ferric (Hydr)oxides as competitive electron acceptors. Environ. Sci. Technol. 34, 2190-2195
- 78) Yong P, Macaskie LE (1995), Enhancement of uranium bioaccumulation by a *Citrobacter* sp. via enzymatically-mediated growth of polycrystalline NH<sub>4</sub>UO<sub>2</sub>PO<sub>4</sub>, J. Chem. Tech. Biotechnol. 63, 101-108
- 79) Yong P, Macaskie LE (1998) Bioaccumulation of lanthanum, uranium and thorium, and use of a model system to deveop a method for the biologically-mediated removal of plutonium from solution, J. Chem. Technol. Biotechnol, 71, 15-26
## CHAPTER 2

# Uranium Immobilization by *Cellulomonas* sp. ES6

## VAIDEESWARAN SIVASWAMY<sup>1</sup>, BRENT M. PEYTON<sup>\*1</sup>, SRIDHAR VIAMAJALA<sup>2</sup>, ROBIN GERLACH<sup>3</sup>, WILLIAM A. APEL<sup>4</sup>, RAJESH K. SANI<sup>1</sup>, ALICE DOHNALKOVA<sup>5</sup>, THOMAS BORCH<sup>6</sup>

<sup>1</sup>Center for Multiphase Environmental Research and Department of Chemical Engineering, Washington State University, P. O. Box 642719 Pullman, WA 99164-2719

<sup>2</sup>National Bioenergy Center, National Renewable Energy Laboratory, Cole Boulevard, Golden, CO - 80401

<sup>3</sup>Center for Biofilm Engineering, Montana State University, Bozeman, MT - 59717

<sup>4</sup>Biological Sciences Department, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-2203

<sup>5</sup>Fundamental Sciences Department, Pacific Northwest National laboratory, Richland, WA -99352

<sup>6</sup>Department of Geological and Environmental Sciences, Stanford University, CA – 94305-2115

\*Corresponding author,

Center for Multiphase Environmental Research

Department of Chemical Engineering

Washington State University, Pullman, WA 99164-2710

PH (509) 335-4002

FAX (509) 335-4806

E-mail: <u>bmp@wsu.edu</u>

#### Abstract

Removal of uranium (U) from aqueous solution was studied using a Gram-positive facultative anaerobe, *Cellulomonas* sp. strain ES6, under anaerobic, non-growth conditions in bicarbonate and PIPES buffer. During aerobic growth on tryptic soy broth, cells accumulate excess phosphate, which can be hydrolyzed and released as inorganic phosphate (P<sub>i</sub>) under anaerobic starvation conditions. Inorganic phosphate released by the cells precipitated U from the medium as uranyl phosphate. The saturation concentration of phosphate required to initiate U precipitation from solution was dependent on the buffer and the amount of U present in solution. A Monod-based kinetic model was used to describe the P<sub>i</sub> release process. Examination of the cultures by high-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) showed both extracellular and intracellular U accumulation. The uranyl phosphate precipitates were nanometer sized needle-like fibrils and EDS analysis suggested a 1:1 molar ratio of U and phosphorus in these precipitates. Studies of U immobilization with strain ES6 and anthraquinone-2,6-disulfonate (AQDS), a model humic substance, showed that U reduction is the predominant mechanism and not precipitation by phosphate ligands. X-ray absorption near-edge spectroscopy (XANES) analysis showed that the predominant oxidation state of U precipitates was +4 in bicarbonate buffer, +6 in PIPES buffer and +4 in AQDS treatments. Uranium immobilization by *Cellulomonas* sp. was previously reported as reduction, however present work suggests that strain ES6 can precipitate U via both precipitation with phosphate ligands and enzymatic reduction, depending on geochemical conditions. In the presence of AQDS complete reduction of U(VI) to U(IV) by *Cellulomonas* sp. ES6 was observed. *Cellulomonadaceae* are environmentally relevant subsurface bacteria and for

the first time we report U immobilization by multiple mechanisms using the Gram positive subsurface organism *Cellulomonas* sp. ES6.

#### INTRODUCTION

Contamination of groundwater, soils and sediments by uranium (U) is a significant environmental problem. Sources of U include natural deposits, as well as cold war-era extraction and processing of U ore (Spear et al. 1999; Anderson et al. 2003). A survey by Riley and Zachara (1992) showed that 11 of 18 U.S. Department of Energy sites examined had groundwater and soil contaminated by U. Uranium at contaminated sites exists predominantly in two forms, U(VI) and U(IV) (Bertsch et al. 1994). U(VI) is the most oxidized valence state (Emsley 1989), and in natural environments, often forms aqueous complexes with high solubility and mobility in water. Reduction of U(VI) to U(IV) (e.g., uraninite) greatly decreases its solubility and mobility in groundwater (Lovley et al. 1991).

Subsurface environments contaminated with radionuclides pose difficult remediation challenges. According to the National Research Council (2000), cleanup across the DOE complex is expected to cost at least \$200 billion dollars and will take decades to complete. Several methods are currently being used to treat U-contaminated groundwater, including anion exchange, lime softening, conventional and activated alumina coagulation, and pump-and-treat (Spear et al. 1999). Pump-and-treat technologies are usually very expensive. An alternative to these technologies is the use of indigenous subsurface bacteria for immobilizing U in contaminated groundwater and soil. Three basic mechanisms by which bacteria can immobilize U are as follows: 1) direct and indirect microbial reduction of U(VI) to U(IV) 2) uptake and accumulation by cells and 3) precipitation of U as uranyl phosphate with inorganic phosphate released by cells.

Cultures of *Desulfovibrio desulfuricans*, *Desulfovibrio vulgaris*, *Geobacter* metallireducens, Shewanella putrefaciens MR1, and Deinococcus radiodurans, among others have been demonstrated to reduce U(VI) to U(IV) (Lovley and Phillips, 1992; Gorby and Lovley, 1992; Spear et al. 2000; Fredrickson et al. 2000a,b). Reports have shown that U(VI) reduction occurs both directly by enzymatic action in the presence of an electron donor and indirectly with model humic acids (anthraquinone-2,6-disulfonate) as an electron shuttle. Researchers have also shown that cultures of Saccharomyces cerevisiae, Pseudomonas aeruginosa (Strandberg et al. 1981), Bacillus subtilis (Fowle et al. 2000) and Pseudomonas MGF48 (Malekzadeh et al. 1998) can immobilize U by cellular uptake. This accumulation can be either intracellular or extracellular depending on the culture. The third important mechanism of U immobilization is precipitation with inorganic phosphate released by cells. Cultures of Citrobacter sp. (Yong and Macaskie, 1998), Acidithiobacillus ferrooxidans (Merroun et al. 2002), Bacillus sphaericus (Knopp et al. 2003), and Acinetobacter johnsonii (Boswell et al. 1999) have been demonstrated to remove uranium from water using a phosphate release mechanism. Under aerobic growth conditions, these microorganisms can accumulate phosphorus intracellularly in the form of polyphosphate (polyP) granules (Groenestijn et al. 1988; Tandoi et al. 1998). Under anaerobic conditions, the polyP granules are subsequently hydrolyzed producing ATP for the transport and storage of low-molecular weight fatty acids (e.g. acetate, propionate). The polyphosphate hydrolysis is accompanied by simultaneous release of inorganic phosphorus to the bulk liquid (Zafiri et al. 1999; Groenestijn et al. 1987).

The microbial release of inorganic phosphorus has been coupled to bio-precipitation of heavy metals and radionuclides as cell-bound metals or radionuclide phosphates (Boswell et al. 1998; Nakajima and Sakaguchi, 1986). Metal phosphates are often highly insoluble and will

precipitate on cell surfaces (Macaskie et al. 1994; Montgomery et al. 1995). Natural immobilization of U as U(VI) phosphates occur extensively at the Kongarra deposit, Australia (Duerden, 1990). Solubility products of U(VI) phosphates as compiled by Palie (1970) vary between 4.73 x 10<sup>-47</sup> and 2.14 x 10<sup>-11</sup>. Arey et al. (1999) reported that addition of phosphate minerals (e.g. hydroxyapatite) can reduce the solubility and bioavailability of U in contaminated soils from the US-DOE Savannah River Site. The potential effectiveness of phosphate-bearing, reactive barrier systems for U removal from ground water is demonstrated by the work of Naftz et al. (2000) and Fuller et al. (2002). Jerden et al. (2003) reported that the low solubility of stable U(VI) phosphate minerals can limit U concentrations to less than 15µg l<sup>-1</sup> and phosphate-based strategies for in situ stabilization of U in oxidizing, fluid rich environments may be effective for long-term containment. In this paper, we will show for the first time that Gram-positive subsurface organism *Cellulomonas* sp. ES6 can immobilize U(VI) by multiple mechanisms namely phosphate precipitation and reduction based on environmental conditions.

Strain ES6 is a Gram positive isolate from subsurface cores obtained from the United States Department of Energy (USDOE) Hanford site in Washington state. Viamajala et al. (2005) showed that a majority of isolates enriched from Hanford cores contaminated with Cr and U, and from uncontaminated overlying sediments, were Gram positive facultative anaerobes in, or closely related to, the genus *Cellulomonas*. Sani et al. (2002) reported that *Cellulomonas* sp. were capable of removing Cr(VI) and U(VI) from solution in the presence and absence of electron donor. Compared to Gram-negative bacteria, only a few Gram-positive organisms have been examined for metal-reduction capabilities as possible contributors to in situ metal bioimmobilization remediation strategies. Thus, the study of metal transformations catalyzed by *Cellulomonas* is environmentally relevant, particularly to the DOE Hanford site, and provides

information on metal biotransformations of Gram positive organisms. Results presented here show for the first time that a subsurface *Cellulomonas* sp. can precipitate U by release of inorganic phosphate and reduce U(VI) via enzymatic reduction. Additional, results quantify *Cellulomonas* capability for U removal in the presence and absence of anthraquinone-2,6-disulfonate (AQDS).

#### MATERIALS AND METHODS

#### **Cultivation of culture**

Frozen stock (-80°C in 20% glycerol) of *Cellulomonas* sp. ES6 was streaked on a tryptic soy agar (TSA) plate and incubated aerobically at 30°C for 3 days. Tryptic soy broth (TSB, 30g/L; Difco, Sparks, MD.) was inoculated with a single colony from the plate. Before inoculation, serum bottles containing TSB were sealed with butyl rubber septa, capped, crimped with an aluminum seal and autoclaved. After inoculation, the serum bottles were incubated aerobically at 30°C on a Lab-line rotary shaker (Barnstead, WI) at 100 rpm for 3 days.

#### Preparation of cells and experimental design

All experiments were carried out with washed cells of a second generation culture that had been grown aerobically in TSB medium for 3 days. Based on experimental design, either bicarbonate buffer (30mM, pH 7; 1.3mM KCl) or PIPES (Piperazine-1,4-bis(2-ethanesulfonic acid) buffer (30mM, pH 7; 1.3mM KCl) was used for washing and re-suspension. Cells were centrifuged at 10,000 g for 20 min. The supernatant was discarded and the cell pellets were suspended in anaerobic bicarbonate or PIPES buffer with all transfers occurring in an anaerobic glove box (90% N<sub>2</sub>; 5% H<sub>2</sub>; 5% CO<sub>2</sub>). This process was performed 3 times and the cells were then re-suspended under non-growth conditions (defined here as the absence of exogenous

nitrogen, phosphorus, vitamins, and other micronutrients) in sterile bicarbonate or PIPES buffer and used for U precipitation experiments.

Anoxic conditions were obtained by bubbling the experimental medium containing bicarbonate and the stock solution (1000 mg/L) of U for 30 minutes with N<sub>2</sub>:CO<sub>2</sub> (80:20). The medium containing PIPES buffer was bubbled with ultrapure N2 for 30 minutes. The final pH of the medium was 7.0. Aliquots of washed-cell suspension were added to the buffered medium contained in 25 ml serum bottles to give a total liquid volume including cells, buffer, and U, of 20 ml. Cultures were incubated at room temperature (25°C) and shaken at 75 rpm. Sodium bicarbonate, potassium chloride and PIPES were obtained from Fisher (Pittsburgh, PA.). Water for all experiments had a resistivity of 18.2 megaohm-cm and was supplied from a Barnstead/Nanopure water system. All glassware was acid washed (2 N HNO<sub>3</sub>) and rinsed thoroughly with DI water before being used. For studies with AQDS, cells were re-suspended in autoclaved buffer solution containing 0.1mM AQDS (Fisher, Pittsburg, PA.). Uranium was used in the form of UO<sub>2</sub>Cl<sub>2</sub>.3H<sub>2</sub>O (Bodman, Aston, Pa.). In addition to cell- and uranium-free controls, heat-killed cell controls were included. For heat-killed cell controls, aliquots of washed cell suspension were transferred to an anaerobic serum bottle in the glove box, sealed with butyl rubber septa, capped, crimped with an aluminum seal and autoclaved. Anaerobic conditions in all treatments were verified by a resazurin indicator (0.5 mg/L) changing from pink to clear indicating an  $E_h \leq -51$  mV (Twigg, 1945). Abiotic controls served as indicators that aseptic conditions were maintained during the experiments. Culture purity was also checked by bright field microscopy (Model Leica DMLB, Leica Microsystems, Germany) and by plating aliquots on TSA from individual treatment units. Samples were collected using disposable syringes, which were purged with  $N_2$  to avoid introducing  $O_2$  into the serum bottles.

#### **Analytical Methods**

Dry cell weight analyses were performed at the start of the experiment by filtering 0.5 ml of sample through a preweighed 0.2 µm supor<sup>®</sup> membrane syringe filter (Gelman Acrodisc). Samples from cell free controls were also filtered to ensure no change in weight due to the buffer itself. The filters were dried at 60°C for 3 days, until a constant weight was observed (Gerhardt et al. 1981). Removal of U(VI) from solution was evaluated by monitoring U(VI) concentration in unfiltered samples (0.2 ml) withdrawn by syringe and needle and measured immediately. Samples were diluted 1,000 or 4,000 times based on initial U(VI) concentration. Anoxic nanopure water was used to dilute the samples to avoid matrix effects, and 1 ml of the diluted sample was mixed with 1.5 ml of Uraplex complexing agent (Chemchek, Richland, WA). Samples were analyzed with a kinetic phosphorescence analyzer (Chemchek, Richland, WA), which uses a pulsed nitrogen dye laser to measure U(VI) concentrations in solution (Brina and Miller, 1992). Calibrations were performed using uranyl chloride solutions from 0 to 0.23  $\mu$ M, yielding a U(VI) detection limit of 0.04  $\mu$ M with a precision of ±5%. Samples (0.5 ml) for inorganic phosphate (P<sub>i</sub>) analysis were withdrawn by syringe and needle and centrifuged at 10,000 g for 8 minutes. Inorganic phosphate (P<sub>i</sub>) concentrations were determined on the supernatant spectrophotometrically using Phosver® 3 Phosphate reagent (Hach, Loveland, CO) at 880 nm on a UV-vis spectrophotometer (Milton Roy Company Spectronic<sup>®</sup> GENESYS 5<sup>TM</sup>, Rochester, NY).

#### Transmission electron microscopy (TEM)

The embedding procedure, as well as thin sectioning, was conducted in a glove box (Ar:H<sub>2</sub>, 95:5; Coy Laboratory Products, Inc.). The visible black precipitates resulting from *Cellulomonas* treated U(VI) were briefly (1 hour) fixed in 2.5% glutaraldehyde, and washed in

anoxic deionized water followed by a gradual ethanol dehydration series and infiltration in LR White embedding resin. Cured blocks were sectioned to 70 nm on an ultramicrotome (Leica Ultracut UCT), and sections were mounted on 200 mesh copper grids coated with formvar support film sputtered with carbon. Sections were examined using a JEOL 2010 high resolution transmission electron microscope (HR-TEM) equipped with a LaB<sub>6</sub> filament operating at 200 kV with resolution of 0.19 nm. Elemental analysis was performed using an Oxford EDS system equipped with a SiLi detector coupled to the TEM, and spectra were analyzed with ISIS software (Oxford Instruments). Images were digitally collected and analyzed using Gatan's Digital Micrograph.

#### XANES analysis

X-ray absorption near edge structure (XANES) spectroscopy was used to determine the oxidation state of uranium. Filter papers containing the sample filtrate from the experiment were dried in an anaerobic glovebox and sealed between two pieces of Kapton polymide film to prevent oxidation while minimizing X-ray absorption. Samples were stored in the glovebox until analysis. XANES data were collected on beamline 13-BM-C (GSE-CARS) at the Advanced Photon Source (APS). The APS ring operated at 7 GeV with a current of 100 mA. Energy selection was accomplished with a water-cooled Si(111) monochromator. Higher-order harmonics were eliminated by detuning the monochromator ~10%. Fluorescence spectra were recorded by monitoring the U  $L_{IIIa}$  fluorescence with a 13-element Ge semiconductor detector. Incident and transmitted intensities were measured with in-line ionization chambers. The energy range studied was -200 to +500 eV about the  $L_{IIIa}$ -edge of U (17.166 keV). All spectra were collected at ambient temperature and pressure and 2 to 4 individual spectra were averaged for each sample.

Spectra were analyzed using IFEFFIT and WinXAS software. Fluorescence spectra were normalized, background subtracted, and the atomic absorption normalized to unity. First derivative XANES spectra were smoothed with a 17.6% Savitsky-Golay algorithm. The extent of downward shift in binding energy for a metal is related to its oxidation state, with a shift towards lower binding energy indicative of a lower oxidation state. The relative amount of reduced uranium in each sample was determined by fitting a series of Gaussian functions to the smoothed derivative spectra using PeakFit v4 (AISN Software Inc). The ratio of the amplitudes of the Gaussian functions centered at the U(IV) and U(VI) first derivative inflection points (17.172 and 17.176 keV, respectively) was related to U(IV)/(VI) proportions using five standards having U(VI) percentages ranging from 10 to 90%. The uncertainty of the fitting routine is  $\pm 10\%$ .

#### Statistical analysis

Each set of experiments was carried out in duplicate and all critical treatment units were repeated as separate experiments to ensure reproducibility. In each set of experiments, duplicate treatment profiles were similar in P<sub>i</sub> concentration and U(VI). Data presented here are the mean of duplicates and error bars represent one standard deviation. One-way analysis of variance (ANOVA) was used to determine the statistical significance of differences in lag times of U removal among treatments. The threshold level of statistical significance for this study was  $\alpha =$ 0.05.

#### **RESULTS AND DISCUSSION**

#### U(VI) precipitation experiments with PIPES buffer

Figure 1a shows soluble inorganic phosphate (P<sub>i</sub>) concentration profiles at two cell concentrations. Initially, the P<sub>i</sub> concentration was approximately zero in all treatments (except the heat killed cell control). With heat-killed cells there was a measurable initial P<sub>i</sub> concentration,

which decreased with time as U precipitated. In all other cell containing treatments, P<sub>i</sub> concentrations increased over time. The P<sub>i</sub> concentration in the cell free control was approximately zero throughout the experiment indicating that the buffer itself contained no measurable P<sub>i</sub>. Treatments with U(VI) also showed a P<sub>i</sub> concentration increase, however the increase was less than the corresponding U(VI)-free treatment. Like most other Gram-positive bacteria, the cell walls of *Cellulomonas* consist of secondary polymers, which often include teichoic acids and teichuronic acids and contain phosphate and carboxylate residues, respectively (Panak et al. 2000). The initial amount of P<sub>i</sub> observed in heat-killed cells is likely from these polymers, nucleic acids, and other phosphate rich cellular components that may have been released in the heating process.

Figure 1b shows concentration profiles of soluble U(VI) observed for the cell suspensions and cell-free controls under non-growth anaerobic conditions in PIPES buffer. Since precipitation of U(VI), as metaschoepite, occurs in PIPES buffer for U(VI) concentrations greater than 0.125 mM, only 0.1mM U(VI) was used with PIPES buffer (Fredrickson et al. 2000b). In all treatments containing cells, including the heat-killed cell control, soluble U(VI) concentrations decreased over time. No change in soluble U(VI) concentration was observed in cell-free controls. In the treatment with heat-killed cells, the decrease in U(VI) concentration occurred immediately after inoculation, while with viable cells there was a considerable lag time before U(VI) started precipitating. The immediate onset of U(VI)-precipitation with heat-killed cells was likely caused by the availability of dissolved phosphate due to the heat induced cell lysis and release of P<sub>i</sub> into solution. As there are likely no enzymes in heat-treated cells, the P<sub>i</sub> concentration did not increase above the initial concentration, which was sufficient to initiate precipitation. In treatments with viable cells, the P<sub>i</sub> concentration, which was initially zero, but increased with time (Figure 1a). It appears that once the saturation concentration of  $P_i$  was reached in the solution, precipitation of U(VI) began. Yong and Macaskie, (1995) observed similar results with *Citrobacter* sp. and attributed the delay in onset of uranyl phosphate removal to the solubility product and the time required for the formation of nucleation sites and precipitation foci. Both cell treatments and abiotic tests (data not shown) showed that the saturation concentration of  $P_i$  in PIPES buffer to initiate U (0.1 mM) precipitation was approximately  $0.03 \pm 0.01$  mM . Precipitation of U(VI) in heat-killed cell treatments was observed only when  $P_i$  concentration was greater than saturation concentration.

#### U(VI) precipitation experiments with bicarbonate buffer

Figure 2a shows  $P_i$  release by ES6 in bicarbonate buffer at two different concentrations in the presence and absence of U(VI). As in PIPES buffer, cells were under non-growth conditions and two different cell concentrations were used to study the kinetics of phosphate release by ES6. Higher cell concentrations were used, since preliminary results showed that U(VI) removal occurred at a slower rate in the bicarbonate buffered systems. These experiments show that as compared to PIPES buffer, the rate of increase of  $P_i$  concentration was slower in bicarbonate buffer. Similar to the PIPES buffered cultures, in all experiments containing viable cell suspensions,  $P_i$  concentrations increased over time until a stable value was reached or the experiment was stopped. In addition to the heat-killed control with U(VI), an additional control with heat-killed cells and no U(VI) showed no increase in  $P_i$  concentration over time. This result suggests that only active enzymes were responsible for phosphate release into the solution. In bicarbonate buffer, the concentration of  $P_i$  (0.11 ± 0.01 mM) required to initiate uranium precipitation was observed to be higher than that required in PIPES buffer. This is likely due to complexation of U in bicarbonate buffer thereby decreasing the concentration of U in solution

available for precipitation. The solubility product of uranyl phosphate calculated from experiments in PIPES ( $K_{SP} = 3 \times 10^{-9}$ ) and bicarbonate ( $K_{SP} = 1.1 \times 10^{-8}$ ) were less than the values reported by Palie (1970). This was expected as the values reported by Palie (1970) were obtained in system with only water. Since the solubility product of uranyl phosphate is constant in a specific medium, a lower concentration of U in solution requires a higher concentration of P<sub>i</sub> to initiate precipitation.

Similar to treatments in PIPES buffer, viable cells treated with U(VI) in bicarbonate buffer also removed U(VI) from solution after P<sub>i</sub> was released into solution. Figure 2b shows the respective concentration profiles of soluble U(VI) observed for cell suspensions and cell-free controls under non-growth anaerobic conditions in bicarbonate buffer. U(VI) concentrations decreased over time in all treatments with viable cells. No change in soluble U(VI) concentration was observed in cell-free controls or in heat-killed cell control. In heat-killed controls, active enzymes responsible for phosphate release were very likely denatured and the initial P<sub>i</sub> concentration was less than the saturation concentration of P<sub>i</sub> required to initiate U precipitation, so no decrease in soluble U(VI) concentration was measured.

Similar to PIPES buffer, a lag time was observed before U started precipitating in bicarbonate buffer treatments containing cells. Observations from both PIPES and bicarbonate experiments showed that the lag time before the onset of U(VI) precipitation was inversely proportional to cell concentration. The proportionality constants (PIPES =  $7.8 \pm 0.6$  mg h/L; bicarbonate =  $130.5 \pm 32.8$  mg h/L) defined as the ratio of cell concentration over lag time were statistically different ( $\alpha = 0.05$ ) between PIPES and bicarbonate buffer for equal U concentration (0.01 mM). This may be the result of two factors: 1) high saturation P<sub>i</sub> concentration in bicarbonate buffer, and 2) slower rate of P<sub>i</sub> release in bicarbonate buffer than in PIPES. The lag time for cell suspensions treated with 0.25 mM U(VI) was less than in the 0.01 mM treatment. This was expected because the solubility product of uranylphosphate is a constant in a specific medium (Eq 1), such that U(VI) and  $P_i$  concentrations should be inversely related to each other.

$$UO_2(HPO_4) \longrightarrow UO_2^{2^+} + PO_4^{3^-} + H^+$$
 (1)

Assuming a molar ratio of 1:1 of U:P in the precipitated uranylphosphate, with 0.25 mM U(VI), 0.25 mM P<sub>i</sub> should have co-precipitated. However, after complete precipitation of 0.25 mM U(VI), the difference between the total amount of soluble P<sub>i</sub> in treatment with 0.25 mM U(VI) and without U(VI) is 0.20 mM which is less than 0.25 mM (Figure 2a). This shows that there may be another mechanism, most likely enzymatic reduction, acting in addition to uranyl phosphate precipitation for loss of U from solution in bicarbonate buffer. Sani et al. (2002) reported that treatments of U(VI) with *Cellulomonas* spp., showed insignificant difference between filtered and unfiltered U(VI) concentrations and hence concluded that cell-associated U(VI) was not in significant amount. The KPA can measure only soluble U(VI), and hence analysis of filtered and unfiltered U samples cannot differentiate between U(VI) reduction and abiotic precipitation as uranyl phosphate.

Figure 3 shows soluble U(VI) concentrations and corresponding P<sub>i</sub> concentrations in both PIPES and bicarbonate buffer. From the figure, it is clear that a small concentration of P<sub>i</sub> is sufficient to start precipitation of U(VI) in PIPES buffer, while a much higher P<sub>i</sub> concentration is required to initiate precipitation in bicarbonate buffer. Only after the soluble P<sub>i</sub> reached a saturation concentration, could precipitation of U(VI) begin. The initial concentration of P<sub>i</sub>  $(0.095 \pm 0.05 \text{ mM/(g/L)})$  in heat-killed cells in bicarbonate buffer was approximately equal to that measured in PIPES buffer after normalizing for the higher cell concentration. This initial concentration of P<sub>i</sub> in heat-killed cells in bicarbonate buffer was less than the saturation

concentration of P<sub>i</sub> required to initiate uranium precipitation. Hence unlike PIPES buffer, no decrease in P<sub>i</sub> or U concentration was observed in uranium treated heat-killed cells. Subsurface systems have significant amount of humic acids, that play a major role in fate, and transport of metals/radionuclides and hence it is necessary understand their potential effects on P<sub>i</sub> release and U removal.

#### Effects of AQDS on P<sub>i</sub> release and U(VI) removal

One of the most important soil properties that influence the transport of contaminants is naturally occurring organic matter, mainly humic materials. Humic substances also called *humus*, are yellow to dark brown polymers formed by microbial mediated reactions. Humic substances are heterogeneous high-molecular-weight organic materials and are widely distributed on the earth's surface (Benz et al. 1998). Humic materials are thermodynamically stable and predominant in most of the subsurface (Watts, 1997). They function as catalysts for bacterial metal reduction. Lovley et al. (1998) reported that relatively low concentrations of humic substances are sufficient to facilitate reduction. Humic acids, because of their recalcitrance to biodegradation, are common to many soils and sediments. Lovley et al. (1996) reported that microorganisms can donate electrons to humic acids, which can shuttle electrons between the microbe and Fe (III) oxide. 2,6-anthraquinone disulfonate (AQDS) has been proposed as a model humic compound and has been shown to catalyze microbial reduction of Cr(VI), U(VI), Fe(III) and Mn(VI) (Fredrickson et al. 2000a,b; Lovley et al. 1996; Gounot, 1994). Because of the ubiquitous nature of humic substances in the subsurface, it is important to understand the effects of AQDS on P<sub>i</sub> release rates and soluble U(VI) removal rates.

Experiments were performed in PIPES and bicarbonate buffer with treatments containing 0.1 mM AQDS, and ES6, with and without U(VI). During the experiments, the media turned

yellow indicating the reduction of AQDS by *Cellulomonas*. In both PIPES and bicarbonate buffer, AQDS treatments (PIPES – Figure 1b, bicarbonate – Figure 2b) showed a different soluble U(VI) profile compared to treatments without AQDS. This might be due to the reduction of U(VI) to U(IV) by reduced AQDS rather than precipitation by P<sub>i</sub>. Reduction of U(VI) by AQDS has been reported previously (Fredrickson et al. 2000 a, b). In addition, reduction of U(VI) in the presence of AQDS in PIPES buffer was much faster than in bicarbonate buffer.  $UO_{2(aq)}^{2+}$  forms a series of strong aqueous complexes with  $CO_3^{2-}$  [e.g.,  $UO_2(CO_3)_{3(aq)}^{4-}$ ,  $UO_2(CO_3)_{2(aq)}^{2-}$  and  $UO_2CO_{3(aq)}^{\circ}$ ). The equilibrium speciation in PIPES buffer is predominantly hydroxo complexes  $UO_2OH_{(aq)}^+$  or  $UO_2(OH)_{2(aq)}^{\circ}$ . Thermodynamically  $UO_2(OH)_{2(aq)}^{\circ}$  is the most strongly oxidizing species and hence tends to be reduced first compared to other carbonate complexes based on potential free energy change (Fredrickson et al. 2000b; Scott and Morgan, 1990; Zehnder and Stumm, 1988).

Figure 4 shows the comparison of P<sub>i</sub> release by cells in treatments with/without AQDS and with/without soluble U(VI). In the absence of uranium, there is no difference in the rate and extent of P<sub>i</sub> release with or without AQDS with either buffer. This indicates that AQDS does not enhance phosphate release by cells. Single-factor ANOVA ( $\alpha = 0.05$ ) with P<sub>i</sub> concentrations in AQDS treatments with and without 0.1 mM U(VI) showed that P<sub>i</sub> concentrations were not statistically different. However a significant decrease in soluble U(VI) concentrations was observed in AQDS treatments in both PIPES (Figure 1b) and bicarbonate (Figure 2b) buffered systems. If U(VI) had been precipitated by P<sub>i</sub>, a decrease in P<sub>i</sub> concentration would have been observed. Reduction of U by AQDS was confirmed by analysis of these precipitates by XANES. This shows that *Cellulomonas* can utilize a combination of direct and indirect U(VI) precipitation to effectively immobilize U(VI) in subsurface environments. Fredrickson et al.

(2000a) has reported that *Deinococcus radiodurans* can oxidize lactate coupled to the reduction of Fe(III) and Cr(VI), but cannot reduce U(VI) directly without AQDS. Such an inability to directly reduce U was attributed to enzyme substrate specificity or enzyme inhibition.

#### Characterization of microbially mediated U precipitates: (A) XANES Spectra

The U L<sub>3</sub>-edge XANES spectra for U(VI) treated with ES6 in PIPES buffer in the absence of AQDS was similar to that of U(VI) standard (uranyl nitrate). XANES analysis of U precipitates in PIPES treatment showed that the oxidation state of U was predominantly +6 (Figure 5). This confirms that in PIPES buffer with no AQDS, precipitation by phosphate and not reduction is the predominant mechanism of U immobilization. How ever the U L<sub>3</sub>-edge XANES spectra for U(VI) treated with ES6 in bicarbonate buffer with and without AQDS and in PIPES buffer with AQDS were similar to that of natural uraninite. No decrease in phosphate concentration was observed in both PIPES and bicarbonate buffered treatments with AQDS while U concentration decreased from 0.1 mM to approximately zero mM. This observation along with XANES spectra showed that reductive precipitation is the predominant mechanism of U removal in AQDS treatments. XANES analysis performed on U precipitates in bicarbonate buffer showed that the oxidation state of U in these precipitates was predominantly +4 (Figure 5). EDAX analysis showed that molar ratio of U and P in these precipitates is approximately 1:1. This shows that ES6 may have the capacity to reduce U(VI) to U(IV). However this process is very slow but gets induced due to long residence time of U(VI) in bicarbonate buffered system. The absence of both phosphate release enzyme and U reducing enzyme in heat-killed cell treatments, resulted in no decrease in U concentration by either mechanisms. In contrast, with PIPES buffer, the low saturation concentration, rapid rate of phosphate release and U precipitation would have overwhelmed any observed effects of enzymatic reduction.

#### (B) TEM and EDS analysis

Electron dense granules were observed during TEM analysis of whole cells that had not been exposed to U (Figure 6a). Such metachromatic granules are considered to be masses of volutin, a polymetaphosphate (Mutsunori et al. 1999; Nielsen et al. 1998; Liu et al. 1996; Nester et al. 2004). Inorganic polyphosphates are linear polymers of P<sub>i</sub> residues linked by phosphoanhydride bonds (Merroun et al. 2002) with chain lengths varying between 3 and 1000 P<sub>i</sub> residues, depending on the organism, its growth, and other physiological conditions (Van Veen et al. 1993). Polyphosphate has many biochemical functions, for example, as a substitute for ATP, sugar and adenylate kinases, an energy source, and a chelator of bivalent metals ions (Keasling and Hupf, 1996). The presence of electron dense granules in ES6 and release of excessive phosphate shows that polyphosphate is likely the source of phosphate release in ES6.

Figure 6b shows a typical TEM image of ES6 after exposure to uranium in bicarbonate buffer. Irregularly shaped electron-dense granules were observed in TEM images. The darkening of cellular surface is attributed to electron dense uranyl phosphate precipitation. To verify the cellular location of uranyl phosphate precipitates, TEM was performed with thin sections of ES6 treated with U (Figure 7a). It can be seen from Figure 7a that uranylphosphate precipitates are bound not only to the cell surface (areas of high contrast) but are also present as intracellular granules. The corresponding EDS spectrum of uranylphosphate precipitates is shown in Figure 7(c). EDAX analysis confirmed the presence of U and P in these precipitates with a molar ratio of approximately 1:1. Such a trend of both intra and extra-cellular U association was observed in *Mycobacterium smegmatis* (Andres et al. 1993 and 1994). Krueger et al. (1993) reported that *Pseudomonas fluorescens* accumulates uranium in the periplasm along its plasma and outer membranes as fine-grained, uranium-crystals. Francis et al. (2004) suggested that precipitates in

*Bacillus subtilis* were originally surface associated, but were then brought into the cell by microtome.

Figure 7b shows that uranylphosphate precipitates were nanometer size needle-like fibrils. Such needle-like fibrils were reported by Marques et al. (1991) with *Pseudomonas sp*. Francis et al. (2004) reported that extracellular association of uranium with bacterial cell surfaces is primarily due to physical and chemical interactions involving adsorption, ion exchange, and complexation. Carboxylate, hydroxyl, amino, and phosphate are the predominant functional groups in bacterial cell walls, exopolymers and lipids. These functional groups are capable of forming U complexes. Macaskie et al. 2000 reported that lipopolysaccharide (LPS) in *Citrobacter* serves as a major site of  $UO_2^{2+}$  binding and also of uranyl phosphate nucleation. But Langley and Beveridge, (1999) concluded that carboxylic acid groups on the O side-chains of LPS do not contribute significantly to metal binding (gold, copper, iron, and lanthanum) and, instead hypothesized a role for the phosphate groups in mineral formation.

Panak et al. (2000) showed that *Bacillus* sp. cell wall components with phosphate residues (e.g., polysaccharides, teichoic and teichuronic acids or phospholipid layers of the membranes) can bind U. While cellular functional groups can be responsible for extracellular association of U, Strandberg et al. (1981) proposed that passive transport mechanisms were responsible for the formation of dense U deposits inside *Pseudomonas aeruginosa*. Figure 8 (a,b) shows TEM images of uranylphosphate precipitates that did not appear to be cell-associated, while Figure 8 (c) shows the respective EDS spectrum of the precipitates. Figure 8b shows that these precipitates were also nanometer size needle-like fibrils, and these also had a 1:1 U:P ratio (Figure 8c). The general formula of uranylphosphate precipitates is M(UO<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>.nH<sub>2</sub>O in which M may be a mono or divalent cation. These compounds have a typical structure of negatively

charged layers of  $(UO_2PO_4)n^n$  separated by staggered layers of water molecules and compensating cations. In the absence of cations such as Na<sup>+</sup>, or NH<sub>4</sub><sup>+</sup>, H<sup>+</sup> can substitute (Yong and Macaskie, 1995). Our experimental results show that *Cellulomonas* sp. ES6 can immobilize U by both precipitation with phosphate ligands as well as reduction in buffered systems in the absence of AQDS, a model humic substance. Absence of significant phosphate release in heatkilled treatments showed that this process is probably enzyme mediated. The rate and onset of U(VI) removal in PIPES and bicarbonate buffered systems appears to be controlled by the uranylphosphate solubility product and the rate of P<sub>i</sub> released by the cells. To better understand the influence of *Cellulomonas* on soluble U(VI) concentrations, it was necessary to model the release of P<sub>i</sub>.

#### **Kinetic modeling**

Nongrowth Monod kinetic models have been used to model enzyme mediated heavy metal or radionuclide reduction (Truex et al. 1997; Guha et al. 2001). Pauli and Kaitala (1996) used the Michaelis-Menton model to quantify phosphate uptake kinetics by *Acinetobacter* isolates. In this study, a Monod-based kinetic expression (Eq. 2) was used to describe P<sub>i</sub> release under non-growth conditions.

$$\frac{dP_i}{dt} = \frac{V_{MAX}S}{K_M + S}$$
(2)

where  $V_{MAX}$  is the maximum specific  $P_i$  release rate in mM  $P_i/h$ ;  $K_M$  is Monod half-saturation coefficient in mM  $P_i$ ; S is phosphate source that acts as substrate defined in Eq. 3.

$$\mathbf{S} = \mathbf{P}_{\mathbf{F}} - \mathbf{P}_{\mathbf{i}}; \ \mathbf{P}_{\mathbf{F}} = \mathbf{X} * \mathbf{G}$$
(3)

where  $P_F$  is maximum/final concentration of soluble  $P_i$  observed in the system;  $P_i$  is the inorganic phosphate concentration at time point of interest; X represents dry weight of cells in mg/L; G = Maximum phosphate yield ( mM  $P_i$ / (mg dry weight cells/L)). Since the substrate for enzymatic phosphate release is intracellular, P<sub>F</sub> is proportional to biomass concentration. When soluble P<sub>i</sub> concentration equals P<sub>F</sub>, substrate concentration (S) becomes zero and no more release of P<sub>i</sub> by the cells is possible. Equation 2 can be solved for P<sub>i</sub> by Euler's method. Due to large number of data points over a short time interval, it is valid to use Euler's method to solve Equation 2. The kinetic parameters V<sub>MAX</sub>, K<sub>M</sub>, G were estimated using the Solver function in Microsoft Excel<sup>TM</sup>, which uses a generalized reduced gradient nonlinear optimization code. Initial guesses for the parameters were provided and used to minimize the sum of the squared differences between the experimentally determined and predicted P<sub>i</sub> concentrations. The Monod model was applied to all experimental data sets for both PIPES buffer and bicarbonate buffer to determine individual values for the three model parameters. The estimated mean parameter values and corresponding standard deviations are shown in Table 1.

To test the model, average values of  $V_{MAX}$ ,  $K_M$ , and G were used to calculate  $P_i$ concentration as a function of time for PIPES and bicarbonate treatments. These results are shown as solid lines in Figure 9 in which simulated  $P_i$  concentrations are imposed over the experimental data points. It can be seen that the model fits correspond closely to experimental observations. Statistical comparisons were made between the experimentally determined data and the model defined by the three constants by using coefficients of determination,  $r^2$ . In all the experiments,  $r^2$  was greater than 0.96. Single-factor ANOVA showed that mean values of  $V_{MAX}$ ,  $K_M$ , and G were statistically different between the two buffers at 95% confidence limit. Both the maximum specific  $P_i$  release rate,  $V_{MAX}$  and Monod half-saturation coefficient,  $K_M$  was significantly higher in PIPES buffer than in bicarbonate buffer. This indicates that phosphate release rates were greater in PIPES buffer than in bicarbonate buffer. This resulted in a slower uranium removal rate in bicarbonate buffer.

Kortstee et al. (1994) reported that on average, growth of cells requires  $5 - 10 \text{ mg P}_i$  per g dry weight. Groenestijn et al. (1988) reported that Acinetobacter strain 210A can accumulate polyphosphate between 40 to 100 mg P<sub>i</sub> per g dry weight of cell under different growth conditions. Experimental studies showed that phosphate accumulation (as measured by phosphate release) by strain ES6 varied between  $53.6 \pm 0.4$  (PIPES buffer) and  $37.6 \pm 0.003$ (bicarbonate buffer) mg P<sub>i</sub> per g dry weight of cell. The maximum phosphate yield, G, in PIPES buffer is higher than in bicarbonate buffer. Since cells for all experiments were prepared same, the specific uptake of phosphate should also be the same. It was anticipated that the value of G would be independent of the buffer system. But G was found to be statistically different. One plausible explanation for different G in different buffers might be the buffer effect on phosphate release enzymes similar to slow phosphate release rates. Even though the ionic strength of two buffers was the same, the enzymes responsible for phosphate release may be sensitive to buffer salts and hence the buffer type could have caused a significant change in enzymatic phosphate release. Different G can also be reasoned that same amount of phosphate could have accumulated during growth, but due to long duration of experimental study under non-growth in bicarbonate buffer which in turn is a result of slow phosphate release rate, cell lysis would have occurred thereby limiting the total amount of phosphate that can be released. The parameters determined could be used to predict inorganic phosphate release rates, which in turn can be used to predict precipitation of uranium and other heavy metal phosphate complexes.

In conclusion, the results presented here demonstrate the potential of *Cellulomonas* in precipitating U(VI) as uranyl phosphate as well as U(IV) in the absence of humic substances and as U(IV) in the presence of electron shuttles (e. g. AQDS). This is the first report of an environmentally relevant subsurface microorganism capable of uranium immobilization by two

different mechanisms (reductive precipitation or direct precipitation with phosphate ligands) based on environmental conditions. Our results offer a first step toward understanding and quantifying the phosphate release and uranium removal by strain ES6. Research is currently underway in our laboratories to identify the effects of other co-contaminants and various environmental factors on cellular metabolism, and on P<sub>i</sub> release. The ability of *Cellulomonas* sp. to reduce Cr(VI), and to precipitate U(VI) as U(IV) and uranyl phosphate indicates the potential long-term application of in situ biological barriers for mixed heavy metal and radionuclide removal.

#### Acknowledgements

We thank Chris Davitt, Valerie Lynch of Electron Microscopy Center, Washington State University for TEM images of whole cell. We also would like to thank Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory. This work was supported by the U.S. Department of Energy, Office of Science, Environmental Management Science Program under Grant No. DE-FG02-03ER63582 and DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. It was also supported by the Inland Northwest Research Alliance under contract WSU 005. Portions of this work were performed at GeoSoilEnviroCARS (Section 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation – Earth Sciences (EAR-0217473), Department of Energy – Geosciences (DE-FG02-94ER14466) and the State of Illinois. Use of the APS was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Energy Research, under Contract No. W-31-109-Eng-38.

## References

- Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the *In Situ* activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69, 5884-5891
- Andres Y, MacCordick J, Hubert JC (1993), Adsorption of several actinide (TH, U) and lanthanide (LA, EU, YB) ions by *Mycobacterium smegmatis*, Appl. Microbiol. Biotechnol. 39, 413
- Andres Y, MacCordick J, Hubert JC (1994), Binding sites of sorbed uranyl ion in the cell wall of *Mycobacterium smegmatis*, FEMS Microbiol. Lett. 115, 27
- Arey JS, Seaman JC, Bertsch PM (1999), Immobilization of uranium in contaminated sediments by hydroxyapatite addition, Environ. Sci. Technol. 33, 337-342
- Benz M, Schink B, Brune A (1998), Humic acid reduction by *Propiionibacterium freudenreichii* and other fermenting bacteria, Applied and Environmental Microbiology. 64(11), 4507-4512
- Bertsch PM, Hunter DB, Sutton SR, Bajt S, Rivers ML (1994) In situ chemical speciation of uranium in soils and sediments by micro x-ray adsorption spectroscopy. Environmental Science and Technology, 28, 980-984
- 7) Boswell CD, Dick RE, Macaskie LE (1999) The effect of heavy metals and other environmental conditions on anaerobic phosphate metabolism of *Acinetobacter johnsonii*, Microbiology, 145, 1711-1720

- 8) Boswell CD, Hewitt CJ, Macaskie LE (1998), An application of bacterial flow cytometry

   evaluation of the toxic effects of four heavy metals on *Acinetobacter* sp. with potential
   for bioremediation of contaminated waste waters, Biotechnol Lett 20, 857-863
- Brina R, Miller AG (1992) Direct detection of trace levels of uranium by laser induced kinetic phosphoremeter. Anal Chem., 64, 1415-1418
- 10) Duerden P (1990), Alligator river analogue project, 1<sup>st</sup> Annual Report 1988-89,
   Australian Nuclear Science and Technology Organization (ANSTO)
- 11) Emsley, J (1989) The Elements. Oxford University Press, New York, NY. p. 202
- 12) Fowle DA, Fein JB, Martin AM (2000) Experimental study of uranyl adsorption onto *Bacillus subtilis*, Environmental Science and Technology, 34, 3737-3741
- 13) Francis AJ, Gillow JB, Dodge CJ, Harris R, Beveridge TJ, Papenguth HW (2004),Uranium association with halophilic and non-halophilic bacteria and archaea, Radiochim.Acta, 98, 1-8
- 14) Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000a) Reduction of Fe(III), Cr(VI), U(VI) and Tc(VII) by Deinococus radiodurans R1, Applied and Environmental Microbiology, 66, 2006-2011
- 15) Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li SW, Krupka KM (2000b), Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium, Geochimica et Cosmochimica Acta, 64(18), 3085-3098
- 16) Fuller CC, Bargar JR, Davis JA, Piana MJ (2002), Mechanisms of uranium interactions with hydroxyapatite: implications for ground water remediation, Environ. Sci. Technol. 36, 58-65

- 17) Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (1981), Manual of methods for general bacteriology, American Society for Microbiology, p 505
- 18) Gorby YA, Lovley DR (1992) Enzymatic uranium precipitation, Environmental Science and Technology, 26, 205-207
- 19) Gounot AM (1994), Microbial oxidation and reduction of manganese: consequences in groundwater and applications, FEMS Microbiology Rev. 14(4), 339-349
- 20) Groenestijn JW, Bentvelsen MMA, Deinema MH, Zehnder AJB (1988), Polyphosphatedegrading enzymes in Acinetobacter spp. And activated sludge, Appl. Environ. Microbiol. 55, 219-223
- 21) Groenestijn JW, Deinema MH, Zehnder AJB (1987), ATP production from polyphosphate in Acinetobacter strain 210A, Archives of Microbiology, 148, 14-19
- 22) Guha H, Jayachandran K, Maurrasse F (2001), Kinetics of chromium (VI) reduction by a type strain *Shewanella alga* under different growth conditions, Environmental Pollution, 115, 209-218
- 23) Jerden JL, Sinha AK (2003), Phosphate based immobilization of uranium in an oxidizing bedrock aquifer, Applied Geochemistry, 18, 823-843
- 24) Keasling JD, Hupf GA (1996), Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in *Escherichia coli*, Appl. Environ. Microbiol. 62, 743-746
- 25) Knopp R, Panak PJ, Wray LA, Renninger NS, Keasling JD, Nitsche H (2003) Laser spectroscopic studies of interactions of U<sup>VI</sup> with bacterial phosphate species, Chem. Eur. J. 9, 2812-2818

- 26) Kortstee GJJ, Appeldoorn KJ, Bonting CFC, van Niel EWJ, van Veen HW (1994), Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal, FEMS Microbiology Reviews, 15, 137-153
- 27) Krueger S, Olsen GJ, Johnsonbaugh D, Beveridge TJ (1993), Characterization of the binding of Gallium, Platinum, and Uranium to Pseudomonas fluorescens by Small-Angle X-Ray Scattering and Transmission Electron Microscopy, Appl. Environ. Microbiol. 59, 4056
- 28) Langley S, Beveridge TJ (1999), Effect of O-side-chain lipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol. 65, 489-498
- 29) Liu W, Nakamura K, Matsuo T, Mino T (1996), Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors – Effect of P/C feeding ration, Wat. Res. 31(6), 1430-1438
- 30) Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991). Microbial reduction of uranium.Nature 350: pp. 413-416
- 31) Lovley DR, Phillips JP (1992), Reduction of uranium by Desulfovibrio desulfuricans,Applied and Environmental Microbiology, 58, 850-856
- 32) Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC (1996), Humic substances as electron acceptors for microbial respiration, Nature, 382(1), 445-448
- 33) Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998), Humic substances as a mediator for microbially catalyzed metal reduction, Acta Hydrochim.
   Hydrobiol. 26, 152-157
- 34) Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000), Enzymatically mediated bioprecipitation of uranium by *Citrobacter* sp.: a concerted role for exocellular

lipopolysaccharide and associated phosphatase in biomineral formation, Microbiology, 146, 1855-1867

- 35) Macaskie L, Bonthrone KM, Rouch DA (1994), Phosphatase-mediated heavy metal accumulation by a *Citrobacter* sp. and related enterobacteria, FEMS Microbiol. Lett., 121, 141-146
- 36) Malekzadeh F, Ghafmrian H, Latifi AM, Shahamat M, Levin M (1998) Effects of environmental factors on uranium uptake by *Pseudomonas* MGF48, American Society of Microbiology proceedings
- 37) Marques AM, Roca X, Simon-Pujol MD, Fuste MC, Congregado, F (1991), Uranium accumulation by *Pseudomonas* sp. EPS-5028, Appl. Microbiol. Biotechnol. 35, 406
- 38) Merroun M, Hennig C, Rossberg A, Geipel G, Reich T, Selenska-Pobell S (2002) Molecular and atomic analysis of uranium complexes formed by three eco-types of *Acidithiobacillus ferrooxidans*, Proceedings in Biometals 2002: Bioremediation, Biochemical Society Transactions, 30 (4), 669-672
- 39) Montgomery DM, Dean ACR, Wiffen P, Macaskie LE (1995), Phosphatase production and activity in *Citrobacter* freundii and a naturally occurring, heavy-metal-accumulating *Citrobacter* sp., Microbiology, 141, 2433-2441
- 40) Naftz DL, Morrison SJ, Feltcorn EM, Freethey GW, Fuller CC, Piana MJ, Wilhelm RG, Rowland RC, Davis JA, Blue JE (2000), Field demonstration of permeable reactive barriers to remove dissolved uranium from groundwater, Fry Canyon, Utah, Interim Report, EPA, USGS, EPA 402- C-00-001, published on web: <u>www.epa.gov</u>
- 41) Nakajima A, Sakaguchi T (1986), Selective accumulation of heavy metals by microorganisms, Appl. Microbiol. Biotechnol. 24, 59-64

- 42) National Research Council (2000) Research needs in subsurface science, National Academy Press, Washington, D.C.
- 43) Nester EW, Anderson DG, Roberts Jr. CE, Pearsall NN, Nester MT (2004), Microbiology: A human perspective, Fourth edition, McGraw Hill, 67
- 44) Nielsen AT, Liu W, Filipe C, Grady Jr. L, Molin S, Stahl D (1998), Identification of a novel group of bacteria in slude from a deteriorated biological phosphorus removal reactor,
  Applied and Environmental Microbiology, 65(3), 1251-1258
- 45) Palie PN (1970), Analytical chemistry of uranium, Translated by Kaner N, Ann Arbor-Humphrey Science Publishers, Inc.
- 46) Panak PJ, Raff J, Selenska-Pobell S, Geipel G, Bernhard G, Nitsche H (2000), Complex formation of U(VI) with *Bacillus*-isolaes from a uranium mining waste pile, Radiochem. Acta, 88, 71-76
- 47) Pauli AS (1996), Phosphate uptake kinetics by *Acinetobacter* isolates, Biotechnology and Bioengineering, 53(3), 304-309
- 48) Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface research. DOE/ER-0547T, United State Department of Energy, Washington, D.C.
- 49) Sani RK, Peyton BM, Smith WA, Apel WA, Petersen JN (2002) Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by *cellulomonas* isolates, Applied Microbiology and Biotechnology, 60, 192-199
- 50) Scott MJ, Morgan JJ (1990), Energetics and conservative properties of redox systems, Chem. Modeling of Aqueous Systems II, Chap. 29, 368-378, Am. Chem. Soc.

- 51) Spear JR, Figueroa LA, Honeyman BD (1999) Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria, Environmental Science and Technology, 33, 2667-2675
- 52) Spear JR, Figueroa LA, Honeyman BD (2000) Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria, Applied and Environmental Microbiology, 66, 3711-3721
- 53) Strandberg GW, Shumate II SE, Parrott JR, Jr., (1981) Microbial cells as biosorbents for heavy metals: Accumulation of uranium by *Saccharomyces cerevisiae* and *Pseudomonas aeruginosa*, Applied and Environmental Microbiology, 41(1), 237-245
- 54) Tandoi V, Majone M, May J, Ramadori R (1998), The behaviour of polyphosphate accumulating *Acinetobacter* isolates in an anaerobic-aerobic chemostat, Wat. Res. 32(10), 2903-2912
- 55) Truex KJ, Peyton BM, Valentine NB, Gorby YA (1997), Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions, Biotech. Bioeng., 55(3), 490-496
- 56) Twigg RS (1945) Oxidation-Reduction aspects of resazurin, Nature, 155, 401-402
- 57) Van Veen HW, Abee T, Kortstee GJJ, Konings WN, Zehnder AJB (1993), Characterization of two phosphate transport systems in *Acinetobacter johnsonii* 210 A, J. Bacteriol. 175, 200-206
- 58) Viamajala S, Smith WA, Apel WA, Peyton BM, Peterson JN, Sani RK, Neal AL (2005) Isolation and characterization of Cr(VI) reducing Cellulomonas spp. From subsurface soils: implications for long term chromate reduction (Manuscript submitted to Bioresource Technology)

- 59) Watts RJ (1997), Hazardous Wastes: Sources, Pathways, Receptors. John Wiley & Sons, Inc., pp 265
- 60) Yong P, Macaskie LE (1995), Enhancement of uranium bioaccumulation by a *Citrobacter* sp. via enzymatically-mediated growth of polycrystalline NH<sub>4</sub>UO<sub>2</sub>PO<sub>4</sub>, J. Chem. Tech. Biotechnol. 63, 101-108
- 61) Yong P, Macaskie LE (1998) Bioaccumulation of lanthanum, uranium and thorium, and use of a model system to deveop a method for the biologically-mediated removal of plutonium from solution, J. Chem. Technol. Biotechnol, 71, 15-26
- 62) Zafiri C, Kornaros K, Lyberatos G (1999), Kinetic modeling of biological phosphorus removal with a pure culture of *Acinetobacter* sp. under aerobic, anaerobic and transient operating conditions, Wat. Res. 33(12), 2769-2788
- 63) Zehnder AJB, Stumm W (1988), Geochemistry and biogeochemistry of anaerobic habitats, Biology of anaerobic microorganisms, John Wiley and Sons, 1-38

| Parameter                                          | PIPES           | Bicarbonate     |
|----------------------------------------------------|-----------------|-----------------|
| V <sub>MAX</sub> mM P <sub>i</sub> h <sup>-1</sup> | 0.0058 ± 0.0011 | 0.0021 ± 0.0005 |
| K <sub>M</sub> mM P <sub>i</sub>                   | 0.3863 ± 0.0347 | 0.2928 ± 0.0237 |
| G mM P <sub>i</sub> (mg DW Cells/ml) <sup>-1</sup> | 0.4093 ± 0.0164 | 0.3151 ± 0.0347 |

Table 1 – Kinetic values determined from experimental data (mean ± standard deviation)



Figure 1 – (a) – Concentration profile of inorganic phosphate (P<sub>i</sub>) released by cells in PIPES buffer over time; (b) - Concentration profile of soluble U(VI) in PIPES buffer;  $\bullet$  - Cell free control + 0.1 mM U(VI),  $\circ$  - Heat killed cells (equivalent to 520 mg DW cells/L) + 0.1 mM U(VI),  $\bullet$  - 260 mg DW cells/L,  $\Box$  - 260 mg DW cells/L + 0.1 mM U(VI),  $\bullet$  - 520 mg DW cells/L,  $\triangle$  - 520 mg DW cells/L + 0.1 mM U(VI), × - 520 mg DW cells/L + 0.1 mM AQDS + 0.1 mM U(VI); DW – Dry Weight



Figure 2 – (a) - Concentration profile of inorganic phosphate (P<sub>i</sub>) released by cells in bicarbonate buffer over time; (b) - Concentration profile of soluble U(VI) in bicarbonate buffer;  $\bullet$  - Cell free control + 0.1 mM U(VI),  $\diamond$  - Heat killed cells (equivalent to 1150 mg DW cells/L) + 0.1 mM U(VI), -- Heat killed cells (equivalent to 1150 mg DW cells/L), = - 1150 mg DW cells/L,  $\Box$  - 1150 mg DW cells/L + 0.1 mM U(VI),  $\blacktriangle$  - 2300 mg DW cells/L,  $\triangle$  - 2300 mg DW cells/L + 0.1 mM

U(VI), × - 1150 mg DW cells/L + 0.1 mM AQDS + 0.1 mM U(VI), **\*** - 2300 mg DW cells/L + 0.25 mM U(VI); DW – Dry Weight



Figure 3 – Comparison of soluble U(VI) removal profile in two different buffers;  $\Box$  - PIPES + 260 mg DW cells/L,  $\triangle$  - PIPES + 520 mg DW cells/L,  $\blacksquare$  - Bicarbonate + 1150 mg DW cells/L,  $\blacktriangle$  - Bicarbonate + 2300 mg DW cells/L; DW – Dry Weight



Figure 4 – Comparison of P<sub>i</sub> concentration profile in PIPES and bicarbonate buffer with normalized biomass, with/without AQDS and with/without U(VI);  $\diamond$ - PIPES + Cells,  $\Box$  - PIPES + Cells + 0.1 mM AQDS,  $\triangle$  - PIPES + Cells + 0.1 mM AQDS + 0.1 mM U(VI),  $\diamond$  - Bicarbonate + Cells,  $\blacksquare$  - Bicarbonate + Cells + 0.1 mM AQDS,  $\blacktriangle$  - Bicarbonate + Cells + 0.1 mM AQDS + 0.1 mM U(VI)


Figure 5 – XANES spectra of uranium precipitates



Figure 6 – Transmission electron micrograph of whole cell of strain ES6 (a) before and (b) after treatment with uranium



Figure 7 - Transmission electron micrograph of thin section of strain ES6 cells challenged with uranium (a); (b) Nanometer size fiber like uranylphosphate precipitates; (c) EDS spectrum of cell associated uranylphosphate precipitates



Figure 8 - a, b - Transmission electron micrograph of uranylphosphate precipitates unassociated with cells; (c) EDS spectrum of uranylphosphate precipitates



Figure 9 – (a) – Experimental data and model of P<sub>i</sub> concentration profile in PIPES buffer; (b) – Experimental data and model of P<sub>i</sub> concentration profile in bicarbonate buffer.  $\Box$  - PIPES + 260 mg DW cells/L,  $\triangle$  - PIPES + 520 mg DW cells/L,  $\blacksquare$  - Bicarbonate + 1150 mg DW cells/L,  $\blacktriangle$  - Bicarbonate + 2300 mg DW cells/L; Data points represent averaged experimental data sets; Solid line represents model predicted outcomes for those points; DW – Dry Weight

#### **FUTURE WORK**

The results presented in this thesis work were based on growth of *Cellulomonas* sp. ES6 on nutrient rich medium (TSB). It is necessary to evaluate the ability of strain ES6 to accumulate phosphate aerobically on minimal nutrient medium. Phosphate accumulation depends on growth medium composition, growth conditions, pH and cations <sup>1,2</sup>. This can be tested by growing the cells on simulated ground water medium (SGM) with excess phosphate (multiple concentrations) and varying concentrations of field applicable carbon sources namely sucrose, xylose and molasses. Phosphate uptake can be measured by two potential ways, 1) measuring phosphate and cell concentration in growth medium with time, 2) re-suspension of washed cells in buffered medium under non-growth conditions and measuring concentration of inorganic phosphate released by cells. From the results of these experiments, it is possible to identify optimal phosphate concentration, sugar source, and its concentration required during growth to accumulate maximum phosphate.

Uptake of phosphate is usually accompanied by simultaneous uptake of cations such as  $Mg^{2+}$ ,  $Ca^{2+}$  or  $K^+$ . It is possible to identify which of these cations are important for phosphate accumulation by *Cellulomonas* sp. ES6 by growing cells on minimal medium with excess phosphate in the presence and absence of cations. The decrease in cation concentration with maximum phosphate uptake could be an indicator of crucial cation and its concentration for phosphate accumulation. This can also be tested by measuring phosphate uptake during growth in the absence of cations.

<sup>&</sup>lt;sup>1</sup>Groenestijn JW, et al., 1988, Appl. Environ. Microbiol., 54(12), 2894-2901

<sup>&</sup>lt;sup>2</sup>Pauli ASL, Kaitala S, 1995, Appl. Microbiol. Biotechnol., 43, 746-754

Most of the industrial waste streams and sludges have either low pH or high pH based on treatment conditions <sup>3</sup>. Hence it is necessary to elucidate the effect of pH on phosphate release process. This can be tested by growing the cells on either nutrient rich medium or minimal medium to accumulate excess phosphate and then re-suspending the washed cells on buffered non-growth medium with specific pH. The rate and amount of phosphate release can be compared over varying pH. This study would help us better understand the effect of pH on phosphate release by ES6 and hence whether the organism is applicable for a particular case study.

Apart from pH, waste streams from nuclear industry typically contain high concentrations of anions, heavy metals, organic solvents and chelators <sup>4</sup>. These co-contaminants may affect phosphate release process and hence metal/radionuclide immobilization. Van Neil (1998) has shown that nitrate can inhibit phosphate release and hence it is necessary to evaluate the effect of other co-contaminants such as sulphate, nitrite, heavy metals (chromium, copper, nickel) on phosphate uptake as well as release process.

<sup>&</sup>lt;sup>3</sup>Yong P, Macaskie LE, 1995, J. Chem. Tech. Biotechnol., 63, 101-108

<sup>&</sup>lt;sup>4</sup>Ganesh et al., 1999, Wat. Res., 33(16), 3447-3458

<sup>&</sup>lt;sup>5</sup>Van Niel et al., 1998, Appl. Environ. Microbiol., 64(8), 2925-2930

#### **APPENDIX A**

The data in this appendix is the raw data used for the results presented in Chapter 2

#### Table A 1: Inorganic phosphate data in PIPES buffer

The following tables contain data for inorganic phosphate released by *Cellulomonas* sp. ES6 in PIPES buffer under non-growth conditions. Inorganic phosphate concentrations were measured by reading the absorbance at 880 nm with time.

|            | PIPES + 0.1 mM U(VI) [Cell free control] |             |                         |                |  |  |
|------------|------------------------------------------|-------------|-------------------------|----------------|--|--|
|            | Absorbance                               | at 880 nm   | PO4 <sup>3-</sup> conce | entration (mM) |  |  |
| Time (Hrs) | Replicate 1                              | Replicate 2 | Replicate 1             | Replicate 2    |  |  |
| 0          | 0                                        | 0           | 0.0018                  | 0.0018         |  |  |
| 7          | 0.002                                    | 0.003       | 0.0027                  | 0.0031         |  |  |
| 15         | 0.001                                    | 0.002       | 0.0023                  | 0.0027         |  |  |
| 24         | 0                                        | 0.001       | 0.0018                  | 0.0023         |  |  |
| 32         | 0.002                                    | 0           | 0.0027                  | 0.0018         |  |  |
| 42         | 0                                        | 0           | 0.0018                  | 0.0018         |  |  |
| 52         | 0                                        | 0           | 0.0018                  | 0.0018         |  |  |
| 66         | 0.001                                    | 0.001       | 0.0023                  | 0.0023         |  |  |
| 76         | 0.005                                    | 0           | 0.0040                  | 0.0018         |  |  |
| 103.5      | 0                                        | 0           | 0.0018                  | 0.0018         |  |  |
| 125.5      | 0                                        | 0           | 0.0018                  | 0.0018         |  |  |
| 152.5      | 0                                        | 0.004       | 0.0018                  | 0.0036         |  |  |
| 197        | 0.001                                    | 0           | 0.0023                  | 0.0018         |  |  |
| 224        | 0.001                                    | 0.003       | 0.0023                  | 0.0031         |  |  |
| 292.5      | 0                                        | 0           | 0.0018                  | 0.0018         |  |  |
| 316.5      | 0.005                                    | 0.001       | 0.0040                  | 0.0023         |  |  |
| 364.5      | 0                                        | 0           | 0.0018                  | 0.0018         |  |  |
| 460.5      | 0                                        | 0           | 0.0018                  | 0.0018         |  |  |
| 537        | 0                                        | 0           | 0.0018                  | 0.0018         |  |  |
| 686        | 0                                        | 0.006       | 0.0018                  | 0.0044         |  |  |

| PIPES + 0.26 mg DW cells/ml + 0.1 mM U(VI) |             |             |                         |               |  |  |  |  |
|--------------------------------------------|-------------|-------------|-------------------------|---------------|--|--|--|--|
|                                            | Absorbance  | at 880 nm   | PO₄ <sup>3-</sup> conce | ntration (mM) |  |  |  |  |
| Time (Hrs)                                 | Replicate 1 | Replicate 2 | Replicate 1             | Replicate 2   |  |  |  |  |
| 0                                          | 0.001       | 0           | 0.0023                  | 0.0018        |  |  |  |  |
| 7                                          | 0.021       | 0.01        | 0.0108                  | 0.0061        |  |  |  |  |
| 15                                         | 0.032       | 0.017       | 0.0155                  | 0.0091        |  |  |  |  |
| 24                                         | 0.054       | 0.035       | 0.0250                  | 0.0168        |  |  |  |  |
| 32                                         | 0.071       | 0.075       | 0.0322                  | 0.0339        |  |  |  |  |
| 42                                         | 0.054       | 0.05        | 0.0250                  | 0.0232        |  |  |  |  |
| 52                                         | 0.025       | 0.018       | 0.0125                  | 0.0095        |  |  |  |  |
| 66                                         | 0.032       | 0.021       | 0.0155                  | 0.0108        |  |  |  |  |
| 76                                         | 0.05        | 0.02        | 0.0232                  | 0.0104        |  |  |  |  |
| 103.5                                      | 0.072       | 0.015       | 0.0327                  | 0.0083        |  |  |  |  |
| 125.5                                      | 0.083       | 0.02        | 0.0374                  | 0.0104        |  |  |  |  |
| 152.5                                      | 0.105       | 0.033       | 0.0468                  | 0.0160        |  |  |  |  |
| 197                                        | 0.128       | 0.145       | 0.0566                  | 0.0639        |  |  |  |  |
| 224                                        | 0.13        | 0.048       | 0.0575                  | 0.0224        |  |  |  |  |
| 292.5                                      | 0.13        | 0.049       | 0.0575                  | 0.0228        |  |  |  |  |
| 316.5                                      | 0.132       | 0.054       | 0.0583                  | 0.0250        |  |  |  |  |
| 364.5                                      | 0.136       | 0.05        | 0.0601                  | 0.0232        |  |  |  |  |
| 460.5                                      | 0.134       | 0.05        | 0.0592                  | 0.0232        |  |  |  |  |
| 537                                        | 0.137       | 0.051       | 0.0605                  | 0.0237        |  |  |  |  |
| 686                                        | 0.139       | 0.055       | 0.0613                  | 0.0254        |  |  |  |  |

| PIPES + 0.52 mg DW cells/ml + 0.1 mM U(VI) |             |             | PIPES                  | PIPES + 0.52 mg DW cells/ml + 0.1 mM U(VI) + 0.1mM AQDS |            |             |             |                                     |                |
|--------------------------------------------|-------------|-------------|------------------------|---------------------------------------------------------|------------|-------------|-------------|-------------------------------------|----------------|
|                                            | Absorbanc   | e at 880 nm | PO₄ <sup>3-</sup> conc | entration (mM)                                          |            | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> conce | entration (mM) |
| Time (Hrs)                                 | Replicate 1 | Replicate 2 | Replicate 1            | Replicate 2                                             | Time (Hrs) | Replicate 1 | Replicate 2 | Replicate 1                         | Replicate 2    |
| 0                                          | 0.001       | 0           | 0.0023                 | 0.0018                                                  | 0          | 0.002       | 0           | 0.0027                              | 0.0018         |
| 7                                          | 0.061       | 0.056       | 0.0280                 | 0.0258                                                  | 7          | 0.064       | 0.064       | 0.0292                              | 0.0292         |
| 15                                         | 0.068       | 0.061       | 0.0309                 | 0.0280                                                  | 15         | 0.078       | 0.077       | 0.0352                              | 0.0348         |
| 24                                         | 0.029       | 0.039       | 0.0143                 | 0.0185                                                  | 24         | 0.133       | 0.135       | 0.0588                              | 0.0596         |
| 32                                         | 0.068       | 0.129       | 0.0309                 | 0.0571                                                  | 32         | 0.234       | 0.24        | 0.1020                              | 0.1046         |
| 42                                         | 0.074       | 0.149       | 0.0335                 | 0.0656                                                  | 42         | 0.279       | 0.282       | 0.1213                              | 0.1225         |
| 52                                         | 0.064       | 0.148       | 0.0292                 | 0.0652                                                  | 52         | 0.27        | 0.277       | 0.1174                              | 0.1204         |
| 66                                         | 0.101       | 0.192       | 0.0451                 | 0.0840                                                  | 66         | 0.341       | 0.336       | 0.1478                              | 0.1457         |
| 76                                         | 0.153       | 0.245       | 0.0673                 | 0.1067                                                  | 76         | 0.39        | 0.401       | 0.1688                              | 0.1735         |
| 103.5                                      | 0.188       | 0.258       | 0.0823                 | 0.1123                                                  | 103.5      | 0.393       | 0.403       | 0.1701                              | 0.1743         |
| 125.5                                      | 0.217       | 0.27        | 0.0947                 | 0.1174                                                  | 125.5      | 0.421       | 0.421       | 0.1820                              | 0.1820         |
| 152.5                                      | 0.254       | 0.304       | 0.1106                 | 0.1320                                                  | 152.5      | 0.432       | 0.452       | 0.1868                              | 0.1953         |
| 197                                        | 0.292       | 0.316       | 0.1268                 | 0.1371                                                  | 197        | 0.468       | 0.455       | 0.2022                              | 0.1966         |
| 224                                        | 0.306       | 0.331       | 0.1328                 | 0.1435                                                  | 224        | 0.49        | 0.481       | 0.2116                              | 0.2077         |
| 292.5                                      | 0.326       | 0.341       | 0.1414                 | 0.1478                                                  | 292.5      | 0.506       | 0.507       | 0.2184                              | 0.2189         |
| 316.5                                      | 0.332       | 0.338       | 0.1439                 | 0.1465                                                  | 316.5      | 0.513       | 0.512       | 0.2214                              | 0.2210         |
| 364.5                                      | 0.334       | 0.333       | 0.1448                 | 0.1444                                                  | 364.5      | 0.509       | 0.507       | 0.2197                              | 0.2189         |
| 460.5                                      | 0.347       | 0.333       | 0.1504                 | 0.1444                                                  | 460.5      | 0.518       | 0.52        | 0.2236                              | 0.2244         |
| 537                                        | 0.356       | 0.343       | 0.1542                 | 0.1487                                                  | 537        | 0.538       | 0.529       | 0.2321                              | 0.2283         |
| 686                                        | 0.355       | 0.347       | 0.1538                 | 0.1504                                                  | 686        | 0.44        | 0.529       | 0.1902                              | 0.2283         |

| PIPES + Heat-killed cell (equivalent to 0.52 mg/ml) + 0.1 mM U(VI) |             |             |                                     |               |  |  |
|--------------------------------------------------------------------|-------------|-------------|-------------------------------------|---------------|--|--|
|                                                                    | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> conce | ntration (mM) |  |  |
| Time (Hrs)                                                         | Replicate 1 | Replicate 2 | Replicate 1                         | Replicate 2   |  |  |
| 0                                                                  | 0.138       | 0.142       | 0.0609                              | 0.0626        |  |  |
| 7                                                                  | 0.103       | 0.11        | 0.0459                              | 0.0489        |  |  |
| 15                                                                 | 0.082       | 0.073       | 0.0369                              | 0.0331        |  |  |
| 24                                                                 | 0.08        | 0.069       | 0.0361                              | 0.0314        |  |  |
| 32                                                                 | 0.07        | 0.064       | 0.0318                              | 0.0292        |  |  |
| 42                                                                 | 0.07        | 0.064       | 0.0318                              | 0.0292        |  |  |
| 52                                                                 | 0.069       | 0.067       | 0.0314                              | 0.0305        |  |  |
| 66                                                                 | 0.064       | 0.066       | 0.0292                              | 0.0301        |  |  |
| 76                                                                 | 0.067       | 0.05        | 0.0305                              | 0.0232        |  |  |
| 103.5                                                              | 0.064       | 0.059       | 0.0292                              | 0.0271        |  |  |
| 125.5                                                              | 0.059       | 0.046       | 0.0271                              | 0.0215        |  |  |
| 152.5                                                              | 0.051       | 0.044       | 0.0237                              | 0.0207        |  |  |
| 197                                                                | 0.049       | 0.042       | 0.0228                              | 0.0198        |  |  |
| 224                                                                | 0.053       | 0.036       | 0.0245                              | 0.0172        |  |  |
| 292.5                                                              | 0.037       | 0.03        | 0.0177                              | 0.0147        |  |  |
| 316.5                                                              | 0.04        | 0.025       | 0.0190                              | 0.0125        |  |  |
| 364.5                                                              | 0.038       | 0.028       | 0.0181                              | 0.0138        |  |  |
| 460.5                                                              | 0.035       | 0.03        | 0.0168                              | 0.0147        |  |  |
| 537                                                                | 0.036       | 0.036       | 0.0172                              | 0.0172        |  |  |
| 686                                                                | 0.037       | 0.044       | 0.0177                              | 0.0207        |  |  |

| PIPES + 0.26 mg DW cells/ml |             |             |                                     |               |  |  |
|-----------------------------|-------------|-------------|-------------------------------------|---------------|--|--|
|                             | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> conce | ntration (mM) |  |  |
| Time (Hrs)                  | Replicate 1 | Replicate 2 | Replicate 1                         | Replicate 2   |  |  |
| 0                           | 0           | 0           | 0.0018                              | 0.0018        |  |  |
| 7                           | 0.016       | 0.026       | 0.0087                              | 0.0130        |  |  |
| 15                          | 0.022       | 0.044       | 0.0113                              | 0.0207        |  |  |
| 24                          | 0.04        | 0.07        | 0.0190                              | 0.0318        |  |  |
| 32                          | 0.053       | 0.098       | 0.0245                              | 0.0438        |  |  |
| 42                          | 0.067       | 0.121       | 0.0305                              | 0.0536        |  |  |
| 52                          | 0.077       | 0.139       | 0.0348                              | 0.0613        |  |  |
| 66                          | 0.121       | 0.162       | 0.0536                              | 0.0712        |  |  |
| 76                          | 0.117       | 0.184       | 0.0519                              | 0.0806        |  |  |
| 103.5                       | 0.142       | 0.198       | 0.0626                              | 0.0866        |  |  |
| 125.5                       | 0.149       | 0.206       | 0.0656                              | 0.0900        |  |  |
| 152.5                       | 0.167       | 0.221       | 0.0733                              | 0.0964        |  |  |
| 197                         | 0.189       | 0.233       | 0.0827                              | 0.1016        |  |  |
| 224                         | 0.202       | 0.243       | 0.0883                              | 0.1059        |  |  |
| 292.5                       | 0.227       | 0.254       | 0.0990                              | 0.1106        |  |  |
| 316.5                       | 0.241       | 0.263       | 0.1050                              | 0.1144        |  |  |
| 364.5                       | 0.252       | 0.27        | 0.1097                              | 0.1174        |  |  |
| 460.5                       | 0.264       | 0.28        | 0.1148                              | 0.1217        |  |  |
| 537                         | 0.275       | 0.282       | 0.1195                              | 0.1225        |  |  |
| 686                         | 0.284       | 0.297       | 0.1234                              | 0.1290        |  |  |

|            | PIPES + 0.52 mg DW cells/ml |             |                                     |               |            |    |
|------------|-----------------------------|-------------|-------------------------------------|---------------|------------|----|
|            | Absorbance                  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> conce | ntration (mM) |            | A  |
| Time (Hrs) | Replicate 1                 | Replicate 2 | Replicate 1                         | Replicate 2   | Time (Hrs) | Re |
| 0          | 0.001                       | 0.001       | 0.0023                              | 0.0023        | 0          |    |
| 7          | 0.044                       | 0.045       | 0.0207                              | 0.0211        | 7          | (  |
| 15         | 0.091                       | 0.086       | 0.0408                              | 0.0387        | 15         | (  |
| 24         | 0.139                       | 0.147       | 0.0613                              | 0.0648        | 24         | (  |
| 32         | 0.177                       | 0.193       | 0.0776                              | 0.0845        | 32         |    |
| 42         | 0.207                       | 0.24        | 0.0904                              | 0.1046        | 42         | (  |
| 52         | 0.231                       | 0.274       | 0.1007                              | 0.1191        | 52         | (  |
| 66         | 0.26                        | 0.302       | 0.1131                              | 0.1311        | 66         | (  |
| 76         | 0.3                         | 0.341       | 0.1303                              | 0.1478        | 76         | (  |
| 103.5      | 0.346                       | 0.366       | 0.1499                              | 0.1585        | 103.5      | (  |
| 125.5      | 0.361                       | 0.38        | 0.1564                              | 0.1645        | 125.5      | (  |
| 152.5      | 0.395                       | 0.397       | 0.1709                              | 0.1718        | 152.5      | (  |
| 197        | 0.432                       | 0.43        | 0.1868                              | 0.1859        | 197        | (  |
| 224        | 0.44                        | 0.453       | 0.1902                              | 0.1957        | 224        |    |
| 292.5      | 0.479                       | 0.462       | 0.2069                              | 0.1996        | 292.5      | (  |
| 316.5      | 0.482                       | 0.507       | 0.2082                              | 0.2189        | 316.5      | (  |
| 364.5      | 0.498                       | 0.507       | 0.2150                              | 0.2189        | 364.5      | (  |
| 460.5      | 0.522                       | 0.532       | 0.2253                              | 0.2296        | 460.5      | (  |
| 537        | 0.543                       | 0.546       | 0.2343                              | 0.2355        | 537        | (  |
| 686        | 0.565                       | 0.548       | 0.2437                              | 0.2364        | 686        | (  |

| PIPES + 0.52 mg DW cells/ml + 0.1 mM AQDS |             |             |                                      |              |  |  |
|-------------------------------------------|-------------|-------------|--------------------------------------|--------------|--|--|
|                                           | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> concen | tration (mM) |  |  |
| Time (Hrs)                                | Replicate 1 | Replicate 2 | Replicate 1                          | Replicate 2  |  |  |
| 0                                         | 0           | 0.002       | 0.0018                               | 0.0027       |  |  |
| 7                                         | 0.028       | 0.027       | 0.0138                               | 0.0134       |  |  |
| 15                                        | 0.055       | 0.051       | 0.0254                               | 0.0237       |  |  |
| 24                                        | 0.109       | 0.095       | 0.0485                               | 0.0425       |  |  |
| 32                                        | 0.15        | 0.127       | 0.0660                               | 0.0562       |  |  |
| 42                                        | 0.196       | 0.168       | 0.0857                               | 0.0738       |  |  |
| 52                                        | 0.227       | 0.19        | 0.0990                               | 0.0832       |  |  |
| 66                                        | 0.266       | 0.236       | 0.1157                               | 0.1029       |  |  |
| 76                                        | 0.308       | 0.282       | 0.1337                               | 0.1225       |  |  |
| 103.5                                     | 0.344       | 0.33        | 0.1491                               | 0.1431       |  |  |
| 125.5                                     | 0.376       | 0.353       | 0.1628                               | 0.1529       |  |  |
| 152.5                                     | 0.407       | 0.381       | 0.1761                               | 0.1649       |  |  |
| 197                                       | 0.428       | 0.436       | 0.1850                               | 0.1885       |  |  |
| 224                                       | 0.46        | 0.465       | 0.1987                               | 0.2009       |  |  |
| 292.5                                     | 0.479       | 0.563       | 0.2069                               | 0.2428       |  |  |
| 316.5                                     | 0.507       | 0.518       | 0.2189                               | 0.2236       |  |  |
| 364.5                                     | 0.518       | 0.523       | 0.2236                               | 0.2257       |  |  |
| 460.5                                     | 0.539       | 0.559       | 0.2326                               | 0.2411       |  |  |
| 537                                       | 0.552       | 0.576       | 0.2381                               | 0.2484       |  |  |
| 686                                       | 0.577       | 0.585       | 0.2488                               | 0.2522       |  |  |

# Table A 2: Soluble U(VI) data in PIPES buffer

The following tables contain data for soluble U(VI) precipitated by inorganic phosphate released by *Cellulomonas* sp. ES6 in PIPES buffer under non-growth conditions. Soluble U(VI) concentrations were measured using unfiltered samples from serum bottle by KPA.

| PIPES + 0.1 mM U(VI) [Cell free control] |              |                |             |                |  |  |  |
|------------------------------------------|--------------|----------------|-------------|----------------|--|--|--|
|                                          | U(VI) concer | ntration (ppm) | U(VI) conce | entration (mM) |  |  |  |
| Time (Hrs)                               | Replicate 1  | Replicate 2    | Replicate 1 | Replicate 2    |  |  |  |
| 0                                        | 21.833       | 25.001         | 0.0917      | 0.1050         |  |  |  |
| 8                                        | 21.315       | 23.276         | 0.0896      | 0.0978         |  |  |  |
| 14                                       | 20.474       | 23.244         | 0.0860      | 0.0977         |  |  |  |
| 24                                       | 21.436       | 22.364         | 0.0901      | 0.0940         |  |  |  |
| 32                                       | 17.435       | 22.412         | 0.0733      | 0.0942         |  |  |  |
| 42                                       | 21.147       | 22.43          | 0.0889      | 0.0942         |  |  |  |
| 52.5                                     | 22.46        | 22.959         | 0.0944      | 0.0965         |  |  |  |
| 66.5                                     | 20.115       | 22.437         | 0.0845      | 0.0943         |  |  |  |
| 77                                       | N/A          | N/A            | N/A         | N/A            |  |  |  |
| 104                                      | 20.237       | 23.044         | 0.0850      | 0.0968         |  |  |  |
| 129.5                                    | 20.359       | 22.112         | 0.0855      | 0.0929         |  |  |  |
| 158                                      | 20.953       | 21.579         | 0.0880      | 0.0907         |  |  |  |
| 230                                      | 19.835       | 22.023         | 0.0833      | 0.0925         |  |  |  |
| 298.5                                    | 20.28        | 21.629         | 0.0852      | 0.0909         |  |  |  |
| 322.5                                    | 21.699       | 21.704         | 0.0912      | 0.0912         |  |  |  |

| F          | PIPES + 0.26 mg DW cells/ml + 0.1 mM U(VI) |              |             |               |  |  |  |  |
|------------|--------------------------------------------|--------------|-------------|---------------|--|--|--|--|
|            | U(VI) concent                              | ration (ppm) | U(VI) conce | ntration (mM) |  |  |  |  |
| Time (Hrs) | Replicate 1                                | Replicate 2  | Replicate 1 | Replicate 2   |  |  |  |  |
| 0          | 22.196                                     | 21.658       | 0.0933      | 0.0910        |  |  |  |  |
| 8          | 21.763                                     | 22.696       | 0.0914      | 0.0954        |  |  |  |  |
| 14         | 24.515                                     | 22.294       | 0.1030      | 0.0937        |  |  |  |  |
| 24         | 21.563                                     | 20.046       | 0.0906      | 0.0842        |  |  |  |  |
| 32         | 25.805                                     | 20.272       | 0.1084      | 0.0852        |  |  |  |  |
| 42         | 11.023                                     | 15.279       | 0.0463      | 0.0642        |  |  |  |  |
| 52.5       | 8.858                                      | 12.785       | 0.0372      | 0.0537        |  |  |  |  |
| 66.5       | 5.851                                      | 9.345        | 0.0246      | 0.0393        |  |  |  |  |
| 77         | 3.787                                      | 5.953        | 0.0159      | 0.0250        |  |  |  |  |
| 104        | 2.83                                       | 4.238        | 0.0119      | 0.0178        |  |  |  |  |
| 129.5      | 2.087                                      | 3.084        | 0.0088      | 0.0130        |  |  |  |  |
| 158        | 3.022                                      | 2.274        | 0.0127      | 0.0096        |  |  |  |  |
| 230        | 3.574                                      | 1.925        | 0.0150      | 0.0081        |  |  |  |  |
| 298.5      | 2.628                                      | 1.634        | 0.0110      | 0.0069        |  |  |  |  |
| 322.5      | 2.223                                      | 1.327        | 0.0093      | 0.0056        |  |  |  |  |

| PIPES + 0.52 mg DW cells/ml + 0.1 mM U(VI) |             |                |             | ] [            | PIPES + 0.52 mg DW cells/ml + 0.1 mMU(VI) + 0.1 mMAQDS |            |              |               | MAQDS       |                |
|--------------------------------------------|-------------|----------------|-------------|----------------|--------------------------------------------------------|------------|--------------|---------------|-------------|----------------|
|                                            | U(VI) conce | ntration (ppm) | U(VI) conce | entration (mM) |                                                        |            | U(VI) concer | tration (ppm) | U(M) conce  | entration (mM) |
| Time (Hrs)                                 | Replicate 1 | Replicate 2    | Replicate 1 | Replicate 2    |                                                        | Time (Hrs) | Replicate 1  | Replicate 2   | Replicate 1 | Replicate 2    |
| 0                                          | 21.958      | 22.548         | 0.0923      | 0.0947         |                                                        | 0          | 23.137       | 24.652        | 0.0972      | 0.1036         |
| 8                                          | 21.675      | 22.227         | 0.0911      | 0.0934         | ] [                                                    | 8          | 16.686       | 17.079        | 0.0701      | 0.0718         |
| 14                                         | 22.093      | 21.856         | 0.0928      | 0.0918         |                                                        | 14         | 14.335       | 16.113        | 0.0602      | 0.0677         |
| 24                                         | 10.137      | 10.617         | 0.0426      | 0.0446         |                                                        | 24         | 9.45         | 8.543         | 0.0397      | 0.0359         |
| 32                                         | 7.203       | 6.907          | 0.0303      | 0.0290         |                                                        | 32         | 4.628        | 5.193         | 0.0194      | 0.0218         |
| 42                                         | 4.172       | 4.612          | 0.0175      | 0.0194         |                                                        | 42         | 2.648        | 1.885         | 0.0111      | 0.0079         |
| 52.5                                       | 2.993       | 4.73           | 0.0126      | 0.0199         | 1 [                                                    | 52.5       | 2.973        | 2.153         | 0.0125      | 0.0090         |
| 66.5                                       | 1.953       | 3.005          | 0.0082      | 0.0126         | 1 [                                                    | 66.5       | 1.836        | 1.762         | 0.0077      | 0.0074         |
| 77                                         | N/A         | N/A            | N/A         | N/A            | 1 [                                                    | 77         | NA           | NA            | N/A         | N/A            |
| 104                                        | 1.614       | 1.768          | 0.0068      | 0.0074         | 1 [                                                    | 104        | 1.131        | 1.859         | 0.0048      | 0.0078         |
| 129.5                                      | 1.35        | 1.343          | 0.0057      | 0.0056         | 1 [                                                    | 129.5      | 1.697        | 1.583         | 0.0071      | 0.0067         |
| 158                                        | 1.113       | 1.188          | 0.0047      | 0.0050         |                                                        | 158        | 1.113        | 1.159         | 0.0047      | 0.0049         |
| 230                                        | 1.369       | 1.015          | 0.0058      | 0.0043         | 1 [                                                    | 230        | 1.171        | 1.466         | 0.0049      | 0.0062         |
| 298.5                                      | 1.302       | 0.83           | 0.0055      | 0.0035         | ] [                                                    | 298.5      | 1,964        | 1.631         | 8.2521      | 0.0069         |
| 322.5                                      | 1.729       | 1.246          | 0.0073      | 0.0052         | ] [                                                    | 322.5      | 1.131        | 1.452         | 0.0048      | 0.0061         |

| PIPES + Heat-killed cell (equivalent to 0.52 mg/ml) + 0.1 mM U(VI) |              |               |                        |             |  |  |
|--------------------------------------------------------------------|--------------|---------------|------------------------|-------------|--|--|
|                                                                    | U(VI) concen | tration (ppm) | U(VI) concentration (m |             |  |  |
| Time (Hrs)                                                         | Replicate 1  | Replicate 2   | Replicate 1            | Replicate 2 |  |  |
| 0                                                                  | 22.012       | 20.761        | 0.0925                 | 0.0872      |  |  |
| 8                                                                  | 15.115       | 14.774        | 0.0635                 | 0.0621      |  |  |
| 14                                                                 | 14.303       | 14.629        | 0.0601                 | 0.0615      |  |  |
| 24                                                                 | 13.434       | 11.093        | 0.0564                 | 0.0466      |  |  |
| 32                                                                 | 11.751       | 10.975        | 0.0494                 | 0.0461      |  |  |
| 42                                                                 | 11.018       | 10.392        | 0.0463                 | 0.0437      |  |  |
| 52.5                                                               | 10.481       | 9.67          | 0.0440                 | 0.0406      |  |  |
| 66.5                                                               | 12.613       | 8.912         | 0.0530                 | 0.0374      |  |  |
| 77                                                                 | N/A          | N/A           | N/A                    | N/A         |  |  |
| 104                                                                | 8.718        | 8.468         | 0.0366                 | 0.0356      |  |  |
| 129.5                                                              | 9.061        | 7.112         | 0.0381                 | 0.0299      |  |  |
| 158                                                                | 7.328        | 7.282         | 0.0308                 | 0.0306      |  |  |
| 230                                                                | 6.239        | 6.398         | 0.0262                 | 0.0269      |  |  |
| 298.5                                                              | 6.096        | 5.378         | 0.0256                 | 0.0226      |  |  |
| 322.5                                                              | 6.525        | 6.439         | 0.0274                 | 0.0271      |  |  |

#### Table A 3: Inorganic phosphate data in bicarbonate buffer

The following tables contain data for inorganic phosphate released by *Cellulomonas* sp. ES6 in bicarbonate buffer under non-growth conditions. Inorganic phosphate concentrations were measured by reading the absorbance at 880 nm with time.

Note:

a) Between 148 and 232 hours, sample from treatments 7, 8, 19, 20 were diluted 2 times

b) Data at 268 hours is after 2 times dilution of sample from treatments 7, 8, 17, 18, 19, 20, 21,

and 22

c) Data at 309.5 and 357 hours is after 2 times dilution of sample from treatments 5, 6, 7, 8, 9,

10, 11, 12, 17, 18, 21, 22 and after 4 times dilution of sample from treatments 19 and 20

d) Between 379.5 and 982 hours, sample from treatments 5, 6, 9, 10, 11, 12, 17, 18, 21, 22 were

diluted 2 times and sample from treatments 7, 8, 19, and 20 were diluted 4 times

| Bicarbonate + 0.1 mM U(VI) [Cell free control] |                                                    |             |                                      |               |  |
|------------------------------------------------|----------------------------------------------------|-------------|--------------------------------------|---------------|--|
|                                                | Absorbance at 880 nm PO <sub>4</sub> <sup>3-</sup> |             | PO <sub>4</sub> <sup>3-</sup> concer | ntration (mM) |  |
| Time (Hrs)                                     | Replicate 1                                        | Replicate 2 | Replicate 1                          | Replicate 2   |  |
| 0                                              | 0                                                  | 0.001       | 0.0018                               | 0.0023        |  |
| 7                                              | 0                                                  | 0.002       | 0.0018                               | 0.0027        |  |
| 17                                             | 0                                                  | 0           | 0.0018                               | 0.0018        |  |
| 29                                             | 0                                                  | 0           | 0.0018                               | 0.0018        |  |
| 45                                             | 0.003                                              | 0.004       | 0.0031                               | 0.0036        |  |
| 62.5                                           | 0.001                                              | 0.001       | 0.0023                               | 0.0023        |  |
| 76                                             | 0.001                                              | 0.001       | 0.0023                               | 0.0023        |  |
| 92                                             | 0.001                                              | 0.002       | 0.0023                               | 0.0027        |  |
| 111                                            | 0.001                                              | 0           | 0.0023                               | 0.0018        |  |
| 148                                            | 0.001                                              | 0.001       | 0.0023                               | 0.0023        |  |
| 184                                            | 0                                                  | 0           | 0.0018                               | 0.0018        |  |
| 208                                            | 0                                                  | 0           | 0.0018                               | 0.0018        |  |
| 232                                            | 0                                                  | 0           | 0.0018                               | 0.0018        |  |
| 268                                            | 0.001                                              | 0.001       | 0.0023                               | 0.0023        |  |
| 309.5                                          | 0                                                  | 0           | 0.0018                               | 0.0018        |  |
| 357                                            | 0.001                                              | 0.002       | 0.0023                               | 0.0027        |  |
| 379.5                                          | 0.001                                              | 0.001       | 0.0023                               | 0.0023        |  |
| 478                                            | 0.001                                              | 0.004       | 0.0023                               | 0.0036        |  |
| 522                                            | 0                                                  | 0           | 0.0018                               | 0.0018        |  |
| 620                                            | 0.001                                              | 0.001       | 0.0023                               | 0.0023        |  |
| 716                                            | 0.001                                              | 0.002       | 0.0023                               | 0.0027        |  |
| 832                                            | 0.001                                              | 0.005       | 0.0023                               | 0.0040        |  |
| 982                                            | 0.001                                              | 0.001       | 0.0023                               | 0.0023        |  |

| Bicarbonate + 0.1 mM U(VI) + 0.1 mM AQDS [Cell free control] |             |             |                                      |               |  |  |  |
|--------------------------------------------------------------|-------------|-------------|--------------------------------------|---------------|--|--|--|
|                                                              | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> concer | ntration (mM) |  |  |  |
| Time (Hrs)                                                   | Replicate 1 | Replicate 2 | Replicate 1                          | Replicate 2   |  |  |  |
| 0                                                            | 0           | 0           | 0.0018                               | 0.0018        |  |  |  |
| 7                                                            | 0.001       | 0.005       | 0.0023                               | 0.0040        |  |  |  |
| 17                                                           | 0           | 0           | 0.0018                               | 0.0018        |  |  |  |
| 29                                                           | 0.001       | 0.001       | 0.0023                               | 0.0023        |  |  |  |
| 45                                                           | 0.002       | 0.003       | 0.0027                               | 0.0031        |  |  |  |
| 62.5                                                         | 0.001       | 0.002       | 0.0023                               | 0.0027        |  |  |  |
| 76                                                           | 0           | 0.001       | 0.0018                               | 0.0023        |  |  |  |
| 92                                                           | 0           | 0.002       | 0.0018                               | 0.0027        |  |  |  |
| 111                                                          | 0.002       | 0.001       | 0.0027                               | 0.0023        |  |  |  |
| 148                                                          | 0           | 0.001       | 0.0018                               | 0.0023        |  |  |  |
| 184                                                          | 0           | 0           | 0.0018                               | 0.0018        |  |  |  |
| 208                                                          | 0.003       | 0.001       | 0.0031                               | 0.0023        |  |  |  |
| 232                                                          | 0           | 0           | 0.0018                               | 0.0018        |  |  |  |
| 268                                                          | 0.001       | 0.001       | 0.0023                               | 0.0023        |  |  |  |
| 309.5                                                        | 0.001       | 0.001       | 0.0023                               | 0.0023        |  |  |  |
| 357                                                          | 0.004       | 0.002       | 0.0036                               | 0.0027        |  |  |  |
| 379.5                                                        | 0.002       | 0.004       | 0.0027                               | 0.0036        |  |  |  |
| 478                                                          | 0.001       | 0.001       | 0.0023                               | 0.0023        |  |  |  |
| 522                                                          | 0           | 0           | 0.0018                               | 0.0018        |  |  |  |
| 620                                                          | 0.001       | 0.001       | 0.0023                               | 0.0023        |  |  |  |
| 716                                                          | 0.001       | 0.001       | 0.0023                               | 0.0023        |  |  |  |
| 832                                                          | 0.012       | 0.001       | 0.0070                               | 0.0023        |  |  |  |
| 982                                                          | 0.003       | 0.002       | 0.0031                               | 0.0027        |  |  |  |

| Bicarbonate + 1.15 mg DW cells/ml + 0.1 mM U(VI) |             |             | 1                                    | Bicarbonate + 2.3 mg DW cells/ml + 0.1 mM U(VI)  |  |            |             |             |                                     |                |
|--------------------------------------------------|-------------|-------------|--------------------------------------|--------------------------------------------------|--|------------|-------------|-------------|-------------------------------------|----------------|
|                                                  | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> concer | PO <sub>4</sub> <sup>3-</sup> concentration (mM) |  |            | Absorbanc   | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> conce | entration (mM) |
| Time (Hrs)                                       | Replicate 1 | Replicate 2 | Replicate 1                          | Replicate 2                                      |  | Time (Hrs) | Replicate 1 | Replicate 2 | Replicate 1                         | Replicate 2    |
| 0                                                | 0.012       | 0.019       | 0.0070                               | 0.0100                                           |  | 0          | 0.032       | 0.029       | 0.0155                              | 0.0143         |
| 7                                                | 0.019       | 0.036       | 0.0100                               | 0.0172                                           |  | 7          | 0.056       | 0.057       | 0.0258                              | 0.0262         |
| 17                                               | 0.035       | 0.048       | 0.0168                               | 0.0224                                           |  | 17         | 0.087       | 0.087       | 0.0391                              | 0.0391         |
| 29                                               | 0.071       | 0.087       | 0.0322                               | 0.0391                                           |  | 29         | 0.161       | 0.156       | 0.0708                              | 0.0686         |
| 45                                               | 0.107       | 0.114       | 0.0476                               | 0.0506                                           |  | 45         | 0.211       | 0.211       | 0.0922                              | 0.0922         |
| 62.5                                             | 0.155       | 0.154       | 0.0682                               | 0.0678                                           |  | 62.5       | 0.292       | 0.288       | 0.1268                              | 0.1251         |
| 76                                               | 0.188       | 0.187       | 0.0823                               | 0.0819                                           |  | 76         | 0.352       | 0.347       | 0.1525                              | 0.1504         |
| 92                                               | 0.223       | 0.226       | 0.0973                               | 0.0986                                           |  | 92         | 0.421       | 0.411       | 0.1820                              | 0.1778         |
| 111                                              | 0.259       | 0.249       | 0.1127                               | 0.1084                                           |  | 111        | 0.474       | 0.46        | 0.2047                              | 0.1987         |
| 148                                              | 0.307       | 0.304       | 0.1332                               | 0.1320                                           |  | 148        | 0.277       | 0.27        | 0.2408                              | 0.2348         |
| 184                                              | 0.373       | 0.406       | 0.1615                               | 0.1756                                           |  | 184        | 0.302       | 0.305       | 0.2622                              | 0.2648         |
| 208                                              | 0.397       | 0.384       | 0.1718                               | 0.1662                                           |  | 208        | 0.324       | 0.318       | 0.2810                              | 0.2759         |
| 232                                              | 0.421       | 0.408       | 0.1820                               | 0.1765                                           |  | 232        | 0.347       | 0.357       | 0.3007                              | 0.3093         |
| 268                                              | 0.464       | 0.446       | 0.2004                               | 0.1927                                           |  | 268        | 0.393       | 0.397       | 0.3401                              | 0.3435         |
| 309.5                                            | 0.243       | 0.245       | 0.2117                               | 0.2134                                           |  | 309.5      | 0.437       | 0.437       | 0.3778                              | 0.3778         |
| 357                                              | 0.264       | 0.31        | 0.2297                               | 0.2691                                           |  | 357        | 0.492       | 0.502       | 0.4249                              | 0.4334         |
| 379.5                                            | 0.293       | 0.291       | 0.2545                               | 0.2528                                           |  | 379.5      | 0.267       | 0.274       | 0.4645                              | 0.4765         |
| 478                                              | 0.334       | 0.338       | 0.2896                               | 0.2930                                           |  | 478        | 0.291       | 0.286       | 0.5056                              | 0.4970         |
| 522                                              | 0.35        | 0.351       | 0.3033                               | 0.3042                                           |  | 522        | 0.3         | 0.302       | 0.5210                              | 0.5244         |
| 620                                              | 0.368       | 0.354       | 0.3187                               | 0.3067                                           |  | 620        | 0.319       | 0.323       | 0.5535                              | 0.5604         |
| 716                                              | 0.368       | 0.371       | 0.3187                               | 0.3213                                           |  | 716        | 0.346       | 0.348       | 0.5998                              | 0.6032         |
| 832                                              | 0.365       | 0.388       | 0.3161                               | 0.3358                                           |  | 832        | 0.363       | 0.349       | 0.6289                              | 0.6049         |
| 982                                              | 0.369       | 0.38        | 0.3196                               | 0.3290                                           |  | 982        | 0.363       | 0.362       | 0.6289                              | 0.6272         |

| Bicarbonate + 2.3 mg DW cells/ml + 0.25 mM U(VI) |             |             |                                     |               |  |  |  |
|--------------------------------------------------|-------------|-------------|-------------------------------------|---------------|--|--|--|
|                                                  | Absorbanc   | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> conce | ntration (mM) |  |  |  |
| Time (Hrs)                                       | Replicate 1 | Replicate 2 | Replicate 1                         | Replicate 2   |  |  |  |
| 0                                                | 0.024       | 0.029       | 0.0121                              | 0.0143        |  |  |  |
| 7                                                | 0.04        | 0.058       | 0.0190                              | 0.0267        |  |  |  |
| 17                                               | 0.074       | 0.089       | 0.0335                              | 0.0399        |  |  |  |
| 29                                               | 0.156       | 0.179       | 0.0686                              | 0.0785        |  |  |  |
| 45                                               | 0.217       | 0.225       | 0.0947                              | 0.0981        |  |  |  |
| 62.5                                             | 0.291       | 0.297       | 0.1264                              | 0.1290        |  |  |  |
| 76                                               | 0.335       | 0.336       | 0.1452                              | 0.1457        |  |  |  |
| 92                                               | 0.329       | 0.343       | 0.1427                              | 0.1487        |  |  |  |
| 111                                              | 0.29        | 0.304       | 0.1260                              | 0.1320        |  |  |  |
| 148                                              | 0.27        | 0.304       | 0.1174                              | 0.1320        |  |  |  |
| 184                                              | 0.332       | 0.363       | 0.1439                              | 0.1572        |  |  |  |
| 208                                              | 0.376       | 0.431       | 0.1628                              | 0.1863        |  |  |  |
| 232                                              | 0.439       | 0.464       | 0.1897                              | 0.2004        |  |  |  |
| 268                                              | 0.534       | 0.565       | 0.2304                              | 0.2437        |  |  |  |
| 309.5                                            | 0.312       | 0.347       | 0.2708                              | 0.3007        |  |  |  |
| 357                                              | 0.368       | 0.392       | 0.3187                              | 0.3393        |  |  |  |
| 379.5                                            | 0.402       | 0.43        | 0.3478                              | 0.3718        |  |  |  |
| 478                                              | 0.466       | 0.507       | 0.4026                              | 0.4377        |  |  |  |
| 522                                              | 0.476       | 0.52        | 0.4112                              | 0.4488        |  |  |  |
| 620                                              | 0.526       | 0.567       | 0.4540                              | 0.4891        |  |  |  |
| 716                                              | 0.553       | 0.595       | 0.4771                              | 0.5130        |  |  |  |
| 832                                              | 0.567       | 0.558       | 0.4891                              | 0.4814        |  |  |  |
| 982                                              | 0 583       | 0 591       | 0 5028                              | 0 5096        |  |  |  |

| Bicarbonate + 1.15 mg DW cells/ml + 0.1 mM U(VI) + 0.1 mM AQDS |             |             |                                                  |             |  |  |
|----------------------------------------------------------------|-------------|-------------|--------------------------------------------------|-------------|--|--|
|                                                                | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> concentration (mM) |             |  |  |
| Time (Hrs)                                                     | Replicate 1 | Replicate 2 | Replicate 1                                      | Replicate 2 |  |  |
| 0                                                              | 0.013       | 0.014       | 0.0074                                           | 0.0078      |  |  |
| 7                                                              | 0.018       | 0.029       | 0.0095                                           | 0.0143      |  |  |
| 17                                                             | 0.021       | 0.043       | 0.0108                                           | 0.0202      |  |  |
| 29                                                             | 0.037       | 0.063       | 0.0177                                           | 0.0288      |  |  |
| 45                                                             | 0.061       | 0.1         | 0.0280                                           | 0.0446      |  |  |
| 62.5                                                           | 0.103       | 0.168       | 0.0459                                           | 0.0738      |  |  |
| 76                                                             | 0.148       | 0.203       | 0.0652                                           | 0.0887      |  |  |
| 92                                                             | 0.181       | 0.259       | 0.0793                                           | 0.1127      |  |  |
| 111                                                            | 0.172       | 0.31        | 0.0755                                           | 0.1345      |  |  |
| 148                                                            | 0.221       | 0.396       | 0.0964                                           | 0.1713      |  |  |
| 184                                                            | 0.324       | 0.499       | 0.1405                                           | 0.2154      |  |  |
| 208                                                            | 0.402       | 0.555       | 0.1739                                           | 0.2394      |  |  |
| 232                                                            | 0.45        | 0.594       | 0.1945                                           | 0.2561      |  |  |
| 268                                                            | 0.525       | 0.663       | 0.2266                                           | 0.2856      |  |  |
| 309.5                                                          | 0.307       | 0.36        | 0.2665                                           | 0.3119      |  |  |
| 357                                                            | 0.333       | 0.381       | 0.2888                                           | 0.3298      |  |  |
| 379.5                                                          | 0.333       | 0.377       | 0.2888                                           | 0.3264      |  |  |
| 478                                                            | 0.369       | 0.41        | 0.3196                                           | 0.3547      |  |  |
| 522                                                            | 0.384       | 0.42        | 0.3324                                           | 0.3632      |  |  |
| 620                                                            | 0.39        | 0.425       | 0.3375                                           | 0.3675      |  |  |
| 716                                                            | 0.426       | 0.428       | 0.3684                                           | 0.3701      |  |  |
| 832                                                            | 0.389       | 0.403       | 0.3367                                           | 0.3487      |  |  |
| 982                                                            | 0.378       | 0.378       | 0.3273                                           | 0.3273      |  |  |

| Bicarbonate + Heat-killed cell (equivalent to 1.15 mg/ml) |             |             |                                     |               |  |  |
|-----------------------------------------------------------|-------------|-------------|-------------------------------------|---------------|--|--|
|                                                           | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> conce | ntration (mM) |  |  |
| Time (Hrs)                                                | Replicate 1 | Replicate 2 | Replicate 1                         | Replicate 2   |  |  |
| 0                                                         | 0.213       | 0.213       | 0.0930                              | 0.0930        |  |  |
| 7                                                         | 0.218       | 0.214       | 0.0952                              | 0.0934        |  |  |
| 17                                                        | 0.211       | 0.212       | 0.0922                              | 0.0926        |  |  |
| 29                                                        | 0.218       | 0.217       | 0.0952                              | 0.0947        |  |  |
| 45                                                        | 0.222       | 0.224       | 0.0969                              | 0.0977        |  |  |
| 62.5                                                      | 0.213       | 0.212       | 0.0930                              | 0.0926        |  |  |
| 76                                                        | 0.22        | 0.217       | 0.0960                              | 0.0947        |  |  |
| 92                                                        | 0.222       | 0.219       | 0.0969                              | 0.0956        |  |  |
| 111                                                       | 0.219       | 0.219       | 0.0956                              | 0.0956        |  |  |
| 148                                                       | 0.213       | 0.217       | 0.0930                              | 0.0947        |  |  |
| 184                                                       | 0.213       | 0.21        | 0.0930                              | 0.0917        |  |  |
| 208                                                       | 0.223       | 0.219       | 0.0973                              | 0.0956        |  |  |
| 232                                                       | 0.212       | 0.214       | 0.0926                              | 0.0934        |  |  |
| 268                                                       | 0.219       | 0.22        | 0.0956                              | 0.0960        |  |  |
| 309.5                                                     | 0.219       | 0.22        | 0.0956                              | 0.0960        |  |  |
| 357                                                       | 0.223       | 0.217       | 0.0973                              | 0.0947        |  |  |
| 379.5                                                     | 0.225       | 0.223       | 0.0981                              | 0.0973        |  |  |
| 478                                                       | 0.224       | 0.224       | 0.0977                              | 0.0977        |  |  |
| 522                                                       | 0.224       | 0.225       | 0.0977                              | 0.0981        |  |  |
| 620                                                       | 0.235       | 0.228       | 0.1024                              | 0.0994        |  |  |
| 716                                                       | 0.225       | 0.23        | 0.0981                              | 0.1003        |  |  |
| 832                                                       | 0.233       | 0.221       | 0.1016                              | 0.0964        |  |  |
| 982                                                       | 0.228       | 0.225       | 0.0994                              | 0.0981        |  |  |

| Bicarbonate + Heat-killed cell (equivalent to 1.15 mg/ml) + 0.1 mM U(VI) |             |             |                                     |               |  |
|--------------------------------------------------------------------------|-------------|-------------|-------------------------------------|---------------|--|
|                                                                          | Absorbanc   | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> conce | ntration (mM) |  |
| Time (Hrs)                                                               | Replicate 1 | Replicate 2 | Replicate 1                         | Replicate 2   |  |
| 0                                                                        | 0.202       | 0.206       | 0.0883                              | 0.0900        |  |
| 7                                                                        | 0.204       | 0.216       | 0.0892                              | 0.0943        |  |
| 17                                                                       | 0.195       | 0.21        | 0.0853                              | 0.0917        |  |
| 29                                                                       | 0.206       | 0.216       | 0.0900                              | 0.0943        |  |
| 45                                                                       | 0.207       | 0.216       | 0.0904                              | 0.0943        |  |
| 62.5                                                                     | 0.204       | 0.206       | 0.0892                              | 0.0900        |  |
| 76                                                                       | 0.209       | 0.206       | 0.0913                              | 0.0900        |  |
| 92                                                                       | 0.212       | 0.214       | 0.0926                              | 0.0934        |  |
| 111                                                                      | 0.216       | 0.214       | 0.0943                              | 0.0934        |  |
| 148                                                                      | 0.211       | 0.214       | 0.0922                              | 0.0934        |  |
| 184                                                                      | 0.218       | 0.215       | 0.0952                              | 0.0939        |  |
| 208                                                                      | 0.213       | 0.211       | 0.0930                              | 0.0922        |  |
| 232                                                                      | 0.222       | 0.209       | 0.0969                              | 0.0913        |  |
| 268                                                                      | 0.218       | 0.211       | 0.0952                              | 0.0922        |  |
| 309.5                                                                    | 0.22        | 0.209       | 0.0960                              | 0.0913        |  |
| 357                                                                      | 0.213       | 0.223       | 0.0930                              | 0.0973        |  |
| 379.5                                                                    | 0.222       | 0.215       | 0.0969                              | 0.0939        |  |
| 478                                                                      | 0.219       | 0.214       | 0.0956                              | 0.0934        |  |
| 522                                                                      | 0.224       | 0.219       | 0.0977                              | 0.0956        |  |
| 620                                                                      | 0.232       | 0.229       | 0.1011                              | 0.0999        |  |
| 716                                                                      | 0.228       | 0.225       | 0.0994                              | 0.0981        |  |
| 832                                                                      | 0.23        | 0.219       | 0.1003                              | 0.0956        |  |
| 982                                                                      | 0.25        | 0.231       | 0.1088                              | 0.1007        |  |

| Bicarbonate + 1.15 mg DW cells/ml |             |             | Bicarbonate + 2.3 mg DW cells/ml     |               |            |             |             |                          |               |
|-----------------------------------|-------------|-------------|--------------------------------------|---------------|------------|-------------|-------------|--------------------------|---------------|
|                                   | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> concer | ntration (mM) |            | Absorbance  | e at 880 nm | PO₄ <sup>3-</sup> concer | ntration (mM) |
| Time (Hrs)                        | Replicate 1 | Replicate 2 | Replicate 1                          | Replicate 2   | Time (Hrs) | Replicate 1 | Replicate 2 | Replicate 1              | Replicate 2   |
| 0                                 | 0.019       | 0.014       | 0.0100                               | 0.0078        | 0          | 0.027       | 0.028       | 0.0134                   | 0.0138        |
| 7                                 | 0.047       | 0.031       | 0.0220                               | 0.0151        | 7          | 0.056       | 0.055       | 0.0258                   | 0.0254        |
| 17                                | 0.056       | 0.048       | 0.0258                               | 0.0224        | 17         | 0.086       | 0.091       | 0.0387                   | 0.0408        |
| 29                                | 0.104       | 0.086       | 0.0464                               | 0.0387        | 29         | 0.154       | 0.156       | 0.0678                   | 0.0686        |
| 45                                | 0.126       | 0.122       | 0.0558                               | 0.0541        | 45         | 0.218       | 0.223       | 0.0952                   | 0.0973        |
| 62.5                              | 0.168       | 0.162       | 0.0738                               | 0.0712        | 62.5       | 0.293       | 0.299       | 0.1273                   | 0.1298        |
| 76                                | 0.2         | 0.193       | 0.0874                               | 0.0845        | 76         | 0.35        | 0.378       | 0.1517                   | 0.1636        |
| 92                                | 0.239       | 0.235       | 0.1041                               | 0.1024        | 92         | 0.42        | 0.432       | 0.1816                   | 0.1868        |
| 111                               | 0.278       | 0.268       | 0.1208                               | 0.1166        | 111        | 0.49        | 0.496       | 0.2116                   | 0.2141        |
| 148                               | 0.345       | 0.341       | 0.1495                               | 0.1478        | 148        | 0.3         | 0.321       | 0.2605                   | 0.2785        |
| 184                               | 0.41        | 0.397       | 0.1773                               | 0.1718        | 184        | 0.357       | 0.381       | 0.3093                   | 0.3298        |
| 208                               | 0.444       | 0.447       | 0.1919                               | 0.1932        | 208        | 0.384       | 0.409       | 0.3324                   | 0.3538        |
| 232                               | 0.48        | 0.472       | 0.2073                               | 0.2039        | 232        | 0.407       | 0.424       | 0.3521                   | 0.3667        |
| 268                               | 0.252       | 0.252       | 0.2194                               | 0.2194        | 268        | 0.449       | 0.485       | 0.3881                   | 0.4189        |
| 309.5                             | 0.28        | 0.289       | 0.2434                               | 0.2511        | 309.5      | 0.247       | 0.256       | 0.4303                   | 0.4457        |
| 357                               | 0.306       | 0.322       | 0.2656                               | 0.2793        | 357        | 0.275       | 0.294       | 0.4782                   | 0.5107        |
| 379.5                             | 0.332       | 0.347       | 0.2879                               | 0.3007        | 379.5      | 0.292       | 0.3         | 0.5073                   | 0.5210        |
| 478                               | 0.365       | 0.386       | 0.3161                               | 0.3341        | 478        | 0.307       | 0.348       | 0.5330                   | 0.6032        |
| 522                               | 0.382       | 0.408       | 0.3307                               | 0.3530        | 522        | 0.321       | 0.34        | 0.5570                   | 0.5895        |
| 620                               | 0.42        | 0.449       | 0.3632                               | 0.3881        | 620        | 0.35        | 0.368       | 0.6066                   | 0.6374        |
| 716                               | 0.447       | 0.478       | 0.3863                               | 0.4129        | 716        | 0.373       | 0.382       | 0.6460                   | 0.6614        |
| 832                               | 0.466       | 0.47        | 0.4026                               | 0.4060        | 832        | 0.385       | 0.394       | 0.6665                   | 0.6819        |
| 982                               | 0.465       | 0.479       | 0.4018                               | 0.4137        | 982        | 0.405       | 0.42        | 0.7008                   | 0.7265        |

| Bicarbonate + 1.15 mg DW cells/ml + 0.1 mM AQDS |             |             |             |               |  |  |
|-------------------------------------------------|-------------|-------------|-------------|---------------|--|--|
|                                                 | Absorbance  | e at 880 nm | PO43- conce | ntration (mM) |  |  |
| Time (Hrs)                                      | Replicate 1 | Replicate 2 | Replicate 1 | Replicate 2   |  |  |
| 0                                               | 0.02        | 0.013       | 0.0104      | 0.0074        |  |  |
| 7                                               | 0.037       | 0.022       | 0.0177      | 0.0113        |  |  |
| 17                                              | 0.049       | 0.04        | 0.0228      | 0.0190        |  |  |
| 29                                              | 0.08        | 0.075       | 0.0361      | 0.0339        |  |  |
| 45                                              | 0.119       | 0.116       | 0.0528      | 0.0515        |  |  |
| 62.5                                            | 0.161       | 0.167       | 0.0708      | 0.0733        |  |  |
| 76                                              | 0.189       | 0.209       | 0.0827      | 0.0913        |  |  |
| 92                                              | 0.23        | 0.24        | 0.1003      | 0.1046        |  |  |
| 111                                             | 0.274       | 0.279       | 0.1191      | 0.1213        |  |  |
| 148                                             | 0.339       | 0.35        | 0.1469      | 0.1517        |  |  |
| 184                                             | 0.409       | 0.416       | 0.1769      | 0.1799        |  |  |
| 208                                             | 0.456       | 0.459       | 0.1970      | 0.1983        |  |  |
| 232                                             | 0.489       | 0.496       | 0.2111      | 0.2141        |  |  |
| 268                                             | 0.262       | 0.262       | 0.2280      | 0.2280        |  |  |
| 309.5                                           | 0.286       | 0.297       | 0.2485      | 0.2579        |  |  |
| 357                                             | 0.319       | 0.33        | 0.2768      | 0.2862        |  |  |
| 379.5                                           | 0.339       | 0.349       | 0.2939      | 0.3024        |  |  |
| 478                                             | 0.38        | 0.392       | 0.3290      | 0.3393        |  |  |
| 522                                             | 0.395       | 0.412       | 0.3418      | 0.3564        |  |  |
| 620                                             | 0.435       | 0.455       | 0.3761      | 0.3932        |  |  |
| 716                                             | 0.46        | 0.483       | 0.3975      | 0.4172        |  |  |
| 832                                             | 0.484       | 0.482       | 0.4180      | 0.4163        |  |  |
| 982                                             | 0.49        | 0.486       | 0.4232      | 0.4197        |  |  |

### Table A 4: Soluble U(VI) data in bicarbonate buffer

The following tables contain data for soluble U(VI) precipitated by inorganic phosphate released by *Cellulomonas* sp. ES6 in bicarbonate buffer under non-growth conditions. Soluble U(VI) concentrations were measured using unfiltered samples from serum bottle by KPA.

| Bicarbonate + 0.1 mM U(VI) [Cell free control] |              |               |                          |             |  |  |  |  |
|------------------------------------------------|--------------|---------------|--------------------------|-------------|--|--|--|--|
|                                                | U(VI) concen | tration (ppm) | U(VI) concentration (mM) |             |  |  |  |  |
| Time (Hrs)                                     | Replicate 1  | Replicate 2   | Replicate 1              | Replicate 2 |  |  |  |  |
| 0                                              | 24.857       | 24.618        | 0.1044                   | 0.1034      |  |  |  |  |
| 18                                             | 25.127       | 24.339        | 0.1056                   | 0.1023      |  |  |  |  |
| 30                                             | 24.166       | 23.585        | 0.1015                   | 0.0991      |  |  |  |  |
| 47                                             | 25.428       | 24.306        | 0.1068                   | 0.1021      |  |  |  |  |
| 64                                             | 25.872       | 24.688        | 0.1087                   | 0.1037      |  |  |  |  |
| 77                                             | 25.021       | 24.115        | 0.1051                   | 0.1013      |  |  |  |  |
| 93                                             | 25.689       | 25.264        | 0.1079                   | 0.1062      |  |  |  |  |
| 113                                            | 25.267       | 24.176        | 0.1062                   | 0.1016      |  |  |  |  |
| 150                                            | 24.897       | 24.434        | 0.1046                   | 0.1027      |  |  |  |  |
| 186                                            | 25.074       | 23.85         | 0.1054                   | 0.1002      |  |  |  |  |
| 210                                            | 24.962       | 24.204        | 0.1049                   | 0.1017      |  |  |  |  |
| 235                                            | 24.854       | 25.205        | 0.1044                   | 0.1059      |  |  |  |  |
| 267                                            | 22.057       | 24.429        | 0.0927                   | 0.1026      |  |  |  |  |
| 311                                            | 27.776       | 24.925        | 0.1167                   | 0.1047      |  |  |  |  |
| 387                                            | 25.516       | 24.401        | 0.1072                   | 0.1025      |  |  |  |  |
| 403                                            | 24.163       | 25.024        | 0.1015                   | 0.1051      |  |  |  |  |
| 500                                            | 25 214       | 25 084        | 0.1059                   | 0.1054      |  |  |  |  |

| Bicarbonate + 0.1 mM U(VI) + 0.1 mM AQDS [Cell free control] |              |               |              |               |  |  |  |  |
|--------------------------------------------------------------|--------------|---------------|--------------|---------------|--|--|--|--|
|                                                              | U(VI) concen | tration (ppm) | U(VI) concer | ntration (mM) |  |  |  |  |
| Time (Hrs)                                                   | Replicate 1  | Replicate 2   | Replicate 1  | Replicate 2   |  |  |  |  |
| 0                                                            | 25.367       | 24.735        | 0.1066       | 0.1039        |  |  |  |  |
| 18                                                           | 25.017       | 24.737        | 0.1051       | 0.1039        |  |  |  |  |
| 30                                                           | 25.116       | 24.763        | 0.1055       | 0.1040        |  |  |  |  |
| 47                                                           | 25.168       | 25.049        | 0.1057       | 0.1052        |  |  |  |  |
| 64                                                           | 26.173       | 24.956        | 0.1100       | 0.1049        |  |  |  |  |
| 77                                                           | 24.946       | 24.276        | 0.1048       | 0.1020        |  |  |  |  |
| 93                                                           | 25.21        | 24.816        | 0.1059       | 0.1043        |  |  |  |  |
| 113                                                          | 24.761       | 23.142        | 0.1040       | 0.0972        |  |  |  |  |
| 150                                                          | 24.968       | 24.571        | 0.1049       | 0.1032        |  |  |  |  |
| 186                                                          | 25.269       | 24.689        | 0.1062       | 0.1037        |  |  |  |  |
| 210                                                          | 24.685       | 24.745        | 0.1037       | 0.1040        |  |  |  |  |
| 235                                                          | 25.158       | 25.725        | 0.1057       | 0.1081        |  |  |  |  |
| 267                                                          | 24.518       | 24.957        | 0.1030       | 0.1049        |  |  |  |  |
| 311                                                          | 24.538       | 23.962        | 0.1031       | 0.1007        |  |  |  |  |
| 387                                                          | 26.701       | 25.806        | 0.1122       | 0.1084        |  |  |  |  |
| 403                                                          | 25.789       | 23.658        | 0.1084       | 0.0994        |  |  |  |  |
| 500                                                          | 23.924       | 25.421        | 0.1005       | 0.1068        |  |  |  |  |

| Bicarbonate + 1.15 mg DW cells/ml + 0.1 mM U(VI) |              |                |                          |             |  |  |  |
|--------------------------------------------------|--------------|----------------|--------------------------|-------------|--|--|--|
|                                                  | U(VI) concer | ntration (ppm) | U(VI) concentration (mM) |             |  |  |  |
| Time (Hrs)                                       | Replicate 1  | Replicate 2    | Replicate 1              | Replicate 2 |  |  |  |
| 0                                                | 24.439       | 24.942         | 0.1027                   | 0.1048      |  |  |  |
| 18                                               | 25.013       | 25.717         | 0.1051                   | 0.1081      |  |  |  |
| 30                                               | 24.06        | 24.379         | 0.1011                   | 0.1024      |  |  |  |
| 47                                               | 23.774       | 25.463         | 0.0999                   | 0.1070      |  |  |  |
| 64                                               | 24.116       | 24.972         | 0.1013                   | 0.1049      |  |  |  |
| 77                                               | 23.785       | 24.614         | 0.0999                   | 0.1034      |  |  |  |
| 93                                               | 24.593       | 24.879         | 0.1033                   | 0.1045      |  |  |  |
| 113                                              | 23.684       | 23.201         | 0.0995                   | 0.0975      |  |  |  |
| 150                                              | 22.705       | 22.184         | 0.0954                   | 0.0932      |  |  |  |
| 186                                              | 21.637       | 19.666         | 0.0909                   | 0.0826      |  |  |  |
| 210                                              | 20.221       | 18.792         | 0.0850                   | 0.0790      |  |  |  |
| 235                                              | 20.581       | 17.514         | 0.0865                   | 0.0736      |  |  |  |
| 267                                              | 19.285       | 16.381         | 0.0810                   | 0.0688      |  |  |  |
| 311                                              | 17.141       | 13.444         | 0.0720                   | 0.0565      |  |  |  |
| 387                                              | 13.898       | 11.806         | 0.0584                   | 0.0496      |  |  |  |
| 403                                              | 14.69        | 8.78           | 0.0617                   | 0.0369      |  |  |  |
| 500                                              | 13.314       | 6.921          | 0.0559                   | 0.0291      |  |  |  |

| Bicarbonate + 23 mg DW cells/ml + 0.1 mMU(VI) |              |                |                         |             |  |  |  |
|-----------------------------------------------|--------------|----------------|-------------------------|-------------|--|--|--|
|                                               | U(VI) concer | ntration (ppm) | U(M) concentration (mM) |             |  |  |  |
| Time (Hrs)                                    | Replicate 1  | Replicate 2    | Replicate 1             | Replicate 2 |  |  |  |
| 0                                             | 24.726       | 24.158         | 0.1039                  | 0.1015      |  |  |  |
| 18                                            | 24.923       | 24.16          | 0.1047                  | 0.1015      |  |  |  |
| 30                                            | 24.293       | 22.842         | 0.1021                  | 0.0960      |  |  |  |
| 47                                            | 23.439       | 24.073         | 0.0985                  | 0.1011      |  |  |  |
| 64                                            | 22.638       | 21.992         | 0.0951                  | 0.0924      |  |  |  |
| 77                                            | 22.532       | 22.085         | 0.0947                  | 0.0928      |  |  |  |
| 93                                            | 21.377       | 21.522         | 0.0898                  | 0.0904      |  |  |  |
| 113                                           | 20.076       | 19.914         | 0.0844                  | 0.0837      |  |  |  |
| 150                                           | 15.429       | 14.72          | 0.0648                  | 0.0618      |  |  |  |
| 186                                           | 12.897       | 10.941         | 0.0542                  | 0.0460      |  |  |  |
| 210                                           | 8.942        | 8.963          | 0.0376                  | 0.0377      |  |  |  |
| 235                                           | 7.57         | 7.492          | 0.0318                  | 0.0315      |  |  |  |
| 267                                           | 5.64         | 3.786          | 0.0237                  | 0.0159      |  |  |  |
| 311                                           | 3.559        | 3.647          | 0.0150                  | 0.0153      |  |  |  |
| 387                                           | 0.305        | 0.284          | 0.0013                  | 0.0012      |  |  |  |
| 403                                           | 1.716        | 1.223          | 0.0072                  | 0.0051      |  |  |  |
| 500                                           | 1.065        | 0.442          | 0.0045                  | 0.0019      |  |  |  |

| Bio        | Bicarbonate + 2.3 mg DW cells/ml + 0.25 mM U(VI) |                |              |               |     | Bicarbonate + 1.15 mg DW cells/ml + 0.1 mMU(VI) + 0.1 mMAQDS |              |               |                          |             |
|------------|--------------------------------------------------|----------------|--------------|---------------|-----|--------------------------------------------------------------|--------------|---------------|--------------------------|-------------|
|            | U(VI) concer                                     | ntration (ppm) | U(VI) concer | ntration (mM) |     |                                                              | U(M) concent | tration (ppm) | U(VI) concentration (mM) |             |
| Time (Hrs) | Replicate 1                                      | Replicate 2    | Replicate 1  | Replicate 2   |     | Time (Hrs)                                                   | Replicate 1  | Replicate 2   | Replicate 1              | Replicate 2 |
| 0          | 32.325                                           | 32.084         | 0.2716       | 0.2696        |     | 0                                                            | 24.902       | 24.395        | 0.1046                   | 0.1025      |
| 18         | 30.858                                           | 31.405         | 0.2593       | 0.2639        |     | 18                                                           | 20.157       | 19.51         | 0.0847                   | 0.0820      |
| 30         | 28.458                                           | 30.719         | 0.2391       | 0.2581        |     | 30                                                           | 16.938       | 15.094        | 0.0712                   | 0.0634      |
| 47         | 29.866                                           | 30.241         | 0.2510       | 0.2541        |     | 47                                                           | 9.486        | 8.497         | 0.0399                   | 0.0357      |
| 64         | 28.794                                           | 29.622         | 0.2420       | 0.2489        |     | 64                                                           | 4.397        | 4.731         | 0.0185                   | 0.0199      |
| 77         | 27.644                                           | 26.653         | 0.2323       | 0.2240        |     | 77                                                           | 6.142        | 6.16          | 0.0258                   | 0.0259      |
| 93         | 24.73                                            | 24.746         | 0.2078       | 0.2079        | 1 [ | 93                                                           | 4.783        | 6.123         | 0.0201                   | 0.0257      |
| 113        | 18.071                                           | 18.764         | 0.1519       | 0.1577        |     | 113                                                          | NA           | N/A           | N/A                      | NA          |
| 150        | 11.353                                           | 11.11          | 0.0954       | 0.0934        |     | 150                                                          | NA           | N/A           | N/A                      | NA          |
| 186        | 7.544                                            | 7.704          | 0.0634       | 0.0647        |     | 186                                                          | 3.237        | 2.181         | 0.0136                   | 0.0092      |
| 210        | 5.093                                            | 5.684          | 0.0428       | 0.0478        |     | 210                                                          | 2.226        | 2.293         | 0.0094                   | 0.0096      |
| 235        | 4.761                                            | 3.736          | 0.0400       | 0.0314        |     | 235                                                          | NA           | NA            | NA                       | NA          |
| 267        | 3.737                                            | 3.375          | 0.0314       | 0.0284        |     | 267                                                          | NA           | N/A           | N/A                      | NA          |
| 311        | 2.298                                            | 1.461          | 0.0193       | 0.0123        |     | 311                                                          | NA           | NA            | NA                       | NA          |
| 387        | 0.412                                            | 0.305          | 0.0035       | 0.0026        |     | 387                                                          | 2.258        | 1.72          | 0.0095                   | 0.0072      |
| 403        | 0.866                                            | 0.732          | 0.0073       | 0.0062        |     | 403                                                          | NA           | NA            | NA                       | NA          |
| 500        | N/A                                              | N/A            | N/A          | N/A           |     | 500                                                          | NA           | NA            | NA                       | NA          |

| Bicarbonate + Heat-killed cell (equivalent to 1.15 mg/ml) + 0.1 mM U(VI) |              |                |                          |             |  |  |
|--------------------------------------------------------------------------|--------------|----------------|--------------------------|-------------|--|--|
|                                                                          | U(VI) concer | ntration (ppm) | U(VI) concentration (mM) |             |  |  |
| Time (Hrs)                                                               | Replicate 1  | Replicate 2    | Replicate 1              | Replicate 2 |  |  |
| 0                                                                        | 23.69        | 24.704         | 0.0995                   | 0.1038      |  |  |
| 18                                                                       | 24.501       | 24.758         | 0.1029                   | 0.1040      |  |  |
| 30                                                                       | 25.273       | 25.999         | 0.1062                   | 0.1092      |  |  |
| 47                                                                       | 24.278       | 25.237         | 0.1020                   | 0.1060      |  |  |
| 64                                                                       | 24.152       | 23.726         | 0.1015                   | 0.0997      |  |  |
| 77                                                                       | 24.637       | 24.698         | 0.1035                   | 0.1038      |  |  |
| 93                                                                       | 23.822       | 25.717         | 0.1001                   | 0.1081      |  |  |
| 113                                                                      | 24.631       | 25.143         | 0.1035                   | 0.1056      |  |  |
| 150                                                                      | 23.112       | 24.54          | 0.0971                   | 0.1031      |  |  |
| 186                                                                      | 25.273       | 27.005         | 0.1062                   | 0.1135      |  |  |
| 210                                                                      | 23.846       | 24.222         | 0.1002                   | 0.1018      |  |  |
| 235                                                                      | 24.372       | 23.125         | 0.1024                   | 0.0972      |  |  |
| 267                                                                      | 22.152       | 25.24          | 0.0931                   | 0.1061      |  |  |
| 311                                                                      | 23.595       | 23.142         | 0.0991                   | 0.0972      |  |  |
| 387                                                                      | 24.607       | 26.254         | 0.1034                   | 0.1103      |  |  |
| 403                                                                      | 23.743       | 22.546         | 0.0998                   | 0.0947      |  |  |
| 500                                                                      | 23.579       | 24.535         | 0.0991                   | 0.1031      |  |  |

### Table A 5: Model predicted P<sub>i</sub> data in PIPES buffer

The following table contains inorganic phosphate concentration in PIPES buffer predicted by

model using parameters in table 1

|            | $PO_4^{3-}$ concentration (mM) |                |              |                  |  |  |  |
|------------|--------------------------------|----------------|--------------|------------------|--|--|--|
|            | PIPES + 0.26 r                 | ng DW cells/ml | PIPES + 0.52 | 2 mg DW cells/ml |  |  |  |
| Time (Hrs) | Replicate 1                    | Replicate 2    | Replicate 1  | Replicate 2      |  |  |  |
| 0          | 0                              | 0              | 0            | 0                |  |  |  |
| 7          | 0.0062                         | 0.0098         | 0.0145       | 0.0176           |  |  |  |
| 15         | 0.0129                         | 0.0202         | 0.0304       | 0.0366           |  |  |  |
| 24         | 0.0201                         | 0.0310         | 0.0473       | 0.0565           |  |  |  |
| 32         | 0.0260                         | 0.0396         | 0.0614       | 0.0727           |  |  |  |
| 42         | 0.0330                         | 0.0495         | 0.0779       | 0.0914           |  |  |  |
| 52         | 0.0395                         | 0.0581         | 0.0931       | 0.1081           |  |  |  |
| 66         | 0.0478                         | 0.0688         | 0.1125       | 0.1289           |  |  |  |
| 76         | 0.0530                         | 0.0751         | 0.1246       | 0.1412           |  |  |  |
| 103.5      | 0.0663                         | 0.0901         | 0.1545       | 0.1705           |  |  |  |
| 125.5      | 0.0744                         | 0.0976         | 0.1712       | 0.1846           |  |  |  |
| 152.5      | 0.0824                         | 0.1038         | 0.1862       | 0.1957           |  |  |  |
| 197        | 0.0921                         | 0.1100         | 0.2020       | 0.2054           |  |  |  |
| 224        | 0.0955                         | 0.1112         | 0.2054       | 0.2065           |  |  |  |
| 292.5      | 0.1016                         | 0.1129         | 0.2105       | 0.2079           |  |  |  |
| 316.5      | 0.1022                         | 0.1129         | 0.2103       | 0.2077           |  |  |  |
| 364.5      | 0.1032                         | 0.1128         | 0.2102       | 0.2076           |  |  |  |
| 460.5      | 0.1041                         | 0.1128         | 0.2101       | 0.2076           |  |  |  |
| 537        | 0.1041                         | 0.1128         | 0.2101       | 0.2076           |  |  |  |

## Table A 6: Model predicted P<sub>i</sub> data in bicarbonate buffer

The following table contains inorganic phosphate concentration in bicarbonate buffer predicted

by model using parameters in table 1

| PO <sub>4</sub> <sup>3-</sup> concentration (mM) |                   |                  |                  |                  |  |  |
|--------------------------------------------------|-------------------|------------------|------------------|------------------|--|--|
|                                                  | Bicarbonate + 1.1 | 5 mg DW cells/ml | Bicarbonate + 2. | 3 mg DW cells/ml |  |  |
| Time (Hrs)                                       | Replicate 1       | Replicate 2      | Replicate 1      | Replicate 2      |  |  |
| 0                                                | 0.019             | 0.014            | 0.0100           | 0.0078           |  |  |
| 7                                                | 0.047             | 0.031            | 0.0220           | 0.0151           |  |  |
| 17                                               | 0.056             | 0.048            | 0.0258           | 0.0224           |  |  |
| 29                                               | 0.104             | 0.086            | 0.0464           | 0.0387           |  |  |
| 45                                               | 0.126             | 0.122            | 0.0558           | 0.0541           |  |  |
| 62.5                                             | 0.168             | 0.162            | 0.0738           | 0.0712           |  |  |
| 76                                               | 0.2               | 0.193            | 0.0874           | 0.0845           |  |  |
| 92                                               | 0.239             | 0.235            | 0.1041           | 0.1024           |  |  |
| 111                                              | 0.278             | 0.268            | 0.1208           | 0.1166           |  |  |
| 148                                              | 0.345             | 0.341            | 0.1495           | 0.1478           |  |  |
| 184                                              | 0.41              | 0.397            | 0.1773           | 0.1718           |  |  |
| 208                                              | 0.444             | 0.447            | 0.1919           | 0.1932           |  |  |
| 232                                              | 0.48              | 0.472            | 0.2073           | 0.2039           |  |  |
| 268                                              | 0.252             | 0.252            | 0.2194           | 0.2194           |  |  |
| 309.5                                            | 0.28              | 0.289            | 0.2434           | 0.2511           |  |  |
| 357                                              | 0.306             | 0.322            | 0.2656           | 0.2793           |  |  |
| 379.5                                            | 0.332             | 0.347            | 0.2879           | 0.3007           |  |  |
| 478                                              | 0.365             | 0.386            | 0.3161           | 0.3341           |  |  |
| 522                                              | 0.382             | 0.408            | 0.3307           | 0.3530           |  |  |
| 620                                              | 0.42              | 0.449            | 0.3632           | 0.3881           |  |  |
| 716                                              | 0.447             | 0.478            | 0.3863           | 0.4129           |  |  |
| 832                                              | 0.466             | 0.47             | 0.4026           | 0.4060           |  |  |
| 982                                              | 0.465             | 0.479            | 0.4018           | 0.4137           |  |  |

## **APPENDIX B**

The data in this appendix is the raw data of experiments repeated as part of the results presented

in Chapter 2

### Table B 1: Inorganic phosphate data in PIPES buffer

The following tables contain data for inorganic phosphate released by *Cellulomonas* sp. ES6 in PIPES buffer under non-growth conditions. Inorganic phosphate concentrations were measured

by reading the absorbance at 880 nm with time.

| PIPES + 0.1 mM U(VI) [Cell free control] |                |                   |                                     | ]             | PIPES + 0.66 mg DW cells/ml + 0.1 mM U(VI) |                         |              |               |                                                  |               |
|------------------------------------------|----------------|-------------------|-------------------------------------|---------------|--------------------------------------------|-------------------------|--------------|---------------|--------------------------------------------------|---------------|
|                                          | Absorband      | e at 880 nm       | PO <sub>4</sub> <sup>3-</sup> conce | ntration (mM) |                                            | Absorbance at 880 nm PC |              |               | PO <sub>4</sub> <sup>3-</sup> concer             | ntration (mM) |
| Time (Hrs)                               | Replicate 1    | Replicate 2       | Replicate 1                         | Replicate 2   |                                            | Time (Hrs)              | Replicate 1  | Replicate 2   | Replicate 1                                      | Replicate 2   |
| 0                                        | 0              | 0                 | 0.0018                              | 0.0018        |                                            | 0                       | 0.015        | 0.021         | 0.0083                                           | 0.0108        |
| 8                                        | 0              | 0                 | 0.0018                              | 0.0018        |                                            | 8                       | 0.043        | 0.042         | 0.0202                                           | 0.0198        |
| 16                                       | 0              | 0.001             | 0.0018                              | 0.0023        |                                            | 16                      | 0.065        | 0.059         | 0.0297                                           | 0.0271        |
| 26                                       | 0.002          | 0                 | 0.0027                              | 0.0018        |                                            | 26                      | 0.073        | 0.072         | 0.0331                                           | 0.0327        |
| 35                                       | 0              | 0                 | 0.0018                              | 0.0018        |                                            | 35                      | 0.088        | 0.076         | 0.0395                                           | 0.0344        |
| 42                                       | 0.001          | 0                 | 0.0023                              | 0.0018        |                                            | 42                      | 0.103        | 0.105         | 0.0459                                           | 0.0468        |
| 60                                       | 0.001          | 0                 | 0.0023                              | 0.0018        |                                            | 60                      | 0.135        | 0.133         | 0.0596                                           | 0.0588        |
| 70                                       | 0.001          | 0.002             | 0.0023                              | 0.0027        |                                            | 70                      | 0.17         | 0.165         | 0.0746                                           | 0.0725        |
| 82                                       | 0              | 0                 | 0.0018                              | 0.0018        |                                            | 82                      | 0.195        | 0.197         | 0.0853                                           | 0.0862        |
| 94                                       | 0.002          | 0.001             | 0.0027                              | 0.0023        |                                            | 94                      | 0.23         | 0.215         | 0.1003                                           | 0.0939        |
| 118                                      | 0.003          | 0.001             | 0.0031                              | 0.0023        |                                            | 118                     | 0.28         | 0.277         | 0.1217                                           | 0.1204        |
| 142                                      | 0              | 0.001             | 0.0018                              | 0.0023        |                                            | 142                     | 0.15         | 0.163         | 0.1321                                           | 0.1432        |
| 190                                      | 0.002          | 0                 | 0.0027                              | 0.0018        |                                            | 190                     | 0.173        | 0.178         | 0.1518                                           | 0.1561        |
| 214                                      | 0              | 0                 | 0.0018                              | 0.0018        |                                            | 214                     | 0.185        | 0.192         | 0.1621                                           | 0.1680        |
| 242                                      | 0.001          | 0                 | 0.0023                              | 0.0018        |                                            | 242                     | 0.193        | 0.195         | 0.1689                                           | 0.1706        |
| 290                                      | 0              | 0                 | 0.0018                              | 0.0018        |                                            | 290                     | 0.198        | 0.204         | 0.1732                                           | 0.1783        |
| 386                                      | 0              | 0                 | 0.0018                              | 0.0018        |                                            | 386                     | 0.213        | 0.218         | 0.1860                                           | 0.1903        |
| 482                                      | 0.001          | 0                 | 0.0023                              | 0.0018        |                                            | 482                     | 0.219        | 0.223         | 0.1912                                           | 0.1946        |
| 578                                      | 0              | 0.001             | 0.0018                              | 0.0023        |                                            | 578                     | 0.217        | 0.224         | 0.1894                                           | 0.1954        |
|                                          |                |                   |                                     |               |                                            |                         |              |               |                                                  |               |
| PIPES                                    | + 0.66 mg DW ( | cells/ml + 0.1 mN | l U(VI) + 0.1 mM                    | I AQDS        |                                            | PI                      | PES + 0.66 m | g DW cells/ml | + 0.1 mM AQD                                     | S             |
|                                          | Absorbance     | e at 880 nm       | PO4 <sup>3-</sup> concer            | ntration (mM) |                                            |                         | Absorbanc    | e at 880 nm   | PO <sub>4</sub> <sup>3-</sup> concentration (mM) |               |
| Time (Hrs)                               | Replicate 1    | Replicate 2       | Replicate 1                         | Replicate 2   |                                            | Time (Hrs)              | Replicate 1  | Replicate 2   | Replicate 1                                      | Replicate 2   |
| 0                                        | 0.018          | 0.022             | 0.0095                              | 0.0113        |                                            | 0                       | 0.031        | 0.025         | 0.0151                                           | 0.0125        |
| 8                                        | 0.045          | 0.044             | 0.0211                              | 0.0207        |                                            | 8                       | 0.043        | 0.042         | 0.0202                                           | 0.0198        |
| 16                                       | 0.095          | 0.083             | 0.0425                              | 0.0374        |                                            | 16                      | 0.076        | 0.078         | 0.0344                                           | 0.0352        |
| 26                                       | 0.135          | 0.144             | 0.0596                              | 0.0635        |                                            | 20                      | 0.14         | 0.133         | 0.0018                                           | 0.0588        |
| 35                                       | 0.183          | 0.162             | 0.0802                              | 0.0712        |                                            | 42                      | 0.192        | 0.180         | 0.0840                                           | 0.0815        |
| 42                                       | 0.211          | 0.197             | 0.0922                              | 0.0602        |                                            | 60                      | 0.287        | 0.283         | 0.1247                                           | 0.1230        |
| 70                                       | 0.329          | 0.333             | 0.1320                              | 0.1277        |                                            | 70                      | 0.326        | 0.329         | 0.1414                                           | 0.1427        |
| 82                                       | 0.37           | 0.372             | 0.1602                              | 0.1611        |                                            | 82                      | 0.37         | 0.373         | 0.1602                                           | 0.1615        |
| 94                                       | 0.415          | 0.42              | 0.1795                              | 0.1816        |                                            | 94                      | 0.406        | 0.404         | 0.1756                                           | 0.1748        |
| 118                                      | 0.478          | 0.482             | 0.2064                              | 0.2082        |                                            | 118                     | 0.47         | 0.462         | 0.2030                                           | 0.1996        |
| 142                                      | 0.27           | 0.272             | 0.2348                              | 0.2365        |                                            | 142                     | 0.258        | 0.263         | 0.2245                                           | 0.2288        |
| 190                                      | 0.297          | 0.294             | 0.2579                              | 0.2554        |                                            | 190                     | 0.288        | 0.285         | 0.2502                                           | 0.2477        |
| 214                                      | 0.306          | 0.304             | 0.2656                              | 0.2639        | 1                                          | 214                     | 0.303        | 0.303         | 0.2631                                           | 0.2631        |
| 242                                      | 0.309          | 0.312             | 0.2682                              | 0.2708        |                                            | 242                     | 0.308        | 0.311         | 0.2074                                           | 0.2099        |
| 290                                      | 0.312          | 0.314             | 0.2708                              | 0.2725        | 1                                          | 386                     | 0.326        | 0.325         | 0.2828                                           | 0.2819        |
| 386                                      | 0.318          | 0.319             | 0.2759                              | 0.2768        | -                                          | 482                     | 0.33         | 0.324         | 0.2862                                           | 0.2810        |
| 482                                      | 0.327          | 0.329             | 0.2836                              | 0.2853        |                                            | 578                     | 0.335        | 0.33          | 0.2905                                           | 0.2862        |
| 5/8                                      | 0.329          | 0.328             | 0.2853                              | 0.2845        |                                            |                         |              |               |                                                  |               |

| PIPES + 0.66 mg DW cells/ml |             |             |                                      |               |  |  |  |
|-----------------------------|-------------|-------------|--------------------------------------|---------------|--|--|--|
|                             | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> concer | ntration (mM) |  |  |  |
| Time (Hrs)                  | Replicate 1 | Replicate 2 | Replicate 1                          | Replicate 2   |  |  |  |
| 0                           | 0.027       | 0.021       | 0.0134                               | 0.0108        |  |  |  |
| 8                           | 0.056       | 0.054       | 0.0258                               | 0.0250        |  |  |  |
| 16                          | 0.088       | 0.084       | 0.0395                               | 0.0378        |  |  |  |
| 26                          | 0.135       | 0.127       | 0.0596                               | 0.0562        |  |  |  |
| 35                          | 0.18        | 0.195       | 0.0789                               | 0.0853        |  |  |  |
| 42                          | 0.204       | 0.201       | 0.0892                               | 0.0879        |  |  |  |
| 60                          | 0.28        | 0.29        | 0.1217                               | 0.1260        |  |  |  |
| 70                          | 70 0.32     |             | 0.1388                               | 0.1350        |  |  |  |
| 82                          | 0.367       | 0.37        | 0.1589                               | 0.1602        |  |  |  |
| 94                          | 0.41        | 0.398       | 0.1773                               | 0.1722        |  |  |  |
| 118                         | 0.465       | 0.46        | 0.2009                               | 0.1987        |  |  |  |
| 142                         | 0.255       | 0.252       | 0.2220                               | 0.2194        |  |  |  |
| 190                         | 0.287       | 0.29        | 0.2494                               | 0.2519        |  |  |  |
| 214                         | 0.3         | 0.302       | 0.2605                               | 0.2622        |  |  |  |
| 242                         | 0.308       | 0.304       | 0.2674                               | 0.2639        |  |  |  |
| 290                         | 0.316       | 0.315       | 0.2742                               | 0.2733        |  |  |  |
| 386                         | 0.324       | 0.326       | 0.2810                               | 0.2828        |  |  |  |
| 482                         | 0.329       | 0.327       | 0.2853                               | 0.2836        |  |  |  |
| 578                         | 0.332       | 0.334       | 0.2879                               | 0.2896        |  |  |  |

## Table B 2: Soluble U(VI) data in PIPES buffer

The following tables contain data for soluble U(VI) precipitated by inorganic phosphate released by *Cellulomonas* sp. ES6 in PIPES buffer under non-growth conditions. Soluble U(VI) concentrations were measured using unfiltered samples from serum bottle by KPA

| PIPES + 0.1 mMU(M) [Cell free control] |              |               |                         |             |  |  |
|----------------------------------------|--------------|---------------|-------------------------|-------------|--|--|
|                                        | U(VI) concer | tration (ppm) | U(M) concentration (mM) |             |  |  |
| Time (Hrs)                             | Replicate 1  | Replicate 2   | Replicate 1             | Replicate 2 |  |  |
| 0                                      | 24.876       | 23.173        | 0.1045                  | 0.0974      |  |  |
| 8                                      | 23.673       | 23.383        | 0.0995                  | 0.0982      |  |  |
| 16                                     | 23.437       | 23.403        | 0.0985                  | 0.0983      |  |  |
| 26                                     | 23.283       | 23.494        | 0.0978                  | 0.0987      |  |  |
| 35                                     | 23.293       | 23.489        | 0.0979                  | 0.0987      |  |  |
| 42                                     | 24.312       | 23.589        | 0.1022                  | 0.0991      |  |  |
| 60                                     | 23.437       | 23.124        | 0.0985                  | 0.0972      |  |  |
| 70                                     | 24.121       | 23.428        | 0.1013                  | 0.0984      |  |  |
| 82                                     | 23.479       | 23.479 23.487 |                         | 0.0987      |  |  |
| 94                                     | 23.137       | 23.137 24.366 |                         | 0.1024      |  |  |
| 118                                    | 23.954       | 23.498        | 0.1006                  | 0.0987      |  |  |

| PIPES+0.66mgDWcells/mt+0.1mMU(M) |              |              |                         |             |  |  |
|----------------------------------|--------------|--------------|-------------------------|-------------|--|--|
|                                  | U(VI) cancer | tration(ppm) | U(M) concentration (mM) |             |  |  |
| Time(Hs)                         | Replicate 1  | Replicate 2  | Replicate 1             | Replicate 2 |  |  |
| 0                                | 22439        | 23.45        | 0.0943                  | 0.0985      |  |  |
| 8                                | 23.138       | 23,447       | 0.0972                  | 0.0985      |  |  |
| 16                               | 20.498       | 19.739       | 0.0861                  | 0.0829      |  |  |
| 26                               | 11.438       | 9.347        | 0.0481                  | 0.0398      |  |  |
| 35                               | 7.389        | 6.489        | 0.0310                  | 0.0273      |  |  |
| 42                               | 4.297        | 3.958        | 0.0181                  | 0.0166      |  |  |
| 60                               | 3.28         | 2843         | 0.0138                  | 0.0119      |  |  |
| 70                               | 2876         | 2428         | 0.0121                  | 0.0102      |  |  |
| 82                               | 1.938        | 2138         | 0.0081                  | 0.0090      |  |  |
| 94                               | 1.382        | 1.382 1.29   |                         | 0.0054      |  |  |
| 118                              | 1.329        | 1.965        | 0.0056                  | 0.0083      |  |  |

| PIPES      | PIPES + 0.66 mg DW cells/ml + 0.1 mM U(VI) + 0.1 mM AQDS |               |                          |             |  |  |  |
|------------|----------------------------------------------------------|---------------|--------------------------|-------------|--|--|--|
|            | U(VI) concer                                             | tration (ppm) | U(VI) concentration (mM) |             |  |  |  |
| Time (Hrs) | Replicate 1                                              | Replicate 2   | Replicate 1              | Replicate 2 |  |  |  |
| 0          | 22.498                                                   | 23.984        | 0.0945                   | 0.1008      |  |  |  |
| 8          | 17.398                                                   | 16.302        | 0.0731                   | 0.0685      |  |  |  |
| 16         | 13.38                                                    | 12.48         | 0.0562                   | 0.0524      |  |  |  |
| 26         | 8.367                                                    | 7.489         | 0.0352                   | 0.0315      |  |  |  |
| 35         | 3.587                                                    | 2.547         | 0.0151                   | 0.0107      |  |  |  |
| 42         | 3.182                                                    | 2.129         | 0.0134                   | 0.0089      |  |  |  |
| 60         | 2.468                                                    | 2.538         | 0.0104                   | 0.0107      |  |  |  |
| 70         | 1.738                                                    | 1.287         | 0.0073                   | 0.0054      |  |  |  |
| 82         | 1.479                                                    | 1.782         | 0.0062                   | 0.0075      |  |  |  |
| 94         | 1.549                                                    | 1.498         | 0.0065                   | 0.0063      |  |  |  |
| 118        | 118 N/A N                                                |               | N/A                      | N/A         |  |  |  |

## Table B 3: Inorganic phosphate data in bicarbonate buffer

The following tables contain data for inorganic phosphate released by *Cellulomonas* sp. ES6 in bicarbonate buffer under non-growth conditions. Inorganic phosphate concentrations were measured by reading the absorbance at 880 nm with time.

|            | Bicarbonate + 0.1 mM U(VI) [Cell free control] |             |                                      |               |     | Bicarbonate + 1.8 mg DW cells/ml + 0.1 mM U(VI) |                      |             |                                |             |
|------------|------------------------------------------------|-------------|--------------------------------------|---------------|-----|-------------------------------------------------|----------------------|-------------|--------------------------------|-------------|
|            | Absorbanc                                      | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> concer | ntration (mM) |     |                                                 | Absorbance at 880 nm |             | $PO_4^{3-}$ concentration (mM) |             |
| Time (Hrs) | Replicate 1                                    | Replicate 2 | Replicate 1                          | Replicate 2   |     | Time (Hrs)                                      | Replicate 1          | Replicate 2 | Replicate 1                    | Replicate 2 |
| 0          | 0                                              | 0.001       | 0.0018                               | 0.0023        | 1 [ | 0                                               | 0.036                | 0.033       | 0.0172                         | 0.0160      |
| 11         | 0                                              | 0.002       | 0.0018                               | 0.0027        |     | 11                                              | 0.048                | 0.052       | 0.0224                         | 0.0241      |
| 20         | 0.004                                          | 0.005       | 0.0036                               | 0.0040        |     | 20                                              | 0.059                | 0.061       | 0.0271                         | 0.0280      |
| 35         | 0.002                                          | 0           | 0.0027                               | 0.0018        |     | 35                                              | 0.113                | 0.117       | 0.0502                         | 0.0519      |
| 60         | 0.005                                          | 0           | 0.0040                               | 0.0018        |     | 60                                              | 0.181                | 0.189       | 0.0793                         | 0.0827      |
| 76         | 0                                              | 0           | 0.0018                               | 0.0018        |     | 76                                              | 0.228                | 0.221       | 0.0994                         | 0.0964      |
| 88         | 0.001                                          | 0.002       | 0.0023                               | 0.0027        | ·   | 88                                              | 0.268                | 0.261       | 0.1166                         | 0.1136      |
| 106        | 0.002                                          | 0.001       | 0.0027                               | 0.0023        |     | 106                                             | 0.301                | 0.309       | 0.1307                         | 0.1341      |
| 140        | 0.002                                          | 0.001       | 0.0027                               | 0.0023        |     | 140                                             | 0.397                | 0.386       | 0.1718                         | 0.1671      |
| 160        | 0.001                                          | 0           | 0.0023                               | 0.0018        |     | 160                                             | 0.415                | 0.427       | 0.1795                         | 0.1846      |
| 184        | 0                                              | 0           | 0.0018                               | 0.0018        |     | 184                                             | 0.22                 | 0.222       | 0.1920                         | 0.1937      |
| 232        | 0.001                                          | 0.004       | 0.0023                               | 0.0036        |     | 232                                             | 0.268                | 0.264       | 0.2331                         | 0.2297      |
| 280        | 0.001                                          | 0.003       | 0.0023                               | 0.0031        |     | 280                                             | 0.307                | 0.323       | 0.2665                         | 0.2802      |
| 326        | 0.001                                          | 0           | 0.0023                               | 0.0018        |     | 326                                             | 0.345                | 0.361       | 0.2990                         | 0.3127      |
| 432        | 0                                              | 0.002       | 0.0018                               | 0.0027        |     | 432                                             | 0.432                | 0.441       | 0.3735                         | 0.3812      |
| 504        | 0                                              | 0           | 0.0018                               | 0.0018        |     | 504                                             | 0.222                | 0.228       | 0.3875                         | 0.3977      |
| 600        | 0.001                                          | 0           | 0.0023                               | 0.0018        |     | 600                                             | 0.248                | 0.251       | 0.4320                         | 0.4371      |
| 672        | 0.002                                          | 0           | 0.0027                               | 0.0018        |     | 672                                             | 0.251                | 0.255       | 0.4371                         | 0.4440      |
| 720        | 0.001                                          | 0.002       | 0.0023                               | 0.0027        |     | 720                                             | 0.255                | 0.256       | 0.4440                         | 0.4457      |

| Bicarbonate + 1.8 mg DW cells/ml + 0.1 mM U(VI) + 0.1 mM AQDS |             |             |                                     |               |  |
|---------------------------------------------------------------|-------------|-------------|-------------------------------------|---------------|--|
|                                                               | Absorbanc   | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> conce | ntration (mM) |  |
| Time (Hrs)                                                    | Replicate 1 | Replicate 2 | Replicate 1                         | Replicate 2   |  |
| 0                                                             | 0.045       | 0.04        | 0.0211                              | 0.0190        |  |
| 11                                                            | 0.053       | 0.056       | 0.0245                              | 0.0258        |  |
| 20                                                            | 0.071       | 0.071       | 0.0322                              | 0.0322        |  |
| 35                                                            | 0.122       | 0.115       | 0.0541                              | 0.0511        |  |
| 60                                                            | 0.198       | 0.202       | 0.0866                              | 0.0883        |  |
| 76                                                            | 0.245       | 0.247       | 0.1067                              | 0.1076        |  |
| 88                                                            | 0.285       | 0.288       | 0.1238                              | 0.1251        |  |
| 106                                                           | 0.339       | 0.345       | 0.1469                              | 0.1495        |  |
| 140                                                           | 0.426       | 0.433       | 0.1842                              | 0.1872        |  |
| 160                                                           | 0.486       | 0.479       | 0.2099                              | 0.2069        |  |
| 184                                                           | 0.266       | 0.267       | 0.2314                              | 0.2323        |  |
| 232                                                           | 0.347       | 0.354       | 0.3007                              | 0.3067        |  |
| 280                                                           | 0.388       | 0.391       | 0.3358                              | 0.3384        |  |
| 326                                                           | 0.436       | 0.438       | 0.3769                              | 0.3786        |  |
| 432                                                           | 0.539       | 0.541       | 0.4651                              | 0.4668        |  |
| 504                                                           | 0.298       | 0.275       | 0.5176                              | 0.4782        |  |
| 600                                                           | 0.306       | 0.297       | 0.5313                              | 0.5159        |  |
| 672                                                           | 0.313       | 0.31        | 0.5433                              | 0.5381        |  |
| 720                                                           | 0.316       | 0.315       | 0.5484                              | 0.5467        |  |

| Bicarbonate + 1.8 mg DW cells/ml + 0.1 mM AQDS |             |             |                                                  |             |  |  |
|------------------------------------------------|-------------|-------------|--------------------------------------------------|-------------|--|--|
|                                                | Absorbance  | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> concentration (mM) |             |  |  |
| Time (Hrs)                                     | Replicate 1 | Replicate 2 | Replicate 1                                      | Replicate 2 |  |  |
| 0                                              | 0.033       | 0.036       | 0.0160                                           | 0.0172      |  |  |
| 11                                             | 0.044       | 0.046       | 0.0207                                           | 0.0215      |  |  |
| 20                                             | 0.07        | 0.063       | 0.0318                                           | 0.0288      |  |  |
| 35                                             | 0.12        | 0.118       | 0.0532                                           | 0.0523      |  |  |
| 60                                             | 0.177       | 0.197       | 0.0776                                           | 0.0862      |  |  |
| 76                                             | 0.242       | 0.241       | 0.1054                                           | 0.1050      |  |  |
| 88                                             | 0.278       | 0.285       | 0.1208                                           | 0.1238      |  |  |
| 106                                            | 0.327       | 0.321       | 0.1418                                           | 0.1392      |  |  |
| 140                                            | 0.446       | 0.439       | 0.1927                                           | 0.1897      |  |  |
| 160                                            | 0.48        | 0.495       | 0.2073                                           | 0.2137      |  |  |
| 184                                            | 0.254       | 0.263       | 0.2211                                           | 0.2288      |  |  |
| 232                                            | 0.335       | 0.334       | 0.2905                                           | 0.2896      |  |  |
| 280                                            | 0.395       | 0.397       | 0.3418                                           | 0.3435      |  |  |
| 326                                            | 0.449       | 0.441       | 0.3881                                           | 0.3812      |  |  |
| 432                                            | 0.545       | 0.539       | 0.4702                                           | 0.4651      |  |  |
| 504                                            | 0.288       | 0.284       | 0.5005                                           | 0.4936      |  |  |
| 600                                            | 0.298       | 0.296       | 0.5176                                           | 0.5142      |  |  |
| 672                                            | 0.316       | 0.315       | 0.5484                                           | 0.5467      |  |  |
| 720                                            | 0.32        | 0.318       | 0.5552                                           | 0.5518      |  |  |

| Bicarbonate + 1.8 mg DW cells/ml |             |                          |               |             |  |  |  |
|----------------------------------|-------------|--------------------------|---------------|-------------|--|--|--|
|                                  | Absorbance  | PO₄ <sup>3-</sup> concer | ntration (mM) |             |  |  |  |
| Time (Hrs)                       | Replicate 1 | Replicate 2              | Replicate 1   | Replicate 2 |  |  |  |
| 0                                | 0.036       | 0.042                    | 0.0172        | 0.0198      |  |  |  |
| 11                               | 0.049       | 0.052                    | 0.0228        | 0.0241      |  |  |  |
| 20                               | 0.066       | 0.062                    | 0.0301        | 0.0284      |  |  |  |
| 35                               | 0.108       | 0.121                    | 0.0481        | 0.0536      |  |  |  |
| 60                               | 0.185       | 0.203                    | 0.0810        | 0.0887      |  |  |  |
| 76                               | 0.249       | 0.255                    | 0.1084        | 0.1110      |  |  |  |
| 88                               | 0.286       | 0.281                    | 0.1243        | 0.1221      |  |  |  |
| 106                              | 0.33        | 0.335                    | 0.1431        | 0.1452      |  |  |  |
| 140                              | 0.44        | 0.448                    | 0.1902        | 0.1936      |  |  |  |
| 160                              | 0.475       | 0.484                    | 0.2052        | 0.2090      |  |  |  |
| 184                              | 0.26        | 0.272                    | 0.2263        | 0.2365      |  |  |  |
| 232                              | 0.344       | 0.352                    | 0.2982        | 0.3050      |  |  |  |
| 280                              | 0.403       | 0.392                    | 0.3487        | 0.3393      |  |  |  |
| 326                              | 0.455       | 0.454                    | 0.3932        | 0.3923      |  |  |  |
| 432                              | 0.558       | 0.552                    | 0.4814        | 0.4762      |  |  |  |
| 504                              | 0.287       | 0.285                    | 0.4987        | 0.4953      |  |  |  |
| 600                              | 0.303       | 0.307                    | 0.5261        | 0.5330      |  |  |  |
| 672                              | 0.318       | 0.315                    | 0.5518        | 0.5467      |  |  |  |
| 720                              | 0.32        | 0.32                     | 0.5552        | 0.5552      |  |  |  |

# Table B 4: Soluble U(VI) data in bicarbonate buffer

The following tables contain data for soluble U(VI) precipitated by inorganic phosphate released by *Cellulomonas* sp. ES6 in bicarbonate buffer under non-growth conditions. Soluble U(VI) concentrations were measured using unfiltered samples from serum bottle by KPA

| Bicarbonate + 0.1 mM U(VI) [Cell free control] |              |                |                          |             |  |  |  |  |  |
|------------------------------------------------|--------------|----------------|--------------------------|-------------|--|--|--|--|--|
|                                                | U(VI) concer | ntration (ppm) | U(VI) concentration (mM) |             |  |  |  |  |  |
| Time (Hrs)                                     | Replicate 1  | Replicate 2    | Replicate 1              | Replicate 2 |  |  |  |  |  |
| 0                                              | 23.897       | 24.176         | 0.1004                   | 0.1016      |  |  |  |  |  |
| 11                                             | 22.156       | 24.234         | 0.0931                   | 0.1018      |  |  |  |  |  |
| 20                                             | 24.856       | 23.564         | 0.1044                   | 0.0990      |  |  |  |  |  |
| 35                                             | 23.546       | 23.879         | 0.0989                   | 0.1003      |  |  |  |  |  |
| 60                                             | 23.471       | 23.712         | 0.0986                   | 0.0996      |  |  |  |  |  |
| 76                                             | 22.196       | 23.167         | 0.0933                   | 0.0973      |  |  |  |  |  |
| 88                                             | 24.187       | 23.618         | 0.1016                   | 0.0992      |  |  |  |  |  |
| 106                                            | 23.794       | 23.987         | 0.1000                   | 0.1008      |  |  |  |  |  |
| 140                                            | 23.657       | 24.157         | 0.0994                   | 0.1015      |  |  |  |  |  |
| 160                                            | 23.823       | 23.538         | 0.1001                   | 0.0989      |  |  |  |  |  |
| 184                                            | 22.951       | 23.268         | 0.0964                   | 0.0978      |  |  |  |  |  |
| 232                                            | 23.545       | 23.861         | 0.0989                   | 0.1003      |  |  |  |  |  |
| 280                                            | 23.227       | 23.47          | 0.0976                   | 0.0986      |  |  |  |  |  |
| 326                                            | 23.928       | 23.174         | 0.1005                   | 0.0974      |  |  |  |  |  |
| 432                                            | 23.187       | 23.189         | 0.0974                   | 0.0974      |  |  |  |  |  |

| Bicarbonate + 1.8 mg DW cells/ml + 0.1 mM U(VI) |              |               |                         |             |  |  |  |  |  |
|-------------------------------------------------|--------------|---------------|-------------------------|-------------|--|--|--|--|--|
|                                                 | U(VI) concer | tration (ppm) | U(VI) concentration (mM |             |  |  |  |  |  |
| Time (Hrs)                                      | Replicate 1  | Replicate 2   | Replicate 1             | Replicate 2 |  |  |  |  |  |
| 0                                               | 23.595       | 24.143        | 0.0991                  | 0.1014      |  |  |  |  |  |
| 11                                              | 23.879       | 23.783        | 0.1003                  | 0.0999      |  |  |  |  |  |
| 20                                              | 24.187       | 24.378        | 0.1016                  | 0.1024      |  |  |  |  |  |
| 35                                              | 23.871       | 23.649        | 0.1003                  | 0.0994      |  |  |  |  |  |
| 60                                              | 22.498       | 22.413        | 0.0945                  | 0.0942      |  |  |  |  |  |
| 76                                              | 22.389       | 22.982        | 0.0941                  | 0.0966      |  |  |  |  |  |
| 88                                              | 21.978       | 21.79         | 0.0923                  | 0.0916      |  |  |  |  |  |
| 106                                             | 21.278       | 20.989        | 0.0894                  | 0.0882      |  |  |  |  |  |
| 140                                             | 19.627       | 18.927        | 0.0825                  | 0.0795      |  |  |  |  |  |
| 160                                             | 16.29        | 16.568        | 0.0684                  | 0.0696      |  |  |  |  |  |
| 184                                             | 13.987       | 13.729        | 0.0588                  | 0.0577      |  |  |  |  |  |
| 232                                             | 10.568       | 9.679         | 0.0444                  | 0.0407      |  |  |  |  |  |
| 280                                             | 8.129        | 8.367         | 0.0342                  | 0.0352      |  |  |  |  |  |
| 326                                             | 5.293        | 4.279         | 0.0222                  | 0.0180      |  |  |  |  |  |
| 432                                             | 2.489        | 1.749         | 0.0105                  | 0.0073      |  |  |  |  |  |

| Bicarbonate + 1.8 mg DW cells/ml + 0.1 mM U(VI) + 0.1 mM AQDS |              |                |                          |             |  |  |  |
|---------------------------------------------------------------|--------------|----------------|--------------------------|-------------|--|--|--|
|                                                               | U(VI) concer | ntration (ppm) | U(VI) concentration (mM) |             |  |  |  |
| Time (Hrs)                                                    | Replicate 1  | Replicate 2    | Replicate 1              | Replicate 2 |  |  |  |
| 0                                                             | 24.457       | 24.172         | 0.1028                   | 0.1016      |  |  |  |
| 11                                                            | 19.126       | 20.367         | 0.0804                   | 0.0856      |  |  |  |
| 20                                                            | 15.728       | 14.679         | 0.0661                   | 0.0617      |  |  |  |
| 35                                                            | 10.956       | 11.278         | 0.0460                   | 0.0474      |  |  |  |
| 60                                                            | 4.896        | 4.152          | 0.0206                   | 0.0174      |  |  |  |
| 76                                                            | 3.978        | 4.568          | 0.0167                   | 0.0192      |  |  |  |
| 88                                                            | 3.526        | 3.478          | 0.0148                   | 0.0146      |  |  |  |
| 106                                                           | N/A          | N/A            | N/A                      | N/A         |  |  |  |
| 140                                                           | 2.167        | 1.978          | 0.0091                   | 0.0083      |  |  |  |
| 160                                                           | N/A          | N/A            | N/A                      | N/A         |  |  |  |
| 184                                                           | 1.475        | 1.942          | 0.0062                   | 0.0082      |  |  |  |
| 232                                                           | N/A          | N/A            | N/A                      | N/A         |  |  |  |
| 280                                                           | N/A          | N/A            | N/A                      | N/A         |  |  |  |
| 326                                                           | 326 N/A      |                | N/A N/A                  |             |  |  |  |
| 432 1.782                                                     |              | 1.559          | 0.0075                   | 0.0066      |  |  |  |

#### **APPENDIX C**

The data in this appendix is the raw data of experiments performed to analyze samples for U

oxidation state using XANES

#### Table C 1: Inorganic phosphate data

The following tables contain data for inorganic phosphate released by Cellulomonas sp. ES6 in

either bicarbonate or PIPES buffer under non-growth conditions. Inorganic phosphate

concentrations were measured by reading the absorbance at 880 nm with time.

| Bicarbonate + 0.1 mM U(VI) [Cell free control] |             |             |                                |             |  |  |  |  |
|------------------------------------------------|-------------|-------------|--------------------------------|-------------|--|--|--|--|
|                                                | Absorbance  | e at 880 nm | $PO_4^{3-}$ concentration (mM) |             |  |  |  |  |
| Time (Hrs)                                     | Replicate 1 | Replicate 2 | Replicate 1                    | Replicate 2 |  |  |  |  |
| 0                                              | 0           | 0.001       | 0.0018                         | 0.0023      |  |  |  |  |
| 12                                             | 0           | 0           | 0.0018                         | 0.0018      |  |  |  |  |
| 28                                             | 0.001       | 0           | 0.0023                         | 0.0018      |  |  |  |  |
| 45                                             | 0.001       | 0.001 0.002 |                                | 0.0027      |  |  |  |  |
| 63                                             | 0.002       | 0.002       | 0.0027                         | 0.0027      |  |  |  |  |
| 80                                             | 0           | 0.001       | 0.0018                         | 0.0023      |  |  |  |  |
| 104                                            | 0.001       | 0           | 0.0023                         | 0.0018      |  |  |  |  |
| 128                                            | 0           | 0.001       | 0.0018                         | 0.0023      |  |  |  |  |
| 170                                            | 0           | 0.001       | 0.0018                         | 0.0023      |  |  |  |  |
| 218                                            | 0           | 0           | 0.0018                         | 0.0018      |  |  |  |  |
| 266                                            | 0           | 0.001       | 0.0018                         | 0.0023      |  |  |  |  |

| Bicarbonate + 2.07 mg DW cells/ml + 0.1 mM U(VI) |             |             |                                |             |  |  |  |  |  |
|--------------------------------------------------|-------------|-------------|--------------------------------|-------------|--|--|--|--|--|
|                                                  | Absorbanc   | e at 880 nm | $PO_4^{3-}$ concentration (mM) |             |  |  |  |  |  |
| Time (Hrs)                                       | Replicate 1 | Replicate 2 | Replicate 1                    | Replicate 2 |  |  |  |  |  |
| 0                                                | 0.026       | 0.023       | 0.0130                         | 0.0117      |  |  |  |  |  |
| 12                                               | 0.034       | 0.038       | 0.0164                         | 0.0181      |  |  |  |  |  |
| 28                                               | 0.077       | 0.083       | 0.0348                         | 0.0374      |  |  |  |  |  |
| 45                                               | 0.12        | 0.118       | 0.0532                         | 0.0523      |  |  |  |  |  |
| 63                                               | 0.175       | 0.177       | 0.0767                         | 0.0776      |  |  |  |  |  |
| 80                                               | 0.201       | 0.196       | 0.0879                         | 0.0857      |  |  |  |  |  |
| 104                                              | 0.26        | 0.255       | 0.1131                         | 0.1110      |  |  |  |  |  |
| 128                                              | 0.303       | 0.296       | 0.1315                         | 0.1285      |  |  |  |  |  |
| 170                                              | 0.18        | 0.174       | 0.1578                         | 0.1526      |  |  |  |  |  |
| 218                                              | 0.23        | 0.235       | 0.2006                         | 0.2049      |  |  |  |  |  |
| 266                                              | 0.27        | 0.265       | 0.2348                         | 0.2305      |  |  |  |  |  |

| Bicarbonate + 2.07 mg DW cells/ml + 0.1 mM U(VI) + 0.1 mM AQDS |             |             |                                | Bicarbonate + 2.07 mg DW cells/ml |            |             |             |                          |               |
|----------------------------------------------------------------|-------------|-------------|--------------------------------|-----------------------------------|------------|-------------|-------------|--------------------------|---------------|
|                                                                | Absorbanc   | e at 880 nm | $PO_4^{3-}$ concentration (mM) |                                   |            | Absorbance  | e at 880 nm | PO4 <sup>3-</sup> concer | ntration (mM) |
| Time (Hrs)                                                     | Replicate 1 | Replicate 2 | Replicate 1                    | Replicate 2                       | Time (Hrs) | Replicate 1 | Replicate 2 | Replicate 1              | Replicate 2   |
| 0                                                              | 0.021       | 0.018       | 0.0108                         | 0.0095                            | 0          | 0.024       | 0.022       | 0.0121                   | 0.0113        |
| 12                                                             | 0.032       | 0.043       | 0.0155                         | 0.0202                            | 12         | 0.036       | 0.039       | 0.0172                   | 0.0185        |
| 28                                                             | 0.08        | 0.07        | 0.0361                         | 0.0318                            | 28         | 0.077       | 0.072       | 0.0348                   | 0.0327        |
| 45                                                             | 0.135       | 0.13        | 0.0596                         | 0.0575                            | 45         | 0.136       | 0.139       | 0.0601                   | 0.0613        |
| 63                                                             | 0.19        | 0.197       | 0.0832                         | 0.0862                            | 63         | 0.201       | 0.194       | 0.0879                   | 0.0849        |
| 80                                                             | 0.24        | 0.238       | 0.1046                         | 0.1037                            | 80         | 0.246       | 0.241       | 0.1071                   | 0.1050        |
| 104                                                            | 0.312       | 0.314       | 0.1354                         | 0.1362                            | 104        | 0.324       | 0.321       | 0.1405                   | 0.1392        |
| 128                                                            | 0.37        | 0.38        | 0.1602                         | 0.1645                            | 128        | 0.381       | 0.378       | 0.1649                   | 0.1636        |
| 170                                                            | 0.246       | 0.258       | 0.2143                         | 0.2245                            | 170        | 0.252       | 0.238       | 0.2194                   | 0.2074        |
| 218                                                            | 0.318       | 0.327       | 0.2759                         | 0.2836                            | 218        | 0.311       | 0.308       | 0.2699                   | 0.2674        |
| 266                                                            | 0.389       | 0.372       | 0.3367                         | 0.3221                            | 266        | 0.38        | 0.382       | 0.3290                   | 0.3307        |

| PIPES + 1.24 mg DW cells/ml + 0.1 mM U(VI) |             |             |                                      |                                 |  |                                | PIPES       | +1.24 mg DW o | xells/ml    |             |                         |               |
|--------------------------------------------|-------------|-------------|--------------------------------------|---------------------------------|--|--------------------------------|-------------|---------------|-------------|-------------|-------------------------|---------------|
|                                            | Absorband   | e at 880 nm | PO <sub>4</sub> <sup>3-</sup> concer | <sup>}</sup> concentration (mM) |  | $PO_4^{3-}$ concentration (mM) |             |               | Absorbance  | eat 880 nm  | PQ4 <sup>3-</sup> conce | ntration (mM) |
| Time (Hrs)                                 | Replicate 1 | Replicate 2 | Replicate 1                          | Replicate 2                     |  | Time (Hrs)                     | Replicate 1 | Replicate 2   | Replicate 1 | Replicate 2 |                         |               |
| 0                                          | 0.033       | 0.031       | 0.0160                               | 0.0151                          |  | 0                              | 0.023       | 0.037         | 0.0117      | 0.0177      |                         |               |
| 12                                         | 0.058       | 0.055       | 0.0267                               | 0.0254                          |  | 12                             | 0.083       | 0.087         | 0.0374      | 0.0391      |                         |               |
| 28                                         | 0.11        | 0.09        | 0.0489                               | 0.0404                          |  | 28                             | 0.19        | 0.195         | 0.0832      | 0.0853      |                         |               |
| 45                                         | 0.242       | 0.228       | 0.1054                               | 0.0994                          |  | 45                             | 0.32        | 0.305         | 0.1388      | 0.1324      |                         |               |
| 63                                         | 0.3         | 0.287       | 0.1303                               | 0.1247                          |  | ങ                              | 0.42        | 0.425         | 0.1816      | 0.1838      |                         |               |
| 80                                         | 0.375       | 0.385       | 0.1624                               | 0.1666                          |  | 80                             | 0.528       | 0.533         | 0.2278      | 0.2300      |                         |               |
| 104                                        | 0.23        | 0.22        | 0.2006                               | 0.1920                          |  | 104                            | 0.32        | 0.333         | 0.2776      | 0.2888      |                         |               |
| 128                                        | 0.28        | 0.291       | 0.2434                               | 0.2528                          |  | 128                            | 0.395       | 0.398         | 0.3418      | 0.3444      |                         |               |
| 170                                        | 0.355       | 0.36        | 0.3076                               | 0.3119                          |  | 170                            | 0.466       | 0.478         | 0.4026      | 0.4129      |                         |               |
| 218                                        | 0.43        | 0.428       | 0.3718                               | 0.3701                          |  | 218                            | 0.539       | 0.548         | 0.4651      | 0.4728      |                         |               |
| 266                                        | 0.45        | 0.456       | 0.3889                               | 0.3940                          |  | 266                            | 0.56        | 0.558         | 0.4831      | 0.4814      |                         |               |

### Table C 2: Soluble U(VI) data

The following tables contain data for soluble U(VI) precipitated by inorganic phosphate released by *Cellulomonas* sp. ES6 in either PIPES or bicarbonate buffer under non-growth conditions. Soluble U(VI) concentrations were measured using unfiltered samples from serum bottle by KPA

|            |                                                |                |              |                          |  | -          |                |                |             |               |
|------------|------------------------------------------------|----------------|--------------|--------------------------|--|------------|----------------|----------------|-------------|---------------|
|            | Bicarbonate + 0.1 mM U(VI) [Cell free control] |                |              |                          |  | Bio        | arbonate + 2.0 | 7 mg DW œlls/i | ml+0.1mMU   | M)            |
|            | U(VI) concer                                   | ntration (ppm) | U(VI) concer | U(VI) concentration (mM) |  |            | U(VI) concer   | ntration (ppm) | U(VI) conce | ntration (mM) |
| Time (Hrs) | Replicate 1                                    | Replicate 2    | Replicate 1  | Replicate 2              |  | Time (Hrs) | Replicate 1    | Replicate 2    | Replicate 1 | Replicate 2   |
| 0          | 24.178                                         | 23.027         | 0.1016       | 0.0968                   |  | 0          | 23.48          | 22.983         | 0.0987      | 0.0966        |
| 12         | 23.615                                         | 22.188         | 0.0992       | 0.0932                   |  | 12         | 22.39          | 22.328         | 0.0941      | 0.0938        |
| 28         | 24.487                                         | 23.057         | 0.1029       | 0.0969                   |  | 28         | 21.349         | 22.92          | 0.0897      | 0.0963        |
| 45         | 25.076                                         | 23.117         | 0.1054       | 0.0971                   |  | 45         | 20.329         | 21.587         | 0.0854      | 0.0907        |
| 63         | 23.886                                         | 23.312         | 0.1004       | 0.0979                   |  | 63         | 11.323         | 11.32          | 0.0476      | 0.0476        |
| 80         | 23.252                                         | 23.961         | 0.0977       | 0.1007                   |  | 80         | 7.328          | 6.928          | 0.0308      | 0.0291        |
| 104        | 23.733                                         | 23.305         | 0.0997       | 0.0979                   |  | 104        | 4.302          | 4.401          | 0.0181      | 0.0185        |
| 128        | 23.433                                         | 23.601         | 0.0985       | 0.0992                   |  | 128        | 4.501          | 5.489          | 0.0189      | 0.0231        |
| 170        | 22.623                                         | 23.818         | 0.0951       | 0.1001                   |  | 170        | 5.298          | 5.228          | 0.0223      | 0.0220        |
| 218        | 22.865                                         | 23.148         | 0.0961       | 0.0973                   |  | 218        | 3.497          | 3.492          | 0.0147      | 0.0147        |
| 266        | 23.547                                         | 23.589         | 0.0989       | 0.0991                   |  | 266        | 2.187          | 2.482          | 0.0092      | 0.0104        |

| Bicarbonate + 2.07 mg DW cells/ml + 0.1 mM U(VI) + 0.1 mM AQDS |               |                |                         |             |  |  |  |  |
|----------------------------------------------------------------|---------------|----------------|-------------------------|-------------|--|--|--|--|
|                                                                | U(VI) concer  | ntration (ppm) | U(VI) concentration (mM |             |  |  |  |  |
| Time (Hrs)                                                     | Replicate 1   | Replicate 2    | Replicate 1             | Replicate 2 |  |  |  |  |
| 0                                                              | 23.498        | 22.439         | 0.0987                  | 0.0943      |  |  |  |  |
| 12                                                             | 24.375        | 22.368         | 0.1024                  | 0.0940      |  |  |  |  |
| 28                                                             | 23.479 23.493 |                | 0.0987                  | 0.0987      |  |  |  |  |
| 45                                                             | 22.347        | 22.478         | 0.0939                  | 0.0944      |  |  |  |  |
| 63                                                             | 22.308        | 22.193         | 0.0937                  | 0.0932      |  |  |  |  |
| 80                                                             | 21.392        | 21.328         | 0.0899                  | 0.0896      |  |  |  |  |
| 104                                                            | 20.397        | 19.329         | 0.0857                  | 0.0812      |  |  |  |  |
| 128                                                            | 17.38         | 16.329         | 0.0730                  | 0.0686      |  |  |  |  |
| 170                                                            | 14.297        | 15.287         | 0.0601                  | 0.0642      |  |  |  |  |
| 218                                                            | 8.362         | 7.217          | 0.0351                  | 0.0303      |  |  |  |  |
| 266                                                            | 3.492         | 2.541          | 0.0147                  | 0.0107      |  |  |  |  |

| PIPES + 1.24 mg DW cells/ml + 0.1 mMU(VI) |              |               |                          |             |  |  |  |  |  |
|-------------------------------------------|--------------|---------------|--------------------------|-------------|--|--|--|--|--|
|                                           | U(VI) concer | tration (ppm) | U(VI) concentration (mM) |             |  |  |  |  |  |
| Time (Hrs)                                | Replicate 1  | Replicate 2   | Replicate 1              | Replicate 2 |  |  |  |  |  |
| 0                                         | 24.576       | 23.943        | 0.1033                   | 0.1006      |  |  |  |  |  |
| 12                                        | 18.298       | 16.283        | 0.0769                   | 0.0684      |  |  |  |  |  |
| 28                                        | 9.265        | 7.267         | 0.0389                   | 0.0305      |  |  |  |  |  |
| 45                                        | 3.429        | 3.394         | 0.0144                   | 0.0143      |  |  |  |  |  |
| 63                                        | 1.379        | 1.323         | 0.0058                   | 0.0056      |  |  |  |  |  |
| 80                                        | 1.324        | 1.425         | 0.0056                   | 0.0060      |  |  |  |  |  |
| 104                                       | 1.534        | 1.624         | 0.0064                   | 0.0068      |  |  |  |  |  |
| 128                                       | 1.478        | 1.984         | 0.0062                   | 0.0083      |  |  |  |  |  |
| 170                                       | NA           | NA            | NA                       | NA          |  |  |  |  |  |
| 218                                       | NA           | NA            | NA                       | NA          |  |  |  |  |  |
| 266                                       | 1.437        | 1.526         | 0.0060                   | 0.0064      |  |  |  |  |  |