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 In this study, computational tools were developed to gather, process, and fit 

simulated data resulting from the Monte-Carlo simulation of low energy electron particle 

tracks in liquid water using the Positive Ion Track Simulation (PITS) code set.  To gather 

the data, the simulation space was packed with one micron diameter spheres in concentric 

rings to exploit angular symmetry, three million tracks were generated for initial beam 

energies ranging from 20 keV to 80 keV in 5 keV increments on a 16 node PC cluster, 

and histograms for stochastic quantities were tabulated for each sphere and placed in an 

XML file for archiving.  Computational routines wrapping a preexisting B-spline library 

were then created to approximate the probability distributions and summary statistics for 

any stochastic quantity over a domain of target location and beam energy.  Because of 

their biological significance, three particular quantities were chosen to illustrate the 

methods under varying conditions: the conditional mean of energy imparted ( Eμ ), which 

is a summary statistic with a relatively simple nature; the probability of a track reaching 

a target (Φ ), which is a summary statistic with large peaks in its data set; and the energy 
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deposited per unit tracklength of the primary particle (Λ ), which is a stochastic whose 

distributions are approximately lognormal.  For each of these quantities, approximations 

were created at various levels of refinement, with each approximation being tested for its 

storage requirements and its accuracy against a test data set.  A second method of 

approximation using lognormal probability distribution curves and the method of least 

squares was pursued on the distributions of Λ  for a set of locations and beam energies.  

Goodness-of-fit testing showed that these distributions may appear to be lognormal but 

are not statistically lognormal.  Finally, an investigation was undertaken to determine 

whether the representations developed for the one micron diameter spheres could be 

applied to larger targets by packing the targets with the spheres and somehow 

aggregating the results.  No methods were found for the stochastic representations, and 

methods that were assumed to work for summary statistics were shown to be inefficient. 
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1 Introduction 
 
 
 
 
 
 
 
 
 
 

1.1 Radiation and Charged Particle Tracks 
 

Radiation is all around us, in the air we breathe, the water we drink, and the land 

we stand on.  Technically, “radiation” in a given volume is comprised of particles that 

move through that volume.  Some of these particles have mass, such as the proton or 

electron, while the others are massless, such as photons from light or gamma radiation.  

Contrary to popular opinion, radiation is not always harmful to living organisms.  Its 

effectiveness at biological damage depends in large part on its type, strength, and how it 

interacts with cellular matter.  For example, the photons comprising white light in 

sunlight are not what burn your skin when you stay out in the sun too long.  Rather, it is 

the photons associated with the ultraviolet frequencies.  Radiation that has the ability to 

ionize atoms can be particularly damaging to cellular matter.  When an atom is ionized it 

is stripped of one or more of its electrons, thus creating a positive charge, and possibly 

giving the ejected electron(s) enough energy to themselves ionize other atoms.  Any 

incident particle has the ability to ionize target atoms depending on the particle type, its 

current state, and the target in question. 
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Photons are the massless particles that transport electromagnetic energy.  They can 

range from the very low energy photons associated with low frequency radio waves to the 

very energetic photons associated with high frequency gamma waves.  Up to an energy of 

about 10 MeV, photons interacting with matter lose energy by either ejecting an orbital 

electron via the photoelectric effect, transferring energy to an orbital electron via 

Compton scattering, or by producing an electron-positron pair in a process known as pair 

production, which is rare under most biological irradiation circumstances.  In the 

photoelectric effect, the entire target atom absorbs the photon and then ejects an electron 

with an energy of the photon minus the electron’s binding energy.  In light elements this 

process is dominant for photons up to 40 keV.  In Compton scattering, the photon’s 

energy is transferred directly to an orbital electron in the target atom rather than to the 

entire atom.  Upon photon absorption, the electron is ejected and a scattered photon is 

emitted, with only a fraction of the incident photon energy being transferred to the 

ejected electron.  Compton scattering is dominant for photons from 40 keV to 10 MeV 

[ICRU1983, pg. 7]. 

Neutrons are chargeless subatomic particles that ionize matter by transferring 

energy to the protons in hydrogen-bearing molecules and causing them to eject, or recoil.  

These recoiled protons then ionize atoms within the material because of their positive 

charge.  Neutrons, therefore, can play a significant role in ionizing biological matter 

because of its high hydrogen content, and in particular high water content. 

Unlike neutrons and photons, electrons and ions have a charge, and they interact 

with target atoms via the Coulomb force.  Electrons are subatomic particles each having a 

charge of -1, while ions can range from +1 charged subatomic protons to large complex 
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positively charged molecules.  In the case of these “charged particles”, their ability to 

ionize depends largely on their velocity, charge, and proximity to the target.  Slower 

higher charged particles moving closer to the target have a greater chance of causing an 

energy transference to the target. 

In the act of ionizing matter, particles in radiation eject electrons which can 

themselves be ionizing charged particles if a sufficient level of energy is transferred in 

the collision, typically on the order of 100 eV [ICRU1983, pg.11].  Otherwise, the 

ionized electron does not have enough energy to break the ionization threshold of further 

atoms and ends its life in a thermal death.  Many generations of ionizing electrons can be 

produced from the same parent electron.  In fact, a large fraction of the ionizations that 

take place from the track of a charged particle are made up of these children electrons.  

The first generation electrons then themselves act as irradiating charged particles, 

producing further generations.  All electrons produced by ionization are known as delta 

rays. 

A primary charged particle’s entire history of collisions, along with its ionized 

offspring and their collision histories, is known as a “track”.  Collisions can be either 

elastic, where the total kinetic energy of colliding particles is preserved, or inelastic, 

where energy is deposited to the target atom and an ionization or an atomic excitation is 

produced.  In the case of an atomic excitation, the energy is absorbed by electrons 

moving to a higher energy level.  Though the ratio of elastic events to inelastic events 

along a charged particle track is typically on the order of 10 to 1, virtually all of a 

primary particle’s initial kinetic energy is expended through inelastic events [ICRU1983, 

pg. 11].  For example, throughout the life of a proton with an initial energy of 1.5 MeV, 
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20% of the its initial kinetic energy is expended by overcoming the binding energy of the 

electrons it ionizes, 60% of the kinetic energy is transferred to the kinetic energy of the 

first generation of electrons released from ionization, and 20% of the energy is 

transferred to the target medium as atomic excitations [ICRU1983, pg. 11].  Surprisingly, 

the ratio of excitation to ionization energy losses in a track is independent of the nature 

and energy of the primary particle. 

 Figure 1-1 shows a sample segment from a 2 MeV helium ion particle track.  

Each sphere in the figure represents an energy depositing event, while the sphere’s color 

and size both represent the magnitude of the event.  The primary particle’s trajectory is 

straight because its relatively heavy mass prevents it from being scattered by the 

collisions it makes with the medium.  These collisions are in the form of ionizations and 

excitations with energies ranging from 10 eV to 35 eV in the figure.  The secondary 

electrons produced are low enough in energy that they almost immediately relinquish 

their energy in the form of heat after being produced.  This thin “fuzz” of delta rays is 

denoted by the small aqua spheres in the figure. 
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Figure 1-1: A 2 MeV helium ion particle track segment. 

 
 Notice how different the 25 keV electron track in Figure 1-2 is compared with the 

heavy ion track segment in Figure 1-1.  The mass of an electron is incredibly small 

compared with an ion, so it is easily deflected in its collisions with target atoms, 

especially as its kinetic energy decreases.  The beam entry point is on the right-hand side 

of the figure and the track endpoint is on the left-hand side.  Notice how the magnitude of 

energy depositions increases as the primary electron nears the track endpoint.  As 

mentioned earlier, this is because a slower moving electron has more influence on its 

surroundings. 
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Figure 1-2: A 25 keV electron particle track segment. 

 

1.2 Radiation Quality and Microdosimetry 
 

A crude measure of a radiation’s ability to inflict damage within a given volume of 

biological material is to calculate the total “dose” of radiation delivered to the volume.  

Dose is the energy deposited by the radiation per unit mass of material.  The dose 

delivered, however, only gives part of the picture.  The “quality” of the radiation, or how 

the radiation’s energy is distributed within the volume, has been shown to be important as 

well [ICRU1970, pg. 2].  This involves the number of energy depositions, along with 

their magnitude and spatial distribution.  Two differing radiations delivering the same 

dose to a biological target may result in two completely different levels of damage in the 

target, owing to the spatial extent of their energy depositions. 
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Analyzing the structure of each and every radiation track within a target to assess 

biological damage, however, is impractical.  A more manageable way of relating track 

structures to targets is to study the statistical nature of the tracks in various sized 

volumes.  A picture can then be constructed of how various ionizing radiations relate 

with target size and location.  This is the aim of microdosimetry.  Microdosimetry seeks 

to systematically analyze the microscopic distribution of energy and other quantities of 

interest in irradiated matter. 

Quantities that are generated in a fixed volume from a single track are considered 

stochastic.  Their value in a volume varies from one track to the next amongst the tracks 

that actually reach that volume.  The events along the track are governed by well-defined 

laws in Physics, but there is an element of randomness built into charged particle tracks 

that makes their event locations and magnitudes uncertain from one track to the next.  A 

mathematical tool called a probability density distribution can be built for a fixed volume 

and stochastic by running many tracks through the volume and collecting the results.  

This tool provides a description of the stochastic quantity and can predict the chances of a 

future track yielding a certain range of values for that quantity.  Assuming a fixed volume 

in the experiment space, examples of stochastic quantities include E, the total energy 

deposited by the track, L, the total path length of the track, and N, the number of 

ionization and excitation events within the volume. 

Quantities summarizing the behavior of multiple tracks traveling through a fixed 

volume, on the other hand, are non-stochastic in nature, if a sufficient number of tracks 

travel through the volume.  These quantities are known as summary statistics.  Their 

value approaches a limit within a volume as the number of tracks reaching the volume 
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approaches infinity.  Examples of summary statistics include the mean, variance, mode, 

and median of a data set. 

Figure 1-3 shows a hypothetical electron charged particle track moving through a 

circular target volume.  The primary particle track is represented by the thick curved line, 

while the delta rays are represented by the thinner lines.  Inelastic collisions are denoted 

by a large dot if an ionization has occurred and by a small dot if an excitation has 

occurred.  Most of the energy transferred in an ionization goes into the kinetic energy of 

the released secondary electron, but some is deposited to the medium.  The total energy 

deposited by the primary track and its delta rays can be found by adding up all of the 

individual energy deposits at the inelastic interaction points occurring in the volume.  A 

distribution of the energy deposited eventually emerges as many more tracks move 

through the volume. 
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X

X

X

X

 
Figure 1-3: A sample track moving through a fixed volume. 

 

1.3 Simulating Particle Tracks with PITS 
 

A physical experiment in microdosimetry is carried out by injecting a collimated 

microbeam of charged particles or high energy photons into a medium and positioning 

detectors within the experiment space to measure pertinent quantities.  Unfortunately, 

these experiments are often difficult to carry out and offer little hope in capturing the 

detailed history of the particle tracks.  Sometimes a physical experiment is necessary, 

such as when a measurable biological response is sought, or when theoretical models 

must be verified.  Otherwise, charged particle tracks are simulated through a medium of 

interest, such as liquid water, using Monte Carlo techniques.  Simulation offers the ability 

to record a detailed history of interactions over all of the tracks, run as many tracks as 
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time will allow, and change the simulation parameters and scoring geometry at will.  

These abilities open the door to studying statistical track characteristics and 

microdosimetry, where a multitude of tracks are necessary to build up the proper 

statistics. 

In Monte Carlo charged particle track simulations, the particle in question is given 

an initial energy and “injected” into a medium in the simulation space.  The medium is 

any chemical whose interaction with the charged particle needs to be studied, provided 

the Monte Carlo code can model the physics behind how the charged particle interacts 

with it.  In many circumstances the medium is water, since biological tissue is composed 

primarily of water.  Using a table of experimentally calculated interaction probabilities 

between the particle and medium—known as cross sections—as well as a pseudo-random 

number generator, the simulation code calculates the entire history of the particle’s 

interactions until the particle’s energy falls below a predefined limit.  The interaction 

histories of all delta rays are followed as well, until their energies too fall below the same 

predefined limit.  For each inelastic collision, a particle’s interaction history typically 

includes the spatial coordinates of the interaction, an identifier of whether the collision 

was an ionization or an excitation, the distance the particle has traveled since its last 

interaction, and the energy deposited in the interaction. 

An individual event in this interaction history is completely dependent on events 

that preceded it.  In other words, the events within a single track are correlated.  For 

multiple tracks the events from one track may be correlated with the events from another 

track depending upon the assumptions made by the simulation code.  Most of the time the 

assumption is that tracks are independent of one another, since the fluence rate in 
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microbeams is typically very low, thus limiting inter-track electromagnetic interactions.  

This simplifies the analysis of microdosimetric quantities by enabling a study of their per 

track behavior using a large number of tracks.  It also allows the study of their multiple 

track behavior through a technique in the field of statistics known as convolution. 

The Monte Carlo simulation code used in the current study is called PITS.  PITS, 

which stands for Positive Ion Track Structure, simulates independent charged particle 

tracks as they travel through and interact with water.  One version of the code uses the 

gas phase of water as the medium [Wilson, 1994], while an updated version uses the 

liquid phase [Wilson, 2004].  The PITS code set is comprised of a main driver module 

that handles the transport of positive ions, a module dedicated to the transport of 

electrons, and an optional “scoring” module.  It is in the scoring module where the 

behavior of individual tracks or the microdosimetry of the tracks within fixed volumes 

can be analyzed.  Running a PITS simulation involves writing the scoring module, 

compiling and linking the PITS code set, specifying the input parameters for the run, 

executing the run, and then analyzing the output data set.  The input parameters to a 

simulation include (but are not limited to) the primary particle’s initial kinetic energy, the 

particle’s type, the particle’s mass, and the number of particles in the simulation.  The 

output consists of either the scoring module’s results or the interaction history of the 

entire track. 

1.4 Goal of the Study 
 

PITS is a useful tool for analyzing the deposition of energy in biological structures, 

such as mammalian cells or nuclei.  A cell, for example, is made up of separate parts that 

could possibly respond differently to ionizing radiation.  Determining how the ionizing 
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radiation is distributed amongst the parts could help to determine the cell’s survivability 

to such radiation.  PITS is a tool for modeling such problems.  First a separate sub-

volume is defined for each component of the cell and the cell is oriented in relation to the 

microbeam entry point.  Then many ionizing particle tracks are generated that move 

through the cell’s components and deposit energy.  Finally, the scored simulation 

statistics gathered over all of the tracks are analyzed for each of the cell components.  

Miller, et al. [2000], used such an approach in their analysis of single-cell irradiation by 

an electron microbeam.  Changing a simulation parameter, however, would amount to 

rewriting the scoring module to reflect the changes and then rerunning the simulation.  

Simply translating the target cell to a new location, for example, would require such a 

rerun. 

Fortunately, it is possible to alter a parameter without having to rerun the 

simulation.  The key is to mathematically approximate how the quantity of interest varies 

with a change in the parameter.  Building this approximation, or representation as it will 

be called, involves running the simulation for many values of the parameter, gathering 

data points of how the quantity varies with the parameter, and then fitting the data with a 

smooth mathematical function.  Afterward, the representation would give the quantity’s 

value for any given value of the parameter within the parameter’s interval, assuming all 

other simulation parameters are constant. 

As an example of this process in action, consider the problem of having to rerun an 

simulation when a target is moved.  To prevent the rerun, a mathematical representation 

would have to be built relating the quantity of interest with the coordinates of the target.  

The simulation space would be packed with identical units of the target volume and many 
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tracks generated.  The result would be a set of data points expressing the quantity of 

interest in terms of the target’s location.  A mathematically smooth representation of this 

data set would then be calculated using one of many possible approaches.  The 

representation specifies how the quantity within the target varies as the target is moved 

anywhere over the simulation space.  The following fundamental questions can be 

answered from this packed space approach. 

• What is the probability of the track actually reaching a given target volume?  This 

is denoted by the symbol Φ . 

• If a particle track actually reaches a specified target volume, then what amount of 

energy is that track expected to deliver to the volume?  This is known as the 

conditional mean of energy imparted and is denoted by the symbol Eμ . 

• If a particle track actually reaches a specified target volume, then what is the 

probability that it will deposit energy per unit track length of the primary particle 

between λ  and λλ d+  within that volume?  The symbol λ  represents a 

particular value of the stochastic Λ , and the curve )(λΛf  is its probability density 

function. 

The major downside with such representations, however, is that only the 

parameter included in the representation can change.  Other simulation parameters must 

remain constant.  A representation can include multiple parameters by capturing data 

points of the quantity as a function of each parameter, but the problem still exists for all 

other parameters in the simulation.  Also, a representation’s complexity increases rapidly 

as the number of parameters is increased.  It is therefore best to limit the number of 

parameters in the representation as much as possible. 
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Parameters such as target location and beam energy are very natural to include in 

the representations because their values are easily confined within a logical set of 

boundaries.  Confining target shape and size, however, is another matter.  There are an 

infinite number of ways to specify the geometry of a target.  One idea for overcoming 

this limitation is to pack a larger target volume with representative target volumes whose 

microdosimetric behavior are known, and then calculate the larger volume’s results from 

the representative target results.  That way, the microdosimetry of any volume larger than 

the representative volume could be calculated. 

This approach was the motivation for producing the 1 micron diameter sphere 

representations in this thesis.  Through a set of preliminary calculations it was assumed 

that the method could be applied to at least the simpler case of non-stochastic quantities.  

From the outset, the stochastic quantities were known to be very difficult to handle.  

Their value in a given volume depends deeply on the track’s path history, therefore 

introducing a dependency between volumes at different locations.  Non-stochastic 

quantities, on the other hand, do not pertain to individual tracks, and so are not dependent 

on any individual path and its history.  Working from this piece of knowledge as well as 

the preliminary calculations, the representations using 1 micron diameter spheres were 

developed and an example problem involving a cell nucleus was formulated to use the 

representations.  Trying to solve the cell problem, however, led to the realization that the 

assumptions and preliminary calculations were flawed.  A detailed discussion of these 

issues can be found in Section 4. 

Despite the disappointment with the packing problem, the other goals of the thesis 

remain the same.  In general, the theme of the thesis is on the mathematical 
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approximation of discrete simulation data.  A major highlight of the paper, presented in 

Section 3.3, is on the creation of smooth mathematical representations of Φ , Eμ , and Λf  

using B-splines.  The targets are 1 micron diameter spheres, and the simulation 

parameters in the representation are the beam energy, ranging from 20 keV to 80 keV, 

and the target location.  A meticulous analysis of the fits for various levels of refinement 

is undertaken to determine the best overall fit given the fit’s storage requirements.  A 

second emphasis of the thesis is on modeling the Λf  distribution data using lognormal 

probability density distributions.  This is presented in Section 3.4.  Assuming a constant 

location and beam energy, lognormal distribution curves with two parameters are fitted to 

the data using a variety of methods from the field of statistics.  Based upon these fits, the 

data’s goodness of fit to the lognormal distribution is determined. 
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2 Methods 
 
 
 
 
 
 
 
 
 
 

2.1 PITS Monte Carlo Particle Track Simulator 
 

2.1.1 Overview and Structure 
 
 As mentioned in the introduction, PITS uses Monte Carlo simulation techniques 

to produce the detailed interaction histories for independent charged particle tracks and 

their children.  Once the simulation environment in initialized, the code determines the 

characteristics of each interaction in the track by utilizing a steady stream of random 

numbers, a table of interaction probabilities known as “cross sections”, and the principles 

of particle collision physics.  The simulation progresses until the path length of the 

primary particle has reached a user-defined limit, or until the particle’s energy falls below 

a threshold of 10 eV.  The delta rays are followed until their energy falls below the 10 eV 

threshold as well, whereupon they are assumed to dissipate the remainder of their energy 

as thermal heat to the medium.  The entire interaction history for each track is saved in a 

table for further analysis. 

PITS was originally developed to simulate short track segments of positive ions in 

the gas phase of water whose energy was assumed to be constant over the segment.  The 
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simulations in the current study use a modified version of PITS, where mono-energetic 

electrons are the primary particle, and their energy diminishes as the simulation 

progresses until they fall below the 10 eV threshold.  Further, the study uses the updated 

version of PITS that includes liquid water as the interaction medium. 

A diagram of the PITS code structure for this study is shown in Figure 2-1.  

Module pits.f is the main driver for the entire simulation.  It first reads in two files and 

stores their data in memory.  The first file, inpits.dat, contains data that defines the 

simulation, such as the number of tracks to be simulated, the initial energy of the primary 

particle, the starting coordinate of the particle microbeam, the maximum angle of the 

beam, and the seed for the random number generator.  The second input file, crossec.dat, 

contains the cross-section tables for the interaction probabilities between electrons and 

liquid water.  After reading in the files, tracks of the primary particle and its delta rays are 

computed.  All electron transport is calculated by module eltran.f, but if the primary 

particle is an ion then its transport is calculated directly by pits.f.  After the computation 

of a track, the entire interaction history for the primary electron and its delta rays is stored 

in the file ioncoord.dat, and any post-processing of the track is handled within scor.f, 

using scor_out.dat as the output file for the simulation results.  A setting in inpits.dat 

allows one to switch between scoring and creating the ioncoord.dat file.  New tracks are 

computed and scored until the maximum number defined by the user has been achieved. 
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inpits.dat

crossec.dat

ioncoord.dat

scor_out.dat

pits.f

scor.f

eltran.f

 
Figure 2-1: Diagram of the PITS code set.  Each block represents a module in the set, whereas the 

data files are represented by ellipses.  The arrows indicate the flow of data. 

 

2.1.2 The track_info Array 
 
 For every track calculated, PITS stores the track’s data in a two dimensional array 

that is freely shared between the PITS modules and the scoring routine module.  This is 

how the scoring routine gets its information about the track.  Overall, there are thirteen 

columns in the track_info array, one for each statistic that is recorded for a given track, 

and one row for every inelastic event and thermal death that is calculated.  If scoring is 

not requested, the information contained in track_info is written to ioncoord.dat as it 

appears in the array.  A description for each statistic is given in Table 2-1. 
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Column PITS 
Variable 

Description 

1 GenNo 

Generation of the particle creating the event. 
• GenNo = 1:  The primary particle created the event 
• GenNo = 2:  A child of the primary created the event 
• GenNo = n:  An nth generation particle created the 

event 
• GenNo = 96, 97:  Thermal death of a particle 
• GenNo = 99:  Secondary dies immediately 

2 Ityp 
Designates the type of event: 

• 12-16: excitation 
• 19-23: ionization 

3 deloss Energy the electron loses during the event in eV 

4 time 
User-defined column.  In this case, it holds the relative time 
of the event measured as the time it takes a 1eV electron to 
travel 1Ǻ. 

5 dedep Energy deposited at the interaction in eV 
6 w Energy of the particle entering the interaction in eV 

7 ds Distance traveled by the particle from the previous 
interaction to this interaction in Ǻ. 

8 x 
9 y 
10 z 

x, y, z coordinates defining the location of the event in 
Angstroms 

11 cx 
12 cy 
13 cz 

Direction cosines of the current particle along the x, y, and z 
axes.  Together, they define the new direction of the particle 
after the event. 

Table 2-1: Layout of the track_info array. 

 
 Table 2-2 contains the track_info array for an electron track segment generated 

by a 25 keV initial energy electron.  The direction cosines were removed from the table 

for clarity.  A graph of the generation numbers in Figure 2-2 illustrates visually how the 

events are linked to one another.  In the figure, inelastic collisions are represented by 

circles—double circles for ionizations and a single circle for excitations.  Thermal death 

events are denoted by boxes. 
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 Gen Ityp deloss dedep w ds x y z 

1 1 21 6.11E+01 1.66E+01 2.32E+04 2.22E+02 8.92E+02 2.47E+03 1.53E+04 

2 2 13 8.22E+00 8.22E+00 4.45E+01 1.54E+01 9.02E+02 2.48E+03 1.53E+04 

3 2 19 2.22E+01 1.20E+01 3.63E+01 2.24E+01 9.10E+02 2.49E+03 1.54E+04 

4 3 12 8.12E+00 8.12E+00 1.02E+01 6.94E+02 9.87E+02 2.40E+03 1.54E+04 

5 96 0 2.12E+00 2.12E+00 2.12E+00 6.27E+00 9.91E+02 2.40E+03 1.54E+04 

6 2 12 8.33E+00 8.33E+00 1.41E+01 3.57E+02 9.38E+02 2.50E+03 1.53E+04 

7 96 0 5.78E+00 5.78E+00 5.78E+00 5.26E-01 9.38E+02 2.50E+03 1.53E+04 

8 1 21 2.02E+01 1.66E+01 2.32E+04 2.51E+02 9.31E+02 2.54E+03 1.56E+04 

9 99 0 3.61E+00 3.61E+00 3.61E+00 5.18E-01 9.32E+02 2.54E+03 1.56E+04 

Table 2-2: Table of the events within a 25 keV electron track segment. 
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Figure 2-2: Visual depiction of the events within Table 2-2.Error! Reference source not found. 

 
Here is a description of the track segment’s event history: 

1. In the first event, the primary particle—with a generation number equal to one—

has an incoming energy of 23.2 keV and ionizes the medium. It loses 61.1 eV of 

its energy in the process.  The energy actually deposited to the medium is 16 eV, 

with the difference going into the kinetic energy of the freed electron.  The 

distance traveled by the primary particle between its last event and this event is 
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222Ǻ.  In addition, the location of the interaction is at (x,y,z) = (892 Ǻ, 2470 Ǻ, 

15300 Ǻ) relative to the beam entry point. 

2. In the second event, the electron freed from event 1, of generation 2, excites the 

medium. 

3. The second generation electron then ionizes the medium to produce a third 

generation electron. 

4. The third generation electron excites the medium. 

5. The third generation electron dies. 

6. The second generation electron is analyzed once again.  It excites the medium. 

7. The second generation electron dies. 

8. The first generation is analyzed once again.  It frees another electron through 

ionization. 

9. The freed electron dies immediately with no excitation or ionization of the 

medium. 

 Relating Table 2-2 with Figure 2-2 shows that the track_info array is a very 

simple data structure known as a stack.  Stacks are linear repositories of data that can 

only be accessed from their top element.  In this case the top element is the end of the 

array.  All events for a charged particle are pushed onto track_info until it creates a 

child through ionization.  The events of the child are then followed until it too creates a 

child.  This process continues until a thermal death occurs, wherein the parent of the 

dying electron is followed.  Viewing Figure 2-2 as a tree, each item is placed on the stack 

in a depth first manner. 
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2.2 The Scoring Routine 
 
 As previously mentioned, track scoring is optional with PITS.  If it is requested in 

inpits.dat, then an additional module must be supplied and linked with the PITS project.  

PITS interfaces with this module through a set of subroutine calls with specific names 

and parameters.  PITS drives the scoring process by calling each of these subroutines at 

the appropriate time in the simulation.  The first scoring subroutine to be called, before 

any tracks have been generated, is inlinit().  This is the place to initialize the scoring 

structures, read in the scoring parameters from the inpits.dat data file (or another file), 

and carry out any tasks that need to be accomplished prior to the calculation of the tracks.  

As track generation ensues in the main loop of PITS, the score() function is called to 

process each track.  Scoring usually involves looping through the track_info array 

event by event, analyzing a quantity of interest, such as the energy deposited within a 

site, and then building up a histogram of that quantity.  Analyzing the energy deposited 

for a single spherical site, the algorithm would look like this: 
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energy_deposited = 0 eV 

for each event 

 (event_x,event_y,event_z) = x,y,z coordinates of event 

(site_x,site_y,site_z) = x,y,z coordinates of site 

 

r_squared = (site_x – event_x)^2 + (site_y – event_y)^2 +  

 (site_z – event_z)^2 

R_squared = (radius of sphere)^2 

 

if r_squared < R_squared 

// This event is within the target sphere 

 

energy_deposited = energy_deposited +

 energy_deposited_this_event 

 endif 

endfor 

  

// Bin energy_deposited in the histogram for energy deposited 

// Histograms will be covered in Section 2.3.2.1 

 

Algorithm 1: Analyzing energy deposited for a single spherical site. 

 
Finally, after the PITS main loop executes, the subroutines add_freq() and outpfin() 

are called.  In add_freq(), the scoring data structures from each of the processes are 

aggregated to a single process.  Subroutine outpfin() performs cleanup duties such as 

freeing allocated memory and outputting information to the scoring file scor_out.dat. 

2.2.1 Running PITS in Parallel 
 

Because particle tracks in a PITS simulation do not interact with each other, the 

tracks can easily be calculated and scored in parallel on separate processors.  The scoring 

results can then be combined and analyzed on a single processor.  This track 

independence makes the PITS code embarrassingly parallel, meaning that there is little 

cross-talk between processes.  The speedup in this case is almost perfect: running PITS 
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on p processors makes the parallel code almost p times faster than the serial code.  For 

example, if it takes 20 minutes to run the serial version of PITS, then the parallel version 

should probably run in about 4 minutes on 5 processors.  In this case the speedup is about 

5. 

MPI, or Message Passing Interface, is the parallel computing library used by this 

study.  It is currently the de-facto standard library used on machines with processors and 

memories that are independent from one another.  On such machines, every processor is 

separate from every other processor, and each processor has its own independent memory 

bank.  To run an MPI program, the source code is compiled using a special MPI 

compiler, a copy of the executable is loaded onto each processor, and the executables are 

run simultaneously.  The executables run independent of one another but share the same 

original source code.  Programming for MPI can therefore be a bit tricky.  

Communication is achieved between the processes via messages.  The simplest messages 

in MPI are the send and receive commands, where a process can send data to a target 

processor or receive data from a target process, respectively.  More complex message 

passing schemes include the communication of a message to all processes at once, known 

as a one-to-all-broadcast, as well as the summation of a variable from all the processes, 

known as a reduction. 

Some minor changes to the code had to be made in order to run PITS in parallel.  

The modules affected were the main driver, pits.f, as well as the scoring module, scor.f.  

In the new code, the header file associated with the MPI library, mpif.h, is #included at 

the top of the modules.  MPI is then initialized by calling a set initialization functions 

from its library.  These functions return the number of processors being used on the 
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system as well as the id of the current process.  The tracks are then divided amongst the 

processors in the source code as illustrated in Algorithm 2: 

 

// Divide the tracks equally among the processors 

num_tracks_this_processor = num_tracks/num_processors 

 

// If there is a remainder then give the slack to processor 0 

extra_tracks = modulus(num_tracks, num_processors) 

if (extra_tracks != 0) 

if (id == 0) 

num_tracks_this_processor = num_tracks_this_processor + 1 

 endif 

endif 

 

// Process each individual track 

for track = 1 to number_of_tracks_this_processor 

// Produce the history of one ion track 

// Score the track 

endfor 

 

Algorithm 2:  PITS main driver loop using MPI 

 
The tracks are distributed as evenly as possible amongst the processors by dividing the 

total number of tracks by the number of processors.  The extra tracks, created by taking 

the modulus of num_tracks and num_processors , are absorbed by processor zero.  For 

example, suppose that num_tracks is 35 and num_processors is 4.  Then each processor 

gets 35/4 = 8 tracks and processor zero gets an additional set of tracks equal to 

modulus(35,4) = 3.  Finally, after processing the tracks in the scoring module, the results 

are aggregated to processor zero by calling the MPI reduction function, and then the MPI 

shutdown function is called to complete the program. 

2.2.2 Random Numbers Using SPRNG 
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 New issues are encountered with random number generation when you parallelize 

a Monte Carlo simulation code.  It is also imperative that a reliable random number 

generation algorithm be used for the Monte Carlo simulations, which typically require the 

generation of millions of random numbers.  In general, a parallel random number 

generation system should 

1. provide “high quality” pseudo-random numbers in a computationally inexpensive 

and scalable manner; 

2. provide totally reproducible streams of parallel pseudo-random numbers, 

independent of the number of processors used in the computation and of the 

loading produced by sharing of the parallel computer; 

3. allow for the creation of unique pseudo-random number streams on a parallel 

machine with minimal inter-processor communication; and 

4. be portable between serial and parallel platforms and must be available on the 

most commonly used workstations and supercomputers. 

 A random number package, called SPRNG, incorporates these features.  It 

provides interfaces written in C and FORTRAN to facilitate uncorrelated pseudo-random 

number streams on different processors, with minimal inter-processor communication.  

Version 0.1 of SPRNG has been implemented in the version of PITS used for this study. 

2.3 Multiple Independent Electron Track Statistics in 
Cartesian Space 

 
 In this section the statistical tools necessary to characterize the distribution of 

radiation in the simulation space are developed.  The section begins by describing the 

scoring geometry that will be used and outlining its advantages over other geometries.  A 
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mathematical review is then made of important topics needed for reference in the body of 

the paper, namely histograms, probability distributions, probability concepts related to 

PITS, the estimation of parameters, and goodness of fit testing procedures.  Following the 

review, a discussion is made of the spatial nature of electron scattering wherein the 

concept of p90 is introduced.  The section finally closes with a discussion of the 

reasoning behind using 1 micron diameter spheres as the targets in the representations. 

2.3.1 Cylinder Scoring using Packed Spheres 
 
 As introduced in Section 1.4, in order to characterize how microdosimetric 

stochastic quantities get distributed in space, the target volume absorbing the quantity 

must first be identified.  The simulation space is then packed with identical versions of 

this volume to get a spatial sense of how the radiation quantity is deposited within that 

particular target when a simulation is run.  The resulting data is only pertinent for targets 

identical with those used to create the data, both in geometry and location.  Representing 

the data with a hypersurface, obtained through either interpolation or a best fit 

approximation, opens the door to predicting the quantity’s deposition for targets between 

the original target sites.  This information, however, is still only valid for targets of the 

same dimensions as the original.  If the original targets were one micron diameter 

spheres, for example, then all future questions about radiation deposition only pertain to 

one micron diameter spheres. 

 Which target geometry and packing orientation, then, would best characterize the 

distribution of radiation in terms of generality, accuracy, flexibility, and applicability to 

real-world biological problems?  Packing cubes in the simulation space would fill the 

entire space and capture every single event from the tracks, yielding the most statistically 
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accurate results for the same number of tracks.  But cells and cell parts are not cubic in 

nature, and this arrangement must use all three spatial dimensions.  Spheres, on the other 

hand, are easier to work with.  They are the best general-purpose target for building the 

hypersurfaces.  How the spheres are packed, however, can make a huge difference.  

Packing them like a pile of oranges at a grocery store or in a cubic array does not exploit 

the symmetry inherent in the PITS simulation space. 

 For a very large number of tracks, the beam of electrons naturally has azimuthal 

symmetry around the beam entry point.  A given track is equally likely to move in any 

angle around its entry point and the statistical quantities only depend on radius and 

penetration.  It therefore makes sense to exploit this symmetry by running the simulation 

in a three-dimensional (x,y,z) space, and then summarizing the statistics to a two-

dimensional (r, h) space. The two-dimensional space is constructed by packing the 

spheres in concentric rings as illustrated in Figure 2-3.  Then a sphere’s location is 

identified by its distance above the beam entry point, h, and its distance, r, from the beam 

entry point on the bottom (x,y) plane.  Statistically, all spheres within a given ring are 

assumed to be identical.  Using six rings of packed spheres and four layers of rings would 

result in the two-dimensional layout illustrated in Figure 2-4. 
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Figure 2-3: Physical arrangement of packed spheres in the simulation space necessary to take 

advantage of the natural azimuthal symmetry of the electron microbeam. 
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Figure 2-4: Pictorial of spherical target sites in radial distance, r, and penetration, h.  Each sphere in 

the diagram on the left has a ring of equivalent spheres in the simulation space.  Data is presented 
only for the (r,h) space, but simulation statistics are gathered in the (x,y,z) space. 

 
 The question for all simulations using cylinder scoring is the following: “If an x 

micron radius spherical target is placed a given distance in radius (r), penetration (h), and 

angle (θ ) from the beam entry point, then, given that a track reaches the sphere, what is 

the probability distribution of a particular statistic?”  The problem, therefore, has two 

parts: finding the probability that a particle will actually make it to a given sphere in three 
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space, and finding how a given statistic is distributed once the sphere is hit.  The 

mathematics for answering such questions is covered next. 

2.3.2 Mathematical Background 
 

2.3.2.1 Histograms and Probability Density Distributions 
 
 Think of a histogram as a group of bins that represent values.  As an “experiment” 

proceeds, these bins are then filled with items depending upon the value of the item.  For 

example, suppose the first bin of a histogram represents the value ‘1’.  Then if ‘1’ occurs 

in the experiment, an item must be placed in the first bin.  The total number of items in 

the first bin at the end of the experiment represents the total number of ‘1’s that occurred 

in the experiment. 

 When a statistic is “scored” for a track at a site, the values of that statistic for all 

events taking place within the site are added together and the histogram bin associated 

with that statistic is incremented.  As additional tracks are run, the histogram keeps track 

of the counts of the statistic’s values.  For example, after one hundred tracks, bin three, 

corresponding with an energy deposited between 200 eV and 300 eV, may contain the 

value of ten, which means ten out of one hundred tracks deposited energy in that range. 

 A decision must be made on the binning system to be used.  A histogram typically 

has bins of equal size so that the height of the resulting probability distribution is 

independent of the bin width used.  Many quantities in a given PITS simulation, however, 

occur primarily at low values, and occur less frequently as their value increases.  For 

example, the energy that a single 25 keV electron microbeam track deposits within a one 

micron diameter sphere is most likely around 1 keV, yet depositions of 10 keV are 
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possible.  It is for this reason that a logarithmic binning system was developed for most 

PITS quantities.  Every logarithmic bin has four linear bins within it.  The first 

logarithmic bin is centered at 1.5 and has a total width of 1.0.  It is split into four sub-bins 

of width 0.25 each.  The second logarithmic bin has a width of 2.0, meaning the nth 

logarithmic bin has a width of 2n-1.  In the case of energy deposited, the bin centers and 

widths would be in units of eV.  Any unit pertaining to the quantity at hand may be used 

for the bins. 

 A histogram must be adjusted, however, if unequal bin widths are used.  An 

adjustment is necessary because the number of tallies in a bin interval is represented in a 

histogram by the area under the histogram over that interval, calculated by taking the 

count in the bin times the width.  Wider bins would have larger areas for the same 

number of tally counts.  This effect must be compensated for by dividing the height of  

each bin by its width.  Then the area of all bins in the histogram would be equal to their 

respective tally counts. 

 The probability density distribution for a quantity results from dividing the height 

of the histogram at each bin by the total number of trials.  This distribution is useful 

because the area under it for a contiguous series of bins gives the probability of the 

quantity lying within those bins.  If the height of a bin is four and its width one, then the 

probability density at that bin after ten trials is 4/(1x10) = 0.4 and the probability of the 

quantity in question lying within the bin is 1x0.4 = 0.4.  The example in Table 2-3 shows 

these principles in more detail.  It calculates the probability density distribution for a 

histogram with 6 unequal bin widths and a total of 21 trials.  The probability of the 

histogram’s quantity lying within the first i bins is given in the last column.  Notice that 
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the probability of the quantity being in any of the bins is one, or 100%.  A visual 

representation of the original histogram and its transformation into a probability density 

distribution is given in Figure 2-5. 

Bin=i Center=Ci Width=Wi Height=Hi Hi/Wi Pi = Hi/Wi/num_trials Area up to right edge of bin 

1 0.5 1 1 1 0.048 0.048 

2 1.5 1 3 3 0.143 0.191 

3 3 2 8 4 0.190 0.571 

4 5 2 6 3 0.143 0.857 

5 6.5 1 2 2 0.095 0.952 

6 7.5 1 1 1 0.048 1 

Table 2-3: Example histogram table for a size bin unequal width histogram. 
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Figure 2-5: Visual representation of Table 2-3.  The diagram on the left is a histogram that has not 
been normalized with respect to its bin widths.  The diagram on the right is a proper probability 

density distribution for the histogram. 

 

2.3.2.2 PITS Probability Density Distributions 
 
 Since the behavior of tracks reaching any sphere in a ring at radius r and 

penetration h is statistically the same, a single histogram can be built for all targets in the 

ring.  The probability density distribution resulting from this histogram then applies to 

any sphere located in the ring, independent of the number of spheres in the ring.  A 
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histogram’s height is incremented at bin i when a track crosses one of the spheres in the 

ring and deposits the a value of the stochastic associated with that bin.  Letting 

ix = center of scoring bin i, 

ixΔ  = width of scoring bin i, 

ihrn ),(  = bin height for a scoring site ring with radius r  and penetration h , 

the probability density function within an equivalent sphere at ring ),( hr  for the 

stochastic X and bin i becomes 

 
∑
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Δ
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where N is the total number of bins in the histogram.  Once a track reaches a particular 

site at srr =  and shh = , the probability of the track depositing the stochastic X within the 

interval ],[ ba xx  from bin a to bin b is given by the equation 

 i

b

ai
ssiXba xhrxfxXxP Δ=<≤ ∑

=

),,()( . (2) 

The probability of the track depositing X over all values of x is 1.  In the limit as the 

number of bins approaches infinity and their width approaches zero, the probability 

density function, ),,( ssiX hrxf , becomes a continuous curve, and probabilities are directly 

related to areas under the curve.  In mathematical terms, the sum becomes an integral, 

and the expression for the probability becomes 

 ∫=<≤ b

a

x

x ssba dxhrxfxXxP ),,()( . (3) 

2.3.2.3 Computing the Moments of a PITS Distribution 
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 The first moment of a stochastic’s distribution about the origin is the weighted 

average or “mean” of the stochastic.  Given an arbitrary r and h, for the discrete PITS 

probability density function in (1) it is given by the equation 

 ∑
=

Δ==
N

i
iiiX xhrxfxxEhr

1

)1( ),,()(),(μ , (4) 

with N being the total number of bins in the distribution and )(XE  being read as “the 

expected value of x”.  The area over the thi  bin, iiX xhrxf Δ),,( , can be thought of as the 

“weight” of the stochastic at that bin, and the summation of the stochastic over all of 

these weights gives its central tendency.  Taking this concept further, the second moment 

of the stochastic about the origin is the sum of the stochastic over all of the bins raised to 

the second power, and the n moment about the origin is the sum of the stochastic over all 

of the bins raised to the thn  power, or 
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When the distribution is continuous, the sum in Equation (5) becomes an integral that is 

evaluated over the entire domain of x.  If x’s domain is the interval ),( +∞−∞ , for 

example, Equation (5) becomes 

 ∫
+∞

∞−
== dxhrxfxxEhr nnn

X ),,()(),()(μ . (6) 

 The preceding are moments about the origin.  Moments can also be calculated 

about any other value of x, with moments about the mean being particularly useful.  The 

second moment about the mean, for example, gives a measure of the dispersion of the 

distribution about the mean, and is known as the variance.  For a continuous PITS 

distribution, the n moment about the mean Xμ  is given by 
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2.3.2.4 Computing the Probability of Reaching a Spherical Target in the 
Cylindrical Scoring Model 

 
 In the cylindrical scoring model, the probability that a particle will reach a given 

spherical target is the product of two separate probabilities.  It is the probability of the 

particle reaching the ring of spheres containing the target multiplied by the probability of 

the particle reaching a particular sphere within the ring once the particle has reached the 

ring.  Letting 

ihrn ),( = bin height for a scoring site ring with radius r and penetration h, 

t  = number of tracks in the simulation, 

)(rs  = number of spheres in a ring at radius r, and 

the probability that a particle will reach a given spherical target in the cylindrical scoring 

model is 
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for N total bins in the histogram.  The overall probability of a track depositing the 

stochastic X within the interval ],[ ba xx  at a given site centered at srr =  and shh = , for 

example, is 
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2.3.2.5 Normal and Lognormal Probability Distributions 
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 A stochastic X is said to be normally distributed with parameters μ  and σ  if its 

probability density function is given by 

 ∞<<∞−⎟
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Referring to Figure 2-6 (a) with parameters 0=μ  and 1=σ , this function is the 

recognizable “bell” curve that describes a wide range of phenomenon, such as the 

distribution of foot sizes amongst people or the distribution of their intelligence quotients.  

The integral of )(xhX  cannot be analytically evaluated, but using the fact that 

1)( =∫
∞

∞−
dxxhX , along with integration by parts, the calculation of )1(

Xμ  for )(xhX  yields 

μ  exactly, while the calculation of its variance yields 2σ .  The median, or point m such 

that 2
1)( =< mXP , as well as the mode, or peak of the distribution, are identical with the 

mean for the normal distribution because of the distribution’s symmetry about the mean. 

 For a positive stochastic X, if the stochastic )ln(XY =  is normally distributed 

with mean μ  and variance 2σ , then X is lognormally distributed with parameters μ  and 

2σ .  The lognormal distribution is often used in simulations of variables such as personal 

incomes, age at first marriage, or tolerance to poison in animals. Applying the 

transformation )ln(XY =  to Equation (10) yields a distribution for X of the form 
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The graph of a lognormal distribution function with parameters 0=μ  and 1=σ  is given 

in Figure 2-6 (b).  Notice how the function rises quickly up to a peak and then 

exponentially decays after that.  Also notice that the mean, median, and mode each have 
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three different values.  For a general set of parameters, the mean, median, and mode are 

2
2
1σμ+e , μe , and 

2σμ−e , respectively.  If the mean is denoted by α then the variance 

is 222 ηαβ = , where 1
22 −= ση e  [Aitchison, 1957]. 
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Figure 2-6: Normal distribution and lognormal distribution with parameters (μ , 2σ ) = (0, 1), respectively. 

 

2.3.2.6 Estimation of Distribution Parameters 
 
 Often a data set is known to be governed by a particular distribution, such as a 

normal distribution, but the parameters of the distribution are unknown.  There are 

several methods that can be employed to find these parameters, each with varying levels 

of success given the characteristics of the data set.  Four different methods of finding 

these point estimates are given below: 

 

1. Method of nonlinear least squares 

 In the method of nonlinear least squares, the unknown parameters in the 

distribution curve are determined such that the sum of the squared deviations between the 

distribution and data points is minimized.  This method is more or less “brute force”, 
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ignoring the statistical properties of the underlying distribution, and many points 

spanning the entire distribution must be supplied for a successful fit.  The technique of 

fitting with nonlinear least squares will be highlighted in Section 2.5.5. 

 

2. Probability plotting 

 Probability plotting involves linearizing the distribution and plotting the data on a 

special type of paper such that the parameters can be determined from the best fit line 

through the data.  This process can be automated using linear least squares on the 

transformed data set.  Probability plotting is cumbersome and requires special tables and 

plotting axes for each distribution used.  Therefore, it will not be considered in this paper. 

 

3. Method of maximum likelihood 

 In the method of maximum likelihood, each data point is assumed to come from 

the distribution being considered, and as a consequence has a certain probability of 

occurring.  Finding the joint probability density function for all of the data points and 

then maximizing this likelihood function (or its natural logarithm) with respect to the 

unknown parameters gives parameters that are most compatible with the data.  For a 

single parameter θ , if nXXX ,,, 21 K is the randomly sampled data set from the 

distribution );( θxf X , then the likelihood function is 
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For the normal distribution, after creating ),( 2σμL  and then maximizing its natural 

logarithm in terms of μ  and 2σ , the maximum likelihood estimators μ̂  and 2σ̂ of μ  and 

2σ  become 
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which are just the mean and variance of the data set, respectively.  The maximum 

likelihood estimators for the same parameters in the lognormal distribution are 
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Maximum likelihood estimates have nice properties [Larsen, 1986], but they can be 

difficult to compute for certain distributions. 

 

4. Method of moments 

 The method of moments finds the estimates by setting the distribution moments 

equal to their corresponding data moments and then solving the resulting equations for 

the estimates.  This method is often easier to execute than the method of maximum 

likelihood and produces “reasonable” estimators, but the estimators are not guaranteed to 

have the nice properties associated with maximum likelihood estimators. 

 Let the jth data moment be denoted by ∑
=

=
N

i

j
i

j
X x

N
m

1

)( 1 .  For the normal 

distribution there are two unknown parameters, so the first two data and distribution 

moments are needed to find the parameters.  Plugging the estimators into the first two 

distribution moments and then setting them equal to the first two data moments gives 

)1(ˆ)( XmXE == μ  and )2(222 ˆˆ)( XmXE =+= μσ , 
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so 

 )1(ˆ Xm=μ and 2)2(2 ˆˆ μσ −= Xm . (15) 

For the lognormal distribution, the same process gives 

( ) )1(2
2
1 ˆˆexp)( XmXE =+= σμ  and ( ) )2(22 ˆ2ˆ2exp)( XmXE =+= σμ , 

meaning 

 ( ) ( ))2(
2
1)1( lnln2ˆ XX mm −=μ  and ( ) ( ))1()2(2 ln2lnˆ XX mm −=σ . (16) 

Notice how the maximum likelihood method and method of moments each give identical 

estimators for the normal distribution parameters but different estimators for the 

lognormal distribution parameters. 

2.3.2.7 Goodness of Fit Testing 
 
 Often an experimenter wants to know if a given data set is governed by a 

particular probability density distribution.  In the discipline of statistics there exists a 

standard way of determining this.  Known as goodness of fit testing, it involves arranging 

the data in non-overlapping intervals, estimating the parameters if needed, calculating a 

statistic known as a chi-square for each interval, and then rejecting the hypothesis that the 

data fits the distribution if the sum of the chi-square statistics is greater than a certain 

value for a given level of confidence.  The chi-square statistic here essentially measures 

the relative error between the expected frequency from the distribution within the interval 

and the observed frequency.  A very large chi-square means the data does not fit the 

distribution well at all.  Details of the goodness of fit testing process will not be 

introduced here.  Rather, it will be introduced in Section 3.4.3 where it will be applied to 

data for the stochastic quantity Λ  at a given location and beam energy. 
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2.3.3 Statistical Nature of Electron Scattering 
 
 Two primary factors are at work in determining the degree of scattering for a 

charged particle as it travels through matter.  The first factor is the particle’s mass.  

Heavy particles, such as ions, tend not to scatter much because their mass is comparable 

to the mass of the atoms in the medium.  Electrons, which are much lighter than the 

atoms in the interaction medium, tend to scatter a great deal.  The kinetic energy of the 

particle is also a consideration in its degree of scattering.  Slower particles have a greater 

impact on their colliding neighbors, so they can scatter with a greater angle than faster 

moving particles.  These factors explain the track of a typical 25 keV electron from a 

PITS simulation as shown in Figure 1-2.  The electron initially has enough kinetic energy 

to retain its forward direction, but then tends to curve to a greater extent as its energy 

decreases. 

 The nature of the mono-energetic electron beam is also dependent on the average 

lifetime of the electrons and their average number of events.  These in turn are dependent 

on the initial energy of the electrons.  Higher energy electrons produce longer tracks with 

more events.  The number of inelastic events, for example, varies linearly with the beam 

energy, which is evident in Figure 2-7. 
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Figure 2-7: Graph showing the number of inelastic events versus the beam energy computed from a 

series of PITS simulations. 

 
 The quantity Φ , defined in Equation (8), gives a picture of the collective nature 

of the tracks in a mono-energetic electron microbeam.  In the present study it represents 

the probability that an electron track will reach a one micron spherical site at various 

locations in forward and radial penetration.  Figure 2-8 shows )(log10 Φ  versus radial 

penetration (r) on the x-axis and forward penetration (h) on the y-axis for 25, 50, and 80 

keV electron microbeams.  The beam entry point is on the lower left of the sub-figures.  

Notice from the red peaks that the beams have a high propensity to propagate forward 

near their entry points and then diffuse outward as the electrons lose energy.  These high 

probability areas near the entry points are actually about the same size for all energies, 
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extending about 10 microns along the beam axis.  The very low probability outer 

boundaries extend to 14 microns for the 25 keV case, 40 microns for the 50 keV case, 

and 85 microns for the 80 keV case.  Notice how rapidly Φ  drops off in each subfigure, 

remembering that these are log plots.  In the 25 keV case, Φ  is 1100 =  for a 1 micron 

diameter spherical target lying right above the beam entry point.  For a sphere centered at 

h = 9.5 microns and r = 9.0 microns, Φ  is 63.510−  = 2.339E-06, a very low probability. 

25keV 80keV50keV

r

h

 

Figure 2-8: ( )),(log10 hrΦ  contour plots for 25keV, 50keV, and 80 keV electron microbeams, 
respectively. 

 
 The distance from the beam entry point at which 90% of a beam’s energy has 

been absorbed is called the “p90” of that beam.  Every mono-energetic electron 

microbeam of a given energy has a unique p90.  In the case of the 25, 50, and 80 keV 

beams using the liquid-based PITS model, it is 8.7, 26.8, and 56.2 microns, respectively.  

The p90 is measured by placing concentric spherical shells centered at the beam entry 

point in the simulation space, simulating many particle tracks, and then measuring the 

track energy depositions within each shell.  The shell that envelops 90% of the deposited 

energy represents the p90.  A graph of the p90 for beam energies between 20 keV and 80 

keV is shown in Figure 2-9.  Notice that the p90 is approximately quadratic over this 
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range.  The p90 values will become valuable later in the thesis when the (r, h) spatial 

axes for each beam energy will be scaled by its corresponding p90 to develop a common 

spatial grid. 
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Figure 2-9: Beam energy versus p90 for the liquid-based PITS model. 

 

2.3.4 Choice of Target Size: 1 micron Diameter Spheres 
 
 Remember that once a target is chosen in the cylindrical scoring scheme, all 

future inferences of the scoring data must pertain to targets of that exact size.  So why use 

one micron diameter spheres?  What is so special about them?  Spheres of any diameter 

could be used, but one micron diameter spheres were chosen primarily for the following 

reasons. 
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1. Targets in microdosimetry have historically been cell nuclei, which have 

dimensions on the order of a micron (versus a nanometer). 

2. They have set a precedent.  Experimenters were using them before the modern 

study of molecular biology. 

3. They are convenient to work with.  Spheres are easier to define and score within 

the code than other volume geometries. 

4. Packed spheres of this size are small enough to generate data with a sufficient 

level of detail over the simulation domain, yet large enough to make the data set 

size manageable. 

2.4 Production and Visualization of Stochastic Distributions 
 
 This section gives the nuts and bolts of gathering and processing the stochastic 

distribution data from PITS simulations.  It describes the software developed to run the 

PITS simulations, build histograms for the stochastic distributions, parse the resulting 

data files, and process the resulting distributions. 

2.4.1 Scoring with Module scor_s.f 
 
 As described earlier in Section 2.2, the scoring module is the place in the PITS 

code where generated tracks are analyzed.  The module used for scoring in this study is 

named scor_s.f.  In the function inlinit() it sets up the binning system and geometry 

describing the cylindrically packed spheres.  To process a track in the function scor(), it 

loops through the events from the track and determines the amount of each stochastic 

accumulated in the spheres.  The amount is then binned in the histogram for that 

stochastic and ring where the sphere resides.  There is one histogram per stochastic per (r, 
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h) ring.  After all of the tracks have been calculated, the function add_freq() is called to 

aggregate the histograms onto one processor and outpfin() is called to write an XML 

data file of the histograms.  The actual probability distributions are calculated and 

analyzed by post-processing scripts.  Table 2-4 shows the per-track stochastics scored by 

module scor_s.f.  A detailed pseudocode listing for scor_s.f is given in the appendix. 

Stochastic Description 

E  Total energy deposited by all events in the track  

pE  Total energy deposited by the primary particle only 

L  Total length of the track, including the primary particle and delta rays 

pL  Total length of the primary particle’s track 

Λ  pLE  

Λ′  LE  

Λ ′′  pp LE  

pN  Total number of primary inelastic events 

Table 2-4: Per-track stochastics scored by module scor_s.f. 

 
 When scor_s.f was originally written, it allocated a FORTRAN array for the 

accumulation of each stochastic.  The number of cells in each array was equal to the 

number of cylinders times the number of layers times the maximum number of sites in 

the cylindrical rings.  For very large domains, such as the 80 keV case with tracks 

reaching as far as 100 microns from the beam entry point, the memory usage of these 

arrays was prohibitive.  Since each track only goes through a very small percentage of the 

packed target spheres, a sparse representation of the arrays was a logical fix for the 
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memory issue.  The implementation of a sparse array involves using one array to hold the 

quantity of interest and another array to hold the indices for that quantity.  Only non-zero 

items are stored in these arrays.  The energy deposited for a site at layer 4, cylinder 5, and 

sphere 6 within the cylinder would have the indices (4, 5, 6) stored in the indices array 

and the accumulated energy stored in the energy deposited array. 

 The data generated by a PITS simulation made with scor_s.f is encapsulated 

within a hierarchy of tags that conform to the XML 1.0 standard.  Each of these files 

contain both a header section and a frequency distribution section.  The header section 

contains data that describes the simulation setup, such as the time and date, the input 

parameters needed by PITS, the binning geometry, and the packed sphere geometry.  The 

frequency distribution section has a layer→ cylinder→ stochastic tag hierarchy as shown 

in the XML snippet below: 

 

<frequency_distribution> 

<layer id="1"> 

<cylinder id="1"> 

<E histogram> 
count for histogram bin 1 

count for histogram bin 2 

M 

</E histogram> 

M 

</cylinder>           

M  

</layer > 

M  

</frequency_distribution> 

 

Figure 2-10: XML code snippet showing the scor_s.f frequency distribution storage scheme. 
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The individual histogram bins are represented by a single line of integers separated by 

spaces.  XML was used in order to make the data files self-describing and to take 

advantage of the plethora of XML parsing libraries and tools that are available to 

developers.  Caution should be heeded, however, when choosing to store data within 

XML tags.  The parsing of large XML files can be very slow and memory intensive. 

2.4.2 Gathering the Data 
 
 A python script, called run_scor_s.py, was written to automate the gathering of 

data for the production of this study’s data set representations.  As input, the script uses a 

set of command line flags to set the initial beam energy, the number of tracks, the sphere 

radii, the number of cylinders, the number of layers, and the random number seed.  It also 

has flags for controlling the script’s execution, such as setting the number of PITS runs 

that need to be made or whether the output file needs to be zipped.  The script’s algorithm 

is outlined below. 

 

read in the command line parameters 

produce a list of random number seeds, one for each iteration 

 

for each iteration 

create the unique filename for the PITS data file 

 

generate the inpits.dat file for the PITS run, using the 

iteration’s random number seed 

 

run the parallel version of PITS on all processors 

 

copy the output to the unique filename and zip if specified 

endfor 

 

Algorithm 3: Automating the production of PITS data with run_scor_s.py. 

 



 49

This script, however, produces iterations of PITS runs at the same energy and number of 

tracks.  Another script was written to automate the generation of data for many energies 

and numbers of tracks that calls run_scor_s.py as a subroutine. 

2.4.3 Parsing the PITS Data Files 
 
 XML can be parsed using a variety of different languages and toolkits.  In this 

study Python was chosen because of its simplicity and familiarity. 

 Python’s XML parsing module, appropriately named “xml”, can parse XML 

using two different methods.  The first method, called the Simple API for XML (SAX), 

searches the document for particular types of events, such as the parser hitting a “start 

element” tag, and when an appropriate event is found a callback function is invoked to 

handle that event.  The second method, called the Document Object Model (DOM), 

places the entire XML tree structure into memory, and this tree is traversed using 

function calls.  DOM is much slower and memory intensive than SAX, but it is also more 

flexible and intuitive for the programmer. 

 A mixture of the two techniques is used in the PITS post-processing scripts by 

importing the xml.dom.pulldom module.  With pulldom, a SAX-like parsing scheme is 

used to find each section in the output file.  Once found, these sections are then processed 

using a DOM-like approach. 

2.4.4 Aggregating Multiple Runs 
 
 Breaking up a PITS simulation into many separate runs and then aggregating the 

data into a single output file has a couple of advantages.  To begin with, it creates data 

incrementally rather than all at once, thus saving most of the data if a computer or 
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software failure occurs.  Multiple runs also allow for the calculation of the data’s mean 

and standard deviation from run to run.  These quantities will prove important in the 

analysis of the data representations produced in Section 3.  A major downside to making 

multiple runs, however, is the additional storage space that is needed to contain the extra 

data files. 

 A script was written to aggregate data from multiple runs of a PITS simulation 

and create a summary data file.  The script parses the output file from each run and then 

combines the histograms and calculates the standard deviations for each bin in the 

histograms.  The resulting aggregate file is similar to the original files, except it includes 

a few updated tags, aggregated histograms, and the addition of tags for the standard 

deviations of the histograms. 

2.4.5 Visualizing Output Using MATLAB 
 
 To visualize the probability density distributions for the stochastics in PITS, a 

script was written to parse the scor_s.f XML data files, calculate the density distributions 

from the histograms in those files, write these distributions to a file, and then generate a 

MATLAB script file to load these distributions and visualize them.  A modified version 

of the script was written to process and visualize the aggregated data files. 

 Figure 2-11 and Figure 2-12 show what the MATLAB scripts can produce for 

each distribution at a given initial beam energy.  In this case the beam consisted of 3 

million electron tracks with an initial energy of 20 keV.  Figure 2-11 is the probability 

density distribution for the energy deposited per unit track length of the primary electron, 

Λ , for the target sphere directly above the beam entry point at r = 0 μm and h = 0.5 μm.  

The area under this curve between 1λ  and 2λ , designated in red, represents the 
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probability that a future track reaching the target sphere and depositing Λwill deposit a 

value Λ  between those values.  The horizontal error bars are the same width as the bins, 

meaning they represent the uncertainty in Λ  over their respective domains.  Vertical 

error bars at the bin centers, on the other hand, would represent the uncertainty in )( if λΛ  

at bin i.  They are not displayed because of their very small size relative to the magnitude 

of )(λΛf . 
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Figure 2-11: Probability density distribution for the stochastic Λ  at r = 0 μm and h = 0.5 μm for a 20 

keV electron microbeam. 
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 Figure 2-12 is a montage showing )(λΛf  for target sites located in the domain of 

spheres lying in packed rings corresponding with the first four layers and cylinders in the 

simulation space.  The beam entry point is in the lower left corner of the figure, and each 

“window” represents the equivalent site for a particular layer and cylinder located a 

distance of (r, h) from the beam entry point.  Notice how the distributions look 

approximately lognormal.  This issue will be explored later in Section 3.4.3. 
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Figure 2-12: Probability density distribution for the stochastic Λ  for sites residing in rings located at 

the first four values of r and h for a 20 keV microbeam.  Each window is the distribution for the 
respective value of r and h shown on the top and right of the figure, respectively. 

 

2.5 Mathematical Tools for the Modeling of Data 
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 As stated in the thesis introduction, the project’s theme is on the mathematical 

approximation of data.  In this section several differing methods of approximation are 

introduced and compared with one another based on such criteria as the speed of creation 

and retrieval, the ease of implementation, accuracy of representation, and storage space 

requirements.  From this information, appropriate methods can be chosen to represent the 

various PITS quantities and their respective data sets. 

2.5.1 Process of Building a Mathematical Representation 
 
 Data from a simulation is represented as a discrete set of tuples.  Each tuple in the 

set is called a point, and every item in a tuple represents a particular quantity of interest, 

such as the primary beam energy in a PITS simulation.  For example, a data set 

describing the energy of an electron at three particular locations in Cartesian space could 

be 

 ( ) ( ) ( ){ }80,4,3,7 ,90,2,1,0 ,100,0,0,0=Α , (17) 

assuming that the first three items in each tuple are the x, y, and z coordinates of the 

locations, respectively, and the fourth is the electron’s energy.  Representing the variables 

themselves as tuples, their values would be )7,0,0(=xr , )3,1,0(=yr , )4,2,0(=zr , and 

)80,90,100(=er  for this data set, and their intervals would be ]7,0[=xI r , ]3,0[=yI r , 

]4,0[=zI r , and ]100,80[=eI r .  The values for those variables lie within their intervals.  

For each interval, a bracket denotes equality at its respective edge, while a parenthesis is 

used in continuous intervals where the edge is not a part of the interval. 

 The first job in making a representation for a data set is to identify the input and 

output quantities to the data set.  For example, from the data set in Equation (17), you 
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would take snapshots of the position of the electron as it travels away from the beam 

entry point and then determine from the experiment what the energy was.  Or you could 

view the data in the opposite light, by asking the experiment to give the position for a list 

of energies that you provide it.  Each quantity, whether input or output, is represented by 

a set.  The input quantities are known as the independent quantities and their set of tuples 

constitute the domain of the data set.  The output quantities are known as the dependent 

quantities and their set of tuples constitute the range of the data.  The dimension of the 

domain is considered to be the number of quantities in the domain, while the dimension 

of the range is the number of quantities in the range.  The domain for the sample data set 

in Equation (17), for example, is composed of the set ( ) ( ) ( ){ }4,3,7 ,2,1,0 ,0,0,0 , while the 

range is the set { }80 90, 100, .  This makes the dimension of the domain 3 and the 

dimension of the range 1.  Data sets, in general, can have many dimensions in the domain 

and range, but the dimension of the range is usually 1. 

 Identifying the domain and range of the data set leads directly to the domain and 

range of the approximating representation.  Data from numerical simulations is inherently 

discrete, but representations are usually continuous in both their domain and range.  For 

continuous representations, each simulation quantity must have a continuous interval 

associated with it.  This interval would naturally be a subset of the variable’s 

corresponding data interval.  The representation’s domain and range would be the 

Cartesian product of the continuous intervals for variables in the domain and range, 

respectively.  This means that in the example data set, the representation’s continuous 

domain would contain all real numbers ),,( zyx ′′′  such that 70 ≤′≤ x , 30 ≤′≤ y , and 

40 ≤′≤ z . 
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 A typical set of input parameters to a fitting process is comprised of 1) the domain 

and range of the representation, 2) the domain and range of the data set, 3) the entire 

group of data set points, and 4) an error tolerance.  Sometimes an initial “guess” for the 

fit must be provided as well.  The chosen method of approximation is then run until the 

error tolerance is reached between the data set points and the fit.  Or in place of the 

tolerance, a specific number of refinement levels could be specified.  The evaluation of a 

fit using the representation is performed via a sub-routine where, given a tuple in the 

representation’s domain, a tuple lying in the representation’s range is returned.  

Assuming the domain and range of the representation are continuous, any tuple lying in 

the domain can be evaluated.  The performance of the approximation method is gauged 

by the storage needed for the representation, accuracy of the fit, running time needed to 

create the representation, running time needed to evaluate the fit, and the complexity of 

implementing the method. 

2.5.2 Assessing a Representation’s Accuracy 
 
 There are a variety of ways to test a representation against its original data set.  

The crudest, of course, is to evaluate the representation at the data points and compare the 

two sets of points on the same set of axes over the fit’s domain.  Another method is to 

calculate the error between the dependent variables of the fit and some test points.  In the 

case of one dimension in the domain, if the set of N test points is written as 

( ) ( ) ( ){ })(,,,)(,,)(, 2211 NN xfxxfxxfx K  and the fit evaluated at )( ixf  is )( ixg , then the 

error at ix  for Ni ≤≤1  is )()()( iii xfxgx −=Ε .  Calculating the error over the test 

points, however, does not give a global sense of the fit’s accuracy.  What is needed in this 
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case is a summary statistic of the error function )(xΕ .  The mean of the error itself is not 

a useful quantity, since )(xΕ can be both positive and negative over the fit domain.  A 

statistic on the error called the “root mean square”, or RMS for short, is more useful.  It 

gives a single number that assesses the average of the fit’s absolute deviation from the 

test data.  The RMS for the case of one dimension in the domain is defined as 

 ,))((1)(
1

2∑
=

Ε=Ε
N

i
ix

N
σ  (18) 

and it has the same unit as the range of the data set.  A measure of the relative error of the 

fit against the range of a test point is given by a quantity called the percent difference.  

For ix  it is defined as 
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2.5.3 Original Data as the Representation 
 

2.5.3.1 Description 
 
 It may seem ludicrous at first, but the original data can be used as a representation 

for itself.  In this case, the data is stored in a file, and an application that needs that data 

would use that file as a look-up table.  Within the file, every tuple in the data set domain 

has a one-to-one correspondence with a tuple in its range. 

2.5.3.2 Advantages of the Representation 
 
• Fast to execute – The primary advantage of the table look-up representation is its 

speed.  Looking up values from the table does not require any processing. 
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• Simple – The table look-up representation is also very simple to implement.  The data 

is placed in a text file and simple access functions are implemented to set and get 

values from the table. 

• Accurate – When an independent value is actually in the table then the table will 

return a 100% accurate result with respect to the data. 

2.5.3.3 Disadvantages of the Representation 
 
• Discrete in nature – A table of values is by nature discrete, meaning that it only 

contains a finite number of items.  The representation can therefore only be used for 

tuples in its discrete domain. 

• Storage intensive – Every data point must be stored in the table.  The size of the 

table grows along with the number of data points collected. 

• No distillation of relationships – This representation reveals nothing about the 

underlying characteristics of the data. 

2.5.4 Linear Interpolation 
 

2.5.4.1 Description of the Representation 
 
 A very simple and accurate representation can be constructed by taking the 

original data set and connecting the points using linear functions.  The representation is 

the “skin” that is formed around the data.  Unlike the look-up table approach, its domain 

and range are continuous.  The representation is stored on disk as a file containing the 

interval and coefficients for each linear function.  Given a tuple in the representation’s 

domain, the corresponding tuple in its range is calculated by determining the data points 

enclosing it, looking up the appropriate linear function coefficients, and evaluating the 
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linear functions at the domain tuple.  Below is an example that illustrates the linear 

interpolation of a two dimensional data set with a domain of { }5,4,3,2,1  and a range of 

{ }25,16,9,4,1 . 

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

x

y

 
Figure 2-13: Example linear interpolation of a two dimensional data set. 

 
The interval and coefficients for each linear function would be 
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Interval 1C  2C  

[ )2,1  3 -2 

[ )3,2  5 -6 

[ )4,3  7 -12 

[ ]5,4  9 -20 
 
 

To determine y for x = 2.5 using the representation, 

1. the interval [ )3,2  is identified, 

2. its coefficients are determined as 1C = 5 and 2C = -6, and 

3. 21 CxCy += = 5(2.5) – 6 = 6.5. 

2.5.4.2 Advantages of the Representation 
 
• Fast to create and execute – Creating the table of coefficients and the interval for 

each linear function is very fast owing to the simple nature of the linear functions.  As 

well, evaluating the linear functions for a particular independent value requires just 

one calculation of a linear function, though the appropriate interval must be found. 

• Accurate – The linear interpolation representation is 100% accurate at each original 

data point, but possibly deviates from new data that is collected between these points. 

2.5.4.3 Disadvantages of the Representation 
 
• Storage intensive – If there are n values in a domain tuple, then n + 1 coefficients are 

necessary for each linear function.  Considering there is about one linear function for 
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every data point, and some PITS data sets contain over 50 million points, the amount 

of storage necessary for such a representation can become daunting. 

• Representation not smooth – The first derivative of the representation at each 

original data point is discontinuous.  As a consequence, there is no smooth transition 

between any two adjacent linear functions.  Use of higher order polynomials can take 

care of this problem, but then there are more coefficients to store. 

• Little distillation of relationships – The linear interpolation method merely takes the 

data set and “connects the dots”.  This process does not illuminate any underlying 

relationships in the data. 

 Quadratic or cubic polynomials can be used for a closer fit, but the cost of this 

additional accuracy is the need to store 2n + 1 coefficients for the quadratic case and 3n + 

1 coefficients for the cubic case.  In general, a kth degree spline interpolation requires the 

storage of k(n + 1) coefficients. 

2.5.5 Least Squares Fitting Using Analytic Functions 
 

2.5.5.1 Description of the Representation 
 
 If a data set ( ) ( ) ( ){ })(,,,)(,,)(, 2211 NN xfxxfxxfx K  looks like it may emanate 

from an analytic function, such as a straight line, then the process of least squares fitting 

can be carried out to find the function’s parameters such that the function “best fits” the 

data set.  Least squares techniques optimize the fit by minimizing the sum of the square 

of the deviations between the data and the fitting function.  The result is a best estimate 

for the unknown coefficients in the function in terms of the data points.  Symbolically, if 
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),,;( 1 Maaxg K  is the fit function with coefficients Maa ,,1 K ,  and iσ  is the standard 

deviation of the thi  data point, then this amounts to minimizing the chi-square statistic 
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over all M coefficients.  If iσ  is not known then it defaults to 1 for all data points. 

 The process of linear least squares can be used if the guessed functional form has 

its coefficients multiplying each term of the equation, such as the function 

cxbaexf x ++= /)( .  This holds great advantages because linear least squares fitting is 

very fast, stable, and guaranteed to give a result.  If the coefficients are embedded within 

a term, such as in the function )sin()( axexf = , then the process of nonlinear least 

squares must be applied, and the chance of getting a result that makes sense lowers 

considerably.  Nonlinear least squares techniques ultimately reduce to finding the roots 

for systems of nonlinear equations, which is a notoriously fickle problem in applied 

mathematics.  An initial guess at the solution must be provided as input to such routines, 

and convergence to a solution is not guaranteed. 

 As an example of fitting using linear least squares, suppose you have a data set 

with the domain {1,2,3,4,5,6,7,8,9,10} and range {1.52, 2.93, 3.71, 4.23, 5.45, 6.17, 7.97, 

8.36, 9.05, 10.76}.  Fitting a line of the form 21 CxCy +=  to the data gives coefficients 

9762.01 =C  and 6458.02 =C , yielding the best-fit line in Figure 2-14. 



 62

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

x

y

Figure 2-14: An example of fitting a 2-D data set using linear least squares.  The data set is 
represented by the red dots and the best-fit line is the blue line. 

 
 The least squares method can be extended to work with multiple dimensions as 

well.  Fitting a data set with two dimensions in its domain and one in its range, for 

example, would require a function in the form of a surface.  Guessing an appropriate 

functional form in multiple dimensions, however, can be a challenge, since visualizing 

data beyond two dimensions in the domain is difficult.  Multiple dimensions would also 

add complexity to the task of solving the underlying system of nonlinear equations.  

Good insight into the nature of the data, in addition with plenty of patience, is needed to 

arrive at a sensible solution. 
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2.5.5.2 Advantages of the Representation 
 
• Minimal storage required – The representation only has to store the coefficients of 

the analytic functions, making it extremely efficient with storage. 

• Suggests relationships in the data – An analytic function is more than just a 

calculating device.  It suggests a trend in the data and can lead to physical insights 

that other methods of data fitting cannot give. 

• Fast to execute – Once the analytic function coefficients have been calculated, the 

evaluation of the function is very fast, especially if it is a polynomial. 

2.5.5.3 Disadvantages of the Representation 
 
• Difficult to find an appropriate fitting function – Finding a function that fits the 

data well can be a challenge.  The trend in the data must first be recognizable.  Then a 

trial and error process must be undertaken to try out candidate fit functions against the 

data.  Once a candidate is chosen, it is run through a least squares optimization 

process to get the best fit coefficients.  This may need repeated as the fit function is 

refined.  For a large majority of data sets a fit function is all but impossible to find, 

especially if the data is multidimensional. 

• Nonlinear fits may never converge – If the fit function is nonlinear then the least 

squares optimization process many never converge to the best fit.  This problem is 

inherent in nonlinear optimization methods. 

2.5.6 B-spline Fitting Using Least Squares 
 

2.5.6.1 Motivation 
 



 64

 As illustrated in Section 2.5.5, finding an analytic function to fit a set of data 

using least squares can be difficult.  But what if, instead of using a function over the 

entire domain, the domain were broken up into pieces and polynomial functions were 

used to fit the data over each interval in the least squares sense?  Then the guesswork 

involved with using an analytic function for fitting would be overcome, additional control 

over the fitting process would be gained, and the computation’s efficiency would be 

increased through the use of polynomials.  Such techniques exist, and their principle tool 

is the piecewise polynomial aptly called a spline function.  Spline functions derive their 

name from the days of draftsman and the wooden splines they used to make curves. 

 In Section 2.5.4 splines were used without even knowing it.  The lines from the 

interpolation combined to make up a spline function of degree 1, and the points on the 

domain that made up the interval edges were knots.  In that case the function itself was 

continuous at the knots, but its first derivative (slope) was not.  In general, a spline 

function of degree M is a piecewise polynomial of degree M whose M-1 derivatives are 

all continuous at each knot.  The higher degree a spline function is the better it can blend 

in at the knots because of its higher level of continuity, and the better it can bend between 

the knots.  This increase in fitting flexibility, however, is offset by an increased level of 

complexity and computational cost.  Third degree spline functions seem to provide a nice 

compromise in practice.  They carry enough fitting flexibility for most applications yet 

are efficient to compute. 

2.5.6.2 Introduction to B-spline Curves 
 
 A spline curve is a device that uses a set of control points with piecewise 

polynomial weights to generate a curve over the set of knots.  If an appropriate set of 
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polynomial weights can be found, then the shape of the final curve can be manipulated by 

merely changing the location of the control points.  The curve can even be forced to 

move through a given data set and hence interpolate it, or it can approximate the data set 

through an optimization process such as least squares.  Let any tuple in the domain of the 

curve be associated with a single parameter, u.  Then, the point on the spline curve at the 

parameter u, represented by )(uC
r

, can be found by weighting a set of control points, iP
r

, 

by a set of blending functions, )(uRi

r
, by the relation 

 ∑
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 The question now is how to produce the set of blending functions to define the 

curve for any set of h+1 control points.  This is where the knots come in.  Given the knots 

defined as a vector in terms of the parameter u, there exist several families of blending 

functions that can be used to generate every possible spline that can be defined over those 

knots.  One such family, the B-spline family of basis functions, has particularly nice 

properties and is used by the computational spline fitting routines in this project. 

 The ith B-spline basis function using piecewise polynomials of degree p over the 

parameter u is written as )(, uN pi .  Equation (21) then becomes 
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Given the knot vector ),,,( 10 muuuu K
r
=  where 1++= phm , the basis functions can be 

recursively created via the formula 
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But what should the knot vector be to create the set of basis functions?  The only 

requirement is that 1++= phm  knots  be defined within the domain of the parameter u.  

But certain knot spacings are more optimal than others, and if the curve must be clamped 

to the first and last control points then the first p+1 knots must be identical and the last 

p+1 knots must be identical.  For example, a knot vector for a B-spline curve with 10 

control points (h = 9) using cubic polynomials (p = 3) over a parameter domain of [0,1] 

would require 1++= phm  = 13 knots and a knot vector of the form 

{0,0,0,0,_,_,_,_,_,1,1,1,1}.  Filling in the blanks with equally spaced knots is suitable in 

most situations. 

2.5.6.3 Using B-splines to Interpolate and Approximate Data 
 
 Spline functions interpolate data by associating every data point with a knot and 

then creating piecewise polynomials between the knots by plugging the data into the 

polynomials and solving for the coefficients.  With B-spline curves it is the control points 

that become the unknowns, since they dictate the shape of the curve given an appropriate 

knot vector.  For h+1 data points, finding the h+1 required control points amounts to 

doing the following [Shene, unit 9]. 

1. Settling on a choice for the degree of the polynomials.  This is usually p = 3. 

2. Finding an appropriate parameter ku  for each data point kD
r

 with hk ≤≤0 .  

There are many ways to do this, but a very simple method is to uniformly space 
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the parameters over [0,1].  There is one item in kD
r

 (and iP
r

) for each dimension in 

the data set. 

3. Creating a knot vector for the B-spline coefficients with 1++= phm  knots and a 

multiplicity of p+1 on both ends of the vector.  The vector can be equally spaced 

or it can be a function of the parameters. 

4. Plugging the data points kD
r

 into )( kuC
r

. 

5. Calculating the B-spline coefficients )(, uN pi  using the recurrence relation (23). 

6. Solving for the control points P
r

 in terms of D
r

 and the resulting coefficient 

matrix N
r

. 

 With B-spline interpolation, the curve was forced to contain every data point, and 

for each data point p coefficients and a corresponding control point were computed.  For 

large data sets this process can be prohibitive both in term of computational cost and 

storage.  The B-spline curve may also display excessive wiggle in order to contain all of 

the data points.  An approximation by a B-spline curve with a limited number of control 

points that follows the general shape of the data points can prevent these wiggles and 

reduce the overall storage costs.  The only restriction is that the approximation fit the data 

at the endpoints.  Accordingly, let there be n+1 data points, h+1 control points, and B-

spline polynomials of degree p, where nhp <≤≤1 .  Then, given a set of n+1 parameters 

over [0,1] and an associated knot vector with multiplicity of p+1 at its ends, the control 

points for the B-spline best fit approximation curve are found by [Shene, unit 9] 

1. setting the first data point equal to the first control point and the last data point 

equal to the last control point, so that 00 )0( PCD
rrr

==  and hn PCD
rrr

== )1(  and  
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2. creating a function of the unknown control points that is the sum of the square of 

the errors between the data points and the curve at each control point, viz. 
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3. and then minimizing this error function with respect to the unknown control 

points. 

 The ideas in the previous sections can easily be expanded to multiple dimensions 

by introducing additional sets of knots, control points, parameters, and basis functions, 

for a total of one additional set for each additional dimension.  For example, in the two 

dimensional case, given the following: 

1. a set of m+1 by n+1 control points jiP ,

r
, where mi ≤≤0 and nj ≤≤0 ; 

2. a knot vector of h+1 knots in the u-direction; 

3. a knot vector of k+1 knots in the v-direction; 

4. the degree p in the u-direction; 

5. the degree q in the v-direction; 

a B-spline surface is defined by the equation, 
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2.5.6.4 Advantages of the Representation 
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 Depending on the size of the data set, number of dimensions in the data set, and 

number of control points used in each dimension, B-spline approximations carry the 

following advantages. 

• Have a high degree of Accuracy – The fit can be “molded” within reason to 

conform to the local data points or the global nature of the data.  Improvements in the 

fit can be made by having several levels of refinement.  Increasing the accuracy, 

however, has the side effect of increasing the computational and storage cost. 

• Be efficient to create and evaluate – Creating the control points for a d-dimensional 

B-spline has a computational cost in both time and storage that is approximately 

( )1103 −D
D mmmO L  for D dimensions and im  control points in dimension i [Weiss, 

2000].  Therefore, reducing the number of dimensions in the data can have a 

significant impact on the overall cost of the control point creation algorithm.  For a 

low number of dimensions (a typical scenario being D = 2 or 3), the control point 

mesh density is the prominent influence in the computational cost.  This is not the 

case for the evaluation of the B-splines at a single point, however, since this operation 

depends solely on the number of dimensions.  Keeping the dimensionality low, then, 

results in a very quick computation for the evaluation. 

• Be extended easily to multiple dimensions – Because of the flexibility inherent in 

B-splines, extending the method to multiple dimensions is trivial. 

• Be efficient with coefficient storage – The density of the nodal point mesh can be 

easily adjusted as required.  Reducing the density, however, has the repercussion of 

reducing the accuracy of the solution. 
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• Be easy to manipulate – The greatest benefit of using B-splines in the data 

representations is their level of flexibility.  There exists a plethora of “knobs” that can 

be turned to manipulate the B-spline approximations against the data. 

2.5.6.5 Disadvantages of the Representation 
 
B-splines, however, suffer from the following problems. 

• Can distort errant data points – B-splines are only as good as the data they are 

fitting.  A sparse collection of data points or errant data points can result in a fit that 

peaks at the data points, even though a flatter surface is envisioned (in 2-D).  

• Do not suggest relationships in the data – Splines are more or less computational 

approximation tools, and that is it.  They fit the data without any suggestion of a 

functional form, outside of the fit actually looking like a certain function. 

2.6 Tools for Least Squares Analytic Fitting 
 
 There are a variety of packages that perform both linear and nonlinear least 

squares analytic function fitting.  For the nonlinear case, nonlinear optimization and 

nonlinear equation solvers must be present as well.  MATLAB’s optimization toolkit 

provides all of these in addition with an easy to use interface, scripting language, and 

help system.  The GNU scientific library is another choice, but is more difficult to use.  It 

was constructed in the C programming language and currently has both C and 

FORTRAN interfaces.  On the Python front, at least two packages are available that 

perform nonlinear least squares fitting, one being SciPy and the other being Scientific 

Python.  For reasons of convenience, Scientific Python was the package chosen for the 

nonlinear least squares fitting in this study. 
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 The fitting routine in Scientific Python, called leastSquaresFit(), requires a fit 

function, an initial guess for each of the parameters of the fit function in the form of a 

tuple, and a list of tuples that contain the data and their associated standard deviations to 

fit against.  The routine then uses the Levenberg-Marquardt algorithm with the automatic 

calculation of the fitting function’s derivatives to find the optimal parameter values.  The 

result is a list containing the optimal parameter values and the chi-square statistic 

describing the quality of the fit.  For example, suppose the fit function is 

)exp()( 21 tcctf −= , the initial guess is (1e13, 4700), and the data set is in the list of 

tuples called “data”, then the Python code to determine the fit would be: 

 

from Numeric import exp 

 

from ScientificPython.Scientific.Functions.LeastSquares import \  

 leastSquaresFit 

 

def f(param,t): 

 return param[0]*exp(-param[1]/t) 

 

data = [(t1,f1),K,(tn,fn)] 

print leastSquaresFit(f, (1e13,4700), data) 

 

Algorithm 4: Example use of Scientific Python’s module Scientific.Functions.LeastSquares. 

 

2.7 Tools for B-spline Fitting 
 
 The backbone of all B-spline fitting in this thesis was performed by a 

multidimensionl B-spline approximation package called BSPLND.  BSPLND has a 

simple interface, computes fits efficiently in multiple dimensions, and is based on a set of 

state-of-the-art algorithms.  It was developed here at WSU Tri-Cities in 2000 by Michael 

Weiss [Weiss, 2000]. 
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2.7.1 Introduction to BSPLND 
 
 BSPLND, which stands for  B-spline N-dimensional, is a library of functions 

coded in the C programming language that implements the multilevel B-spline 

approximation (MBA) method presented by [Lee et. al., 2000], and extends it to an 

arbitrary number of dimensions in the domain and range.  Techniques used in the MBA 

method are related to those introduced in Section 2.5.6.  The key functions and data 

structures in the BSPLND library include: 

1. BSplineNDimensional fit structure 

Description: 

An instance of this structure is the actual fit object that is returned by the 

fitting routine.  It contains all of the data that is needed to describe the fit 

and can be stored on disk for future evaluations. 

C interface: 

// Assume DIMS is the maximum number of dimensions needed 

typedef struct  

{ 

int D, R;             // Dimensions of the domain and range 

int stride[DIMS];      // A spline property 

int n[DIMS];           // Control lattice mesh density 

double xMin[DIMS];     // Lower bound of the domain 

double xMax[DIMS];     // Upper bound of the domain 

double slope[DIMS];    // A spline property 

double intercept[DIMS];// A spline property 

double *phi;           // Spline coefficients 

} BSplineNDimensional 

2. bsplnd_fit 

Description: 
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This routine takes the data and input parameters and returns a pointer to a 

BSplineNDimensional structure.  It also returns the rms error of the fit 

against the data points.  The definition of rms is given in Section 2.5.2. 

C interface: 

BSplineNDimensional *bsplnd_fit 

( 

int ptCnt,        // Number of scattered data points 

int D,            // Dimensionality of the domain 

double x[],       // Data from the domain 

int R,            // Dimensionality of the range 

double y[],       // Data from the range 

int n[],          // Initial control lattice mesh density 

double xMin[],    // Lower bound of the domain 

double xMax[],    // Upper bound of the domain 

int h,            // Number of levels of fit refinement 

double *rmsError, // Root mean square of the fit errors 

int *errCode      // Error code 

) 

3. bsplnd_eval 

Description: 

This routine evaluates the fit at specified points on the fit’s domain and 

returns an error code if any problems occur.  The evaluation can be 

anywhere within this domain. 

C interface: 

int BSPLND_eval 

( 

BSplineNDimensional *BSPLND,// Pointer to the fit structure 

double x[],                // Values from the domain 

double result[]            // Evaluated values in the range 
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) 

 The BSPLND parameters n and h control the characteristics of the fit, including 

accuracy, smoothness, and size of the final fit structure.  The parameter n is the initial 

density of the control point mesh in each dimension of the independent variable.  It must 

be at least 2 in each dimension.  The parameter h, on the other hand, is an integer and 

refers to the number of refinement levels you want the fit routine to use.  At every level 

of refinement the lattice density doubles in each dimension, creating a final control point 

mesh with 2h(ni-1)+3 control points in each dimension, i, of the independent variable.  

With an increase in n and no increase in refinement, the accuracy of the fit at the data 

points is improved at the expense of smoothness in the vicinity of the data points.  An 

increase in h increases accuracy near the data points, but retains some level of 

smoothness in their vicinity.  This mesh information is created dynamically as the 

bsplnd_fit routine runs and is referenced from the fit object via the pointer phi. 

 Using BSPLND to fit a data set involves writing a driver routine in C that reads 

the data from disk, defines the fitting parameters, allocates memory for the fit structure, 

calls bsplnd_fit to fill the fit structure with the pertinent fit information, and stores the 

fit structure and control mesh nodes to disk as a binary file.  The binary file, then, 

represents the fit for the data.  This fit can later be evaluated by writing a C routine that 

defines the domain of the evaluation points, loads the fit structure and its control mesh 

nodes from disk, and calls bsplnd_eval for each evaluation point. 

 Assuming 

p is the number of data points defined in the space of refinement, 

D is the number of dimensions in the domain, 

R is the number of dimensions in the range, 
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h is the number of refinement levels, and 

1n −= iim  for dimension i,  

the performance of the MBA bsplnd_fit algorithm used by the BSPLND package is  

 ( )( )D
D

hD mmmDhpRO 324 21 L+  (27) 

in time and  

 ( )( )D
h mmmRRDpO L212++  (28) 

in space as the algorithm runs [Weiss, pg 19].  For the PITS data set these benchmarks 

are not nearly as important as the storage requirements of the binary fit file.  Its growth 

depends entirely on the growth of the final control mesh, which is 

 ( )D
h mmmRO L212 . (29) 

To evaluate the fit at a single data point in the domain using bsplnd_eval, the 

complexities in time and space are ( )RDO D4  and ( )DO , respectively. 

2.7.2 MATLAB Gateway Routines for BSPLND 
 
 MATLAB was chosen as the tool for visualizing and analyzing the simulation 

data and fits from the PITS simulations.  The BSPLND library, however, was written in 

the C programming language.  Using C functions in MATLAB involves writing a 

gateway routine called a MEX file, which is a special C file that MATLAB can 

recognize.  You create a MEX file for each C function you want to call from MATLAB.  

Within it you define the input and output syntax of the associated MATLAB function call 

and tie this in with the function call to the C routine. 

 The following MEX file gateway routines were written to access the BSPLND 

library functions: 
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1. bsplnd_fit.c to interface with bsplnd_fit 

MATLAB call syntax: 

[fit_struct, rms, err] = bsplnd_fit(x, y, minx, maxx, n, h) 

Parameter Description 

In 

x Matrix of data points in the independent variables with each 

row being a dimension of data and each column a point (D by 

ptCnt) 

y Matrix of data points in the dependent variables with each row 

being a dimension of data (R by ptCnt) 

minx Vector of minimums in each dimension of x 

maxx Vector of maximums in each dimension of x 

n Vector of the initial mesh density in each dimension of x 

h Number of refinements in the bsplnd_fit algorithm 

Out 

fit_struct MATLAB structure that corresponds with the BSPLND struct 

produced from the fit 

rms Root mean square of the error of the fit 

err Error code 
 

 

2. bsplnd_eval.c to interface with bsplnd_eval using one point 

MATLAB call syntax: 

[result, err] = bsplnd_eval(fit_struct, x) 
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Parameter Description 

In 

fit_struct MATLAB structure that corresponds with the BSPLND struct 

produced from the fit 

x Vector of length D containing a single point in the independent 

variable to be evaluated. 

Out 

result Vector of length R containing the dependent variable 

err Error code 
 

 

3. bsplnd_eval_points.c to interface with bsplnd_eval using multiple points 

MATLAB  call syntax: 

[result, err] = bsplnd_eval_points(fit_struct, x) 

Parameter Description 

In 

fit_struct MATLAB structure that corresponds with the BSPLND struct 

produced from the fit 

x Matrix of P points in the independent variable you want 

evaluated, with D columns and P rows 

Out 

result Matrix of results in the dependent variable, with R columns and 

P rows 

err Error code 
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 Several additional MEX files were written to speed up some of the computations 

in the MATLAB test scripts.  One set of MEX files (each working with a different 

dimension of data) reads in a list of points and converts the data to a MATLAB n-

dimensional grid array.  Another set performs the opposite function, converting the 

MATLAB n-dimensional grid arrays into a list of points that BSPLND can process.  Any 

small routines that were referenced frequently and deeply nested became prime targets 

for the conversion to C. 
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3 Results 
 
 
 
 
 
 
 
 
 
 

3.1 Introduction 
 
 In this section the spatial characteristics of three previously defined quantities, Φ , 

Eμ , and pLE=Λ  are approximated.  Beam energies in the data set range from 20 keV 

to 80 keV, and the targets are one micron diameter spheres packed in the simulation 

space consistent with the guidelines outlined in Section 2.3.1. 

 As discussed in Section 1.4, each of these quantities was chosen because of their 

biological significance, as well as their abilities to illustrate the methods.  In particular, 

Φ  was chosen because it gives the probability of a future track reaching the target 

wherever the target is placed in the domain.  Knowing this is important in biological 

experiments using radiation because irradiated target cells have neighbors, and these 

neighbors too are exposed by that radiation.  Φ  gives the chance of that exposure.  The 

summary statistic Eμ , on the other hand, gives the degree of that exposure if a track 

actually deposits energy in the target.  It is the mean of the energy deposited stochastic, 

summarizing the track’s ability to deliver energy to the target, independent of the number 

of tracks in the experiment.  Finally, Λ  was chosen because it gives a better indication of 

radiation quality than the density distribution of energy imparted.  It describes the ability 
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of the track to deposit energy over the primary particle’s path, thus giving more 

information on the track’s ability to do damage to the target if that target was biological 

in nature.  And, unlike other stochastic quantities, its individual density distributions 

appear to follow a standard continuous distribution known as the lognormal distribution.  

Goodness-of-fit testing can confirm if the data is statistically lognormal after an 

estimation is made of the proposed lognormal distribution fit parameters. 

3.2 Data Preparation 
 
 All representations developed for this thesis use the same PITS data set.  It was 

obtained by running ten sets of 300,000 track simulations for each initial beam energy of 

20 keV up to 80 keV in 5 keV increments.  As described in Section 2.4.1, scoring was 

performed by the module scor_s.f, wherein the simulation domain was cylindrically 

packed with one-micron diameter spheres and a total of eight different stochastic 

quantities were analyzed.  The output of each simulation was in the form of an XML file 

containing the ingredients necessary to build the probability density distributions for any 

of those eight quantities, including the histogram for each distribution, the number of 

tracks, and the number of spheres in each cylinder.  The structure of this XML file is 

described in Section 2.4.1.  The XML files for all ten runs at a given energy were then 

processed to create a single XML file, wherein the bin values from all of the realizations 

were coalesced for each bin and their standard deviation was calculated.  Together, these 

aggregated XML files make up the complete data set used as the basis for all of the 

approximations in this thesis.  Additional data sets at beam energies of 22, 32, 42, 52, 62, 

and 72 keV, using the same number of tracks and realizations, were computed for testing 

purposes. 
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 There are a total of five dimensions in the complete data set for a particular 

stochastic.  Four of these are in the domain and one is in the range.  The set of values in 

each dimension of the domain corresponds with a particular variable in the simulation.  

As outlined earlier in the paper, these variables include 

• e, the initial beam energy in units of keV;  

• h, the penetration of the target’s center point above the beam entry point in units 

of μm; 

• r, the radial distance from the beam entry point of the target’s center point in 

units of μm; and 

• b, the histogram bin center, in units of the current stochastic. 

Normally the complete data set would be defined by the Cartesian product of the set of 

values for each of these variables.  But the number of target sites required to encompass 

all of the tracks is not identical at each initial beam energy.  This is because higher energy 

particles tend to penetrate further into the simulation domain than lower energy particles.  

This is evident from Figure 2-9 in Section 2.3.3, where the p90 values were shown to 

increase quadratically with an increase in the initial beam energy.  The unevenness of the 

data with energy makes the Cartesian product impossible to compute. 

 There are several solutions to forming a complete data set.  One is to force the 

target sites to be identical by padding the lower energy target domains with additional 

sites.  All energy levels would then contain the same targets as the highest energy level.  

Another solution involves first scaling the target site coordinates at each beam energy by 

the beam’s p90 value and then forcing the new p90 sites to be identical by interpolating 

their grids.  This second solution is superior to the first since the target sites at each 
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energy level extend spatially at similar percentages of the p90.  Dividing by the p90 

places the site data at each energy level on common ground.  Recovering the original 

spatial target coordinates for an energy level is accomplished through multiplying by the 

p90 for that energy. 

 To rigorously pin down the storage requirements for the PITS data set, first define 

the following quantities. 

• ],,,,,[ 21 ni eeeee KK
r
= = vector of initial beam energies with ni eee ≤≤1 , and 

ni ≤≤1 .  ie  is known as the ith energy level. 

• ir
r = vector of target site radial distances from the beam entry point for the ith 

energy level. 

•  ih
r

= vector of target site penetration distances from the beam entry point for the 

ith energy level.  

• bn  = number of bins in each histogram, which is a constant for all histograms. 

Using this nomenclature, the set of all coordinates for each target site for the ith energy 

level is defined by the Cartesian product ii hr
rr

× , and the number of target sites is defined 

by the size of this set, or iiii hrhr
rrrr

⋅=× .  Therefore, for all n energy levels, the storage 

requirement growth factor is 

 
).(

)( 2211

nn

nn

hrnO

hrhrhrO
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L

rrrr

⋅⋅=

⋅++⋅+⋅=Ψ
 

(30) 

This means that the rate of growth of the storage requirements depends on the total 

number of energy levels times the number of target sites.  The number of bins in each 

histogram is not a part of Ψ since it is constant for all energy levels.  Ψ is important 
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because, even though the data is stored on disk and disk space is relatively cheap, the 

running time performance and memory usage in the data processing scripts is directly 

affected by the final size of the data set. 

 Finally, a note should be made about the simulation parameter values.  An energy 

range of 20 keV to 80 keV was chosen because the department’s current grant focuses on 

electron energies lying within this range.  Further, 3,000,000 tracks were generated for 

each energy level in order to make the data sets for the levels as accurate as possible 

given the computational resources available.  Running a large number of tracks like this 

does not have an impact on the storage requirements of the project data files.  As covered 

earlier in this section, the storage requirements only depend on the initial beam energy of 

the simulation and the number of energy levels run. 

3.3 Approximating the PITS Data Set Using B-splines 
 
 Introduced in Section 2.5.6, B-splines are a very flexible tool for approximating 

arbitrary data sets.  They are easy to manipulate, work equally well over various data set 

dimensionalities, are efficient to compute, and have a fitting accuracy that is easily 

adjustable, depending on the accepted nodal mesh density.  If implemented in a software 

package such as BSPLND, they can also be very convenient to work with in the fitting 

process. 

 Accordingly, BSPLND is used to create approximations of various accuracies for 

all of the simulation quantities outlined in this study.  In each case, the initial nodal mesh 

density is held to a minimum, and the final density is adjusted through the refinement 

parameter in BSPLND.  This strategy helps to maintain the fit’s smoothness in the 

vicinity of the data points.  The accuracy of the fit against the original and test data sets is 
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then assessed for each level of refinement in terms of the techniques outlined in Section 

2.5.2 and compared with the storage cost required for the nodes.  The objective is to find 

a refinement level that yields an acceptably accurate fit with the smallest possible storage 

requirements for each of the data sets. 

3.3.1 Approximating the Probability of Reaching a Target Sphere and 
the Conditional Mean of Energy Deposited for a 25keV 
Microbeam 

 

3.3.1.1 Background 
 
 The first data sets to be approximated are those representing the probability of 

reaching a target sphere, Φ , and the conditional mean of energy imparted, Eμ , from a 25 

keV electron microbeam.  These sets were calculated directly from the 25 keV energy 

level histograms of the parent data set using Equations (8) and (4), respectively.  The 

objective here is to begin the B-spline approximation process using relatively simple data 

sets in order to develop the concepts needed for fitting and testing the higher dimensioned 

sets.  It is relatively easy to visualize data in three dimensions, since it can be represented 

as a surface, but adding dimensionality to the domain, and range for that matter, makes 

visualization and analysis increasingly difficult. 

 One such concept developed in this section is the separation of the data domain 

into multiple regions in order to obtain a more accurate fit.  If the range of the data slowly 

varies over the entire domain then this technique is not especially useful.  The data set for 

Eμ , for example, follows this trend.  If the range rapidly changes over a section of the 

domain, on the other hand, then accuracy can greatly increase over that region if it is 

cordoned off and fitted separately, perhaps using a higher level of control mesh 
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refinement.  Φ ’s data set, for example, shows such characteristics.  There is a very high 

probability that an event will occur in a site very close to the beam entry point, but this 

probability drops rapidly as distance from the beam entry point increases.  At all levels of 

BSPLND refinement, fits for Φ  and Eμ are made using both one and two regions in 

order to assess of the effectiveness of the technique. 

3.3.1.2 Approximating the Probability of Reaching a Target Sphere at 25 keV 
 
 The domain of Φ ’s data set for a 25 keV beam energy extends out 18 microns in 

radial distance, r, and 18.5 microns in penetration, h, yielding a total of 324 (r,h) tuples.  

This corresponds with 19 cylinders and 19 layers used in the simulation.  Through 

observation of the data, the high probability region was determined to lie within r = 4 

microns and h = 8.5 microns. 

 Approximating the original data set proved difficult because of Φ ’s very sharp 

drop near the beam entry point.  For this reason, the logarithm base ten of the data set’s 

range was approximated instead.  Accuracy of the fit was then assessed by 1) evaluating 

the fit on the data set’s domain tuples, 2) raising the range of this fit data by the power of 

10 to convert it to the same base as the original data, and 3) comparing the original data 

with the converted fit data. 

 Figure 3-1 visually shows 10log  of the original data and its corresponding fit on 

the same domain, with a BSPLND refinement level of 4.  The converted data is 

represented by black dots in the figure and the fit is represented by the shaded surface.  

The two fitting regions are displayed as well, separated by a bold line.  Notice how 

closely the converted data matches the evaluated fit points, giving a percent difference of 
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0.0153% at (0,0.5) and a percent difference of 0.0121% at (4,4.5).  The cost of this fit in 

terms of storage is 2 * 192 = 722 nodes. 

R1

R2
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(
)

1
0

Φ

 
Figure 3-1: Graph comparing ( )dataΦ10log , represented as the black dots, and ( )fitΦ10log , 

represented as the composite surface composed of regions R1 and R2.  The BSPLND refinement level 
is 4. 

 
The domain of Φ  at 25 keV extends over twice as far in r and h as the beam’s p90 value.  

Since the data within the p90 is most valuable, for benchmarking purposes it is useful to 

restrict the domain to a value just past the p90 in the analysis of the data.  In the 

forthcoming analysis both r and h are restricted to 1.2 times their p90, or 9.0 and 9.5 

microns, respectively. 

 Table 3-1 summarizes the fitting of Φ ’s data for BSPLND refinement levels of 1 

through 6, with and without the data split into two regions.  The first column indicates the 
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refinement level, K, used in the call to the function bsplnd_fit.  An ‘s’ is appended if 

the data is split.  The second column contains the RMS for the fit error over the restricted 

domain, indicated by the symbol fitσ .  The data itself has error in it as well, so the third 

column compares fitσ  with dataσ , the RMS for the data’s error, by taking the ratio of the 

two, datafit σσ=Σ .  If 1≤Σ  then, on average, the fit error is within the data error over 

the relevant domain, and the fit is considered “reasonable”; i.e. it is within the “noise” of 

the data.  The Σ  statistic will be the dominate tool in deciding on a sufficient refinement 

level for all forthcoming PITS data sets.  The cut-off, Kc, will be a K chosen such that 

C is a minimum for a ≤ , or within half of a “reasonable” fit.  Column four 

contains the cost, C, of the fit in terms of the number of B-spline nodes required in the fit.  

Splitting a data set doubles C, owing to the fact that each region requires its own set of 

nodes.  Finally, columns five through nine contain the percent difference at five different 

tuples in the restricted domain, one at the beam entry point, three near the p90 at the edge 

of the restricted domain, and one in the center of the domain at (4, 4.5). 
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),( hrΡ  K fitσ  
data

fit
σ

σ
=Σ  C 

(0, 0.5) (0, 9.5) (9.5, 0) (9.5, 9.5) (4, 4.5) 

1  0.1119 718.62 52 95.19 81.27 12.92 59.37 81.13 

1 s 0.0837 537.70 2 * 52 73.08 96.39 41.24 67.72 16.57 

2  0.0991 636.41 72 86.87 13.94 12.10 50.70 17.15 

2 s 0.0427 274.25 2 * 72 38.56 55.08 6.51 42.63 3.90 

3  0.0921 591.52 112 81.90 22.13 15.74 26.36 0.6940 

3 s 0.0019 12.36 2 * 112 0.0823 14.09 13.35 28.33 2.37 

4 0.0370 237.85 192 38.82 2.470 1.637 1.831 0.9152 

4 s 1.563e-04 1.0042 2 * 192 0.0153 5.534 1.132 2.580 0.0121 

5  0.0087 56.14 352 9.496 0.5027 0.0412 2.336 0.0841 

5 s 1.663e-06 0.0107 2 * 352 1.11e-14 0.0079 0.0704 2.252 0 

6 1.941e-10 1.247e-06 672 1.55e-13 2.11e-13 2.04e-13 0 5.72e-07 

6 s 2.16e-12 1.39e-08 2 * 672 1.11e-14 9.57e-14 2.04e-13 1.99e-13 1.01e-13 

Table 3-1: Results of fitting Φ ’s data for BSPLND refinement levels of 1 through 6, both with the 
data split into two regions and without. 

 
 From the table, notice how significantly splitting the data into regions affects the 

accuracy of the fit near the beam entry point in terms of the percent difference.  Notice as 

well how this improvement is amplified as the refinement level is increased.  With a 

general refinement level of 4, for example, multiple regions give over a 99.96% 

improvement in )5.0,0(Ρ  and a 99.58% improvement in Σ , yet with a refinement of 2 the 

improvement is only 55.61% and 56.91%, respectively.  As it improves, Σ  first falls 

below 21  with a minimal cost of 2*352 nodes at K = 5s.  Therefore, Kc is 5s for this data 

set. 
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 The improvement of the fit is illustrated graphically in Figure 3-2.  It is a montage 

showing how the fit error, fitdatafit Φ−Φ=E , relates with the standard deviation in the 

data, dataE , along the domain for various levels of split refinement.  The independent 

variable in each window is the forward penetration, h, and the dependent variable is the 

ratio of the fit error to the data error, datafit EE .  This is assuming the radial penetration, 

r, and the refinement level, K, are constant for that window, each corresponding with the 

window’s column and row, respectively.  If 1EE ±<datafit  for a window, i.e. lies within 

the bars, then fitE  is within the data’s error range.  From the figure, as K is increased for 

all values of r, datafit EE  approaches the bars, lying almost wholly within them at K = 4s 

and completely within them at K = 5s. 
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Figure 3-2: A montage showing the ratio of the fit error to the data error along the domain for 

various levels of split refinement. 

 

Summary: 

Kc 
data

fit
σ

σ
=Σ  Cdata Cfit 

5s Σ = 0.0107 361192 =  2450352 2 =×  
 
 

3.3.1.3 Approximating the Conditional Mean of Energy Deposited 
 
 Unlike the data set representing Φ , which has a very sharp peak at the beam entry 

point and then rapidly descends with increasing r and h, the data set representing Eμ  has 
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a relatively even slope over most of its domain.  This behavior can be seen in Figure 3-3, 

where the black dots represent the actual data set and the surface represents the B-spline 

approximation of that data set for a BSPLND refinement level of 4.  Eμ  is around 1400 

eV near the beam entry point and then slopes upward at an approximate rate of 160 

eV/micron in both r and h.  It reaches a maximum value of approximately 7000 eV at 12 

microns in both r and h and then quickly descends to zero after that.  The upward slope is 

a consequence of the primary electrons losing their kinetic energy as they travel over the 

domain.  The electromagnetic force exerted by a charged particle is more influential the 

slower the charged particle moves in relation to its surrounding medium.  The descent in 

Eμ , on the other hand, is a consequence of the beam’s very low probability of reaching a 

target at such distances from its entry point.  Not enough electrons made it to those 

distances to calculate a statistically significant first moment of the energy deposited 

stochastic.  It is for these reasons that Eμ ’s data set too will be restricted to 1.2 times the 

p90 when analyzed. 
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Figure 3-3: Data set and fit for Eμ .  The surface represents the fit at a refinement level of K = 4 and 

the dots represent the data set. 

 
 The results from fitting Eμ ’s data set over the restricted domain are shown in 

Table 3-2.  The regions, refinement levels, and columns are identical with those used 

forΦ  in Table 3-1.  Notice that splitting the domain into two regions still provides a 

significant improvement in the percent difference near the beam entry point, improving it 

at (0,0.5) by 81.9% when K = 2 and 98.6% when K = 4, yet the split does not improve Σ  

enough over the restricted domain to be worthwhile.  Σ  actually increases by 5.36% 

when the domain is split at K = 2, and only decreases by 0.0177% at K = 4.  Another 

trend to notice from the table is the much smaller value for Σ  in this restricted data set 

versus that for Φ ’s set at all levels of refinement.  With no domain split, Σ  is 99.7% 

smaller at K = 2 and 99.9% smaller at K = 4 versus Φ ’s fit.  The source of this 
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discrepancy is the relatively large error in Eμ  near the outer fringes of this restricted set, 

which inflates dataσ  and reduces the overall value of the Σ  statistic as a refinement 

criterion.  Regardless, Σ  dips below 21  with a minimal cost of 192 nodes at K = 4, 

without refinement, making Kc = 4 for the eμ  data set. 

),( hrΡ  K fitσ  
data

fit
σ

σ
=Σ  C 

(0, 0.5) (0, 9.5) (9.5, 0) (9.5, 9.5) (4, 4.5) 

1  1.588e+03 3.719 52 114.08 17.65 25.60 52.94 36.64 

1 s 1.288e+03 3.017 2 * 52 11.88 2.832 17.91 50.06 1.515 

2  773.27 1.811 72 14.30 1.451 3.76 29.15 23.88 

2 s 814.32 1.908 2 * 72 2.805 18.68 3.127 29.24 1.358 

3  387.73 0.9083 112 0.2620 1.531 3.879 7.072 3.648 

3 s 380.39 0.8911 2 * 112 0.4331 9.905 3.033 7.492 2.517 

4 120.26 0.2817 192 2.430 1.723 2.704 6.153 0.549 

4 s 120.28 0.2818 2 * 192 0.03380 1.077 2.348 6.302 0.01682 

5  24.646 0.0577 352 0.1096 0.1151 0.3000 1.382 0.0884 

5 s 24.608 0.0576 2 * 352 0 0.1449 0.3378 1.363 0 

6 0 0 672 0 0 0 0 0 

6 s 0 0 2 * 672 0 0 0 0 0 

Table 3-2: Results from fitting eμ ’s data set over the restricted domain. 

 
 Figure 3-4 is a montage illustrating the nature of Eμ ’s error for a non-split 

domain, similar to the montage for Φ ’s error in Figure 3-3.  Again, each window 

associates the level of refinement with its row and radial penetration with its column, and 

the individual windows plot the ratio of datafit EE  versus the forward penetration.  fitE  

lies for the most part within dataE  over the restricted domain at the cut-off value of Kc = 
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4, but look how the window at K = 4 and r = 0 shows fitE  at near 15 times the value of 

dataE  at h = 0.5.  This results from the domain not being split into two regions and 

highlights the risk with using Σ  as a criterion for choosing Kc. 

K r = 9r = 4r = 0

2s

3s

4s

5s

h 
Figure 3-4: A montage showing the ratio of the fit error to the data error along the domain for 

various levels of split refinement. 

 

Summary: 

Kc 
data

fit
σ

σ
=Σ  Cdata Cfit 

4 Σ = 0.2817 361192 =  361192 =  
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3.3.2 Approximating the Probability of Reaching a Target Sphere and 
the Conditional Mean of Energy Deposited for Energies 20keV to 
80keV 

 

3.3.2.1 Background 
 
 In Section 3.3.1 fits were created for Φ  and Eμ  over the spatial dimensions of r 

and h at a single primary beam energy.  Doing this helped to develop the concepts of 

fitting using the BSPLND package.  In this section fits are created over the entire domain 

of Φ  and Eμ . 

 As introduced in Section 3.2, the number of sites over r and h is different for each 

energy level, ie , in the data set.  The domain for the data set cannot be properly defined 

until there is a common domain for the spatial dimensions at all energy levels.  Section 

3.2 suggested scaling the spatial coordinates of the data by the beam’s p90 value.  A 

common domain at each energy level could then be achieved by 1) identifying the 

domain along each scaled spatial dimension that is common to all data points and then 2) 

deleting the points that don’t lie within that domain.  Letting iii prr 90
rr

=′ and iii phh 90

rr
=′  

be the scaled target site center vectors at the ith energy level, this involves computing 
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′′  over all n energy levels.  For the Φ  

and Eμ  data sets these domain intervals were found to be [0,2.034] and [0.0847,2.119], 

resulting in a final fit domain of 3D  = [0,2.034]× [0.0847,2.119] × [20,80].  A 

consequence of scaling each (r, h) grid, however, is that the data point densities will be 

different amongst the grids. 
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 There are several possible directions to follow in creating the fit over the common 

domain 3D .  Each deals differently with the problem of uneven data point densities.  The 

most logical method is to approximate the data directly by BSPLND.  The result would 

be a fit more influenced by the higher energy levels and difficult to analyze in MATLAB.  

Ameliorating these issues involves either removing data points from each energy level to 

match the grid at the lowest level or adding data points to the energy levels to match the 

grid at the highest level.  Adding information is certainly better than deleting it, so each 

grid was forced to match the 80 keV grid through the process of interpolation. 

 Approximations of Φ  and Eμ  were then carried out on both the complete grid, 

3D , as well as a two region version of 3D .  Recalling Section 3.3.1, splitting the domain 

and fitting the data separately on each region can increase the accuracy of the fits if the 

“high feature” regions are properly chosen.  The expense to this, however, is an increase 

in nodal storage proportional with the number of regions to be approximated over.  The 

data set representing Φ  has peaks at all energy levels close to the beam entry point, so 

two regions were created from 3D  for Φ  (and Eμ  as well): 1R = 

[0,0.4]× [0.0847,0.8]× [20,80] and 132 RDR −= .  Fits were then performed for Φ  and 

Eμ  over each region separately, requiring the storage of a B-spline node set for each 

region. 

 Finally, the performance of each fit was monitored using a third-party data set that 

was not used in the creation of the fits.  This set includes energy levels of 22, 32, 42, 52, 

62, and 72 keV. 

3.3.2.2 Approximating the Probability of Reaching a Target Sphere 
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 As in Section 3.3.1.2, the data representing Φ  itself was not approximated over 

3D .  Rather, )(log10 Φ  was approximated.  The performance of the fitting process was 

assessed against the test data set by 1) evaluating the fit at the domain tuples of the test 

data set, 2) exponentiating the resulting values by the power of 10, and 3) comparing the 

new values directly against the range of the test data set.  Figure 3-5 shows slices of the 

)(log10 Φ  data set over a subset of the domain 3D , fenced off at the p90 value for all 

energies.  The range of the data points in the figure is encoded using color, with the 

higher probabilities shown in red and the lower probability areas shown in dark blue.  

Observe how the high probability peak dominates the region within the p90 at 20 keV, 

reducing in area as the energy level increases.  This is mainly a product of the scaling 

process, but it demonstrates that higher energy beams deposit a greater percentage of 

their energy via low energy diffusing electrons.  The two fitting regions can easily be 

identified in Figure 3-6, which displays the absolute value of the difference between 

)(log10 Φ  and its fit at each of the grid points in 3D  on the same subset as Figure 3-5.  

The BSPLND refinement level in this case was 4.  A bump resides in the figure at the 

interface of the two regions because each region was fitted independent of the other and 

share no points on their respective domains. 
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Figure 3-5: Four dimensional smooth graph of ( )dataΦ10log .  The beam energy is sampled from the 
data at every 10 keV. 
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Figure 3-6:  Four dimensional smooth graph showing the absolute value of the error between the fit 
of ( )dataΦ10log  and ( )dataΦ10log  itself.  The BSPLND refinement level is 4 and the beam energy is 

sampled from the data at every 10 keV. 

 
 Assessment of the fits for refinement levels 1 through 6 can be seen in Table 3-3. 

Again, as in Section 3.3.1.2, the refinement level is appended by an “s” if the domain is 

split, and the cost of the fit in terms of the required nodal storage is given by the 

parameter C.  As well, the RMS of the fit error against the original data set is denoted by 

fitσ , and the RMS of the data’s standard deviation is denoted by dataσ , yielding fitΣ  as 

the ratio of the two.  In order to assess the fits against the test data set, two additional 

parameters have been added to the mix.  These include testσ , the RMS of the fit error 
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against the test data set, and testΣ , the ratio of testσ  to dataσ  over the test data points.  Just 

as before, fitσ , testσ , and dataσ  were calculated at up to 1.2 times the p90 along r’ and h’, 

giving the restricted domain of [0,1.2]× [0.0847,1.2]× [20,80] in their analysis. 

K fitσ  testσ  
data

fit
fit σ

σ
=Σ

data

test
test σ

σ=Σ  C 

1 0.0151 0.0166 397.55 409.29 53 

1 s 0.0126 0.0141 331.93 347.72 2 * 53 

2 0.0152 0.0167 399.32 412.65 73 

2 s 0.0103 0.0118 269.84 289.64 2 * 73 

3 0.0144 0.0159 378.28 392.55 113 

3 s 0.0050 0.0060 131.85 149.01 2 * 113 

4 0.0105 0.0118 277.04 290.06 193 

4 s 0.0024 0.0031 62.90 75.98 2 * 193 

5 0.0064 0.0094 168.73 232.75 353 

5 s 0.0013 0.0024 34.67 58.28 2 * 353 

6 0.0022 0.0094 56.60 230.62 673 

6 s 0.0011 0.0024 28.57 58.10 2 * 673 

Table 3-3: Result of fitting ( )dataΦ10log  for refinement levels 1 through 6s. 

 
 From the table, notice how testΣ  is greater than fitΣ  at every level of refinement.  

For example, at a refinement level of K = 5s, fitΣ = 34.67, while testΣ  is 68% greater at 

58.28.  This occurs because BSPLND created the fit on only thirteen energy levels, and 

the fit is biased slightly toward the data points at each energy level.  Also notice from the 

table that the cut-off criterion Kc, introduced in Section 3.3.1.2, cannot be used here 

because the fit no longer improves appreciably when K>5.  This suggests using a revised 
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criterion in this case, namely choosing K such that the improvement in testΣ  is less than 

1% when increasing from a given level to the next  This occurs at a refinement level of 

5s.  The RMS statistics are larger for this data set versus the single energy level set used 

in Section 3.3.1.2 because the beam energy was added to the domain with only thirteen 

energy levels. 

 Figure 3-7 demonstrates the perils of using the Σ  statistic as a measure of fit 

accuracy.  The sub-figures (a), (b), and (c) show the percent difference, P(r’,h’,e), 

evaluated at 22 keV, 42 keV, and 62 keV, respectively, for five selected values of r’ and 

h’ and refinement levels ranging from K = 2 to K = 6s.  The percent difference is encoded 

by the shade of gray for a given (K, r’,h’) block, with lighter shades representing higher 

percent differences.  In the 22 keV case, the percent difference drops most dramatically at 

all selected values of  r’ and h’ , with the exception of (0.25, 0.25), when K moves from 

3s to 4.  But testΣ  moves from 149.01 to 290.06 in this case.  A similar story results for 

the other energies as well.  The reasoning is simple: a relatively high spike in Φ  near the 

beam entry point creates a large error in that region if the domain is not split, swamping 

the testΣ  statistic.  The statistic is not scaled in relation with the magnitude of its data 

points.  The region of most interest at each energy level, however, is the high probability 

spike, so the testΣ  statistic is a reasonable method of assessing the fits. 
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Figure 3-7: The percent difference, P(r’,h’,e), evaluated at 22 keV, 42 keV, and 62 keV, respectively, 

for five selected values of r’ and h’ and refinement levels ranging from K = 2 to K = 6s. 

 
 Several actions could be undertaken in order to improve the fit further, albeit with 

strings attached.  One technique that has proven useful is the restriction of the domain, 

which improves the fit by reducing the level of detail that BSPLND must deal with.  In 

the present case, it would be appropriate to reduce the domain to cover the region 

encompassed by the p90 at all energy levels.  Of course, this reduction has the price of 

limiting the scope of the representation.  Another technique is to adjust the density of the 

data grid to better capture the high feature regions in the fit, such as areas near the beam 

entry point in the Φ  data set.  The BSPLND package allows for non-uniform scattered 

data sets such as these.  Data density adjustment could also be used over entire energy 

levels to give them equal footing in the fit after scaling.  Currently the lowest energy 

level, 20 keV, has 132 original data points and the highest, 80 keV, has 1442, yielding an 

increasing density with energy level after scaling.  Additional overlapping sites could be 

added to match the densities.  Adding sites, however, means rerunning simulations in 

order to build up the necessary histograms for the stochastics.  This is a major obstacle to 

adjusting the data density and implementing these last two techniques. 
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Summary: 

Kc 
data

test
test σ

σ=Σ  Cdata Cfit 

5 s Σ = 58.28 059,851441913 222 =+++ L 750,85352 3 =×  
 
 

3.3.2.3 Approximating the Conditional Mean of Energy Deposited 
 
 Figure 3-8 shows a portion of the data set representing Eμ  after interpolation and 

scaling.  Slices are shown for the 20, 40, 60, and 80 keV energy levels and at r’=1.2 and 

h’ = 1.2.  The range is color coded to show higher values in red and lower values in blue.  

The smooth gradually increasing characteristic of Eμ  at each energy level, reminiscent of 

Figure 3-3 for the 25 keV case, can be seen on the slices.  At 20 keV Eμ  rises relatively 

rapidly to a high of about 7000 eV near the 20 keV p90.  Higher beam energies show Eμ  

rising much more gradually in comparison.  Notice how jumpy the data is near the outer 

fringes of each energy level. 
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Figure 3-8: Four dimensional smooth graph showing the data set for Eμ  for energy levels 20, 40, 60, 
and 80 keV. 

 
 The process of preparing the data, fitting the data, and assessing the fits for Eμ  

was identical with Φ , aside from fitting the logarithm of the data.  The split regions were 

identical, as was the restricted region of error assessment on the domain 

[0,1.2]× [0.0847,1.2]× [20,80].  Fitting was performed over the entire domain of the 

common scaled, interpolated data set at six levels of refinement both with split regions 

and without.  Table 3-4 gives the results. 
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K fitσ  testσ  
data

fit
fit σ

σ
=Σ

data

test
test σ

σ=Σ  C 

1 876.76 906.42 1.378 1.547 53 

1 s 806.46 826.61 1.268 1.4111 2 * 53 

2 473.09 479.19 0.7436 0.8180 73 

2 s 506.16 516.40 0.7957 0.8816 2 * 73 

3 309.63 298.54 0.4867 0.5097 113 

3 s 306.30 294.43 0.4815 0.5026 2 * 113 

4 224.03 204.63 0.3522 0.3493 193 

4 s 223.30 203.82 0.3510 0.3479 2 * 193 

5 191.47 190.84 0.3010 0.3258 353 

5 s 191.36 190.74 0.3008 0.3256 2 * 353 

6 151.07 190.85 0.2375 0.3258 673 

6 s 151.00 190.74 0.2374 0.3256 2 * 673 

Table 3-4: Result of fitting Eμ  for refinement levels 1 through 6s. 

 
 Notice how low testΣ  is for the Eμ  data set compared with testΣ  for the Φ  data set 

in Section 3.3.2.2.  This was expected here after it occurred for the 25 keV case in 

Section 3.3.1.3.  At K = 4, for instance, testΣ  is 829% larger for Φ  than for Eμ  over the 

restricted assessment range.  As noted in Section 3.3.1.3 this discrepancy is due to larger 

data errors past the p90 relative to the data set’s magnitude.  Observe as well from the 

table how little improvement is made to the fit by splitting the domain.  Splitting the 

domain at K = 4 only gives a 0.396% improvement in testΣ , while increasing K to 5 gives 

a much larger 6.74% improvement.  As mentioned earlier this lack of improvement in the 
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testΣ  statistic is due in large part to the swamping effect of the high data error near and 

past the p90.  The error near the beam entry point is being drowned out. 

 The error improvement is actually quite modest within R1, as can be seen in the 

top row of shaded blocks in each plot of Figure 3-9.  As in Figure 3-7, a block’s shade is 

indicative of the percent difference, P, at the associated point (row) and refinement level 

(column) for that energy level (plot).  The top row corresponds with (0.25,0.25), which is 

the only point from each plot residing in R1.  P improves at (0.25,0.25) for every region 

split, with the exception of 3 to 3s at 22 keV and 2 to 2s at 42 keV. 

 
Figure 3-9: The percent difference, P(r’,h’,e), evaluated at 22 keV, 42 keV, and 62 keV, respectively, 

for five select values of r’ and h’ and refinement levels ranging from K = 2 to K = 6s. 

 
 Additionally, notice that max(P) is only 35% in these plots, versus 100% in Φ ’s 

plots.  This shows the difficulty with fitting the high feature region of Φ  near the beam 

entry point.  Also notice the relatively large decrease in P at all energy levels and most 

points in the figure when K moves from 3s to 4.  This evidence, in addition with the fact 

that testΣ  first dipped below 0.5 at a refinement level of 4 with no domain split, supports 

giving Kc the value of 4. 
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Summary: 

Kc 
data

test
test σ

σ=Σ  Cdata Cfit 

4 Σ = 58.28 059,851441913 222 =+++ L 859,6193 =  
 
 

3.3.3 Approximating Distributions of the Energy Deposited Per Unit 
Track Length of the Primary Particle for Energies 20keV to 
80keV 

 
 Recall that the distribution of the stochastic pLE /=Λ  at the site centers is denoted 

by Λf .  The domain of the data set representing Λf  is identical with the domain 

representing Φ  and eμ , except an additional variable has been added, λ .  This variable 

represents the bin centers of the probability density distribution ),( , sss href ′′Λ λ  at any 

given beam energy, se , and site center ),( ss hr ′′ .  For convenience, this one-dimensional 

distribution function will be written as )(λΛf  for a given site and beam energy.  

Introduced in Section 2.3.2, the area under )(λΛf  over the region ],[ ba λλ  yields the 

probability that a track reaching the site will deposit an energy per unit track length of the 

primary electron between aλ  and bλ .  The nice part about adding λ  to the data set 

domain is that no additional scaling and interpolation is required to make the set 

complete.  Adding the beam energy to the domain in Section 3.3.2.1 made that work 

necessary, since the domain of the site centers varied with the beam energy.  Adding λ  

to the domain does, however, add to the running time and memory requirements of the 

algorithm according to Equations (27) and (28), respectively, and to the space 

requirements of the control point nodes according to Equation (29). 



 108

 In the simulations, Λ  was scored using the logarithmic binning system described 

in Section 2.3.2.1, with the width of each bin multiplied by the scaling factor 0.001.  This 

factor was necessary to adjust the bins to the magnitude of the stochastic being scored.  

For Λ , the distributions typically begin at around 0.03 keV/micron (bin 20) near the 

beam entry point, reach a peak around 1 keV/micron (bin 40), and then tail off to a 

maximum value of about 100 keV/micron (bin 67).  The original binning structure 

introduced in Section 2.3.2.1, however, was devised for the energy deposited stochastic, 

E.  It has a distribution that typically begins around 9 eV (original bin 13) near the beam 

entry point, reaches a maximum value at around 1152 eV (original bin 41), and then ends 

near 18,432 eV (original bin 57).  The factor of 0.001 for λ  takes care of this 

transformation from ε  (the independent axis for the stochastic E).  With a total of 88 

bins, the binning structure used for s'Λ  histogram in the simulations begins with 

0.001125 keV/micron at bin 1 and then ends with 3932 keV/micron at bin 88.  This yields 

a fit domain of 4D = [0, 2.034]× [0.0847, 2.119]× [20, 80]× [0.001125, 3932] if all bins 

are used.  

 Restrictions on the data set representing Λf , however, must be made in order to 

produce an acceptable fit.  Low event frequencies at large r′  and h′  combined with low 

histogram counts at high λ produce malformed distributions at these ranges.  Restricting 

the domain yields a cleaner data set and correspondingly better fits.  This has the 

consequence, however, of reducing the overall size and applicability of the fit.  Limiting 

both r′  and h′  to 1.4 times the p90 as well as λ  to 5.632 keV/micron (bin 50) produces 

a nice compromise between these two factors, giving a final restricted fit domain of rD4 = 

[0, 1.4]× [0.0847, 1.4]× [20, 80]× [0.001125, 5.6320]. 
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 Figure 3-10 and Figure 3-11 each illustrate a slice of the Λf  data set at constant 

penetration and beam energy.  In Figure 3-10 the target’s penetration is set to 0.2143 

microns with a beam energy of 22 keV.  In Figure 3-11 the target is at a penetration of 

0.0928 microns and the beam energy is 62 keV.  The white dots in the figures represent 

the test data set and the surfaces represent the slices taken from the representations 

developed for ),( rf ′Λ λ  evaluated at a refinement level of 5s.  The axes are identical in 

each plot to highlight the differing behavior of ),( rf ′Λ λ  with beam energy.  A few trends 

emerge from the figures.  Notice how the peaked region in each plot flattens as r′  

increases.  Also notice how much more peaked the 62 keV distributions are than the 22 

keV distributions for each value of r′ .  In the figures, for a fixed value of r′ , areas under 

the curve )(λΛf  over an interval of λ  represent the probability of depositing Λ  within 

that interval.  The higher peaks of ),( rf ′Λ λ  lying over lower values of λ  and r′ , 

therefore, indicate a greater chance of depositing the stochastic Λ  over these regions 

once the electron track reaches the target. 
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Figure 3-10: Data set (white dots) and fit (surface) representing Λf  for a beam energy of 22 keV with 

h’ = 0.2143. 
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Figure 3-11 Data set (white dots) and fit (surface) representing Λf  for a beam energy of 62 keV with 

h’ = 0.0928.  For an easy comparison, the axis is identical with the axis in Figure 3-10. 

 
 The consistent nature of the peaks along λ  suggests an optimization.  As with Φ  

and Eμ , splitting the domain to capture these peaks within their own region increases the 

accuracy of the overall fit.  This time, however, r′  and h′  is left alone in the creation of 

the two regions 1R  and 2R , and only λ  is split.  Referring to Figure 3-10, an effective 

choice for this split at both energies displayed occurs approximately at 2=λ .  This split 

yields the two intervals 20 1 ≤< Rλ  and )max(2 2 λλ ≤< R  over λ  and creates the two 

regions 1R = [0, 1.4]× [0.0847, 1.4]× [20, 80]× [0.001125, 2] and 142 RDR r −= . 
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 Table 3-5 gives the results of fitting the interpolated common data grid for all 

levels of refinement from 1 to 6s.  The fit statistics in the table are identical with those in 

Table 3-3 and Table 3-4.  Notice how much smaller in magnitude the fitΣ  and testΣ  

statistics are in this table than those for Φ  in Table 3-3.  They are consistently 10% of 

their corresponding values in Table 3-3.  This behavior was not expected, since the 

current case has an additional dimension and relatively eccentric peaks in the 

distributions at the highest beam energies.  Another oddity is how much larger testΣ  is 

than fitΣ  for all levels of refinement in this case versus the previous fits.  testΣ  should be 

larger since the test data set was not used to make the approximation.  But 37% larger at 

K = 5s, for example, is not consistent with BSPLND’s previous performances.  

Regardless, improvements in the RMS statistics is consistent with increasing refinement 

level and a split domain.  From the table, a logical stopping point is at K = 5s, when the 

testΣ  statistic actually reaches a minimum.  Figure 3-10 and Figure 3-11 each visually 

attest to the accuracy of the fit at this level of refinement.  The resulting cost in terms of 

the required nodal storage is now to the fourth power. 
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K fitσ  testσ  
data

fit
fit σ

σ
=Σ

data

test
test σ

σ=Σ  C 

1 0.2867 0.2532 10.690 30.506 54 

1 s 0.2507 0.2130 9.3471 25.658 2 * 54 

2 0.2670 0.2318 9.9546 27.922 74 

2 s 0.1869 0.1434 6.9699 17.281 2 * 74 

3 0.2186 0.1776 8.1509 21.403 114 

3 s 0.1227 0.0667 4.5746 8.0313 2 * 114 

4 0.1496 0.1069 5.5776 12.877 194 

4 s 0.1046 0.0437 3.8989 5.2689 2 * 194 

5 0.1085 0.0713 4.0454 8.5916 354 

5 s 0.1012 0.0429 3.7723 5.1716 2 * 354 

6 0.0974 0.0709 3.6299 8.5381 674 

6 s 0.0911 0.0430 3.3973 5.1819 2 * 674 

Table 3-5: Results of fitting the interpolated common data grid for all levels of refinement from 1 to 
6s. 

 
 Figure 3-12 makes it easy to compare the data and fit of individual distributions 

over the entire domain of λ  for the single refinement level of K = 5s.  Here the focus of 

each subplot is the distribution itself, with the beam energy varying over the subplot 

columns and the sample locations varying over the rows.  In each subplot the solid line 

represents the data, the dashed line represents the fit, and the horizontal error bars 

represent the bins and their corresponding uncertainty.  All subplots share the same axes 

in λ  and Λf  in order to help illustrate the behavior of Λf  over e, r′ , and h′ .  As with 

distribution slices taken from Figure 3-10 and Figure 3-11 at constant values of r′ , notice 
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how )(λΛf  peaks higher at the larger beam energy.  Also notice how )(λΛf  flattens as 

the distance from the beam entry point increases.  Both of these trends are indicative of 

the increasing randomness of electrons as they lose energy.  Another thing to notice is the 

choppiness of the data in the subplot associated with ( r′ , h′ ) = (1,1) and e = 62 keV.  

This indicates how the statistical quality of the data diminishes with increasing distance 

from the beam entry point. Finally, it should be noted that the area under )(λΛf  over 

∞<< λ0  for each of these subplots should in theory be the same.  As was covered in 

Section 2.3.2.1, all true probability distribution functions enclose an area of 1.  Therefore, 

the flatter curves in the figure keep larger values past the cutoff value of λ  used in the 

domain of the fits. 

22 keV 62 keV
f Λ

λ

(0.25,0.25)

(0.25,1)

(1,0.25)

(1,1)

(0.6,0.6)

( ’, ’)r h

 
Figure 3-12: Montage of Λf  vs. λ  over e, r′ , and h′ .  The position of each axis in the montage 

represents its energy (by column) and its location (by row). 
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3.4  Approximating Distributions of the Energy Deposited Per 
Unit Track Length of the Primary Particle using 
Lognormal Functions 

 
 As data for Λf  was collected, it appeared that the distributions were lognormal in 

nature.  Figure 2-11 from Section 2.4.5 shows this behavior for a 25 keV electron 

microbeam.  The distributions in the data rise up quickly to a peak and then exponentially 

taper off after that.  It is uncertain from physical arguments, however, why Λf  would be 

lognormal in nature.  Several other distribution functions follow a similar trend, such as 

the Wiebull and fatigue life distributions, and they too could have been used to possibly 

model Λf .  Nevertheless, the process of fitting Λf  is emphasized in this section rather 

than the accuracy of the model used, and the lognormal distribution seemed to fit the data 

particularly well early in the course of research.  Unfortunately, applying the goodness of 

fit testing process introduced in Section 2.3.2.7 to the resulting lognormal distribution fits 

gives disappointing results.  This testing process will be discussed in Section 3.4.3.  First, 

a comparison is made of the various point estimate techniques in Section 3.4.1, and then 

an analysis of the trends in μ  and σ  for the lognormal parameters is made in Section 

3.4.2. 
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3.4.1 SEP Lognormal Parameter Estimation 
 
 Section 2.3.2.6 introduced the notion of estimating the parameters for a 

probability distribution given a set of data that is assumed to be governed by that 

distribution.  A total of four methods were outlined: the method of nonlinear least squares 

(MNLS), the method of maximum likelihood (MML), the method of moments (MM), 

and probability plotting.  In this section the first three of these methods will be applied to 

finding the parameters of a lognormal function at each of the target sites for a 20 keV 

electron microbeam. 

 Figure 3-13 shows the lognormal curves at the nine targets within [0.25, 0.6, 

1.0]x[0.25, 0.6, 1.0] resulting from parameter estimation by the various methods.  The 

curves associated with MM, MML, and MNLS are in magenta, blue, and red, 

respectively, while the data points are represented by the black dots and error bars.  The 

axes are scaled differently to fully accommodate the respective curves.  Notice how the 

curve using MML falls short of the peak at the data point closest to the beam entry point 

and then catches up with the curve using MNLS as r′  and h′  increases.  The MML curve 

peak is consistently below the MNLS curve peak.  In addition, the MM curve is skewed 

to the left compared with the other curves.  Overall, the estimated distributions are close 

to the data points, but they fall well short in accuracy at this beam energy when compared 

with the corresponding curves extracted from the B-spline approximation developed in 

Section 3.3.3.  Figure 3-14 shows this discrepancy at the site (0.25, 0.25). 
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Figure 3-13: The lognormal curves at the nine targets within [0.25, 0.6, 1.0]x[0.25, 0.6, 1.0] resulting 

from parameter estimation by MM (magenta), MML (blue), and MNLS (red). 
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Figure 3-14: Error between the data for )(λΛf  and its fit using the Λf  BSPLND representation (dashed 

blue curve) and the best parameter estimation method (black curve) at the site (0.25,0.25) for a 20 keV 
microbeam. 

 

3.4.2 Trends in the Lognormal Parameters over r’, h’, and e 
 
 Figure 3-15 shows the trend in the fit parameters μ  and σ  of the lognormal 

distributions over r′ , h′ , and e.  The first column of plots in the figure represents μ , 

while the second column represents σ .  The rows indicate e, and the axes in the 

individual plots run over the domain of ′×′ ii hr
rr  (see Section 3.3.2.1) up to 1.2 of the p90 

value for the energy level i.  The parameterμ  has units of ln(keV/micron) while σ  is 

unitless. 
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Figure 3-15: Trend in the fit parameters μ  and σ  of the lognormal distributions over r′ , h′ , and 

e. 

 

 Notice how μ  for each energy resembles the conditional mean of energy 

deposited surface in Figure 3-3.  It is near a minimum at the beam entry point and then 
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bowls up to an asymptotic value past about 1.5 times the p90.   It also has about the same 

distance between its minimum and maximum on each plot and decreases over the entire 

spatial domain with increasing beam energy.  The surfaces for σ  at each beam energy 

reach asymptotic values as well, but they do not hold their shape with increasing energy. 

 With some visual effort and mathematical insight the surfaces for μ  and σ  can 

be represented by the functions 
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with parameters a, b, c, d, e, f, and g.  If equations (31) and (32) are plugged into the 

original equation for the lognormal distribution, then a fit function in terms of these seven 

new parameters results, namely 
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The new fit function can then be pushed through the process of nonlinear least squares 

fitting yet again over λ , r′ , and h′  at each fixed beam energy.  For n energy levels, the 

representation is then reduced to a set of n equations, each a function of λ , r′ , and h′ . 

3.4.3 Goodness of Fit Testing of Lognormal Fits 
 
 Goodness of fit testing was introduced in Section 2.3.2.7 as a standard method of 

determining if a data set is governed by a particular distribution representation.  This 

method will now be applied to a sample )(λΛf  data set at a fixed site and a fixed energy 
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level to assess its lognormality.  Sites very close to the beam entry point at low energy 

levels produce )(λΛf  data sets that look the most lognormal, so that is a good place to 

begin.  Over the domain rD4  from Section 3.3.3, the best choice for )(λΛf  is at the site 

( r′ , h′ ) = (0, 0.0847) with a beam energy of 20 keV.  Data sets representing )(λΛf  at 

other sites and energy levels could be assessed if this sample data set passes the goodness 

of fit testing process. 

 The first step in a chi-square goodness of fit test is to estimate the distribution 

parameters using one of the methods introduced in Section 2.3.2.6.  For this discussion 

the method of maximum likelihood is used, since it was shown to give a slightly better 

result than the method of nonlinear least squares.  Using the method of maximum 

likelihood, the parameters are estimated to be 3535.0=μ  and 5458.0=σ , yielding a 

lognormal representation of 
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 All histograms in the PITS data set are split into 88 non-overlapping intervals.  In 

each interval there is an error between the actual value of the data point and its expected 

value given the representation in Equation (34).  Overall, the chi-square statistic is a 

measure of the relative error between these two quantities.   If n is the number of data 

points in the k included intervals, then the expected value of the distribution in the ith 

interval is iing λλ ΔΛ )(  and the chi-square statistic is 
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From the data set, only intervals 23 to 60 are used in order to keep the denominator 

greater than zero.  In addition, there are approximately 3 million data points within these 

intervals, so C becomes 

 ( )∑
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ge
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 The statistic C has a 2χ  distribution with (60-23)-1-2 = 34 degrees of freedom.  

The hypothesis that the data follows a lognormal distribution with parameters 

3535.0=μ  and 5458.0=σ  is rejected at the α  level of significance if 2
34,1 αχ −≥C .  At 

α = 0.01, for example the hypothesis should be rejected if 06.56≥C .  Since C is an 

astounding 2.314e5, the conclusion is that the distribution is not lognormal at this site. 

 So why is the chi-square statistic so large?  One would think that three million 

tracks should generate a data set that is very accurate to its underlying standard 

distribution, if it exists.  As more tracks are added, the data converges to the distribution.  

The PITS data set, however, does not seem to converge to the lognormal distribution.  

Some irregularities do not disappear as the number of tracks is increased.  Also, the 

estimation of parameters would have been much more accurate if the raw data were 

collected in the original simulation in lieu of the binned quantities.  A higher density 

binning system would help as well, but the resulting chi-square statistic would probably 

be just as large.  It should be concluded that the distributions are approximately 

lognormal but not statistically lognormal. 
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4 Application of the BSPLND Representations: 
Irradiation of a Cell Nucleus 

 
 
 
 
 
 
 
 
 
 

4.1  Background 
 
 The representations developed for the quantities within this thesis can only be 

applied to one micron diameter spherical targets.  The use of other target volumes would 

require a complete rerun of the simulation and fitting process.  But what if it were 

possible to pack any volume with one micron diameter spheres and calculate the sought 

after quantities directly from the existing fits?  If so, then what about automating the 

process so that the user could graphically specify their target in three dimensions, set the 

appropriate simulation parameters, press a button initiating the sphere packing, and then 

press another button to evaluate the quantity over the domain specified?  At the beginning 

of this study these suppositions seemed plausible, and they drove the development of the 

fits and their associated software.  Unfortunately, for the most part, calculating any 

quantities, whether stochastic or not, for an arbitrary volume using these methods is not 

possible.  It is the purpose of this section to explain why this is so and to expose the 

methods that can give a limited amount of information concerning larger volumes. 
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 It would be most useful if the stochastic distributions themselves could be 

aggregated from the one micron diameter spheres into a stochastic distribution for the 

larger packed volume.  Letting iΛ  be the thi  stochastic for Ni ≤≤1  with distribution 

density )( ii
g λΛ , then the aggregate distribution would represent the new stochastic 

 ),,,( 21 Nag f ΛΛΛ=Λ K  (37) 

and have a distribution density function of )( agag
g λΛ .  The big hurdle to making the 

aggregation successful, however, is the dependency rooted within each particle track.  

This track “history” makes the deposition of a stochastic in one target dependent on the 

track’s previous depositions in other targets.  Unless this dependency can be accounted 

for, there is no way to find the distribution for all of the combined targets.  If the 

distributions were independent then they could undergo a process called convolution to 

produce the desired aggregate distribution. 

4.1.1 Simulation Setup 
 
 It was known from the outset that the aggregation of distributions was futile.  

Others, such as Kellerer [1969] have previously explored this issue and come to the same 

conclusion as myself.  The aggregation of the distribution summary statistics, however, 

was assumed to be possible, and equations were developed to perform the aggregation 

using the developed fits.  The entire process was to be showcased and tested in a sample 

problem from Biology, in which a 10 micron diameter spherical cell nucleus is irradiated 

by a 50 keV electron microbeam positioned 6 microns directly below the cell’s center 

point.  Comparisons were to be made for the relevant quantities between their simulated 
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values and their calculation using the fits and aggregation.  A diagram of the simulation 

setup is shown in Figure 4-1. 

 

Figure 4-1: The simulation setup for the cell aggregation problem.  Only the packed micron diameter 
spheres are shown in the diagram. 

 
The exact steps in carrying out the comparisons are given below. 

1. Pack the nucleus with one micron diameter spheres using a 3rd party sphere 

packing routine.  A Python utility called packer.py is capable of this.  It can be 

obtained via the world wide web from http://packinon.sourceforge.net.  In 
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packer.py you can specify any two of the following: small sphere diameter, large 

sphere diameter, and number of spheres.  It saves the packed sphere centers in a 

text file. 

2. Construct a scoring file where 

a. the target sphere geometries are loaded in from the text file produced in 

list item 1; 

b. a simulation is carried out with those spheres as targets, where the desired 

quantities are scored; and 

c.  an output XML file is produced containing the relevant scoring quantities. 

3. Run the simulation for millions of tracks at a beam energy that is represented in 

the fits (e.g. within 20 to 80 keV). 

4. Construct a MATLAB file that 

a. loads the sphere geometry; 

b. loads the PITS simulation results; 

c. loads the previously developed fit structures for Φ , Eμ , and Λ ; 

d. uses a yet to be determined algorithm to calculate the aggregate of Eμ  and 

the aggregate of Λμ  from the micron diameters spheres, taking into 

account that for Λ  only lineal energies up to 5.632 keV/micron are 

represented; 

e. and compares each aggregated quantity with the respective quantity in the 

large sphere.  The space between the packed spheres would be 

compensated for in this comparison. 
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These steps were executed for the 50 keV electron beam simulation mentioned at the 

beginning of the section.  Unfortunately, the simulation and aggregate calculations for the 

most part did not agree.  Insights into the source of these discrepancies will be discussed 

in the remaining sections of this chapter. 

4.1.2 Issues with the Aggregation Problem 
 
 
Issue 1: The probability of a track reaching either of two volumes is not the 

probability of the track reaching the first volume plus the probability of the track 

reaching the second volume. 

 

 Specifically, if 1Φ  is the probability of a track reaching sphere 1 and 2Φ  is the 

probability of a track reaching sphere 2, then the probability of a track reaching the 

volume enclosed by both spheres, 2)or  1(Φ , is not  21 Φ+Φ .  This is intuitive if you 

consider spheres 1 and 2 lying very near the beam entry point.  The value of Φ  for each 

of these spheres would be near 1, so their aggregate, 2)or  1(Φ , could not possibly be 2.  

Probabilities can never be greater than 1.  The issue here lies with tracks passing through 

both spheres at the same time, whose probability of occurring is written 2) and 1(Φ .  The 

quantity 2)or  1(Φ  must be compensated for by subtracting 2) and 1(Φ  from the sum of 1Φ  and 

2Φ , yielding 

 2 and 1212)or  1( Φ−Φ+Φ=Φ . (38) 
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The overlap of every possible combination of spheres, however, is necessary in order to 

calculate 2) and 1(Φ .  For n spheres there are 12 −− nn  possible combinations, meaning that 

this problem has a )2( nO  growth rate! 

 

Issue 2: PITS stochastic quantities can be divided into two groups: additive and 

non-additive.  Only additive stochastics have summary statistics that can be 

aggregated. 

 

 Depositions of additive stochastics in non-overlapping volumes sum to give the 

deposition in the combined volume.  Depositions of non-additive stochastics, on the other 

hand, do not have this property.  A stochastic becomes non-additive when it is the ratio of 

two additive stochastics.  The total energy deposited in two spheres, for example, is 

composed of the energies from each individual sphere.  Hence, the total energy deposited 

stochastic is additive.  The stochastic Λ , however, is not additive, since it is the ratio of 

two additive stochastics.  To see why, consider two adjacent targets labeled 1 and 2.  

Then, defining 1λ  and 2λ  as the quantities of the stochastic Λ  deposited in each target 

and agλ  as the quantity deposited in both targets gives 
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Therefore, 21 λλλ +≠ag . 
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 If a stochastic is additive, then its summary statistics can be aggregated from the 

smaller enclosing volumes.  To prove this, first suppose ie  is the energy deposited in the 

thi  target and ne ,,2,1 K  is the total energy deposited in all targets if n is the number of 

targets.  Then, since the energy deposited stochastic is additive, 

 ∑
=

=
n

i
in ee

1
,,2,1 K . (41) 

For many track realizations, the energy deposited in a particular target is approximately 

equal to the probability of reaching that target, Φ , times the expected deposition of 

energy within the target once it is reached, Eμ .  Therefore, for the thi  target, 

 iEiie μΦ≈ , (42) 

and for all individual targets taken as one large target, 

 nEnne ,,2,1)or  or  2or  1(,,2,1 KLK μΦ= , (43) 

where nE ,,2,1 K
μ  is the as yet undetermined expectation of energy deposited in all of the 

individual targets.  Combining Equations (41), (42), and (43) gives 
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 This process unfortunately does not work for non-additive stochastics because 

Equation (41) is violated.  The best that can be done in finding the aggregated summary 

statistic is to average the summary statistics from all of the individual targets. 
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Issue 3: The probability of a track reaching the larger enclosing volume, bigΦ , is 

required in order to relate any additive summary statistic in that volume—such as 

Eμ —to the same statistic of its packing spheres.  Determining bigΦ , however, 

requires rerunning simulations for the larger volume. 

 

 Relating an additive summary statistic for the larger volume to the same statistic 

for its enclosing volumes requires the introduction of the packing density.  The packing 

density, denoted by ρ , is defined as the ratio of the total volume of the small packing 

objects to the volume of the larger enclosing object.  If n is the number of r radius 

spheres packed in a larger sphere of radius R, then 
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 Packing the sample “nucleus” with micron diameter spheres using the packer.py 

utility creates a total of  537 spheres.  Since the ratio of a micron diameter sphere’s 

volume and a 10 micron diameter sphere’s volume is 1 to 1000, the packing density in 

this situation is 0.537.  This means that just under 50% of the large sphere’s volume is 

empty space.  A packing density of 0.537 may seem low at first sight, but the maximum 

achievable packing density for spheres is only 74048.023 ≈π  when they are stacked 

like oranges in a grocery store.  This arrangement is not possible in the nucleus problem, 

however, because the small spheres must be contained wholly within the larger sphere.  

The relatively low packing density in the nucleus problem means that compensating for 

ρ  will be a large factor in achieving accurate aggregation results. 
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 The packing density concept can be applied to additive stochastic depositions by 

making use of the relation 

 ρ=≈
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Here ie  is the deposition of the stochastic in the thi  packing sphere, iV  is the thi  packing 

sphere’s volume, bige  is the deposition in the larger packed sphere, and bigV  is the larger 

packed sphere’s volume.  Then, since 
iEiie μΦ≈  from Equation (42), 
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The technique does not make sense for non-additive stochastics because the ratio of 

big

n

i
i ee∑

=1
 in Equation (47) is meaningless. 

 So far the quantity 
bigEμ  has been absent from the discussion.  Bridging the gap 

between 
iEμ  and 

bigEμ  requires the introduction of bigΦ , through the relation 

bigEbigbige μΦ≈ .  Then 
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A problem arises here, however.  The quantity bigΦ  was never computed in the project’s 

simulations, nor is it computable from iΦ  without knowing n) and and 2 and 1( LΦ  (see Equation 

(38)).  It could manually be created for the large sphere by rerunning the simulation, but 



 132

this defeats the purpose of creating the fits in the first place.  Luckily, for the sample 

problem in Figure 4-1, the large sphere is close enough to the beam entry point to yield 

19827.0 ≈=Φbig .  Considering this, bigΦ  can be eliminated and Equation (49) becomes 

 .1
1
∑
=

Φ≈
n

i
EibigE i

μ
ρ

μ  (50) 

Despite all of these restrictions, Equation (50) gives a value of 3100416.8 ×  for the 

sample problem, versus 4101546.1 × eV calculated from the simulation, a 30% difference.  

Placing the large sphere further away from the beam entry point would degrade this 

result. 
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5 Conclusions and Future Work 
 
 
 
 
 
 
 
 
 
 
 The overall focus of this thesis was on building a system for the efficient 

production, approximation, and visualization of microdosimetric data derived from 

Monte Carlo particle track simulations.  From these approximations a better 

understanding of the nature of electron microbeams and their microdosimetric impact on 

targets of a set geometry emerged.  One micron diameter spheres were used as targets 

primarily to exploit the azimuthal symmetry of the simulated tracks.  The methods used 

could easily translate to targets of other shapes and sizes by making a couple of 

parameter changes in the scripts and rerunning the track simulations.  As well, the 

microdosimetric quantities Eμ , Φ , and Λ  were highlighted throughout the thesis 

because of their biological significance, but any other stochastic or non-stochastic 

quantities could have been chosen in their place.  The methods exposed by the thesis are 

just as important as the results presented.  So too is the educational value of the write-up 

itself, where the concepts of ionizing radiation, microdosimetry, electron track structures, 

the mathematical approximation of data, B-spline fitting techniques, statistical 

distributions, parameter estimation, and goodness-of-fit testing have been introduced. 
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 Even though the representations developed for this thesis are only applicable to 

one micron diameter spherical targets, they still have merit in helping to visualize the 

nature of an electron microbeam’s radiation field.  The representations give a sense of 

how the microbeam impacts the spherical targets as they are moved within the simulation 

space and as the beam energy is altered.  Other targets would respond much the same to a 

change in location and beam energy as one micron diameter spheres.  Targets very far 

from the beam entry point, for example, would have a relatively high conditional mean of 

energy imparted owing to the slowdown of the electrons far from the beam entry point.  

Likewise, the distribution of stochastics such as Λ  within these targets would be less 

peaked because of the more random nature of the tracks at these distances.  Therefore, it 

would be fruitful to use the methods developed in this thesis to study how targets of 

different geometries respond to a change in location and beam energy.  The easiest and 

most precise way of doing this is to make sphere diameter an additional variable in the 

representations, perhaps at a constant beam energy to reduce the dimensionality of the 

problem. 

 Additional time should also be spent on studying the sphere packing problem 

introduced in Section 4.  Finding an efficient method for calculating microdosimetric 

quantities in larger targets using smaller identical targets with known statistics remains a 

wide open problem.  Further study may find such a method for the summary statistics.  

Or the problem might be proved to be NP-complete, meaning an efficient polynomial 

running time method does not exist to solve the problem.  As it stands, the problem has 

been shown to be solvable in Section 4.1.2 (see Equation (49)), but the techniques 

presented depended on calculating n) andand 2 and 1( LΦ  for n spheres, which has a growth rate 
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of )2( nO .  Finding a method for stochastic distributions would be much more difficult 

because they depend on individual depositions and not aggregate quantities.  How a track 

behaves in a target is a direct consequence of its history, which is different for every track 

in a PITS Monte Carlo simulation.  Finding this history from the distributions could then 

lead to a solution for the larger target, but this too is an unsolved problem.  According to 

Kellerer [1969, pg 2], “The question of whether an operational method can be found to 

reconstruct the spatial patterns of energy deposition from the [stochastic] distributions 

)(1 zf  [ )(λΛf  in this text] is one of the interesting open problems in microdosimetry.”  

He goes on to say “As yet there is no technique to extract all information contained in the 

[stochastic] distributions )(1 zf .  Consequently it is also not possible to calculate the 

distributions for a non-spherical region from those determined in spheres…” 

 One problem that can be solved efficiently using the aggregation technique is 

estimating the overall amount of an additive stochastic quantity that has been deposited in 

the large packed volume.  The mathematics behind the technique was introduced in 

Section 4.1.2 (see Equation (48)) , but it was never applied to the cell nucleus problem.  

Work in the immediate future will involve using the technique to assess the total energy 

deposited in the sample cell nucleus problem and other such problems in Biology.  It will 

also be interesting to remove the packing density from the calculation by comparing the 

total energy deposited scaled by a non-stochastic quantity such as the mass of the targets.  

The total value deposited for the non-additive stochastic Λ  will be treated as well by 

averaging the total quantity of Λ  deposited in each of the packing spheres and comparing 

this value with the total deposited in the larger volume.  After preliminary calculations 

have been made using data exclusively from simulations, an interactive graphical 
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application will be built to use the representations developed in this thesis to solve the 

aggregation problems for custom geometries.  In this application the user would modify 

the target location, set the beam energy within a range of 20 to 80 keV, and then request a 

total stochastic quantity to be calculated (either E or Λ ).  They would then press a button 

to initiate the packing process, evaluate the necessary representations, and make the final 

calculations.  The spheres would be color coded to show the relative quantities of the 

stochastic delivered.  Such an interactive visualization application could easily be written 

in MATLAB using its graphical user interface and visualization tools. 
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Appendix 
 
 
 
 
 
 
 
 
 
 

pits.F Main Procedure 
 
 
>Initialize parallel computing environment 

>Open and read input parameter file, inpits.dat 

>Initialize random number generator 

>Read in the probability cross-section tables for electron transport, 

new_crossec.dat 

>Initialize electron transport module parameters by calling 

eltran.init() 

>Initialize interaction history output file, ioncoord.dat 

 

// Divide the tracks equally among the processors.  Assume 

number_of_tracks is divisible by number_of_processors 

>number_of_tracks_this_processor = number_of_tracks/number_of_processors

 

// Process each individual track 

>For track = 1 to number_of_tracks_this_processor 

// Produce the history of one ion track 

>call pits.iontrac() 

 

// Score the track 

>call pits.outpend() 

>End 

 

>Aggregate scoring data from all processors onto one processor by 

calling scor.add_freq() 

>Finalize the parallel computing environment 
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>Finalize scoring analysis by calling scor.outpfin() 

 
Algorithm 5: pits.F main procedure. 

 

pits.F iontrac() Subroutine 
 

 

/*  

This the main procedure for ion track structure calculations.  Follows 

the history of one ion and stacks the ionization interactions for 

later transport of the secondaries. 

*/ 

 

>While true 

 // We have a new interaction 

>Detemine the type of ion interaction and its specifications 

>Calculate the location of this interaction  

>Update the path track length 

>Output the ion event info to a file 

>Transport the secondary electrons produced from this 

interaction 

>End 

 

Algorithm 6: pits.F iontrac() subroutine. 

 

scor_s.F inlinit() Subroutine 
 

 

>Create scoring bin edges, centers, and widths 

>Read in parameters from inpits.dat for scoring 

>Define site centers 

>Initialize histogram arrays to zero 

>Write header information to the output file 

 

Algorithm 7: scor_s.F inlinit() subroutine 
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scor_s.F score() Subroutine 
 

 

>Declare sites_traversed_array 

>Create and clear sparse accumulation arrays: 

>accume_sparse(MAX_LAYERS, MAX_CYLINDER, MAX_SECTORS) = total 

energy deposited by all events in a site 

>accumep_sparse = accumulates energy deposited by the primary 

electron in a site 

>accumtl_sparse = accumulates track length accumulated by all 

electrons in a site 

>accumtlp_sparse = accumulates track length accumulated by the 

primary electron in a site 

>accumndp_sparse = accumulates number of primary event 

interactions in a site 

>accumntch_sparse = accumulates number of toucher events in a site

>accumtltchall_sparse = accumulates track length accumulated by 

all toucher events in a site 

>accumetchall_sparse = accumulates energy accumulated by all 

toucher events in a site 

>accumtltchlg_sparse = accumulates the tracklength of the lowest 

generation events for toucher events  

>lowest_gen_sparse = lowest generation event to hit a site  

>sites_traversed_sparse = sites actually traversed by a particle 

 

>Loop through events to determine the spheres that are traversed 

>Calculate the layer and cylinder that event is in 

>Calculate the exact site the event is in within its cylinder 

>Optimize by assuming the event is in the same site as the 

last event 

>Make a note of this site within sites_traversed_sparse 

>End loop 

 

>Loop through events to determine the lowest generation that passes 

through each sphere in sites_traversed_array 

>Loop through sites traversed sparse to determine which sphere the 

event is in 

>Determine if this event is lowest in generation in the 

sphere 

>If the event is a primary event then add it to 

accumndp_sparse 
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>End loop 

>End loop 

 

>Loop through the events to determine parameters such as energy 

deposited in hit spheres 

>Loop through sites traversed sparse to determine which sphere the 

event is in 

>Add the energy deposited by this event to accume_sparse 

> If the event is produced by a primary electron, add energy 

deposited to accumep_sparse 

>Add the length of this event’s track since the last event 

to accumtl_sparse 

>If the event is produced by a primary electron, add the 

event’s track length to accumtlp_sparse 

>If the event is a toucher event then 

>Add the energy to accumetchall_sparse 

>Add the track length to accumtltchall_sparse 

>Increment accumntch_sparse 

>If the event is the lowest generation in the sphere 

>Add the track length to accumtltchlg_sparse 

>End loop 

>End loop 

 

>Loop through the hit spheres to perform scoring 

>Score the number of primary event interactions 

>Get accumndp_sparse for this site 

>Determine the histogram bin this fits in 

>Increment the nfreqndp for that bin 

>Score the accumulated energy in this site 

>Score the accumulated tracklength of all events for this site 

>Score the accumulated energy of the primary electron for this 

site 

>Score the accumulated track length of the primary electron for 

this site 

>Score the energy deposited by all toucher events for this site 

>Score the tracklength accumulated by all toucher events for this 

site 

>Score the tracklength of the lowest generation of toucher events 

>End loop 

 

Algorithm 8: scor_s.F score() subroutine. 
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