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WIND TURBINE CAPACITY PLANNING APPROXIMATIONS 

FOR NORTHWEST UNITED STATES UTILITIES 

Abstract 
 
 

by Chad L. Edinger, M.S. 
Washington State University 

May 2008 
 
 
Chair: Kevin Tomsovic 
 
 

As global demand for electricity increases and the concern for its environmental 

impact comes to the center of political debate, the world is looking to new sources that 

will meet these increases while at the same time lessening environmental impact. In 

response to this, both utilities and governments are looking toward renewable resources. 

Hydroelectric has been the most prevalent form of renewable energy, having been in use 

in the United States for over 100 years. But due to the impact imposed on both the land 

and spawning fish, this form of renewable energy has fallen into disfavor in recent 

decades. As an alternative, wind energy seems to have become the large-scale renewable 

of choice. Recent strides in wind turbine technology have allowed for the placement of 

large wind generation sites or wind farms. However, wind is sporadic by nature and 

imposes a high level of uncertainty into utility operations.  Moreover, wind has great 

seasonal and geographic dependencies that require intensive planning studies.  

In this thesis, a simplified model is proposed that will allow utilities in the 

Northwest United States to plan the amount of wind generation capacity that will be 

needed to supply a modest portion of total load and to meet state mandated renewable 
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requirements. Assumptions are proposed that can convert collected wind speed data into 

a combined wind farm megawatt output. The model allows for analysis of wind turbine 

output from proposed sites with relative geographic dispersion to determine correlation. 

Based on this model, system load from Tacoma Public Utilities will be compared to the 

combined wind farm output using appropriate statistical computations. Throughout this 

work comparisons are drawn with previous efforts to determine if the conclusions 

reached are consistent with those studies that were similar in scope. The objective will be 

to determine with fair certainty the amount of wind generation Tacoma Public Utilities 

will require to meet both its own renewable goals and Washington State’s Renewable 

Portfolio Standard. 
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Chapter 1 

Introduction 

 

 

The United States is the largest consumer of electricity in the world, which 

the Energy Information Administration reports at 760,108 MW of net internal 

demand. The demand for electricity has grown from 1996 to 2006 by 26.1% with 

little investment in large scale generation [1]. What had been built were gas 

turbine generators that came into the market during times of relative inexpensive 

natural gas. But due to the strain put on generation capacity in the United States 

and high gas prices, utilities have been forced to consider other alternatives. In 

2000, natural gas prices rose 63% while at the same time coal realized an actual 

2% decrease [2]. Naturally, this caused utilities to begin revisiting the idea of 

building nuclear and coal fired power plants. But due to Nuclear’s long lead-times 

for construction and high sunk costs, many utilities began to expand their coal 

fired generation capacity. Though coal has no long-term waste storage issues it 

does release carbon dioxide, sulfur and nitrogen oxides into the environment, 

which has more immediate effects. 
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By the late 1990’s global warming due to gases such as CO2 and NOx had 

become a leading concern. Most scientists believed the record high temperatures 

and prolonged draughts being felt throughout the U.S. were caused directly by 

these gases. In 1997, the United Nations Framework Convention on Climate 

Change adopted the Kyoto Protocol. The protocol seeks a reduction in greenhouse 

gases to below pre 1990 emissions levels [3]. The United States signed but never 

ratified the treaty causing great debate among U.S. citizens. Today it appears that 

if the federal government is not going to take a strong stance on reducing 

emission of gases such as CO2 and NOx, also known as greenhouse gases, state 

voters would.  

In 2000, electrical utilities accounted for 34% of the greenhouse gases 

emitted by the United States [2]. This makes electric generation the single largest 

producer of these gases in the country and an obvious target for reduction. 

Though states require utilities to offer a renewable energy option to their 

customers, some states believe a mandate for acquiring specific levels of 

renewable energy is needed to ensure green gas reduction. Through Renewable 

Portfolio Standards (RPS) states have found a vehicle by which they hope to 

achieve a reduction in emissions that lead to global warming while at the same 

time achieving energy independence and better price stability for their residents. 

 Starting in 2012, Washington State utilities will be required to either 

purchase or produce a portion of their energy from a renewable resource. Some of 

the larger state utilities such as Puget Sound Energy and PacifiCorp have already 

built wind farms that will help meet these requirements [4-6]. But most have not, 



 

3 

presumably due to budgeting constraints and a lack of renewable planning 

experience. This thesis will use data collected by a federal power marketer and 

utility specific load information to build a model that will reliably evaluate the 

ability of a wind generator to serve load. The idea is to keep the model as simple 

as possible to allow for an approximate evaluation that can be used by any 

northwest utility to meet either self imposed goals or state requirements. In this 

respect a utility can choose to proceed further down a road to building their own 

wind farm asset or turning to the open market to meet their needs. 

 

1.1 Creating an Economic Market for Wind Energy 

To better understand how wind energy has come to dominate the 

renewable energy landscape one needs to consider the history behind its 

development. The bulk of its history is rooted in the worldwide dynamics of 

electricity production, which underwent significant changes over thirty years ago. 

The OPEC oil embargo of 1973 and Middle East conflicts caused world energy 

prices to rise throughout the 1970’s. The United States was not immune and 

responded with legislation and tax incentives to promote alternative forms of 

generation. The most influential and beneficial of these was the Public Utility 

Regulatory Policies Act (PURPA) of 1978. The act required host utilities to 

purchase, at a favorable rate, the energy produced by a small power producer 

using renewable resources or by cogeneration. These facilities were required to 

meet specifications to become a “Qualified Facility” by the act. To be classified 

as a “QF” the producer had to either be less than 50% owned by a utility or 
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produce less than 80 MW. The act defined favorable rate as the incremental cost 

of energy either generated by the host utility or purchased from another traditional 

source. The cost was not to exceed the avoided cost of generating renewable 

energies. But due to the high prices of energy, renewable energy was at the time 

already less costly [7].  

By the early 1980’s, California had become the center of wind generation 

capacity. Coupled with PURPA, the state mandated Standard Offer 4 (SO4) long 

term contracts that offered ten years of fixed, above market, feed-in tariffs. The 

state also added to the Federal Energy Tax Credit which resulted in an almost 

50% tax credit to renewable projects [8]. In 1992, the US had 1,822 MW of 

installed wind turbine capacity of which over 1,600 MW was in California. By 

1996 though installed capacity had decreased to 1,670 MW [1]. Suggestions have 

been made that this was due to the expiration of 10-year contracts that utilities had 

written when energy prices were still relatively high. In the late 1980’s, energy 

prices had began to fall and the comparison of avoided cost to renewable cost had 

shifted back in favor of fossil fuels [7, 8].  

In 1996, FERC Order 888 the “Open Access Policy” went into effect and 

made significant changes to how the geographical monopolies of electric utilities 

conducted business. The policy forced the unbundling of generation from 

transmission and marked the next significant step in energy deregulation. In 

practical terms, the only customer a QF could sell energy to was the utility in 

whose territory the generator resided. The only hurdle a QF had to overcome until 

1996 was an economic one. As long as energy prices remained high QF’s had a 
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guaranteed customer which had to pay favorable rates. After Order 888, the 

utilities lost their monopoly on transmission assets and by default so did the QF’s 

[9]. 

 

1.2 State RPS’s 

A renewable portfolio standard (RPS) is defined as “a state policy that 

requires electricity providers to obtain a minimum percentage of their power from 

renewable energy resources by a certain date” [10]. In October 1999, the state of 

Wisconsin became the first to enact an RPS. The law required utilities serving the 

state to purchase or produce 2.2% of the energy delivered within the state from 

renewable resources by 2012 [11].  Since that time, 30 states have enacted some 

form of an RPS [10]. 

In November 2006, the voters of Washington State passed Initiative 937 

(I-937) entitled the Energy Independence Act. As directed by the initiative state 

lawmakers produced the Revised Code of Washington number 19.285. The law 

stipulates the levels that utilities must meet to increase energy conservation and 

renewable energy purchases. The latter is the state RPS, which requires utilities to 

generate or purchase 3% of their energy from a renewable source beginning in 

2012. Included in the RPS is a stepped increase to 9% to take effect four years 

later and then finally to 15% in 2020 [12].   

The Washington State Department of Community, Trade and Economic 

Development (CTED) reported in 2006 that the state’s fuel mix was comprised of 

69% hydro, 17% coal, 8% Natural Gas, 5% Nuclear and 1% wind energy [13]. 
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That same year, Washington State generated approximately 2,560,745 MW-hours 

of renewable energy including landfill gas, biomass, wood, geothermal, solar/PV, 

and wind [14]. Wind accounted for 867,392 MW-hours of the renewable fuel mix 

[13]. According to I-937 any utility serving over 25,000 customers must comply 

with the RPS. A 2005 report by the CTED, stated those utilities that fall into the 

grater than 25,000 category provided 68,989,871 MW-hours of electricity to their 

customers. To achieve 15%, the utilities must purchase or generate 10,348,480 

MW-hours of renewable energy relative to today’s load [15]. By 2020 when 15% 

is actually enacted and assuming a load growth of 1.3% [16], the needed 

renewable energy supply would grow to 12,560,827 MW-hours or a six-fold 

increase. This, of course, does not include other utilities that pass the 25,000-

customer mark over the next 15 years. 

 Note that hydro electricity is specifically excluded as a renewable resource 

by I-937. Traditionally hydro electricity has been considered a renewable resource 

and some states still include it in their RPS [11]. But in Washington State, only 

incremental improvements made to improve the efficiency of existing hydro 

plants may be counted.  

 

1.3 Wind Energy Integration 

As mentioned earlier, historically California dominated wind capacity 

with over 90% of the world’s installed capacity in 1988. Within California, three 

large wind farms had been developed at Altamont Pass, Tehachapi Pass and San 

Gorgonio Pass. These three lie within the service areas of Pacific Gas and Electric 
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and Southern California Edison.  Therefore any transmission connection issues 

that came about after Order 888 for the few installed large scale wind projects 

were handled by just two utilities. In a 2006 report prepared for the Public Interest 

Energy Research Program for the state of California, it is suggested that the fact 

that only two companies resolved the connection issues resulted in the prevention 

of the dissemination of lessons learned to the utility industry as a whole [8].  

The connection of wind farms to pre-existing transmission systems was 

only a portion of the difficulties faced by utilities, the other being transmission 

capacity itself. From May 2000 to September 2001, California was hit by 

electricity shortages and spiking energy prices. Though the main culprit was 

gaming by energy traders, a weakness in the western U.S. electrical transmission 

system had been exposed, further complicating the integration of wind energy.  

 

1.4 Wind Turbine Technology 

Harnessing the wind to produce electricity reached its first milestone in 

the United States when a 1.25 MW wind turbine was constructed in Vermont 

during World War II. Unfortunately, wind technology had to wait until the energy 

crisis of the 1970’s to see any significant improvements. The most difficult 

problem for engineers was building a turbine that was both large scale and 

reliable. Early wind turbines sized over 500kW were prone to mechanical failure 

in a relatively short period of time. This caused wind turbines to scale down in 

size and wind farms to compensate by installing many more wind turbines [17]. 
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At the peak of California’s wind generation boom in 1992, over 16,300 turbines 

were in operation but only 6 were greater than 400kW [18].  

By the mid 1990’s, wind technology had become fairly stagnant again. 

This was due in large part to the relative cheap cost of fossil fuels and natural gas 

and the high cost of building and connecting a wind farm [9]. The three areas in 

California had been in operation for almost 15 years with no new wind generators 

planned. But in 1999, the U.S. began to see an increase again in wind turbine 

construction with 2,500 MW of capacity and the first 1 MW turbines being 

installed [18]. By 2001, 4,261 MW of capacity was operating in the U.S. with 

Washington State seeing its first wind farm, sized to 178 MW [19].  

As of December 31, 2007 the U.S. totaled 16,596 MW of capacity [19]. 

Wind technology has allowed the production of a 3 MW wind turbine with a 

forced outage rate of between 1 to 3 percent [20]. To compensate for the 

extremely varying nature of winds, even from minute to minute, turbines have 

been developed with pitched blades. This has resulted in capacity factor gains 

from 22.5% before 1998, to 36% after 2006 [21]. Each of the turbines in a wind 

farm can be controlled by a single computer, which helps optimize the wind farm 

output and provides greater control of electricity placed onto the transmission 

system. This coupled with improvements in wind forecasting has helped make 

wind a viable option for renewable energy. In fact, the Washington State Utility 

and Transportation Commission (WUTC) ranks wind energy as the number one 

potential renewable resource based on projected capacity and dollars per 

megawatt hour [22]. 
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1.5 Today’s Wind Farms 

By their very nature, wind farms have three major hurdles they must 

overcome. The first is the fact that wind is not a steady and reliable energy source. 

The basic principle behind the electric power grid is that power generated must 

equal power consumed. Therefore, a generation mix needs to adjust its output to 

meet demand or demand needs to adjust to meet generator output. Obviously the 

latter is only the case in an emergency and leads to a curbing of wind generator 

output during excessive generating hours and the need for reserve generation 

during time of output deficiency. If the energy during excessive times could be 

stored for deficient periods, wind energy could be optimally employed. 

Unfortunately, the lack of large-scale economically feasible storage options forces 

utilities to curb output. At the opposite extreme, the lack of storage causes the 

scheduling of extra generation reserve margins and increased system regulation 

requirements [23]. This of course is to ensure load is met, but concerns also arise 

in regard to transmission line owners and users who wish to optimally use 

available transmission capacity. Transmission line scheduling takes place hours to 

days before the power is actually transmitted across it and a predictable power 

source is desired. Today we have better technology to forecast wind, and storage 

options are on the horizon, but transmission scheduling is still a major concern 

[21]. 

The second hurdle of most wind farms is that they are usually sited in 

areas that are far from load centers. Economies of scale dictate building as large a 

generator as possible, which allows transmission costs to become less of a factor. 
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But the sizing of wind farms depends on the land available for the site as well as 

economical feasibility. For example, Puget Sound Energy’s (PSE’s) Hopkins 

ridge wind farm contains 83 wind turbines for a combined capacity of 150 MW. 

The wind farm footprint is only 100 acres. But to maximize the efficiency of each 

turbine, they must be placed in strategic locations relative to the terrain and each 

other. Therefore, the project actually occupies 11,000 acres [4]. This equates to 

over 17 square miles of area and leads to more difficulties when trying to site 

wind farms close to urban load centers. This forces the placement of wind farms 

to more rural areas where transmission lines would need to have long right-of-

way corridors established, assuming they are not preexisting. 

Finally, the relationship of generator output profile to load profile is very 

important. Load changes based on many factors such as time of day, time of year, 

and temperature. These changes are due to demand cycles, which are dictated by 

both humans and nature. Optimally a generator could vary its output to change 

with the load. Though this is efficient for meeting load, it is not efficient for the 

generator. Therefore having a mix of generators that can be reliably counted on to 

form many different combinations of total generation is desirable. This ensures a 

single generator within the mix is operated at an economically efficient level. 

Generators within the mix are individually evaluated to determine its probability 

of failure or forced outage rate. This allows for the overall evaluation of the 

probability that generation will be able to serve the ever-changing load and in an 

efficient manner. 
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For a wind farm, the forced outage rate can be quite subjective. This is due 

to the fact that the wind generator is actually made up of many individual turbine 

generators that produce anywhere from zero to full output. This can lead to a low 

probability of forced outage for the wind farm as a whole but the exact level of 

output can be uncertain. In this respect, a wind farm’s performance or capacity 

factor is most usually referred to in lieu of the forced outage rate. Just as the load 

varies due to cycles, so too does the wind farm output but it is exclusively 

dependant on nature. This thesis seeks to find a natural cycle in wind energy 

production that coincides with load cycles. Optimally wind farm output will be 

the highest during the higher load demand times. If this is the case, it can be 

argued that wind energy contributes to meeting load more than its capacity factor 

alone, thus becoming more of an asset to a generation mix.  

 

1.6 Problem Statement 

In Washington State, utilities such as PSE, Avista and PacifiCorp have the 

resources and data to predict and integrate wind energy into their systems. The 

problem for a smaller utility with no previous wind energy experience is in 

gathering representative data and performing an evaluation of the cyclical 

capacity of wind generation. This would allow for two different types of 

evaluation. The first is the comparison of generation cycles to load cycles for 

reliability purposes. This would be used in the case of a utility trying to add a 

generator to its existing mix. The second being an evaluation of the average load 

to average wind farm output to help the utility determine the amount of generation 
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needed to meet RPS requirements. For the latter case, the convenient alternative 

could be to purchases renewable energy certificates via the Western Renewable 

Energy Generation Information System (WREGIS) [24] or possibly through 

bundling offered by BPA.  

This thesis will look at the possibility of how Tacoma Public Utilities 

(TPU) either on its own, or as a member of a consortium, investing in wind 

turbine generation. Economic consequences and integration issues will be 

deferred to future work. The focus of this thesis will be on the modeling of a wind 

resource for TPU using readily available data, how well those resources can serve 

the utility’s load and to what extent those resources can meet the Washington 

State RPS. 

 

1.7 Contribution of Thesis 

 This work will look at specific wind speed data colleted from August 2002 

to December 2006 at four different sites along the Columbia River Basin. Hourly 

load data from TPU’s service area is used as the sample utility for calculations. 

Specifically the data presented will 

• Extrapolate wind speed into wind energy. 

• Provide supporting evidence that when taking multiple sites in aggregate 

one can make a case that wind speed can be directly correlated to wind 

farm output. 

• Characterize individual wind site output both on a seasonal and historical 

basis. 
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• Correlate TPU’s load to individual and combined wind sites on a seasonal 

and historical basis. 

• Calculate effective load carrying capacity of the wind farms. 

• Estimate the capacity needed by TPU to meet Washington State’s 

Renewable Portfolio Standard. 
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Chapter 2 

Valuing Generation 

 

 

 Measuring the ability of a generator to perform when it is called upon is an 

important first step in the evaluating the benefit a generator brings to a generation 

mix. The most simplistic of which considers at any given time the generator is 

able to produce. To further narrow the evaluation, planners prefer an evaluation 

using worst-case scenarios, which by nature include only peak load times. The 

idea being that during low load periods other generators within the mix will be 

able to produce if a particular generator cannot. But during peak loads each 

generator’s reliability is crucial in meeting demand. This allows for an evaluation 

of the generation mix as a whole within which each generator significantly affects 

generation mix reliability. 

 The factors affecting generator reliability are, for the most part, the same 

independent of the generator. However the degree to which each has an affect is 

different. For example, repairs and maintenance most impact thermal power 

system reliability. For the renewable power systems such as hydro, solar and 
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wind, the fuel source has the largest impact. Therefore trying to apply the same 

reliability measurements or capacity measurements to both can be very difficult. 

Chapter 2 will present common reliability standards and capacity measurements 

applicable to both types of system. 

 

2.1 Forced Outage Rate 

When considering the reliability of electricity supply one must look at all 

aspects including generation, transmission, and delivery of the electricity. The 

most common and simplest term used to describe probability of failure for 

equipment is Forced Outage Rate. FOR is a measure of the amount of time that an 

asset is unable to generate or deliver electricity. The term “forced” in this case 

means an unforeseen event that the operator has no control over in both time and 

cause. 

R =
D[ ]∑

D[ ]∑ + U[ ]∑
     (2.1) 

where: 

R = forced outage rate; 

D = time generator is unable to produce over 

  a representative period; 

U = time generator is able to produce over 

  a representative period; 

 
Forced outage rate is mainly used to help illustrate probabilities of failures 

in power systems. This is because FOR can be applied to a single asset and 

combined with the remaining assets to obtain a reliability indices such as loss of 
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load probability and effective load carrying capacity. FOR also helps illustrate 

how redundancies in the utility system can help utilities to cope with a myriad of 

contingencies [25]. 

 

2.2 Loss of Load Expectation 

Today the most widely used probabilistic technique for evaluating the 

adequacy of a generation system is loss of load probability and expectation. The 

loss of load probability or LOLP is determined by the number of times the load is 

not met by a generating system at a specific load time. There can be a number of 

different generation combinations depending on the number of generators. Each 

combination represents a discrete generating level that when calculated can 

become a labor-intensive task. Various approximating techniques have been 

developed that can help simplify and speed up this process [25]. 

Loss of load expectation or LOLE index is used to express the amount of 

time a generating system is unable to meet a load over a specified time period. To 

calculate LOLE one needs load data over the fixed period. For example daily peak 

load data obtained over a year can be compared to an LOLP table. Every 

probability that correlates to a total level of generation that is insufficient to meet 

the peak load on that day is summed. If the daily peak is at discrete levels, the 

LOLE for the year would be calculated by [25]: 

LOLE = Pi Ci − Li( )
i=1

n

∑ days / period     (2.2) 
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where: 

 n = the number of discrete peak levels; 

 Ci = available capacity on day i; 

 Li = forecast load on day i; 

Pi(Ci-Li) = probability of loss of load on day i. This value is obtained 

directly from the capacity outage cumulative probability table; 

 

The units of measurement for LOLE in this case would be days per year. Another 

approach would be to use hourly load data over the year by which the LOLE 

would be defined as hours per year [26]. The reliability goal is often equated to an 

LOLE of one day per decade [27].  

To clarify, a simple example is presented here of nine 100 MW generators 

with a FOR of 5% connected to a system with a daily peak load of 550 MW for 

200 days a year and 650 MW for the rest. Using a binomial distribution, the 

probabilities can be calculated and collected in tabular format [25]. By adding the 

probabilities of the outage combinations, one may calculate the cumulative 

probability that a maximum number of generators are unavailable [28]. 

LOLPi =
n!

i!(n − i)!
pi(1− p)n− i      (2.3) 

where: 

p  =  forced outage rate; 

n  =  number of generators available; 

i  =  number of generators on outage; 
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Alternatively one may refer to the cumulative calculated as the maximum 

amount of generation available vice minimum amount on outage. Table 2.2 below 

displays the results of the probabilities for this example. 

 
 
MW on Outage MW Available Probability Cumulative Probability 

0 900 0.630249409725 1.000000000000 
100 800 0.298539194080 0.369750590275 
200 700 0.062850356648 0.071211396195 
300 600 0.007718464852 0.008361039547 
400 500 0.000609352488 0.000642574695 
500 400 0.000032071184 0.000033222207 
600 300 0.000001125305 0.000001151023 
700 200 0.000000025383 0.000000025719 
800 100 0.000000000334 0.000000000336 
900 0 0.000000000002 0.000000000002 

Table 2.1 Conventional outage probabilities 
 
 
 

There is a probability of 6.0935·10-4 that exactly 500 MW is available. But 

the cumulative probability is 6.426·10-4 that 500 MW or less is available. The 

latter number represents the LOLP for the 550 MW load since any outage greater 

than or equal to 500 MW will result in 400 MW or less available. The LOLE 

would equate to 1.006 days per year, i.e.: 

 
)100(10361.8)265(10426.6 34 −− ⋅+⋅=LOLE   (2.4) 

 
 

The chronological order of the load does not matter, simply the total at 

each discrete level. Therefore it is common for loads to be represented as a load 

duration curve. This is a plot with minimum peak load days on the horizontal axis 

and the peak load on the vertical axis. Figure 2.1 demonstrates a typical load 

curve but in this case hourly load is used instead of daily peak load. The load 
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curve represents 43,800 hours of load data collected over 5 years from Tacoma 

Public Utilities. Rather than a simple 550 MW or 650 MW load, this shows the 

entire 1 MW increment load seen by the utility. 

 

 
Figure 2.1 A typical load duration curve 

 
 
 

By converting the above load duration curve into discrete levels and using 

a generation mix table similar to the previous example, one can easily convolve 

the data using [26]: 

TIPPLOLE ijj

N

j

N

i
i

G L

⋅= ∑∑
= =1 1

     (2.5) 

Iij =
0 Li ≤ G j

1 Li > G j

⎧ 
⎨ 
⎩ 
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where: 

T =  the total time length of the load curve; 

Li = the ith load level; 

Pi = the probability of Li (fraction of total time 
  when the load is equal or bigger than Li); 

NL = number of load levels in the discretized load curve; 

Gj = the jth generation capacity level; 

Pj = the probability of Gj; 

NG = number of generation capacity levels in the 
  generation capacity probability table; 

 

2.3 Effective Forced Outage Rate 

Applying LOLE measurements to wind energy can be very subjective. For 

traditional generation, the FOR assumes a fuel source that is uninterrupted. If the 

same were true for the evaluation of wind, a FOR from 1-3% is very realistic [20]. 

Using a FOR of 3% and a wind farm size of 50 wind turbines sized to 2 MW 

each, Table 2.2 below demonstrates what the resulting probabilities will be. 

 

MW Available Probability Cumulative Probability 
100 0.2181 1.0000 
98 0.3372 0.7819 
96 0.2555 0.4447 
94 0.1264 0.1892 
92 0.0459 0.0628 
90 0.0131 0.0168 
88 0.0030 0.0037 
86 0.0006 0.0007 
Table 2.2 Wind turbine outage probabilities 
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One can see that the probability of losing 14% or more of the wind farms 

capacity is on par with loosing 45% or more of the combined capacity of the 

standard generators shown previously. Due to the quickly falling probability of 

losing multiple turbines the wind farm seems to be an obvious choice. But one 

must remember that the assumption made is that the fuel source is uninterrupted. 

For wind turbines, the fuel source is wind and it clearly is not an uninterruptible 

source.  

Milligan and Porter suggest using a qualifier to describe wind turbine’s 

FOR called an effective forced outage rate or EFOR [27]. It is described as the 

time in which the turbine does not produce an output at all. Milligan and Porter’s 

proposed number is an EFOR of between 50% and 80% [27]. At first appearance 

these numbers look very poor but when other factors such as load are taken into 

account they can become more meaningful. 

Still, FOR is only a measurement of the generator itself and says very little 

of its ability to help serve a load when connected to a system. If a 100 MW wind 

generator with an EFOR equal to 80% were connected to the system mentioned 

before, with a total of 1000 MW of generation, the outage probabilities would be 

as shown in Table 2.3. If the generation were serving the previously mentioned 

peak loads of 550 MW and 650 MW, the LOLE would decrease from 1.006 to 

.819 days per year from 1. This shows that although wind turbines could have a 

very high EFOR they can still contribute to improving LOLE. 
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MW Available Probability Cumulative Probability 
 1000 0.126049882 1.000000000 

900 0.563907367 0.873950118 
800 0.251401427 0.310042751 
700 0.051823978 0.058641325 
600 0.006296642 0.006817347 
500 0.000493896 0.000520704 
400 0.000025882 0.000026808 

Table 2.3 Mixed generation outage probabilities 
 

 

2.4 Effective Load Carrying Capacity 

LOLE is an important value for system planners and is used when 

planning reserve capacity. The reserve capacity not only needs to meet that which 

was lost but must also maintain the LOLE at an acceptable level. Figure 2.2 below 

shows how LOLE varies according to load level and generator mix capacity. The 

generators used in this example are the same as before with a single generator 

able to produce 100 MW with a FOR equal to 5%. 
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Figure 2.2 LOLE variations due to load and capacity 
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Returning to the example of nine 100 MW generators supplying a 400 

MW load. If a 100 MW wind farm with an EFOR of 80% replaced one of the 

generators, the LOLE would change by some amount. The example in Fig. 2.3 

shows that the LOLE would rise from the previous 0.121 days to 0.446 days per 

ten years. Again, this is if a wind farm of 80% forced outage rate replaced a gas 

turbine with a FOR of 5%. As you can see the change in LOLE depends on 

generator size and FOR, which planners must take into account. 
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Fig. 2.3 LOLE variation due to different generator additions 

 
 
 

When evaluating a renewable generator’s Effective Load Carrying 

Capacity (ELCC), the renewable under study is placed into a mix and LOLP is 

measured. The new LOLP is noted and the renewable is taken back out of the 

mix. It is then replaced in small increments by a benchmark generator until the 

LOLP is lowered to that which was achieved with the renewable [29]. Therefore, 

ELCC is a measure of the amount of benchmark generation that is required to 

achieve the same level of LOLP as when the wind generator is connected. By 
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extension, the higher the FOR of the benchmark generator the lower the 

equivalent capacity of the 80% EFOR wind farm and vice versa. One must strictly 

take into account these factors to accurately compare renewable generators of 

differing types. 

 

2.5 Loss of Energy Expectation 

Another metric sometimes employed is that of energy not served (ENS), 

which is mostly applied to renewable resources. By measuring the difference 

between load and generator output every time there is insufficient generation, the 

ENS can be derived. This thesis will use ENS as a means of evaluating past data 

to determine how well load is served during different time periods. This allows 

for a loss of energy expectation or LOEE that can contribute to future wind 

integration planning. In this case LOEE is defined by Li [26] as: 

LOEE =
1
N

ENSi
i=1

N

∑      (2.7) 

where: 

N = number of time periods evaluated; 

 

2.6 Capacity Factor 

 The capacity factor (CF) of a wind turbine is defined by the amount of 

output over a period of time divided by the capacity rating of the wind turbine. By 

summing all turbine outputs over the same period and dividing by the wind farm 

capacity over the period one can obtain the wind farm capacity factor. 
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CF =
OPi

i=1

k

∑

ROPi
i=1

k

∑
     (2.6) 

where: 

   OPi = output of ith turbine; 

ROPi   = rated output of ith turbine; 

       k = total number of turbines within the wind farm; 
 

Capacity factor is very much dependent on the time period over which it 

was measured. The longer the period of time the more accurate the evaluation of 

capacity. It appears though that many northwest utilities use a single capacity 

factor for all wind generation projects. For example, Portland General Electric’s 

2002 Integrated Resource Plan uses a straight 33% in calculating wind capacity 

factor [30]. PacifiCorp, which has some wind farm experience, used a sequential 

Monte Carlo method in their Integration Resource Plan in 2007. The capacity 

contribution came to approximately 20% of rated capacity, which is being used in 

studies for future wind integration [31]. Puget Sound Energy’s IRP for 2006 uses 

a wind availability of 30%, although Hopkins Ridge showed an actual output of 

34.2% from Jan 1, 2006 to Nov 1, 2006 [32]. The Washington State Utility and 

Transportation Commission Report on Actions and Policies Dealing with Climate 

Change reported PSE anticipates a 32.1% capacity factor at the Wild Horse wind 

project [22]. 

 As has been shown here, there are many different types of techniques 

for evaluating a generator’s ability to serve load. Some lend themselves well to 

only nonrenewable generators while others apply well to all types. This thesis will 
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apply the techniques presented above to historical wind speed and load data. But 

due to restrictions on the amount of data available some assumptions will need to 

be made in order to make these calculations possible, specifically the 

unavailability of generator statistics for TPU’s generation mix. The final 

discussion will focus on capacity factor and ELCC as the means by which the 

wind generator’s performance will be evaluated. 
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Chapter 3 

Data Collection 

 

 

To properly value the capacity of a given wind site, one must take many 

factors into consideration, including transmission constraints and load shapes. 

Barring the ability to build and gather output data from an actual wind turbine at a 

site, the most useful parameter, which is easily obtained, is wind energy, usually 

measured in W/m2. To determine this, prospectors of wind energy construct 

towers at possible sites to measure and record over a long period of time various 

parameters for the calculation of wind energy. The height of the tower from which 

the measurements are taken need to correlate to the hub height of the turbine 

model proposed for the site or data needs to be extrapolated so as to represent 

wind speed at the hub height. It is also important that measurements be taken over 

as long a period as possible to determine a baseline from which to evaluate and 

help determine cyclical behavior. Of course greater data accuracy can also be 

achieved by constructing multiple towers over the proposed wind farm to account 

for variations caused by local terrain. 
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3.1 Wind Energy 

Wind energy depends on air density and the velocity of air moving 

perpendicular to the turbine face measured over a suitable period. Density in turn 

depends on pressure, moisture content, and temperature. These factors also have 

an affect on wind velocity.  

P =1 2ρV 3      (3.1) 

where: 

P = wind energy potential; 

ρ = density of air averaged over a suitable time in kg/m3; 

V = wind velocity averaged over a suitable time in m/s; 
 

Wind is caused by atmospheric pressure differences caused by uneven 

heating of the surface of the earth by the sun and heat transferred by the ocean’s 

current or by weather fronts. Also moist air is lighter than dry air and will result in 

greater wind velocities [33]. One can see that by trying to hold air density 

constant and only considering wind speed can lead to inaccurate measurements of 

wind energy. Still, many studies to determine wind energy potential rely solely on 

wind speed measurements [34-40]. In fact turbine manufacturers often publish 

only a wind speed-to-output curve for their generators [41]. 

 
 It is true, that to accurately calculate the output of a wind turbine one must 

calculate wind energy minus mechanical and electrical losses. But it is also 

argued that wind speed is of the utmost importance because it has the most direct 

impact on both wind plant behavior and actual power delivered [42]. A practical 
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way to determine the future value of a wind sight is a combination of site data and 

wind farm operating experience in the same region. Some studies have actually 

used this combination to study future production [40].  

 

3.2 Previous Studies  

The following section is a brief overview of previously published studies 

that were similar either in scope or geographic location to this thesis. One will see 

some similarities between how this study was conducted and that of other work. 

But in every case presented here, no attempt was made by the authors to study 

variations on a seasonal basis either for wind energy potential or correlation to 

load. Further more, no study had been conducted using wind speed and load data 

from as long of a period as this study. Even though, it is widely acknowledged 

that a long period of time is needed to accurately evaluate wind energy. 

Study 1 

Previous studies have been performed using the output of sites along or 

near the Columbia River. A study by Hirst in 2002 [43] used data provided by the 

Bonneville Power Administration (BPA) from wind farms near the Columbia 

(Table 3.1). Ten-minute data from January to April 2002 were used. The results of 

the preliminary study found that the sites had a combined capacity factor of 32% 

over the four-month period with an average correlation coefficient of 0.56. The 

correlation coefficient between the wind output and BPA’s system load was 

essentially zero [43]. 
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Site Name Year 
Completed 

Number of 
Turbines 

Total Capacity 
(MW) 

Condon Phase I 2001 42 (.6) 25 
Klondike I 2001 16 (1.5) 24 
Stateline 2001 136 (.66) 90 
Vansycle 1998 38 (.66) 25 

Table 3.1 Hirst study wind farms [43-47] 

 

It has been shown though, that capacity factors of recently constructed 

wind farms have increased due to improvements in technology and turbine size. A 

2% weighted capacity increase reported by the U.S. Department of Energy 

between wind turbines installed in 2000-01 (period of Hirst’s study [43]) and 

those installed in 2004-05 suggests that Hirst’s study may undervalue a more 

modern wind farm [34]. The change seen in both the size and number of turbines 

of more modern wind farms in the Columbia River area are reflected in Table 3.2 

below. 

 

Site Name Year 
Completed 

Number of 
Turbines (MW) 

Total Capacity 
(MW) 

Hopkins Ridge 2005 83 (1.8) 150 
Klondike II 2005 50 (1.5) 75 
Wild Horse 2006 127 (1.8) 228 
Big Horn 2007 133 (1.5) 200 

Leaning Juniper 2007 133 (1.5) 200 
Table 3.2 Recently constructed northwest 

wind farms [4-6, 44, 48, 49] 
 

Study 2 

A study on the “Hourly Wind Power Variations in the Nordic Countries” 

was conducted using data from 2000 to 2002. A combination of actual wind 

power production and modeling using wind speed was used. The actual output 
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came from 24 sites in Finland, Sweden, and Norway with installed capacity less 

than 100 MW was utilized, in addition to two sites in Denmark with over 2,000 

MW of installed capacity. The theoretical output data was generated using wind 

speed data measurements taken in 14 different locations in Finland, Sweden, and 

Norway. The 24 sites that had actual output data were scaled up over 10 fold to 

simulate a wind farm. The hourly wind speed data for the model was smoothed 

using a 2-hour sliding average technique. The smoothed data was then converted 

to power production using an aggregated, multi-turbine power curve. The model’s 

production at each hour was weighted using the capacity factors of the four 

countries as its basis. The two different data sets were then combined to form a 

single model for study. 

 The study showed an average standard deviation equal to 28.2% of 

installed capacity for the hourly wind production for a single site. When 

considering all the sites across the four countries, a standard deviation of 14.5% 

of installed capacity was calculated. As for the correlation coefficient between the 

sites, a value of 0.42-0.45 was measured for Sweden/Norway/Finland and 0.22-

0.33 for Denmark/Finland/Norway. The study found the relationship between 

correlation coefficient and distance between wind sites could be described by 

equation (3.2) below [40]. 

y = exp(−d /500)     (3.2) 

where: 

y = correlation coefficient; 

d = distance between sites measured in kilometers; 
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Study 3 

 EnerNex Corporation conducted a study for Avista Corporation of 

Spokane, Washington in March of 2007. The study utilized wind speed data from 

Oregon State University’s Energy Resource Research Laboratory. The 10-minute 

measurements used were from 5 different sites, 3 of which were in the area of the 

Columbia River. The other two were from Montana and the Oregon cost. The 3 

Columbia River sites were Kennewick, Goodnoe Hills and Sevenmile Hill. Actual 

wind farm output was available from Vansycle, which is also in vicinity of the 

Columbia River.  

 To account for a single point of observation (one anemometer per site), a 

smoothing algorithm for wind speed was introduced, which the author claims had 

been validated in previous models. To model the wind turbine production, a wind 

speed to power curve was used based on a NEG 750, 2.75 MW wind turbine. The 

portion of the study that is relevant to this thesis was a scenario in which 100 MW 

was modeled using 50 MW of actual production from Vansycle and 50 MW of 

theoretical production from Kennewick. The data was collected from August 

2002 to the end of 2004. The capacity factor was found to be 34% with Figure 3.1 

showing the production distribution for this case [35]. 
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Figure 3.1 EnerNex study results [35] 

 

Study 4 

 The National Renewable Energy Lab’s wind power plant monitoring 

project has been collecting data at seven locations in Minnesota, Iowa, and Texas 

to enable utilities to assess operating impacts and to gain information for system 

planning. A report by Y. Wan in December 2005 using this data compared the 

actual output of 3 sites in the Buffalo Ridge region of Minnesota. Wan showed 

that due to extreme variations in wind speed one could not simply scale up a small 

number of wind turbines to model a large wind farm. Using data over a 720-hour 

timeframe Table 3.3 shows the hourly changes found as a percentage of wind 

farm capacity. The largest power level change of a wind power plant containing 

turbines was about 70% of the wind plant capacity in 1 hour during a 12-month 

period [42]. 
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 14 turbines 
x 9.6 

138 turbines 
(actual) 

14 turbines x 
22.3 

250+ turbines 
(actual) 

1 Hour Average 7.0% 6.4% 7.0% 5.3% 
1 Hour Std Dev 10.7% 9.7% 10.7% 7.9% 

Table 3.3 Wan study wind farm hourly step changes [42] 

 

Study 5 

 A report by Milligan in 2002 cites a study he conducted in 1995 in which 

one year of wind data was collected from instruments mounted at 70 m. The wind 

speed data was used as an input to a modern utility-scale turbine at a hub-height 

of 65 m. The data was obtained from six geographically dispersed sites in the 

state of Minnesota. The theoretical output was then compared to a nearby 

electrical load and a correlation coefficient was calculated. Table 3.4 displays the 

results [36]. As you can see the study found negative correlation that was small in 

magnitude. 

 

 Correlation to Load 
Alberta -0.0135 
Becker -0.0436 

Brewster -0.0395 
Crookston -0.0035 

Currie -0.0539 
Luverne -0.0317 

Table 3.4 Minnesota correlations to load 
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Although the discussion of each study has been brief, keep in mind the 

results obtained. As you will see later in this thesis, the data published in these 

studies will be used as a comparison to results of this work. Specifically note: 

1) The Columbia River study used actual output over a 4-month period. 

-Result: a capacity factor equal to 32% and correlation coefficient of 0.56. 

 

2) The Nordic study used a combination of actual and theoretical outputs based on 

wind speed over a 2-year period. 

-Result: an hourly output step change average standard deviation of 28.2% for 

a single site and a standard deviation of 14.2% when all sites were considered. 

-Result: an output correlation coefficient of 0.42-0.45 for one region and 0.22-

0.33 for another. 

 

3) The EnerNex study combined actual output from Vansycle and a theoretical 

output from Kennewick collected over a 28-month period. 

-Result: a capacity factor of 34% with the distribution shown in Figure 3.1. 

 

4) The Buffalo Ridge study argued against linearly scaling actual wind farm 

output by analyzing data collected over a 720-hour period. 

-Result: scaling from a small number caused hourly step change averages and 

standard deviations that were greater than those actual output. 

-Result: increasing the geographical distribution decreased the hourly step 

change average and standard deviation. 

 

5) The Milligan study used wind speed data collected at six different sites as input 

to a utility grade turbine and actual load data from nearby cities. 

-Result: an output to load correlation coefficient from -0.0035 to -0.0539 
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3.3 Selection of Wind Data Sites 

Since 1978 the Energy Research Resource Library (ERRL) has been 

managed by Oregon State University for the Bonneville Power Administration’s 

Wind Forecasting Network. The purpose of the ERRL is to facilitate the 

collection, quality assurance and analysis of data collected at the five long-term 

collection sites. In recent years more sites have been added to ERRL’s 

responsibilities, some in conjunction with BPA and some with other research 

activities [50]. All together BPA has eight different sites where data such as wind 

speed, wind direction, barometric pressure, and temperature have been recorded. 

The timeframe for which this information is available does vary. 

Having a diverse data set is beneficial because it is believed, and studies 

have shown, that having geographically dispersed wind sites enhance generator 

availability and reduce variability when combined to form a single source [23, 36, 

37, 40, 43]. Optimally wind sites need to be located as far apart as possible and in 

the windiest environments. In Washington most of the prime wind sites reside 

along the Columbia River east of the Cascade Mountains, near Ellensburg, 

Northeast of Walla Walla and along the state’s coastline [51]. Due to the remote 

nature of these wind sites from major load centers, transmission is of major 

concern. 

BPA is a likely supplier of bulk transmission for northwest utilities 

looking to build wind generation due to assets that cover the region along the 

Columbia River in support of hydroelectric generation. This is in addition to the 

fact BPA already has over 1,500 MW of installed wind capacity in its control area 
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[23]. It would make the most economical sense for utilities to use this capacity if 

any extra exists and even more so for public, municipal and co-op utilities who 

receive some of the best rates from BPA today [52]. Therefore it is extremely 

beneficial to have BPA’s facilities located near the wind generation sites. 

After consideration of site location, site information, available wind data 

and load location it was determined that four sites were best suited for evaluation 

as suppliers to TPU. The sites chosen are located at Sevenmile Hill, Goodnoe 

Hills, Kennewick, and Vansycle Ridge. Of these four sites, three are part of the 

Wind Forecasting Network and one, Vansycle, is at an actual wind farm. Note 

that Vansycle has been used in two of the studies mentioned before, and 

Kennewick in one. Figure 3.2 below shows the geographic location of the wind 

sites and load; Table 3.5 lists the actual distances between the wind sites. 

 

 
Figure 3.2 Wind site map 
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 Sevenmile Goodnoe Vansycle 
Kennewick 107.9 72.3 23.6 
Vansycle 126.5 91.1 - 
Goodnoe 35.7 - - 

Table 3.5 Distances between wind farms 
* All distances are in statute miles 

 
 

3.4 Wind Data 

Oregon State University’s Energy Resources Research Laboratory 

(ERRL) was able to provide data from sites monitored by BPA’s network [53]. 

The information obtained was divided into year and site with data at 10-minute 

intervals. The data was collected at 1-second intervals (except Vansycle which is 

2-3 seconds) added together and averaged to form the 10-minute data. For 

example at time 12:10, the 1-second intervals from 12:05:00 to 12:14:59 are used. 

That is, the data 5 minutes before and the 5 minutes after 12:00, 12:10, and so on, 

were used in the determination of 10-minute data. 

In the Northwest, there exist three bilateral markets for purchasing 

electricity futures: a forward (month to 1 year), day ahead, and real time. Day 

ahead and real-time purchases are made in hourly blocks [44]. Due to the fact that 

Northwest utilities schedule for loads no shorter than on an hourly basis, it is 

beneficial to turn the wind data into hourly information. Therefore the same 

averaging is used for the hourly data but using the 10-minute averaged data. For 

example at 1:00 am, the 10-minute intervals from time 12:40:00am to time 

1:30:00am are used. That is, the 10-minute data 20 minutes before to 30 minutes 

after the hour were used in the determination of 1-hour data. 
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In structuring the data for analysis in Matlab, daylight savings was 

disregarded and time was unadjusted. The last day of 2004 was disregarded due to 

the extra day incurred by a leap year. This was done in an attempt to keep the data 

in a format that allowed for easy comparison across years and seasons. It is 

believed wind cycles can be seen most prevalently between seasons. Therefore it 

is beneficial to isolate these variations and not rely solely on yearly comparisons. 

For the purpose of this thesis, spring will be defined as March, April, and 

May; summer as June, July and August; and fall as September, October and 

November. Winter will span two different years, as it will encompass December, 

January, and February. Therefore, winter 2003 would include December 2002, 

January 2003 and February 2003.  

The most crucial assumption made in this study is that the four wind sites 

are acting together as a single generator. As previously mentioned, the diversity 

offered by the geographical dispersion of the generators is critical to the work in 

this thesis with respect to serving load. However, some comparisons will be made 

with regard to how one wind site compares either to another site or load.  

It is important that at each hour of every day, data be available for all four 

generators. Therefore if even one site has data unavailable for an hourly data 

point, it will require that data for the other three sites at that time be disregarded. 

Table 3.6 shows the significant periods of data omission by wind site. One will 

notice that a majority of the missing data is during winter months. ERRL 

explained this was due in large part to icing that occurred on the instruments, 

which caused them to measure erroneous data. 
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Sevenmile Goodnoe Vansycle Kennewick 
Dec 3 - 10,2002 Nov 30 - Dec 10,2003 Jan 1 - Aug 2,2002* Aug 30 - Sep 3,2002 

Oct 22 - Nov 4,2003 Jan 9 - 12,2003 Nov 28 - Dec 10,2002 Nov 30 - Dec 8,2002 
Dec 9 - 12,2003 Jan 19 - 22,2003 Jan 6 - 12,2003 Jan 9 - 11,2003 

Dec 28 - 31,2003  Sep 8,2003 - Feb 
23,2004* 

Jan 19 - 22,2003 

Jan 13 - 15,2004  Nov 19 - 24,2005 Nov 19 - 25,2005 
Jan 1 - 5,2005   Dec 15 - 18,2005 

Table 3.6 Prolonged periods of data unavailability 
affecting seasonal and combined calculations 

* Significantly affected seasonal data 
 

 
 

An important evaluation that will be made in this thesis will be that of 

seasonal variations. To give the reader a better understanding of the data that will 

go into evaluating seasonal cycles, Table 3.7 is presented. This table indicates the 

yearly data from all four sites that was used for the seasonal calculations. Note 

that all the seasonal data is comprised of measurements from a minimum of three 

different years. 

 
 

 Winter Spring Summer Fall 
2002 N/A*   X 
2003 X X X  
2004  X X X 
2005 X X X X 
2006 X X X X 
Table 3.7 Seasons used for seasonal calculations 

* Some data unavailable 
 

 

3.5 Turbine Data 

The wind turbine used for modeling the wind farm output is the Vestas 

V80-2.0 MW turbine. This turbine was chosen due to the fact that a few of the 

larger, and more modern, wind farms in Washington use this type of turbine. The 
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manufacturer of the wind turbine publishes a wind speed at the hub to generator 

output curve [41]. Figure 3.3 below is an estimate of the turbine curve using the 

assumption of four distinct linear functions. Specifically, note this wind turbine 

will cutout at 55.92 mph to prevent damage. Refer to the wind speed to output 

table (Table A.1) in the appendix for the exact values. By using the 

manufacturer’s published curve, one can take into account the mechanical and 

electrical loses previously mentioned. This will leave only transformer and 

transmission losses unaccounted for, and will be assumed negligible. 
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Figure 3.3 Wind turbine output curve [41] 

 
 
 

Depending on the exact model, hub height variations come in 60, 67, 78, 

85, and 100 m [41]. A hub height of 67m, or 221ft, will be used due to the fact 

PSE used this V-80 hub height at Wild Horse and Hopkins Ridge [4, 6]. As for 

the wind data obtained from BPA, each site measured wind data at different 

heights. Sevenmile was measured at 100 ft, Goodnoe at 195 ft, Vansycle at 201 ft, 

and Kennewick at 86 ft. To be able to compare how the wind sites perform in 
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relation to each other, and to accurately model turbine output, the wind speed at 

common height had to be computed. The 1/7 power law was used to extrapolate 

this data to the 221 ft hub height. Similar methods have been employed in other 

studies using geographically dispersed wind monitoring sites [36-38]. 

Vx = Vm
Hx

Hm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
7

     (3.3) 

 
where: 
 

Vx = velocity to be determined; 

Vm = measured velocity; 

Hx = height to be determined; 

Hm = height of velocity measurement; 
 

Wind speed’s contribution to generator capacity factor is only a portion of 

a proper evaluation of a site. As was discussed earlier, wind generator 

performance is geographically dependent. A wind farm in the Northwest could 

have a capacity factor that is much less than a wind farm of equal capacity in the 

Great Plains (Table 3.8). To properly evaluate the value of a wind asset one must 

also look at the load it serves. Electric loads are geographically dependent also 

adding an extra level of complexity to finding the right combination of sites to 

serve a load. 
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Installation 
Date Heartland Texas California Mountain Northwest  East Great 

Lakes 
1998-99 30.1% 30.0% 30.0% 35.2% 30.1% - 19.6%
2000-01 32.6% 37.4% 37.4% 30.1% 29.5% 22.2% 23.8%
2002-03 34.6% 37.0% 30.3% 30.1% 31.1% 30.3% 21.9%
2004-05 38.7% 38.9% 34.2% 41.0% 31.5% 26.7% 32.3%
Table 3.8 United States 2006 capacity factors by region and installation date [34] 

 

3.6 Defining Loads and Scaling Wind Sites 

Load data form TPU was obtained from January 1, 2002 to December 31, 

2006. The average load during this time was 545.6 MW with a peak demand of 

962 MW and a minimum of 283 MW. This basic data is an important first step in 

the search for a properly sized wind farm with an appropriate capacity factor. 

 

 
Figure 3.4 Tacoma Power load duration curve 
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Without looking at wind data, it is difficult to determine which of the four 

sites is best and therefore should receive the largest number of turbines. Recall 

only one set of wind speed data for each site is recorded. Therefore one can only 

precisely model four different wind turbines. The assumption will be made that if 

the wind farms are equal in size, the variations between the sites will correct for 

the linear scaling that was argued against by Y. Wan [42]. Given the typical size 

of a modern turbine located in the Northwest (Table 3.2) and a conservative 

estimate of 20% capacity, the model will use a wind farm size based on 15% of 

TPU’s average hourly load. The reason for using 15% of TPU’s average daily 

load is two fold. The first being a rough estimate is needed from which to start the 

model. The second of which is based on the Washington State RPS for year 2020 

requiring 15% of average load be served by renewables. 

F =
P(L)

(C)(W )(G)
     (3.4) 

 
where: 
 

P = percentage of load to be carried; 

L = average daily load; 

C = capacity factor of the wind park; 

W = number of wind parks; 

G = individual turbine capacity; 
 
Using the Vestas V80-2MW model mentioned before, the total number of 

turbines at each site will number 50. This will equate to a total of 200 wind 

turbines for a nameplate capacity of 400 MW.  
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3.7 Analysis Plan 

In Chapter 4, the data collected in this chapter will be used to create a 

wind farm model and to evaluate its performance based on the methods discussed 

in Chapter 2. The use of data from four different sites that are all of equal size is 

very important for the model used in this thesis. By ensuring all sites are of equal 

size the characteristics that define a single site will be prevented from weighting 

the calculations. In this respect, linearly increasing or decreasing the size of the 

generators will ensure equal weighting, while at the same time allowing for the 

evaluation of how well load is served. This will help lead to the overall goal of 

creating an accurate model using readily available information while at the same 

time allowing for the greatest flexibility in initial planning. 
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CHAPTER 4 

Analysis 

 

 

 This chapter will present the analysis and findings of the wind and load 

data collected, and compare the results to those of the studies previously 

mentioned. Due to the fact that total wind farm production relies heavily on wind 

speed itself, the aggregate wind farm output will first be analyzed to determine if 

the hourly variations appear reasonable. The individual wind farm correlation 

coefficients will then be calculated both over the history of the data collected and 

seasonally. This, in addition to the aggregate calculation, will help determine if 

the wind farms display geographical dispersion. The final step in evaluating the 

wind farm generator characteristics regardless of load will involve calculation of 

the yearly and seasonal capacity factors. Particular attention will be made to 

seasonal variations to see if a cyclical behavior is observed. TPU’s load data will 

then be scaled to 15% and load duration curves determined. The load will be 

analyzed to determine the correlation coefficient between year-to-year and 

season-to-season. 
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 The second part of the analysis will involve comparing generation to 

TPU’s load. The daily peak will be used to calculate a traditional LOLP along 

with an hourly LOLP, or HLOLP, using all hourly data. Having the LOLP will 

allow for a calculation of LOLE and effective load carrying capacity (ELCC). 

From this an LOLE and ELCC will be calculated both on a yearly and seasonal 

basis. Seasonal analysis will allow insight into the wind generators ability to serve 

load during different times of the year. Finally, the wind farms will be evaluated 

for their ability to meet the requirements of I-937. Different generator sizing 

scenarios will be ran to discover the amount TPU would need to meet near and 

long-term Washington State RPS requirements. 

 

4.1 Variability 

Hourly wind turbine variations were determined for the sites based on 

wind speed and the manufacture’s output curve as mentioned above. At first only 

the individual wind sites were considered. Table 4.1 shows the average hourly 

step change for each site based on the percentage of nameplate capacity. As you 

can see, the step changes are larger in every case but case 3 when compared to the 

actual output of the 14-wind turbine scenario in the study conducted by Y. Wan 

[42]. Those results had an average step change of 7.0% at a single wind site for 

the 720-hour period (see Table 3.3). Knowing the time of year when Y. Wan 

conducted his analysis would have made for a more accurate comparison due to 

the fact that fall showed an average of 7.16% in this study, the closest in value of 

all the seasons. 
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 Winter Spring Summer Fall Combined 
Seven Mile 6.7117% 8.0647% 6.4912% 7.1606% 7.1261% 
Goodnoe 8.1749% 8.6798% 8.0949% 7.6041% 8.0977% 
Vansycle 7.3487% 8.1659% 7.7192% 6.3813% 7.4648% 

Kennewick 8.5562% 9.0057% 8.3231% 7.5128% 8.3283% 
Table 4.1 Average hourly step change of total capacity for 1 site 

 
 

 
Note that in the tables presented here that “combined” refers to all data 

collected for the site. But “combined” does not reflect all seasons divided by four. 

For example, August 2002 data points were used in the “combined” calculation 

but August 2002 was not used in the summer season calculation because June and 

July 2002 were not available and therefore would have weighted the overall 

summer calculation toward August. Also, recall 3 different years worth of winter 

seasons went into calculating winter, where as 4 years worth were used for spring, 

summer, and fall (Table 3.8). 

Next, two wind site combinations were considered. Table 4.2 shows the 

step changes, which in every case but case 4 are less than the 7.0% of the 14-

turbine scenario in Y. Wan’s study. In some cases, it is even lower than the 6.4% 

of the 138-turbine single site that Y. Wan used. As you can see, the benefits of 

having geographical dispersion in this model begin to become evident. 

 

 Winter Spring Summer Fall Combined 
SM & GU 6.1515% 6.8547% 6.2869% 6.0767% 6.3445% 
SM & VZ 6.0822% 6.7076% 5.9887% 5.6371% 6.1277% 
SM & KZ 6.4871% 7.1347% 6.2597% 6.1995% 6.5208% 
GU & VZ 6.6180% 6.9399% 6.5322% 5.7882% 6.4557% 
GU & KZ 7.1045% 7.2336% 6.6474% 6.2268% 6.7561% 
VZ & KZ 6.9311% 7.3432% 6.5865% 5.8672% 6.6860% 

Table 4.2 Average hour step change of total capacity for 2 sites 
* SM (Sevenmile), GU (Goodnoe), VZ (Vansycle), KZ (Kennewick) 
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Next, three wind site combinations were calculated and compared. As you 

can see the hourly step changes in every case are below the 138 turbine-single site 

case, and approaching the 5.3% calculated for the 250+ turbines found in [42]. 

 

 Winter Spring Summer Fall Combined 
SM, GU & VZ 5.5874% 5.9866% 5.5622% 5.1029% 5.5605% 
SM, GU & KZ 5.8180% 6.1736% 5.6456% 5.3857% 5.7402% 
SM, VZ & KZ 5.8233% 6.2613% 5.5014% 5.1898% 5.6980% 
GU, VZ & KZ 6.2030% 6.3752% 5.7681% 5.2561% 5.8740% 

Table 4.3 Average hourly step change of total capacity for 3 sites 
 
 
 

Finally, all four wind sites were combined and the results shown in Table 

4.4. As you can see, only two step changes exceed Y. Wan’s 250+ turbine output 

from 3 different sites (see Table 3.3) [42]. The combined average found here, was 

5.2099% of rated capacity. This holds true whether a wind site contains 1 turbine 

or 100 turbines. One must ensure though, that each site maintains an equal 

number of turbines for this to be consistent or else the variations of a single site 

will weigh the results. 

 

 Winter Spring Summer Fall Combined 
SM, GU, VZ & KZ 5.3744% 5.6529% 5.1167% 4.7371% 5.2099% 

Table 4.4 Average hourly step change of total capacity for 4 sites 
 
 
 
 The results show that the aggregate model, on average, has the least 

variation during the fall and the most during the spring. Table 4.5 below displays 

the standard deviation of these measurements. Winter shows the greatest standard 

deviation, with summer having the least. Due to the fact TPU is a winter peaking 
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load, optimally the least deviation would occur during this period. Further 

analysis that includes the actual load is needed though, before any conclusions 

can be drawn. 

 

 Winter Spring Summer Fall Combined 
σ (% Capacity) 6.4% 5.9% 5.1% 5.3% 5.6% 

±1σ .8576 .8289 .8138 .8409 .8357 
±2σ .9483 .9355 .9372 .9392 .9400 
±3σ .9790 .9717 .9772 .9766 .9757 
±5σ .9959 .9953 .9960 .9962 .9958 
Table 4.5 Cumulative frequencies of wind turbine step changes 

 
 
 

Table 4.6 below directly compares the results obtained by Wan to those 

found in this thesis. Note the 14-turbine group is a portion of a single site 

containing the 138-turbine group and that the 250+ turbine group is spread over 3 

different sites along Buffalo Ridge area. Both this work and Y. Wan’s [42] are in 

stark contrast to the results of the Nordic study [40]. The standard deviation 

across all four countries in that study was 14.5% of the rated capacity. In any 

case, one can confidently conclude by this first analysis that the model in this 

thesis is performing in manner that is consistent with these earlier studies due to 

the relatively small variations. 
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 14 Turbines* 138 Turbines* 250+ Turbines* Model 
σ (% Capacity) 10.7% 9.7% 7.9% 5.6% 

±1σ .78389 .78813 .78629 .8357 
±2σ .94628 .94462 .94601 .9400 
±3σ .98307 .98339 .98419 .9757 
±5σ .99831 .99823 .99803 .9958 

Table 4.6 Hourly wind turbine step change standard 
deviation and cumulative frequency of change * [42] 

 
 
 

4.2 Wind Turbine Measurements 

As pointed out before, it is important that each wind site receives the same 

number of wind turbines to ensure the model’s accuracy. This will help smooth 

drastically large variations between hours as seen in Tables 4.1 and 4.2, and to 

help ensure the study keeps with the idea of geographic dispersion. The sites were 

modeled as though they each had 50 (2 MW) wind turbines to prevent the output 

of a site from weighting the data toward a single wind farm. The output of the 

total wind generation mix, by history and season, are displayed in the generation 

duration curves (GDC) below. The data range includes August 2002 through 

December 2006. 
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Figure 4.1 Combined GDC from Aug. 2002 through Dec. 2006 

 
 
 

The aggregate GDC displayed in Figure 4.1 represents 32,968 hours of 

data. The term “combined” is specifically used due to the fact that it retains 1,457 

hours of data that is not used in the seasonal scenarios. The reason for using the 

extra 1,457 hours will be for use in calculations of inter-annual and site statistics. 

Every available piece of data is used to ensure the analysis is as accurate as 

feasibly possible. Note in Figure 4.1, wind generation equals 0 MW for 1,847 

hours, 400 MW for just 162 hours, and is below 150.2 MW or 37.6% of capacity 

for half of the time. 

 

 2002 2003 2004 2005 2006 Combined 
Hours Used 

(Hours 
Possible) 

3,175 
(8,761) 

5,738 
(8,761) 

7,298 
(8,761) 

8,241 
(8,761) 

8,516 
(8,761) 

32,968 
(43,805) 

Total GWh 
Generated 438.5 1,011.4 1,232.5 1,298.5 1,323.0 1,410.6* 

Avg MWh 138.1 176.3 168.9 157.6 155.4 160.9 
Table 4.7 Yearly wind turbine statistics 

* Average per year 
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To fully understand the dynamics of the wind farms one needs to take into 

account inter-annual variations. Table 4.7 shows that as the years progressed more 

and more data was available for analysis (hours possible). As mentioned before 

only the last five months of 2002 were collected, compared to all but 245 hours 

that were included in 2006. This obviously weights the historical data more 

toward the later years of the analysis. Due to this fact, only the last two years of 

data really provide enough information to properly analyze inter-annual 

variations. Although this is true, inter-annual statistics will still be presented to 

allow for as much analysis as is practically feasible. 

One way to narrow the data and allow for more data points to remain is to 

evaluate according to season. Any season that does not contain at least 90% of the 

hours possible will be omitted. When this is done 95.8% of the data points are 

used over 15 different seasons as compared to the 75.3% used over 5 years in the 

annual analysis. As reported by ERRL, the major reason for lost data points was 

due to icing that occurred on the measurement instruments [50]. This obviously 

would result in more winter season points lost than in any other season. Having 

more winter data lost not only affects the winter characteristics shown here, but 

also weights the “combined” data more towards the three other seasons. Refer to 

Tables 3.7 and 3.8 for more detail on prolonged periods of data omitted and 

seasons used. 

The additional benefit of using seasonal data is the ability to analyze 

seasonal variations, with which the load also varies. This is in addition to the fact 

Washington State obtained 69% of its electricity form hydro projects [13], which 
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are also seasonally dependent. An inter-annual comparison can also be obtained, 

but on a seasonal basis rather than the full year. Figures 4.2 to 4.5 below show the 

seasonal GDC’s for aggregate wind generation by season. 

 

 
Figure 4.2 Total GDC for winter seasons 2002/03, 

2004/05, and 2005/06 
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Figure 4.3 Total GDC for spring seasons 2003,’04,’05, and ’06 

 
 
 
 

 
Figure 4.4 Total GDC for summer seasons 2003,’04,’05, and ’06 
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Figure 4.5 Total GDC for fall seasons 2002,’04,’05, and ’06 

 
 
 

Table 4.8 below displays how energy production changes with the 

seasons. Summer shows the most promise by outperforming the other seasons in 

every category. Fall spent the largest percentage of time at 0 MW (9.5%) and the 

least at 400 MW (7.6%); but winter had the worst average megawatt-hour and 

median megawatt-hour. Equation 4.1 shows how total GWh generated per season, 

on average, was calculated. 

Savg = Pi
i= 0

n

∑ * m
n

     (4.1) 

where: 

Pi = power output at hour i; 

n = number of hours measured; 

m = number of days in the season; 
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Season (Days/Year) Winter (90) Spring (92) Summer (92) Fall (91) 
Hours Used      

(Hours Possible) 
5,576 

(6,486) 
8,786 

(8,836) 
8,787 

(8,836) 
8,362 

(8,740) 
Hours at 0 MW 421 328 187 796 

Hours at 400 MW 14 51 68 26 
Mean MWh 136.6 170.6 185.7 145.0 

Median MWh 116.5 163.8 182.5 124.0 
Total GWh 

Generated per 
Season on Avg. 

12.2899 15.6926 17.0885 13.1909 

Table 4.8 Seasonal wind turbine statistics 
 
 
 

4.3 Wind Turbine Correlations 
 

The wind farm correlations were next calculated and each site was 

compared. Table 4.9 displays the results of the calculations, which are relatively 

low. Looking back to Table 3.5 the distances between SM (Sevenmile) and GU 

(Goodnoe) was 35.7 miles and between VZ (Vansycle) and KZ (Kennewick) 

which was 23.6 miles. The mean distance between these two groups was almost 

100 miles. This helps to explain the high combined correlation between SM and 

GU, which was 0.633, and VZ and KZ, which was 0.6875. The lowest 

correlations across all seasons were between SM and KZ (107.9 miles). The 

largest distance was between SM and VZ (126.5 miles), which had a correlation 

coefficient that was the next lowest across all four seasons. 
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 Winter Spring Summer Fall Combined 
SM/GU .5872 .6324 .6660 .6151 .6330 
SM/VZ .3065 .3551 .4425 .3838 .3428 
SM/KZ .1803 .2211 .3210 .2221 .2063 
GU/VZ .5421 .6171 .6483 .6837 .6176 
GU/KZ .4434 .4962 .5749 .5298 .5035 
VZ/KZ .6893 .6785 .6712 .7221 .6875 

Table 4.9 Wind farm turbine correlations 
 

 

Winter consistently received the lowest correlation coefficient across the 

sites with the exception of Vansycle to Kennewick, which happens to also be the 

highest of all winter correlations. This is not too surprising given the fact it is the 

shortest distance between any two stations. The lowest correlations in effect show 

a greater independence of the wind sites during the winter. This bodes well for 

TPU, which sees the largest electrical loads during the winter season. Summer 

shows the largest correlation in every case but two, GU/KZ and VZ/KZ. These 

measurements help to show that correlations cannot be made simply by distance 

measurements, but that seasonal variations need to be taken into account. 

Recall that in the Nordic study [40] the correlation coefficient was 0.42 - 

0.45 for Sweden/Norway/Finland and 0.22 - 0.33 for Denmark/Finland/Norway. 

This study dealt with distances much greater than the Columbia River sites and 

would explain why lower coefficients were observed. Recall also equation 3.2 

from that study, if used in this study a correlation coefficient of between 0.67 - 

0.93 would have been measured. This of course is not the case and it is believed 

this is due to the greater distances that were used in the Nordic study. The 

geographical area of the four countries involved was roughly the size of 1,060 by 
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680 miles. However, these two studies do show that in fact there is a lessening of 

correlation with geographic dispersion. Unfortunately, as dispersion becomes 

greater so to does the amount of planning and costs to integrate. 

A study conducted by Hirst and the Bonneville Power Administration 

found an average correlation coefficient of 0.56 using actual generation data from 

four sites in the same general area of the Columbia River [43]. The data was 

gathered over four months starting in January 2002. Therefore a direct 

comparison between the seasonal data calculated here and Hirst’s is not possible. 

Still, if all of the correlation coefficients found in the seasonal data were averaged 

using both winter and spring, a coefficient of 0.48 would be found, which 

compares well to the previously mentioned number. 

 

4.4 Wind Turbine Capacities 

 Having shown that the hourly variations are reasonable and 

correlations are acceptable and given the geographic constraints, the capacity 

factors were next calculated. Each site’s capacity factor was derived along with 

all sites acting as a single generator. The term “all” reflects the sum of all sites 

divided by four due to the way in which the erroneous data was dismissed. As 

mentioned before, “combined” does not reflect all seasons divided by four. Refer 

to Tables 4.7 and 4.8 for the number of hours used in calculating the capacity 

factors. 

The results show that the combined wind farm over the fours seasons has a 

capacity of 40.22% of rated output capacity. Sevenmile and Goodnoe show the 
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greatest capacity factor in the summer and both were lowest in the winter. The 

combined value for Sevenmile shows the greatest capacity, while Goodnoe’s 

shows the least. Further east at Vansycle, the capacity factor is lowest in the fall 

and highest in the winter. Kennewick also experiences a sudden change where the 

spring is highest and the summer the lowest. In the case of all wind sites acting 

together, the peak is in the summer and the low is in the winter. 

 

 Winter Spring Summer Fall Combined 
Sevenmile 20.6% 41.2% 64.4% 35.5% 42.5% 
Goodnoe 29.2% 38.1% 42.7% 30.6% 35.6% 
Vansycle 43.3% 43.1% 40.1% 39.0% 41.0% 

Kennewick 43.4% 48.3% 38.6% 39.8% 41.9% 
All 34.1% 42.6% 46.4% 36.2% 40.2% 

Table 4.10 Wind site capacity factors as a percentage of rated capacity 
 
 
 

Looking back to the correlation of the wind farms, the majority of 

seasonally high correlations occurred during the summer, which has the highest 

capacity factor when all sites are added. The opposite is true for the winter where 

a majority of the lowest seasonal correlations occurred, and winter was also the 

lowest capacity factor season. This seems to lead to a result that shows seasons 

affect correlation and capacity. Capacity is the highest when wind is consistently 

high. The data shows, by extension, that consistently higher summer winds will 

cause the greater correlation seen during the summer, between the wind farms. 

Figure 4.6 below shows the historical relative frequency of the output of 

all the wind farms together. When compared to Figures 4.7 through 4.10 one can 

see how geographic dispersion can create a more even wind resource output. 
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Recall that the median output of all the wind farms together was 150.2 MW. 

Figures 4.7 - 4.10 show that the individual wind farms spend a majority of their 

time either below 20% or above 90% of rated capacity. 

 

 
Figure 4.6 Relative frequency of total wind farm 

output from Aug. 2002 to Dec. 2006 
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Figure 4.7 Relative frequency of Sevenmile wind 

farm output from Aug. 2002 to Dec. 2006 
 
 
 

 
Figure 4.8 Relative frequency of Goodnoe wind 

farm output from Aug. 2002 to Dec. 2006 
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Figure 4.9 Relative frequency of Vansycle wind 

farm output from Aug. 2002 to Dec. 2006 
 
 
 

 
Figure 4.10 Relative frequency of Kennewick wind 

farm output from Aug. 2002 to Dec. 2006 
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Referring back to Figure 3.1 from the EnerNex study, the graph produced 

was based on a model using a theoretical 50 MW wind farm at Kennewick and an 

actual 50 MW wind farm at Vansycle. Note the similarities of Figure 3.1 to 

Vansycle and Kennewick above. It could be said that if the two were combined to 

form a single generator as in the EnerNex study, the results would look even more 

similar. 

With the exception of Goodnoe, in every case the maximum (100 MW) 

output occurred with the second greatest frequency. Goodnoe also displayed the 

lowest capacity factor of all sites. Both Vansycle and Kennewick show the 

greatest polarity in their output and could be due to their common geographical 

area location in the eastern part of the state. 

Overall the capacity factors seem to be quite good. The question is if 

perhaps they may be too good? Hirst’s study found an overall capacity factor of 

32% from the actual output of four wind farms in the same general locations [43]. 

The study was conducted from January 2002 through April 2002. Unfortunately 

this thesis had to discard this time period because of the unavailability of data 

from Vansycle, which happens to be included in his study. Hirst reported monthly 

capacity factors of 33%, 22%, 38%, and 32% for each of the four months in 

sequential order. If the first two months were averaged, 27.5% would result and 

could be compared to the winter average calculated here, which was 34.1%. In the 

same respect one could average the last two and find 35% and compare this to the 

spring average found here of 42.6%. One can see that the values calculated are 

about 7% larger than those reported by Hirst [43]. 
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For the sites in the Hirst study, a capacity factor of 42% at Vansycle, 31% 

at Condon, 20% at Stateline, and 33% at Klondike were reported over the study 

period [43]. This thesis calculated a winter average at Vansycle of 43.3% and a 

spring average of 43.1%. Kennewick is not too far form Stateline but this thesis 

shows a much higher capacity in winter at 43.4% on average, and 48.3% on 

average in the spring (see Table 4.10). If these two were averaged together 45.8% 

would result, which is 25% greater than Hirst’s findings [43].  

Sevenmile and Goodnoe reside at the western end of the study area near 

Klondike, which was reported at 33%. On average, this thesis found that 

Sevenmile’s capacity was at 20.6% in the winter and 41.2% in the spring. If the 

two are averaged together 30.9% would result. The percentages discussed here are 

shown in Table 4.11 for easier comparison. Goodnoe averaged a 29.2% capacity 

for winter and 38.1% for the spring. If these two are averaged together 33.7% 

would be found (see Table 4.10).  

Much discussion is dedicated to the Hirst study here due to the fact it 

reports actual wind farm capacity factors in the same geographical areas. If the 

model presented in this thesis is accurate for preliminary planning, it should 

compare well to actual capacity measurements. Table 4.11 below shows that this 

is true when the previous discussed averaging is taken into account. In every case 

the capacity factors are close to those actually measured with the exception of 

Kennewick. Keep in mind also that the turbines used in this thesis are newer and 

larger. Therefore an increase of up to 2% for capacity factor would be reasonable 

[34]. 
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 Capacity Factor 
Vansycle* 42% 
Vansycle 43.2% 

--- --- 
Stateline* 20% 

Kennewick 45.8% 
--- --- 

Klondike* 33% 
Sevenmile 30.9% 
Goodnoe 33.7% 

Table 4.11 Comparison to Hirst’s study [43] 
*From nearby actual output 

 
 
 

 Hirst’s study also considers only a single year, where as the numbers 

reported from this model in Table 4.11 are from 3 and 4 years of data. As further 

evidence that wind capacity can vary, even between year to year for a specific 

period, Table 4.12 is presented below. The data was obtained from the Electronic 

Wind Performance Reporting System for the state of California [18]. As you can 

see the actual capacity factors can vary by as much as 39% between quarters in a 

given year and as much as 13% between years for a given quarter. This helps 

illustrate that in fact seasonal variations are much more extreme than inter-annual 

variations and warrant closer analysis. Note also, the 2nd and 3rd quarters 

consistently outperform the 1st and 4th. 

 

 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Total 
2004 (.7 MW) 26% 52% 34% 17% 32% 
2004 (1.8 MW) 16% 52% 55% 18% 35% 
2005 (.7 MW) 22% 47% 35% 26% 32% 
2005 (1.8 MW) 11% 38% 49% 16% 29% 

Table 4.12 California capacity data for 90 (1.8 MW) and 96 (.7 MW) turbines [18] 
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The model presented in this study has the inter-annual seasonal variations 

shown in Table 4.13. Although data is missing for full analysis, one can see a 

pattern of spring and summer out performing winter and fall. As you can see the 

capacity factors can vary by as much as 19.7% between seasons in a given year 

and as much as 10.4% between years for a given season. 

 

 Winter Spring Summer Fall 
2002 - - - 31.5% 
2003 35.3% 47.3% 47.3% - 
2004 - 44.9% 46.8% 37.6% 
2005 28.7% 41.5% 48.4% 38.4% 
2006 38.6% 36.9% 43.3% 37.5% 
Table 4.13 Model seasonal capacity variations as a 

percentage of rated capacity 
 
 
 

Referring back to the individual site output frequency, a similar study 

conducted by Milligan and Berger [54] used three years of data collected from 

2001 through 2003 at various sites by the Platte River Power Authority. The data 

obtained was both wind speed and turbine output data. The wind data was 

converted to hourly wind turbine output using current wind turbine technology 

characteristics to simulate a 100 MW and 500 MW wind farm. The actual turbine 

output data was produced by older model turbines and was only used to check the 

reasonableness of the wind to power model data.  

 Using a modern 1.5 MW turbine at an assumed hub height of 80 meters 

the authors calculated a capacity factor of 43%. Figure 4.10 below shows the 

frequency of turbine output for the 100 MW scenario. To simulate the 500 MW 

wind farm, the model was simply multiplied by a factor of five. The authors found 
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that the wind plant was idle 24% of the time and produced between 90 MW and 

100 MW for 30% of the time. The size of the area used in the Milligan and Berger 

study was unable to be determined, but the frequency of output curve does show a 

very close resemblance to the single site output modeled in Figures 4.7 through 

4.10 for this thesis [43]. 

 
Figure 4.11 Platt River Power Authority output frequency [54] 

 
 
 

4.5 Load Characteristic 

With the wind turbine data collected and analyzed, the next step is to 

analyze the load data. As mentioned in chapter 3, TPU’s load will be scaled to 

15% to allow for hourly variations in load to be maintained and for RPS 

requirements. The scaled load by history and season are displayed in the load 

duration curves (LDC) below (Figures 4.12 - 4.16). The historical data range 

includes January 2002 through December 2006. Recall that the “combined” data 

for the GDC included only data from August 2002 through December 2006 and 
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therefore a shorter time period than the “historical” load data. Due to the fact that 

all load data is good and that generation data spanned well over four different 

years, a decision was made to keep all load data during the calculation of LOLP 

for the historical portion. 

 

 
Figure 4.12 Scaled Tacoma LDC from Jan. 

2002 through Dec. 2006 
 
 
 

The total LDC displayed in Figure 4.10 represents 43,800 hours of data. 

Again the term “historical” is specifically used here versus “combined” due to the 

fact that it retains all five years of data. Every effort has been made to ensure all 

usable data is retained. For historical load, demand is never below 42.5 MW, 

never above 144.3 MW, and is below 79.4 MW half of the time. Recall the wind 

farm output is above 150.2 MW half of the time. Initially it seems we may have 

over valued the amount of generation needed to serve TPU’s load. The load for 
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the winter season (Figure 4.13) is relatively high with a maximum of 132.2 MW, 

a low of 56.7 MW and half the time it is above 96.6 MW. The spring season 

(Figure 4.14) shows a lowering of the load, compared to the winter, with a 

minimum of 50.4 MW, a high of 127.5 MW and is below 80.0 MW half the time. 

The load for the summer season (Figure 4.15) is relatively light with a maximum 

of 95.1 MW, a low of 48.0 MW and half the time it is below 72.6 MW. Summer 

seems to be the most skewed and therefore the hardest to predict. But load is 

relatively light, making generation planning somewhat easier. The fall season 

(Figure 4.16) shows a rising of the load compared to the summer with a minimum 

load of 48.6 MW, a high of 144.3 MW and is below 79.7 MW half the time.  

 

 
Figure 4.13 Scaled Tacoma LDC for winter 

seasons 02/03, 04/05, and 05/06 
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Figure 4.14 Scaled Tacoma LDC for spring 

seasons 2003, ’04, ’05, and ’06 
 

 
 

 
Figure 4.15 Scaled Tacoma LDC for 

summer seasons 2003, ’04, ’05, and ’06 
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Figure 4.16 Scaled Tacoma LDC for fall 

seasons 2002, ’04, ’05, and ’06 
 
 
 

Returning to the results of the historical load data, quick analysis will find 

that the wind farm is below 42.5 MW, minimum load, 25.3% of the time. Recall 

that the median value of generation for the combined data is 150.2 MW and load 

never exceeds 144.3 MW. Therefore at least half the time, the wind farms will be 

producing at a level that is in excess of load. By the same line of reasoning, at 

least 25% of the time the wind farm is producing at a level that is below the load. 

One can preliminarily see that trying to obtain an LOLP less than 0.0274%, or 

LOLE of one day in ten years, would be extremely difficult. If one refers back to 

section 4.2, you will recall that the model predicts no output for 1,847 hours out 

of the total 32,968 hours studied. This results in a minimum LOLP of 5.6% no 

matter how large the wind farm is scaled to, as long as the load never goes below 

1 MW. 
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This, however, should not dissuade one from further analysis of the model. 

Valuable knowledge can still be gained through the further analysis of the load’s 

seasonal characteristics. This will lead to the next step of allowing a comparison 

of wind farm to load on a yearly and seasonal basis; and then finally to the model 

ELCC and level required for Washington State’s RPS. 

Table 4.14 below displays the annual load statistics for TPU’s scaled load. 

Due to the fact that all hourly loads were used for each year, the load shows a 

slight increase for the most part over the period. Table 4.15 below shows the 

seasonal loads. As expected the demand peaks in the winter and is the least in the 

summer. 

 

 2002 2003 2004 2005 2006 Combined 
Total GWh of 

Load 708.1 703.2 710.3 723.4 740.3 3,585.3 

Mean MWh 80.8 80.3 81.1 82.6 84.5 81.8 
Table 4.14 Yearly load statistics 

 
 

 
 Winter Spring Summer Fall 

Total GWh Load 
per Season 207.8 176.3 156.1 174.9 

Mean MWh 96.1 79.8 70.7 80.1 
Median MWh 96.6 80.0 72.6 79.7 

Table 4.15 Seasonal load statistics 
 
 

 
Due to the fact a wind turbine generator’s output varies, it is important to 

understand how the load varies also. The idea is that a more predictable load 

during higher load seasons is most desirable. This is especially true when trying to 

accurately size the generator to serve the load as efficiently as possible. The 
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annual and seasonal load correlation coefficients were determined and the results 

displayed in Table 4.16. As one might expect, the annual correlations between 

two successive years were, for the most part, the highest in each case. This shows 

that there is some degree of repeatability in the annual data, which allows for 

better load prediction. In every case but three, fall showed the highest correlation 

between any two years. On average winter showed the least correlation across 

years. Recall the wind farms showed the least correlation during winter also. 

Having the lowest correlation during the highest load season will add more 

difficulty in trying to properly size a wind generator to this load. 

 
 02/03 02/04 02/05 02/06 03/04 03/05 03/06 04/05 04/06 05/06
Yearly .8397 .7987 .7442 .8251 .8465 .7947 .8014 .8080 .7999 .8474 

Winter     .6734* .6487* .6118* .6992* .5871* .6439* 
Spring .8094 .7461 .6071 .7697 .8222 .6343 .7033 .6303 .7019 .7370 

Summer .8578 .7349 .6987 .7432 .8680 .7369 .7507 .7385 .7553 .8392 
Fall .8426 .7616 .7657 .7782 .8425 .7863 .7390 .8192 .7503 .8676 

Table 4.16 Yearly and seasonal load correlation coefficients 
*Winter 03/04 is Dec 2002-Feb 2003 compared to Dec 2003-

Feb 2004 etc. 
 

 
 
4.6 Wind Turbine to Load Comparison 
 
 

Next the wind generation and load will be compared to help understand 

the extent to which this renewable energy can help to serve a portion of TPU’s 

load. Table 4.17 below displays the results of the correlation coefficient (χ) 

between load and generation as well as energy not served (ENS) and loss of 

energy expectation (LOEE). 
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 χ ENS (GWh) LOEE 
2002 -0.1740 74.954 206.826 (GWh/Year) 
2003 -0.1991 88.203 134.672 (GWh/Year) 
2004 -0.1536 133.38 160.118 (GWh/Year) 
2005 -0.2023 171.21 182.013 (GWh/Year) 
2006 -0.0792 183.94 189.232 (GWh/Year) 

Winter -0.0842 168.08 65.170 (GWh/Winter) 
Spring -0.0070 138.14 34.732 (GWh/Spring) 

Summer -0.2234 104.38 26.241 (GWh/Summer) 
Fall -0.0942 202.11 52.812 (GWh/Fall) 

Combined -0.1583 651.68 173.179 (GWh/Year) 
Table 4.17 Wind turbine and load calculations 

 
 

 
 In every case the correlation coefficient is negative. This equates to a 

generator that changes from hour to hour opposite of the load with which it is 

compared. It has been historically shown that temperature extremes cause the 

highest seasonal loads in TPU’s system [16]. A study performed by BPA showed 

actual wind farm output had an increased probability of being low during times of 

extreme temperatures. The median total value of the wind farm outputs, reported 

by BPA, was less than 5% of nameplate capacity during periods in which 

temperatures were greater than 80°F and less than 30°F. The highest median 

output value (23% of nameplate capacity) was seen during times when 

temperatures were between 40°F and 50°F [23]. Using this as a baseline, it 

suggests a negative correlation coefficient between temperatures and wind farm 

output when temperatures are above 50°F. By the same logic, a positive 

correlation coefficient would be suggested between temperatures and wind farm 

output when temperatures are below 40°F. 
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If these arguments are true, the correlation coefficients for this model 

should be negative for the yearly analysis due to the fact a larger portion of the 

year is spent above 50°F, rather than below 40°F. But the seasonal analysis does 

not show this. Winter should be positive, or at a minimum the least negative, 

which it is not. Keep in mind BPA used a temperature to capacity factor 

comparison and this thesis used load to capacity factor. It is difficult to say how 

much temperature directly affects load and therefore caution must be taken when 

making a direct comparison to BPA’s data. 

In Hirst’s study, the correlation coefficient between BPA load and the 

four-site output was zero [43]. His study occurred over winter and spring, which 

this thesis shows are the two lowest seasons, in magnitude, out of the four. If the 

two were averaged together a correlation coefficient of -0.0456 would result. 

Recall Table 3.4 from the study conducted by Milligan [36] showed a wind speed 

to load correlation of between -0.0035 and -0.0539 with an average of -0.031. 

What these numbers show is that indeed the model developed here compares well 

to other studies. It also seems to show that no matter the geographic location, the 

wind farm output to load correlation is not positive. 

Energy not served (ENS) shows that the wind farm under serves TPU’s 

load by approximately 173.2 GWh per year. This is the second indication that 

perhaps having a wind generator will not be able to keep LOLE at a one day in 

ten years limit. The worst-case value ENS could ever be, and still meet LOLE 

goals, is when the generator produces zero MW for 24 of the highest peak load 

hours of the ten year period. For TPU’s scaled load, this would equate to about 
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3.5 GWh per ten years. LOEE for the later years studied in this thesis, when the 

most data is available, was calculated at over 180 GWh per year. Although the 

ENS and LOEE data in this case does not provide a good understanding of 

reliability in itself, it does provide the ability to rank the wind farm’s ability to 

meet load by season. 

To gain a better understanding of the relationship between wind farm 

production and load, a loss of load expectation is next calculated. First the loss of 

load probability or LOLP was calculated using daily peak load versus hourly wind 

farm output. Next the hourly loss of load probability or HLOLP was calculated to 

allow for a better understanding of how daily versus hourly load information can 

vary the results. Looking at Table 4.18 one can see that the LOLP and HLOLP are 

the lowest during the summer season. This is the same season in which the 

correlation coefficient between load and generation displayed the largest negative 

value. This shows that although correlation can be worse during certain seasons, 

the generator’s ability to serve load can actually be better. This most likely is due 

to the average level of load during the season, versus the intra-seasonal variations, 

having the greater affect on LOLP levels. Therefore, the fact that there is a greater 

possibility of losing load during higher load seasons is expected even with a more 

positive correlation. 

 

 LOLP HLOLP 
Winter 49.1% 45.4% 
Spring 34.5% 31.3% 

Summer 27.9% 25.7% 
Fall 43.7% 40.8% 

Combined 38.4% 35.4% 
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Table 4.18 Wind farm LOLP and HLOLP 
 
 
 
 In any case, the LOLP and HLOLP are still very high in this model. The 

LOLP for the entire study time frame from January 2002 to December 2006 is 

38.4% with an HLOLP of 35.4%. But one must remember that the intention of 

this model is not to model the sole producer of electricity for a load, but as an 

addition to a generator mix. LOLP can give one an idea of how much generation 

will need to be purchased on the open market or made up for by other generators 

in the mix. 

 At this point, it is not useful to attempt to use LOLP to find a LOLE due to 

the fact that it is very high and will not result in an LOLE even close to one day in 

ten years. Instead it may be used in another meaningful way. Estimating load 

capacity for the wind farms utilizes the LOLP and HLOLP no matter the value. 

When evaluating a renewable generator’s ELCC, the renewable under study is 

placed into a mix and LOLP is measured. The new LOLP is noted and the 

renewable is taken out of the mix. It is then replaced in small increments by a 

benchmark generator until the LOLP is lowered to that which was achieved with 

the renewable [29]. For this work though, no data for the generation mix is 

available. Even if TPU’s generator data were available, the fact that Tacoma has 

an open-ended agreement with the Bonneville Power Administration to make up 

for any unserved load [52] makes finding the true LOLP next to impossible. 

 Since only a portion of TPU’s load is used for the study it would be 

plausible to use the LOLP of the wind generation, on its own, to find the capacity 



 

79 

of a benchmark generator that would provide the same level [29]. Using a 

benchmark FOR of 5% and starting with a capacity of 80 MW the LOLP was 

calculated at 83.3%. Next 5 MW was added for a total of 85 MW and LOLP 

recalculated. This was repeated until the LOLP was below that of the renewable 

generator. The process was then repeated to calculate HLOLP.  Figure 4.18 shows 

the results of the capacity additions relative to the wind farm LOLP and HLOLP. 
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Figure 4.17 Benchmark generator LOLP and 

HLOLP from Aug. 2002 to Dec. 2006 
 
 
 
 As one can see, the effective load carrying capability of the wind farms 

based on LOLP is approximately 101 MW for the historical data. This is 60 MW 

lower than the 161 MW that would have been calculated by the combined 

capacity factor (0.4022). One must remember that load is factored into the ELCC 

calculation but not the capacity factor. Therefore no matter what the load is, 
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capacity factor will never change. Table 4.19 below shows the variations of 

ELCC over the seasons. 

 
ELCC (HLOLP Based) ELCC (LOLP Based) 

Winter 100 MW 113 MW 
Spring 87 MW 98 MW 

Summer 80 MW 84 MW 
Fall 83 MW 94 MW 

Combined 88 MW 101 MW 
Table 4.19 Effective Load Carrying Capacity  

 
 

It is surprising that the ELCC is actually highest in the winter. As shown 

in Table 4.18, the LOLP data set for the benchmark is actually much higher when 

compared to other seasons and the combined data. Figure 4.18 below shows how 

the winter season LOLP and HLOLP differed from the combined data of Figure 

4.17. This shows that the higher load actually has a significant affect on the 

benchmark HLOLP and LOLP, which causes ELCC to increase. Figures 4.19 

through 4.21 below show exactly how the other seasons affect ELCC. 
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Figure 4.18 Benchmark generator LOLP and 

HLOLP for winter seasons 
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Figure 4.19 Benchmark generator LOLP and 

HLOLP for spring seasons 
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Figure 4.20 Benchmark generator LOLP and 

HLOLP for summer seasons 
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Figure 4.21 Benchmark generator LOLP and 

HLOLP for fall seasons 
 

For further comparison, the ELCC as percentage of generator nameplate 

capacity was calculated and is displayed by season and combined in Table 4.20. 

Again note that capacity factor never changes as long as each site’s turbine count 
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is increased or decreased by the same amount as dictated by the premise of this 

model. ELCC on the other hand does change with load and nameplate capacity. 

 

 
Capacity Factor ELCC (LOLP Based) 

Winter 34.1% 28.3% 
Spring 42.6% 24.5% 

Summer 46.4% 21.0% 
Fall 36.2% 23.5% 

Combined 40.2% 25.3% 
Table 4.20 Capacity factor and ELCC as a 

percentage of nameplate capacity 
 

 Using graphs 4.17 through 4.21 above and a recalculation of LOLP, Table 

4.21 was created. This was done to illustrate the differences between ELCC 

values as the nameplate capacity of the wind farms are changed. Recall this model 

uses 200 wind turbines with an installed capacity of 400 MW. As you can see the 

amount of equivalent benchmark capacity that is obtained from increasing the size 

of the wind farms is minimal. Likewise the amount of equivalent benchmark 

capacity decreases very little with large decreases in the number of turbines. 

 

ELCC (MW) Wind Farm Total 
Nameplate Capacity Winter Spring Summer Fall Combined 

200 MW 107 91 82 88 88 
280 MW 111 95 83 91 95 
336 MW 112 97 83 92 98 
400 MW 113 98 84 94 101 
480 MW 113 99 84 95 105 
800 MW 117 103 85 99 109 

Table 4.21 ELCC as a percentage of capacity 
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4.7 Meeting I 937 Requirements 

 Beginning in the year 2012 utilities with over 25,000 customers in 

Washington State will need to purchase 3% of the electricity from a renewable 

resource such as wind. The manner in which this 3% is measured is simplistic in 

nature. The total load in 2010 and 2011 is added and averaged into a single year. 

Proof must be submitted to the state showing that in 2012 enough renewable 

energy contracts and or renewable energy credits have been purchased to cover at 

least 3% of this average. In 2016, this number will increase to 9% and then finally 

to 15% in 2020 [12]. 

 In TPU’s 2005-2020 Transmission and Distribution Horizon Plan the 

utility believes that a peak demand increase of 1.3% load growth is “valid and 

appropriately conservative” [16]. Figure 4.22 below shows that if this holds true, 

TPU would have to build 6 turbines at each site to achieve at least 3% of average 

load through 2016. In this case though, TPU could site all turbines in the most 

productive spot and perhaps decrease the total number needed. If TPU were to 

build out to meet I-937 requirements 30 years from now, 40 turbines at each site 

should provide sufficient average output. 
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Figure 4.22 TPU’s renewable energy requirements and wind farm output 

 
 
 

 As you can see, the model produced here compares well to both 

theoretical and actual outputs of similar wind farm studies. The correlation 

coefficients between generators and between generators and load were also 

similar to these studies. The LOLP has shown that trying to use a single wind 

turbine generator to supply load is very difficult but the results can lead to a 

meaningful ELCC. In addition, the seasonal information provided here is of 

particular use to the generation planner given the varying nature of the wind 

generator and the load. 
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Chapter 5 

Conclusions 

 

 

5.1 Results 

This thesis has met the major objectives stated in chapter one. The first 

was the modeling of a wind generation resource based on readily available 

information. Using four different wind farms did indeed decrease the average 

hourly step change of the wind generation as a whole. When compared to similar 

studies, this model shows a lower hourly step change on average when compared 

to the output from three actual wind farms. The correlation between the wind sites 

showed that as distances increased, the correlation coefficient decreased 

supporting the value of dispersed locations. Total generation was measured and 

resulted in capacity factor of 40.22%. However, similar studies have shown much 

lower capacity factors for wind farms such as Hopkins Ridge (35.2%) [32], Wild 

Horse (32.1%) [22] and the combined output of the 4 Columbia wind farms (32%) 

[43]. This may be attributed to an overly optimistic wind speed-to-turbine output 

curve published by the manufacturer. Further analysis did show a seasonal 
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capacity factor that was closer in value to those of studies conducted over limited 

time durations. In general, it can be said that winter has the lowest generating 

capacity and lowest wind site correlation coefficients. On the other hand summer, 

by and large, has the highest generating capacity and the highest correlation 

between sites. When load alone was studied, it was found that the correlation was 

the least during the winter. This, in itself, results in a more difficult ability to 

accurately predict what the load will be during the winter then during any other 

season. This is in addition to the fact the greatest loads occur during the winter 

seasons. 

The second objective met in this thesis was in analyzing how well a 

portion of TPU’s load would have been served by a wind generator alone. A 

negative correlation coefficient between generation and TPU’s load was found. 

Other studies have found similar results and this should not preclude the 

Columbia River basin from being determined an adequate resource. Energy not 

served and loss of energy expectation where the highest during the winter months 

and lowest over the summer months. Overall, both indices showed a gross 

inadequacy of the generator in meeting a portion of TPU’s load. The same was 

true for the calculation of loss of load probability and hourly loss of load 

probability. However, the benefit for TPU in calculating loss of load probability is 

to provide the ability to discover effective load carrying capacity. 

Even though the wind farms were used as the only generator in the 

generating mix, value can still be gleaned from effective load carrying capacity’s 

value. The effective load carrying capacity measurements can show that TPU can 
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expect more generating value from a wind resource during the winter months. 

Also shown was that as the wind farm size decreased, the greater the equivalent 

output as a percentage of nameplate capacity. This is valuable information to TPU 

in deciding how large of a wind farm to build without regard to reliability or RPS 

requirements. 

The final objective met was in calculating what capacity TPU will need if 

they choose to meet renewable portfolio standard requirements via wind 

generation. This is relatively easy to find if every megawatt generated is used to 

serve TPU’s load. However, TPU would still need to know what it can expect for 

a wind farm output so that it may schedule other generators within the mix. Given 

that TPU supplies about 24% of its own electricity from hydroelectric under its 

direct control results in some flexibility in controlling generation mix [13]. If the 

wind resource cannot be optimally integrated into the mix, a larger resource 

would be needed. 

As mentioned before, this work differs from earlier studies in that it looks 

at seasonal variations. Also, a similar study could not be found that utilized such a 

large time period of data for the Columbia Basin. These two points have made for 

a valuable study not only for TPU but potentially for others studying wind energy 

potential in the northwest U.S. and at other locations throughout the world. 
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5.2 Recommendations for Future Work 

• Obtain generator mix information and recalculate LOLP and ELCC. 

• Adjust the wind speed to output curve to obtain a more conservative 

capacity factor and rerun the analysis. 

• Adjust the load to a different percentage to see how LOLP and ELCC are 

affected by different generating level scenarios. 

• Obtain temperature information for the sites and determine how this 

affects wind speed and turbine output. 

• Conduct an analysis to determine the amount of reserves needed to 

support wind generation given the hourly variations. Or conduct the same 

analysis but with the 10 minute data. 
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APPENDIX A 

The following are the assumptions made for this thesis: 

1) No Transmission Losses 

2) Unlimited Transmission Capacity 

3) Cost considerations can be ignored 

4) Wind turbine hub heights are all 221ft 

5) All wind farms are of equal size 

6) Wind is the only generator in the generation mix 

7) Hourly wind speed data represents the entire hour’s wind speed 

8) At wind speeds greater than 55.92 mph wind turbines shutdown 

instantaneously 

9) Wind turbine output changes instantaneously on the hour to coincide with 
hourly wind speed changes 

 
10) The wind turbine output curve can be defined by 4 linear functions with a 

slope of 0, 100, 150, and 270 
 
11) Only wind speed affects turbine output 

12) TPU’s load is 15% of its actual load 

13) Hourly load represents the entire hour’s load 

14) All wind power generated is used to serve load 
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APPENDIX B 
 
The following are tables and graphs of data calculated during the course of this 

work. While some of this data is not specifically discussed in this thesis, the 

information it provides will help the reader gain a greater insight into the model’s 

behavior. 

 
Speed 
(m/sec) 

Speed 
(ft/sec) 

Speed 
(mph) 

O/P 
(kW) 

0 0 0 0 
1 3.28 2.24 0 
2 6.56 4.47 0 
3 9.84 6.71 0 
4 13.12 8.95 0 
5 16.40 11.18 150 
6 19.69 13.42 300 
7 22.97 15.66 450 
8 26.25 17.90 720 
9 29.53 20.13 990 

10 32.81 22.37 1260 
11 36.09 24.61 1530 
12 39.37 26.84 1800 
13 42.65 29.08 1900 
14 45.93 31.32 2000 
15 49.21 33.55 2000 
16 52.49 35.79 2000 
17 55.77 38.03 2000 
18 59.06 40.26 2000 
19 62.34 42.50 2000 
20 65.62 44.74 2000 
21 68.90 46.98 2000 
22 72.18 49.21 2000 
23 75.46 51.45 2000 
24 78.74 53.69 2000 
25 82.02 55.92 2000 

>25 - - 0 
Table B.1 Wind speed to V-80 turbine output 
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Figure B.1 Wind turbine step change 

distribution for combined seasons 
 
 
 

 
Figure B.2 Wind turbine step change 

distribution for winter seasons 2003, ’05, 
and ’06 

 
 
 



 

99 

 
Figure B.3 Wind turbine step change 

distribution for spring seasons 2003, ’04, 
’05, and ’06 

 
 
 

 
Figure B.4 Wind turbine step change distribution 

for summer seasons 2003, ’04, ’05, and ’06 
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Figure B.5 Wind turbine step change distribution for fall 

seasons 2002, ’04, ’05, and ’06 
 

 
 

 
Figure B.6 Relative frequency of total wind farm 

output for winter seasons 2003, ’05 and ’06 
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Figure B.7 Relative frequency of Sevenmile wind farm 

output for winter seasons 2003, ’05 and ’06 
 
 
 

 
Figure B.8 Relative frequency of Goodnoe wind farm 

output for winter seasons 2003, ’05 and ’06 
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Figure B.9 Relative frequency of Vansycle wind farm 

output for winter seasons 2003, ’05 and ’06 
 
 
 

 
Figure B.10 Relative frequency of Kennewick wind farm 

output for winter seasons 2003, ’05 and ’06 
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Figure B.11 Relative frequency of total wind farm output 

for spring seasons 2003, ’04, ’05 and ’06 
 
 
 

 
Figure B.12 Relative frequency of Sevenmile wind farm 

output for spring seasons 2003, ’04, ’05 and ’06 
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Figure B.13 Relative frequency of Goodnoe wind farm 

output for spring seasons 2003, ’04, ’05 and ’06 
 
 
 

 
Figure B.14 Relative frequency of Vansycle wind farm 

output for spring seasons 2003, ’04, ’05 and ’06 
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Figure B.15 Relative frequency of Kennewick wind farm 

output for spring seasons 2003, ’04, ’05 and ’06 
 
 
 

 
Figure B.16 Relative frequency of total wind farm output 

for summer seasons 2003, ’04, ’05 and ’06 
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Figure B.17 Relative frequency of Sevenmile wind farm 

output for summer seasons 2003, ’04, ’05 and ’06 
 
 
 

 
Figure B.18 Relative frequency of Goodnoe wind farm 

output for summer seasons 2003, ’04, ’05 and ’06 
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Figure B.19 Relative frequency of Vansycle wind farm 

output for summer seasons 2003, ’04, ’05 and ’06 
 
 
 

 
Figure B.20 Relative frequency of Kennewick wind farm 

output for summer seasons 2003, ’04, ’05 and ’06 
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Figure B.21 Relative frequency of total wind farm output 

for fall seasons 2002, ’04, ’05 and ’06 
 
 
 

 
Figure B.22 Relative frequency of Sevenmile wind farm 

output for fall seasons 2002, ’04, ’05 and ’06 
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Figure B.23 Relative frequency of Goodnoe wind farm 

output for fall seasons 2002, ’04, ’05 and ’06 
 
 
 

 
Figure B.24 Relative frequency of Vansycle wind farm 

output for fall seasons 2002, ’04, ’05 and ’06 
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Figure B.25 Relative frequency of Kennewick wind farm 

output for fall seasons 2002, ’04, ’05 and ’06 
 
 
 
 
 


