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ENABLING EXPERIMENTATION OF ASPECT-ORIENTED PROGRAMMING

LANGUAGES THROUGH A META-WEAVER FRAMEWORK

Abstract

by Melissa Ann Stefik, M.S.
Washington State University

May 2008

Chair: Roger Alexander

Modern software engineers deal with software systems of enormous complexity. Large cor-

porations hire teams of programmers, who, at least in theory, cooperate to work on programming

projects that can involve millions of lines of computer code. Object-oriented programming was

designed to help encapsulate these programs, essentially breaking what was once millions of lines

into manageable components that can be understood by an individual. Unfortunately, some of

these components, by the shear nature of certain programmatic solutions, are related to many parts

of a total software system. These components are said to be global (or semi-global) in nature put

another way, they are crosscutting concerns.

Enter aspect-oriented programming, a new paradigm for managing and encapsulating these,

so called, crosscutting concerns. In aspect-oriented programming, programmers have commands,

built into the language, that allow them to modify pieces of the code on a global scale. Modern

AOP languages, however, tend to be language specific and difficult to modify, in part because

many languages have custom rules, complex procedures, and abizarre syntax. A general system

for encapsulating these rules could help alleviate the complexity of designing AOP languages and

help enable experimentation on this new class of programming languages.

As such, I present CAL, theCustomizableAspectLanguage, a new system, termed a meta-

weaver, for creating, changing, modifying, and experimenting with aspect-oriented programming.
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Unlike traditional aspect-oriented languages, like AspectJ, CAL represents aspects, and even the

underlying aspect language, as XML. This allows users of CALto modify the crosscutting con-

cerns in whatever programming language they are writing in,and also allows CAL to crosscut

itself, essentially modifying its own global nature. This simplifies the process of changing and

adjusting an aspect-oriented programming language and itscorresponding weaving rules.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Summary

In object-oriented programming, components of a computer system are modularized according to

their primary behaviors; for example a dog can walk, a car canbe driven, and a fish can swim. We

reuse code amongst these components by using inheritance and polymorphism, yet some pieces

of this code, often calledcross-cutting, cannot be easily reused in an object-oriented system. This

is caused byscatteringandtangling, where scattering occurs when a single requirement is spread

across several modules and tangling occurs when multiple requirements are intertwined with the

core responsibility of a single module [5].

Aspect-oriented programming [23], on the other hand, is a new paradigm for modularizing

the, so called,cross-cutting concernsof a software system. Concerns, which are conceptual units

that can include “features, nonfunctional requirements, and design idioms” [32], are called cross-

cutting because the code that implements them is often scattered across a set of classes, modules, or

interfaces. A typical example is logging, where the developer might want to write code that records

the invocation of every method, but would prefer not to literally type the logging statements into

every method on the system. In aspect-oriented programming, developers accomplish this in a

textually localized manner, which means that scattering only occurs when a program is compiled

or executed, a process which is analogous to a sophisticatedpreprocessor.

In this thesis, I make a customizable, modular, aspect-orientedweaver, which I call ameta-

weaver. A meta-weaver allows the customization of weaving rules, precedence rules, aspect syn-

tax, and aspect semantics. The current state of the art is to use custom weavers for every application

or language, yet a meta-weaver allows us to customize the weaving process, which enables exper-

imentation and research on aspect-oriented languages.
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O b l i v i o u s n e s s :

W h a t  c o d e  i s  
w o v e n  h e r e ?

Q u a n i t i f i c a t i o n :

W e a v e  t h e  b l o c k  o f  
c o d e  D  i n t o  m e t h o d  
A .

p u b l i c  a s p e c t  E x a m p l e {
       po i n t cu t  examp le_po in t cu t ( ) :  
           ca l l ( *  BaseCode .A( ) ) ;
}

C o d e  B l o c k  D

Figure 1.1: Visual example of obliviousness and quantification.

1.2 An AOP Overview

Aspect-oriented programming is a technique for modularizing cross-cutting concerns in a software

system. AOP systems are typically considered to have two characteristics that distinguish them

from object-oriented programming: obliviousness and quantification [9].

Obliviousnessis the idea that an aspect is invisible to the programmer whenlooking at the

source code. This means the programmer cannot determine if or where an aspect will be executed.

For example, in Figure 1.1, a programmer is unaware of the aspect and need not be concerned

about the function of the aspect. To implement the functionality of the base code, the programmer,

ideally, does not need to know anything about the aspect (although this is debatable in practice).

In other words, there is no way for this programmer to tell if the aspect adversely affects the base

code, or even if an aspect will be applied, without the sourcefor the aspect.

Quantificationis the process of connecting the aspect to the base program through statements

that identify where the aspect will be integrated. In Figure1.1, quantification is demonstrated by

code block D. Here the aspect identifies method A as a locationwhere the code will be woven and

methods B and C are where it will not.

Obliviousness and quantification are implemented through aprocess calledweaving. Weaving
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integrates aspects into the base program code by identifying locations in the base program. After

a programmer specifies what points in the software will be modified by the aspects, the weaver

handles actually integrating the aspect code with the base code. This process can be complicated,

especially when two aspects indicate that they apply to the same location, which then requires the

weaver to determine how the aspects should be integrated andin what order. Traditional weavers,

like the one included in AspectJ, arguably the most common aspect-oriented programming lan-

guage, are not customizable; this makes experimentation onhow the weaver should work difficult.

1.3 Challenges of AOP

While aspect-oriented programming has been in existence for many years, there still exists several

significant technical challenges, including: ambiguous aspect orderings and legal weaving loca-

tions (join points). Aspect orderings often become a problem when different aspects have the same

weaving location. Suppose two aspects identify the same location to weave into; in other words,

suppose two aspects overlap. Ultimately, the AOP weaver must decide which of these two aspects

are integrated into the base code first and which are integrated second. How does the AOP system

decide which aspect to weave first?

Overlapping aspects, because the they can have a variety of orders to weave, produce differ-

ent results in the base program. This makes the process of weaving ambiguous and requires a

programmer to specify what the desired outcome is for each overlapped aspect.

Another common problem in aspect-oriented programming is clearly identifying weaving loca-

tions. Without a clear way to identify the result of the weaving process, a programmer can identify

a set of locations which may or may not include the locations they intended. Worse, there is often

no visual way to check if an aspect integrated into the base code or where it was integrated.

Modern AOP languages weave aspects into bytecode representations of base code. While this

practice has largely been adopted for efficiency reasons, ithas one significant and negative side

effect: visibility. When a programmer uses a programming language like AspectJ, after weaving

3



has occurred, the programmer can literally not see the locations where code was inserted from

an aspect. Thus, the weaving locations are often ambiguous,leaving the programmer with little

indication of whether he or she achieved the desired results.

To address these problems a meta-weaver can be used to investigate and identify properties

of different types of weaving. A meta-weaver accomplishes this by showing the outcome of the

weave and allowing the properties of aspects and weaving to be modified. A researcher using a

meta-weaver can then identify problems with the weaving process and explore alternative solutions

that further clarify the weaving process.

1.4 Problem Statement

Modern AOP languages are not customizable to the extent thateasy testing of AOP features is

a possibility. With a broad number of aspect languages, eachhaving its own model for aspect

orientation, there is a need for a framework that is flexible enough to allow each aspect feature

to be quickly changed. I have identified two primary problemswhich I address in this thesis,

namely: “How do we enable experimentation of aspect-oriented languages?” and “How do we

easily change the syntax and semantics of aspect-oriented languages?”

1.4.1 How do we enable experimentation of aspect-oriented languages?

Aspect-oriented programming has the relatively unusual attribute of having multitudes of papers

written on the topic, yet almost no formal experimentation testing language features. I argue that

this is due, in part, because designing new aspect languagesand features is notoriously difficult,

often requiring expertise in compiler design to even begin the work, as illustrated in Figure 1.2.

In other words, to promote experimentation, we need toenablea researcher’s ability to customize

AOP languages with minimal effort. For example, researchers should not have to write a custom

compiler to experiment with AOP features.

4



O RE x p e r i m e n t

C h a n g e  a  F e a t u r e

W r i t e  a  C o m p i l e r

E x p e r i m e n t
C h a n g e  a  F e a t u r e

C h o o s e  f e a t u r e s

X M L  w r a p p e r

T e s t

M e t a w e a v e r  A p p r o a c hT r a d i t i o n a l  A p p r o a c h

T e s t

L e x

P a r s e

S e m a n t i c  A n a l y s i s

T r a n s l a t e

C r e a t e  W e a v e r

C a n o n i c a l i z e

M o d i f y  X M L

Figure 1.2: Traditional and meta-weaver approaches to designing customizable AOP languages.

1.4.2 How do we easily change the syntax and semantics of aspect-oriented languages?

In a language like AspectJ, altering syntax, semantics, or weaving rules, requires the programmer

to write and edit a custom compiler. For example, in Figure 1.2, the traditional approach to adjust-

ing aspect-oriented language features requires the researcher to go through the traditional compiler

steps and to develop a weaver as part of the backend of their research. If modifications to the

compiler are needed, the researcher may have to modify any number of the traditional compiler

phases.

1.5 The Thesis

I argue that because AOP languages are not easily customizable, developing a framework that

allows syntax, semantics, and weaving rules to be easily changed will aid in discovering the im-

pact of AOP language features. To demonstrate this, I present CAL, the CustomizableAspect

Language, which is an XML based system for creating, changing, modifying, and experimenting

with aspect-oriented programming.
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C A L

X M L

X M L

A S T W e a v e

W e a v i n g  R u l e s

S o u r c e  
  C o d e

A s p e c t s

W e a v i n g  A l g o r i t h m

P r e c e d e n c e  R u l e s

A d v i c e  T y p e

A s p e c t J

H y p e r J

. . .

A S T

O u t p u t
 C o d e

Figure 1.3: General model of the meta-weaver.

1.5.1 Design of the Meta-Weaver

The goal of CAL is to allow experimentation with weaving rules by creating a highly flexible

aspect-oriented weaving framework. CAL uses XML to represent features of aspect-oriented lan-

guages. Representing these features through XML makes it relatively easy to change the features

of a language or modify the way in which an AOP language functions.

Figure 1.3 shows the basic design of CAL. The two clouds in Figure 1.3 represent conglom-

erates of rules for weaving aspect-oriented code. On the top, weaving rulesincludes features of

weaving, including, what type of algorithm accomplishes the weaving, precedence rules, or advice

types, while the bottom represents the syntax for aspects. These two clouds are represented in CAL

as XML documents, which are used to build intermediate representations of an aspect’s syntax and

semantics. CAL then takes the XML based weaving rules and uses them to combine base code

with advice. The output of this process is a woven abstract syntax tree that is translated into source

code.

1.5.2 Applications of the Meta-Weaver

We know relatively little about the effect of the AOP paradigm on programming. As such, a

modular AOP system is needed to promote the fine grain testingof various aspect features. The
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scope of this testing includes human studies on comprehension of the effects of aspect orientation

and the individual impact of syntax, semantics, or even technical concerns related to algorithm

efficiency.

1.5.3 Limitations

While CAL is a useful tool for implementing features of an AOPlanguage, and in theory, is also

customizable for any arbitrary AOP language, in practice, this type of tool is only as general

purpose as the intermediate representation tree it is builtupon. In other words, some IR trees are

created with a certain language in mind, which may not map completely with other languages. For

example, an intermediate representation of Java would onlyneed to account for statically typed

variables. However, an intermediate representation for Visual Basic would need to account for

dynamically typed variables. Similarly, in CAL, certain aspect-oriented features may need to be

added to the XML representation and the weaver.

These same sort of issues are not only expected but anticipated. CAL has an architecture

designed, with these limitations in mind; it allows for easymodification and expansion of the base

code representations, aspect representations, and weaving rule representations.

7



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we will discuss various characteristics ofaspect-oriented programming. The initial

focus of this chapter will be, the basic concepts of programming with aspects in, what is likely the

most popular language for aspect-oriented programming, AspectJ. I will then discuss how aspect-

oriented programming influences or changes the concept of modularity. Finally, I will discuss

previous work on both weaving for, and the applications of, AOP.

2.1 Introduction to Aspect-Oriented Programming

Kiczales et al. created aspect-oriented programming [21],a new paradigm for modularizing com-

puter programming. AOP allows us to codify, and more easily manipulate, cross-cutting concerns.

Cross-cutting concerns are aspects of a program which arescatteredor tangledwith other

modules in a program. Due to the nature of existing programming languages, textually separating

cross-cutting concerns from modules can be difficult. Aspect-oriented programming is a tool that

allows us to untangle cross-cutting concerns, through the use ofaspects. Aspects better enforce

modularity and are easier to manage from the perspective of the programmer. However, aspects

must be redistributed into the base program, in a process called aspect weaving, in order to exe-

cute [23].

To better understand the concept of a cross-cutting concernwe must first understand what a

concernis. A concern is loosely defined as a design decision of a system that is incorporated into

code. Similar to cross-cutting concerns, one of the main concepts is the idea ofseparation of con-

cerns[8, 30], which ideally result in a single design decision in one unit, or module. However, not

all concerns can be effectively separated, nor are they easily identified [31]. To separate these de-

sign decisions, aspect-oriented programming introduces aunit called anaspect. There are several

main components that make up an aspect, includingjoin points, pointcuts, andadvice.
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public class Employee
{

...
public double pay(int hoursWorked, double payRate)
{

double payment = payRate * hoursWorked;
return payment;

}
}

Figure 2.1: Part of a program containing join points.

execution(double Employee.pay(int,double))

Figure 2.2: A pointcut in AspectJ

“A join point is an identifiable point in the execution of a program” [25]. Join point locations

include places in code like assignment statements, method calls, or initializations [25]. This is

demonstrated by the code block in Figure 2.1. From this code example, the join points that can be

identified are the assignment to the variablepayment and the call of the methodpay().

We can specify a set of join points, like those identified in Figure 2.1, by defining the concept

of a pointcut. Pointcuts are specifications in an aspect used to select a set of join points from

base code for weaving. Figure 2.2 is an example of a pointcut in AspectJ. This particular pointcut

specifies that code should be woven into the methodpay().

In addition to join points and pointcuts, an aspect is made upof advice.Advice is code to be

executed at when a join point event, which is specified by a pointcut, occures at runtime. Figure 2.3

shows advice that will output a line of text once execution reaches the join point, which is specified

by the pointcut in Figure 2.2. This results in the advice being integrated into the base program after

the execution of the methodpay(). In this example, the print statement is the advice block or

code to be executed. The commandafter() specifies that the advice will be woven after the

join point.

Figure 2.4 shows join points, pointcuts, and advice, together as a completeaspect. This is

9



after() : execution(double Employee.pay(int,double)){
System.out.println(‘‘Made payment to employee.’’);

}

Figure 2.3: An example of advice in AspectJ

similar to the declaration of a class, which contains any number of methods. Additionally, an

aspect can contain multiple pieces of advice and any number of pointcuts.

In addition, Figure 2.4 shows a variation to the poincut given in Figure 2.2. This new pointcut

declaration is broken into several parts, theaccess specifier, keyword, pointcut name, pointcut type,

andsignature. In AspectJ, there are several pointcut types, includingcall, andexecution. In this

example we use the typecall to specify that the pointcut will occur when the methodpay() is

called. This pointcut also specifies join points for any method named pay, regardless of the type

and number of its arguments. This is accomplished through the use of dots in the parameter list.

Join points, pointcuts, and advice are tightly linked through the process ofweaving. Weaving

is the process of connecting aspects with the base program, where the base program is the original

program written in a programming language, such as, Java or C++, and the aspects are written

in a corresponding aspect-oriented language, AspectJ or AspectC++. Weaving in AspectJ will be

discussed later in this chapter.

2.2 Modularity

One of the key concepts involved in aspect-oriented programming, and programming in general, is

modularity. Modularity is a property of a computer program and is a measure of the extent to which

code is separated into modules. Ideally, each module captures a single design decision. Modularity

has several key characteristics, including the idea that modules aretextually local, that each module

has a well defined interface, and that this interface is an abstraction of its implementation [24].

Though the concept of modularity applies to both aspect-oriented programming and object-

oriented programming, object-oriented programming modularizes program entities or concerns
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p u b l i c  a s p e c t  E m p l o y e e A s p e c t
{

     
     p o i n t c u t   p a y m e n t M a d e ( )  :  c a l l  (  d o u b l e  E m p l o y e e . p a y ( . . )  ) ;

     a f t e r ( )  :  p a y m e n t M a d e ( )
     {
          S y s t e m . o u t . p r i n t l n ( " M a d e  p a y m e n t  t o  e m p l o y e e " ) ;
     }
}

K e y w o r d P o i n t c u t  N a m e P o i n t c u t  T y p e S i g n a t u r e

A s p e c t  D e c l a r a t i o n

P o i n t c u t  D e c l a r a t i o n

A d v i c e  

Figure 2.4: An example of an aspect in AspectJ.

and aspect-oriented programming modularizes cross-cutting concerns. The extent to which aspect-

oriented programming promotes modularity of cross-cutting concerns has been well explored [1, 7,

6]. Sullivan et al. [37] and Lopes [28] further explore this issue using a Design Structure Matrix to

evaluate the modularity of a program. This is accomplished by modeling the design of a program

and then comparing it to other models. Lopes applies this idea to aspect-oriented programming and

shows aspects can be treated as modules. In addition, Lopes demonstrates that AOP does increase

modularity in certain cases, including, when an existing system needs to be augmented.

Although Steimann casts some doubt as to whether modularityis really increased when using

aspect-oriented programming, his main focus is on the claimthat, “AOP has set out to modular-

ize crosscutting concerns (its methodological claim), butby its very nature (its mechanics) breaks

modularity...” [35]. He argues that AOP does not increase understandability and can often stand in

the way of independent development, one of the fundamental reasons for modularity. In addition,

Steimann argues that most of the proposed or demonstrated applications of AOP are not neces-

sarily good examples. As Steimann points out, logging, tracing, and debugging are the canonical

examples of uses for AOP, but they are also applications thatare already well established and at

best AOP is an alternative solution to these problems.

Aldrich presents the idea of an Open Module. An open module allows much of the same

functionality of existing AOP but it preserves modularity and information hiding by sacrificing

obliviousness [1]. This is accomplished by allowing a module to export its own pointcuts, which
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are abstractions of the cross-cutting concerns within the module, making them available to ad-

vice [2]. There has been some debate on whether Open Modules are cross-cutting because of the

restrictions between the modules and advice. Sullivan et al. propose an alternative solution that

creates a design rule interface between aspects and advice code which addresses these issues [36].

Finally, Kiczales and Mezini propose another way of thinking about modularity with respect to

aspect-oriented programs, modular reasoning [24].Modular reasoningallows decisions to be made

about a module with access to only that module and the interfaces which are directly referenced in

that module. They argue that modular reasoning is achieved through aspect-oriented programming,

though, it requires some global knowledge of the system to beobtained. Kiczales and Mezini

explain that the presence of cross-cutting concerns, with or without aspect-oriented programming,

requires global knowledge. Thus, AOP does not itself break modularity, but cross-cutting concerns

by their nature create the need for global knowledge, which does break modularity. They claim

that AOP simply provides the benefit of modular reasoning once global knowledge is identified.

2.3 Weaving

Weaving is the process of integrating advice into the execution of a program. An integral part of

this is identifying join points, pointcuts, and advice. While weaving might seem straight forward,

there are many approaches to the weaving process, each depending on the language, the aspect-

oriented language extension, and the weaving rules. In thissection, some of these approaches to

weaving will be discussed.

Hilsdale and Hugunin discuss the AspectJ weaving process asit existed in AspectJ 1.1 [19].

In AspectJ, weaving is achieved by matching join points to pointcuts throughjoin point shadows.

Join point shadows are locations in bytecode or source code that represent the actual join points

at runtime. This process of weaving first requires a bytecodetransformation; then the join point

shadows must be matched to join points and advice. They also discuss the efficiency of the weaving

process and explain that weaving into bytecode is more efficient than weaving into source code.
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Most aspect-oriented languages are designed to work with a correspondingbase languagelike

AspectJ and Java. This is prohibitive because it requires anaspect language to be developed for

each language. To address this issue, the concept of themeta-weaverwas introduced by Gray to

allow weavers to be created through meta-specifications. These meta-specifications provide all the

necessary details of a base and aspect language to generate aweaver [12]. Ideally, a weaver could

be easily generated or would be flexible enough to be languageindependent. To accomplish this,

Gray lays out a framework for the meta-weaver [14]. This framework was eventually developed

and is able to generate aspect weavers for different languages [15]. However, each new weaver

requires a certain amount of customization and extra effortto program.

Lafferty and Cahill, present Weave.NET, which is a languageindependent weaver that allows

aspects to be written in a variety of languages [26]. They accomplish this through the use of

XML to specify aspects, which prevents aspects from being intertwined with a particular language.

Weave.NET, however, uses the AspectJ notation for aspects;it is not flexible enough to allow

experimentation with different weaving rules because it islimited to AspectJ notation and weaving

into bytecode.

While Gray, Lafferty, and Cahill all provide methods similar to the work presented here, CAL

allows the user to build up and modify a complex set of weavingrules and language features. In

CAL, an XML specification allows users to build up a set of weaving rules, while Gray creates a

top-down framework which generates weavers, but does not allow a user to necessarily build spe-

cific weaving rules. One could argue that Gray’s work is at a higher level of abstraction than mine,

specifically in relation to model composition and domain specific languages. CAL, in contrast,

deals with building up a detailed and flexible framework for weaving different types of aspects.

Similarly, Lafferty and Cahill’s work, as the name weave.NET implies, works only for Mi-

crosoft based languages, and since it uses the syntax of AspectJ, it is fundamentally limited to the

semantics of AspectJ. In contrast, CAL allows the user to specify not only the weaving rules of

AspectJ, but rules used by other AOP languages. In addition,CAL allows the user to customize
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the join points, pointcuts, and precedence rules availableas part of the core language, making CAL

considerably more flexible than weave.NET.

2.4 Applications of AOP

Let us now consider some of the practical applications of aspect-oriented programming. In this

section, we discuss several case studies of how AOP has been applied in areas such as design pat-

terns, web based programming, and operating systems. This work is related to my own (i.e., CAL)

in the sense that CAL provides a framework for experimentingwith AOP languages, facilitating

studies such as those presented in this section.

One such application is the Gang-of-Four(GoF ) design patterns, which Hannemann and

Kiczales integrate with AOP [18]. Specifically, they conduct a study which compares the im-

plementation of 23 GoF design patterns in Java to their implementation in AspectJ. The authors’

goals were to examine and compare the modularity and reuse ofthe GoF design patterns in the

previously mentioned languages. They reported 17 of 23 design patterns in AspectJ were more

modular than their counter parts in Java. In addition, the authors claim 12 of those implementa-

tions increased reuse.

Further, Garcia et al. conducted a quantitative study on aspect-oriented and object-oriented

implementations of those same 23 GoF design patterns [11]. The study confirmed an increase in

separation of concerns. However, as Garcia points out, “separation of concerns can not be taken

as the only factor to conclude for the use of aspects” [11]. Inaddition, they found some of the

aspect-oriented solutions have more complex operations and coupled components. In a later study,

Cacho et al. expand further on these ideas by investigating the scalability of AOP on GoF design

patterns [4].

Beyond design patterns, web-based applications of AOP havealso been explored. Kersten and

Murphy ran one of the earliest case studies using AOP and AspectJ to build a web-based learning

program, Atlas [20]. Using AspectJ, the authors built an advanced teaching and learning academic
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server, for which they documented what aspects were used andhow those aspects affected the

development process. From this they were able to identify possible hurdles a programmer might

face when using aspect-oriented programming.

In addition, Papapetrou and Papadopoulos present a case study comparing aspect-oriented and

object-oriented programming on a component-based web-crawling system [29]. They used several

metrics to measure effectiveness, learning curve, time to complete, code tangling, and stability of

the resulting software. They also narrowed the focus of the study to three specific areas of their pro-

gram: logging, overloading checks, and a database optimizer. Papapetrou and Papadopoulos report

relatively positive results for the aspect-oriented solution. This includes a shorter implementation

time and less code tangling, especially in the case of logging. However, both the aspect-oriented

and object-oriented solutions resulted in stable and effective solutions.

Lohmann et al. explored aspects used in the development of operating system kernels [27].

For the eCos kernel the authors used AspectC++ in the implementation of this operating system

kernel which requires a highly efficient infrastructure. The authors discovered most aspect-oriented

features do not introduce extra runtime overhead. However,they identified some areas of aspect-

oriented programming that can cause extra overhead such as ambiguous join points.

A framework such as CAL facilitates exploration of these applications of aspect-oriented pro-

graming. For example, changes to certain language featuresin AspectJ could improve modularity

and reuse of the GoF design patterns or help mitigate common problems a programmer faces when

using an AOP language. The current state-of-the-art, however, makes exploring these applica-

tions difficult, as modifying a language like AspectJ takes considerable technical savvy and effort.

With CAL, however, the technical requirements are mitigated, making exploring the applications

of AOP languages easier.
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CHAPTER 3

CUSTOMIZABLE ASPECT LANGUAGE (CAL)

The goal of CAL is to provide a framework for modifying both the features of an aspect-oriented

language and a framework to modify the way transformations of aspects occur. This is similar to

Gray’s meta-weaver in that a side effect of this work is language independence. Although Gray’s

meta-weaver is a general framework that generates domain specific weavers which are specific to a

base language (also called the target language) [13]. CAL extends these capabilities by providing

modifiable weaving rules which allow more control over the weaving process and the resulting

program after weaving.

CAL provides a framework which allows the development of weavers for various target lan-

guages and weaving rules. In this chapter, the specifics of this framework will be discussed, first by

outlining the overall design of the meta-weaver and then presenting detailed descriptions of each of

the components that make up this meta-weaver. The representation of aspects in XML will be used

as an example of how CAL is general enough to modify and handlea variety of aspect-oriented

languages. Finally, I will discuss the implementation of the components of the meta-weaver and

how its design enables modifications to the weaving process.

3.1 CAL Overview

There are three primary components in CAL, the input, the meta-weaver, and the output. Figure 3.1

gives an overview of these components and the design of CAL. Using several examples, in this

section I will discuss the design of each component and the reasoning behind their design. Finally,

I will discuss how the input and the meta-weaver work together to produce a program that combines

the base and aspect programs.
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Figure 3.1: The CAL Framework.

3.1.1 CAL Input

CAL has three inputs: the weaving rules, the base program, and the aspect program. Each of

these inputs has its own format that contributes to providing the meta-weaver with the necessary

information to modify the weaving process and produce a combined output program.

The first type of input is an XML file which is specified by the schema shown in Appendix B.2.

This XML file contains weaving rules. These weaving rules specify what types of advice are legal

and the order in which this advice is integrated into a base program. The meta-weaver then acts as

an interpreter of these rules. In essence, this allows a userto modify or add rules that will change

the way the weaver combines the base program with the aspect program.

The second type of input is the base program. Figure 3.2 is a simple example of a possible

base program written in Java. This particular program creates anAccount, deposits an amount of

$100.00 into thatAccount, and displays the current balance. While the input is Java, it is possible

to input a base program in another language. The input is onlylimited by the abstract syntax tree

representation. Modification and revision of the abstract syntax tree allows CAL to accept base
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public class Account {
private double balance;
public void deposit(double amount){

balance += amount;
}
public void printBalance(){

System.out.println("Balance: " + balance);
}

}

-------------------------------------------------

public class Main {
public static void main(String[] args) {

double amount = 100.00;
Account account = new Account();
account.deposit(amount);
account.printBalance();

}
}

Figure 3.2: Example base program written in Java.

programs in any language.

The final type of input is an XML file representing an aspect. Aspects are typically written

in an aspect-oriented language, for example AspectJ, that extends a base language like Java. In

contrast, CAL represents aspects through the use of XML, as demonstrated by the schema shown in

Appendix B.1. XML allows a developer to extend functionality and combine different approaches

to aspect-orientation (e.g., weaving rules, join point definitions, precedence rules). Figure 3.3

represents two common elements in an aspect, advice and pointcuts, and is an example of a valid

CAL aspect definition. This definition generates an abstractsyntax tree via the use of a customized

SAX2 [3] parser, in this case generating one public pointcutnamedDEPOSITMADE.

Figure 3.4 shows the AspectJ version of the aspect presentedin Figure 3.3. While this thesis

is predominately based on an analysis of AspectJ, and as suchthe semantics of the XML format

essentially match the features of this language, CAL is flexible in the sense that it can generate
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<cal>
<aspect>

<accessSpecifier>public</accessSpecifier>
<name>AccountAspect</name>
<pointcut>

<accessSpecifier>public</accessSpecifier>
<name>depositMade</name>
<parameter>

<type>void</type>
</parameter>
<pointcutExpression>

<executionPointcut>
<accessSpecifier>public</accessSpecifier>
<returnType>star</returnType>
<className>Account</className>
<methodName>deposit</methodName>
<argument>double</argument>

</executionPointcut>
</pointcutExpression>

</pointcut>

<advice>
<adviceDeclaration>

<afterAdvice>
<parameter>

<type>void</type>
</parameter>

</afterAdvice>
</adviceDeclaration>
<pointcutSpecificationExpression>

<pointcutSpecification>
<name>AccountAspect</name>
<argument>void</argument>

</pointcutSpecification>
</pointcutSpecificationExpression>
<adviceBody>

System.out.println(
"A deposit has been made.");

</adviceBody>
</advice>

</aspect>
</cal>

Figure 3.3: Example XML representation of an aspect writtenin AspectJ.
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public aspect AccountAspect
{

pointcut depositMade() :
execution(* Account.deposit(double));

after() : depositMade()
{

System.out.println("A deposit has been made.");
}

}

Figure 3.4: Example aspect program written in AspectJ.

weaving rules that are dramatically different from AspectJ(e.g., few or many legal join points,

unique weaving rules, unique precedence, unique keywords for weaving conditions). Further,

while not provided in this work, aspects in other AOP languages can be translated, through typical

source transformation techniques, into the XML format presented here, essentially making them

usable by CAL.

3.1.2 Meta-Weaver Components

The meta-weaver portion of the design consists of five components: theweaver, the representation

of theweaving rules, theabstract syntax tree definitionsof thebaseandaspectprograms, and the

woven abstract syntax tree. The weaving rules and abstract syntax tree definitions are especially

critical, as they provide CAL with modularity and flexibility.

On its own, the weaver is a mediator; it interprets any rules specified in the XML and loads al-

gorithms representing these rules. This is accomplished through analgorithm registry, essentially

a store of known AOP algorithms. When the weaver sees XML and notices a given tag (e.g., the

name of a precedence algorithm), the weaver checks its algorithm registry to see if an implemen-

tation of that algorithm is available. Assuming CAL is givenlegal commands (otherwise it fails

gracefully), it traverses the base and aspect abstract syntax trees to determine where the join point

shadows will be placed. These locations are determined by the loaded rules and eventually output

a combined base program and advice block. Figure 3.5 demonstrates the process of combining two
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Figure 3.5: Weaving two abstract syntax trees using weavingrules produces a abstract syntax tree
that combines the advice and base programs.

abstract syntax trees, assuming the join point shadow is located after the method B2.

The next component is the representation of weaving rules. Weaving rules represent all legal

information about an AOP language, including what join points and pointcuts are available on

the system, what the syntax is for the language, and the algorithms for weaving and precedence.

Weaving rules interact with the algorithm registry, loading algorithms and join points into CAL on

demand. Eventually these rules have an effect on the abstract syntax tree output by the system.

Once the abstract syntax tree is generated, by a third party program, the weaver can traverse

the tree to determine the join point shadows. A visitor pattern is used to do the traversal of this

tree. The weaver then identifies possible locations for weaving and inserts join point shadows into

the base program’s abstract syntax tree.

Besides the base code, CAL also represents abstract syntax trees for aspects. With the base

code, third party programs, not discussed in this thesis, parse the code into a custom abstract

syntax tree representation. With aspect abstract syntax trees, however, XML is parsed. This parser

reads in elements (e.g., execution, call, before, around) of an aspect and builds an abstract syntax
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public class Account {
private double balance;
public void deposit(double amount){

balance += amount;
System.out.println("A deposit has been made.");

}
public void printBalance(){

System.out.println("Balance: " + balance);
}

}
-------------------------------------------------
public class Main {

public static void main(String[] args) {
double amount = 100.05;
Account account = new Account();
account.deposit(amount);
account.printBalance();

}
}

Figure 3.6: Example base program written in Java.

tree that exactly mimics those elements. While this abstract syntax tree is being created, CAL

caches pertinent information about the construction of theaspect. For example, CAL keeps a store

of all pointcuts for easy retrieval.

Once the weaving rules, aspect, and base code are loaded, CALcan weave, producing the

final component in question, the combined aspect + base abstract syntax tree. This tree can be

translated back into source code via a custom visitor [10]. Each element is translated back into text

which represents the original language of the base program,but now with advice inserted at the

appropriate locations. Figure 3.6 shows an example of the woven output produced by CAL. This

example is woven from the base code in Figure 3.2 and the aspect program in Figure 3.4.
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aspect AccountAspect
{

advice execution("% Account::deposit(...)"): after()
{

cout << "A deposit has been made." << endl;
}

};

Figure 3.7: Example aspect program written in AspectC++.

3.2 CAL Aspects

In this section, I discuss aspects in CAL which are represented via an XML based wrapper of

pointcuts, join points, and advice. While the previous section gave an overview of CAL, this

section provides more detailed examples of the different components involved in weaving and is

broken into three subsections: CAL aspects in XML, abstractsyntax tree definition for aspects,

and abstract syntax tree definition for base code and advice.

3.2.1 CAL Aspects in XML

By design, meta-weavers need to accommodate the functionality from a potentially large variety

of aspect-oriented languages. Traditionally, these languages are written via custom parsing for

a particular programming language [22]. Ironically, however, aspects are, in a sense, a cross-

cutting concern in and of themselves. The rules used in languages like AspectJ are tied directly

to Java’s implementation (weaving into Java bytecode), despite the tremendous commonalities

between language implementations (e.g., they have methods, variables, activation records, call

stacks, type systems, conditionals, loops, etc.).

Generally speaking, a meta-weaver should abstract these rules, allowing them to be easily cre-

ated and modified. To push us further toward this goal, CAL represents information about aspects

as text, using XML, allowing aspects written in CAL to be easily modified despite the language,

or set of aspect rules, in use. To accomplish this, an XML schema, shown in Appendix B.1, was

created to allow different aspect languages to be translated into this XML format. Once the aspect
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<cal>
<aspect>

<accessSpecifier>public</accessSpecifier>
<name>AccountAspect</name>
<pointcut>

<accessSpecifier>public</accessSpecifier>
<name>depositMade</name>
<parameter>

<type>void</type>
</parameter>
<pointcutExpression>

<executionPointcut>
<accessSpecifier>public</accessSpecifier>
<returnType>star</returnType>
<className>Account</className>
<methodName>deposit</methodName>
<argument>double</argument>

</executionPointcut>
</pointcutExpression>

</pointcut>

<advice>
<adviceDeclaration>

<afterAdvice>
<parameter>

<type>void</type>
</parameter>

</afterAdvice>
</adviceDeclaration>
<pointcutSpecificationExpression>

<pointcutSpecification>
<name>AccountAspect</name>
<argument>void</argument>

</pointcutSpecification>
</pointcutSpecificationExpression>
<adviceBody>

cout << "A deposit has been made."
<< endl;

</adviceBody>
</advice>

</aspect>
</cal>

Figure 3.8: Example XML representation of an aspect writtenin AspectC++.
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Figure 3.9: UML diagram of the custom XML parser for the aspect representation.

program is in the XML format, it can be parsed by a SAX2 parser,which builds the abstract syntax

tree and outputs woven code.

Consider the aspect shown in Figure 3.4, which is written in AspectJ. This aspect identifies

the join point after the execution of the methodDEPOSIT in the class ACCOUNT. In contrast,

consider the aspect in Figure 3.7, written in AspectC++. Both aspects identify the join point

location after the execution of the methodDEPOSIT in the class ACCOUNT, but do so via different

syntax. These two aspects are functionally the same, thoughthey each reflect the languages they

are associated with (e.g., Java and C++). Translating both of these aspects into the XML format

results in similar XML representations, shown in Figure 3.3(Java) and Figure 3.8 (C++). The only

difference between the two translations is the advice body,which contains code that is written in

either Java or C++.

3.2.2 Abstract Syntax Tree Definition for Aspects

Once CAL receives an XML based representation of an aspect, it parses and transforms the text

into an abstract syntax tree. This tree encapsulates the advice, pointcuts, and other attributes,

informing the meta-weaver using whatever custom rules it currently has loaded, when, where, and

how advice should be woven into the base code.
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Figure 3.10: UML diagram of the aspect representation of pointcuts.

The first step in building the abstract syntax tree for aspects was to build a custom XML parser

based on SAX2. Figure 3.9 shows the UML for the tree read in by this parser. This tree is

created by identifying each start element as it is read in, then generating that element using a

NODEFACTORY, shown in Figure A.5. This process uses a CAL SAX PARSER to parse the file

and a CAL XML HANDLER to process the parsed elements. CAL XMLH ANDLER generates each

element, sets the attributes of each element, and determines the appropriate relationship between

the elements. In other words, CAL XMLH ANDLER is responsible for generating the abstract syntax

tree.

The NODEFACTORY is responsible for generating each element, or more appropriately, each

node for our abstract syntax tree. This is accomplished by instantiating each class that corresponds

to the element which was parsed by a CAL SAX PARSER. In Figure A.5, these classes all inherit

from the class NODE and represent individual components of an aspect.
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Figure 3.11: UML diagram of the aspect representation of advice.

In Figure 3.10, we see some of the classes of the aspect abstract syntax tree. The class struc-

ture in this figure represents pointcuts. The interface, POINTCUTCATEGORYMETHODSIGNA-

TURE, sets up the functionality of all pointcuts which use a method signature to identify the join

point. Similar interfaces are set up for other types of pointcuts which use a constructor signature,

type signature, or field signature. In addition, the pointcuts are broken down into smaller parts,

RETURNTYPENODE, CLASSNAMENODE, METHODNAMENODE, ARGUMENTNODE, and AC-

CESSSPECIFIERNODE, representing the parts of the CALL POINTCUT and the EXECUTIONPOINT-

CUT. In Figure 3.11, advice is similarly broken down into its constituent components: advice type,

pointcut specification, and advice body.

3.2.3 Abstract Syntax Tree Definition for Base Code and Advice

Both the base code and advice body use the same intermediate representation of source code. This

intermediate is shown in Figure 3.12. While the predominantpart of this thesis is on the design of
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Figure 3.12: UML diagram of the base program representation.

the meta-weaver and the aspect XML representation, this section briefly discusses the base code

representation used by CAL.

The classes in Figure 3.12 all inherit from ASTNODE and represent a node that can be identi-

fied by a pointcut. For example, a call or execution pointcut identifies a METHOD as the location

where the advice will be woven. In AspectJ, we can identify FIELD, METHOD, TYPE, and CON-

STRUCTORas nodes in the base code’s abstract syntax tree which can be identified as join points.

This join point is identified in the tree by JOINPOINTSHADOW, essentially a marker for a join

point.

While Figure 3.12 does not represent the entire abstract syntax tree, it does represent the nodes

in the tree which are required to identify certain join points. To accommodate different imple-

mentations of the classes in the AST, in part because a different researcher is creating part of the

implementation, CAL includes an abstract factory [10] thatallows different AST implementations

to be swapped dynamically.
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CHAPTER 4

META-WEAVER DESIGN

The meta-weaver is designed to handle different approachesto weaving aspects into a base program

(e.g., join point shadows, morphing aspects [17]). For thisprocess to be flexible, the weaver

must provide an interface that allows certain attributes tobe changed. This is precisely what the

weaver component of the meta-weaver accomplishes using theweaving rules to determine how to

configure itself. To make this process understandable, the format and functionality of the weaving

rules will be discussed. Then I will explore the process of combining these rules to create the

custom weaver component.

4.1 Weaving Rules

Figure 4.1 shows an example set of XML weaving rules that are used to construct a custom weaver.

There are three types of rules which are used to define this custom weaver:join points, theweaving

algorithm, andprecedence rules. Once these rules have been discussed, I will discuss thealgorithm

registry, a method CAL uses to allow new rules to be created.

4.1.1 Join Point Rules

The first type of weaving rule isJOINPOINT. Join point rules allow a developer to identify which

join points can be used when performing the weave and are specified by the elementsNAME,

ASTNODE, andWHEN. The NAME element specifies what the syntax is for calling the pointcut.

For example, in AspectJ, a pointcut’s name could beEXECUTION, CALL , etc. The ASTNODE

element identifies the node in the base abstract syntax tree where the join point will be attached

(e.g., METHOD, CONSTRUCTOR). Lastly, theWHEN element identifies, relative to the ASTNODE,

where to place the join point; in AspectJ, and also currentlyin CAL, the options arebefore, after,

or around.

These three elements allow a developer to control join pointshadow locations and syntax used
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<calrules>
<joinpoint>

<name>execution</name>
<ASTNode>Method</ASTNode>
<when>before</when>

</joinpoint>
<weavingalgorithm>

AspectJ
<weavingalgorithm>
<precedence>

OrderInFile
</precedence>

</calrules>

Figure 4.1: XML representation of weaving rules in CAL.

by the aspect-oriented language with only four XML tags. By creating an XML language where

any node in the base code can be included as part of the weavingrules, the designer can implement

new functions of an AOP language. For example, suppose a developer wanted to define a custom

join point to execute before every code block (e.g., before an if statement, while loop on each

iteration, method). Doing so in CAL is trivial. The only required change would be to the tag in

Figure 4.1 from< ASTNode >METHOD< /ASTNode > to < ASTNode >CODEBLOCK<

/ASTNode >. This extremely minor change causes CAL to weave code in a dramatically different

manner.

As a final example of join point rules, consider Figure 4.1, which allows advice to be woven

beforetheexecutionof a method. Now, consider the aspect in Figure 4.2; the weaver would not

weave the advice from this aspect, given the rules in Figure 4.1. This is because the aspect defines

the join point as executingafter a METHOD is finished executing, but theafter join point is not

defined under this set of weaving rules!

4.1.2 Weaving and Precedence Rules

CAL also has rules for custom weaving algorithms which can beswapped both statically and

dynamically. CAL currently uses an algorithm named AspectJ, which uses join point shadows to
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public aspect Example
{

after() : execution(* Account.deposit(..))
{

System.out.println("A deposit has been made.");
}

}

Figure 4.2: An aspect which specifies a join point after the execution of the methodDEPOSIT.

identify possible weaving locations. This algorithm is similar to the weaving algorithm used in

AspectJ 1.1 and is discussed in more detail in Hilsdale and Hugunin [19].

In addition to the weaving algorithm, precedence rules can be specified in the XML document

for weaving rules. Precedence identifies a specific order in which each piece of advice is woven.

Similar to the weaving algorithm element, the precedence isgiven a name which is used by the

weaver to identify which precedence rule to use. In Figure 4.1, the precedence rule that is used is

ORDERINFILE, which will weave the join points in the order of the advice inthe aspect. Suppose,

for example, an aspect defines three pointcuts, A, B, and C, all of which are asked to weave at

a given location. Using the ORDERINFILE tag, CAL would give the highest precedence to the

pointcut that is closest to the top of the file (e.g., the first pointcut read in by CAL). Other possible

precedence tags are Alphabetical, AspectJ, or whatever other custom precedence rule is desired.

4.2 Weaver

The weaver in CAL has two primary components: the JOINPOINTREGISTRY and the ALGO-

RITHMREGISTRY. In this section, I discuss how the weaver incorporates these registries and uses

them to actually weave advice into base code.

4.2.1 Join Point Registry

To illustrate this process, consider that CAL has read in a series of weaving rules similar to that

shown in Figure 4.3. CAL needs to somehow translate this XML into an actual set of algorithms

and procedures for implementing an AOP language.
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How does CAL accomplish this? First, when CAL sees aJOINPOINT element in a weav-

ing rules file, it registers a particular join point rule under an ASTNODE’s name into the JOIN-

POINTREGISTRY, a component for tracking information on the valid join points in the system.

The weaving algorithms will then consult this registry to determine what join points are available,

and where advice can be placed relative to those join points.While Figure 4.3 is an example of

an AOP language with only one join point, this is highly atypical and, as such, CAL allows many

join points to be loaded and registered with the environment. This is accomplished by creating a

subclass of JOINPOINT and adding it to the JOINPOINTREGISTRY by calling .ADD(JOINPOINT

JOINPOINT).

4.2.2 Algorithm Registry

The algorithm registry is similar to the join point registry, but the algorithm registry tracks the

current weaving algorithm and precedence rule. Unlike the join points there can only be one

weaving algorithm and precedence rule. When CAL begins the weaving process, it references

what is called the ALGORITHMREGISTRY. This class represents a list of known algorithms that

can be used by CAL. As an example, there are two steps for creating a new weaving algorithm.

First, one needs to implement a subclass of the WEAVINGALGORITHM class. Second, you need

to add the algorithm to the ALGORITHMREGISTRY by calling .LOAD(STRING TYPE, OBJECT O).

The same can be done for precedence rules.

Once the algorithm registry has been notified of the new algorithm, the CAL meta-weaver rules

can use the algorithm as a tag in an XML file. When CAL needs to use the current precedence

rule, it queries the algorithm registry with a .LOOKUP(STRING NAME) call, passing in the name

of the algorithm it is looking for (in this case, the tag PRECEDENCE). In short, this querying

process allows a designer using CAL to not only create new precedence rules, but to make new

AOP algorithms, allowing future developers to use CAL’s architecture to customize the weaving

process.
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<calrules>
<joinpoint>

<name>ifStatement</name>
<ASTNode>IfStatement</ASTNode>
<when>after</when>

</joinpoint>
<weavingalgorithm>

AspectJ
<weavingalgorithm>
<precedence>

OrderInFile
</precedence>

</calrules>

Figure 4.3: A CAL weaving rule that defines a new join point foran IF statement.

4.3 Putting it all Together

In this section, I explore how CAL takes an XML specification and translates it into a functioning

weaver, providing insight into how CAL connects all of theseseparate architectures. I discuss

this putting it all togethersection from two angles. First, I present Java code that is similar to the

process CAL uses when reading in custom rules. Second, I provide an example demonstrating how

CAL creates an aspect-oriented programming language that functions like AspectJ.

4.3.1 Connecting the CAL Components

This section discusses how CAL uses its registries to manipulate and control both weaving rules

and algorithms, connecting CAL’s components. The basic idea is that CAL delegates weaving

operations to algorithms that are pre-loaded into the CAL registries. When a user then gives a

weaving rules file, the user is specifying which of these pre-loaded algorithms they would like to

use (e.g., a certain precedence algorithm, weaving algorithm, or set of join points).

As an example, consider Figure 4.1. When CAL loads this XML file, its registries are checked

for each of the rules in that file and these are dynamically loaded into the current weaver’s individ-

ual registry. In essence, CAL generates code similar to thatshown in Figure 4.4. This code updates

the registries and specifies which rules the weaver will use.
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This process begins by setting up the registries, ALGORITHMREGISTRY and JOINPOINTREG-

ISTRY. Once the registries have been loaded with the appropriate algorithms, CAL parses the join

point rules and generates the corresponding rule object. Inthis case the JOINPOINT object named

METHOD is initialized to the values read in from the XML file. Then theweaving algorithm and

precedence rule objects,MY WEAVINGALGORITHM andMY PRECEDENCECHOICE, are generated

based on the weaving rule file.

Once the weaving rule file has been loaded into CAL, the ALGORITHMREGISTRY (named

REGISTRY in Figure 4.4) loads both the weaving algorithm and precedence rule. Then the JOIN-

POINTREGISTRY (JPREG in Figure 4.4) loads any of the join points that were created.In this case,

there is only one join point, anEXECUTION join point that happensBEFOREa METHOD is called.

However, code that interacts with the arbitrarily chosen join points in a user’s XML requires

that pointcut subclasses be created that define the semantics of the pointcut (e.g., a subclass for exe-

cution, call, etc). For example, if a developer created a newjoin point rule with the elements DEEP-

RECURSION (weaving occurs when methods have been recursively called many times), Method,

and After, they would need to implement the pointcut. This can be accomplished by creating a

subclass of POINTCUTCATEGORYMETHODSIGNATURE and calling it DEEPRECURSION.

4.3.2 Building AspectJ in CAL

Consider a developer who wants to create, in CAL, a close replica of the programming language

AspectJ. The standard algorithm for weaving is that given byHillsdale [19], which for the sake

of discussion I give the name “AspectJ.” Similarly, the precedence algorithm could be named

ASPECTJPRECEDENCE.

If implementations of the AspectJ precedence and weaving algorithms are not available, the

programmer must then write them into CAL by creating a subclass of the PRECEDENCERULE and

ALGORITHMRULE classes. These rules must be registered in the ALGORITHMREGISTRY. Once

this implementation is complete, the user then has to write,into the XML file, join points for every
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//setup the meta-weaver
MetaWeaver weaver = new DefaultMetaWeaver();

//setup the registries
AlgorithmRegistry registry = weaver.getAlgorithmRegistry();
JoinPointRegistry jpReg = weaver.getJoinPointRegistry();

//make one join point
JoinPoint method = new JoinPoint();
method.setName("Execution");
method.setASTNode("Method");
method.setBefore(true);

//determine weaving algorithm
AspectJ1a1 myWeavingAlgorithm = new AspectJ1a1();

//determine precedence rule
OrderInFile myPrecedenceChoice = new OrderInFile();

//load rules into algorithm registry
registry.load(AlgorithmRegistry.PRECEDENCE, myPrecedenceChoice);
registry.load(AlgorithmRegistry.WEAVING, myWeavingAlgorithm);

//load legal join points into the join point registry
jpReg.add(method);

//weave
ASTNode wovenCode = weaver.weave(basecode, aspects);

Figure 4.4: How CAL connects up the weaving rules and join points.
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program location used by AspectJ, including those for calling or executing methods as well as

others. These join points, similarly, must be registered with the JOINPOINTREGISTRY.

So what happens if a user tries to use AspectJ algorithms thatare not registered? If a user

tries to use an algorithm not registered by CAL (e.g., they type a random word into the precedence

field), CAL will attempt to lookup the faulty rule, will fail,and will inform the user of an error.

For example, if a language designer wanted to experiment with AspectJ by disabling execution

pointcuts, they could accomplish this rather easily — by removing execution join points from

the JOINPOINTREGISTRY, elevating this join point’s use in a pointcut to a syntax error. This

essentially means that, before any advice is woven, weaversmust inspect the join point registry for

a given weaving rule, ensuring that the users request forbefore, after, or around, is allowed on that

join point, and also ensuring that weaving on that node is allowed at all.

While CAL’s procedure for analyzing and weaving source codemay appear, on the surface, to

be rather complex, the end result is a customizable platformfor experimenting with aspect-oriented

programming languages. CAL uses a system ofregistriesfor join points, weaving algorithms, and

precedence rules, allowing the programmer to influence virtually any component in an intermediate

representation of source code.
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CHAPTER 5

CONCLUSION

To promote experimentation, I have developed a meta-weaverframework that enables a developer’s

ability to customize aspect-oriented languages and weaving rules for those languages. The CAL

meta-weaver is a step toward this because it provides both a framework for modifying the features

of an aspect-oriented language and a framework to modify theway transformations of aspects

occur. CAL accomplishes this through the use of XML, which gives the developer a great deal of

control over the structure of the generated code. Through this control, we can empirically compare

combinations of aspect-oriented language features and weaving rules.

5.1 Significance and Claims

In this thesis, a meta-weaver framework has been implemented and described. This framework

allows the weaving of an aspect-oriented program with an existing base program, given user de-

fined rules. This work further expands on the work of Rohlik, et.al. [33] and Gray [15], whose,

key goal was also to enable experimentation with aspect-oriented languages via the creation of a

highly customizable weaving architecture.

Rohlik, et.al. built the Xweaver [33, 16], which is an open source framework that uses rules

defined in an XSL program to customize the process of weaving.These rules allow new types of

transformations, from an individual aspect to the base program, to be defined. In contrast, CAL

not only allows us to customize these transformations but also allows the weaving rules to control

precedence, or ordering of the aspect transformations. Another key difference is that the Xweaver’s

target language is limited to C++. However, CAL is flexible enough to accommodate any language

which is represented in the abstract syntax tree for the baseprogram.

CAL also uses a framework which is similar to the meta-weaverin Gray’s work [15], though

Gray’s work does not have a framework for weaving rules. Gray’s meta-weaver is designed to
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generate weavers, at a high level of abstraction, each accommodating a different language. Ideally,

each new weaver that is generated minimizes the duplicationof components. This is because

each newly generated weaver presumably shares some of the features of the previously generated

weavers. The CAL framework, on the other hand, does not generate a program, but provides a

framework where the base program’s abstract syntax tree canbe easily built up and modified to

accommodate different languages.

The CAL meta-weaver framework provides an environment in which AOP properties and

weaving is easily customizable. With a broad number of aspect languages, each having its own

model for aspect orientation, CAL fills a need for a frameworkthat is flexible enough to allow each

aspect feature to be quickly changed. Through this framework, we can enable experimentation of

weaving algorithms, syntax, and semantics of aspect-oriented languages.

5.2 Future Work

We know relatively little about the effect of the AOP paradigm on programming. As such, CALs

meta-weaver framework can be used to gather empirical evidence on how well the different AOP

techniques work together. The scope of this testing includes human studies on comprehension

of the effects of aspect orientation and the individual impact of syntax, semantics, or technical

concerns related to algorithm efficiency. CAL can be used to support all of these types of studies.

In addition, meta-weavers allow us to more easily evaluate the interactions between weaving

rules and the resulting software. For example, Schonger et.al. [34] suggest that pointcuts in AspectJ

fall into classes which are not precisely defined and can be syntactically unclear. However, does

this AOP minutia have any real, significant effect on human performance when using an AOP

language? Using CAL allows us to easily test this hypothesisin experimental studies involving

humans.
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APPENDIX A

UML DIAGRAMS OF CAL

Figure A.1: Diagram of the SAX parser design.
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Figure A.2: UML diagram of advice in the aspect syntax tree definition.
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Figure A.3: UML diagram of pointcuts in the aspect syntax tree definition.
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Figure A.4: UML diagram of base program representation.
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Figure A.5: UML diagram of the syntax tree definition for aspects.

44



Figure A.6: UML diagram of the CAL meta-weaver.
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APPENDIX B

XML SCHEMA

B.1 XML Schema for Aspects

This first XML schema specifies the format of the XML file for aspects. This schema does not

represent all of the possible aspect-oriented languages, but can be extended to represent any other

aspect-oriented language.

<?xml v e r s i o n=” 1 . 0 ” encod ing=”UTF−8” ?>

<xs :schema xmlns :xs =” h t t p : / /www. w3 . org / 2 0 0 1 /XMLSchema”>

<x s : e l e m e n t name=” a c c e s s S p e c i f i e r ”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=” ad v i ce ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” a d v i c e D e c l a r a t i o n ” />

<x s : e l e m e n t r e f =” p o i n t c u t S p e c i f i c a t i o n E x p r e s s i o n ” />

<x s : e l e m e n t r e f =” adv iceBody ” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” adv iceBody ”>
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<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=” a d v i c e D e c l a r a t i o n ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” be fo reAdv i ce ” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” argument ”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=” a s p e c t ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” a c c e s s S p e c i f i e r ” />

<x s : e l e m e n t r e f =”name” />

<x s : e l e m e n t r e f =” p o i n t c u t ” maxOccurs=” unbounded” />

<x s : e l e m e n t r e f =” ad v i ce ” maxOccurs=” unbounded” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>
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<x s : e l e m e n t name=” be fo reAdv i ce ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” p a ram e t e r ” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” c a l ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” a s p e c t ” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” c a l l P o i n t c u t ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” a c c e s s S p e c i f i e r ” />

<x s : e l e m e n t r e f =” re t u rn T y p e ” />

<x s : e l e m e n t r e f =” c lassName ” />

<x s : e l e m e n t r e f =”methodName” />

<x s : e l e m e n t r e f =” argument ” />
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< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” c lassName ”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=” e x e c u t i o n P o i n t c u t ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” a c c e s s S p e c i f i e r ” />

<x s : e l e m e n t r e f =” re t u rn T y p e ” />

<x s : e l e m e n t r e f =” c lassName ” />

<x s : e l e m e n t r e f =”methodName” />

<x s : e l e m e n t r e f =” argument ” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=”methodName”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=”name”>
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<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=” operand ”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=” p a ram e t e r ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” t y p e ” />

<x s : e l e m e n t r e f =”name” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” p o i n t c u t ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” a c c e s s S p e c i f i e r ” />

<x s : e l e m e n t r e f =”name” />

<x s : e l e m e n t r e f =” p a ram e t e r ” />

<x s : e l e m e n t r e f =” p o i n t c u t E x p r e s s i o n ” />

< / x s : s e q u e n c e>

< / xs :complexType>
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< / x s : e l e m e n t>

<x s : e l e m e n t name=” p o i n t c u t E x p r e s s i o n ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” e x e c u t i o n P o i n t c u t ” />

<x s : e l e m e n t r e f =” c a l l P o i n t c u t ” minOccurs=”0” />

<x s : e l e m e n t r e f =” operand ” minOccurs=”0” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” p o i n t c u t S p e c i f i c a t i o n ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =”name” />

<x s : e l e m e n t r e f =” argument ” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” p o i n t c u t S p e c i f i c a t i o n E x p r e s s i o n ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” p o i n t c u t S p e c i f i c a t i o n ” maxOccurs=” unbounded” />
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<x s : e l e m e n t r e f =” operand ” minOccurs=”0” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” re t u rn T y p e ”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=” t y p e ”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

< / xs :schema>

B.2 XML Schema for Weaving Rules

This XML schema specifies the format of the XML file for weavingrules. This schema is able

to represent any precedence rule or weaving algorithm. In addition, this schema represents any

number of join point rules that correspond to the XML schema for aspects.

<?xml v e r s i o n=” 1 . 0 ” encod ing=”UTF−8” ?>

<xs :schema xmlns :xs =” h t t p : / /www. w3 . org / 2 0 0 1 /XMLSchema”>

<x s : e l e m e n t name=”ASTNode”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>
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<x s : e l e m e n t name=” c a l r u l e s ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =” j o i n p o i n t ” maxOccurs =” unbounded” />

<x s : e l e m e n t r e f =” w eav i n g a l g o r i t h m ” />

<x s : e l e m e n t r e f =” p reced en ce ” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=” j o i n p o i n t ”>

<xs :complexType>

<x s : s e q u e n c e>

<x s : e l e m e n t r e f =”name” />

<x s : e l e m e n t r e f =”ASTNode” />

<x s : e l e m e n t r e f =”when” />

< / x s : s e q u e n c e>

< / xs :complexType>

< / x s : e l e m e n t>

<x s : e l e m e n t name=”name”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>
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<x s : e l e m e n t name=” p reced en ce ”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=” w eav i n g a l g o r i t h m ”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

<x s : e l e m e n t name=”when”>

<xs :complexType mixed=” t r u e ” />

< / x s : e l e m e n t>

< / xs :schema>
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