ENABLING EXPERIMENTATION OF ASPECT-ORIENTED PROGRAMMING

LANGUAGES THROUGH A META-WEAVER FRAMEWORK

By

MELISSA ANN STEFIK

A thesis submitted in partial fulfilment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2008

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thEMELISSA ANN STEFIK
find it satisfactory and recommend that it be accepted.

Chair

ACKNOWLEDGEMENT

This research project would not have been possible witheustipport of many people. |
would like to thank my adviser, Roger Alexander, for his supand guidance throughout this
process. | would also like to thank the members of my commtitRobert Patterson and Shira

Broschat.

ENABLING EXPERIMENTATION OF ASPECT-ORIENTED PROGRAMMING
LANGUAGES THROUGH A META-WEAVER FRAMEWORK

Abstract

by Melissa Ann Stefik, M.S.
Washington State University
May 2008

Chair: Roger Alexander

Modern software engineers deal with software systems ofmeoies complexity. Large cor-
porations hire teams of programmers, who, at least in theogperate to work on programming
projects that can involve millions of lines of computer codgbject-oriented programming was
designed to help encapsulate these programs, essentedlibg what was once millions of lines
into manageable components that can be understood by andunali. Unfortunately, some of
these components, by the shear nature of certain progracsoaitions, are related to many parts
of a total software system. These components are said tabealdbr semi-global) in nature put
another way, they are crosscutting concerns.

Enter aspect-oriented programming, a new paradigm for giagand encapsulating these,
so called, crosscutting concerns. In aspect-orientedranoagiing, programmers have commands,
built into the language, that allow them to modify pieceshsd tode on a global scale. Modern
AOP languages, however, tend to be language specific anduttiffo modify, in part because
many languages have custom rules, complex procedures, laizdree syntax. A general system
for encapsulating these rules could help alleviate the ¢exityg of designing AOP languages and
help enable experimentation on this new class of programaimguages.

As such, | present CAL, th€ustomizableAspectL anguage, a new system, termed a meta-

weaver, for creating, changing, modifying, and experinmgnivith aspect-oriented programming.

Unlike traditional aspect-oriented languages, like AspeCAL represents aspects, and even the
underlying aspect language, as XML. This allows users of @&modify the crosscutting con-
cerns in whatever programming language they are writingaimg also allows CAL to crosscut
itself, essentially modifying its own global nature. Thimplifies the process of changing and

adjusting an aspect-oriented programming language acdiitssponding weaving rules.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS e e e e e e e i
ABSTRACT . . . e %
LISTOFFIGURES e e e e e e e e e X
CHAPTER
1. INTRODUCTION e e e e s e e e 1
1.1 ThesisSummary e 1
1.2 AnAOPOVEIVIEW o o e e e e 2
1.3 Challengesof AOP e e 3
1.4 Problem Statement 4
1.4.1 How do we enable experimentation of aspect-oriesteguages? 4
1.4.2 How do we easily change the syntax and semantics oftaspented lan-
gUAdES? . . L e e e e 5
15 TheThesiS. e e e 5
1.5.1 Designofthe Meta-Weaver 6
1.5.2 Applications of the Meta-Weaver 6
1.5.3 Limitations e 7
2. BACKGROUND AND RELATEDWORK e e 8

2.1 Introduction to Aspect-Oriented Programming 8
2.2 Modularity e e 10
2.3 Weaving e e 21

Vi

2.4 Applicationsof AOP 14

3. CUSTOMIZABLE ASPECT LANGUAGE (CAL) 16

3.1 CALOVEIVIEW o e 61
3.1.1 CALInput e 17
3.1.2 Meta-Weaver Components e 20

3.2 CALASPECIS e e e 32
3.21 CALAspectsin XML 23

3.2.2 Abstract Syntax Tree DefinitionforAspects 25

3.2.3 Abstract Syntax Tree Definition for Base Code and Aelvic 27
4. META-WEAVERDESIGN 92
4.1 WeavingRules 29
4.1.1 JoinPointRules 9 2
4.1.2 Weaving and PrecedenceRules 30
4.2 Weaver 31
421 JoinPointRegistry 31
4.2.2 AlgorithmRegistry 32
4.3 Puttingitall Together e 33
4.3.1 Connectingthe CALComponents 33
4.3.2 BuildingAspectJinCAL 34
5. CONCLUSION e 37
5.1 SignificanceandClaims 37
5.2 Future Work e 38
APPENDICES

Vil

A. UML DIAGRAMS OF CAL

.............................. 40
B. XML SCHEMA e 46
B.1 XML SchemaforAspects e 46
B.2 XML SchemaforWeavingRules 52

BIBLIOGRAPHY . . . e e 55

viii

LIST OF FIGURES

Page

1.1 Visual example of obliviousness and quantification. 2

1.2 Traditional and meta-weaver approaches to designistpeuzable AOP languages. 5

1.3 General model of the meta-weaver., 6
2.1 Partofaprogram containingjoinpoints. 9
2.2 Apointcutin Aspectd 9
2.3 Anexampleofadvicein Aspectd e 10
2.4 Anexampleofanaspectin Aspectd. e .. 11
3.1 TheCAL Framework. e 17
3.2 Example base program writteninJava. @.u...... 18
3.3 Example XML representation of an aspect written in Aspec. 19
3.4 Example aspect program writtenin Aspectd. 20

3.5 Weaving two abstract syntax trees using weaving rulegymes a abstract syntax

tree that combines the advice and base programs. 21
3.6 Example base programwritteninJava. 0. 22
3.7 Example aspect program written in AspectC++. 23
3.8 Example XML representation of an aspect written in Aspee. 24
3.9 UML diagram of the custom XML parser for the aspect repméstion. 25
3.10 UML diagram of the aspect representation of pointcuts.. 26
3.11 UML diagram of the aspect representation of advice. 27
3.12 UML diagram of the base program representation. 28
4.1 XML representation of weavingrulesinCAL. 30

4.2
4.3
4.4

Al
A2
A3
A4
A5
A.6

An aspect which specifies a join point after the executidhe methoEPOSIT. .
A CAL weaving rule that defines a new join point for &statement.

How CAL connects up the weaving rules and join points.

UML diagram of base program representation.
UML diagram of the syntax tree definition for aspects.

UML diagram of the CAL meta-weaver.

31
33
35

40
41
42
43
44

Dedication

To my husband.

Xi

CHAPTER 1

INTRODUCTION

1.1 Thesis Summary

In object-oriented programming, components of a compuytstiesn are modularized according to
their primary behaviors; for example a dog can walk, a carbeadriven, and a fish can swim. We
reuse code amongst these components by using inheritadggofymorphism, yet some pieces
of this code, often calledross-cuttingcannot be easily reused in an object-oriented system. This
is caused bycatteringandtangling where scattering occurs when a single requirement is dprea
across several modules and tangling occurs when multigleinements are intertwined with the
core responsibility of a single module [5].

Aspect-oriented programming [23], on the other hand, isva paradigm for modularizing
the, so calledgross-cutting concernsf a software system. Concerns, which are conceptual units
that can include “features, nonfunctional requirememsd, @sign idioms” [32], are called cross-
cutting because the code that implements them is ofteresedtacross a set of classes, modules, or
interfaces. A typical example is logging, where the devetapight want to write code that records
the invocation of every method, but would prefer not to &tsrtype the logging statements into
every method on the system. In aspect-oriented programmdinglopers accomplish this in a
textually localized manner, which means that scatteridg oocurs when a program is compiled
or executed, a process which is analogous to a sophistipetpdocessor.

In this thesis, | make a customizable, modular, aspectitatbveaver which | call ameta-
weaver A meta-weaver allows the customization of weaving rulescedence rules, aspect syn-
tax, and aspect semantics. The current state of the art &etoustom weavers for every application
or language, yet a meta-weaver allows us to customize theimgeprocess, which enables exper-

imentation and research on aspect-oriented languages.

Z public class BaseCode { o .
Obliviousness: - Quanitification:

What code is a public void A(){ Weave the block of

woven here? —>_ code D into method
¥ A.
\ poblic void B(}{

Code Block D

public aspect Example{
pointcut example_pointcut():
call(* BaseCode.A());

public wvoid C(){

Figure 1.1: Visual example of obliviousness and quantificat

1.2 An AOP Overview

Aspect-oriented programming is a technique for modulagziross-cutting concerns in a software
system. AOP systems are typically considered to have twoactexistics that distinguish them
from object-oriented programming: obliviousness and tjieation [9].

Obliviousnesss the idea that an aspect is invisible to the programmer wbeking at the
source code. This means the programmer cannot determine/fifere an aspect will be executed.
For example, in Figure 1.1, a programmer is unaware of thecisnd need not be concerned
about the function of the aspect. To implement the functipnaf the base code, the programmer,
ideally, does not need to know anything about the aspedctdiadth this is debatable in practice).
In other words, there is no way for this programmer to telh# taspect adversely affects the base
code, or even if an aspect will be applied, without the sotoc¢he aspect.

Quantificationis the process of connecting the aspect to the base prograngthstatements
that identify where the aspect will be integrated. In Figiir®, quantification is demonstrated by
code block D. Here the aspect identifies method A as a locatiwre the code will be woven and
methods B and C are where it will not.

Obliviousness and quantification are implemented througitoeess calledveaving Weaving

integrates aspects into the base program code by idemjifggations in the base program. After
a programmer specifies what points in the software will be iffeetiby the aspects, the weaver
handles actually integrating the aspect code with the bade.cThis process can be complicated,
especially when two aspects indicate that they apply todahgedocation, which then requires the
weaver to determine how the aspects should be integratehavitht order. Traditional weavers,
like the one included in AspectJ, arguably the most comm@edcsoriented programming lan-

guage, are not customizable; this makes experimentatitwrthe weaver should work difficult.

1.3 Challenges of AOP

While aspect-oriented programming has been in existemaadny years, there still exists several
significant technical challenges, including: ambiguoyseas orderings and legal weaving loca-
tions (join points). Aspect orderings often become a pnobMhen different aspects have the same
weaving location. Suppose two aspects identify the sanaitmcto weave into; in other words,
suppose two aspects overlap. Ultimately, the AOP weavet dacsde which of these two aspects
are integrated into the base code first and which are inegysscond. How does the AOP system
decide which aspect to weave first?

Overlapping aspects, because the they can have a varietgefsao weave, produce differ-
ent results in the base program. This makes the process eingeambiguous and requires a
programmer to specify what the desired outcome is for eaelayped aspect.

Another common problem in aspect-oriented programmintgarty identifying weaving loca-
tions. Without a clear way to identify the result of the wemyprocess, a programmer can identify
a set of locations which may or may not include the locatitvey intended. Worse, there is often
no visual way to check if an aspect integrated into the bade oowhere it was integrated.

Modern AOP languages weave aspects into bytecode repatisestof base code. While this
practice has largely been adopted for efficiency reasoigsitone significant and negative side

effect: visibility. When a programmer uses a programmimgglaage like AspectJ, after weaving

has occurred, the programmer can literally not see theitotathere code was inserted from
an aspect. Thus, the weaving locations are often ambigleaxdng the programmer with little
indication of whether he or she achieved the desired results

To address these problems a meta-weaver can be used tdgatestnd identify properties
of different types of weaving. A meta-weaver accomplishes by showing the outcome of the
weave and allowing the properties of aspects and weaving tmddified. A researcher using a
meta-weaver can then identify problems with the weaving@se and explore alternative solutions

that further clarify the weaving process.

1.4 Problem Statement

Modern AOP languages are not customizable to the extenietst testing of AOP features is
a possibility. With a broad number of aspect languages, @awing its own model for aspect
orientation, there is a need for a framework that is flexilmlewgh to allow each aspect feature
to be quickly changed. | have identified two primary problentsch | address in this thesis,
namely: “How do we enable experimentation of aspect-oe@tanguages?” and “How do we

easily change the syntax and semantics of aspect-orieartgddges?”

1.4.1 How do we enable experimentation of aspect-oriersteguages?

Aspect-oriented programming has the relatively unusuebate of having multitudes of papers
written on the topic, yet almost no formal experimentatiesting language features. | argue that
this is due, in part, because designing new aspect langaegkfeatures is notoriously difficult,
often requiring expertise in compiler design to even begework, as illustrated in Figure 1.2.
In other words, to promote experimentation, we neeertablea researcher’s ability to customize
AOP languages with minimal effort. For example, reseacisbould not have to write a custom

compiler to experiment with AOP features.

Traditional Approach Metaweaver Approach

Write a Compiler

Modify XML

Choose features
v

XML wrapper

Change a Feature

.

.

.
.

Test

Figure 1.2: Traditional and meta-weaver approaches tgdieg) customizable AOP languages.

1.4.2 How do we easily change the syntax and semantics oftaspented languages?

In a language like AspectJ, altering syntax, semantics,eawng rules, requires the programmer
to write and edit a custom compiler. For example, in Figuge the traditional approach to adjust-
ing aspect-oriented language features requires the ods¥do go through the traditional compiler
steps and to develop a weaver as part of the backend of tlsgianeh. If modifications to the
compiler are needed, the researcher may have to modify ampewof the traditional compiler

phases.

1.5 The Thesis

| argue that because AOP languages are not easily custdmizidyveloping a framework that
allows syntax, semantics, and weaving rules to be easilggddhwill aid in discovering the im-
pact of AOP language features. To demonstrate this, | pr&3&h, the CustomizableAspect

Language, which is an XML based system for creating, changmaglifying, and experimenting

with aspect-oriented programming.

Weaving Algorithm

’

Precedence Rules Weaving Rules B
] xmL
Source »| AST Weave —»| AST

Code

XML / v
—> N
Output
Code

Figure 1.3: General model of the meta-weaver.

:

9

1.5.1 Design of the Meta-Weaver

The goal of CAL is to allow experimentation with weaving rsilby creating a highly flexible
aspect-oriented weaving framework. CAL uses XML to repne$eatures of aspect-oriented lan-
guages. Representing these features through XML makdatitvedy easy to change the features
of a language or modify the way in which an AOP language fuomsti

Figure 1.3 shows the basic design of CAL. The two clouds inufédlL.3 represent conglom-
erates of rules for weaving aspect-oriented code. On thewepving rulesncludes features of
weaving, including, what type of algorithm accomplishesweaving, precedence rules, or advice
types, while the bottom represents the syntax for aspebtsséltwo clouds are represented in CAL
as XML documents, which are used to build intermediate meprations of an aspect’s syntax and
semantics. CAL then takes the XML based weaving rules and tesn to combine base code
with advice. The output of this process is a woven abstradesytree that is translated into source

code.

1.5.2 Applications of the Meta-Weaver

We know relatively little about the effect of the AOP paradigpn programming. As such, a

modular AOP system is needed to promote the fine grain tesfingrious aspect features. The

scope of this testing includes human studies on comprebtrensithe effects of aspect orientation
and the individual impact of syntax, semantics, or evenrigeth concerns related to algorithm

efficiency.
1.5.3 Limitations

While CAL is a useful tool for implementing features of an A@Aguage, and in theory, is also
customizable for any arbitrary AOP language, in practites type of tool is only as general
purpose as the intermediate representation tree it isugudb. In other words, some IR trees are
created with a certain language in mind, which may not mappdetaly with other languages. For
example, an intermediate representation of Java would eyl to account for statically typed
variables. However, an intermediate representation feudli Basic would need to account for
dynamically typed variables. Similarly, in CAL, certainpast-oriented features may need to be
added to the XML representation and the weaver.

These same sort of issues are not only expected but anddipaAL has an architecture
designed, with these limitations in mind; it allows for easgdification and expansion of the base

code representations, aspect representations, and \geal@representations.

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we will discuss various characteristicasgfect-oriented programming. The initial
focus of this chapter will be, the basic concepts of programgrwith aspects in, what is likely the
most popular language for aspect-oriented programmingeéts. | will then discuss how aspect-
oriented programming influences or changes the concept dutaoty. Finally, | will discuss

previous work on both weaving for, and the applications @PA

2.1 Introduction to Aspect-Oriented Programming

Kiczales et al. created aspect-oriented programming Rhgw paradigm for modularizing com-
puter programming. AOP allows us to codify, and more eas@yipulate, cross-cutting concerns.
Cross-cutting concerns are aspects of a program whiclscatteredor tangledwith other
modules in a program. Due to the nature of existing progrargr@anguages, textually separating
cross-cutting concerns from modules can be difficult. Aspeented programming is a tool that
allows us to untangle cross-cutting concerns, through sieeafiaspects Aspects better enforce
modularity and are easier to manage from the perspectivieegptogrammer. However, aspects
must be redistributed into the base program, in a procetsdaapect weavingin order to exe-

cute [23].

To better understand the concept of a cross-cutting congermust first understand what a
concernis. A concern is loosely defined as a design decision of asy#tat is incorporated into
code. Similar to cross-cutting concerns, one of the maircepts is the idea afeparation of con-
cerns[8, 30], which ideally result in a single design decision ireainit, or module. However, not
all concerns can be effectively separated, nor are thelyedsntified [31]. To separate these de-
sign decisions, aspect-oriented programming introducestacalled araspect There are several

main components that make up an aspect, inclupiimgpoints pointcuts andadvice

public class Enpl oyee

{
publ i c doubl e pay(int hoursWrked, doubl e payRate)
{
doubl e paynent = payRate * hour sWr ked;
return paynent;
}
}

Figure 2.1: Part of a program containing join points.

executi on(doubl e Enpl oyee. pay(i nt, doubl e))
Figure 2.2: A pointcut in AspectJ

“A join point is an identifiable point in the execution of a program” [25)inJpoint locations
include places in code like assignment statements, methltgl or initializations [25]. This is
demonstrated by the code block in Figure 2.1. From this cadmple, the join points that can be
identified are the assignment to the varigiég/ ment and the call of the methgaay () .

We can specify a set of join points, like those identified igufe 2.1, by defining the concept
of a pointcut. Pointcuts are specifications in an aspect used to seled¢ta g@n points from
base code for weaving. Figure 2.2 is an example of a poinmicAspectJ. This particular pointcut
specifies that code should be woven into the methayl() .

In addition to join points and pointcuts, an aspect is madefugalvice. Advice is code to be
executed at when a join point event, which is specified by atpot, occures at runtime. Figure 2.3
shows advice that will output a line of text once executiachees the join point, which is specified
by the pointcutin Figure 2.2. This results in the advice béimtiegrated into the base program after
the execution of the methgaay () . In this example, the print statement is the advice block or
code to be executed. The commaarntt er () specifies that the advice will be woven after the
join point.

Figure 2.4 shows join points, pointcuts, and advice, togreis a completaspect. This is

after() : execution(doubl e Enpl oyee. pay(i nt, doubl e)) {
Systemout. println(‘* Made paynent to enpl oyee.’’);
}

Figure 2.3: An example of advice in AspectJ

similar to the declaration of a class, which contains any loemof methods. Additionally, an
aspect can contain multiple pieces of advice and any nunflgiotcuts.

In addition, Figure 2.4 shows a variation to the poincut giweFigure 2.2. This new pointcut
declaration is broken into several parts, #oeess specifiekeyword pointcut namepointcut type
andsignature In AspectJ, there are several pointcut types, includalyy andexecution In this
example we use the typmll to specify that the pointcut will occur when the methmaly () is
called. This pointcut also specifies join points for any neethamed pay, regardless of the type
and number of its arguments. This is accomplished througlisle of dots in the parameter list.

Join points, pointcuts, and advice are tightly linked tlglotihe process ofeaving. Weaving
is the process of connecting aspects with the base progrherewthe base program is the original
program written in a programming language, such as, Javatet @nd the aspects are written
in a corresponding aspect-oriented language, AspectJmeddS++. Weaving in AspectJ will be

discussed later in this chapter.

2.2 Modularity

One of the key concepts involved in aspect-oriented progreug, and programming in general, is
modularity. Modularity is a property of a computer programd & a measure of the extent to which
code is separated into modules. Ideally, each module agpausingle design decision. Modularity
has several key characteristics, including the idea thalutes arg¢extually loca) that each module
has a well defined interface, and that this interface is atradi®n of its implementation [24].
Though the concept of modularity applies to both aspe@&nbeid programming and object-

oriented programming, object-oriented programming madzgs program entities or concerns

10

|pub|ic aspect EmployeeAspect | < Aspect Declaration
1

Keyword Pointcut Name Pointcut Type Signature

|p0intcut" paymentMadeI) Jcall (|doub|e Employee.pay(..)|); = Pointcut Declaration

after() : paymentMade()

(<4—— Advice

System.out.printin("Made payment to employee");

}

Figure 2.4: An example of an aspect in AspectJ.

and aspect-oriented programming modularizes crossaguttincerns. The extent to which aspect-
oriented programming promotes modularity of cross-cgttioncerns has been well explored [1, 7,
6]. Sullivan et al. [37] and Lopes [28] further explore thasue using a Design Structure Matrix to
evaluate the modularity of a program. This is accomplishethbdeling the design of a program
and then comparing it to other models. Lopes applies thestodaspect-oriented programming and
shows aspects can be treated as modules. In addition, Lepssndtrates that AOP does increase
modularity in certain cases, including, when an existingieyn needs to be augmented.

Although Steimann casts some doubt as to whether modulanigally increased when using
aspect-oriented programming, his main focus is on the cthahy “AOP has set out to modular-
ize crosscutting concerns (its methodological claim),dyuits very nature (its mechanics) breaks
modularity...” [35]. He argues that AOP does not increasgeustandability and can often stand in
the way of independent development, one of the fundamesdisbins for modularity. In addition,
Steimann argues that most of the proposed or demonstrapidadpns of AOP are not neces-
sarily good examples. As Steimann points out, loggingjtgand debugging are the canonical
examples of uses for AOP, but they are also applicationsatteasilready well established and at
best AOP is an alternative solution to these problems.

Aldrich presents the idea of an Open Module. An open modutval much of the same
functionality of existing AOP but it preserves modularitydainformation hiding by sacrificing

obliviousness [1]. This is accomplished by allowing a media export its own pointcuts, which

11

are abstractions of the cross-cutting concerns within tbdute, making them available to ad-
vice [2]. There has been some debate on whether Open Modelesass-cutting because of the
restrictions between the modules and advice. Sullivan.ep@pose an alternative solution that
creates a design rule interface between aspects and addeavhich addresses these issues [36].
Finally, Kiczales and Mezini propose another way of thirgkétbout modularity with respect to
aspect-oriented programs, modular reasoning [@@idular reasonin@llows decisions to be made
about a module with access to only that module and the imesfevhich are directly referenced in
that module. They argue that modular reasoning is achiéwedgh aspect-oriented programming,
though, it requires some global knowledge of the system toliiained. Kiczales and Mezini
explain that the presence of cross-cutting concerns, wittithout aspect-oriented programming,
requires global knowledge. Thus, AOP does not itself brea#tutarity, but cross-cutting concerns
by their nature create the need for global knowledge, whidsdoreak modularity. They claim

that AOP simply provides the benefit of modular reasoningeagiobal knowledge is identified.

2.3 Weaving

Weaving is the process of integrating advice into the exenuwdf a program. An integral part of
this is identifying join points, pointcuts, and advice. \Ii¢hiveaving might seem straight forward,
there are many approaches to the weaving process, eachditgpen the language, the aspect-
oriented language extension, and the weaving rules. Irs#ugon, some of these approaches to
weaving will be discussed.

Hilsdale and Hugunin discuss the AspectJ weaving procegassted in Aspectd 1.1 [19].
In AspectJ, weaving is achieved by matching join points tmfooits throughoin point shadows
Join point shadows are locations in bytecode or source dwtadpresent the actual join points
at runtime. This process of weaving first requires a byte¢oatesformation; then the join point
shadows must be matched to join points and advice. They esoss the efficiency of the weaving

process and explain that weaving into bytecode is more @fficthan weaving into source code.

12

Most aspect-oriented languages are designed to work witiraspondindpase languagéke
Aspectd and Java. This is prohibitive because it requiresspect language to be developed for
each language. To address this issue, the concept ofi¢hee-weavewvas introduced by Gray to
allow weavers to be created through meta-specificationssd meta-specifications provide all the
necessary details of a base and aspect language to genereawex [12]. Ideally, a weaver could
be easily generated or would be flexible enough to be langumaig@endent. To accomplish this,
Gray lays out a framework for the meta-weaver [14]. This feamrk was eventually developed
and is able to generate aspect weavers for different largugdd]. However, each new weaver
requires a certain amount of customization and extra efqetogram.

Lafferty and Cabhill, present Weave.NET, which is a languiagependent weaver that allows
aspects to be written in a variety of languages [26]. Theyiatish this through the use of
XML to specify aspects, which prevents aspects from beiteytwined with a particular language.
Weave.NET, however, uses the AspectJ notation for aspigdtsnot flexible enough to allow
experimentation with different weaving rules becauselimsged to AspectJ notation and weaving
into bytecode.

While Gray, Lafferty, and Cahill all provide methods sinnita the work presented here, CAL
allows the user to build up and modify a complex set of weavirigs and language features. In
CAL, an XML specification allows users to build up a set of wiegwules, while Gray creates a
top-down framework which generates weavers, but does lwt al user to necessarily build spe-
cific weaving rules. One could argue that Gray’s work is atghér level of abstraction than mine,
specifically in relation to model composition and domaincsjie languages. CAL, in contrast,
deals with building up a detailed and flexible framework faawing different types of aspects.

Similarly, Lafferty and Cahill's work, as the name weave Ninplies, works only for Mi-
crosoft based languages, and since it uses the syntax otAsjtas fundamentally limited to the
semantics of AspectJ. In contrast, CAL allows the user tei§paot only the weaving rules of

AspectJ, but rules used by other AOP languages. In addi@éwh, allows the user to customize

13

the join points, pointcuts, and precedence rules avaikdbfeart of the core language, making CAL

considerably more flexible than weave.NET.

2.4 Applications of AOP

Let us now consider some of the practical applications o&eispriented programming. In this
section, we discuss several case studies of how AOP has ppbkedin areas such as design pat-
terns, web based programming, and operating systems. Dhisiswelated to my own (i.e., CAL)
in the sense that CAL provides a framework for experimentuith AOP languages, facilitating
studies such as those presented in this section.

One such application is the Gang-of-FauWroF') design patterns, which Hannemann and
Kiczales integrate with AOP [18]. Specifically, they contlacstudy which compares the im-
plementation of 23 GoF design patterns in Java to their implgation in AspectJ. The authors’
goals were to examine and compare the modularity and reudeed&oF design patterns in the
previously mentioned languages. They reported 17 of 23ydgsatterns in Aspect] were more
modular than their counter parts in Java. In addition, thtb@s claim 12 of those implementa-
tions increased reuse.

Further, Garcia et al. conducted a quantitative study oeaspriented and object-oriented
implementations of those same 23 GoF design patterns [11d.sTudy confirmed an increase in
separation of concerns. However, as Garcia points outats#ipn of concerns can not be taken
as the only factor to conclude for the use of aspects” [11]addition, they found some of the
aspect-oriented solutions have more complex operatichs@mpled components. In a later study,
Cacho et al. expand further on these ideas by investigaimgdaalability of AOP on GoF design
patterns [4].

Beyond design patterns, web-based applications of AOP &laeebeen explored. Kersten and
Murphy ran one of the earliest case studies using AOP anddAspebuild a web-based learning

program, Atlas [20]. Using AspectJ, the authors built areexted teaching and learning academic

14

server, for which they documented what aspects were useth@mdhose aspects affected the
development process. From this they were able to identifsipde hurdles a programmer might
face when using aspect-oriented programming.

In addition, Papapetrou and Papadopoulos present a cayecstmnparing aspect-oriented and
object-oriented programming on a component-based wehliogasystem [29]. They used several
metrics to measure effectiveness, learning curve, timenoptete, code tangling, and stability of
the resulting software. They also narrowed the focus oftilndyso three specific areas of their pro-
gram: logging, overloading checks, and a database optinikapapetrou and Papadopoulos report
relatively positive results for the aspect-oriented gohut This includes a shorter implementation
time and less code tangling, especially in the case of laggiHowever, both the aspect-oriented
and object-oriented solutions resulted in stable and &ffesolutions.

Lohmann et al. explored aspects used in the developmentasatipg system kernels [27].
For the eCos kernel the authors used AspectC++ in the implten of this operating system
kernel which requires a highly efficient infrastructure elduthors discovered most aspect-oriented
features do not introduce extra runtime overhead. Howdhey, identified some areas of aspect-
oriented programming that can cause extra overhead suchlaguwous join points.

A framework such as CAL facilitates exploration of theselagpions of aspect-oriented pro-
graming. For example, changes to certain language featufespectJ could improve modularity
and reuse of the GoF design patterns or help mitigate commotnhgons a programmer faces when
using an AOP language. The current state-of-the-art, hewvemakes exploring these applica-
tions difficult, as modifying a language like AspectJ takessiderable technical savvy and effort.
With CAL, however, the technical requirements are mitigateaking exploring the applications

of AOP languages easier.

15

CHAPTER 3

CUSTOMIZABLE ASPECT LANGUAGE (CAL)

The goal of CAL is to provide a framework for modifying botretfeatures of an aspect-oriented
language and a framework to modify the way transformatidrespects occur. This is similar to
Gray’s meta-weaver in that a side effect of this work is laaggiindependence. Although Gray’s
meta-weaver is a general framework that generates domedifispveavers which are specific to a
base language (also called the target language) [13]. CAdnds these capabilities by providing
modifiable weaving rules which allow more control over theawiag process and the resulting
program after weaving.

CAL provides a framework which allows the development of veza for various target lan-
guages and weaving rules. In this chapter, the specificssofrtmework will be discussed, first by
outlining the overall design of the meta-weaver and theegmréng detailed descriptions of each of
the components that make up this meta-weaver. The repateendf aspects in XML will be used
as an example of how CAL is general enough to modify and haadfariety of aspect-oriented
languages. Finally, | will discuss the implementation af tomponents of the meta-weaver and

how its design enables modifications to the weaving process.

3.1 CAL Overview

There are three primary components in CAL, the input, theretaver, and the output. Figure 3.1
gives an overview of these components and the design of CAlndJseveral examples, in this
section | will discuss the design of each component and @oreng behind their design. Finally,
| will discuss how the input and the meta-weaver work togetihnproduce a program that combines

the base and aspect programs.

16

Input Metaweaver Components Output

]

CAL
Integrate rules

> into the
weaver

Weaving
Rules

.xml

\4

Weaver

|> - Integrate weaving |>

Base Syntax Tree rules. Woven
Program | Definition —> - weave base and »| Syntax
(base) aspect programs Tree
based on weaving
rules.

| Woven
Program

Syntax Tree
> Definition
(aspect)

Aspect
Program

.xml

Figure 3.1: The CAL Framework.

3.1.1 CAL Input

CAL has three inputs: the weaving rules, the base prograunh tfaam aspect program. Each of
these inputs has its own format that contributes to progidime meta-weaver with the necessary
information to modify the weaving process and produce a ¢oetboutput program.

The first type of input is an XML file which is specified by the sata shown in Appendix B.2.
This XML file contains weaving rules. These weaving rulescefyevhat types of advice are legal
and the order in which this advice is integrated into a basgnam. The meta-weaver then acts as
an interpreter of these rules. In essence, this allows atoseodify or add rules that will change
the way the weaver combines the base program with the asyepgm.

The second type of input is the base program. Figure 3.2 implsiexample of a possible
base program written in Java. This particular program eseabAccount deposits an amount of
$100.00 into thaAccount and displays the current balance. While the input is Jaw&piossible
to input a base program in another language. The input islonited by the abstract syntax tree

representation. Modification and revision of the abstrgotax tree allows CAL to accept base

17

public class Account {
private doubl e bal ance;
public voi d deposit(doubl e amunt){
bal ance += anount;

}
public void printBal ance() {

Systemout. println("Bal ance: " + bal ance);
}

public class Min {
public static void main(String[] args) {
doubl e amount = 100. 00;
Account account = new Account();
account . deposi t (anmount) ;
account . pri nt Bal ance();

Figure 3.2: Example base program written in Java.

programs in any language.

The final type of input is an XML file representing an aspectpéas are typically written
in an aspect-oriented language, for example AspectJ, ¥tahds a base language like Java. In
contrast, CAL represents aspects through the use of XMLgamdstrated by the schema shown in
Appendix B.1. XML allows a developer to extend functionabind combine different approaches
to aspect-orientation (e.g., weaving rules, join pointrdgfins, precedence rules). Figure 3.3
represents two common elements in an aspect, advice anetysinand is an example of a valid
CAL aspect definition. This definition generates an abstwatax tree via the use of a customized
SAX2 [3] parser, in this case generating one public pointeuheddEPOSITMADE.

Figure 3.4 shows the AspectJ version of the aspect presantgdure 3.3. While this thesis
is predominately based on an analysis of AspectJ, and astsed®emantics of the XML format

essentially match the features of this language, CAL islilexin the sense that it can generate

18

<cal >
<aspect >
<accessSpeci fi er>publ i c</ accessSpeci fier>
<name>Account Aspect </ nane>
<poi nt cut >
<accessSpeci fi er>public</accessSpecifier>
<nane>deposi t Made</ nane>
<par amet er >
<type>voi d</type>
</ par anet er >
<poi nt cut Expr essi on>
<execut i onPoi nt cut >
<accessSpeci fi er>publ i c</ accessSpeci fier>
<returnType>star</returnType>
<cl assNanme>Account </ cl assNane>
<met hodNane>deposi t </ net hodNane>
<ar gunent >doubl e</ ar gunent >
</ execut i onPoi nt cut >
</ poi nt cut Expr essi on>
</ poi nt cut >

<advi ce>
<advi ceDecl arati on>
<af t er Advi ce>
<par anet er >
<type>voi d</type>
</ par anet er >
</ af t er Advi ce>
</ advi ceDecl ar ati on>
<poi nt cut Speci fi cati onExpr essi on>
<poi nt cut Speci fi cati on>
<name>Account Aspect </ nane>
<ar gunent >voi d</ ar gunent >
</ poi nt cut Speci fi cati on>
</ poi nt cut Speci fi cati onExpr essi on>
<advi ceBody>
System out . printl n(
"A deposit has been nmade.");
</ advi ceBody>
</ advi ce>
</ aspect >
</cal >

Figure 3.3: Example XML representation of an aspect wriitef\spectJ.

19

publ i c aspect Account Aspect

{
poi nt cut deposit Made()
execution(* Account. deposit(double));
after() : depositMde()
{
Systemout.println("A deposit has been nmade.");
}
}

Figure 3.4: Example aspect program written in AspectJ.

weaving rules that are dramatically different from AspdeLd)., few or many legal join points,
unique weaving rules, unique precedence, unique keywandsvéaving conditions). Further,
while not provided in this work, aspects in other AOP lan@sagan be translated, through typical
source transformation techniques, into the XML format présd here, essentially making them

usable by CAL.

3.1.2 Meta-Weaver Components

The meta-weaver portion of the design consists of five coraptsn theveaver the representation
of theweaving rulestheabstract syntax tree definitiornd the baseandaspectprograms, and the
woven abstract syntax tre@ he weaving rules and abstract syntax tree definitions gpecally
critical, as they provide CAL with modularity and flexibiit

On its own, the weaver is a mediator; it interprets any rutesgied in the XML and loads al-
gorithms representing these rules. This is accomplishedigih analgorithm registry essentially
a store of known AOP algorithms. When the weaver sees XML atides a given tag (e.g., the
name of a precedence algorithm), the weaver checks itsithigoregistry to see if an implemen-
tation of that algorithm is available. Assuming CAL is giviegal commands (otherwise it fails
gracefully), it traverses the base and aspect abstracbsinaes to determine where the join point
shadows will be placed. These locations are determinedélptded rules and eventually output

a combined base program and advice block. Figure 3.5 dematesthe process of combining two

20

Base Syntax Tree Advice Syntax Tree Woven Syntax Tree

V...
Por
..

OO

Figure 3.5: Weaving two abstract syntax trees using weauilgg produces a abstract syntax tree
that combines the advice and base programs.
abstract syntax trees, assuming the join point shadow adddafter the method B2.

The next component is the representation of weaving rule=awhig rules represent all legal
information about an AOP language, including what join p®iand pointcuts are available on
the system, what the syntax is for the language, and theitdgw for weaving and precedence.
Weaving rules interact with the algorithm registry, loagladgorithms and join points into CAL on
demand. Eventually these rules have an effect on the absynaiax tree output by the system.

Once the abstract syntax tree is generated, by a third pestram, the weaver can traverse
the tree to determine the join point shadows. A visitor patte used to do the traversal of this
tree. The weaver then identifies possible locations for wggand inserts join point shadows into
the base program’s abstract syntax tree.

Besides the base code, CAL also represents abstract sya&sxfor aspects. With the base
code, third party programs, not discussed in this thesissepthe code into a custom abstract
syntax tree representation. With aspect abstract syrgag,thowever, XML is parsed. This parser

reads in elements (e.g., execution, call, before, arouhdh @aspect and builds an abstract syntax

21

public class Account {
private doubl e bal ance;
public voi d deposit(doubl e amunt){
bal ance += anpunt;
Systemout. println("A deposit has been made.");

}

public void printBal ance(){
System out. println("Bal ance:

+ bal ance);

public class Min {
public static void main(String[] args) {
doubl e amount = 100. 05;
Account account = new Account();
account . deposi t (anmount) ;
account . pri nt Bal ance();

Figure 3.6: Example base program written in Java.

tree that exactly mimics those elements. While this absswatax tree is being created, CAL
caches pertinent information about the construction ofgpect. For example, CAL keeps a store
of all pointcuts for easy retrieval.

Once the weaving rules, aspect, and base code are loadedc&Alveave, producing the
final component in question, the combined aspect + baseaabstyntax tree. This tree can be
translated back into source code via a custom visitor [L8ghEelement is translated back into text
which represents the original language of the base progoatmow with advice inserted at the
appropriate locations. Figure 3.6 shows an example of thewoutput produced by CAL. This

example is woven from the base code in Figure 3.2 and the gspram in Figure 3.4.

22

aspect Account Aspect

{
advi ce execution("% Account: :deposit(...)"): after()
{
cout << "A deposit has been nmade." << endl;
}
1

Figure 3.7: Example aspect program written in AspectC++.

3.2 CAL Aspects

In this section, | discuss aspects in CAL which are represkemta an XML based wrapper of
pointcuts, join points, and advice. While the previous isecgave an overview of CAL, this
section provides more detailed examples of the differemtpmments involved in weaving and is
broken into three subsections: CAL aspects in XML, abstsgotax tree definition for aspects,

and abstract syntax tree definition for base code and advice.

3.2.1 CAL Aspects in XML

By design, meta-weavers need to accommodate the fundtiofraim a potentially large variety
of aspect-oriented languages. Traditionally, these laggs are written via custom parsing for
a particular programming language [22]. Ironically, hoeevaspects are, in a sense, a cross-
cutting concern in and of themselves. The rules used in Egegsilike AspectJ are tied directly
to Java’s implementation (weaving into Java bytecode)pitkieshe tremendous commonalities
between language implementations (e.g., they have metlhadsables, activation records, call
stacks, type systems, conditionals, loops, etc.).

Generally speaking, a meta-weaver should abstract theese allowing them to be easily cre-
ated and modified. To push us further toward this goal, CAlteaggnts information about aspects
as text, using XML, allowing aspects written in CAL to be éasnodified despite the language,
or set of aspect rules, in use. To accomplish this, an XML m&heshown in Appendix B.1, was

created to allow different aspect languages to be tramkiate this XML format. Once the aspect

23

<cal >
<aspect >
<accessSpeci fi er>publ i c</ accessSpeci fier>
<name>Account Aspect </ nane>
<poi nt cut >
<accessSpeci fi er>public</accessSpecifier>
<nane>deposi t Made</ nane>
<par amet er >
<type>voi d</type>
</ par anet er >
<poi nt cut Expr essi on>
<execut i onPoi nt cut >
<accessSpeci fi er>publ i c</ accessSpeci fier>
<returnType>star</returnType>
<cl assNanme>Account </ cl assNane>
<met hodNane>deposi t </ net hodNane>
<ar gunent >doubl e</ ar gunent >
</ execut i onPoi nt cut >
</ poi nt cut Expr essi on>
</ poi nt cut >

<advi ce>
<advi ceDecl arati on>
<af t er Advi ce>
<par anet er >
<type>voi d</type>
</ par anet er >
</ af t er Advi ce>
</ advi ceDecl ar ati on>
<poi nt cut Speci fi cati onExpr essi on>
<poi nt cut Speci fi cati on>
<name>Account Aspect </ nane>
<ar gunent >voi d</ ar gunent >
</ poi nt cut Speci fi cati on>
</ poi nt cut Speci fi cati onExpr essi on>
<advi ceBody>
cout << "A deposit has been nade."
<< endl;
</ advi ceBody>
</ advi ce>
</ aspect >
</cal >

Figure 3.8: Example XML representation of an aspect writhef\spectC++.

24

CalXMLHandler

Altributes

Operations

CALXMLParserConstants

Aftributes

consumer
Operations

CalSaxParser

Attributes

Cperations

Figure 3.9: UML diagram of the custom XML parser for the agpepresentation.

program is in the XML format, it can be parsed by a SAX2 pans@ich builds the abstract syntax
tree and outputs woven code.

Consider the aspect shown in Figure 3.4, which is written gpéctd. This aspect identifies
the join point after the execution of the methpdpPosIT in the class ACOUNT. In contrast,
consider the aspect in Figure 3.7, written in AspectC++. hBagpects identify the join point
location after the execution of the methpdrPosSITIn the class ACOUNT, but do so via different
syntax. These two aspects are functionally the same, ththeyheach reflect the languages they
are associated with (e.g., Java and C++). Translating Hatiese aspects into the XML format
results in similar XML representations, shown in Figure @ava) and Figure 3.8 (C++). The only
difference between the two translations is the advice batlich contains code that is written in

either Java or C++.

3.2.2 Abstract Syntax Tree Definition for Aspects

Once CAL receives an XML based representation of an aspqumrses and transforms the text
into an abstract syntax tree. This tree encapsulates theeadwintcuts, and other attributes,
informing the meta-weaver using whatever custom rulesriecily has loaded, when, where, and

how advice should be woven into the base code.

25

AccessSpecifierNode ReturnTypeNode ClassNameNode MethodNameNode ArgumentNode

Attributes Attibutes Attibutes Attibutes Attributes

Coertions Cperations: Cpermtions Cpertions Operstions

arguements

accessspecifier

methadMam

classham

methodMNam

classham returnTyp

retumnTyp
accessSpecifier

arguements

ExecutionPointcut CallPointcut

Atibutes Atibutes

Qoerations Qoerations
defined From Pointout CategoryMet] defined From Pointout CategoryMet]

7
N\ s

9 24

=<interface=>
PointcutCategoryMethodSignature

Figure 3.10: UML diagram of the aspect representation affgais.

The first step in building the abstract syntax tree for agpeess to build a custom XML parser
based on SAX2. Figure 3.9 shows the UML for the tree read inHiy parser. This tree is
created by identifying each start element as it is read ien thenerating that element using a
NODEFACTORY, shown in Figure A.5. This process uses aLSAXPARSER to parse the file
and a QLXMLHANDLER to process the parsed elementsALEMLH ANDLER generates each
element, sets the attributes of each element, and detesriaeappropriate relationship between
the elements. In other wordsACXMLH ANDLER is responsible for generating the abstract syntax
tree.

The NODEFACTORY is responsible for generating each element, or more apptefy, each
node for our abstract syntax tree. This is accomplished $taitiiating each class that corresponds
to the element which was parsed by alGAXPARSER In Figure A.5, these classes all inherit

from the class MDE and represent individual components of an aspect.

26

PointcutNode

PointcutSpecificationExpression

AdviceBodyNode

Altributes

Attributes

Gperations Cierations Coerations
nintcutSpec
matchedPaintcut H H 1
0= > :
& AdviceNode adviceBod
Attiibutes
COperations
I adviceDec
AdviceDeclarationNode BeforeAdviceDeclarationNode
Attributes Attributes
Cperations Cpemtions
Opemtions Redefined From Advice Categary
\ P
adviceDeclaration -4
=<interface=>
AdviceCategory
Attributes
Coemtions

Figure 3.11: UML diagram of the aspect representation ofcadv

In Figure 3.10, we see some of the classes of the aspectethstraax tree. The class struc-
ture in this figure represents pointcuts. The interfac®|NPCUTCATEGORYMETHODSIGNA-
TURE, sets up the functionality of all pointcuts which use a mdteignature to identify the join
point. Similar interfaces are set up for other types of pmitg which use a constructor signature,
type signature, or field signature. In addition, the poitgare broken down into smaller parts,
RETURNTYPENODE, CLASSNAMENODE, METHODNAMENODE, ARGUMENTNODE, and Ac-
CESSSPECIFIERNODE, representing the parts of theéQ. POINTCUT and the KECUTIONPOINT-
CcUT. In Figure 3.11, advice is similarly broken down into its sbtuent components: advice type,

pointcut specification, and advice body.

3.2.3 Abstract Syntax Tree Definition for Base Code and Advic

Both the base code and advice body use the same intermezhagsentation of source code. This

intermediate is shown in Figure 3.12. While the predominemt of this thesis is on the design of

27

<<interface>>
Type

Attributes

Operations

|

<<interface>> <<interface>>
ASTNode DefinedType

Attributes Attributes

Operations Operations

<<interface>> << >> <« > << >3 << 55 << 55
interface interface <<interfaces> interface! interface: interface interface!

Constructor Method CodeBlock Field JoinpointShadow ClassElement Interface

Attributes Attributes Attributes Attributes Attributes Attributes
Atiributes

Operations Operations T Operations Operations Operations Operations

Figure 3.12: UML diagram of the base program representation

the meta-weaver and the aspect XML representation, thtgadariefly discusses the base code
representation used by CAL.

The classes in Figure 3.12 all inherit fronsANODE and represent a node that can be identi-
fied by a pointcut. For example, a call or execution pointdentifies a MeTHOD as the location
where the advice will be woven. In AspectJ, we can identifyLB, METHOD, TYPE, and GN-
STRUCTORas nodes in the base code’s abstract syntax tree which caem&ied as join points.
This join point is identified in the tree byoINPOINTSHADOW, essentially a marker for a join
point.

While Figure 3.12 does not represent the entire abstratasyree, it does represent the nodes
in the tree which are required to identify certain join psinfTo accommodate different imple-
mentations of the classes in the AST, in part because adliffeesearcher is creating part of the
implementation, CAL includes an abstract factory [10] thiZdws different AST implementations

to be swapped dynamically.

28

CHAPTER 4

META-WEAVER DESIGN

The meta-weaver is designed to handle different approdohesaving aspects into a base program
(e.g., join point shadows, morphing aspects [17]). For phiscess to be flexible, the weaver
must provide an interface that allows certain attributeBdahanged. This is precisely what the
weaver component of the meta-weaver accomplishes usinggheng rules to determine how to
configure itself. To make this process understandable ptimest and functionality of the weaving
rules will be discussed. Then | will explore the process ahbming these rules to create the

custom weaver component.

4.1 Weaving Rules

Figure 4.1 shows an example set of XML weaving rules that seel to construct a custom weaver.
There are three types of rules which are used to define thisrouseaverjoin points theweaving
algorithm, andprecedence rule®Once these rules have been discussed, | will discusddgbeithm

registry, a method CAL uses to allow new rules to be created.

4.1.1 Join Point Rules

The first type of weaving rule i$OINPOINT. Join point rules allow a developer to identify which
join points can be used when performing the weave and arefiggeby the elementsiAME,
ASTNODE, andwWHEN. TheNAME element specifies what the syntax is for calling the pointcut
For example, in AspectJ, a pointcut’s name couldeb&CcuTION, CALL, etc. The ATNODE
element identifies the node in the base abstract syntax tneeevthe join point will be attached
(e.g., METHOD, CONSTRUCTOR. Lastly, thewHEN element identifies, relative to thesANODE,
where to place the join point; in AspectJ, and also currentiAL, the options aréefore after,

or around

These three elements allow a developer to control join m@hiatiow locations and syntax used

29

<cal rul es>
<j oi npoi nt >
<nane>execut i on</ nanme>
<ASTNode>Met hod</ ASTNode>
<when>bef or e</ when>
</j oi npoi nt >
<weavi ngal gori t hne
Aspect J
<weavi ngal gori t hne
<pr ecedence>
OrderlnFile
</ precedence>
</cal rul es>

Figure 4.1: XML representation of weaving rules in CAL.

by the aspect-oriented language with only four XML tags. Bgating an XML language where
any node in the base code can be included as part of the weaaNasy the designer can implement
new functions of an AOP language. For example, suppose dop@ravanted to define a custom
join point to execute before every code block (e.qg., beforef dtatement, while loop on each
iteration, method). Doing so in CAL is trivial. The only redged change would be to the tag in
Figure 4.1 from< AST Node >METHOD< /ASTNode > to < ASTNode >CODEBLOCK<
JAST Node >. This extremely minor change causes CAL to weave code inraatieally different
manner.

As a final example of join point rules, consider Figure 4.1jchtallows advice to be woven
beforethe executionof a method Now, consider the aspect in Figure 4.2; the weaver would not
weave the advice from this aspect, given the rules in Figure¥his is because the aspect defines
the join point as executingfter a METHOD is finished executing, but thafter join point is not

defined under this set of weaving rules!

4.1.2 Weaving and Precedence Rules

CAL also has rules for custom weaving algorithms which carswapped both statically and

dynamically. CAL currently uses an algorithm named Aspestich uses join point shadows to

30

publ i c aspect Exanple

{
after() : execution(* Account.deposit(..))
{
Systemout.println("A deposit has been nmade.");
}
}

Figure 4.2: An aspect which specifies a join point after thecexion of the methodepPOSIT.

identify possible weaving locations. This algorithm is g&anto the weaving algorithm used in
AspectJ 1.1 and is discussed in more detail in Hilsdale arguHin [19].

In addition to the weaving algorithm, precedence rules @sgecified in the XML document
for weaving rules. Precedence identifies a specific ordetilctweach piece of advice is woven.
Similar to the weaving algorithm element, the precedenaggvisn a name which is used by the
weaver to identify which precedence rule to use. In Figute the precedence rule that is used is
ORDERINFILE, which will weave the join points in the order of the advicdhe aspect. Suppose,
for example, an aspect defines three pointcuts, A, B, andl©f athich are asked to weave at
a given location. Using the RDERINFILE tag, CAL would give the highest precedence to the
pointcut that is closest to the top of the file (e.g., the fighcut read in by CAL). Other possible

precedence tags are Alphabetical, AspectJ, or whatever otistom precedence rule is desired.

4.2 \Weaver

The weaver in CAL has two primary components: tle@NPOINTREGISTRY and the A Go-
RITHMREGISTRY. In this section, | discuss how the weaver incorporatesthegistries and uses

them to actually weave advice into base code.

4.2.1 Join Point Registry

To illustrate this process, consider that CAL has read inr@s@®f weaving rules similar to that
shown in Figure 4.3. CAL needs to somehow translate this XMba an actual set of algorithms

and procedures for implementing an AOP language.

31

How does CAL accomplish this? First, when CAL seesCcaNPOINT element in a weav-
ing rules file, it registers a particular join point rule und® ASTNODE's name into the JIN-
POINTREGISTRY, a component for tracking information on the valid join gsim the system.
The weaving algorithms will then consult this registry tdetenine what join points are available,
and where advice can be placed relative to those join poiMsile Figure 4.3 is an example of
an AOP language with only one join point, this is highly atgliand, as such, CAL allows many
join points to be loaded and registered with the environm&hts is accomplished by creating a
subclass of GINPOINT and adding it to the JINPOINTREGISTRY by calling ADD(JOINPOINT

JOINPOINT).

4.2.2 Algorithm Registry

The algorithm registry is similar to the join point registhyut the algorithm registry tracks the
current weaving algorithm and precedence rule. Unlike tie points there can only be one
weaving algorithm and precedence rule. When CAL begins tbavimg process, it references
what is called the AGORITHMREGISTRY. This class represents a list of known algorithms that
can be used by CAL. As an example, there are two steps forimgeathew weaving algorithm.
First, one needs to implement a subclass of treaAWNGALGORITHM class. Second, you need
to add the algorithm to the AGORITHMREGISTRY by calling LOAD(STRING TYPE, OBJECT O).
The same can be done for precedence rules.

Once the algorithm registry has been notified of the new #lgar the CAL meta-weaver rules
can use the algorithm as a tag in an XML file. When CAL needs #&ths current precedence
rule, it queries the algorithm registry with BOOKUP(STRING NAME) call, passing in the name
of the algorithm it is looking for (in this case, the taggERCEDENCH. In short, this querying
process allows a designer using CAL to not only create newegience rules, but to make new
AOP algorithms, allowing future developers to use CAL'shetecture to customize the weaving

process.

32

<cal rul es>
<j oi npoi nt >
<nane>i f St at enent </ nane>
<ASTNode>I| f St at enent </ ASTNode>
<when>af t er </ when>
</j oi npoi nt >
<weavi ngal gori t hne
Aspect J
<weavi ngal gori t hne
<pr ecedence>
OrderlnFile
</ precedence>
</cal rul es>

Figure 4.3: A CAL weaving rule that defines a new join pointdorlF statement.

4.3 Putting it all Together

In this section, | explore how CAL takes an XML specificatiorddranslates it into a functioning
weaver, providing insight into how CAL connects all of thessparate architectures. | discuss
this putting it all togethersection from two angles. First, | present Java code thatrigasito the
process CAL uses when reading in custom rules. Second, idean example demonstrating how

CAL creates an aspect-oriented programming languageuhatibns like AspectJ.

4.3.1 Connecting the CAL Components

This section discusses how CAL uses its registries to méatgpand control both weaving rules
and algorithms, connecting CAL's components. The basia idghat CAL delegates weaving
operations to algorithms that are pre-loaded into the CAlistées. When a user then gives a
weaving rules file, the user is specifying which of theselpested algorithms they would like to
use (e.g., a certain precedence algorithm, weaving algoyior set of join points).

As an example, consider Figure 4.1. When CAL loads this XM, fils registries are checked
for each of the rules in that file and these are dynamicallgddanto the current weaver’s individ-
ual registry. In essence, CAL generates code similar tcstiatvn in Figure 4.4. This code updates

the registries and specifies which rules the weaver will use.

33

This process begins by setting up the registriass ARITHMREGISTRY and DINPOINTREG-
ISTRY. Once the registries have been loaded with the appropigoeiims, CAL parses the join
point rules and generates the corresponding rule objethidrcase thedINPOINT object named
METHOD is initialized to the values read in from the XML file. Then tiveaving algorithm and
precedence rule objectay WEAVINGALGORITHM andMY PRECEDENCECHOICE, are generated
based on the weaving rule file.

Once the weaving rule file has been loaded into CAL, th&s®RITHMREGISTRY (named
REGISTRY in Figure 4.4) loads both the weaving algorithm and precedeunle. Then thediN-
POINTREGISTRY (JPREG in Figure 4.4) loads any of the join points that were creabethis case,
there is only one join point, aBXECUTION join point that happensEFOREa METHOD is called.

However, code that interacts with the arbitrarily chosan oints in a user’s XML requires
that pointcut subclasses be created that define the sesahtie pointcut (e.g., a subclass for exe-
cution, call, etc). For example, if a developer created ajoawpoint rule with the elements EEp-
RECURSION (weaving occurs when methods have been recursively calded/ times), Method,
and After, they would need to implement the pointcut. This ba accomplished by creating a

subclass of BINTCUTCATEGORYMETHODSIGNATURE and calling it DEEPRECURSION

4.3.2 Building AspectJ in CAL

Consider a developer who wants to create, in CAL, a closeceepf the programming language
AspectJ. The standard algorithm for weaving is that giverdblsdale [19], which for the sake
of discussion | give the name “Aspectd.” Similarly, the m@ence algorithm could be named
ASPECTPRECEDENCE

If implementations of the AspectJ precedence and weaviggrithms are not available, the
programmer must then write them into CAL by creating a sussctd the RECEDENCERULE and
ALGORITHMRULE classes. These rules must be registered in thegRITHMREGISTRY. Once

this implementation is complete, the user then has to wnitethe XML file, join points for every

34

// setup the neta-weaver
Met aWeaver weaver = new Def aul t Met aWeaver () ;

/I setup the registries
Al gorithnRegistry registry = weaver. get Al gorithnRegistry();
Joi nPoi nt Regi stry j pReg = weaver. get Joi nPoi nt Regi stry();

/ I make one joi n point

Joi nPoi nt net hod = new Joi nPoi nt () ;
met hod. set Nanme(" Executi on");

net hod. set ASTNode(" Met hod") ;

net hod. set Bef ore(true);

/ | det er mi ne weavi ng al gorithm
Aspect Jlal myWeavi ngAl gorithm = new AspectJlal();

/| det ermi ne precedence rule
OrderlnFile nyPrecedenceChoice = new OrderlnFile();

/lload rules into algorithmregistry
regi stry. |l oad(Al gorithnRegi stry. PRECEDENCE, nyPrecedenceChoi ce);
regi stry. |l oad(Al gorithnRegi stry. WEAVI NG nyWavi ngAl gorithm

//1oad legal join points into the join point registry
j pPReg. add(net hod) ;

/I weave
ASTNode wovenCode = weaver.weave(basecode, aspects);

Figure 4.4: How CAL connects up the weaving rules and joim{zoi

35

program location used by AspectJ, including those for mgllbr executing methods as well as
others. These join points, similarly, must be registerdth tfie HINPOINTREGISTRY.

So what happens if a user tries to use AspectJ algorithmsatkanot registered? If a user
tries to use an algorithm not registered by CAL (e.g., th@etg random word into the precedence
field), CAL will attempt to lookup the faulty rule, will failand will inform the user of an error.
For example, if a language designer wanted to experimeiht AspectJ by disabling execution
pointcuts, they could accomplish this rather easily — by aeimg execution join points from
the DINPOINTREGISTRY, elevating this join point’s use in a pointcut to a syntaxoerrThis
essentially means that, before any advice is woven, weavassinspect the join point registry for
a given weaving rule, ensuring that the users requesidtore after, or around is allowed on that
join point, and also ensuring that weaving on that node et at all.

While CAL's procedure for analyzing and weaving source codg appear, on the surface, to
be rather complex, the end result is a customizable platforexperimenting with aspect-oriented
programming languages. CAL uses a systemegistriesfor join points, weaving algorithms, and
precedence rules, allowing the programmer to influencealist any component in an intermediate

representation of source code.

36

CHAPTERS

CONCLUSION

To promote experimentation, | have developed a meta-wéaraework that enables a developer’s
ability to customize aspect-oriented languages and wgaviles for those languages. The CAL
meta-weaver is a step toward this because it provides bo#meefvork for modifying the features
of an aspect-oriented language and a framework to modifywidne transformations of aspects
occur. CAL accomplishes this through the use of XML, whictegithe developer a great deal of
control over the structure of the generated code. Througtttntrol, we can empirically compare

combinations of aspect-oriented language features andingeaules.

5.1 Significance and Claims

In this thesis, a meta-weaver framework has been implerdearid described. This framework
allows the weaving of an aspect-oriented program with astiexj base program, given user de-
fined rules. This work further expands on the work of Rohlikale [33] and Gray [15], whose,
key goal was also to enable experimentation with aspeetitgd languages via the creation of a
highly customizable weaving architecture.

Ronhlik, et.al. built the Xweaver [33, 16], which is an opemusse framework that uses rules
defined in an XSL program to customize the process of weavihgse rules allow new types of
transformations, from an individual aspect to the basenarogto be defined. In contrast, CAL
not only allows us to customize these transformations l=at allows the weaving rules to control
precedence, or ordering of the aspect transformationsth&@néey difference is that the Xweaver’s
target language is limited to C++. However, CAL is flexibl@agh to accommodate any language
which is represented in the abstract syntax tree for the fraggam.

CAL also uses a framework which is similar to the meta-weaveésray’s work [15], though

Gray’s work does not have a framework for weaving rules. Grayeta-weaver is designed to

37

generate weavers, at a high level of abstraction, each anodating a different language. Ideally,
each new weaver that is generated minimizes the duplicatiaomponents. This is because
each newly generated weaver presumably shares some ofthege of the previously generated
weavers. The CAL framework, on the other hand, does not gémer program, but provides a
framework where the base program’s abstract syntax tredeaasily built up and modified to

accommodate different languages.

The CAL meta-weaver framework provides an environment inctviAOP properties and
weaving is easily customizable. With a broad number of asip@guages, each having its own
model for aspect orientation, CAL fills a need for a framewibidt is flexible enough to allow each
aspect feature to be quickly changed. Through this framlewae can enable experimentation of

weaving algorithms, syntax, and semantics of aspect4aidanguages.

5.2 Future Work

We know relatively little about the effect of the AOP paradign programming. As such, CALs
meta-weaver framework can be used to gather empirical eeeen how well the different AOP
techniques work together. The scope of this testing indudeman studies on comprehension
of the effects of aspect orientation and the individual iotpaf syntax, semantics, or technical
concerns related to algorithm efficiency. CAL can be usedippert all of these types of studies.
In addition, meta-weavers allow us to more easily evaluadrteractions between weaving
rules and the resulting software. For example, Schongar 4] suggest that pointcuts in AspectJ
fall into classes which are not precisely defined and can htstically unclear. However, does
this AOP minutia have any real, significant effect on humarigomance when using an AOP
language? Using CAL allows us to easily test this hypothiesexperimental studies involving

humans.

38

APPENDICES

APPENDIX A

UML DIAGRAMSOF CAL

CALXMLParserConstants CalXMLHandler

{ From xml } { From xml }

public String AL = eal” AR i
public String ASPECT = "aspect” public woid characters{ char bu;“[‘ﬂ’—:—.:;fillz‘t offset, int length)

public String POINTEUT = "painteut” public CalXLHandler{)

public String NAWE = “name” public woid start Berment(String uri, String loeal, String qhame, Atributes)
public String ACCESS SPECIFIER = “access Specifier” public waid endBement{ String uri, String lecal, String qMame)
public String TYPELIST = "typelist” public Node get Aspect Root{)

public String CALLPOINTCUT = "zall Pointeut” public NadeFactary getFactory()

public String POINTCUT EXPRESSION = "painteut Ecpression” Rublic Woid setFaetoryl ke Fastary Tastirg)
putifip:Siring .0 F ERAND ~"'aneraiid: private CalNode matchPeintcuts ToAdvice(CalMode node)
public String RETURNTYPE = “retumType'

public String PUBLIC = "public”

public String PRIVATE = "private”

public String PROTECTED = "protected”

public String AND = "and”

public String OR = "or"

public String CLASS NAWE = “elassName™

public String ARGUMENT = “argument”

public String METHOD NAWE = "method Name"

public String PARAWETER = “parameter”

public String TYPE = "typa"

public String ADWICE = “advice"

public_String ADVICE DECLARATION = "advice Declaration”

consumer

CalSaxParser
{ From xml }

Al 5
private ¥hLReader producer

public String POINTCUT SPECIFICATION = 'pointcut Specification” Operaians

public String ADWICE BODY = "advice Body" public CalSaxParser()

public String BEFORE ADWICE = "hafone Adviee™ public Nede parse(String file)
public String EXECUTIONPOQINTCUT = “execution Poirteut” public: Made: getRoot()

public String FOINTCUT SPEC EXPRESSION = "pointout SpecificationExpres public void main(String argu[0.."])

public String STAR = “star”
public String DOT = "dot”

Qperations

Figure A.1: Diagram of the SAX parser design.

40

winbariac o>
AdviceCatagory
Aivrduras
ipmratens
ki ot - SckdlP,] P] |
o
£
/
2 advicelachrallan
£
£
BeforeAdviceDeelarationNede AdviceDeclarationNode
ittrdurian Aetndyran
Cpawion [m——
publlc Befonadud collec] amfl ondiodad | (=0 2 [T R [P L P T |l
ml‘hlﬂnr-‘gm At atogy public yoid setfoy|ceDec] aral ond Aoyl ceCatiogory advica |
pubiic wold SdP aramobon Fammabortosa pamm | public Asvicetatoony pethdviceDoclamtion |

AdwviceMode

Ferrtuduy

]

/dvbeDac
pubiic Asicekioss |

poblic wold aebfoceDe| afal on Ao ceDec] sl ondiods st oD | amion |

publiz AcviceDoolamaonics gothc | eDeciamon |

pubdic wold sefoinscusS peci oatond PoinecwsS pocif calonE spres sion polnicaSpecificadon |
public PolnfculSpeifcafonExpession gefFolnicesSpecificationd |

public wold SothayicoBadyl AruicaEony Biode BovicoBoay |

public AdviceBocyhode petidlceSody |

public wold acoleiabe headS ol nbcus Foindc efodo poinocu |

pubiic Prinscusiodol *] pofoincums) |

adviozBod
0. 2chadPalmeoa, T —

PointzutNode PointocutSpecificationExprassion AdviceBodyNode
Adfrdnian Atrturmn Frr
Cmwtivm Cparaterts T
publlc Poinacusioded | public PointcugSpocificad coEsprssion) | Pl Aol calioayboasd |
pubiic Aocess Spedifierione gotfccessSpocifion | pubilc vl ScdEupression Rl node |
public vold sefPol nic LBy pres s on FoinicsE s pressiondiode expression | putiic ModeD. "] geEapression |

pubdic PolnacsiSsdpressioniicds gofolniculEs preasion] |
skl vedd OO AN, Faramaciiog P |
pubiic Pammoterioce]l. "] gofFammotars] |

“pmraten M & o Ssamart
public vold sethccessdpacifion AccassSpacifariode m |

Figure A.2: UML diagram of advice in the aspect syntax treniteon.

41

<<interface==

PointcutCategoryMethodSignature

Attributes

Operations

public String comparePointcut\ethodSignature(Method astNode)

pubiic void setdcce

pecifierf Accesss;

cifierode 7l

public A

Node getdce fel
public void setReturnType(ReturnTypeNode returnType)
pubiic ReturnTypeNode getRetunTypef)

ifier{)

public void setC e(C eNode ciassName)
public ClassNameNode getClassName()
public void odName(Method jode ame)

public MethodNameNode get\iethodName()
public void setdArguments{ ArgumentNode arguement)
public ArgumentNodef0..*] getdrguments()

F 13
/ N
/ N
i A\
CallPointcut ExecutionPointcut
Attiibutes Attributes
Cperstions Coermtions

public CallPointout])

public ExecutionPointcut()

Operations Redefined From Paintout Categoryliethod Signature
public AccessSpecifierfode getAccessSpecifier()

public void seth (A Made)
puhlic void setReturnType(ReturnTypellode returnType)

public ReturnTypeMode getReturnType()

public void setClassMName(ClassMameNode classMame)
puhblicvoid sethlethodMame(MethodMameMode methodhame)
public void setArguments(AraumentMode arguemeant)

public ClassNamebode getClassNamel)

puhlic MethodMamehlode getMethodhame()

public ArgumentMode[0.*] getArguments()

puhblic String comparePointcutMethodSignature(Method astiode)

Gperations Redefined From PointoutCategoryMetiiod Signature
public AccessSpecifierNode getAccessSpecifier()

public void seth { A Mode bl
public void setReturnType(ReturnTypelode returnType)

public ReturnTypeNode getReturnType()

publicvoid setClassName(ClassMNamelode classMName)

public void setMethodMame(Methodhamehode methodiame)
publicvaid setArguments(ArgumentNode arguement)

public ClassNameNode getClasshame()

public MethodNameMode getMethodhame()

public ArgumentMode[0.* getArguments()

public String comparePointcutMethodSignature(Method astMode)

ESEER methodMam
returnTyp arguement
returnTyp classham et arguemeant I
ReturnTypeNode ClassNameNode MethodNameNode ArgumentNode
Atibutes Attibutes Atiributes Attiibutes
Quemtions Goertions Cpertions Gperations
public ReturnTypeMode() public ClassNameNaodel) public MethodNameMaode() public AraumentMode()

accessspecifier

accessSpecifier

AccessSpecifierNode

Attibutes
protected boolean typePublic = false

protected boolean typaPrivats = false
protected boolean typaProtected = false

Cpemtions

public AccessSpecifierNode()

puhblic void setAccessSpecifierType(String t)
public hoolean isPublic()

public boolean isPrivate()

puhblic boolean isProtected()

Figure A.3: UML diagram of pointcuts in the aspect syntae tiefinition.

42

<<interface=>>

Type

Attributes

Goemtions
public String name()

public Typef0..*] compatibleTypes()

public Boolean isCompatibleWith(Type _type)

public Type autoBoxesTof)

T

=<interface==

DefinedType

Attributes

Coertions
public DefinedTypel0._*] ancestors()

public DefinedTypel0. *] descendants{)
public DefineaType declaringTypel)
public Boolean hasDefaultdccess()
public Boolean isdbstracl()

public Boolean isFinal()

public Boolean isPrivate()

public Boolean isFrotected()

public Boolean isPublic()

public Boolean isStatic()

public DefinedTypel0.*} nestedTyoes{)
public Namespace pamespace()

T

T

<=interface=>

<<interface==
Interface

Atributes

Cpertions

public Field[0.*] constants{)

ClassElement ——
Hipeies ASTNode
Cperstians i -
public Interfacel0._*] imp. il) = Attributes

public Field{0.*] fields()

public Method0..*] method's()

public [0.*] initializers()

public Constructorf@..*] construciors()

<<interface=>
Method

Attiibutes

Coerations
bublic DefinedType deciaringTypef)
public Variabie[0.*] formaildrguments()
public Boolean hasDefaultdccess()
public Boolean isAbstract()
public Boolean isFinal)
public Boolean isNative()
public Boolean isPrivate()
public Boolean fsProtected()
public Boolean isFublic()
public Boolean isStatic()
public Boolean FsStrictFP{)
public Boolean isSynchronized()
public String mangledName()
public String namef{)
public Type returnType()
public inf0.."] TypeAnayDimensions()
public Boolean returnTypelsArray()
public DefinedTypel0..*} thrownExceptions()
public CodeBlock body()
public JoinpointShadow getBefore()

Cperstions
pubiic void setParent! ASTNode n)

public ASThode getParent])

<<interface>>

Field

<<interface==

Constructor

Atributes

Cperations
public DefinedType deciaringType()
public Variablel0.*] formaiArguemnents()
public Boolean hasDefaultAccess()
public Boolean isdbstract()

public Boolean isFinall)

public Boolean isNative()

public Boolean isPrivate()

public Boolean isProtected()

public Boofean isPubiic()

public Boolean isStatic()

public Boolean isStrictFP()

public Boolean isSyncronized()

public String mangledName()

public String name()

public DefinedTypel0.*] throwExceptions{)
public CodeBlock body()

Attributes

<<interface=>

JoinpointShadow

public void setBefore{ Joinpointshadow befare)

Cperstions
public Boolean deciaredTypelsAray()

public inf0..*] declaredTypedrrayDimensions()

public DefinedType declared]ype()
public Boolean hasDefaultAccess()
public Booiean isFinalf)

public Boolean isPrivate])

Ppublic Boolean isProtectady)
public Boolean isPublic{)

public Boolean isStatic{)

public Boolean isTransient()
public Boolean isVolatile()

public String name{)

public ScopeDefiningSymbal owner()

Attributes

Cperstions

public void addPeintcutName(String name, int number)
public String[0.*] getFointcutNames{)

Figure A.4: UML diagram of base program representation.

43

ModeFaciory

{ Fom faciones |

Default Node Factory

{ From facioies)

BeforeAdviceDeclarationMNode

o P

AdviceCatagory]

PointcutExpressioniNode

adviceDecaallan

EEmaars AdviceDeclarationNode
.
PointcutSpecificationNode 2
o prazzhanL sl
Parameteriode
TypeNode -
pammaerL! PaointcutNode adiloaDac
¥pe o’ = [—l
arguemans Q. palmcEsprasslan |
Argumentdode) ClassMameNode ‘5. al’ l
acomsEpackler MameMNode |
v 1ré:| machedPalcu
= mrenl
Node <l Bdru
= ' L] D"I AdviceBod pNode |
arguapans é_l | . ol <t 1! |
<} 4
ExecutionPoinicut ¥ AdviceNode
— L= FvlozBad
arguemants agomrEpetiler ¢-+
[
o |
AspectNode yohvhoz
accasvEpachier palncus
o A oo
i Return TypeNode || MamedType !
CallPointcut — @ K o= —
- = reurgTiqn AccessSpecifierNode CailNode
* | | s prazshanbbl palnlcuSpac
I R
I ﬁmdhﬂdﬂ:m rurnTyp teclails
MethodNameNode
l QperandiNaode PointcutSpecificadonExpression
|

PointcuCaiegoryMethod Signature

=enfeiac o>

=X

Figure A.5: UML diagram of the syntax tree definition for asise

44

Errre—
i

——
——
ot
remton))
e v et s e =

e ot

e S Sy e s
ot)

1

Oarandnose
)
e

ey
et sy

rmsent
—
o A R
o)
o s oo =
i P oS e
el s
e sy e A o) Lo
P—T] =
| revoaten = It -
o —
o
trmmean)
oo o
e
ke g) |
o s ot
; T
fie
omerea | T
paeredy
T ey
et L
I ——
- st
o s e e)
o retos 3 e
iy o s
(omey
T w00
[
s — —
et b
o i)
— e =
o ramenr e e o s
= —— = [el
T e [e,
=] (e [e, ey
ooy P —— e Sy
s ot sy o
e o)
o o
i o)
et Codertionr
i Comeen) At aers
e e v
e ey = e)
i e)
R — preajatiieds i
er o v]
oo et et
ik G
v i momato
ot)

it A

e

(e

-
o)

ek)

]
i

e s i)

e
it
— e
—— —
Sheaa) ——e
(e ey ot e P
o

Figure A.6: UML diagram of the CAL meta-weaver.
45

APPENDIX B

XML SCHEMA

B.1 XML Schema for Aspects

This first XML schema specifies the format of the XML file for asps. This schema does not

represent all of the possible aspect-oriented languagésab be extended to represent any other

aspect-oriented language.

<?xml version="1.0" encoding="UTF8" ?>

<xs:schema xmins:xs="http: //www.w3.0rg/2001/XMLSchéma

<Xxs:element name="accessSpecifier”

<xs:complexType mixed="true” ¥

</ Xxs:element

<xs:element name="advice”

<xs:complexType
<Xs:sequence

<xs:element

<xs:element

<xs:element

</ xs:sequence

<Ixs:complexType

</ xs:element

ref="adviceDeclaration”>/

ref="pointcutSpecificationExpression™ /

ref="adviceBody” >

<xs:element name="adviceBody”

46

<xs:complexType mixed="true” ¥

</ xs:element

<xs:element name="adviceDeclaration”
<xs:complexType
<Xxs:sequence
<xs:element ref="beforeAdvice” ¥
</ xs:sequence
<Ixs:complexType

</ xs:element

<xs:element name="argumernt”
<xs:complexType mixed="true” *

</ xs:element

<Xs:element name="aspect”
<xs:complexType
<Xxs:sequence
<xs:element ref="accessSpecifier”>/
<Xxs:element ref="name” *
<xs:element ref="pointcut” maxOccurs="unbounded™ /
<xs:element ref="advice” maxOccurs="unbounded? /
</ xs:sequence
</xs:complexType

</ xs:element

a7

<xs:element name="beforeAdvice”
<xs:complexType
<Xs:sequence
<Xs:element ref="parameter” >/
</ xs:sequence
<Ixs:complexType

</ Xxs:element

<Xs:element name="cal¥
<xs:complexType
<Xxs:sequence
<xs:element ref="aspect” >/
</ xs:sequence
<Ixs:complexType

</ Xxs:element

<Xxs:element name="callPointcut”
<xs:complexType
<XSs:sequence
<xs:element ref="accessSpecifier”>/
<xs:element ref="returnType” ¥
<xs:element ref="className” >/
<xs:element ref="methodName” >/

<xs:element ref="argument” >

48

</ xs:sequence
<Ixs:complexType

</ Xxs:element

<xs:element name="className”
<xs:complexType mixed="true” *

</ xs:element

<Xs:element name="executionPointcut”
<xs:complexType
<Xxs:sequence
<xs:element ref="accessSpecifier”>/
<xs:element ref="returnType” ¥
<xs:element ref="className” >/
<xs:element ref="methodName” >/
<xs:element ref="argument” >/
</ xs:sequence
</xs:complexType

</ xs:element
<xs:element name="methodName”
<xs:complexType mixed="true” ¥

</ xs:element

<xs:element name="name”

49

<xs:complexType mixed="true” ¥

</ xs:element

<xs:element name="operand”
<xs:complexType mixed="true” *

</ Xxs:element

<Xs:element name="parametes”
<xs:complexType
<Xs:sequence
<xs:element ref="type” %
<xs:element ref="name” *
</ xs:sequence
<Ixs:complexType

</ xs:element

<xs:element name="pointcut”
<xs:complexType

<Xs:sequence
<xs:element ref="accessSpecifier”>/
<xs:element ref="name” ¥
<xs:element ref="parameter” >/
<xs:element ref="pointcutExpression”>/

</ xs:sequence

<Ixs:complexType

50

</ xs:element

<Xs:element name="pointcutExpression”
<xs:complexType
<Xxs:sequence
<xs:element ref="executionPointcut”>/
<xs:element ref="callPointcut” minOccurs="0" >/
<xs:element ref="operand” minOccurs="0">/
</ xs:sequence
<Ixs:complexType

</ Xxs:element

<xs:element name="pointcutSpecification”
<xs:complexType
<Xs:sequence
<xs:element ref="name” *
<xs:element ref="argument” >
</ xs:sequence
</xs:complexType

</ xs:element

<xs:element name="pointcutSpecificationExpression”
<xs:complexType
<Xs:sequence

<xs:element ref="pointcutSpecification” maxOccurs="uonded” 5

51

<xs:element ref="operand” minOccurs="0">/
</ xs:sequence
</xs:complexType

</ xs:element

<xs:element name="returnType”
<xs:complexType mixed="true” ¥

</ Xxs:element

<xs:element name="type”
<xs:complexType mixed="true” *

</ xs:element

</xs:schema

B.2 XML Schema for Weaving Rules

This XML schema specifies the format of the XML file for weavindes. This schema is able
to represent any precedence rule or weaving algorithm. diitiad, this schema represents any

number of join point rules that correspond to the XML scheoraakpects.

<?xml version="1.0" encoding="UTF8" ?>

<xs:schema xmlins:xs="http: //www.w3.0rg/2001/XMLSchéma
<xs:element name="ASTNode”
<xs:complexType mixed="true” ¥

</ xs:element

52

<xs:element name="calrules”

<xs:complexType
<Xs:sequence

<xs:element ref="joinpoint” maxOccurs="unbounded™ /

<xs:element ref="weavingalgorithm” >/
<xs:element ref="precedence”>/
</ Xs:sequence
<Ixs:complexType

</ xs:element

<xs:element name="joinpoint¥

<xs:complexType
<Xs:sequence
<xs:element ref="name” *¥

<xs:element ref="ASTNode” *
<xs:element ref="when” %
</ xs:sequence
</xs:complexType

</ xs:element

<Xs:element name="name”
<xs:complexType mixed="true” ¥

</ Xxs:element

53

<xs:element name="precedence”
<xs:complexType mixed="true” ¥

</ xs:element

<xs:element name="weavingalgorithm”
<xs:complexType mixed="true” *

</ xs:element

<Xs:element name="when’
<xs:complexType mixed="true” ¥

</ Xxs:element

</xs:schema

54

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

BIBLIOGRAPHY

Jonathan Aldrich. Open modules: A proposal for moduéarsioning in aspect-oriented pro-

gramming. Technical Report CMU-ISRI-04-108, Carnegie IbtelUniversity, 2004.

Jonathan Aldrich. Open modules: Reconciling extetigypband information hiding. In
SPLAT '04: In workshop on Software Engineering Propertiglsamguages for Aspect Tech-

nologies Lancaster, UK, 2004.
David Brownell. SAX2 O’Reilly and Associates, Inc., Sebastopol, CA, 2002.

Nelio Cacho, Claudio Sant’/Anna, Eduardo Figueiredaegs§andro Garcia, Thais Batista, and
Carlos Lucena. Composing design patterns: a scalabilityysdf aspect-oriented program-
ming. In AOSD '06: Proceedings of the 5th international conferenoeAspect-oriented

software developmenpages 109-121, New York, NY, USA, 2006. ACM Press.

Siobhan Clarke and Robert J. Walker. Composition paste an approach to designing
reusable aspects. ICSE '01: Proceedings of the 23rd International ConferenceSoft-

ware Engineeringpages 5-14, Washington, DC, USA, 2001. IEEE Computer 8ocie

Curtis Clifton and Gary Leavens. Obliviousness, modukasoning, and the behavioral

subtyping analogy. Technical Report 03-15, lowa State &hsity, 2003.

Curtis Clifton and Gary T. Leavens. Observers and aasist A proposal for modular aspect-
oriented reasoning. In Gary T. Leavens and Ron Cytron, eqji#@®AL 2002 Proceedings:
Foundations of Aspect-Oriented Languages Workshop at AZBBR number 02-06 in Tech-
nical Reports, pages 33—-44. Department of Computer Sgiénwa State University, April
2002.

E.W. Dijkstra. A Discipline of ProgrammingPrentice Hall, New Jersey, 1976.

55

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Robert E. Filman and Daniel P. Friedman. Aspect-oridmegramming is quantification and
obliviousness. In Robert E. Filman, Tzilla Elrad, Siobl@arke, and Mehmet Aksit, editors,

Aspect-Oriented Software Developmeraiges 21-35. Addison-Wesley, Boston, 2005.

Erich Gamma, Richard Helm, Ralph Johnson, and JohrsMkes Design Patterns: Elements

of Reusable Object-Oriented Softwareddison-Wesley, Boston, 1995.

Alessandro Garcia, Claudio Sant’Anna, Eduardo Figak, Uira Kulesza, Carlos Lucena,
and Arndt von Staa. Modularizing design patterns with atspea quantitative study. In
AOSD ’'05: Proceedings of the 4th international conferencedspect-oriented software de-

velopmentpages 3—14, New York, NY, USA, 2005. ACM Press.

Jeff Gray. Using software component generators to ttootsa meta-weaver framework. In
ICSE '01: Proceedings of the 23rd International ConferenneSoftware Engineeringages

789-790, Washington, DC, USA, 2001. IEEE Computer Society.

Jeff Gray, Ted Bapty, Sandeep Neema, Douglas C. Schsidtuddha Gokhale, and Bal-
achandran Natarajan. An approach for supporting aspeatted domain modeling. In
GPCE '03: Proceedings of the 2nd international conferennoeGenerative programming
and component engineeringages 151-168, New York, NY, USA, 2003. Springer-Verlag

New York, Inc.

Jeff Gray, Ted Bapty, Sandeep Neema, and James TuckdliHgrrosscutting constraints in

domain-specific modelingCommun. ACM44(10):87-93, 2001.

Jeff Gray and Suman Roychoudhury. A technique for qoieting aspect weavers using a
program transformation engine. AODSD '04: Proceedings of the 3rd international confer-
ence on Aspect-oriented software developmeages 36—45, New York, NY, USA, 2004.
ACM Press.

56

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Iris Groher and Markus Voelter. Xweave: models and aspée concert. INnAOM '07:
Proceedings of the 10th international workshop on Aspeetrted modelingpages 35—40,
New York, NY, USA, 2007. ACM.

Stefan Hanenberg, Robert Hirschfeld, and Rainer Whldiorphing aspects: incompletely
woven aspects and continuous weavingAMSD '04: Proceedings of the 3rd international
conference on Aspect-oriented software developnpages 46-55, New York, NY, USA,
2004. ACM.

Jan Hannemann and Gregor Kiczales. Design patternemmghtation in java and aspect;.
In OOPSLA '02: Proceedings of the 17th ACM SIGPLAN conferemc®©bject-oriented
programming, systems, languages, and applicatipages 161-173, New York, NY, USA,
2002. ACM Press.

Erik Hilsdale and Jim Hugunin. Advice weaving in aspedin AOSD '04: Proceedings
of the 3rd international conference on Aspect-orientedvse developmenpages 26—-35,

New York, NY, USA, 2004. ACM Press.

Mik Kersten and Gail C. Murphy. Atlas: a case study inling a web-based learning en-
vironment using aspect-oriented programming. OOPSLA '99: Proceedings of the 14th
ACM SIGPLAN conference on Object-oriented programmingtesys, languages, and appli-
cations pages 340-352, New York, NY, USA, 1999. ACM Press.

Gregor Kiczales. Aspect-oriented programmingCM Computing Survey28(4es):154,
1996.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Keest, Jeffrey Palm, and William G.
Griswold. An overview of aspect]. IIECOOP '01: Proceedings of the 15th European
Conference on Object-Oriented Programmipgges 327-353, London, UK, 2001. Springer-

Verlag.

57

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Gregor Kiczales, John Lamping, Anurag Menhdhekar,i<Chfaeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programgii In Mehmet Aksit and
Satoshi Matsuoka, editorByoceedings European Conference on Object-Oriented Rwogr
ming volume 1241, pages 220-242. Springer-Verlag, Berlindeleerg, and New York,
1997.

Gregor Kiczales and Mira Mezini. Aspect-oriented magming and modular reasoning. In
ICSE '05: Proceedings of the 27th international confereaneSoftware engineeringages

49-58, New York, NY, USA, 2005. ACM Press.

Ramnivas LaddadAspectJ in Action: Practical Aspect-Oriented Programmirdanning

Publications Co., Greenwich, CT, USA, 2003.

Donal Lafferty and Vinny Cahill. Language-indepentiaspect-oriented programming. In
OOPSLA '03: Proceedings of the 18th annual ACM SIGPLAN eent® on Object-oriented
programming, systems, languages, and applicatipages 1-12, New York, NY, USA, 2003.
ACM Press.

Daniel Lohmann, Fabian Scheler, Reinhard Tartlerf Sl@inczyk, and Wolfgang Schroder-
Preikschat. A quantitative analysis of aspects in the eeosgk. InEuroSys '06: Proceedings

of the 2006 EuroSys conferengages 191-204, New York, NY, USA, 2006. ACM Press.

Cristina Videira Lopes and Sushil Krishna Bajracharmpa analysis of modularity in aspect
oriented design. IMOSD '05: Proceedings of the 4th international conferenneAspect-

oriented software developmepiiges 15-26, New York, NY, USA, 2005. ACM Press.

Odysseas Papapetrou and George A. Papadopoulos. tAsperated programming for a
component-based real life application: a case studySAQ '04: Proceedings of the 2004
ACM symposium on Applied computjipgges 1554—-1558, New York, NY, USA, 2004. ACM

Press.

58

[30] D. L. Parnas. On the criteria to be used in decomposistesys into modulesCommun.

ACM, 15(12):1053-1058, 1972.

[31] Meghan Revelle, Tiffany Broadbent, and David Coppihdérstanding concerns in software:
Insights gained from two case studies.WPC '05: Proceedings of the 13th International
Workshop on Program Comprehensjgrages 23-32, Washington, DC, USA, 2005. IEEE

Computer Society.

[32] Martin P. Robillard and Gail C. Murphy. Representingicerns in source cod&ACM Trans.
Softw. Eng. Methodql16(1):3, 2007.

[33] O. Rohlik, A. Pasetti, P. Chevalley, and I. Birrer. Anpest Weaver for Qualifiable Applica-

tions. InData System in Aerospace (DASIA) Conferemiee, France, July 2004.

[34] Stefan Schonger, Elke Pulvermuller, and Stefan 8dtstAspect-oriented programming and
component weaving: Using XML representations of abstrgntax trees, February 2002.

Second German AOSD Workshop, Bonn, Germany. To appeatr.

[35] Friedrich Steimann. The paradoxical success of aspéented programming. I©OOP-
SLA '06: Proceedings of the 21st annual ACM SIGPLAN contsrean Object-oriented
programming systems, languages, and applicatipagies 481-497, New York, NY, USA,
2006. ACM Press.

[36] Kevin Sullivan, William G. Griswold, Yuanyuan Song, &afang Cai, Macneil Shonle, Nishit
Tewari, and Hridesh Rajan. Information hiding interfaces dspect-oriented design. In
ESEC/FSE-13: Proceedings of the 10th European softwaréneegng conference held
jointly with 13th ACM SIGSOFT international symposium owii@ations of software en-
gineering pages 166—175, New York, NY, USA, 2005. ACM Press.

[37] Kevin J. Sullivan, William G. Griswold, Yuanfang Caind Ben Hallen. The structure and

59

value of modularity in software design. ESEC/FSE-9: Proceedings of the 8th European
software engineering conference held jointly with 9th ACKESOFT international sympo-

sium on Foundations of software engineeripgges 99-108, New York, NY, USA, 2001.
ACM Press.

60

