VISUAL LANGUAGE FOR EXPLORING MASSIVE RDF DATA SETS

By

JUSTON MORGAN

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Engineering and Computer Science

MAY 2010

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of JUSTON MORGAN

find it satisfactory and recommend that it be accepted.

Wayne O. Cochran, Ph.D., Chair

Orest Pilskalns, Ph.D.

Scott Wallace, Ph.D.

il

VISUAL LANGUAGE FOR EXPLORING MASSIVE RDF DATA SETS

Abstract

by Juston Morgan, M.S.
Washington State University
May 2010

Chair: Wayne O. Cochran

We demonstrate a novel method for visually exploring and browsing large collec-
tions of semistructured data modeled in RDF, a W3C standard for emerging web appli-
cations. The method hinges on a theoretical coupling between query language expressiv-
ity and structural summaries of data. For standard RDF query languages, this amounts
to a bisimulation partitioning of the data. We adapt the classic Kanellakis-Smolka algo-
rithm (KSA) for interactively computing the bisimulation relation, allowing user interac-
tion through a graphical user interface (GUI). The GUI allows users to intuitively filter
and structure results, implemented under the hood as a refinement of the underlying bisim-
ulation partition by using KSA. Data is initially presented in the GUI as a single node,
representing the totality of the data, and from which the user can iteratively search the data
by repeatedly calling a filter or refinement step. The actions on a node cause new nodes to
be created, which are connected to the previous node. A new node will contain a subset of
the partition from the previous node. Any non-empty node can be used to further refine the
search. This paper, will overview our approach and illustrate a current working prototype

based on the methodology.

il

ACKNOWLEDGEMENT

I want to thank Dr. George Fletcher for all of his guidance, inspiration and friendship
throughout this project. I also want to thank Dr. Cochran for stepping in as my advisor,

and the rest of the committee members for everything they did to help me along the way.

v

TABLE OF CONTENTS

Page

ABSTRACT e il

ACKNOWLEDGEMENTS v

LISTOF TABLES e vii

LISTOFFIGURES e viii
CHAPTER

1. INTRODUCTION e e e 1

2. BACKGROUND e 3

2.1 RDFand SPARQL e 3

2.2 Bisimilarityand KSA o o 5

3. RELATED WORK 9

3.1 Challenges of Visual QueryingofData 10

3.2 Visual Query Languages 10

321 QBE . .. 11

322 XML-GL 11

323 XQBE. 12

3.3 Visual Query LanguagesforRDF 12

33.1 Tabulator 13

332 Fenfire 13

333 RDFFacets 14

334 Graphite. 14

33,5 Explorator 14

3.3.6 NITELIGHT 15

337 GRQL. e 15

338 RDF-GL 15

3.4 Visual Query Language Conclusion 16

A RID e 17

4.1 StartUp e 17

42 TaskBar 17

43 Blocks 20

44 Example 24

5. CONCLUSION AND FUTUREWORK 31

BIBLIOGRAPHY e 33
APPENDIX

A.SOURCECODE e 36

Vi

2.1
2.2
23
24
2.5
2.6
2.7

3.1
3.2

RDF Triples

LIST OF TABLES

Relational DatabasetoRDF

SPARQL Results . .

Possible Edge Types

Block Data from Figure 2.1

Block Data from Figure 2.1

Block Data from Figure 2.1

vii

2.1

4.1
4.2
4.3
4.4
4.5

LIST OF FIGURES

Page
Graph Showing KSA Partitioning 6
Initial State 18
Method Menu L 21
Select Edge KSA(a-b) 22
Filter Propagation(a-d) 24
DataDisplay (a-d) e 28

viii

CHAPTER ONE

INTRODUCTION

The World Wide Web (W3) has completely changed how information is shared. Web
browsers allowed users to follow Hypertext links, which are links between two documents
that could be located anywhere on the web, and search engines allowed for searching the
linked documents. Over the years the main element of W3 has been linked documents and
recently there has been an increased effort to create links to the raw data behind these doc-
uments. The raw data was usually stored in formats such as XML, CVS or marked up in
HTML tables which remove most of the data’s inherent structure and semantics. The struc-
ture of the data is very important for creating meaningful links to the data. Currently one
of the best set of practices for publishing and linking structured data on the Web is Linked
Data [8]. Linked Data depends on documents containing data in Resource Description
Framework (RDF) format, which allows for creating typed statements that link arbitrary
things.

The availability of RDF data has increased along with the popularity of the semantic
web. RDF data contain a wealth of information that can be easily parsed by a computer.
The problems with RDF data arise when attempting to find relationships while reading data
with the human eye. This is a very difficult task because the RDF files are not sorted in any
way and sections that would be similar could be separated by thousands of lines of data.
Many different visual query languages have been purposed for browsing and displaying
RDF data, because its much easier to have a computer display the data in some meaningful
format. Even with all of the different RDF visual query languages available we feel that our
system, RDF Relationship Display (R?D) provides the first formally justified visualization
of RDF, where the words formal was taken from [14]. RDF data is out there and is only

going to become more prevalent in the future, so there is a need for good, logical, and easy

to use RDF browsers.

Our method is based on a theoretical coupling between query language expressivity
and structural summaries of data, amounting to a bisimilar partitioning of the data. To
interactively compute the bisimilar partition we adapted the classic Kanellakis-Smolka Al-
gorithm (KSA), and created a Graphical User Interface (GUI) that allows the user to view
and perform tasks on the data. The partition, which is incrementally created by our ver-
sion of KSA, is displayed as a set of blocks connected by edges on the canvas portion of
the GUI. Each block contains at least one triple and all triples present in this block are
bisimilar to each other. The overall graph that is created on the canvas can be constructed
with a SPARQL query. Our definition of bisimilar and how it relates to the edges displayed
between blocks is explained further in the next section.

The rest paper is structured as the followed. Chapter 2 gives detailed descriptions of
RDEF, SPARQL , KSA, our working definition of bisimilar and how it relates to RDF. In
chapter 3 a review of many visual query languages are given and then each is compared to
R2D . A detailed explanation of R?D can be found in chapter 4 and chapter 5 presents our

conclusions and thoughts for the future of R?D .

CHAPTER TWO

BACKGROUND

2.1 RDF and SPARQL

In this section we give the basic definitions that are at the core of R?D . RDF is the World
Wide Web Consortium (W3C) standard for representing information in the Semantic Web
[17]. RDF stores information in subject-predicate-object triples, which allows for easy
computer readability. Humans however have a hard time following RDF triples in very
large files. The main problem for humans is recognizing the relationship between triples
that are not near one another in large collection of RDF data. The terms Uniform Resource
Identifiers (URIs), literal, and blank-node refer to the elements that make up the subjects,
predicates and objects, and we call the set of all elements the atoms (A). An RDF file

consists of triples that are made up of an enumerable set of A.

Definition 1 A RDF triple is an object t, where t = (as, a,, a,) € A x A x A. Where a, =
subject(t), a,, = predicate(t), and a, = object(t).

Definition 2 A graph G is a finite set of triples [13]. Let:
S(G) = {subject(t) | t € G},
P(G) = {predicate(t) | t € G}, and
O(G) = {object(t) | t € G},

The domain of G is the set of atoms occurring in G , denoted as A(G) = S(G) U P(G) U
oG).

Example 1 Subset of A’s that will be used in further examples.
{John, Paul, Tim, Doug, William, Steve, empNo, ID, dept, department, directory,
ext, Shipping, Sales, I T, Help Desk, Services, Integers[0-200]}

Table 2.1: RDF Triples
Triple ID Subject Predicate Object |

0 John empNo 112

1 Paul empNo 132

2 Tim empNo 145

3 112 dept Shipping
4 132 dept Sales

5 145 dept IT

6 Shipping ext 027

7 Sales ext 013

8 IT ext 002

9 Steve ID 156
10 William ID 187
11 Doug ID 152

12 156 department S/R
13 187 department Services
14 152 department Help Desk
15 S/R directory 05

16 Services directory 06

17 Help Desk directory 14

RDF triples created from the set of A in Example 1.

The query language recommended by the W3C for RDF data is SPARQL [20]. SPARQL queries
are very similar to SQL queries in structure. If, for example, there was a database that con-
tained a table that held employee data, where empID was the key and it contained 2 other
fields called name and salary. This table would first have to be converted into RDF, which
would contain triples such as those in Table 2.2 before a SPARQL query could be run. Once
the table was converted to RDF constructing a SPARQL query to return a certain emplD’s
salary would be a very simple task. Example 2 gives the SQL query for returning the salary

from and emplD as well as what this would look like as a SPARQL query.

Example 2 SQL vs SPARQL for "Retrieve employee 1234’s salary.”
SQOL
SELECT salary
FROM employees
WHERE emplID = "1234”

SPAROL
SELECT 7sal
WHERE {emplD:1234, LB:salary, ?sal .}

Table 2.2: Relational Database to RDF
Subject \ Predicate \ Object ‘
emps:1234 | LB:name | "John”
emps:1234 | LB:salary | 36000
RDF triples built from a table in a relational database.
Named employees, with columns emplD, name and salary.

Example 3 Simple SPARQL query of "Retrieve those who have empNo and dept”.
SELECT ?p 7t
WHERE { ?p empNo ?d . 7d dept ?t. }

Table 2.3: SPARQL Results
John 112 Shipping
Paul 132 Sales
Tim 145 IT
Result of the above SPARQL query on the data from Table 2.1.

2.2 Bisimilarity and KSA

We can view an RDF graph as a traditional directed graph, having triples as nodes, and
there is an edge labeled XY from triple t to triple s if and only if position X of triple t and
position Y of triple s contain the same atom (see Table 2.4 for all possible edge labels).

In our work the term bisimilar is used to describe equivalence between triples. Two
triples s and t in an RDF graph are bisimilar if in the corresponding directed graph, if there
is an edge labelled XY from t to some node t’, then there exists a node s’ such that there
is an edge labelled XY from s to s’ and t’ and s’ are bisimilar, and vice versa. This equiv-

alently comes from SPARQL query equivalence, where two triples are indistinguishable by

Figure 2.1: Graph Showing KSA Partitioning

3129, FF
9,10, 11 b
5 05
FP
3,45
P
12, 13, 14
s
SO

6,7, 8 g
4:_

15, 16, 17

View of the KSA partition on the triples from Table 2.1 labeled with edge types.

Table 2.4: Possible Edge Types
| Subject Predicate Object |

Subject SS SP SO
Predicate PS PP PO
Object oS OP 00

All nine possible edge types

SPARQL queries if and only if they are bisimulation equivalent [13]. The data in Table
2.1 is an example of a subset of data from two simple databases containing the same basic
information in two schemas that were merged into one RDF file. In Figure 2.1 a sample
graph has been built from the data in Table 2.1, by using R2D . The figure shows the sub-

set of triples that are contained in each block. The triples in the same block are said to

be bisimilar. This means that all of the triples in each block are bisimulation equivalent
because they are SPARQL query equivalent. Figure 2.1 shows that after running R?D on
this information the first block contained the subset of triples {0,1,2,9,10,11}, which are
shown in Table 2.5. Looking at this data its easy to see how the triples are grouped with
those that are all contain similar data. Tables 2.6 and 2.7 show the data from blocks 2 and
3 respectively.

Table 2.5: Block Data from Figure 2.1
| Triple ID Subject Predicate Object |

0 John empNO 112
1 Paul empNO 132
2 Tim empNO 145
9 Steve ID 156
10 William ID 187
11 Doug ID 152

Bisimilar Triples in Block 1

Table 2.6: Block Data from Figure 2.1
Triple ID Subject Predicate Object |

3 112 dept Shipping
4 132 dept Sales

5 145 dept IT

12 156 department S/R

13 187 department Services
14 152 department Help Desk

Bisimilar Triples in Block 2

We implemented our version of KSA that allows the user to select one of the 9 edge
types, to begin refining the data with. The 9 edge types are all of the possible combinations
of S, P and O and are given in Table 2.4. The code for this function is shown in Listing A.1
and it returns the full partition (P) as well as the newest block created on this iteration. This

function along with a few others allow users to browse RDF data for bisimilar relationships

without having any knowledge of the structure of the data.

Table 2.7: Block Data from Figure 2.1
’ Triple ID Subject Predicate Object ‘

6 Shipping ext 027
7 Sales ext 013
8 IT ext 002
15 S/R directory 05
16 Services directory 06
17 Help Desk directory 14

Bisimilar Triples in Block 3

CHAPTER THREE

RELATED WORK

Many visual query languages (VQL) have been purposed for RDF, XML and relational
databases (RDBs). The following is a brief overview of how these three three are different,
a few VQLs for each, and how each of these compare to R?D .

The main difference between RDEF, XML and RDBs are in their data models. An advan-
tage to using the RDF data model over XML or relational databases is in its simplicity. The
RDF data model resembles a graph where the XML data model is a tree with several types
of nodes, and RDB utilize flat tables as a data model. The ordering of RDF properties does
not matter unlike the ordering of elements that are required in XML. RDF also makes use
of URIs and other things that XML and RDB are agnostic to. One common misconception
is that RDF is some sort of simple XML format. There is an XML serialization format for
RDF data [5] as well as another format called Notation 3 (N3) [6]. Table 3.1 shows how
RDF triples are displayed in N3.

Real world information and their relationship can not always be neatly packed into
hierarchies, as in XML or tables, as in relational databases. This information is more easily
stored as a graph which can easily be converted into RDF triples that can be stored in a
tabular manner using N3, shown in Table 3.2. This allows the information to be easily

visualized as either a table or graph at the atomic level.

Table 3.1: N3
’ Notation 3 ‘
John Loves Jill.

Jill Loves Tom.
John Knows Tom.
Tom WorksFor Jill.

RDF triples shown in N3 format.

Table 3.2: RDF triples in a Table

| Num Subject Predicate Object |

1 John Loves Jill
2 Jill Loves Tom
3 John Knows Tom
4 Tom WorksFor Jill

Generic RDF triples in tabular format.

3.1 Challenges of Visual Querying of Data

There are many challenges when it comes to trying to visually query data. Some of these
are: allowing users to input queries, the users knowledge level, structuring and displaying
the output of the queries, and allowing queries on the results of previous queries, filters
and/or constraints on the output. Papers such as [14], [1], and [22] give insight for visual-
izing data. [14] gives concepts for hyper-graphs which are graphs where the relation being
specified does not have to be binary nor even of fixed arity. [1] gives concepts for graph-
oriented user interfaces. [22] gives reasons for why Great Big Graphs (GBG) might not be
the best way to present RDF data. These papers contained a wealth of information on how
to deal with the challenges mentioned above. Indeed, the study of visual query languages is
a very mature area of research [10]. In what follows, we just highlight approaches to visual
querying most related to R2L, placing our approach in the broader landscape of visual tools

for information systems.

3.2 Visual Query Languages

A few examples of visual query languages that use a data model other then RDF are Query-
by-Example (QBE) [24], XML-GL [11], and XQuery-by-Example (XQBE) [9]. QBE is a
high level data base management language for relational databases. XML-GL is a graphi-

cal language used for querying and restructuring XML documents. XQBE is a visual query

10

language for expressing a large subset of XQuery in a visual form, and can be consid-
ered as an evolution of XML-GL. All three of these VQL’s allow for visualizing queries

constructed by users that only need a very general understanding of the query language.

3.2.1 QBE

QBE was created with the intent to allow users to query, update, define, and control a rela-
tional database even if they know very little about relational data bases [9]. The operations
available in QBE mimic those of manual table manipulation. QBE starts out with a two-
dimensional skeleton table and the user is free to start to fill in the table with examples of
the desired solution in appropriate table spaces. There are many differences between QBE
and R2D . These include how the data is displayed, how users interact with the data, and

how queries are formulated.

3.2.2 XML-GL

XML-GL is a query language for XML-GDM data [11]. An XML-GL query results in
the creation of a new XML document. The four parts of XML-GL query are extract,
match, clip, and construct. The extract part contains the scope of the query, which includes
the target documents and the elements inside these documents. The match part, which is
optional, and contains any logical conditions that must be satisfied by the target elements.
The clip part is where sub-elements are specified on the extracted elements from the match
part. The construct part, also optional, specifies any new elements that should be included
in the result document. Graphically, XML-GL has two graphs side by side separated by a
vertical line where the left side contains a visualization of the extract and match parts, and
the right side contains the clip and construct parts. One similarity between XML~-GL and
R2D is in the display of the data. Both systems use a graph-like-view to display data and

any node in the graph can have more then one edge.

11

3.2.3 XOBE

XQBE is a visual query language for XML thats based on QBE. It allows for simple and
complex XQuery queries to be visualized. They recommend using simple transformations
and discourage its use for extremely complex transformations [9]. XQBE is regarded as
a direct decedent of XML—GL and in appendix A of [9] they give a detailed comparison
of XQBE and XML—-GL. The results of XQuery queries are displayed as two graphs sepa-
rated by a vertical line and edges that cross this vertical line are call binding edges. Since
XQBE is similar to XML-GL and QBE it compares the same to R?D as they did. Visually
XQBE uses graphs to display query results with labeled edges between nodes adding to the

expressivity of the language.

3.3 Visual Query Languages for RDF

When looking at a raw RDF file its difficult for humans to see the structure or follow all of
the links, which is why there have been many attempts to create tools for visualizing RDF
data. A few examples of VQL for RDF are Tabulator [7], Fenfire [16], [15], Graphite [12],
Explorator [3], NITELIGHT [23], GRQL [4], and RDF-GL [18]. Tabulator is a powerful
generic RDF browser that allows users to follow URIs and displays the data in tabular form.
Fenfire is a RDF browser that allows for visualizing all of the subject—predicate—object
relationships of a focused item that is either a subject or object. [15] presents a graphical
notation for representing queries on semistructured RDF data, that is meant to be both
easy to use and sufficiently expressive to cover a wide range of queries. Graphite is a tool
that allows for visually constructing queries over RDF data at the atomic level. Explorator
is a tool for user directed exploration of RDF data from either dereferencing an URI or
a SPARQL query against a SPARQL Endpoint. A SPARQL Endpoint is just a machine-
friendly interface towards a knowledge base. NITELIGHT is a Web-based graphical tool

for semantic query construction based on the SPARQL specification. GRQL utilizes the

12

RDF/S data model for constructing queries expressed in a declarative language such as
RQL. RDF-GL is the first graphical query language based on SPARQL , designed for RDF.
Links in massive RDF data files are difficult for humans to follow so its imperative to have

tools that allow these links to be visualized.

3.3.1 Tabulator

Tabulator is an extensive tool that allows for visualizing and following URIs of a specified
RDF document in a variety of ways [7]. Tabulator has two distinct modes, exploration and
analysis, which the user can easily switch between. In exploration mode the user is able to
explore the RDF graph in a tree view where nodes of the tree can be expanded to get more
information and links that may contain more RDF data about a given node are implicitly
followed. In analysis mode the user is able to define a pattern to be searched for. The
result of this query can be displayed as a table, calendar, and map. The only similarities
between Tabulator and R2D are they both use RDF data and give the user a way to search

and explore the data.

3.3.2 Fenfire

Fenfire is a RDF browser that gives a graph view, where blocks are subjects and objects
and edges are the predicates between them [16]. The graph initially has a focus block in
the middle and all triples that contain information in the focus as either a subject or object
are displayed. Those triples that have the focus as an object are displayed with the subject
in a new box to the left of the focus and connected to the focus by the predicate of the
triple. Similarly if the triple contains the focus as a subject the object of this triple appears
in a block to the right of the focus again connected by the predicate. An example would be
triples like “John IsA Man.” and “Jill Loves John.” where John is the focus. Then “Man”
would be to the right of “John” connected by the “IsA” predicate and “Jill” would be to the

left of “John” connected by the “Loves” predicate. Although R*D ends up looking similar

13

to Fenfire that is where the similarities end. R?D does not deal with RDF data at the atomic
level instead each of our blocks contains a subset of the complete set of RDF data and edges

show the bisimilar relation between blocks.

3.3.3 RDF Facets

Andreas Harths paper on Graphical Representation of RDF Queries gives a graphical no-
tation for representing queries for semistructured data [15] by use of what they call RDF
facets. A simple definition of an RDF facet is a filter condition over the RDF graph. The
facets can be done on either the subject or object and multiple facets done on the same
variable amounts to a join. They give a subset of RDF queries that can be visualized in
their graphical notation. RDF facets and R2D both allow users to explore RDF data and
display the results of the exploration in a graph. The way the exploration is done is vastly
different and the graph that is produced by using RDF facets are at the atomic level where
each node of the graph is a subject or object connected by the predicate, where as in R2D

each node contain one or more complete triples.

3.3.4 Graphite

Graphite is a visual query tool for large RDF graphs [12]. Graphite allows users to construct
query patterns that return exact matches as well as near matches. The user interface has
two main parts, the query area where users construct the query subgraphs is on the left side
and on the right side is the result area that shows the exact and near matches in a way that is
easy for the user to flip between. Graphite and R?D both use graphs to display data which

is the only similarity between the two programs.

3.3.5 Explorator

Explorator is an open-source exploration search tool for RDF graphs [3]. It provides a
QBE interface along with a custom model of operations. It allows the user to explore

URIs as if they were a SPARQL Endpoint which can be queried with SPARQL . Explorator

14

allows users to build these queries, even if they do not know what SPARQL is, by using an
intermediate function call that is easy to use. The main similarity between Explorator and
R2D is allowing the user to set a filter on the S, P, or O locations. They both also allow for

exploring data but in very different ways.

3.3.6 NITELIGHT

NITELIGHT is a graphical editing environment for the construction of semantic queries
based on SPARQL [23]. The interface for NITELIGHT has 5 main components which are
the canvas, toolbar, ontology browser, properties panel and the result viewer. The canvas is
where the graphical rendering of SPARQL queries occurs and once they appear they are se-
lectable and can be manipulated by different functions in the toolbar. The ontology browser
provides users with a starting point for query specification, and to facilitate the process of
query formulation. The properties panel includes different operations that may be available
on a selected item on the canvas. The results viewer displays the SPARQL query of the
current data on the canvas. The graph that is constructed from the query is at the atomic
level where nodes are subject or objects and the edges connecting them are the predicates,

which is different then the graph constructed in R?D .

3.3.7 GROL

GRQL is a tool that a relies on RDFS data model using queries expressed in RQL [4]. This
means that a user can explore graphically though the individual RDFS class and property
definitions. RDFS is the schema definition for RDF. GRQL gives users the ability to browse

and place filters on RDFS descriptions with out having expert knowledge of RQL or RDF.

3.3.8 RDF-GL

RDF-GL is a VQL for RDF that is based on SPARQL . There are three RDF-GL elements:
boxed, circle and arrow and extra information is assigned to the elements basd on their

shape and color. Very complex SPARQL queries can be recreated by using the elements to

15

build a visualization of it. Their main focus so far as been on the SELECT query and they
state that future research will be on the FROM, FROM NAMED and GRAPH elements of
SPARQL . The only similarities between RDF-GL and R?D are both use RDF data that the
attempt to search on by the use of SPARQL queries. RDF-GL does this directly while R2D
currently does not display the results as a SPARQL query the result can always be obtained

by running a SPARQL query on the data.

3.4 Visual Query Language Conclusion

Though many of these applications deal with RDF data and or display the data as a graph
none of them do what R2D does. All of these applications are “resource” centric, which
is to say that edges are the predicates of the triples, whereas we are “relationship™ centric,
where edges are relationships between triples. We allow the user to explore the data, search
for key words in any of the three fields (S, P, O), and allow the user to save the data from any
block to be used later. In the graph each block contains only the triples that participate in
the given edge type and this participation cascades throughout the entire graph. This allows
for potentially visualizing the structure in the data, as a whole, instead of the structure that

may be present at the atomic level.

16

CHAPTER FOUR
R’D

This chapter gives a detailed explanation of R?D . We discuss how to get into the initial
state, explain the actions available from the task bar, all of the possible methods done on
the blocks, and finally, go through a simple example demonstrating the functionality of

R2D using the data from table 2.1.

4.1 Start Up

R2D begins by prompting the user to open a file that must be one of three different file ex-
tensions. The first extension are . t xt file containing RDF N3 triples shown in Figure [6],
another extension type are .n3 files which also contain the data in N3 format along with
some extra data used for decoding the information, and the finally there are the . TRIPLES
extension where each triple is separated by | x | (format used by DBPedia). If the file meets
one of these specifications then R2D enters its initial state shown in Figure 4.1. Here a
single block is displayed on the canvas labeled with its ID number (always O for the initial
block) and its current filter of ****%* which means no filter. Once R?D has reached this
point it is ready for the user.

There are two main parts of the GUI: the task bar at the top and the canvas. The task
bar contains all of the actions that the user can perform independent of the blocks, and the
canvas is the available area for the blocks to be moved and where all of the newly created

blocks appear.

4.2 Task Bar

The task bar contains nine buttons allowing the user to do many actions very quickly. These

buttons are, in order, from left to right, “Start Over”, “New File”, “Load Query”,“Save

17

Figure 4.1: Initial State

Query”, “Save All”, “Options”, “Tutorial”, “Help”, and “Exit”. The functionality for each
button is explained below.

The ”Start Over” button opens a dialog box asking whether to start over or not, which
is set up as a safety mechanism in case the user changed their mind or did not mean to hit
this button. Then if the user then selects yes another dialog window opens asking to save
the current data. If the user selects no to starting over then no actions are done and the user
is returned to current state as if nothing happened. If the user selects yes a second time a
native OS file browsing window opens so that the user can save the information and then
the canvas is reset to the initial state with the last loaded file. If the user selects no to the

saving the information then the canvas is reset to the initial state with the last loaded file

18

right away. This allows for a quick and easy way to return to the initial state when methods
done on the blocks have resulted in a set of empty blocks.

The “New File” button allows the user to start over with a new file. When this button
is selected a dialog box opens asking if the user is sure they wish to open a new file, again
as a safety mechanism. If the user selects no then nothing is done and the user can proceed
as if they never hit this button. If the user selects yes then another dialog box opens asking
the user if they wish to save the current data to a file before the data is lost. After saving or
not a native OS file selection browser opens that has a filter for the three types of files that
can be loaded. Upon selecting a file, that satisfies the conditions stated in the “Start Up”
section, the GUI is cleared to the initial state with the new file. This button allows the user
to continue working on different files with out having to restart the program.

“Load Query” and “Save Query” buttons are currently non functional and will be dis-
cussed in more detail in the future works section.

The “Save All” button saves all of the data for each block into a text file. The text file
contains the block information followed by all of the triples that are associated with this
block. The file is saved with the triples being in N3 format which allows for this file to
be opened as a new file. The block information consists of the block ID and then the edge
type, parent block ID, and current SPO filter if available.

The “Options” button opens a small window that contains three options along with a
button labeled “Go”. These options are "Change BG Color”, “Change Label Color”, and
“Change Block Color”. All three options open an OS specific color choosing window. The
first option is used to set the background of the canvas and all subsequent option and data
windows to the selected color. The second option is used for changing the color of the
block labels. The final option is used for changing the fill color of the blocks displayed on
the canvas along with any new blocks. These options allows the user to fully customize the

color scheme in case the current scheme is difficult for them to read.

19

The “Tutorial” button opens a window that describes the basic functions that can be
done on the blocks. These functions include how to drag the blocks around, how to open
the method window, explains what each of the four methods are and how to use them. It
also explains how to use the “Options” button to change the colors of the GUI

The “Help Query” button opens a window and displays information the user can expect
to obtain while performing the different actions on the blocks. It provides an explanation of
what the arrows on the edges mean, in terms of which block is the parent and which is the
child based on where the arrow points, along with how to read the arrow label. Other points
that are explained using this button are how to add a filter and then change or remove this
filter along with how filters will propagate to other blocks by the edge types. After reading
this section a user should be able to use R2D with confidence.

Lastly, the “Exit” button exits the program.

4.3 Blocks

To keep things simple there are only two actions, moving (left mouse button) and open
methods (right mouse button). This is done to avoid having to do complicated clicks or
key presses on a block to access the different methods available. Moving a block is ac-
complished by pressing down the left mouse button and then moving the mouse and then
releasing the left mouse button which leaves the block at the last location before the left
mouse button was released. Opening the method window is done by right clicking on the
block shown if Figure 4.2.

The method window contains the methods that can be performed on the block. There
are four methods including: Select Edge KSA, Filtering by SPO, Destroy Filtering, and
Data Display. Once one of the four methods is selected the ”Go” button at the bottom is
then pressed to start the selected method.

The Select Edge KSA method opens another window that contains all nine possible

20

Figure 4.2: Method Menu

edge types shown in Figure 4.4(a). Once and edge is chosen, R?D goes into our KSA
function and if it was successful then a new block is created on the canvas, and then all
of the blocks are updated. The new block also adds a labeled arrow connecting the new
block to the originally clicked on block with the arrow head pointing to this block, shown
in Figure 4.4(b). This method helps to display the bisimilar relations that are present in the
RDF triples.

The Filtering by SPO method opens another window that has three fields, one for sub-
ject, predicate, and object. Filters can be entered on one, all three, or none of the fields.
The filter window is shown in Figure 4.5(a). The filter will propagate to other blocks de-

pending on the edge types between them. The propagation is shown in detail in Figure 4.3.

21

Figure 4.3: Select Edge KSA (a-b)

[7 roF_cur EEIES

(a) Select Edge Menu

In Figure 4.5(a) the user has selected to filter on block 1 and has entered “Shipping” into
the subject field. Figure 4.5(b) shows that ”Shipping” has propagated to the object filter
of block 0 because of the SO edge between the blocks. Figure 4.5(c) shows that block 0
contains twelve triples before the filtering and Figure 4.5(d) shows that block 0 now only
contains the triple where “Shipping” is the object.

The Destroy Filter method removes the filter from all of the blocks in the graph, which
is useful when a filter has caused the graph to look empty. If a blank string is used as a

filter it removes the filter that was present on this block at that given position. At this time

22

(b) After Edge Selection

Creating new blocks using Select Edge KSA method.

the empty string does not properly propagate so using the Destroy Filtering method is the
preferred method for removing filters. The filter is done on top of the data blocks and does
not directly alter the data so filtering and then destroying the filter can be done over and
over without having to use the “Start Over” command.

The Data Display method displays the data of the current block in its own window,
labeled with the block number. Figures 4.6(a), 4.6(b), and 4.6(c) shows how the data
display windows look. The data in this new window can be saved to a text document,

or closed using the exit button. This saved text document can be opened as a new file. The

23

Figure 4.4: Filter Propagation (a-d)

(a) OS Edge Filter on Block 1

window can also be left open and used to compared against the same block after a filter or

adding a new edge to see how the data has changed.

4.4 Example

Here is a brief example of how R2D could be used on the data from table 2.1. The initial
block contains all of the data thats present in the table shown in Figure 4.6(a). Creating an
edge on this initial block (block 0) of the type SO will produce Figure 4.6(b) which also

displays the data from both blocks after creating the edge. Creating another SO edge on

24

(b) Filter Jumping along OS Edge to Block 0

the new block (block 1) leads to Figure 4.6(c). This figure also contains the data from all
three blocks. As you can see looking at the data that has been partitioned into the different
blocks that data that has the same structure has been grouped together. This data set is very

simple but it shows the potential power of R?D .

25

(c) Block 0 Data Before Filter

26

(d) Block 0 Data After Filter

How Filtering Propagates Along Edges.

27

Figure 4.5: Data Display (a-d)

(a) Block 0

28

(b) Creation of Block 1

29

(c) Creation of Block 2

30

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

There have been many different ideas and applications for visually browsing RDF data.
Our application follows a path less traveled in that its based on a sound mathematical algo-
rithm. The bisimilar relationships that are created can be recreated with SPARQL queries
if the user was so inclined but our method allows the user to have no knowledge of what
a SPARQL query even is. We set out to create a visual tool for browsing RDF data using
a modified KSA. Our prototype meets these goals with a varying degree of success, but
meets them none the less. With very little knowledge of the data a user can open a RDF
file and begin to create filters or edges on the data. It currently takes what amounts to brute
force to find any meaningful relationships in the data but starting with zero knowledge of
the data or its structure brute force was acceptable for RD .

R?D began as a simple visualization tool for displaying the results of our version of
KSA. It has transformed into a much more sophisticated program that allow users to do
much more then just visualize data. The future holds many more changes to R2D including
but not limited to: SPARQL query output, optimization of our KSA bisimulation function,
giving the user the ability to see one step out, and changes to the overall appearance of the
GUIL. The output of a SPARQL query of a current graph could be very helpful if R2D was
used to test a small subset of a large data set with an unknown structure. The user would be
able to experiment with different edge combinations on the small data set and then receive
SPARQL queries that would then be run on the entire data set. The optimization of the KSA
functions would allow for faster results and larger data sets to be input. Allowing the user
to see all of the possible edges from all of the current blocks would help ease the pain of
trying to find the structure by brute force. One purposed change to the GUI is displaying all

of the possible edges and blocks one step out from the current blocks, which would allow

31

the user to see whats possible instead of having to do this by brute force. Another idea
in the works for the GUI is to rewrite the block movement functions and have new blocks

appear in a more convenient fashion.

32

BIBLIOGRAPHY

[1] Marc Andries, Marc Gemis, Jan Paredaens, Inge Thyssens, and Jan Van den Buss-
che. Concepts for graph-oriented object manipulation. In EDBT ’92: Proceedings of
the 3rd International Conference on Extending Database Technology, pages 21-38,
London, UK, 1992. Springer-Verlag.

[2] Renzo Angles. A Nested Graph Model for Visualizing RDF Data. In 3rd Alberto
Mendelzon International Workshop on Foundations of Data Management, Arequipa,
Peru, 2009.

[3] Samur Aratjo and Daniel Schwabe. Explorator: a tool for exploring RDF data
through direct manipulation. In Proceedings of the Linked Data on the Web Work-
shop, Beijing, China, 2009.

[4] Nikolaos Athanasis, Vassilis Christophides, and Dimitris Kotzinos. Generating on
the fly queries for the Semantic Web: The ICS-FORTH Graphical RQL Interface
(GRQL). In International Semantic Web Conference, pages 486—501, 2004.

[5S] Dave Beckett. RDF/XML Syntax Specification (Revised), 10 Feburary 2004.
http://www.w3.0rg/TR/rdf-syntax—grammer.

[6] Tim Berners-Lee. Notation 3. http://www.w3.0rg/DesignIssues/Notation3.

[7] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj, James
Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and analyzing
linked data on the semantic web. In Proceedings of the 3rd International Semantic
Web User Interaction Workshop, 2006.

[8] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
International Journal on Semantic Web and Information Systems, 2009.

[9] Daniele Braga, Alessandro Campi, and Stefano Ceri. XQBE (XQuery by Example):
A visual interface to the standard XML query language. ACM Trans. Database Syst.,
30(2):398-443, 2005.

[10] Tiziana Catarci, Maria Costabile, Stefano Levialdi, and Carlo Batini. Visual Query
Systems for Databases: A Survey. In Journal of Visual Languages and Computing,
pages 215-260. Academic Press Limited, 1997.

[11] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano Paraboschi,
and Letizia Tanca. XML-GL: A Graphical Language for Querying and Restructuring
XML Documents. Computer Networks, 31(11-16):1171-1187, 1999.

[12] Duen Horng Chau, Christos Faloutsos, Hanghang Tong, Jason I. Hong, Brian Gal-
lagher, and Tina Eliassi-Rad. GRAPHITE: A visual query system for large graphs. In
ICDM Workshops, pages 963-966. IEEE Computer Society, 2008.

33

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

George H. L. Fletcher. An algebra for basic graph patterns. In Logic in Databases,
Rome, Italy, 2008.

David Harel. On visual formalisms. Commun. ACM, 31(5):514-530, 1988.

Andreas Harth, Sebastian Ryszard Kruk, and Stefan Decker. Graphical representation
of rdf queries. In WWW °06: Proceedings of the 15th international conference on
World Wide Web, pages 859—-860, New York, NY, USA, 2006. ACM.

Tuukka Hastrup, Richard Cyganiak, and Uldis Bojars. Browsing linked data with
fenfire. In Proceedings of the Linked Data on the Web Workshop, Beijing, China,
2008.

Ivan Herman, Ralph Swick, and Dan Brickley. Resource Description Framework
(RDF). http://www.w3.0rg/RDF.

Frederik Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak. RDF-GL:
A SPARQL-Based Graphical Query Language for RDF. In In Y. Badr, A. Abraham,
A.-E. Hassanien And R. Chbeir (Eds.), Emergent Web Intelligence: Advanced Infor-
mation Retrieval, Springer Verlag, Berlin, 2010.

Paris C. Kanellakis and Scott A. Smolka. CCS Expressions, Finite State Processes,
and Three Problems of Equivalence. Inf. Comput., 86(1):43—-68, 1990.

Eric Prud’hommeaux and Lee Feigenbaum. SPARQL Qinproceedingsuery Language
for RDF Errata. http://www.w3.0rg/2001/sw/DataAccess/query-errata.

Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Pro-
gram. Lang. Syst., 31(4):1-41, 2009.

M.C Schraefel and D. Karger. The pathetic fallacy of rdf. In International Workshop
on the Semantic Web and User Interaction (SWUI), Athens, Georgia, 2006.

Paul R. Smart, Alistair Russell, Dave Braines, Yannis Kalfoglou, Jie Bao, and
Nigel R. Shadbolt. A visual approach to semantic query design using a web-based
graphical query designer. In EKAW, pages 275-291, 2008.

Moshé M. Zloof. Query-by-Example: A data base language. IBM Systems Journal,
16(4):324-343, 1977.

34

APPENDIX

0NN kAW =

LW LW LW W L LW W N DN DN DN NN DD M = = e e e e e
AN PE VNN OOVXIANANNPE WD, OOVIANNDAWN—=O\O

37
38
39
40
41
42

APPENDIX ONE
SOURCE CODE

Listing A.1: User defined KSA

setTriples is the tripleTable (self.tripleTable) for
setEdges is the set of edges (self.edgeNode) for

theGraph list of all triple IDs
edteType list of the edge type [’SS’, ’SP’,
user is asking for

L)

returns the created Partition list and a listing
def userDefKSBiSim(self, setTriples, setEdges, theGraph, edgeType):

block2 = "’
P = range(len(setTriples))
P.sort ()
self . blockDict[min(P)] = P[1:]
self .blockHashList.append(min(P))
P = [P]
spliterSet = P[:]
sSet = set ([])
count = 0
while spliterSet != []:
S = spliterSet[count % len(spliterSet)]
spliterSet.remove(S)
for l_type in edgeType:

this file ##
this file ##

’00] that the ##

of the newest ##

C = self.findEdge(l_type , self.edgeNode, S)

if C == []:
pass

#need to add in the new items to the tables

elif C[O] not in self.blockHashList
self.blockHashList.append(C[0])
else:
self.blockDict[C[0]] = C[1:]
if C = []:
for block in P:
bSet = set(block)
cSet = set(C)

interBC = cSet.intersection (bSet)
if (interBC != set([])) and (interBC != bSet):

block2 = bSet — interBC

P, spliterSet = self.cleanPartition (P, list(

spliterSet), list(block),

list (block2))
else:
pass
else:
pass
count += 1
return P, list(block2)

list (interBC) ,

36

0NN kW=

A A PR BEAEBA DA PE DD WOOLLLWLWLWLWLLVLWLWWIENRDNDNNDEDDNNDNDDNNDDLND R === === = =
OO0 UNHAEWNDNR,OUOVWXTIANANNHAE WP, OOUXTIANNRAE WD, OOVOXINWN A WD~ OO

Listing A.2: Source Code

”””RDF Relational Display, version 3.0
input: filename”””

import sys, os, time, tkMessageBox
#import sets

from Tkinter import x

from tkColorChooser import askcolor

from tkMessageBox import =x

from tkFileDialog import askopenfilename
from tkFileDialog import asksaveasfilename

class rdfGui:

def __init__(self, parent, fi):

HAH#FHHHHARAHAHHH#AHA Global Sizes #HH#AH#HAHAHHHHAHAHAHAHAHAHFHHHHAHAHARAHAH

Frame
FRW = 800
FRH = 600

Canvas
CANW = (.5 % FRW)
CANH = FRH

Boxes
self .BoxW = 80
self .BoxH = 60

##block label default##
self.bld = 7skxxkx”
H—H—H—H—H—H—H—H—HHHHHH W HHHHH W HHHHH

HA#HHAHHHFHAHHA#H###E Global Color Options for GUI #######H###HAHHHHFHAHH

self .bgColor = ”light slate blue”

self .bgColorText = ”light slate blue”
self . menuButtonBGColor = ”black”

self .menuButtonFont = (” helvetica’, 9)
self . menuButtonFGColor = ”white”

self .recColor = ”slate grey”

self .recColorOutline = ”red”

self .recColorMoving = “dark slate blue”
self.textColor = ”black”
self.labelTextColor = ”snow2”

37

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

B I I o e e L it i

#AH#AHHH A HAHAHHH#A##A Global List and Dicts ####H#H##H##H#HAHAHAHFHAHHAHAHAH

self .recInfoList = [] # [(rectID, [blockList])]
self .recList = [] # [(rectID, (x,y))]
self .recLineList =[]
self.recLabel = []
#index 1s the same as the recList, 1 filter for each rec
self.filterList = []
self.lineLabel = []
self.edgeLabelDic = {}
self.bboxDic = {}
self .dataDic = {}
self .tempLineList = []
self.recListName = [0]
self .recCount = 1
self .oldx = 0
self.oldy = 0
self.activeBlock = 0
self .tempStr = 7’
self.tagList = []
#it###HH R HH AR AR AR AHHAAEH GUIL Initialize ##H##HHHAHHHAHHHSHHHFHHHHHBHHHHHH

self .myParent = parent
parent. title ("RDF_GUI”)
self .myContainer = Frame(parent, width=FRW, height=FRH)

#only activate one of the following two function calls
MenuBar for New, Save, Exit, Help
self . makeMenuBar(self.myParent, self.myContainer)

Buttons for New, Save, Exit, Help
self . makeButtonMenu(self.myParent, self.myContainer)

self.canvas = Canvas(self.myContainer, bg = self.bgColor, \
relief=SUNKEN)

self .canvas.config(bd=2,width = 2xCANW, height= CANH)

self .canvas.config(highlightthickness=0)

self.canvas.pack(side=LEFT, expand=YES, fill= BOTH)

self . myContainer. pack ()

Hu#HHHH SR HHHHH#HH#HE RdfTableBuilder Class instantiation ########444#H##
if fi = 77

38

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

self .rtb = RdfTableBuilder(self, fi)

self .KSpar = self.rtb.KSBiSim(self.rtb.tripleTable , \
self.rtb.edgeNode, [range(len(self.rtb.edgeNode))])

else:
self . fileD (1)

B B B e B B B i

No longer used but saved in case I wanted to use a
def howToScroll(self, window, width, length):
#scroll bar on/off code
window . config (scrollregion= (0,0,width, length))
sbary = Scrollbar (window)
sbarx = Scrollbar (window, orient=HORIZONTAL)
sbary . config (command=window . yview)
sbarx . config (command=window . xview)
window . config (yscrollcommand=sbary . set)
window . config (xscrollcommand=sbarx . set)
sbary . pack(side=RIGHT, fill=Y)
sbarx . pack (side=BOTTOM, fill=X)

Makes the menu bar
def makeMenuBar(self , parent, thisCan):

menu = Menu(thisCan)
parent.config (menu=menu)

scroll bars##

filemenu = Menu(menu)

helpmenu = Menu(menu)

tutmenu = Menu(menu)

menu. add_cascade (label="File”, menu=filemenu)

menu. add_cascade (label="Help”, menu=helpmenu)

menu. add_cascade (label="Tutorial”, menu=tutmenu)

filemenu .add_command (label="Start Over”, command=self.startOver)
filemenu .add_command (label="New File”, command=self.newQuery)

filemenu .add_command(label="Load Query”, command=self.callback)

filemenu.add_separator ()

filemenu .add_command (label="Save Query”, command=self.callback)
filemenu .add_command (label="Save All”, command=self.callback)

filemenu.add_separator ()

filemenu .add_command(label="Exit”, command=parent.destroy)
helpmenu.add_command(label="Help Query”, command=self.helpQ)
tutmenu .add_command(label="Tutorial”, command=self.tutorial)

Makes the Buttons instead of the menu bar
def makeButtonMenu(self , parent, thisCan):

39

152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

buttonBD = 8
bWidth = 12
bCan = Canvas(thisCan, height=20, width=800, bg="black”)

bSO = Button(bCan, text="Start Over”, command=self.startOver , \
relief=RAISED)
bNew = Button(bCan, text="New File”, command=self.newQuery, \
relie f=RAISED)
bLoad = Button(bCan, text="Load Query”, command=self.callback, \
relief=RAISED)
bSave = Button(bCan, text="Save Query”, command=self.callback, \
relief=RAISED)
bSaveAll = Button(bCan, text="Save All”, \
command=lambda: self.saveAs(’’), relief=RAISED
)
bExit = Button(bCan, text="Exit”,\
command=parent .destroy , relief=RAISED)
Button (bCan, text="Help Query”, command=self.helpQ,\
relie f=RAISED)
bTut = Button(bCan, text="Tutorial”, command=self.tutorial ,\
relief=RAISED)
bOption = Button(bCan, text="Options”,\
command=self .optionMenuBar, relief=RAISED)

bHelp

bSO. pack (side=LEFT)

bSO. config (width = bWidth, bd=buttonBD ,\
bg=self.menuButtonBGColor, \
fg=self . menuButtonFGColor, \
font=self.menuButtonFont)

bNew . pack (side=LEFT)

bNew. config (width = bWidth, bd=buttonBD ,\
bg=self.menuButtonBGColor, \
fg=self . menuButtonFGColor, \
font=self.menuButtonFont)

bLoad . pack (side=LEFT)

bLoad. config (width = bWidth, bd=buttonBD,\
bg=self.menuButtonBGColor, \
fg=self . menuButtonFGColor, \
font=self.menuButtonFont)

bSave.pack (side=LEFT)

bSave.config (width = bWidth, bd=buttonBD,\
bg=self.menuButtonBGColor,\
fg=self.menuButtonFGColor,\
font=self.menuButtonFont)

bSaveAll.pack(side=LEFT)

bSaveAll.config (width = bWidth, bd=buttonBD,\
bg=self.menuButtonBGColor,\

40

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

fg=self . menuButtonFGColor ,\
font=self.menuButtonFont)

bOption . pack (side=LEFT)

bOption . config (width = bWidth, bd=buttonBD,\
bg=self.menuButtonBGColor,\
fg=self . menuButtonFGColor ,\
font=self . menuButtonFont)

bExit.pack (side=RIGHT)

bExit.config (width = bWidth, bd=buttonBD,\
bg=self.menuButtonBGColor,\
fg=self . menuButtonFGColor ,\
font=self.menuButtonFont)

bHelp . pack (side=RIGHT)

bHelp . config (width = bWidth, bd=buttonBD,\
bg=self.menuButtonBGColor,\
fg=self.menuButtonFGColor,\
font=self.menuButtonFont)

bTut . pack (side=RIGHT)

bTut.config (width = bWidth, bd=buttonBD ,\
bg=self.menuButtonBGColor,\
fg=self.menuButtonFGColor,\
font=self.menuButtonFont)

bCan. pack (side=TOP, fill=BOTH)

returns color tuple and string representation of the selected

color
def AskForColor(self , title="Pick Color’):
ctuple ,cstr = askcolor(title=title)

return ctuple , cstr

return “yes” for Yes, “no” for No

def AskQuestion(self, title="Title ', message="your question here.’):
a = askquestion(title , message)
if a:
if a != "no’
return ’yes’
else:
return a

Opens a dialog box asking if the user wants to open a new file
def newQuery(self):

if self.AskQuestion(’Open New File’, "Open new file?”) == ’yes’
if self.AskQuestion(’Save’, ”Save before clearning data?”)\

41

252
253
254
255
256
257
258
259
260
261
262
263
264

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290
291
292
293
294
295
296
297
298
299
300

##
##

##
##
##
##

2.

== ’yes
self .saveAs ()
else:
pass
self.fileD (0)

user decided they did not want to open a new file

else:

pass
If the user wanted to open a new file a file dialog box opened ##
If fname is a valid file name selected by the user then the file
#i#
is opened and the program starts over ##
If flag ==1 then this is the start of the program and there is ##
no need to clean the data. ##
If flag == 0 then clean data before starting over. ##

def fileD (self, flag):

##

##
##
##

fname = askopenfilename(title = ”Choose New File”,\

filetypes=[(’txt files ’, ’x.txt’)])

print fname
if fname is None:

showerror (" Error!”, ”File unable to open”)
pass
else:
if fname == ’’:
showerror (" Error!”, ”File unable to open”)
elif flag == 0:
self.clearData (fname)
else:

self . rtb = RdfTableBuilder(self, fname)
self .KSpar = self.rtb.KSBiSim(self.rtb.tripleTable ,\
self.rtb.edgeNode,\
[range (len(self.rtb.edgeNode))])
self.driver(’’, ”start”™, ’7)

User is asked if they wish to start over with the existing file

##
If

the user wants to start over they are prompted asking ##

whether they want to save or not ##
The program is then started over at the begining ##
def startOver(self):

if self.AskQuestion(’ Starting Over’,\

”Do you wish to start over?”) == ’yes’
if self.AskQuestion(’Save’,\
”Save before clearning data?”) == ’yes :

self .saveAs (')
else:

42

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

pass
self.clearData(’’)
self.driver(’’, ”start”, ’7)
else:
pass

fname is the name of the file to be opened if the user wanted

to open a new file

This function sets all of the data structures back to initial

starting configurations
def clearData(self, fname):

del self.recInfoList[:]
del self.recList[:]

del self.recLineList[:]
del self.recLabel[:]
del self.filterList[:]
del self.lineLabel [:]
self.edgeLabelDic.clear ()
self .bboxDic.clear ()
self .dataDic.clear ()
del self.tempLineList[:]
del self.recListName[:]
self .recListName = [0]
self.recCount = 1

self .oldx = 0

self .oldy = 0

self .activeBlock = 0
self.tempStr = °°

del self.tagList[:]

self .canvas.delete (ALL)
if fname != :
self.rtb.clearRDFData ()

CRE I

self.rtb = RdfTableBuilder(self, fname)
self .KSpar = self.rtb.KSBiSim(self.rtb.tripleTable ,\

self.rtb.edgeNode,\
[range (len(self.rtb.edgeNode))])

self.driver(’’, ”start”,)

def readTextFile (self ,filename):
line = filename.readline ()
text = 77
while line:
text = text + line
line = filename.readline ()
return text

43

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

def helpQ(self):
try:
helpFile = open(’ helpFile.rtf’, ’r’)
hq = self.readTextFile (helpFile)
except IOError:
hq = ”Could not open Help file, please make sure its” +\
” in the proper directory”

self.textToCan(hq, “Help Query”, 0)
helpFile.close ()

Prints the tutorial information to a text window

May need to change this to open a tutorial file later and
display its content

def tutorial(self):

try:
tutorialF = open(’ tutorial.txt’, ’r’)
tut = self.readTextFile(tutorialF)
except IOError:
tut = ”"Could not open Tutorial file , please make” +\
“sure its in the proper directory”

self .textToCan(tut, ”Tutorial”, 0)
tutorialF .close ()

returns the value from the radio option menu
def getOselect(self):
return self.optionVar. get ()

Creates the radio option menu
Allows for changing colors, fonts and size of rectangle
def optionMenuBar(self):

self.optionVar = StringVar ()

self.optionVar.set(’cc’)

self.optionWin = Toplevel ()

self .optionWin. title (" Options™)

self .optionWin.config(bg=self.bgColor)

Radiobutton(self.optionWin, text="Change BG Color’,\
value = ’cc’, bg=self.bgColor, bd=4,\
variable=self .optionVar, width = 25,\
relief=SUNKEN, indicatoron=0).pack(side=TOP)

Radiobutton (self.optionWin, text="Change Label Color’,\
value = ’cf’, bg=self.bgColor, bd=4,\
variable=self.optionVar, width = 25,\
relief=SUNKEN, indicatoron=0).pack(side=TOP)

Radiobutton (self.optionWin, text="Change Block Color’,\
value = ’cr’, bg=self.bgColor, bd=4,\
variable=self.optionVar, width = 25,\

44

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

relief=SUNKEN, indicatoron=0).pack(side=TOP)
Button (self.optionWin, text="Go”,bg=self.bgColor,\
relief=RAISED, bd=4, width = 25,\
command=self.optionGet).pack (side=BOTTOM)

Uses the value from the radio option menu and calls
functions for chaning GUI appearence##
def optionGet(self):

opt = self.getOselect ()

if str(opt) == ’cc’:
rgb, ¢ = self.AskForColor ()
if ¢ != None:

self .bgColor = ¢
self .bgColorText = ¢
self.canvas.config(bg= c)

elif opt == ’cf’:
rgb, ¢ = self.AskForColor ()
if ¢ != None:

self.labelTextColor = ¢

self.tempLineList = self.recLineList[:]

self.redrawLine ()

for item in self.recLabel:
self.canvas.itemconfigure (item, fill= c¢)

elif opt == ’cr’:
rgb, ¢ = self.AskForColor ()
if ¢ != None:
self .recColor = ¢

for rec in self.recList:
self .canvas.itemconfigure(rec[0], fill=c)

else:
pass
self.optionWin.destroy ()

Saves text to the file specified by the user
possible errors in the file are caught to avoid crashing
def saveAs(self, text):

fname = asksaveasfilename (title="Save File As...”,\

filetypes=[(’ txt files ', ’x.txt’)])

if type(fname) is unicode:
try :
fo = open(fname, ’'w’)
if text is

45

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

Displays

count = 0
#saving all data from all blocks

for

fo.
fo
else:
fo.
fo.
fo.
return

i in self.recList:
fo.write("Rec: ” + str(count) +”\n”)
fo.write (” Filter\n” + ”Subject: ” +\
self. filterList[count][0] \
+ ”\nPredicate: ” +\
self.filterList[count][1] \
+ "\ nObject: ” +\
self.filterList[count][2] + ”\n”)
p, edge = self.findParent(i[0])

if p is not None:
fo.write ("Has edge: ”+ str(edge)+\

” to block: ” + str(p)+ ”\n”)
fo.write (” Contains the following triples:\n”)
temp = self.displayFilter (self.dataDic[i[0]],)\

self.filterList[count])
fo.write (temp + “\n\n”)
count += 1
flush ()

i)

.close ()

write (text)
flush ()
close ()

1

except IOError:
showerror (” Error!”, ”“Unable to Open File: ” +fname)
return 0

else:

showwarning
return 0

(”Warning!”, ”File Selection Cancelled”)

the data from the block into a new window ##

Background color can be controlled by chaning bgColorText

in

__init__ ##

def textToCan(self,

text, title , menuYN):

self.txtwin = Toplevel ()

self.txtwin. title (title)
scrollbar = Scrollbar(self.txtwin)
scrollbar . pack(side=RIGHT, fill=Y)
if menuYN is 1:

W = self.rtb.longestTriple
else:

W = 60

if W> 500:

46

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

##

W = 500
elif W< 60:

W = 60
halfW = int (W/2)

bw = halfw -3

if menuYN is 1:
bc = Canvas(self.txtwin, height=20, width=W,\
bg="black”, relief=RAISED)
bSaveAs = Button(bc, text="Save As”,\
command=lambda: self.saveAs(text),\
relief=RAISED)
bSaveAs.config (bd=7, width=bw, bg=self.menuButtonBGColor,\
fg=self.menuButtonFGColor,\
font=self.menuButtonFont)
bSaveAs.pack (side=LEFT)
ex = Button(bc, text="Close”, command=self.txtwin.destroy,\
relief=RAISED)
ex.config(bd=7, width=bw, bg=self.menuButtonBGColor,\
fg=self . menuButtonFGColor,\
font=self . menuButtonFont)
ex . pack (side=RIGHT)
bc.pack(side=TOP, fill=BOTH)

self.txt = Text(self.txtwin, bg=self.bgColorText,)\
width = W, wrap=WORD,\
yscrollcommand=scrollbar . set)

self . txt.pack()

scrollbar.config (command=self.txt.yview)

self.txt.config (state=NORMAL)
self.txt.delete (1.0, END)

self . txt.insert (1.0, text)
self.txt.config(state=DISABLED)

Generic command for button press testing ##

def callback(self):

##
##
##
##
##
##
##

print “filemenu action”

Makes a new rectangle at cX, cY in the canvas ##
Color of the Background, Text, and ActiveOutline ##

color can be changed in __init__ ##

self .recColor == Background color ##

self .recColorOutline == outline color of the block when ##
the mouse is over it ##

self .textColor == color of text in the rectangle ##

def makeRect(self, cX, cY):

self .recListName[self.recCount—1] = \
self.canvas.create_rectangle (cX, cY,\

47

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

cX+self .BoxW,\
cY+self .BoxH,\
fill=self.recColor)
self.bboxDic[self.recListName[self.recCount—1]] =\
(cX,cY,cX+self .BoxW,cY+self .BoxH)
self.canvas.tag_bind(self.recListName[self.recCount —1],\
><Enter >, self.entered)
self.canvas.tag_bind (self.recListName[self.recCount—1],\
’<ButtonPress —1>", self.recLClick)
self.canvas.tag_bind(self.recListName[self.recCount —1],\
><ButtonPress —3>’, self.recRC)
self.canvas.tag_bind(self.recListName[self.recCount —1],\
’<Bl-Motion >’, self.recDrag)
rec = "\nID: ” + str(self.recCount—1)
ts = ”\nS: ” + self.bld
tp = "\nP: ” + self.bld
to = ”\nO: ” + self.bld
self.recLabel.append(self.canvas.create_text(cX+30,cY+20,\
font=self.menuButtonFont,\
text = rec + ts + tp + to,)\
fill= self.labelTextColor))
self.canvas.tag_bind(self.recLabel[—1], <Enter >’,\
self . entered)
self.canvas.tag_bind (self.recLabel[—1], ’<ButtonPress —1>",\
self .recLClick)
self.canvas.tag_bind(self.recLabel[—1], ’<ButtonPress —3>",\
self .recRC)
self.canvas.tag_bind(self.recLabel[—1], *<Bl-Motion >",\
self .recDrag)
#add rec to list
self.recList.append ((self.recListName[self.recCount—1], (cX, cY)

))
self.filterList.append ([, *’, *’])

Action done each time the mouse goes over a rectangle/block
Used mainly for debugging for now
def entered(self, event):

pass

Displayes the contents of the closes block
def printtext(self, event):

self . findClosest(event.x, event.y)
pstr = self.displayFilter (\
self.dataDic[self.recList[self.activeBlock][0]],\
self.filterList[self.activeBlock])
self.textToCan(pstr, ”Block: ” +\
str(self.activeBlock) + ” Data”, 1)

48

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

Function controls the draging of the blocks

The postion of the block is updated as its moved along with
the text and the arrows are redrawn on release

def recDrag(self, event):

event.widget.itemconfigure (self.recList[self.activeBlock][0],)\
fill =self.recColorMoving)

self.canvas.move(self.recList[self.activeBlock][0],\
event.x—self.oldx, event.y—self.oldy)

self.canvas.move(self.recLabel[self.activeBlock],)\
event.x—self.oldx, event.y—self.oldy)

event.widget.bind(’<ButtonRelease —1>", self.redrawing)

self.oldx, self.oldy = event.x, event.y

self.destroyConLines ()

Funtion for redrawing connecting lines to the proper corners
def smartLine(self , bboxl, bbox2):

#check if bboxl is to the left or right of bbox2
if (bbox1[0] <= bbox2[0]):

#bbox1 left of bbox2

Ir =1
else:

Ir =0

if (bbox1[1] <= bbox2[1]):
#bbox1 is above bbox2

ud = 1
else:
ud = 0
if (1r == and ud == 1):

#bbox1 is above and to the left of bbox2

return (bbox1[2], bbox1[3]), (bbox2[0], bbox2[1])
elif (Ir == 1 and ud == 0):

##bbox1l is to the left and below bbox2

return (bbox1[2], bbox1[1]), (bbox2[0],bbox2[3])
elif (Ir == 0 and ud == 1):

#bbox1 is to the right and above bbox2

return (bbox1[0],bbox1[3]), (bbox2[2],bbox2[1])
else:

#bbox1 is to the right and below bbox2

return (bbox1[0], bbox1[1]), (bbox2[2],bbox2[3])

Once the block stops moving from recDrag the position
and lines need to be updated
def redrawing(self, event):

49

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

X,y = event.x, event.y

event.widget.itemconfigure (self.recList[self.activeBlock][0],)\

fill =self.recColor)
tbbox = event.widget.bbox(self.recList[self.activeBlock][0])
self .bboxDic[self.recList[self.activeBlock][0]]= tbbox
self.recList[self.activeBlock] = \
(self.recList[self.activeBlock][0],)\
(tbbox [0],tbbox[1]))
event.widget.unbind(’<ButtonRelease —1>")

self .redrawLine ()

def redrawLine(self):
redraws all lines and stores the info for each
for line in self.tempLineList:
orgB = line[1]
desB line [2]
start , end = self.smartLine(self.bboxDic[orgB],\
self.bboxDic[desB])
self.conLine(start ,end,orgB, desB, line[3])

Sets self.activeBlock to nearest block to the action done
Possible actions are: mouse over, right click, left
##click , left double click, and mouse button 3 clicked ##

def findClosest(self, x, y):

for i, pos in self.recList:
if (pos[0] <= x and (x <= (pos[0]+self.BoxW)) and \
pos[1] <=y and (y <= (pos[l]+self.BoxH))):
self.activeBlock = self.recList.index ((i, pos))

else:
pass

Function for left clicking on block
sets self.activeBlock to get ready to drag
def recLClick(self, event):
self .oldx,self.oldy = event.x,event.y
self.findClosest(event.x, event.y)

makes the radiobutton for the Filtering
def mkCombo(self):

sel = [°S’, 'P’, *0O’]

self.varobj StringVar ()

self.varsub = StringVar ()

self . varpre = StringVar ()

self .winCombo = Toplevel ()

self .winCombo. title (” Filtering ™)

50

708 self .winCombo. config (bg=self.bgColor)

709 Label (self.winCombo, bg=self.bgColor,\

710 text="Subject: ’).grid(column=0, row=0)
711 Label (self.winCombo, bg=self.bgColor,)\

712 text="Predicate: ’).grid(column=0, row=1)
713 Label (self.winCombo, bg=self.bgColor,\

714 text="0Object: ’).grid(column=0, row=2)
715 entryS = Entry(self.winCombo, width = 32,\
716 textvariable=self.varsub)

717 entryP = Entry(self.winCombo, width = 32,\
718 textvariable=self.varpre)

719 entryO = Entry(self.winCombo, width = 32,\
720 textvariable=self.varobj)

721 entryS . grid (column=1, row=0)

722 entryP . grid (column=1, row=1)

723 entryO . grid (column=1, row=2)

724 Button (self.winCombo, text="Update”,bg=self.bgColor,)\
725 relief=RAISED, bd=4,\

726 command=self. filterBlock).grid (column=0, row=3)
727

728

729 ## concats the block filter strings to the first 9 characters ##
730 def setBlockText(self, ts, tp, to, block):

731 self . filterList[block] = [ts, tp, to]

732 if len(ts) > 9:

733 ts = ts[:8]

734 if len(tp) > 9:

735 tp = tp[:8]

736 if len(to) > 9:

737 to = to[:8]

738 #self . filterList[block] = [ts, tp, to]

739 if ts == ’":

740 s = ”\nS: ” + self.bld

741 else:

742 s = "\nS: "+ts

743

744 if tp = ’7:

745 p = "\nP: ” + self.bld

746 else:

747 p = 7\nP: ” + tp

748

749 if to == ’7:

750 o = "\nO: ” + self.bld

751 else:

752 o ="\nO: ” + to

753 rec = "\nID: ” + str(block)

754 self.canvas.itemconfigure(self.recLabel[block],)\
755 text = rec+s+p+o)
756

757

758

51

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

parent is the parent of the curent block
edgeT is the type of edge child—>parent
def updateBlockFilterData(self, parent, edgeT, actBlock):

if edgeT == °SS’:
if self.filterList[actBlock][0] != ’’:
self.filterList[parent][0] = \
self.filterList[actBlock][O]

else:
pass
elif edgeT == ’SP’:
if self.filterList[actBlock][0] != ’’:
self . filterList[parent][1] = \
self.filterList[actBlock][0]

else:
pass
elif edgeT == ’SO’:

if self.filterList[actBlock][0O] != ’’:
self . filterList[parent][2] =\
self.filterList[actBlock][O0]

else:
pass
elif edgeT == 'PS’:
if self.filterList[actBlock][1] != ’’:
self . filterList[parent][0] = \
self.filterList[actBlock][1]

else:
pass
elif edgeT == ’PP’:
if self.filterList[actBlock][1] != ’’:
self . filterList[parent][1] =\
self.filterList[actBlock][1]

else:
pass
elif edgeT == 'PO’:
if self.filterList[actBlock][1l] != ’’:
self . filterList[parent][2] =\
self.filterList[actBlock][1]

else:
pass
elif edgeT == "0OS’:
if self.filterList[actBlock][2] != ’’:
self . filterList[parent][0] = \

52

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

self.filterList[actBlock][2]

else:
pass
elif edgeT == 'OP’:
if self.filterList[actBlock][2] != ’’:
self . filterList[parent][1] =\
self.filterList[actBlock][2]

else:
pass
elif edgeT == "0O0’:
if self.filterList[actBlock][2] != ’’:
self.filterList[parent][2] = \
self.filterList[actBlock][2]

else:
pass

self.setBlockText(self.filterList[parent][O0],\
self . filterList[parent][1],\
self.filterList[parent][2], parent)

Fuction gets the data from the filter window. Sets the block

to the current filter

Calls the depthff function to update the rest of the graph

with this filter .
def filterBlock (self):

thisActiveB = self.activeBlock

N

P
0

self.varsub.get ()
self.varpre.get()
self.varobj.get ()

self .setBlockText(s, p, o, thisActiveB)
self .depthff (0, self.recList[thisActiveB], thisActiveB)
self.winCombo. destroy ()

checks if this triple has the filtered word at the correct
word is the filter string

loc is s, p, o location

rdfT is the triple informatino

def checkIn(self, word, loc, rdfT):

if word == rdfT[loc]:
#keep this triple

53

loc ##

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

return True

else:
#remove this triple
return False

##takes the block data and filter for this block and returns ##
the string of triples
blkdata is the data from the self.dataDic for the selected block
thisFilter is the current filter list for the selected block
def displayFilter (self, blkdata, thisFilter):

printStr ="’
for block in blkdata:

for item in block:
triple = self.rtb.tripleTable[item]J[1:]

if thisFilter == [, ., "]:
printStr = printStr + str(triple) + ’\n’

else:
#words would be the filter on s, p, then o
for word in thisFilter:
if word == ’’:
#there is a filter on this block do nothing
pass
else:
if word == triple[thisFilter.index(word)]:
#keep item
print “saving triple:”, triple

printStr = printStr + str(triple) + ’\n’
else:
#do nothing on non matched words
pass
return printStr

#makes the radiobutton for selecting edge type
def mkRadio(self):
options = [’SS’, ’SP’, ’SO’, ’PP’, 'PS’, ’PO’, 'OO’, ’OP’, ’'0OS’]
self.var = StringVar ()
self.var.set(’SS’)
self .winRad = Toplevel ()
self .winRad. title (” Select Edge Type”)
self.winRad.config(bg=self.bgColor)
Radiobutton(self.winRad, text = ’SS’, value = ’SS’,\
bg=self.bgColor, bd=7,\
variable=self.var).pack(side=LEFT)
Radiobutton (self.winRad, text = ’SP’, value = ’SP’,\
bg=self.bgColor, bd=7,\

54

912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962

variable=self.var).pack(side=LEFT)
Radiobutton (self.winRad, text = ’SO’, value = ’SO’,\
bg=self.bgColor, bd=7,\
variable=self.var).pack(side=LEFT)
Radiobutton (self.winRad, text = ’PS’, value = ’PS’,\
bg=self.bgColor, bd=7,\
variable=self.var).pack(side=LEFT)
Radiobutton (self.winRad, text = "PP’, value = ’PP’,\
bg=self.bgColor, bd=7,\
variable=self.var).pack(side=LEFT)
Radiobutton (self.winRad, text = ’PO’, value = ’PO’,\
bg=self.bgColor, bd=7,\
variable=self.var).pack(side=LEFT)
Radiobutton(self.winRad, text = *OS’, value = ’OS’,\
bg=self.bgColor, bd=7,\
variable=self.var).pack(side=LEFT)
Radiobutton (self.winRad, text = "OP’, value = ’OP’,\
bg=self.bgColor, bd=7,\
variable=self.var).pack(side=LEFT)
Radiobutton(self.winRad, text = *0O0’, value = ’00’,\
bg=self.bgColor, bd=7,\
variable=self.var).pack(side=LEFT)

returned: stuff —> all partition blocks from KSA.
returned: testing —> each triple from present KSA
blocks that satisfies this edge
def getStuff(self, edge, blockID):
tList = []
testing = []
tList.append(edge)
curPartition = self.dataDic[self.recList[blockID][0]]
stuff = self.searchBlockList(curPartition , tList)
return stuff

if a selection has been made after clicking on the OK##
button on the menu
The data associated with the active block
This data is sent to searchBlockList which returns a
list of blocks with the selected edge type (tList)
def getState (self):
tmp = self.getRadSelect ()
if tmp is not ’’:
stuff = self.getStuff(tmp, self.activeBlock)
if stuff != []:
self.driver ([], “new”, tmp)
self.depthff (1, self.recList[—1], self.activeBlock)

self .winRad. destroy ()

55

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

returns

radio button selection on the select edge type ##

radiobutton menu
def getRadSelect(self):

return

self.var.get()

Searches through the partition associated with this
partition for a certain edge type
patition is

edgeT i
returns

s the edge type (1 of nine possible ss, sp, so, ect)
list of partion blocks ##

def searchBlockList(self, partition, edgeT):

tlist

= [

for block in partition:
for et in edgeT:

return

Creats
of the
def recRC(

temp = self.rtb.findEdge(et, self.rtb.edgeNode, block)
#Do not add the same partition block more then once
if temp != [] and temp not in tlist:
tlist.append(temp)
tlist

the generic button window for choosing which ##
4 methods to run ##
self , event):

self . findClosest(event.x, event.y)

self .rcVar = StringVar ()

self .rcVar.set(’s’)

self .rcWin = Toplevel ()

self.rcWin. title (” Methods”)

self .rcWin.config (bg=self.bgColor)

Radiobutton (self.rcWin, text="Select Edge KSA’, value = ’s’,\

bg=self.bgColor, bd=4, variable=self.rcVar,)\
width = 25, relief=SUNKEN,\
indicatoron=0).pack (side=TOP)

Radiobutton (self.rcWin, text=’Filtering by SPO’, value = ’f’,\
bg=self.bgColor, bd=4, variable=self.rcVar,)\
width = 25, relief=SUNKEN,\
indicatoron=0).pack (side=TOP)

Radiobutton (self.rcWin, text=’Destroy Filtering ’, value = ’k’,\

bg=self.bgColor, bd=4, variable=self.rcVar,)\
width = 25, relief=SUNKEN,\
indicatoron=0).pack(side=TOP)

Radiobutton(self.rcWin, text=’Display Data’, value = °d’,\

Button

bg=self.bgColor, bd=4, variable=self.rcVar,)\
width = 25, relief=SUNKEN,\
indicatoron=0).pack(side=TOP)
(self.rcWin, text="GO”,bg=self.bgColor, relief=RAISED,)\
width = 25, bd=4,\

56

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

command=lambda: self.rcGet(event)).pack(side=BOTTOM)

Used to get the selection from the method window
def rcGet(self, event):
method = self.rcVar.get()
Make new Edge
if method == ’s’:
self.ksaEdge(event)
Display Data
elif method == ’d’:
self . printtext(event)
Open filtering Window
elif method == ’f’:
self.tStr = °°
self .mkCombo ()
Destory filtering

elif method == k’:
self.destroyFilter ()
else:
pass

self .rcWin. destroy ()

def destroyFilter(self):

for block in self.recList:
self .setBlockText(’’,””,” " ,self . recList.index (block))

event handler for left clicking on box.
##Filtering selection ##
def recLDClick(self, event):

self.tStr ="~

self .mkCombo ()

event handler for right clicking on box.
KSA on selected edge type
def ksaEdge(self, event):
self .recListName . append(self.recCount)
self.recCount += 1
#self . findClosest(event.x, event.y)
self . mkRadio ()
selltem = "’
selltem = Button(self.winRad, bg=self.bgColor,)\
width=4,text = 'GO’, relief=RAISED,bd=7,\
command = self.getState).pack(side=BOTTOM)

Destoys all lines when rectangle begins to be dragged.##
Will be redrawn on release

57

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

def destroyConLines(self):

for line in self.recLineList:
self.canvas.delete (line [0])
self.canvas.delete (line [4])
#add in destroy label id as well
#add in label id to recLineList

if self.recLineList != []:
self .tempLineList = self.recLineList[:]
self .recLineList = []

Creates a line from orig block to dest block
def conLine(self, origTup, destTup, origBlock, destBlock, edge):

self .recLineList.append ([self.canvas.create_line (origTup[0],)\
origTup[1],\
destTup[0],\
destTup[1],\
smooth="true ’,\
width=1,\
arrow=FIRST) ,\
origBlock , destBlock , edge,
self.canvas.create_text(\
((origTup[0] + destTup[0])/2),\
((origTup[1] + destTup[1])/2),\
text = str(edge),\
fill= self.labelTextColor)])

def driver(self, data, ty, edge):
if ty is "start”:
self . makeRect (20, 20)
#[list (range(len(data)))]
self.dataDic[self.recList[0][0]] = self.KSpar

else:
self .makeRect (40, 160)
self.dataDic[self.recList[—1][0]] = data
Bl = self.bboxDic[self.recList[self.activeBlock][0]]
B2 = self.bboxDic[self.recList[—1][0]]
start , end = self.smartLine (B1, B2)
self.conLine(start, end, self.recList[self.activeBlock][0],\
self.recList[—1][0], edge)

def idToindex (self, bid):
for j in self.recList:

if bid in j:
return self.recList.index(j)

58

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

returns the parnet and edge type between them
def findParent(self, child):

for line in self.recLineList:
if child in line:
ind = line.index (child)

#index 2 is that of child that has parent at index 1
if ind == 2:
return line[1], line[3]
else:
pass
else:
pass
return None, ’°
returns the child and edge type between them
def findChild(self, parent, cl):
for line in self.recLineList:
if parent in line:
ind = line.index (parent)
#index 1 is that of the Parent so child is at index 2
if ind == 1 and [line[2], line[3]] not in cl:
return line[2], line[3]
else:
pass
else:
pass
return None, ’°
flag indicates whether a new block was created flag == 1
or if its a filter fix flag == 0
node is the type: self.recList item
def depthff(self, flag, node, activeB):
N = node[0]
#phase 1
#while N has parent P
while N != None:
P =N
N, eg = self.findParent(N)
if eg 1= 77
teg = eg[l]+eg([O0]
curParent = self.idToindex (N)
if flag == 1:
s = self.getStuff(teg, curParent)
else:
self .updateBlockFilterData(curParent, eg, activeB)

59

1167 activeB = curParent

1168 s = 77

1169

1170 oldData = self.dataDic[self.recList[curParent][0]]
1171

1172 if s 1= 77

1173 for i in s:

1174 if 1 not in oldData:

1175 s.remove (i)

1176

1177 self.dataDic[self.recList[curParent][0]] = s
1178

1179

1180 #phase 2

1181 fixupStack = []

1182 fixupStack .append (P)

1183 childList =[]

1184 while fixupStack != []:

1185 item = fixupStack.pop()

1186

1187 #generate chidren

1188 while 1:

1189 child, eg = self.findChild (item, childList)

1190 if child != None and [child, eg] not in childList:
1191 childList.append ([child, eg])

1192 else:

1193 break

1194 parBlk = self.idToindex (item)

1195

1196 #update children

1197 for j in childList:

1198 chiBlk = self.idToindex(j[0])

1199 edge = j[1]

1200 if flag == 1:

1201 pi = self.dataDic[self.recList[parBlk][0]]
1202 nData = self.searchBlockList(pi, [j[1]])

1203 self.dataDic[self.recList[chiBlk][0]] = nData
1204

1205 #filter update

1206

1207 self .updateBlockFilterData (chiBlk,\

1208 edge[1]+edge[0], parBlk)
1209 #push (append) childeren

1210 for i in childList:

1211 fixupStack .append(i[0])

1212 childList = []

1213

1215 |#—H#—H—#—H#HH#HH##H#H#H#H#HH#H#H##H#H#H#H#H#HH#4H#H#H#H#H#HH#H#
1216 | #######H####H####H###4#H##4## RDF Table Builder ########H#H#H#HHHH$H#HHFHAHSH#HSHH
1217 | #—H#—H—H#—H—H—H—H—H—H—H—H—H—H—H—H—HH—H—H—H—HH—HHHH—H—H—H—H—H—H—H—H—

60

1218 | #—#—H—#—H—H—H—H—H—H—H—H—H—H—H—H—H—H—HH—H—H—H—H A A H A A A H—H
1219

1220 |## Class for doing all of the KSA process ##
1221 | class RdfTableBuilder:

1222

1223 longestTriple = 30

1224 triplelD =1

1225 blockID = 1

1226

1227

1228 #list holding the [target, type] relationships and the index
1229 #of the list is the source node

1230 edgeNode = []

1231

1232 #1list for holding block edge information.
1233 blockEdge = []

1234 tripleTable = []

1235 tempTripleTable = []

1236 blockHashList = []

1237

1238 #dictionary for holding the atom and the locations of that
1239 #atom and what its relationship is

1240 atomList = {}

1241 blockDict = {}

1242 tripleBlock = {}

1243

1244 def __init__(self, gui, fileName):

1245

1246 try:

1247 fileOpen = open(fileName, ’r’)
1248 #self. __readFile (fileOpen)

1249 self . __NTripleParse (fileOpen)
1250 except IOError:

1251 print “Could not open file:”, fileName
1252 gui.fileD (1)

1253 # sys.exit()

1254

1255 def clearRDFData(self):

1256

1257 self .longestTriple = 30

1258 self . triplelD = 1

1259 self .blockID = 1

1260 del self.edgeNode[:]

1261 del self.blockEdge[:]

1262 del self.tripleTable [:]

1263 del self.blockHashList[:]

1264

1265 self.blockDict.clear ()

1266 self .atomList.clear ()

1267 self . tripleBlock.clear ()

1268

61

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

def getID(self, ID, flag):
iterl = self.tripleBlock.iteritems ()
found = 0

for k, val in iterl:

if (flag == 0): #searching for BID from a given TID
if val == ID:
found = 1
else:
if k == ID:
found = 1
if found ==
pass

def setBlockID (self, tripID, newlD):
iter2 = self.tripleBlock.iteritems ()
found = 0

for k, val in iter2:
if (k == tripID):
found = 1
self . tripleBlock[k] = newlID
return 1
if found == O:
return 0

def __addTripleList(self, s, p, 0):

thisTriple = []

thisTriple.insert (0, 1)

thisTriple.insert(1l, s)

thisTriple.insert (2, p)

thisTriple.insert (3, o)

self . tripleBlock[self.tripleID] = self.blockID

self . tripleTable .append(thisTriple)

self.tripleID +=1

#gets the edgeNode ready to accept information for this
self .edgeNode.append ([1])

#method for adding atoms to the atom list
def __addAtom(self, tID, atom, spo):

newList = []
if spo == 0:
char = S’
elif spo == 1:
char = P’
else:
char = °O’

62

triple

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

newList.insert (0, tID)
newList.insert (1, char)

if atom in self.atomList:
self .atomList[atom].append (newList)

else:
self.atomList[atom] = [newList]

def __addEdge(self, source, target, edgeType):
#checks if this index is still in the initialized state
if (self.edgeNode[source] == [1]):
tempList = [[target, edgeTypel]]
else:
tempList = self.edgeNode[source]

#check if this edge already in the list.
if ([target , edgeType] in tempList):
#do not add it again
pass
else:
tempList.append ([target , edgeType])
self.edgeNode[source] = tempList

#sourcelndex is the index of the cure
def __matchUp(self, sourcelndex , triple):

spolndex = 0
for item in triple:

if self.atomList.has_key (item):

#for each item in the triple , the edge table is
itemVal = self.atomList[item]

for q in itemVal:

edgeTypeForward = A’
edgeTypeBack = A’

if (spolndex == 0):
edgeTypeForward = ’S’ + q[1]
edgeTypeBack = q[1] + °S’

elif (spolndex == 1):

edgeTypeForward = P’ + q[1]
edgeTypeBack = q[l] + 'P’

63

or not

updated

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

def

def

def

elif (spolndex == 2):
edgeTypeForward = O + q[1]
edgeTypeBack = q[1] + °O’

else:
#needs to break here for illegal
pass

#edge type was found above
if (edgeTypeForward != ’A’):

#adds edge to the list (source, target)

self.__addEdge (sourcelndex , q[0],\
edgeTypeForward)
#adds the other direction target,
self.__addEdge(q[0], sourcelndex,)\
edgeTypeBack)
else:
pass

spolndex += 1

__clean(self, info):
info = info.lstrip(’)
return info.rstrip(’)

__longest(self, new):

if new > self.longestTriple:
self.longestTriple = new+25

__NTripleParse (self, fileln):

tCount = 0
line = fileln.readline ()
while line:

#print “line:”, line

numbNodes = len(self.tripleTable)

if line.isspace():
#print “line full of spaces”

pass
else:
line = line.lstrip(’)
line = line.rstrip(’ \n’)

if line.startswith (#’):
#print “line starts with #”
pass

elif line.endswith(’.’):
#print “line passed test”

64

source)

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

templength = len(line)
self.__longest(templength)

line = line [:templength —1]

newString = line.split(None,2)
#print "newString\n”, newString
for i in newString:
newString [newString .index(i)] = self.__clean (i)

if [1, newString[0], newString[1],\
newString [2]] in self.tripleTable:
pass
else:
self.__addTripleList(newString[0],\
newString [1],)\
newString [2])

k =0
#add in each atom from the new triple list
while k < 3:
self .__addAtom (numbNodes, newString[k], k)
k += 1

#after each item is added to the triple list

#add this triple in to making any

#new edges that need to be created

self.__matchUp(tCount, [newString[0],\
newString [1],)\
newString [2]])

tCount += 1

else:
#print ”line didn not end in . or start with #”
pass
line = fileln.readline ()

fileIn .close ()

#method for reading the triple data in from the file
def __readFile(self, fileln):
line = fileln.readline ()
tCount = 0
while line:
#create the s p o table here with tripleID and blockID

newString = line.split(’”")

numbNodes = len(self.tripleTable)
#check here if item is already in list

65

1473 if [1, newString[1],\

1474 newString [3],)\

1475 newString [5]] in self.tripleTable:

1476 pass

1477 else:

1478 #s p o

1479 self.__addTripleList(newString[1],newString[3],\

1480 newString [5])

1481 k =0

1482 #add in each atom from the new triple list

1483 while k < 3:

1484 self .__addAtom (numbNodes, newString [(k*2)+1], k)

1485 k += 1

1486 #after each item is added to the triple list add this

1487 #triple in to making any new edges that

1488 #need to be created

1489 self.__matchUp(tCount, [newString[1],\

1490 newString [3],)\

1491 newString [5]])

1492 tCount += 1

1493 line = fileln.readline ()

1494

1495 fileIn .close ()

1496

1497

1498

1499

1500 def findEdge (self, edgeT, allEdges, ss):

1501

1502 count = 0

1503 c = []

1504 for i in allEdges:

1505 for j in i:

1506

1507 #the last condition is for not adding the edges to
itself

1508 if edgeT == j[1] and count != j[0] and count not in c:

1509 if j[O0] in ss:

1510 c.append(count)

1511

1512 count += 1

1513 return c

1514

1515

1516 tt =[]

1517

1518 def fastFilter (self, sub, pre, obj, data):

1519

1520 tempTable = []

1521 nameList = []

1522 tripleList = []

66

1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573

nameList.append (sub)
nameList.append(pre)
nameList.append(obj)
t=1[0'S", P, "O’]

count = 0

for name in nameList:
if name == ”7:
pass
else:
if self.atomList.has_key (name):
for i in self.atomList[name]:
if i[1] == t[count]:
tripleList.append(i[0])
else:
pass
count += 1

for t in tripleList:
for block in data:
if t in block:
tempTable . append(self.tripleTable[t])
break
else:
pass
return tempTable [:]

#same inputs as the orginal KS but also a function for doing
#what the user wants (currently not used)

setTriples is the tripleTable (self.tripleTable) for this file
setEdges is the set of edges (self.edgeNode) for this file
theGraph list of all triple IDs

ie [0, 1, 2, ..., len(self.tripleTable)]##

edteType list of the edge type [’SS’, ’SP’, ..., ’0O0] that the
user is asking for
returns the created Partition list and a listing of the newest
added block (list[Block2])

def userDefKSBiSim(self, setTriples, setEdges, theGraph, edgeType):

block2 = "’
P = range(len(setTriples))
P.sort ()

self . blockDict[min(P)] = P[1:]
self.blockHashList.append(min(P))
P = [P]

spliterSet = P[:]
sSet = set ([])

67

1574 count = 0

1575 while spliterSet != []:

1576 S = spliterSet[count % len(spliterSet)]

1577 spliterSet.remove(S)

1578 for 1_type in edgeType:

1579 #function call here to get C

1580 C = self.findEdge(l_type, self.edgeNode, S)

1581 if C == []:

1582 pass

1583 #need to add in the new items to the tables

1584 elif C[O] not in self.blockHashList:

1585

1586 self .blockHashList.append (C[0])

1587 else:

1588 self.blockDict[C[0]] = C[1:]

1589

1590 if C != []:

1591 for block in P:

1592

1593 bSet = set(block)

1594 cSet = set(C)

1595 interBC = cSet.intersection (bSet)

1596

1597 if (interBC != set([])) and (interBC != bSet):
1598

1599 block2 = bSet — interBC

1600 P, spliterSet =\

1601 self.cleanPartition (P, list(spliterSet),\
1602 list (block),\
1603 list (interBC),\
1604 list (block2))
1605

1606 else:

1607 pass

1608 else:

1609 pass

1610 count += 1

1611

1612 return P, list (block2)

1613

1614

1615

1616 #Kanellakis —Smolka algorithm

1617 ## setTriples is the tripleTable (self.tripleTable) for this file ##
1618 ## setEdges is the set of edges (self.edgeNode) for this file ##
1619 ## theGraph list of all triple IDs

1620 ## ie [0, 1, 2, ..., len(self.tripleTable)]##

1621 ## returns the partition P

1622 def KSBiSim(self, setTriples , setEdges, theGraph):

1623

1624 edgeTypeList = [’SS’, ’SO’, ’'SP’,\

68

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675

’0S’, '00’, ’OP’,\
PS’, PO, 'PP’]

P = range(len(setTriples))
P.sort ()
maxLen = len (P)

self . blockDict[min(P)] = P[1:]
self.blockHashList.append(min(P))

P = [P]
spliterSet = P[:]
sSet = set ([])
count = 0

while spliterSet != [] and len(P) != maxLen:
S = spliterSet[count % len(spliterSet)]
spliterSet.remove(S)

for l_type in edgeTypeList:
#function call here to get C
C = self.findEdge(l_type , self.edgeNode, S)
if C == []:
pass
#need to add in the new items to the tables
elif C[O] not in self.blockHashList
self .blockDict[C[0]] = C[1:]
self .blockHashList.append (C[0])

else:
self.blockDict[C[0]] = C[1:]

if C != []:
for block in P:
if maxLen == len (P):
break
bSet = set(block)
cSet = set(C)
interBC = cSet.intersection (bSet)

if interBC != set([]) and interBC != bSet:

block2 = bSet — interBC
P, spliterSet =\
self.cleanPartition (P, list(spliterSet),\
list(block),\
list (interBC) ,\
list (block2))
else:
pass
else:

69

1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716

pass
count += 1

return P
def cleanPartition (self, part, ss, blk, intBC, b2):

part.remove(blk)
part.append (intBC)
part.append(b2)

if blk in ss:
ss.remove (blk)
ss .append (intBC)
ss.append(b2)
return part, ss

B T L o e e A e i
HA#HHHHAHHHAHHHHHAHHAFHAFHHEE Main #HASHHAHHAHHAHHAHHHHHAHH AR AR A

H H H H H H H H H H H H H H H H OH OH OH H OH H OH OH OH OH OH OH OH OH OH OH H OH H H

T— i —f— 1

if __name__=="__main__":
if len(sys.argv) != 2:
print __doc__
else:
rdf = RdfTableBuilder(sys.argv[1])
i =20
root = Tk()
root.tk.call(’tk’, ’scaling’, 1)
root.tk.call(’package’, ’require’, ’tile)
root.tk.call(’namespace’, ’import’, '—force’, ’“ttk::x’)
root.tk.call(’ttk ::setTheme’, ’alt’)
if len(sys.argv)!=2:
rt = rdfGui(root, ’7)
else:
rt = rdfGui(root, sys.argv[1l])
rt.driver(’’, "start”, ’7)
root.mainloop ()

70

