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MOLECULAR DYNAMICS SIMULATION OF THE THERMAL 
 

PROPERTIES OF Y-JUNCTION CARBON NANOTUBES 
 

Abstract 
 
 

by Aron William Cummings, M.S. 
Washington State University 

August 2004 
 
 
 
Chair: Mohamed A. Osman 
 
 Molecular dynamics simulations have been used to investigate the thermal properties of a 

Y-junction carbon nanotube consisting of a (14,0) trunk splitting into a pair of (7,0) branches.  

Steady state simulations were used to calculate the thermal conductivity of the Y-junction 

nanotube over a range of temperatures.  It was found that the thermal conductivity of the Y-

junction nanotube is less than that of a corresponding straight (14,0) nanotube, due to lattice 

defects in the form of non-hexagonal carbon rings at the junction.  These lattice defects result in 

a discontinuity in the temperature profile of the Y-junction nanotube.  Defects that were 

introduced to a straight (14,0) nanotube resulted in a similar discontinuity in the temperature 

profile.  Phonon spectra revealed that the presence of lattice defects suppresses the density of 

certain vibration modes, which in turn impedes the heat flow. 

 Heat pulse simulations were also conducted on the Y-junction nanotube.  These revealed 

that the junction at least partially blocked all propagating modes.  Furthermore, some asymmetry 

in heat flow was observed.  Traveling waves passed well from the trunk to the branches, but not 

vice versa.  This was attributed the vibrations in traveling waves in the branches being out of 

phase when they reach the junction.  Finally, the inconsistencies in the magnitude and stability of 
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the waves generated by the heat pulse were attributed to variations in the initial state of the 

carbon nanotube that get blown up when the heat pulse is applied. 
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CHAPTER ONE 

INTRODUCTION 

 

 Computers today are constructed with a technology known as Complementary Metal-

Oxide-Semiconductor (CMOS) technology, which consists of a network of field-effect 

transistors patterned onto a silicon wafer using lithographic techniques.  The incredible 

improvements made in this technology over the past several decades are due primarily to the 

progression of fabrication techniques that allow for CMOS devices to be created at ever-smaller 

dimensions.  Today, these devices have features that can be measured on the scale of tens to 

hundreds of nanometers.  However, the problems with fabricating devices on these scales make it 

apparent that CMOS devices cannot grow much smaller.  Therefore, researchers are attempting 

to identify a new type of technology that will allow the construction of devices that can be 

measured on the single-nanometer scale.  This exploding area of research is known as 

nanotechnology.1 

 One of the linchpins of the nanotechnology industry today is the carbon nanotube.  

Discovered in 1991,2 the carbon nanotube is a hollow cylinder made entirely of carbon atoms 

with a radius that can reach less than one nanometer.  Shortly after their discovery, several 

studies were undertaken to determine the electrical properties of these new structures.  It was 

found that some nanotubes are metallic in nature, while others are semiconductors, and that this 

depends entirely on their chirality.3  Furthermore, it was found that the band gap of the 

semiconducting nanotubes is inversely proportional to their radius.4  Studies of the thermal 

properties of carbon nanotubes have revealed them to be some of the best thermal conductors 

known.5 
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 The diameter-dependence of the band gap of the semiconducting nanotubes has led 

researchers to propose and investigate a variety of structures that involve the connection of one 

nanotube to another.  Some of these structures include T-junctions,6 Y-junctions,7 and X-

junctions.8  Later, Y-junctions of multi-wall carbon nanotubes were fabricated using a template-

based approach that allows the fabrication of many Y-junctions in a single experiment.9  

Theoretical10 and experimental11 studies on Y-junction nanotubes have revealed that they behave 

as electrical rectifiers, much like a diode.  However, up to this point no studies on the thermal 

properties of these structures have been undertaken. 

 Given their interesting electrical properties and the fact that they can be fabricated in 

large bundles, it seems important to characterize these Y-junction structures as much as possible.  

Therefore, the goal of the research described in this thesis is to study the thermal properties of Y-

junction carbon nanotubes.  To do this, a molecular dynamics approach has been chosen.  

Molecular dynamics is a method of simulation that determines the time evolution of a set of 

interacting atoms by integrating their equations of motion.  This approach is considered to be 

classical because the equations of motion are none other than Newton’s law, iii amF
��

= , for each 

atom i in a system of N atoms.  Because this simulation method provides information about the 

motion of each atom, it is a good one for calculating a variety of thermal properties. 

 This thesis is organized into six chapters.  Chapter 2 describes the structure, electrical and 

thermal properties of straight and Y-junction carbon nanotubes.  A detailed explanation of 

molecular dynamics can be found in Chapter 3.  Chapter 4 describes the methodology and results 

of steady state heat flow through a Y-junction carbon nanotube.  The procedure and results of 

heat pulse propagation through a Y-junction carbon nanotube are provided in Chapter 5, and 

conclusions are presented in Chapter 6. 
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CHAPTER TWO 

CARBON NANOTUBES 

 

2.1. Introduction 

 The growth of carbon nanotubes was first accomplished and reported by Sumio Iijima in 

1991.2  Since that time, a significant amount of effort has been put into the theoretical and 

experimental study of these structures.  The purpose of this chapter is to provide some 

background information on carbon nanotubes, which will aid in the understanding of subsequent 

chapters.  Specifically, this chapter will discuss the physical structure of straight and Y-junction 

carbon nanotubes and their resulting electrical and thermal properties. 

 

2.2. Physical Structure 

 A single-wall carbon nanotube can be viewed as a single sheet of graphite rolled up into a 

cylinder.  Figure 2.1 shows a representation of the 2D hexagonal plane that makes up a graphitic 

sheet, where the carbon atoms lie at the corners of each hexagon.  In this figure, one can see that 

if point O is connected to point A, and point B is connected to point B’, then the sheet will be 

rolled into a cylindrical structure.  However, this is just one of many possible cylindrical 

orientations that can be constructed.  For example, points A and B’ could lay directly to the right 

of points O and B, respectively, which would result in a different orientation of the hexagonal 

rings on the face of the cylinder.12 

 The vector HC
�

, known as the “chiral” vector, is that which uniquely determines the 

physical structure of a carbon nanotube, and is perpendicular to the tube axis z� .  HC
�

 can be 

written in terms of the unit vectors of the hexagonal lattice, 1a�  and 2a� , such that 
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Figure 2.1: The unrolled hexagonal lattice of a nanotube (from Ref. 12). 

 

21 amanCH
���

+= .  Thus, the integer pair (n,m) is used to completely describe the geometry of a 

carbon nanotube.  Because of the rotational symmetry of the 2D hexagonal lattice, it is only 

necessary to consider n and m such that nm ≤≤0 .  In the case that m = n, the angle � will be 

30o.  In this case, as one moves along the chiral vector, the carbon bonds form an armchair-

shaped pattern.  Thus, a carbon nanotube of the form (n,n) is known as an armchair nanotube.  In 

the case that m = 0, � = 0o and the bonds along the chiral vector form a zigzag pattern.  So, 

carbon nanotubes of the form (n,0) are known as zigzag nanotubes.  In all other cases, 0o < � < 

30o, and the tubes are known as chiral nanotubes.  Figure 2.2 shows an example of each of the 

three different types of carbon nanotubes.12  Note the zigzag and armchair patterns at the end 

rings of the zigzag and arm chair carbon nanotubes.  In figure 2.2, all three nanotubes are single-

wall carbon nanotubes.  There also exist multi-wall carbon nanotubes, which consist of two or 

more concentric single-wall carbon nanotubes.  The focus of study in this research is on single-

wall carbon nanotubes. 
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Figure 2.2: Three geometries of carbon nanotubes (from Ref.  12). 

 

 The structure of interest in this research, the Y-junction carbon nanotube, was first 

proposed in 1998.7  The Y-junction structure consists of a single “trunk” nanotube splitting into 

two “branch” nanotubes.  Figure 2.3 below shows some examples of Y-junction configurations.  

The structure of the trunk and branches of the Y-junction nanotube is the same as that for a 

straight single-wall carbon nanotube.  The difference in structure lies at the junction, where the 

continuity of the hexagonal lattice cannot be conserved.  To realize the Y-junction, non-

hexagonal polygons with 4, 5, 7, or 8 edges must be introduced into the lattice.  The number of 

extra edges introduced into the lattice is known as the bond surplus.  Thus, an octagon 

contributes a bond surplus of +2, while a pentagon contributes a bond surplus of -1.  Through an 

application of Euler’s rule for polygons on the surface of a closed polyhedron, Crespi proposed a 
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rule for the bond surplus of carbon nanotube junctions.13  His rule was that a junction consisting 

of N tubes would have a bond surplus of 12(N-2).  Thus, a Y-junction should have a bond 

surplus of 12.  However, this surplus can be shared between the two junctions, resulting in a need 

for 6 extra polygonal edges.13  In figure 2.3 above, the two Y-junctions on the left contain 6 

heptagons, while the one on the right contains 4 heptagons and an octagon.10 

 

 

Figure 2.3: Example Y-junction configurations (from Ref. 10). 

 

2.3. Electrical Properties 

 Soon after their synthesis in 1991, several theoretical studies were undertaken to 

determine the electrical nature of carbon nanotubes.3,4,14  These studies found that the electronic 

structure of carbon nanotubes can be determined starting from that of two-dimensional (2D) 

graphite.  When a plane of graphite is rolled up into a carbon nanotube, periodic boundary 

conditions are imposed in the circumferential direction described by the chiral vector HC
�

, and 
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the wave vector associated with this direction becomes quantized.  Thus, the set of one-

dimensional (1D) energy dispersion relations of a carbon nanotube is made up of slices of the 2D 

energy band structure of graphite.3  Figure 2.4 shows the reciprocal lattice structure of 2D 

graphite, and how the carbon nanotube fits into that structure. 

 

 

Figure 2.4: Reciprocal lattice diagram of 2D graphite and a carbon nanotube (from Ref. 
12). 

 

In this figure, the each hexagon represents a Brillouin zone of 2D graphite.  The 

reciprocal lattice vectors of the 2D graphite are 1b
�

 and 2b
�

, while 1K
�

 and 2K
�

 are the reciprocal 

nanotube lattice vectors corresponding to HC
�

 and z� , respectively.  The line segment WW’ 

represents the first Brillouin zone of a carbon nanotube.  Points �, M, K, and K’ are points of 

high symmetry in the Brillouin zone of 2D graphite.  This figure shows the nature of the 

quantization of the wave vectors of a carbon nanotube in the form of a series of parallel Brillouin 

zones.  These N distinct wave vectors result in N pairs of 1D energy dispersion relations for the 

carbon nanotube.12 

 In the energy dispersion relations for 2D graphite, a finite band gap is present along all 

points in the hexagonal Brillouin zone, except in the corners of the hexagon.  At these K points, 

the band gap drops to zero, resulting in a degenerate energy state.  If one of the N wave vectors 
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of a carbon nanotube passes through a K point, then the 1D energy bands will have a zero energy 

gap.12  A finite density of states results from the crossing of two 1D energy bands, which means 

the carbon nanotube will be metallic in nature.  If the wave vectors of a carbon nanotube do not 

cross through one of the K points, then the 1D energy bands will not overlap and the nanotube 

will be a semiconductor.  The condition for a (n,m) carbon nanotube to be metallic is that mn +2  

be a multiple of three.14  An equivalent condition is that mn −  be a multiple of three.12  Thus, a 

carbon nanotube can be either metallic or semiconducting, depending on its diameter and its 

chiral angle.  Figure 2.5 illustrates this condition. 

 

 

Figure 2.5: Some geometries of carbon nanotubes and their resulting electrical 
configuration (from Ref. 14). 

 

 Another important result is the dependence of the band gap of semiconducting carbon 

nanotubes on the tube diameter.  It has been found that the band gap of a semiconducting 

nanotube is inversely proportional to its diameter.12  The electronic behavior and physical 

structure described above have been verified through the use of scanning-tunneling microscopy 

(STM).15 
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 It has been shown that carbon nanotubes of different geometries exhibit different 

electrical characteristics.  A potentially very useful application of this fact lies in the connection 

of two or more nanotubes of different geometries.  For example, the connection of a metallic 

nanotube with a semiconducting nanotube will result in a Schottky barrier device, while the 

connection of two different semiconducting tubes will result in a heterojunction structure.16  

These structures have been shown to exhibit asymmetric electrical properties, both in carbon 

nanotubes17 and in traditional CMOS circuits.18  The usefulness of these structures in present-day 

circuits underscores how useful carbon nanotubes may be in the development of next-generation 

electrical devices. 

 Given that a Y-junction carbon nanotube consists of a connection of two or more 

different geometries of straight nanotubes, it seems reasonable to assume that this structure will 

exhibit electrical rectification.  Andriotis et al., who used a Green’s function formalism to 

calculate the quantum conductivity of a wide class of Y-junction structures, confirmed this 

assumption theoretically.  They found that the rectification and switching characteristics of these 

structures depends strongly on their symmetry, and less strongly on the chirality of each branch.  

Specifically, symmetric Y-junctions with a zigzag trunk always showed perfect rectification, 

while symmetric Y-junctions without a zigzag trunk exhibited imperfect rectification; an 

asymmetric I-V characteristic with small leakage currents in cutoff mode.  Finally, asymmetric 

Y-junction structures showed much weaker rectification behavior.10  Experimental data have also 

shown the presence of electrical rectification in individual and parallel arrays of Y-junction 

carbon nanotubes.11 
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2.4. Thermal Properties 

 One of the more interesting aspects of the thermal characteristics of carbon nanotubes is 

their thermal conductivity.  Thermal conductivity is defined according to  

 

TJ ∇⋅−= κ
�

,      (2.1) 

 

where J
�

 is the thermal energy flux, T is the temperature, and � is the thermal conductivity.18  

The thermal conductivity gives a measure of how much heat will flow through a solid in 

response to a temperature gradient across the solid.  When discussing heat flow, it is useful to 

identify what exactly is carrying the heat across the temperature gradient.  In metals, electrons 

are the heat carriers.  In crystals such as carbon nanotubes, lattice vibrations known as phonons 

carry heat.  When heat conduction is thought of in this way, the thermal conductivity can be 

written as 

 

Cvl
3
1=κ ,      (2.2) 

 

where C is the lattice heat capacity, v  is the average phonon velocity, and l  is the mean free 

path of the phonons.  Heat capacity is a relationship between a change in temperature of the 

crystal and a corresponding change in the number of phonon modes present.  The mean free path 

describes the average distance a phonon will travel before giving up its energy in some sort of 

collision.18 

 From equation (2.2), it can be seen that the temperature dependence of the thermal 

conductivity of a crystal is determined by the temperature dependences of C, v , and l .  For the 



 11 

sake of simplicity, v  can be treated as independent of temperature.  In three dimensions, the 

specific heat varies as T3 at low temperatures, and eventually levels off to a constant value at 

high temperatures, when all the phonon modes have been excited.  At low temperatures, the 

mean free path of the phonons is relatively long, and is thus limited by the boundaries of the 

crystal.  Therefore, at low temperatures the mean free path is more or less constant, and the 

thermal conductivity should vary as T3.  As the temperature increases, phonons of shorter 

wavelengths are excited, and localized defects cause the mean free path to decrease, which 

causes the thermal conductivity to fall below the T3 trend.  At higher temperatures, the phonons 

are energetic enough that the majority of their collisions will result in umklapp scattering, which 

reduces the total phonon momentum and increases the thermal resistance.  Thus, at high 

temperatures the mean free path is the average distance between umklapp collisions.  It has been 

found that l  is proportional to 1/T at high temperatures, meaning that the thermal conductivity is 

also proportional to 1/T at these temperatures.18  A qualitative plot of this behavior can be seen in 

figure 2.6.  As seen in this figure, the thermal conductivity peaks at a temperature where the 

crystal size no longer matters but before umklapp collisions start to dominate. 

 

 

Figure 2.6: Qualitative temperature dependence of the thermal conductivity of crystals. 
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A variety of studies have been conducted on the thermal conductivity of carbon 

nanotubes.  Hone et al. measured the temperature-dependent thermal conductivity of mats of 

carbon nanotubes.  By comparing these values to the electrical conductivity of individual 

nanotubes and mats of nanotubes, they estimated the room temperature thermal conductivity of 

an individual nanotube to be in the range 1750-5800 W/m-K.19  Using a combination of 

equilibrium and non-equilibrium molecular dynamics simulations, Berber et al. predicted the 

room temperature thermal conductivity of a single (10,10) carbon nanotube to be approximately 

6600 W/m-K.5  Other molecular dynamics simulations predicted this value to be from 1600 

W/m-K to 3000 W/m-K.20,21  While these results show a good deal of variation, they all suggest 

that the thermal conductivity of carbon nanotubes is at least as high as those of diamond and 

graphite, making them some of the best thermal conductors known.  In later measurements, Hone 

et al. found that the thermal conductivity of an array of single-wall carbon nanotubes peaked at 

around 400 K.22  Measurements on multi-wall carbon nanotubes have shown a thermal 

conductivity that peaks at around 300 K.23  This is in contrast to diamond and graphite, whose 

thermal conductivities peak at around 150 K.22  This indicates that umklapp scattering occurs at 

much higher temperatures in carbon nanotubes than it does in diamond and graphite.  As a result, 

carbon nanotubes could be significantly better conductors at higher temperatures. 

 Another interesting thermal property of carbon nanotubes can be seen at very low 

temperatures.  In 1998, Rego and Kirczenow used the Landauer formulation of transport to 

predict a universal quantum of thermal conductance of h
TkB

3
22π  in 1D quantum wires at very 

low temperatures.24  In 2000, Schwab et al. experimentally confirmed this value of quantized 

thermal conductance in silicon nitride nanowires.25  Given these results, a linear temperature 

dependence of the thermal conductivity or heat capacity of a material at low temperatures should 
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indicate the presence of quantized thermal conductance.  Hone et al. have observed this linear 

temperature dependence in the thermal conductivity of single-wall carbon nanotubes at 

temperatures below 30 K.19  More recently, Hone and his colleagues observed a linear 

temperature dependence of the specific heat capacity of single-wall carbon nanotubes at 

temperatures below 8 K.26  Both of these results indicate the presence of quantized thermal 

conductance in single-wall carbon nanotubes. 

 Given their structure, Y-junction nanotubes can be expected to exhibit similar thermal 

characteristics to straight carbon nanotubes.  However, the presence of the junction in the middle 

of the structure suggests that some fundamental differences between their thermal properties 

should exist.  Up to this point no studies on the thermal properties of Y-junction carbon 

nanotubes have been conducted. 
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CHAPTER THREE 

MOLECULAR DYNAMICS 

 

3.1. Introduction 

 Molecular dynamics simulation is a classical approach to modeling systems of atoms and 

molecules.  It makes use of Newton’s laws of motion and an accurate interatomic potential to 

determine the motion of each atom or molecule in the system.  With detailed knowledge of the 

motion of each particle in the system, a variety of useful information can be determined.  In the 

sections below, the general approach used in molecular dynamics is discussed, as are some of the 

more specific calculations made in the course of this research. 

 

3.2. General Method 

 As stated above, the molecular dynamics approach is classical in the sense that it makes 

use of Newtonian mechanics to determine the behavior of the system.  In order to determine the 

forces acting on each atom in a particular system, an interatomic potential function is used.  The 

potential function defines the potential energy between a pair of atoms as a function of their 

distance from one another.  Thus, the potential function can be written as U(rij), where rij 

represents the distance between the ith and jth atoms in the system under investigation.  For the 

sake of simplicity in notation, this is rewritten as Uij.  Once the potential energy between a pair 

of atoms is known, the force between the two atoms can be found by taking the gradient of the 

potential function with respect to their distance: ijij UF −∇=
�

.  Then, the net force on a particular 

atom can be found by summing the forces due to all other atoms in the system: �
≠

∇−=
ij

iji UF
�

.  
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Once the net force on a particular atom is known, its acceleration at a particular instant in time is 

easily derived using Newton’s second law of motion: 

 

iii mFa /
�� =       (3.1) 

 

In equation (3.1), mi is the mass of the atom in question.27 

 Above it was stated that the force on a particular atom is determined as a sum of the 

forces due to all the other atoms in the system.  This is the case because most potential functions 

have an infinite range.  In practice, however, the large number of atoms in many systems makes 

this approach computationally unfeasible.  Therefore, it is necessary to limit the number of 

contributors to the force on a particular atom.  One way to do this is to introduce a cutoff term to 

the potential function that limits its effect to a specific range.  Thus, any atoms separated by 

more than this range would not interact with one another.  The potential function used in this 

research includes a cutoff term.  Another method used in these simulations is the nearest-

neighbor method.  The potential function used in this research describes the potential energy 

between a pair of bonded carbon atoms.  Thus, it should not be applied to a pair of carbon atoms 

that are not directly bonded together.  A given atom in a carbon nanotube can be bonded with 

only its nearest neighbors.  Therefore, a list of nearest neighbors for each atom is maintained, 

which significantly limits the number of pair-wise interactions that must be calculated. 

 To account for the movement of the atoms in the system over time, the simulation is 

broken into a series of sequential time steps.  At each time step the details of the movement of 

each atom are calculated.  This is usually done using a predictor-corrector scheme.  In this 

scheme, a Taylor series expansion is used to predict the position, velocity, acceleration, and 
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higher-order terms of each atom for the next time step, based on their values at the current time 

step.  In the equations below, the expansion of terms in the Taylor series to third order can be 

seen.28 

 

32 )(
!3

1
)(

!2
1

)()()( ttrttrttrtrttr ∆⋅+∆⋅+∆⋅+=∆+ ������    (3.2) 

2)(
!2

1
)()()( ttrttrtrttr ∆⋅+∆⋅+=∆+ �������     (3.3) 

ttrtrttr ∆⋅+=∆+ )()()( �������       (3.4) 

)()( trttr ������ =∆+        (3.5) 

 

Recall that the velocity is the time-derivative of the position r(t), the acceleration is the second 

time-derivative of the position, and the jerk is the third time-derivative of the position.  Once the 

position, velocity, acceleration, and jerk have been predicted for the next time step, they are used 

to calculate the relevant properties of the system at that time step, such as temperature and 

energy.  The calculation of these and other parameters will be discussed in a later section. 

 Due to the fact that the Taylor series is an infinite series, the results of equations (3.2)-

(3.5) will have slight errors due to the truncation of the series after the third-order term.  If left 

uncorrected over many time steps, these truncation errors can build up to significant values, 

resulting in inaccurate data.  Therefore, it is necessary to correct the values predicted in 

equations (3.2)-(3.5).  There are several ways to do this.  The method used in this research is 

described below in section 3.4.  After the predicted values have been corrected, they can then be 

applied to equations (3.2)-(3.5) again to predict the movement of the atom for the next time step.  
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This process continues until the target number of time steps has been reached.  A schematic of 

this process can be seen in figure 3.1 below. 

 

 

Figure 3.1: High-level process of molecular dynamics simulation. 

 

3.3. The Tersoff-Brenner Interatomic Potential 

 In the section above, the role of the interatomic potential was discussed.  Tersoff first 

developed the basis for the potential used in this research for the simulation of covalent silicon.29  
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The potential he used took the form ( ))()()( ijAijijRijijCij rfbrfarfU ⋅−⋅⋅= , and describes the 

potential energy between a pair of covalently bonded atoms.  In this expression, fR represents the 

repulsive force between two bonded atoms, fA represents the attractive force, and fC represents 

the cutoff term.  When aij and bij are taken to be constants, this is a standard two-body potential.  

However, because there are a variety of bonding geometries available to covalent silicon, this 

potential cannot accurately represent all of those forms.  Therefore, Tersoff updated these 

parameters such that they both depend on the bond order - the number of available bonding 

neighbors.  This allowed for a simple potential to simultaneously represent the various bonding 

geometries that can occur in silicon.29  In a later paper, Tersoff calculated the parameters 

necessary to apply his potential to amorphous carbon.30 

 While Tersoff’s bond-order potential appeared to be accurate and flexible, Brenner 

discovered some inherent problems when the potential was applied to certain double-bonding 

situations in carbon.31  Therefore, he added an adjustment to the bond-order terms to account for 

those problems.  The combination of Tersoff’s bond-order potential for carbon and Brenner’s 

subsequent adjustment is known as the Tersoff-Brenner interatomic potential, and is the one used 

in this study of carbon nanotubes. 

 

3.4. The Nordsieck-Gear Predictor-Corrector Method 

In the section describing the general method of molecular dynamics, it was noted that the 

predicted values describing the position and movement of each atom needed correction before a 

new prediction could be made.  This research makes use of the Nordsieck predictor-corrector 

scheme.  This scheme makes its predictions based on a slightly modified form of equations (3.2)-

(3.5): 
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Thus, the prediction consists of the matrix equation )()( tzAttz P ⋅=∆+ .28  The superscript P 

indicates that the values are the predicted values. 

For correction, the Nordsieck formulation makes a comparison between the acceleration 

calculated in equation (3.4), )( ttr ∆+�� , and that calculated from the interatomic potential in 

equation (3.1), )( tta ∆+ .  Then, the error can be defined as [ ]
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To correct this error, the results of equations (3.6)-(3.9) are scaled by a value proportional to the 

error in the acceleration, such that28 
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3.5. Calculation of System Properties 

This section details the calculation of the various system properties used in this research 

on Y-junction carbon nanotubes. 

 

3.5.1. Kinetic Energy 

Because the velocity of each atom is known at every time step, the total kinetic energy of 

a group of N atoms at a specific point in time is just the sum of their individual kinetic energies: 

�
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.  The average kinetic energy per atom is obtained by dividing by the total 

number of atoms in the group: �
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3.5.2. Temperature 

According to the law of equipartition,32 temperature is proportional to the average atomic 

kinetic energy.  In three dimensions TkE Bavg 2
3= , where kB is Boltzmann’s constant.  Thus, 

using the calculation of average energy in section 3.5.1, the temperature of a group of atoms is 

B

avg

k

E
T

3

2
= . 

It should be noted that this definition of temperature applies to the high temperature 

regime, where quantum effects are not important.  At lower temperatures, this definition is not 

necessarily accurate.  However, Che et al. have argued that the classical heat flux autocorrelation 

can successfully replace its quantum counterpart, even in the low temperature range.21  It is 

possible that this argument can be extended to the definition of temperature at low temperatures. 
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3.5.3. Velocity Autocorrelation Function 

 As discussed in section 3.2, molecular dynamics simulations give the position, velocity, 

and acceleration of the atoms in a given system over time.  Thus it is possible to use molecular 

dynamics to study the time evolution of a system.  Time correlation functions provide a way to 

do this.  To develop the concept of a time correlation function, let p(t) and q(t) denote all the 

momenta and spatial coordinates of the system in question.  Next, define a pair of variables A 

and B that are dependent on p(t) and q(t).  Then, it is possible to say that 

( ) ( ) ( )tAtqpAtqtpA == );0(),0()(),(  and ( ) ( ) ( )tBtqpBtqtpB == );0(),0()(),( .  The time 

correlation function of variables A and B is defined as: 

 

),();,()0;,()()0()( qpftqpBqpAdpdqtBAtCAB ��== .   (3.12) 

 

In equation (3.12), f(p,q) represents the equilibrium distribution of p and q.  When 

variables A and B are equal, this function is referred to as an autocorrelation function.  When the 

variables are vector-valued quantities, a dot product is used in equation (3.12).  For example, the 

velocity autocorrelation function described below is written as )()0()( tvvtCvv
�� ⋅= .  Another 

important feature of this function is that taking its Fourier transform can reveal important 

frequency-dependent information about the variables used in the function.33 

 Equation (3.12) can very difficult to calculate analytically.  In the case of the velocity 

autocorrelation function, Cvv(t), the dependence of the velocities on position and momentum can 

be very complicated, and will involve some form of equations (3.2)-(3.5) as well as the 

interatomic potential.  Fortunately, an analytical solution is not required when working with 

molecular dynamics.  Since the velocities are already known at each time step, the dependence of 
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the velocity on p(t) and q(t) does not need to be considered; it has already been included in the 

calculation.  Thus, the velocity can be treated solely as a function of time, making the calculation 

of Cvv(t) fairly straightforward. 

 Using the argument in the previous paragraph, the velocity autocorrelation function can 

be written )()0()( kkvv tvvtC �� ⋅= .  The subscript k has been included because of the quantization 

of time into discrete steps.  This expression refers to the autocorrelation function of the velocity 

of a single atom.  However, it is useful to consider the average motion of a group of atoms in a 

system.  In addition, the autocorrelation function does not need to start at time zero.  Rather, it 

can start at any reference time during the course of the simulation.  Therefore, the velocity 

autocorrelation function can be updated to �
=
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M
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)( ττ �� , where M is the 

number of atoms under investigation and � is the reference time.  Another convention that is 

usually taken in molecular dynamics simulations is to normalize the velocity autocorrelation 

function with respect to its initial value: 
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Finally, during the course of a simulation it is possible to calculate several normalized 

velocity autocorrelation functions concurrently, with each starting at a different reference time.  

These separate functions are then averaged together to obtain an overall result.  Denoting a 
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particular autocorrelation function with starting time �j as )(
~

k
j

vv tC , the overall velocity 

autocorrelation function can be written as 
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 Equation (3.14) provides an average picture of the time-dependent motion of a particular 

group of atoms in the system under investigation.  An example of the time evolution of one of 

these functions can be seen in figure 3.2.  This figure shows the velocity autocorrelation function 

of a (14,0) carbon nanotube.  The overall function was calculated for tk up to 1024 time steps, 

and was averaged over N = 32 separate functions, each started 64 time steps apart. 

 

 

Figure 3.2: Velocity autocorrelation function of a (14,0) carbon nanotube. 
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As stated above, the Fourier transform of time correlation functions can reveal important 

information about the variables included in the function.  In the case of the velocity 

autocorrelation function, the Fourier transform represents the spectral density of the atomic 

motions, and can be used to determine which modes of vibration are dominant in a given system.  

Some examples of this analysis can be found in Chapter 4. 

 

3.5.4. Thermal Conductivity 

 Several approaches to calculating the thermal conductivity of a system using molecular 

dynamics simulations have been proposed.34-36  The details of the approach used in this research 

can be found in Chapter 4, which discusses the thermal properties of Y-junction carbon 

nanotubes under steady state conditions. 
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CHAPTER FOUR 

STEADY STATE HEAT FLOW 

 

4.1. Introduction 

 As stated in Chapter 2, up to this point no studies have been conducted on the thermal 

properties of Y-junction carbon nanotubes.  In this chapter, a molecular dynamics approach to 

the modeling of steady state heat flow in a Y-junction carbon nanotube is presented.  The goal is 

to calculate the thermal conductivity of the Y-junction structure, and determine how it might 

differ from that of a straight carbon nanotube.  In the following sections, the method for 

determining the thermal conductivity is described, the results are presented, and an analysis of 

these results is provided. 

 

4.2. Methodology 

 To model the dynamics of the atoms within the Y-junction nanotube, a molecular 

dynamics approach has been chosen, with the Tersoff-Brenner bond order potential for the C-C 

bond as the potential interaction function.30,31  Within the molecular dynamics paradigm, a 

variety of approaches to the calculation of thermal conductivity have been examined.34-36  The 

approach discussed by Oligschleger and Schön,34 and implemented in straight carbon nanotubes 

by Osman and Srivastava,20 splits the nanotube into a series of equal “slabs” of atoms.  Two of 

the slabs are thermally regulated to enforce a temperature gradient upon the system, as shown in 

figure 4.1. 
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Figure 4.1: Molecular dynamics setup for calculating the thermal conductivity of a 
straight carbon nanotube.  The ellipses indicate that periodic boundary conditions are 
applied. 

 

The temperature of each of these slabs is regulated by a scaling of the velocities of the 

atoms within the slab.  The velocities are scaled according to 

 

current

control
oldinewi T

T
vv ⋅= ,, ,     (4.1) 

 

where Tcontrol is the desired temperature of the slab, and Tcurrent is the current slab temperature.  In 

this approach, Tcontrol = Tamb+ ∆ T for the hot slab and Tcontrol = Tamb- ∆ T for the cold slab, where 

Tamb is the initial temperature of the solid.  The change in energy of the controlled slabs at each 

time step is given by 
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where N is the number of atoms in the slab, m is the mass of each atom, and vi,new is calculated 

according to equation (4.1).  The heat flux density at the nth time step of the simulation is 

calculated by taking an average of the net energy added at each previous time step: 
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where the )( jEslab∆  come from equation (4.2), ∆ t is the time associated with each simulation 

step, and A is the cross-sectional annular ring area of the nanotube.20  After a large number of 

simulation steps, an equilibrium value of the heat flux density is obtained.  The temperature 

gradient, dT/dz, is found by applying a linear fit to the temperatures of the slabs in the gray 

region in figure 4.1, and the thermal conductivity at the nth simulation step is the quotient of the 

heat flux density and the temperature gradient: 
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n
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)( =κ ,     (4.4) 

 

where J(n) is given by equation (4.3).  One final note that should be made from figure 4.1 is that 

periodic boundary conditions have been applied in order to eliminate edge effects.34 

 To investigate the thermal conductivity of the Y-junction nanotube, an algorithm similar 

to that described by Oligschleger and Schön has been chosen.  The setup is similar to that shown 

in figure 4.1, except for the fact that, due to its linear asymmetry, periodic boundary conditions 

cannot be applied to the Y-junction configuration.  Therefore, an alternate setup has been chosen, 

and can be seen in figure 4.2.  In this setup, the black slabs labeled “Fixed” have atoms that are 

fixed in space in order to prevent tube drift and oscillations during the simulation.  The slabs 

labeled “Hot” and “Cold” are the velocity-scaled slabs, whose temperatures are controlled as 

described in equation (4.1).  The energy flux density at the nth simulation step is calculated in the 



 28 

 

Figure 4.2: Molecular dynamics setup for calculating the thermal conductivity of the Y-
junction nanotube. 

 

same manner as in equation (4.3), but with an extra term to account for the fact that there are two 

cold velocity-scaled slabs instead of just one: 
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The slabs labeled “Buffer” act as thermal reservoirs, in an attempt to minimize edge 

effects by providing a buffer between the velocity-scaled slabs and the fixed tube ends.  The 

temperature of these buffer slabs is the same as that of their adjacent velocity-scaled slabs.  

However, their temperature is maintained through a more realistic application of friction and 

random forces, which satisfy the fluctuation-dissipation theorem through the Langevin dynamics 

approach.  In order to obtain a single temperature gradient dT/dx for the entire structure, the 

positions and temperatures of corresponding slabs in the two branches were averaged before a 

linear fit was calculated. 

 In the algorithm described above, a temperature gradient is imposed by a set of thermal 

reservoirs and the resultant heat flux is measured to determine the thermal conductivity of the Y-

junction nanotube.  Müller-Plathe has proposed carrying out this process in the reverse order.  In 
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his scheme, the velocity of the hottest (most energetic) atom in the cold slab is exchanged with 

the velocity of the coldest atom in the hot slab at regular intervals.  This has the effect of 

imposing a known heat flux on the system.  Once a steady state has been reached, the resulting 

temperature gradient is measured to determine the thermal conductivity.35 

The velocity-exchange approach has a couple advantages.  First, because the temperature 

gradient is a quantity that converges much more quickly than heat flux, this method requires 

much fewer time steps than the thermal reservoir method used in this research.  Second, the 

resultant temperature gradient tends to be smaller than in the thermal reservoir approach.  

Because the thermal conductivity of a material is normally temperature-dependent, a large 

temperature gradient can result in a large variation in the local thermal conductivity across the 

system.  A small temperature gradient allows a more accurate measure of the system’s overall 

thermal conductivity.35  However, the application of this method in the Y-junction structure is 

problematic because of the presence of two cold reservoirs and only one hot reservoir.  It would 

be difficult to ensure that the two branches are maintained at the same temperature. 

Another approach makes use of a fictitious force field applied along the direction of heat 

flow.   This fictitious field imposes a heat flux on the system under investigation by forcing hot 

and cold atoms in opposite directions.  This approach has the advantage of inducing no 

temperature gradient, and as the fictitious field gets small, a very accurate value of thermal 

conductivity can be obtained.  However, this method relies on the assumption of periodic 

boundary conditions, which cannot be applied to the Y-junction structure. 

As stated earlier, the linear asymmetry of the Y-junction structure precludes the 

application of periodic boundary conditions to the system.  The buffer slabs were added in an 

attempt to provide a shield from edge effects, but it is still possible that the tube ends could have 
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an effect on the heat flow within the system.  Furthermore, the alternate methods described 

above may provide more accuracy than the method chosen.  Thus, absolute magnitude of the 

thermal conductivity may not be as accurate as it could be.  The chosen method, however, is 

reasonable for identifying trends and relative magnitudes of heat transport in a branched 

nanotube structure in comparison with straight nanotubes with or without defects. 

 

4.3. Results 

 For the molecular dynamics simulations, a Y-junction with a (14,0) zigzag trunk splitting 

into two (7,0) zigzag branches was used.  There were 35 slabs in each of the three branches, and 

one slab in the middle connecting them, for a total of 106 slabs including 3980 atoms.  With a 

length of 4.26 Å per slab, each branch in the tube measured about 15 nm long.  This is long 

enough for a qualitative comparison of thermal transport in branched and straight carbon 

nanotubes, but not for absolute values of thermal conductivity. The thermal conductivity 

simulation was run at base temperatures of 200 K to 400 K in increments of 50 K.  A 

temperature differential of ± 50 K between the trunk and the two branches was used in each 

case.  Two simulations were run for each base temperature, one with a hot trunk and cold 

branches (designated as “forward” heat flow), and one with a cold trunk and hot branches 

(“reverse” heat flow).  For comparison, a (14,0) straight nanotube of 71-slab length was also run 

at these temperatures.  The straight tube was configured in a manner similar to that shown in 

figure 4.2, with the fixed ends, buffer slabs and velocity-scaled slabs.  Each simulation was run 

for 200,000 time steps, with the heat flux density averaged over the last 100,000 time steps.  For 

these simulations, the time step was 0.5 fs, and the cross-sectional area was calculated based on 

an annular ring width of 3.4 Å.20 
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Figure 4.3: Temperature dependence of the thermal conductivity.  The squares represent 
the straight (14,0) nanotube, the triangles represent the forward heat flow configuration of 
the y-junction tube, and the circles represent the reverse heat flow configuration of the y-
junction tube. 

 

The results for the thermal conductivity of the nanotubes are summarized in figure 4.3.  

For temperatures up to 400 K, there is no significant difference between the “forward” and 

“reverse” heat conductivity of the Y-junction carbon nanotube.  This is in contrast to the 

theoretical result indicating significant electrical rectification in the same Y-junction nanotube 

configuration.10  Additionally, the thermal conductivity exhibits an increase with temperature 

similar to what has been reported experimentally19 for straight carbon nanotubes.  Figure 4.3 also 

indicates that the thermal conductivity of the straight (14,0) nanotube was consistently larger 

than that of the Y-junction structure. 

The heat flux density results are shown in figure 4.4.  This figure indicates that the 

forward and reverse energy flux values of the Y-junction nanotube are almost exactly the same 
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Figure 4.4: Temperature dependence of the heat flux density.  The squares represent the 
straight (14,0) nanotube, the triangles represent the forward heat flow configuration of the 
y-junction tube, and the circles represent the reverse heat flow configuration of the y-
junction tube. 

 

for all temperatures.  Furthermore, these flux values are essentially identical to those of the 

straight (14,0) nanotube.  Given this, it stands to reason that the differences in thermal 

conductivity between the Y-junction and the straight nanotubes are due to differences in the 

temperature gradient.  Figure 4.5 shows the values of the temperature gradient obtained, and 

indicates that the Y-junction tube has a higher temperature gradient than the straight (14,0) tube 

for all temperatures. 

Figure 4.6a shows the temperature profile along the straight (14,0) nanotube at 300 K and 

figure 4.6b shows that of the Y-junction nanotube, also at 300 K.  These figures help to explain 

the reason why the Y-junction nanotube has a higher temperature gradient than the straight 

nanotube.  As seen in figure 4.6b, the Y-junction nanotube exhibits a sharp discontinuity in the 

temperature profile at slab positions 35-37, where the trunk splits into the two branches.  No such 
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Figure 4.5: Temperature dependence of the temperature gradient.  The squares represent the 
straight (14,0) nanotube, the triangles represent the forward heat flow configuration of the y-
junction tube, and the circles represent the reverse heat flow configuration of the y-junction tube. 

 

discontinuity in the temperature profile exists for the straight tube.  This small region of 

relatively large temperature gradient is a result of the presence of high resistance to heat flow at 

the junction.  This high resistance, in turn, results in the lower values for the thermal 

conductivity of the Y-junction nanotube. 

Discontinuities in the temperature profile have been observed in the context of molecular 

dynamics simulations before.  Using a non-equilibrium molecular dynamics approach, Maiti et 

al. have investigated the heat flow across crystal grain boundaries.  They have reported a similar 

temperature profile across a grain boundary in a silicon crystal.37  Maruyama et al. have reported 

seeing a jump in the temperature profile of a carbon nanotube heterojunction consisting of a 

(12,0) tube connected to a (6,6) tube.38  In each of these cases, the jump in the temperature 

profile seems to be associated with the presence of discontinuities or defects in the crystal lattice 
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Figure 4.6: Temperature profiles of (a) the straight (14,0) nanotube, (b) the Y-junction 
nanotube, (c) the straight (14,0) nanotube with vacancy defects, and (d) the straight (14,0) 
nanotube with a Stone-Wales (5,7,7,5) defect.  Fit lines have been added to show the 
slope in each region. 
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under investigation.  These defects act as additional scattering centers and result in a region of 

large temperature gradient, which translates to a reduction in the thermal conductivity of the 

crystal.  Che et al. have reported his type of behavior, with theoretical calculations that indicate 

an inverse relationship between the number of defects in a crystal and the thermal conductivity 

of the crystal.21  In the Y-junction tube examined in this paper, lattice defects are present in the 

form of six heptagonal carbon rings at the junction point.10 

 In order to understand the origin of the discontinuity at the Y-junction, two types of 

defects were intentionally introduced into the middle of two straight (14,0) nanotubes.  The first 

type of defect was in the form of atomic vacancies and was created by the removal of two atoms 

from the middle slab of the tube.  The second type of defect was a Stone-Wales (5, 7, 7, 5) 

defect, where four hexagons are changed into two pentagons and two heptagons.  These tubes 

were then run through the simulation at 300 K, with the usual ± 50 K hot and cold slabs applied.  

The resulting temperature gradient of the tube with vacancies can be seen in figure 4.6c, while 

that of the tube with the Stone-Wales defect can be seen in figure 4.6d.  As seen in these figures, 

the temperature profile of the straight nanotube with two vacancies is very similar to that of the 

Y-junction, while the temperature profile of the tube with the Stone-Wales defect exhibits a 

discontinuity that is much less pronounced.  Additionally, the resulting values of the temperature 

gradient and the thermal conductivity of the (14,0) tubes with defects were calculated.  The 

nanotube with vacancies had the same thermal conductivity and temperature gradient as those 

obtained for the Y-junction nanotube at the same temperature.  The nanotube with the Stone-

Wales defect had a smaller temperature gradient and thus a larger thermal conductivity than the 

Y-junction tube, but a smaller thermal conductivity than the defect-free (14,0) tube.  Che et al. 

noted that Stone-Wales defects have a less significant effect on thermal conductivity than 
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vacancies,21 which is consistent with the smaller temperature profile discontinuity seen in figure 

4.6d.  They concluded that the Stone-Wales defects were less severe because they do not change 

the bonding configuration of the lattice and thus induce less structural deformation.  The greater 

amount of structural deformation in the Y-junction nanotube suggests that it will exhibit a more 

significant discontinuity in the temperature profile. 

In an attempt to clarify the reason behind the presence of the jump in the temperature 

profiles, the phonon spectra of the nanotubes in question were investigated.  The phonon spectra 

were found by taking the Fourier transform of the velocity autocorrelation functions of each 

tube, which were calculated over 1024 time steps in the molecular dynamics simulations.  Of 

interest were the frequency distributions of atomic vibrations along two different directions.  

Axial phonons and radial phonons represent vibrations parallel and perpendicular to the nanotube 

axis, respectively.  Therefore, two autocorrelation functions were calculated, one using only the 

component of the atomic velocities parallel to the nanotube axis, and one using only velocity 

components perpendicular to the nanotube axis. 

Figure 4.7a shows the axial phonon spectrum of the atoms in a single defect-free slab in 

the (14,0) nanotube.  A primary peak exists at around 50 THz, with a lesser peak at about 20 

THz.  In figure 4.7b, the axial phonon spectrum of the atoms in the slab with vacancies in the 

(14,0) tube is shown.  Again, the phonon density peaks at about 20 THz and 50 THz.  However, 

the magnitude of the 50 THz peak is about 15% smaller than that of the defect-free slab.  Figure 

4.7c shows the axial phonon spectrum of the atoms in the slab with the Stone-Wales defect.  The 

magnitude of the 50 THz peak is about 16% smaller than that of the defect-free slab.  Finally, 

figure 4.7d shows the axial phonon spectrum of the atoms of slab 35 in the Y-junction tube.  Slab 

35 is the slab in the (14,0) trunk of the Y-junction that is adjacent to the middle “hub” slab. 
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Figure 4.7: Axial phonon spectra of (a) the straight (14,0) nanotube, (b) the straight 
(14,0) tube slab with vacancy defects, (c) the straight (14,0) nanotube slab with a Stone-
Wales (5,7,7,5) defect, and (d) Y-junction slab 35.  These spectra represent atomic 
vibrations parallel to the tube axis. 

 

Moving from left to right along the temperature profile of the Y-junction tube in figure 4.6b, one 

can see that slab 35 is where the first significant discontinuity in the temperature drop occurs.  

Again, peaks in the phonon density of the atoms in this slab exist at 20 THz and 50 THz.  In this 

case the magnitude of the 50 THz peak is about 30% smaller than that in the defect-free (14,0) 

slab.  Similar results were obtained for the radial phonon spectra of the nanotubes.  The 

magnitudes of the 50 THz peaks in the radial phonon spectra of the Y-junction and (14,0) 



 38 

nanotube with vacancies were both 7% smaller than that of the defect-free (14,0) nanotube, while 

the peak in the tube with the Stone-Wales defect was 20% smaller. 

 

4.4. Discussion 

 The steady state heat flow properties of a Y-junction nanotube consisting of a (14,0) 

trunk splitting into two (7,0) branches have been investigated using molecular dynamics 

simulations.  Thermal transport under steady state does not show any anisotropy with respect to 

the direction of the heat flow, which is in contrast to the evidence of electrical rectification in the 

same structure.  In their calculations, Andriotis et al. accounted for the effects of quantum states 

on electrical conduction in Y-junction carbon nanotubes through an application of Green’s 

functions.10  Recent experimentation has shown that the specific heat of carbon nanotubes 

increases linearly with temperature from 2 K to 8 K, with an increase in the slope above 8 K.26  

This behavior implies a quantized 1D phonon spectrum in carbon nanotubes at temperatures 

below 8 K.  Above 8 K, the number of phonon modes excited becomes large enough to make the 

specific heat appear to be continuous with temperature.  Therefore, quantum thermal effects are 

not seen at the temperatures used in these simulations.  Furthermore, the use of Fourier’s 

classical law of heat flow in the MD simulations precludes the inclusion of quantum thermal 

effects.  Fourier’s law provides an aggregate measure of the thermal conductivity by summing 

over all of the present phonon modes,39 but in doing so wipes out information about the 

contribution of individual phonons to heat flow.  It has been demonstrated that the thermal 

conduction of carbon nanotubes at any temperature is dominated by phonons.19  Therefore, it is 

possible that a more detailed model including a consideration of individual phonon modes may 

reveal thermal rectification in Y-junction nanotubes at very low temperatures. 
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 The discontinuity in the temperature profile of the Y-junction nanotube seems to be the 

result of the discontinuous crystal structure present at the hub of the Y-junction.  Similar 

temperature profiles have been observed in crystal grain boundaries,37 junctions between 

nanotubes of different diameters,38 and in single nanotubes with vacancy defects present.  A 

study of the phonon modes in the investigated tubes indicates that the presence of defects 

reduces the density of axial and radial phonon modes.  This connection between the temperature 

discontinuity and the atomic vibrations seems to indicate that both the axial and the radial modes 

are at least partly responsible for the transfer of heat along a nanotube, and that the interruption 

of these modes results in an interruption of heat transfer. 
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CHAPTER FIVE 

HEAT PULSE PROPAGATION 

 

5.1. Introduction 

 In Chapter 4, the details of the simulation of steady state heat flow through a Y-junction 

carbon nanotube were provided.  In this chapter, the transient heat flow properties of the Y-

junction nanotube are examined.  Molecular dynamics simulations are used to generate a heat 

pulse in the Y-junction and examine how it propagates through the structure.  In this chapter, the 

simulation method is described, the results are summarized and an analysis is provided. 

 

5.2. Methodology 

 The details of the molecular dynamics simulation used in the study of heat pulse 

propagation are similar to those presented in Chapter 4.  As before, the Tersoff-Brenner bond 

order potential has been used.  The general simulation method, as described in Chapter 3, is 

exactly the same.  The difference lies in the application of heat to the system.  In the steady state 

case, hot and cold thermal reservoirs were placed at opposite ends of the Y-junction to induce 

heat flow.  The temperatures of these reservoirs were maintained by velocity scaling through 

equation (4.1).  In the case of transient heat flow, the setup is slightly different, and can be seen 

in figure 5.1. 

 The slabs labeled “Fixed” and those labeled “Buffer” are the same as those described in 

Chapter 4.  The buffer slabs are maintained at the ambient temperature of the simulation.  The 

slabs labeled “Pulse” are those to which the heat pulse is applied.  The temperature in the “Pulse” 
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slabs is controlled through velocity scaling as in equation (4.1), but instead of being constant, 

Tcontrol is time-dependent.  This time-dependence can be seen in figure 5.2. 

 

 

Figure 5.1: Molecular dynamics setup for applying a heat pulse to the Y-junction carbon 
nanotube. 

 

 

Figure 5.2: Time-dependent behavior of the applied heat pulse. 

 

From this figure it should be noted that Tamb is the same ambient temperature at which the 

buffer slabs are held.  Before and after the heat pulse, the temperature of the “Pulse” slabs is 

maintained at Tamb in the same manner as the buffer slabs, with one small adjustment.  There is 

no fixed slab at the end of the tube where the pulse is applied.  This is done in order to minimize 
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reflections from that tube end.  However, the absence of a fixed slab results in the possibility of 

large-scale oscillations on that end of the tube.  These oscillations would be greatly magnified by 

velocity scaling during the application of the heat pulse.  Therefore, at each time step the center-

of-mass velocity of the pulse slabs is calculated and subtracted from the velocity of each atom.  

This ensures that the overall momentum of this end of the tube remains zero. 

 Because this simulation is a transient one, there is no need to calculate properties based 

on statistical averages, such as thermal conductivity or the velocity autocorrelation function.  

Instead, it is only necessary to collect the temperature profile data at specific time intervals 

throughout the simulation.  This data provides the time evolution of the temperature at each point 

in the Y-junction nanotube.  However, the instantaneous temperature data can be noisy in both 

time and space.  Therefore, two techniques, spatial and temporal averaging, are used to provide a 

smoother picture of the time evolution of the temperature.  Spatial averaging determines the local 

temperature of each slab by finding the average temperature of the current slab and its two 

nearest neighbor slabs on each side.  For example, the local temperature of slab 10 is the average 

temperature of slabs 8, 9, 10, 11, and 12.  In temporal averaging, the temperature of a slab at the 

current time step is equal to the average of the temperature of that slab over the previous N time 

steps. 

 

5.3. Results 

 The Y-junction used in these simulations had a (14,0) trunk and two (7,0) branches.  Each 

branch contained 150 slabs, for a total of 451 slabs and 16,860 atoms.  With a slab-width of 4.26 

Å, each branch measured about 64 nm long.  This is long enough to examine the propagation of 

heat pulses through the branches before they reach the junction.  The Y-junction nanotube was 
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simulated under three different heat pulse configurations: a heat pulse originating in the (14,0) 

trunk, a heat pulse originating in one of the (7,0) branches, and a heat pulse originating in both of 

the (7,0) branches simultaneously.  Each simulation was run for 30,000 time steps.  At 0.5 fs per 

step, this is a total time of 15 ps.  For comparison, a straight (14,0) nanotube and a straight (7,0) 

nanotube each measuring 300 slabs (128 nm) were also run under the heat pulse simulations.  

Temporal averaging was taken over an interval of 50 time steps.  In each case, the tube in 

question was quenched to Tamb = 0 K, while the pulse magnitude was Tpulse = 800 K.  The rise 

and fall times were trise = tfall = 100 steps (50 fs), the start time was tstart = 1 time step, and the 

pulse length was tpulse = 2000 time steps (1 ps). 

 Figure 5.3 shows the results of the heat pulse simulation on the (7,0) carbon nanotube.  

As seen in this figure, the heat pulse has excited several traveling waves.  Three of them are of 

particular interest in this discussion, and are labeled in figure 5.3.  The wave labeled “1” is the 

leading edge wave, and travels at a speed of 21.3 km/sec.  This speed is consistent with the 

sound velocity of longitudinal acoustic phonons in (10,10) armchair nanotubes, which are 

estimated to be 20.35 km/sec, and that of 21.0 km/sec in 3D graphite.40  The magnitude of this 

leading wave is very small, on the order of 3 K.  The second wave of interest, labeled “2,” travels 

at approximately 12.8 km/sec, which is similar to the sound velocity of the transverse acoustic 

mode in 3D graphite at 12.3 km/sec.  The velocities of the transverse acoustic mode of a (10,10) 

nanotube and 2D graphite are estimated to be 9.4 km/sec and 15.0 km/sec, respectively, and the 

velocity of the twisting mode of a (10,10) nanotube is approximately 15.0 km/sec.40  The 

magnitude of this wave is relatively large, on the order of 130 K.  The final mode of interest, 

labeled “3,” travels at 6.4 km/sec and precedes diffusive heat flow in the (7,0) nanotube, due to 

increase in overall temperature behind it.  The leading wave in the diffusive heat flow has a 
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Figure 5.3: Heat pulse results of the (7,0) carbon nanotube. 

 

magnitude on the order of 25 K.  Henceforth, these waves will be known as type-1, type-2 and 

type-3 waves, corresponding to their labels in figure 5.3.  The waves seen in subsequent figures 

will also be labeled accordingly. 



 45 

Figure 5.4 shows the results of the heat pulse simulation on the (14,0) carbon nanotube.  

The labeled waves correspond to those in figure 5.3.  The type-1 leading edge wave of the (14,0) 

nanotube travels at a velocity of 18.3 km/sec, and has a magnitude on the order of 0.5 K.  The 

type-2 wave travels at approximately 12.1 km/sec, with a magnitude of about 70 K.  The type-3 

wave travels at 5.5 km/sec with a maximum pulse magnitude of around 50 K.  From these results 

it can be seen that these waves propagate slightly slower in the (14,0) nanotube than they do in 

the (7,0) nanotube.  One other thing to note is that the type-2 wave appears to have a second peak 

trailing along behind it at the same velocity.  This could be the result of a reflection of this wave 

off the tube end, which would explain its reduced magnitude.  It is unclear why this is not 

observed in the (7,0) nanotube. 

    Figure 5.5 shows the results when the heat pulse is applied to both branches 

simultaneously.  In this figure, slabs 1-150 represent the (14,0) trunk region.  The solid curve 

along slabs 152-301 represents the first (7,0) branch, while the broken curve represents the 

second one.  Slab 151 is the hub of the Y-junction structure.  The vertical broken line at slab 150 

is used to indicate the location of the junction.  In this figure, it can be seen that some of the 

waves that reach the junction are transmitted into the (14,0) trunk, but with a reduced magnitude.  

The waves of interest in this figure have been labeled corresponding to their type.  At t = 5000 

time steps, one can see that type-1 and type-2 waves are propagating in the branches toward the 

junction at about 19.0 km/sec and 10.6 km/sec, respectively.  It appears that the magnitude of the 

type-2 wave in branch 2 is larger than that in branch 1.  This could be due to a variation in the 

initial noise conditions of the branches.  The tube was quenched at a low temperature for a long 

time, but perhaps only a slight difference in noise conditions can result in a magnitude difference 

of this scale. 
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Figure 5.4: Heat pulse results of the (14,0) carbon nanotube. 

 

At t = 10000 time steps, the type-1 wave has passed into the trunk, still traveling at about 

19.0 km/sec, while the type-2 wave is very near the junction.  One can also see the appearance of 

the type-3 wave, traveling at about 6.8 km/sec.  At t = 13000 time steps, one can see that the 
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type-2 waves in the branches have collided with the junction, and have partially reflected back 

into the branches.  As a result, two waves have been generated in the trunk, one traveling at a 

velocity of 9.5 km/sec and the other traveling at a velocity of 6.4 km/sec.  These waves have 

been labeled “2a” and “2b,” respectively.  At t = 18000 time steps, these two waves continue to 

propagate in the trunk, and the type-3 waves in the branches approach the junction.  At t = 25000 

time steps, one can see that the type-3 waves in the branches have passed through the junction 

into the trunk, continuing to travel at 6.4 km/sec.  It appears that the magnitude of diffusive heat 

flow has been significantly reduced upon passing into the trunk. 

In figure 5.6, the heat pulse has been applied to only one of the branches.  The behavior 

observed in figure 5.5 is essentially the same as that seen here, except for the fact that the 

magnitudes of the waves that propagate into the trunk are much smaller.  It is also possible to see 

that the type-2 wave from branch 1 has propagated into branch 2. 

Figure 5.7 shows the results when the heat pulse is applied to the (14,0) trunk.  At t = 

5000 time steps the type-1 leading wave is evident, traveling at about 19.0 km/sec.  At t = 10000, 

the type-2 and type-3 waves become discernable, traveling at 11.4 km/sec and 5.8 km/sec, 

respectively.  At this time, the type-1 wave has passed into the branches and maintained its 

velocity.  At t = 13000, the type-2 wave has partially reflected back into the trunk, and has 

transmitted three waves into the branches.  These are labeled “2a,” “2b,” and “2c” and travel at 

10.4 km/sec, 8.4 km/sec and 6.3 km/sec, respectively.  At t = 18000, the type-3 wave has 

propagated closer to the junction, maintaining its speed.  At t = 25000, the type-3 wave has 

partially reflected back into the trunk.  The portion of the wave transmitted to the trunk has split 

into several waves, all traveling around 5.8 km/sec.  However, it is difficult to distinguish them 

because waves 2a-2c have reflected off the ends of the branches, causing interference.  As in 
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Figure 5.5: Heat pulse results of the Y-junction carbon nanotube with the pulse applied to both 
branches simultaneously. 
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figure 5.5, it appears that the diffusive heat flow has been significantly reduced upon passing 

through the junction. 

 

5.4. Discussion 

 The results in figures 5.3 and 5.4 indicate that a heat pulse can excite many traveling 

waves in straight carbon nanotubes.  The leading edge waves in both the (7,0) and (14,0) tubes 

travel at a speed that corresponds to the speed of longitudinal acoustic waves in other carbon 

nanotubes and in graphite.  This suggests that the type-1 leading edge wave in figures 5.3 and 5.4 

is also a longitudinal mode.  Several other waves trail along behind this, including a relatively 

large one that travels at 12-13 km/sec in each nanotube.  This may correspond to either a 

transverse mode or a twisting mode.  Diffusive heat flow came along more slowly, at 6.7 km/sec 

in the (7,0) nanotube and 5.5 km/sec in the (14,0) nanotube. 

In Chapter 4, it was found that the thermal conductivity of the Y-junction carbon 

nanotube did not appear to be dependent on the direction of heat flow at temperatures around 

room temperature.  However, in the case of heat pulse propagation at very low temperatures, 

some asymmetry does appear.  From figures 5.5 and 5.7, it appears that individual traveling 

waves can pass through the junction in either direction.  However, these results show that 

thermal energy in the form of traveling waves appears to transmit through the junction better 

when passing from the trunk to the branches than it does in the opposite direction. 

By comparing figures 5.5 and 5.6, it is evident that traveling waves are best transferred 

from the branches to the trunk if they arrive from both branches simultaneously, or in phase.  

Thus, it can be assumed that atomic vibrations that reach the junction out of phase will not give 

rise to modes that can propagate into the trunk.  This can explain why traveling waves are not 
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Figure 5.6: Heat pulse results of the Y-junction carbon nanotube with the pulse applied 
to one branch. 
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Figure 5.7: Heat pulse results of the Y-junction carbon nanotube with the pulse applied 
to the trunk. 
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transferred very well into the trunk from the branches.  Each wave is made up of a distribution of 

atomic vibrations.  Although two waves may reach the junction at the same time, it is not 

expected that the vibrations associated with these waves will be in phase with one another, and 

thus interference will occur, blocking heat from flowing from the branches to the trunk.  When 

heat is passing from the trunk to the branches, the phase nature of the atomic vibrations is not 

important because the trunk is the only source of heat.  Thus, the traveling waves pass more 

easily from the trunk into the branches. 

In figures 5.5-5.7 it was seen that traveling waves could split into several new waves 

upon passing through the junction.  Each of these new waves traveled at a velocity less than or 

equal to the original wave.  This suggests that traveling waves can act as a heat source at the 

junction, but that their inherent energy content limits which new waves can be generated.  It is 

also possible that a traveling wave’s orientation will determine which waves are generated when 

it hits the junction.  Extra molecular dynamics code would have to be written to determine 

whether a traveling wave consists of longitudinal vibrations, transverse vibrations, or some 

combination of the two. 

In figure 5.5 it was seen that the magnitudes of the type-2 waves in the branches are 

significantly different.  Furthermore, their magnitudes are much smaller than the magnitude of 

the type-2 wave seen in the straight (7,0) nanotube in figure 5.3.  Figure 5.7 indicates that 

traveling waves are transmitted very well from the trunk to the branches.  However, an earlier 

simulation showed that this was not the case; the traveling waves in the trunk had mostly died 

out by the time they reached the junction.  The newer simulation was used in this case because 

the Y-junction nanotube was quenched to 0 K for a longer period of time; there was still some 

thermal noise in the prior simulation.  Other simulations of the straight (14,0) nanotube have 
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resulted in a type-2 wave that was nearly nonexistent.  Figures 5.5 and 5.7 seem to indicate that 

traveling waves pass through the junction better when they originate in the trunk.  However, this 

may only appear to be the case because the magnitudes of the waves that reach the junction in 

figure 5.7 are much greater than those in figure 5.5. 

There appears to be a good deal of inconsistency in the magnitude and stability of the 

waves that are generated by the heat pulse.  The cause of these issues seems to lie with the initial 

state of the carbon nanotube being simulated.  Before a heat pulse is applied, the nanotube is 

quenched to a temperature negligibly above 0 K.  This quenching is done with the application of 

friction and random forces, as is done with the buffer slabs in figure 4.2.  It has been observed 

that a carbon nanotube quenched for a certain number of time steps will have a different heat 

pulse response than the same nanotube quenched for a different number of time steps.  Because 

these nanotubes have been quenched for a different number of time steps, the velocities of the 

atoms in the pulse slabs will most likely have different random distributions.  When velocity 

scaling is applied to generate the heat pulse, these velocities will be scaled to very large values.  

So, while the differences in initial conditions may not matter at low temperatures, they appear to 

matter when the pulse is applied. 
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CHAPTER SIX 

CONCLUSION 
 

 Molecular dynamics simulations have been used to examine the thermal properties of a 

Y-junction carbon nanotube under steady state and transient conditions.  The steady state 

simulations have revealed that the thermal conductivity of a Y-junction carbon nanotube is less 

than that of a corresponding straight nanotube.  This drop in thermal conductivity is the result of 

the interruption of lattice continuity at the junction.  The junction acts to impede heat flow by 

suppressing the density of phonon modes in the system.  This manifests itself in the form of a 

discontinuity in the temperature profile of the Y-junction nanotube.  Furthermore, it has been 

found that the thermal conductivity is independent of the direction of heat flow.  This is in 

contrast to results obtained for electrical current flow.  The calculations involving electrical 

rectification included the effects of quantum electronic states.  At room temperature, enough 

phonon modes have been excited that the thermal properties of carbon nanotubes appear to be 

continuous in nature.  Furthermore, the method of simulation used in this research is entirely 

classical, and does not account for the contribution of individual phonon modes.  However, 

experiments have indicated the existence of quantized thermal conductance at very low 

temperatures.  Therefore, a method of simulation that accounts for quantum thermal effects may 

reveal thermal rectification at low temperatures. 

 The heat pulse simulations have revealed that some asymmetry in heat flow appears to 

occur.  Traveling waves were shown to pass fairly well from the trunk to the branches, but not so 

well in the opposite direction.  This was attributed to atomic vibrations of a wave in one branch 

being out of phase with those in the other branch when they reached the junction.  Diffusive heat 

flow appeared to be limited in both directions.  It was also seen that it is possible for a wave to 
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split into several waves when passing through the junction.  The velocities of the new waves 

were always less than or equal to the velocities of the original wave.  Finally, it was noted that 

there were significant inconsistencies in the magnitude and stability of the waves generated by 

the heat pulse.  These were attributed to variations in the initial state of the carbon nanotube that 

get blown up when the heat pulse is applied. 

 There are several possibilities for future work.  First, the steady state simulations could be 

adapted to determine if thermal rectification does occur at very low temperatures.  These 

simulations will have to account for the individual contribution of phonons to heat flow.  For the 

heat pulse simulations, extra code could be added to determine the orientation of the various 

modes that propagate through the nanotubes.  In addition, the issue of initial conditions in the 

nanotubes needs to be addressed.  Finally, all of these simulations can be run again using other 

Y-junction nanotubes. 
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