

OBTAINING HIGH PERFORMANCE PHASOR MEASUREMENTS IN A

GEOGRAPHICALLY DISTRIBUTED STATUS

DISSEMINATION NETWORK

By

RYAN JOHNSTON

A thesis submited in partial fulfilment of
the requirements for the degree of

MASTER OF SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

AUGUST 2005

 ii

To the Faculty of Washington State University:

The members of the committee appointed to examine the thesis of RYAN

JOHNSTON find it satisfactory and recommend that it be accepted.

Chair

 iii

ACKNOWLEDGEMENT

Foremost, I would like to thank my committee members for providing me with

their valuable time. In particular, I would like to thank my advisor and committee chair,

Dr. Carl Hauser, for all of the work he has done to help me formulate and execute my

research.

I would also like to thank Ruby Young for all of her assistance in helping me

through all of the paper work and submission deadlines involved in the procurement of

my degree.

I would like to thank the school of Electrical Engineering and Computer Science

for providing me with the opportunity to pursue a master’s degree.

This research was partially supported by NSF grant ITR CCR-0326006, for which

I am very grateful.

 iv

OBTAINING HIGH PERFORMANCE PHASOR MEASUREMENTS IN A

GEOGRAPHICALLY DISTRIBUTED STATUS

DISSEMINATION NETWORK

Abstract

by Ryan Johnston, M.S.
Washington State University

August 2005

Chair: Carl Hauser

The emergence of phasor measurement units (PMUs) coupled with GPS time

devices makes it feasible to directly compare timestamps collected at different locations

without taking special measures to account for clock drift. GridStat is a flexible publish-

subscribe status dissemination middleware framework with capabilities that include rate-

filtered multicast for each subscription. In this thesis we explore GridStat's ability to hide

the complexities of distributed systems from application developers while efficiently

providing time-synchronous groups of PMU data from physically disparate locations.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. III

ABSTRACT.. IV

TABLE OF FIGURES...VII

CHAPTER .. 1

 INTRODUCTION .. 1

 BACKGROUND .. 4

2.1 Power System Monitoring .. 4

2.2 Distributed Systems .. 7

2.3 GridStat architecture and mechanisms.. 10

 RELATED WORK ... 15

3.1 Power Systems Research .. 15

3.2 Centralized Systems.. 19

3.3 Middleware Research.. 21

 USE OF GRIDSTAT MECHANISMS FOR PMU DATA DISSEMINATION.. 22

4.1 Using GridStat .. 23

4.2 Key Issues ... 23

4.3 Experiments .. 25

4.4 Conclusion .. 30

 APPLICATION DEVELOPMENT.. 32

5.1 Overview... 32

5.2 Phasor Measurement Unit Emulator... 32

 vi

5.3 Phasor Data Concentrator Emulator ... 33

5.4 GridStat Java Application Framework.. 33

 CONCLUSION... 46

6.1 Future Work .. 47

APPENDIX... 51

 PMU EMULATOR APPLICATION SOURCE CODE....................................... 52

A.1 PMUPublisherApplication.java .. 52

A.2 PMUPublisherWrapper.java ... 52

A.3 PMUPublisherPanel.java .. 57

BIBLIOGRAPHY... 62

 vii

TABLE OF FIGURES

Figure 2.1: GridStat Architecture ... 11

Figure 3.1: Centralized Systems ... 20

Figure 4.1: GridStat Packet Overhead .. 25

Figure 4.2: Single Path Configuration .. 27

Figure 4.3: Redundant Path Configuration ... 28

Figure 4.4: End-to-end Delay ... 29

Table 4.1: Delays Over 10ms.. 29

Figure 5.1: Application Diagram .. 34

Table 5.1: Leaf QoS Broker Example... 38

Table 5.2: Subscriber Example ... 39

Table 5.3: Base Commands .. 42

Figure 5.2: PDC Emulator Screen Capture... 44

 1

CHAPTER ONE

 INTRODUCTION

A power grid is a complex power distribution infrastructure composed of

thousands of miles of transmission lines connecting power generators to power

consumers. Keeping such a complex system stable and resilient to failure is not a trivial

task. Small fluctuations in one part of the grid can cascade into system wide failures if

left unchecked. It is therefore imperative to be aware of what is happening within the grid

so that proper reactionary measures can be taken to insure stability and uninterrupted

service.

The growing availability of synchronous phasor measurement units (PMUs) and

their deployment on power grids is making available a wealth of new real-time data about

the state of the grid. PMU data contains much more information than is typically

measured in existing SCADA systems. PMU measurements are synchronized and

timestamped using a global clock (GPS). A PMU’s measurements, made 20 to 60 times

per second, allow derivation of the bus current, voltage, phase and frequency where it is

attached.

Existing mechanisms for using these data are mainly targeted at collecting them in

archival central repositories for use in after-the-fact analysis of system response to

normal and abnormal events. Because of their centralized nature, these collection

mechanisms have limited ability to support the use of these data for real-time

applications. For example, if these data are to be used to make control decisions that

involve making operational changes at various points throughout the grid, then delay is

 2

incurred to first transfer the sampled data to the centralized repository, and then to

retransmit the control message to the destination in the grid where it is to be

implemented.

Nevertheless, the ability to receive status data from a variety of remote locations

opens new, largely unexplored opportunities for improving the power grid’s control

systems to provide better reliability and efficiency. Ongoing research, [18, 19], suggests

that PMU data will be valuable in fast control applications, but widespread use of such

mechanisms will require a more flexible communication infrastructure than exists today.

Current fast controls are either local or require dedicated point-to-point communication

links. Such a communication infrastructure makes it expensive to accommodate changing

needs.

GridStat is a middleware framework for dissemination of operational power grid

status data (both digital and analog). Middleware is a layer of software above the

operating system which provides a common programming abstraction across a distributed

computing system. Its high-level building blocks shield the programmer from many

different kinds of heterogeneity that are inherent in a distributed system, including that of

CPU, operating system, and programming language.

A fundamental design motivation of GridStat was to provide flexible, managed,

low-latency sharing of status data among entities that participate in operation of an

interconnected power grid. GridStat’s management capabilities are intended to ease the

deployment of applications by encapsulating solutions to problems such as quality of

service (QoS), reliable delivery, and security in the communication infrastructure rather

than leaving their solution to applications. GridStat was designed to provide high-

 3

bandwidth communication for power grid data, delivering the right data to the right

computer at the right frequency with the ability to easily adapt to changing needs.

In this thesis we examine GridStat’s suitability as the communication medium for

PMU data distribution. We show GridStat’s ability to meet the latency and bandwidth

requirements of various PMU data applications. While GridStat is used heavily in this

research, this research did not involve the actual development of GridStat, but rather used

GridStat as a blackbox middleware system.

Additionally we present an application development framework created as part of

this research that removes some of the complexity involved in deploying GridStat

applications by acting as a value added abstraction layer between GridStat, and GridStat

application developers. This framework was developed to further meet GridStat’s

avowed goal of removing the complexity of distributed systems programming by

complementing it with a framework that eases the creation of applications in general.

 4

CHAPTER TWO

 BACKGROUND

2.1 Power System Monitoring

2.1.1 Introduction

Advances in power systems monitoring, coupled with the availability of high

speed data networks, make it possible to monitor the power grid in real-time. This

monitoring makes it possible to not only determine the state of the power grid at a given

moment, but perhaps even use the monitored data as a basis for making automated

control decisions. Automating control decisions makes it possible for the power grid to

be more adaptive, and resilient to disturbances.

2.1.2 Phasors

In an AC power system, voltage and current can be represented as a sine wave

oscillating at the system frequency. A phasor is a vector representation of such a wave,

and is composed of a magnitude, and phase angle. Alternatively a phasor may be

represented in the complex plane, with a real and imaginary component.

2.1.3 PMU data

PMUs collect phasor information, and are typically placed in a substation to

monitor that substation’s three phase voltages and current in lines, transformers, and

loads that terminate there [7]. These quantities are collected along with frequency, and

 5

each sample is timestamped with a time value that is accurate to within one microsecond

of UTC.

The accurate timestamping is achieved by using GPS clock synchronization at

each of the data collection sites. This time keeping has very important implications for

our research. In particular, the dependability of the timestamps is unusual in distributed

systems, as discussed later in this chapter.

The length of an IEEE 1344 data packet depends on the number of phasor and

digital quantities reported by a particular PMU. A basic PMU packet is 14 bytes long

consisting of

• 4-byte second-of-century (SOC)

• 2-byte sample count (SMPCNT)

• 2-byte status (STAT)

• 2-byte frequency (FREQ)

• 2-byte rate-of-change-of-frequency (DFREQ)

• 2-byte CRC16

A separate configuration file specifies how many 4-byte phasors are inserted in

each data frame between the STAT and FREQ words and how many 2-byte digital status

words are inserted between the DFREQ and CRC16 words. For example, a PMU

measuring 3-phase voltage phasors and no digital status would send 26-byte frames; one

measuring 3-phase voltage, and current, and 32 bits of digital status would send 42-byte

frames.

The configuration file also controls the frequency at which frames are sent.

Twenty or 30 frames per second is common today. Researchers looking into use of PMU

 6

data for wide-area control suggest that moving to 60 frames per second would be useful

in their application, [24].

Even at only 20 frames per second a PMU device produces far more data than

does older-technology power system monitoring equipment designed for the 2- or 4-

second SCADA polling cycle. At 60 frames per second a PMU measuring 3-phase

voltage and current and 32 digital samples (42-byte frames) produces just over

20Kbits/second: huge by the standards of legacy SCADA but miniscule by the standards

of even consumer-grade broadband networking service.

2.1.4 PMU Data Applications

PMU data can be used in numerous applications, including event analysis, system

monitoring and real-time controls.

Event Analysis

Phasor measurements have extremely low noise and precise timing, which allows

their collective data to be used to monitor system wide events and disturbances. For

instance, a system composed of PMUs would be sensitive enough to track the progression

of minor system changes throughout the grid. Such precision makes it possible to

evaluate and compare real power grid performance to predicted system models. This

comparison allows critical analysis of predicted system models, so they may be refined to

more accurately reflect real world grid dynamics.

 7

System Monitoring

If PMU data can be collected from throughout the grid, it becomes possible to

analyze the current state of the system. What is important for this application is the ability

to receive PMU data frames that were sampled at the same moment in time (or as close as

possible). PMUs coupled with GPS time devices are able to create timestamps that are

within one microsecond of UTC, so they have the ability to know the current time, the

only complication then is to ensure they collect their samples at the proper moments,

which some PMUs already ensure. Once the samples are collected, they must be gathered

at a centralized location for comparison.

Real-time Control

If the state of the grid can be ascertained in a reasonable amount of time it is

possible to make control decisions based on the collected data. The aforementioned

reasonable amount of time is of course specific to the real-time control application, as

some controls have stronger latency requirements than others.

2.2 Distributed Systems

2.2.1 Overview

In Computer Science, the term distributed system is rather loosely defined, and its

specific definition has been the source of debate. [22], defines a distributed system as a

collection of independent computers that appears to its users as a single coherent system.

For the purposes of this discussion, that definition will be sufficient.

 8

Because distributed systems are comprised of many computer systems, it is often

difficult to determine the order of events that occur throughout such a system. In general,

computer clocks are not accurate enough to be relied on to determine when an event

occurs on one machine in relation to another. Many algorithms exist to establish a global

ordering of events with varying degrees of precision [3, 12]. However, all such

algorithms require additional messages to be passed through the network. PMU data is

unique in that it contains a universally synchronized timestamp, making it possible to

directly compare the timestamps of remotely collected PMU data frames without the need

or any form of distributed ordering algorithm.

2.2.2 Middleware

Middleware, [1], comprises a class of software technologies that simplify the

development of distributed systems in heterogeneous software, hardware, and network

communication environments. Middleware exists as a software abstraction layer between

an operating system and an application. The abstractions that middleware provides to an

application developer remove a measure of the complexity involved in the heterogeneity

found in many distributed systems. This is accomplished by providing some or all of the

following functionality:

• Spatial Decoupling removes the need for an application developer to be

aware of the network layer address of a machine it wishes to communicate

with.

• Temporal Decoupling allows messages to be delivered between

participants even if they are not both online at the same time.

 9

• Remote Procedure Calls allow an application programmer to execute

code on a remote machine in that same manner they would execute code

locally.

• Distributed Objects allow object oriented programming paradigms to be

applied to distributed systems programming, by allowing application

programmers to both access objects throughout a network as though they

existed on a local machine.

All of the previously mentioned features of middleware simplify the process of

developing distributed applications. While it is certainly possible to implement all of the

functionality provided by middleware within every distributed application, middleware

helps focus application development on actual application logic rather than

communication concerns. GridStat, described later in this chapter, provides these features

to application developers concerned with creating applications for critical infrastructures,

like the power grid.

2.2.3 Publish-Subscribe Middleware

Publish-subscribe middleware is a specialized type of middleware designed for

situations when the participants in a distributed system closely fill the roles of either a

publisher or subscriber. In this context, a publisher refers to an application that

periodically provides information to a network. A subscriber, on the other hand, is an

application that requests the delivery of published items. In general, there will be more

subscribers than publishers. Therefore, such networks benefit greatly from multicasting

 10

and other technologies for bandwidth conservation. Examples of publish-subscribe

systems include video distribution networks, stock tickers and weather updates.

2.3 GridStat architecture and mechanisms

GridStat, [6], is a flexible communication framework for delivering periodic

status updates between equipment operated by entities such as grid operators, energy

suppliers, and marketers. Its architecture defines the relationships between GridStat

entities. The architecture is designed to provide the flexible technical underpinnings

needed to meet diverse status communication needs of the different kinds of business

entities. At a more detailed level, GridStat’s mechanisms encapsulate reusable

communication paradigms such as multicast, filtering, QoS management, and redundant

path routing. These are quite naturally part of the communication infrastructure and

would be very difficult or impossible to provide without such built-in support.

Figure 2.1: GridStat Architecture

2.3.1 Architecture

The GridStat architecture encompasses four primary types of active entities as

shown in Figure 2.1. Publishers produce periodic streams of status values. Status routers

accept status values from publishers and other status routers and forward them to other

status routers and subscribers. Subscribers run applications that use (or store) the data.

Publishers, status routers, and subscribers make up the GridStat data plane. The data

plane’s job is to move data packets quickly from publishers to subscribers. The GridStat

architecture supports independent ownership and control of data plane components and

anticipates that groups of components under common control will work together more

closely than will components that are controlled by different business entities.

 11

 12

The fourth type of active GridStat entity is the QoS broker. QoS brokers are

arranged in hierarchies that reflect geographic and business hierarchies. The QoS broker

hierarchies constitute the management plane of GridStat. The lowest-level QoS brokers

(leaf QoS brokers) each directly manage resources within a set of commonly-controlled

data plane components. QoS brokers are responsible for establishing the route(s) through

the status routers used by each subscription so as to ensure that each subscription’s QoS

requirements are met.

GridStat simultaneously provides a hierarchical management model and a flat

delivery model. QoS brokers are not involved in packet-by-packet delivery: they merely

direct the set-up of the status routers and monitor their performance, providing adaptation

ability if status routers or links fail.

2.3.2 Status router mechanisms

Status routers include several mechanisms of use for PMU-based applications of

which efficient multicast, synchronous filtering, packet combining and preconfigured

modes are of the most interest for PMU applications. These mechanisms and their

implementations are fully described in [6]. Here we provide only a short synopsis.

Efficient multicast

A major goal of GridStat is to allow sharing of status data. Multicast allows

sharing without requiring multiple copies of each data item to traverse communication

links as would be required if only unicast were provided. This makes better use of

communication resources and reduces the latency seen by most subscribers.

 13

Rate filtering

It is clear that not every subscriber needs every update produced by the publishers

to which it subscribes. Rate filtering allows each subscriber to indicate, as part of its

subscription, the rate at which it needs updates. The status routers implement rate

filtering in conjunction with multicast and only forward packets that are desired by

downstream subscriptions. Rate filtering is performed on the basis of timestamps

contained in the packets—not the local clock of the status routers.

One of the biggest advantages PMU data has over conventional SCADA data is

that it is synchronously timestamped. By collecting measurements from various points

taken at the same time an application can derive properties of the grid’s state that are not

available from data taken at different times. On the other hand, it is clear that some

applications for PMU data will not require all of the samples taken during each second.

Synchronous filtering allows an application to subscribe to every nth element of each of

several PMU data streams and receive samples bearing the closest timestamps available

to GridStat. (The question of whether or not the timestamps are the same depends on the

PMU implementation.)

Packet combining

Status routers combine status packets into network layer 3 packets when it is

possible to do so without incurring additional latency. This reduces layer 3 bandwidth

overhead. More importantly it reduces the execution time overhead of both the sending

and receiving status routers by reducing context switches.

 14

2.3.3 Status packetization

The GridStat prototype uses a simple packetization scheme with each packet

consisting of a basic 24-byte header (which includes 8 bytes of user data) and a variable

number of 24-byte data extensions. A GridStat packet contains

• 8-byte timestamp (milliseconds since Jan. 1, 1970)

• 4-byte publication ID

• 1-byte number of optional fields

• 3-bytes padding

• 8-bytes user data

• 0 to 4 24-byte optional user data fields

GridStat packets are encapsulated in Internet Protocol User Datagram Protocol

(IP/UDP) packets in the prototype which uses Internet technology as its link layer.

 15

CHAPTER THREE

 RELATED WORK

3.1 Power Systems Research

3.1.1 Wide Area Measurement System

The Wide Area Measurement System (WAMS) on the U.S. Western

Interconnection uses PMUs to gather data from several points in the interconnection to

allow off-line analysis of the grid’s performance, [18]. The data gathered has been

instrumental in understanding outages on the system such as those occurring in July and

August, 1996, [8]. WAMS has inspired a number of commercial offerings such as those

of e.g. [13, 15]. Several applications can be deployed given global knowledge of the grid

[13].

Corridor Voltage Stability Monitoring

This type of monitoring involves examining measurements from both ends of a

transmission corridor. Using the measurements, coupled with knowledge about any load

or generation in the corridor, analysis can be performed to determine the theoretical

maximum load that may be placed on the corridor, as well as the margin to voltage

instability. Such monitoring could be used to make control decisions leading to load

shedding to avoid voltage collapse when the load on the corridor becomes excessive.

 16

Oscillatory Stability Monitoring

 Oscillatory stability monitoring is achieved through an algorithm that examines

measured date from one or more locations. The algorithm is capable of making

predictions about the frequency and dampening of the dominant electro-mechanical

oscillatory modes during normal operation.

FACTS Set-Point Optimization using Feedback Control

A FACTS device is a network controller used to control bus voltages, line

currents or phase angles [14]. Unlike other network controllers in this class that utilize

mechanical switches that require several minutes to operate, FACTS devices use power-

electronics which allows response times in the millisecond range. These devices were

primarily designed to improve transfer capability of transmission corridors, and to keep

transmission corridors running near to capacity. Because of their quick response time,

they may also potentially be used to implement control decisions of wide-area control

application. It is approximated that by using wide-area control coupled with FACTS

devices, 10% higher total transfer capacity can be achieved compared to using FACTS

devices alone.

Topology Detection and State Calculation

Using PMU data collected from throughout the grid 10 to 20 times per second,

this technique can detect the present topology of the network. In addition, phasor state-

estimation can be completed in predictable time, because it is a non-iterative process.

 17

Loadability Calculation

This is a more advanced form of voltage stability assessment which is derived

from the information derived from the topology detection and state calculation

application. Using this technique, the maximum transfer capacity of the currently

operating power system can be determined.

3.1.2 BPA Phasor Data Concentrator

In 1988, the Bonneville Power Administration (BPA) first deployed phasor

measurement units (PMUs) in the USA Western System (WSCC). Subsequently in 1995,

the first commercial PMUs were installed in the WSCC as part of an EPRI project. These

PMUs were active in collecting data in the 1996 blackout [16]. This was the first time

PMUs were able to capture data about a significant outage. We will be examining the

Phasor Data Concentrator (PDC) used by the BPA to collect this data.

PDC Definition

A PDC collects data from multiple sources including both PMUs and other PDCs

for the purpose of combining these data feeds into a single measurement set. Once

collected the data is valuable in multiple applications including both power system

monitoring and control. Generally, PDCs provide mechanisms for coping with data loss,

errors and synchronization. A PDC can be used for both data recording and for

distributing data to other applications.

 18

BPA Implementation and Applications

The BPA PDC implementation uses standard VME hardware, which is intended

to provide ready availability and high reliability.

The BPA PDC acts as the primary system monitor. It is responsible for

examining data received from PMUs for transmission errors and losses. It was designed

to detect spurious alarm messages from PMUs and discard them. In addition to these

primary tasks, the PDC monitor provides its examined data to external applications.

The BPA PDC implementation also provides a data display application runs on a

PC, and is designed to display archived PMU data from a PDC in a user readable format.

In addition, this data display program provides facilities for data export to popular data

analysis software packages like Matlab.

Phasor real-time display and recording is another application provided by the

BPA PDC. This application provides a continuous strip-chart type display of real-time

phasor data. At the time of the BPA experiments, the real-time control portion of the

PDC was still being tested, and had not been used in practice. The BPA had developed a

method for using feed-forward voltage control to prevent voltage collapse. This is

accomplished by inserting capacitors and SVC units to prevent the collapse.

3.1.3 Eastern Interconnection Phasor Project

Currently, the Eastern Interconnection Phasor Project is deploying PMUs on the

Eastern U.S. grid. EIPP is developing a communication infrastructure to collect and

archive the measurements at the TVA Super PDC, [2]. In addition to archiving, the TVA

 19

site makes a feed of all the collected data available to participating utilities within a few

seconds after it is collected.

3.1.4 FNET Project

The FNET project is exploring uses for a large number frequency monitors

throughout the North American grid, [15]. Frequency monitors are similar to, but simpler

than PMUs. FNET uses the Internet, without management, to collect data for analysis.

3.1.5 The Wide-Area Stability and Voltage Control System

The Wide-Area stability and voltage Control System (WACS) project of the

Bonneville Power Administration, Ciber, Inc. and Washington State University uses

PMUs as sensors in a real-time system for stability and voltage control, [23]. Calculations

from that project provide a time budget for creation, delivery and processing of PMU

measurements in the Western Interconnection. The budget is based on the need to

respond to a disturbance within 750-1500ms. Of this time budget approximately 67 ms is

attributed to communication latency and jitter using the project’s current point-to-point

communication infrastructure. WACS uses a dedicated communication network to collect

input from its sensors. Other projects using networked PMUs for control include [21] and

[11].

3.2 Centralized Systems

The TVA Super PDC mentioned in the section 3.1.4 is an example of a

centralized system for PMU data distribution, but most of the current solutions employ a

similar architecture. We feel that this is not the optimal solution for a PMU data

distribution network. In the Super PDC, phasor data is collected from all of the various

sources throughout the grid, and grouped by synchronized timestamps. After this

grouping, the data is retransmitted out to any locations that wish to make use of the real-

time data.

Central
Data Store

PMU Data
Source

Data
Consumer

Key
Path, using a

Central Data Store

Optimal Data Path

Figure 3.1: Centralized Systems

Such a system has several shortcomings. Clearly a centralized solution leads to

questions about reliability due to the use of a single point of failure. Perhaps more

significantly is the increased latency experienced by data consumers as illustrated in

figure 3.1. The white path incurs significantly more network hops to before reaching its

destination. On the other hand, the black path shows the optimal solution.

The value added by a centralized PDC is in synchronizing the data for delivery to

consuming applications. Any alternative solution would have to be able to provide this

functionality with out collecting all of the data centrally.

 20

 21

3.3 Middleware Research

3.3.1 Data Distribution Service

The Data Distribution Service (DDS) for Real-time Systems Specification by the

Object Management Group addresses communication of signals, streams and states, [19].

Existing implementations of the specification are targeted to the LAN environment and

do not address QoS management issues associated with the wide area, [20, 24].

3.3.2 PASS System

The PASS system was designed for monitoring the status of a communication

network, [26]. It does address QoS in the wide area but does not provide independent

QoS specification for each subscription.

 22

CHAPTER FOUR

 USE OF GRIDSTAT MECHANISMS FOR PMU DATA

DISSEMINATION

While PMU data is valuable in many applications, the number of actual packets

required per second varies depending on the application. GridStat provides the

framework to allow a PMU to publish its data as fast as it can provide it, but only those

packets that are required by subscribing applications are actually delivered. For instance,

if a PMU is publishing at a rate of 60 times per second, and a subscribing application

requests 1 packet every 2 seconds, only a single PMU data frame will traverse the

GridStat network every other second. This middleware level packet filtering assures

application developers that network traffic is only that which is needed to fulfill their

particular application’s requirements.

Packet filtering is useful for minimizing the use of network resources, but many

applications require data from multiple PMUs to be effective. Such applications require

that the packets delivered share a common timestamp, regardless of what path they take

through the network. As mentioned in section 3.2.2, GridStat’s synchronous filtering

fulfills this requirement while preserving the network traffic reduction of packet filtering.

To support the collection of PMU data from multiple locations, GridStat provides

an interface for specifying a set of publications for subscription. In this way, the entire set

may be accessed from a subscribing application as a single unit rather than as a series of

individual subscriptions.

 23

4.1 Using GridStat

One of the primary sections of research in this thesis was the investigation of

deploying a real-world application, PMU data dissemination, using GridStat. GridStat

was always designed to function as a communication medium for the power grid, but this

is the first time that an attempt has been made to use real power grid data in GridStat.

Pervious research involved moving arbitrary data, and focused more on showing the that

certain QoS requirements of the power grid could be met.

The research done in this thesis did not involve direct work on the GridStat

architecture, but rather on the development of application code utilizing GridStat. The

development of this application code led to a better understanding of the issues involved

in utilizing GridStat for the transmission of real-world data. These lessons learned led to

several small changes in GridStat, but that was not the focus of our research.

4.2 Key Issues

Two key issues arise in encapsulating PMU frames in GridStat packets:

timestamp mapping and size overhead.

4.2.1 Timestamp Mapping

For timestamp-based filtering to be useful in PMU applications each packet

timestamp must match the PMU timestamp of the encapsulated PMU frame. Packet

timestamps refer directly to a global epoch. Timestamps in PMU frames (second of

century || sample number within second), are referenced to a globally synchronized clock.

However, because the number of samples per second is part of the PMU configuration,

 24

mapping a PMU timestamp to a GridStat timestamp requires knowledge of the PMU

configuration—something that is not part of the PMU data packet. It is therefore

necessary for the PMU publisher to interpret the PMU timestamp and construct the

GridStat timestamp.

4.2.2 Size Overhead

A base GridStat packet contains a 16 byte header, and 8 bytes for user data. In

addition, GridStat allows up to 4 option fields for additional user data of 24 bytes each.

Because the GridStat packets expand by 24 bytes at a time the question of overhead due

to internal fragmentation must be considered. For example, a PMU reporting 3-phase

voltage and current along with 32 digital statuses (42-byte PMU frame) the

corresponding GridStat packet is 72 bytes of which 14 are padding and 16 are packet

header. A graph of the percentage of waste in a GridStat packet due to this overhead is

examined in figure 4.1.

0%

5%

10%

15%

20%

25%

30%

35%

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104

PMU Data Frame Size (bytes)

Pe
rc

en
t O

ve
rh

e

Figure 4.1: GridStat Packet Overhead

4.3 Experiments

To demonstrate the suitability of GridStat to meet the data transmission

requirements of PMUs, we developed two sample applications. A virtual PMU data

publisher emulates a publisher attached to a real PMU, as it produces data of the same

size and at the same rate. A virtual phasor data concentrator (PDC) subscribes to all the

emulated PMU data. A PDC is one of the most data intensive applications for PMU data,

as it collects data from all of the PMUs in a grid. We surmised that if we could support

the demands of a PDC, we should be able to support the demands of any other PMU data

applications.

 25

 26

4.3.1 PDC requirements

We set out to show empirically that GridStat can fulfill the data communication

needs of a PDC. We used the recommendations of the EIPP real time task team, [17], as a

basis for our evaluation of GridStat. Those requirements specify that a PDC should be

able to receive each PMU’s data 30 times a second. Further, to be useful for real-time

monitoring, data must be collected from at least twelve different sources. For real time

adaptive control applications the communications infrastructure is expected to add

approximately 10ms to the overall time delay of PMU data delivery. To meet short-term

needs, therefore, GridStat should be able to provide a PDC data from at least 12 PMU

publishers at a rate of 30 per second while contributing less than 10ms of delay. In the

longer term there will be many more PMUs on the grid so tests were done with 100 PMU

data streams.

4.3.2 Experimental setup

To illustrate that GridStat can meet the stated requirements we conducted four

experiments. All of the experiments ran 100 separate publishers, publishing emulated

PMU data frames either at 30 or 60 times per second. The PMU data frames were

composed of six phasor fields and 2 digital channel fields which made the PMU frame

size 42 bytes. With the additional GridStat header information and padding, the packet

size was 72 bytes. In all four experiments, a single virtual PDC subscribed to the entire

set of 100 published data items at a rate either of 30 or 60 times per second. All 100

publishers as well as the PDC were run on a single computer. This allowed use of the

local clock to calculate end-to-end delay without concern for clock synchronization. All

of the computers used in these experiments were current home-PC-class machines

running Linux, and connected by a switched 100Mbps Ethernet.

Single Path Delay Jitter

This pair of experiments used three status routers: two edge status routers

connected by a single internal status router as shown in Figure 4.2. (The difference

between edge and internal status routers is that edge status routers provide interfaces for

publishers and subscribers.) Each of the routers ran on a dedicated computer. All 100

publishers were connected to one edge status router and the PDC was connected to the

other.

GridStat PDC

Edge
Status
Router

Status Router
Edge
Status

 Router

Publisher 1

Publisher 2

Publisher 100

100 Simulated PMU
Data Frame
Publications

Single PC Running 100 Publisher Applications
 and 1 PDC Application

Figure 4.2: Single Path Configuration

 27

Redundant Two-Path Delay Jitter

These two experiments were identical to the previous except for the addition of a

second internal status router that independently linked the two edge status routers as

shown in Figure 4.3.

GridStat PDC

Publisher 1

Publisher 2

Publisher 100

100 Simulated PMU
Data Frame
Publications

Single PC Running 100 Publisher Applications
 and 1 PDC Application

Edge
Status Router

Status Router

Edge
Status Router

Status Router

Redundant Paths

Figure 4.3: Redundant Path Configuration

 28

0 1 2 3 4 5 6 7 8 9 10
End-to-end Delay (ms)

0 1 2 3 4 5 6 7 8 9 10
End-to-end Delay (ms)

0 1 2 3 4 5 6 7 8 9 10
End-to-end Delay (ms)

 0
50000
100000
150000
200000
250000
300000
350000

0 1 2 3 4 5 6 7 8 9 10
End-to-end Delay (ms)

N
um

be
r o

f P
ac

ke
ts

 0
50000
100000
150000
200000
250000
300000
350000

N
um

be
r o

f P
ac

ke
ts

 0
50000
100000
150000
200000
250000
300000
350000

N
um

be
r o

f P
ac

ke
ts

 0
50000
100000
150000
200000
250000
300000
350000

N
um

be
r o

f P
ac

ke
ts

60 Frames per second Single Path

30 Frames per second Single Path

60 Frames per second Redundant Paths

30 Frames per second Redundant Paths

Figure 4.4: End-to-end Delay

4.3.3 Experimental results

Figure 4.4 and Table 4.1

present the results of the four

experiments. In each experiment

500,000 PMU data frame

transmissions were evaluated for end-to-end delay. In all of the experiments all of the

frames that were sent were delivered.

Experiment
End-to-end
over 10ms Percentage

30/s Single Path 173 0.034%
30/s Redundant Paths 2527 0.505%
60/s Single Path 108 0.022%
60/s Redundant Paths 3808 0.762%

Table 4.1: Delays Over 10ms

 In all four experiments the vast majority of PMU data frames were delivered in

less than 2ms (bars 0 and 1 on the graphs), and over 99% were delivered in less than

 29

 30

10ms. End-to-end delays above 10ms, summarized in Table 5.1, indicate delay jitter

attributable to use of a general purpose operating system, and Java with garbage

collection. Increased delay and jitter when using redundant paths is attributable to the

additional work performed at the edge routers.

We do not feel that the delays we experienced can be attributed to using a shared

switched Ethernet rather than true point-to-point links. In the case of sixty data frames

per second, the data produced by the publishers is only 3.456 Mbps, which is well below

the 100 Mbps limit of the Ethernet.

These experiments generally support the feasibility of using a multi-casting based

infrastructure for PMU status dissemination. The phasor data requirements document

from EIPP, [17], does not specifically address acceptable amounts and frequencies of

jitter. We believe that both the jitter and latency observed in these experiments could be

significantly reduced in an implementation that did not use Java. Of course this requires

confirmation.

Further experiments are also needed to establish the number of routers that can be

in a path while still meeting the delay and jitter requirements. Other GridStat experiments

have shown a delay penalty of less than 1ms per additional router, [6]. Propagation time

between widely-separated power grid entities must also be added.

4.4 Conclusion

Using GridStat for PMU data dissemination was not unmanageable, but it was not

designed from the ground up with the PMU data format specifically in mind. This led to a

few application development challenges that could have been avoided if GridStat was

 31

tuned to the transmission of PMU data. If GridStat is to be used primarily for PMU data,

a few changes to GridStat seem reasonable. For instance, the GridStat data and option

fields could be tuned to better reflect the sizes PMU data frames. It would also be useful

to provide a software component for GridStat publisher application developers that

recognizes common configuration files, like the IEEE 1344 PMU configuration format,

and handles the timestamp mapping automatically.

Overall, as a middleware system, GridStat provides an abstraction layer that

removes many of the complexities of distributed systems from the application developer.

In addition, as will be mentioned in chapter five, GridStat provides an application

development framework to help streamline the process of creating applications using

GridStat. This allows applications to be developed quickly and easily, even by

individuals who may not have a background in distributed systems.

 32

CHAPTER FIVE

 APPLICATION DEVELOPMENT

5.1 Overview

This section describes the three programming projects that were involved in the

completion of this thesis. Two applications were developed, a Phasor Measurement Unit

Emulator, and a Phasor Data Concentrator Emulator. These applications were deployed

to evaluate GridStat’s ability to handle data flows identical to that which would be

experienced in a field deployment. The third project developed was an application

framework that simplifies the development of GridStat applications. Both of the

applications developed utilized this framework.

5.2 Phasor Measurement Unit Emulator

The PMU emulator emulates the output of a real PMU. It is a GridStat publisher

that publishes a user defined type encapsulating a standard PMU data frame as defined in

[10].

Relevant features of an emulated PMU include:

• Run-Time configuration of PMU data frame size. This is useful because

the standard allows for a variable number of phasors and digital status data

fields.

• Run-Time configuration of publication rate as defined in number of

milliseconds between packets.

 33

5.3 Phasor Data Concentrator Emulator

The PDC emulator is intended to show how GridStat can be used as a

communication medium connecting PMUs to PDCs. The only thing that makes the PDC

emulator an emulator is that it merely collects data from PMUs, but it does nothing with

that data. A real PDC would provide its collected data to other applications and/or

archive the data for offline analysis.

5.4 GridStat Java Application Framework

5.4.1 Motivation

GridStat was designed to ease the development of distributed applications for

critical infrastructures like the power grid. In that regard, GridStat goes a long way

towards providing advanced distributed systems features, while insulating application

developers from all of the details in their implementation. However, we felt that perhaps

GridStat could benefit from an additional software library specifically designed to ease

the application development process. Just as GridStat removes some of the complexities

of distributed application development, the GridStat Java Application Framework hides

many of the mundane and trivial details of building Java applications by providing a class

library that is tuned to GridStat application development.

During the development of GridStat, it has been necessary to deploy several

prototype applications to test and evaluate GridStat. After the development of several of

these prototypes, it became clear that all of these prototypes shared a great deal of

common application code that was neither interesting nor dynamic. In particular a great

deal of code was involved in making applications that could interface easily with external

scripts, as well as providing a useful graphical user interface. In the interest of making the

development of GridStat applications easier and faster, a class library of common

application code was created.

5.4.2 Overview

Application

User Interface

Event Handler

Issue Command Inform UI

Dispatch Command Return Results

Property
Sheet

Get & Set Properties

Get & Set Properties

Get & Set Properties

Figure 5.1: Application Diagram

The GridStat Java Application Framework is a set of base classes that ease the

development of a GridStat application. The framework is divided into four major

modules, as shown in Figure 5.1. The User Interface component segregates user interface

code from application logic code. The Application component is the metaphorical glue

that holds the other pieces of the application together. The Event Handler portion of a

program is responsible for passing command requests to an actual GridStat component.

The Property Sheet is a globally accessible hierarchical repository of key value pairs that

 34

 35

is intended to contain an application’s data. An application developer need only extend

the base classes to add that functionality which is required for their particular application.

Message passing between the user interface, the application, and the event handler

is done with Java ActionEvents. The application acts as a Java ActionListener, listening

to events generated by the user interface. The application then examines the ActionEvent,

and chooses a course of action, which most commonly involves dispatching the

ActionEvent to the event handler component. If the dispatch to the event handler

succeeds, the application passes the ActionEvent to the user interface to inform the user

that their requested action was successfully performed. If the dispatch fails, the

application still informs the user interface, but in this case it calls a different method to

provide the user with the error information. Because the messages are simply command

strings, more complex data exchanges are performed by reading and writing to the

property sheet, which is accessible by all of the components.

5.4.3 User Interface

The user interface (UI) component exists to segregate user interface code from

application logic code. The architecture is such that it does not matter what kind of user

interface exists. Base classes have been created to handle the cases of both a command

line interface, and a graphical user interface. Other styles of user interaction are allowed

as long as they can implement the specified java interface.

Of note is the fact that a given application can have multiple user interfaces, but

only one may be registered with the application component to receive notification of

successfully executed commands, and error messages. This registered user interface may

 36

be thought of as the primary user interface. Other user interfaces merely pass their

commands to the application component with no expectation of a response. In many

existing GridStat applications this facility is used to provide a supplementary command

line interface, while using a graphical user interface for the primary user interface. The

limitation of only one primary UI is arbitrary, and the base application component could

be extended to support an unlimited number of primary UIs.

Command Line Interface

The base class implementation of the command line interface can stand alone as

the sole user interface for any GridStat application. This base implementation merely

reads lines from the standard input, and passes them to the application. Properly formed

commands will be handled, and improperly formed ones will fail with an appropriate

error message. This base class can easily be extended to provide more complex

functionality.

Graphical User Interface

The base graphical user interface is an extended Java Swing JPanel. The intention

is that this component contains all of the code necessary to set up the GUI, and register its

GUI components with the property sheet component. Upon receipt of successful

command messages, the GUI may update its appearance to reflect the success of the

command. It is important to note that if the GUI is setup as the primary user interface, it

will receive all successful command messages, even if they did not originate from the

 37

GUI. In this way, the GUI can be updated to reflect commands executed from secondary

user interfaces.

5.4.4 Application

The base application class contains all of the necessary code to route messages

from the various components, and only needs to be extended to allow the application

developer to specify which type of components they are going to be using. In addition,

the base application has the ability to pass initialization parameters from the command

line to the property sheet.

The base application class also contains a method for registering objects for

cleanup on exit. All such objects are instances of a class that implements a particular Java

interface that contains a method containing all of the cleanup code for that class. When

the base application receives an exit command, it will ensure that the cleanup method of

all of its registered cleanup objects is called.

5.4.5 Property Sheet

The property sheet is a globally accessible interface to a repository of data

intended to represent an application’s state. Generally it is used to store the data values

that will be used to initialize GridStat components activated by the event handler

component. It is self-contained and unlike the other components, it is not designed to be

extended. It is hierarchical in nature, and is intended to be composed of hash tables for

sparsely distributed data, and vectors for densely packed data. For simple applications, it

is unlikely that the property sheet will need to store anything more than name-value pairs.

 38

However, when more complex data sets are needed (as is often the case in applications

with multiple publications and/or subscriptions), the property sheet becomes a tree like

data structure.

As an example, consider a simple GridStat status router. A status router needs two

parameters. The first being the name of its leaf QoS broker, and the second being its own

name. For such a simple example, the name value pairs shown in Table 5.1 would

suffice. In this example, the event handler doesn’t need the variables storing the

configuration information. Instead, the event handler expects that it can find the variables

by looking up their key within the property sheet. This adds a level of indirection that

allows the developer of the event handler to be unconcerned about how the variables

arrive in the property sheet, and only be concerned with the property sheet directly.

Initilization String
“QoSBrokerName=CloudA.SubCloudB”
"Name=StatusRouter12"
Key Value
QoSBrokerName “CloudA.SubCloudB” (String)
Name “StatusRouter12” (String)

Table 5.1: Leaf QoS Broker Example

To consider a case where a hierarchy is helpful it is useful to look at a subscriber

application that is designed to subscribe to multiple events. The subscriber would have a

set of parameters to specify its name, its leaf QoS broker, and its edge status router.

However, in addition each subscription would have a set of parameters specifying its

group name, its publisher, its status name, its data rate, its maximum allowed latency, and

the number of redundant paths required.

 39

Initilization String
“QoSBrokerName=CloudA.SubCloudB”
"Name=Subscriber3"
"EdgeStatusRouterName=EdgeStatusRouter1"
"Subscriptions={{GroupName=G1,Publisher=Pub1,StatusName=S1,DataRate=20,Late
ncy=300,Redundancy=0},{GroupName=G1,Publisher=Pub2,StatusName=S2,DataRate
=20,Latency=300,Redundancy=0}}"
Key Value
QoSBrokerName “CloudA.SubCloudB” (String)
Name “Subscriber3” (String)
EdgeStatusRouterName “EdgeStatusRouter1” (String)
Subscriptions[0].GroupName “G1” (String)
Subscriptions[0].Publisher “Pub1” (String)
Subscriptions[0].StatusName “S1” (String)
Subscriptions[0].DataRate 20 (Integer)
Subscriptions[0].Latency 300 (Integer)
Subscriptions[0].Redundancy 0 (Integer)
Subscriptions[1].GroupName “G1” (String)
Subscriptions[1].Publisher “Pub2” (String)
Subscriptions[1].StatusName “S2” (String)
Subscriptions[1].DataRate 20 (Integer)
Subscriptions[1].Latency 300 (Integer)
Subscriptions[1].Redundancy 0 (Integer)

Table 5.2: Subscriber Example

Notice that in Table 5.2, the “Subscriptions” initialization string contains curly

braces around comma delineated lists to denote that the “Subscriptions” key points to a

value that has sub-values. The property sheet component contains the code to parse

initialization strings into actual keys and values. An alternative initialization method

would be to specify each subscription separately

(“Subscription[0]={GroupName=G1,Publisher=Pub1,StatusName=S1,DataRate=20,Late

ncy=300,Redundancy=0}”), or every sting key/value separately

(“Subscription[1].Latency=300”). The parser is designed to accept all of the previously

mentioned input styles.

 40

Variable Adapters

The property sheet is a repository of data items that extend a base class referred to

as a variable adapter. A variable adapter wraps a real data object, and provides methods

for setting and getting the value contained in the object. This is particularly useful for

data contained in GUI components. For example, an adapter can wrap a set of radio

buttons, so that when the wrapper is queried for its current value, it returns the currently

selected radio value. In that same example, if the adapter is set, it can contain all of the

relevant code for updating the GUI to reflect the change.

Variable adapters are intended to be of a particular variable adapter type, which

currently includes: String, Integer, Float, Boolean, Vector and Map. The Vector and Map

variable adapters are container types which contain other variable adapters. They are

required to provide additional interfaces for retrieving the variable adapters they contain.

During the property sheet initialization, command line parameters are converted

into basic adapters. This property sheet initialization happens before the UI component is

initialized. If the UI is implemented as a GUI, it can register its components as variable

adapters with the property sheet during the UI component’s initialization. If an adapter

with the same key already exists (because it was initialized from the command line), the

new adapter is updated to contain the value contained in the old adapter. In this way,

GUI components can be initialized at run-time to a particular default value. This

simplifies the process of starting a GridStat application.

The framework comes with a simple variable adapter implementation of each of

the basic types that is simply a wrapper around a Java variable of the same type. In

 41

addition to these simple variable adapters, there is also a set of variable adapters for some

basic Swing components, and the values they would encapsulate. There are adapters for

Swing text boxes that contain Integers, Floats, and Strings. There is an adapter for Swing

checkboxes that represent Booleans, and an adapter for sets of Swing radio buttons that

represents a String.

5.4.6 Features of a Base Application

One of the key advantages of developing applications using the GridStat Java

Application Framework is that every application automatically possesses some useful

features without writing any additional code. Those features are summarized in the

following subsections.

Command Line Parameter Parsing

Key/value pairs passed to the application at run-time are collected and stored in

the globally accessible property sheet. This feature makes it easy to create generic

applications that can be configured for execution by writing start up scripts that pass

relevant configuration information on start up. We take advantage of these features

heavily during test runs where many instances of a particular application need to be

started, and each instance has unique configuration settings.

GUI Generated Commands are Strings

Because GUI generated commands are strings, any command that could be

executed by pressing a button on a graphical user interface can be executed directly using

a command line interface. Because the framework allows a command line interface to run

 42

concurrently with a graphical one, this presents some interesting abilities. During test

runs we took advantage of this facility to start GUI applications with some preset

commands. For example, we could write a script to pipe a few commands to the standard

input of our application at startup that would cause it to initialize and start executing.

Once the preset commands are read from the standard input, the application can be

controlled manually through its GUI.

Base Command Set Recognition

The basic application recognizes and properly handles the basic commands listed

in table 6.3.

Command Default Action
Set <name>=<value> Parse the name and value pair just as though it was passed from

the command line, and store the result in the global property
sheet. If the name already exists, set the variable adapter
already in the property sheet to the new value.

Unset <name> Remove the specified variable adapter from the global property
sheet.

Env Short for environement, this command displays the current
contents of the global property sheet. This command is intended
for users of command line interfaces.

Exit Notify all registered components of system shutdown, and close
application.

Table 5.3: Base Commands

All of the base commands are case insensitive, but that is not necessarily true of

all commands. Because all advanced commands are passed to custom event handlers, it is

the responsibility of each custom event handler to determine if it wishes to check for

case.

 43

5.4.7 Effectiveness of Framework

After having developed several applications that utilize the GridStat Java

Application Framework and several that did not, we have obtained a feeling for its

effectiveness in streamlining the production of GridStat applications. The shared

application code base offered by the framework certainly has made it easier to develop

the types of GridStat applications we envisioned. If an application does not require a GUI

the framework removes nearly all code work from the application developer except the

application specific code required to execute the desired task of the particular GridStat

application. In the case that a GUI is required, the task of creating the GUI is reduced to

simply laying out Java Swing components, as the framework is designed to take care of

making fields in the GUI accessible to the application logic.

To convey an idea of how the application framework simplifies GridStat

application development, we examine our implementation of the two emulator projects

created for this thesis in the following subsections.

Implementing the PMU Emulator

While developing the PMU emulator, we were able to avoid a lot of the standard

boiler plate code involved in creating a Java application of any complexity. Instead we

were able to focus our efforts on writing the code to contain and publish a PMU data

frame. While we decided to provide a GUI for this application, it was simple to put

together, and contained no application logic in the GUI code.

Implementing the PDC Emulator

A custom vector
variable adapter
wraps this table

Figure 5.2: PDC Emulator Screen Capture

The PDC emulator was a much more involved application than the PMU

emulator, because it was designed to be able to subscribe to any number of PMU

publication feeds. As such, each of those publication feeds would have configuration

information associated with it, and so we developed a GUI that contained a scrollable

table component for collecting the configuration information about all of the various

subscriptions as seen in Figure 5.2. Because this application contained a GUI component

that does not have a predefined variable adapter in the framework, we had to create our

own variable adapter. We created a variable adapter that treated the table as a Vector,

and implemented the interface required for a variable adapter of type Vector. In addition,

because the table was two dimensional, we made each of the variable adapters in the

original Vector a Vector itself.

 44

 45

The two classes implementing the interfaces for a Vector variable adapter were all

it took to make our PDC’s GUI completely compatible with the global property sheet.

Our event handler had complete access to the data entered into the table, and the table

could be populated from the command line. Again, the framework made it possible to

spend most of our coding work on the actual application logic, instead of mundane

application details.

5.4.8 Conclusion

The GridStat Java Application Development framework was intended to speed

and ease the development of GridStat applications. Our experience with using the

framework for the development of the two applications developed for our experiments

leads us to believe that the framework is effective. Our development work was able to

focus on code specific to solving the problem, rather than things like user interaction, and

scripting support. We believe that the full value of the framework will not be known until

it has been involved in several more GridStat application deployments.

 46

CHAPTER SIX

 CONCLUSION

The prototype status router is implemented in Java. Care has been taken to avoid

memory allocation (and hence garbage collection) when moving packets through the

router. Beyond this, no unusual optimizations have been used. For production use a

language closer to the hardware, such as C, or even implementation in specialized

network processors, [4], should be considered. Nevertheless, the current Java

implementation on current home-PC-class hardware is able to service large numbers of

PMU data streams in comparison to the requirements specified by the EIPP real-time task

team.

In the experiments reported in section 4.3, the packet combining feature described

in section 2.3.2 played little role. A small amount of packet combining was observed

during the experiments. It was not enough to be a major factor in the results of the

experiments.

One of the mentioned goals of this thesis is to show that GridStat is suitable as the

communication medium for PMU data. Using the requirements specified by the EIPP

real-time task team, the experiments of section 4.3 show that GridStat is appropriate for

this task. However, GridStat currently is unable to ensure end-to-end delay jitter is kept

below 10ms. There remains some question of the weight of this problem, as no jitter

requirements were published in the EIPP recommendations. Some delay jitter may be

acceptable, but that is likely application specific. As mentioned previously we feel that a

more optimized implementation of GridStat will help lower delay jitter.

 47

The development of our GridStat PDC emulator shows how support for periodic

updates and redundant paths in the infrastructure leads to simple application code. There

is no code in the publishers related to redundant path routing. The subscriber has code

only to request redundant paths. Otherwise the application is unchanged from the single-

path case. Exploration of the utility of operational modes for PMU applications also

remains for future work.

The research conducted for this thesis did not involve work directly on GridStat,

but rather on applications utilizing GridStat. In this fashion we were able to evaluate the

ease with which an application developer interacts with GridStat. While GridStat itself is

robust and easy to interface with, our GridStat Java Application Framework simplifies

task of GridStat application development even further.

6.1 Future Work

The complexity of the communication relationships in the power grid’s control

system is an ongoing challenge for the industry. GridStat’s goals are complementary to

those of efforts such as IEC standards 61850 and 61970 that provide frameworks for

defining object and service models for field equipment and information models for

control centers. There is a great deal of research to be done to see how publish-subscribe

communications meshes with these models.

The following sections mention specific areas for future GridStat research.

 48

6.1.1 Trust Management

Another challenging aspect of the modern power grid is the complexity of the

relationships between the businesses that operate its components. Economic competitors

must nevertheless cooperate to assure reliable grid operation. There is legitimate fear that

information exchanged for the latter purpose could be used or manipulated to provide

competitive advantage. PMU data, which reveals the power transfer, is therefore

potentially sensitive. The infrastructure must deliver data on time, but also with integrity

and only to legitimate subscribers. Research in trust management will inform the

incorporation of these guarantees into the QoS brokers and status routers, [5].

6.1.2 Group Subscription

It would be interesting to examine the tradeoffs of moving GridStat’s group

subscription interface deeper into the GridStat system. Currently it exists as a module in

GridStat subscribers, and all other GridStat components are kept unaware of status items’

participation in groups. In particular, we feel there would be value in examining the

issues related to making status routers statefully aware of group subscriptions.

The potential benefits of a group subscription aware status router are not

immediately apparent, but two ideas merit investigation.

Packet Combining

GridStat status routers are designed to combine incoming packets destined for the

same outgoing link when the situation presents itself as mentioned in section 2.3.2. This

packet combining is intended to increase the performance of a GridStat network by

 49

reducing the number of packets in the network with the intention of increasing the overall

network throughput. Currently packet grouping occurs when the system is under load and

packets arrive faster than they may be serviced individually.

If a status router is aware that some number of inbound status items are part of a

group, it can wait for the arrival and combination of all of the status items in a group

before forwarding them. It seems possible that such a scheme could result in higher

overall network throughput than non-group aware packet combining strategies.

Rate Filtering Restructure

To have successful rate filtering of a group subscription, all of the status items

from a group that are passed through the filter must have the same timestamp. In order to

meet the timing requirements of a group subscription without adding group subscription

state to status routers, the current GridStat implementation ensures that all rate filtering is

done deterministically. This means that even status items that are not part of a group are

filtered in this way. This has the consequence that all filtered traffic becomes clumped

around particular time offsets, which artificially increases the network contention packets

experience. If status routers were aware of group subscriptions, this problem could be

avoided by having a group subscription specific time offset.

Potential Problems

While the two previously mentioned advantages arise from making status routers

group subscription aware, this ability does not come without some tradeoffs. Status

routers are designed to be simple and fast. Adding the additional state involved in making

 50

status routers aware of group subscriptions will complicate status routers. Part of any

investigation will have to be an examination of the impact of this increased complexity

on status router performance and size.

6.1.3 Command Message Dissemination

If GridStat is going to be used as the primary network communications

infrastructure for the power grid, then it is essential that work be done to support control

message distribution in GridStat. Issuing control messages fits a very different paradigm

than the publish-subscribe model supported by GridStat. Unlike status variables that are

periodic, control messages must be assumed to occur with no predictable frequency, and

should be able to be delivered on demand. In addition, an application issuing a control

message will expect a confirmation of the successful delivery, and perhaps execution of

the control message. GridStat needs to be extended into a hybrid system that primary

supports publish-subscribe, but can additionally support point-to-point guaranteed on-

demand message delivery.

APPENDIX

 52

APPENDIX A

 PMU EMULATOR APPLICATION SOURCE CODE

A.1 PMUPublisherApplication.java

package edu.wsu.gridstatapplication.publisher.PMU;

import edu.wsu.gridstatapplication.common.*;
import edu.wsu.gridstatapplication.publisher.*;

/**
 * <p>Title: Gridstat PMU Publisher</p>
 *
 * <p>Description: Inform base class of appropriate
 * wrapper and panel classes.</p>
 *
 * <p>Copyright: Copyright (c) 2004</p>
 *
 * <p>Company: Washington State University</p>
 *
 * @author Ryan Johnston
 * @version 1.0
 */
public class PMUPublisherApplication extends PublisherApplication
{
 public PMUPublisherApplication(String[] args) throws BadTypeException
 {
 super(args, PMUPublisherWrapper.class, PMUPublisherPanel.class);
 }

 public static void main(String[] args) throws BadTypeException
 {
 PMUPublisherApplication p = new PMUPublisherApplication(args);
 }
}

A.2 PMUPublisherWrapper.java

package edu.wsu.gridstatapplication.publisher.PMU;

// GridStat Dependencies
import edu.wsu.gridstat.common.Constants;
import edu.wsu.gridstat.publisher.common.*;
import edu.wsu.gridstatapplication.common.*;
import edu.wsu.gridstatapplication.common.adapter.*;
import edu.wsu.gridstatapplication.publisher.*;
import edu.wsu.gridstatapplication.phasor.*;

// Java Dependencies
import java.util.logging.Logger;
import java.util.concurrent.Semaphore;

/**
 * <p>Title: GridStat PMU Publisher Wrapper</p>
 *

 53

 * <p>Description: Wraps a GridStat publisher in an easy to use
interface</p>

 *
 * <p>Copyright: Copyright (c) 2005</p>
 *
 * <p>Company: Washington State University</p>
 *
 * @author Ryan Johnston
 * @version 1.0
 */

public class PMUPublisherWrapper extends PublisherWrapper
{
 private Thread runner;
 private boolean paused;
 private boolean publish;
 protected Semaphore semaphore;
 protected Logger logger;

 //Attributes from publisherInfo
 protected int variableId;
 protected String variableName;
 protected String publisherName;
 protected String edgeSeverName;
 protected String publicationType;
 protected int pubRate;
 protected int highVal;
 protected int lowVal;
 protected VariableAdapter value;

 public PMUPublisherWrapper(Publisher pub) throws BadTypeException
 {
 super(pub);
 this.logger = Logger.getLogger("edu.wsu.gridstat.publisher");
 this.semaphore = new Semaphore(1, true);
 this.variableName = PropertySheet.getString("StatusName");
 this.publisherName = PropertySheet.getString("PublisherName");
 this.edgeSeverName = PropertySheet.getString("EdgeServerName");
 this.pubRate = PropertySheet.getInteger("Rate");
 this.highVal = 100;
 this.lowVal = -100;
 this.value = PropertySheet.getProperty("Value");
 this.publicationType = PropertySheet.getString("PublicationType");
 }

 /**
 * The <code>disconnect</code> method is used to disconnect from the

closest
 * ControlServer.
 *

 * @return Returns the gridstat publisher's response
 */
 public short disconnect()
 {
 short errorCode;

 if((errorCode = this.publisher.disConnectFromEdge()) <

Constants.COMMAND_OK)
 {
 return errorCode;
 }

 54

 this.publisher.cleanUp();
 return Constants.COMMAND_OK;
 }

 /**
 * The <code>connect</code> method is used to connect to the closest
 * ControlServer.
 *

 * @return Returns the gridstat publisher's response
 */
 public short connect()
 {
 short errorCode;

 if(this.publisher.isConnected())
 {
 this.logger.fine("Already connected to server.");
 return Constants.COMMAND_OK;
 }
 if((errorCode = this.publisher.connectToEdge()) <

Constants.COMMAND_OK)
 {
 this.logger.severe(Constants.getErrorMsg(errorCode));
 return errorCode;
 }

 this.logger.fine("Connected to server.");
 return Constants.COMMAND_OK;
 }

 /**
 * The <code>unpublish</code> method is used to stop publishing

messages, and
 * unpublish from the ControlServer.
 *

 * @return Returns the gridstat publisher's response
 */
 public short unpublish()
 {

 short errorCode;

 // Unregister the publishing from the ControlServer
 if((errorCode = this.publisher.unregisterPublish(this.variableId)) <

Constants.COMMAND_OK)
 {
 return errorCode;
 }

 // Stop the thread that are publishing messages
 if(this.runner != null)
 {
 this.runner.interrupt();
 }
 this.publish = false;

 return Constants.COMMAND_OK;
 }

 /**
 * The <code>publish</code> method is used to start a thread that

publishes

 55

 * messages at the specified rate.
 *

 * @return Returns the gridstat publisher's response
 */
 public short publish()
 {
 short errorCode;
 // See if we are connected to the ControlServer
 if(this.publisher.isConnected() == false)
 {
 // Make sure that we can connect
 if((errorCode = this.connect()) < Constants.COMMAND_OK)
 {
 return errorCode;
 }
 }

 this.logger.fine("Publishing:\n" + this.toString());

 // Register the publishing to the ControlServer
 try
 {
 this.variableId = PMUPacket.registerPMUPhasor(this.publisher,

this.variableName, Constants.PRIORITY_MEDIUM, this.pubRate,
this.pubRate, 6, 2);

 }
 catch(PublisherException ex)
 {
 return Constants.ERROR_PUB_ALREADY_REGISTERED;
 }

 this.runner = new Thread()
 {
 public void run()
 {
 logger.fine("Starting Thread: " + publisherName + "@" +

edgeSeverName + ":" + variableName + ", interrupted");
 PMUPacket packet = new PMUPacket(6, 2);
 try
 {
 while(!runner.interrupted())
 {
 // If it is paused we will stop here
 semaphore.acquire();
 semaphore.release();

 // The following decision tree determines which automated value

change to make
 if(publicationType.equals("linear"))
 {
 packet.linearStep();
 }
 else if(publicationType.equals("weighted"))
 {
 packet.weightedRandomize();
 }
 else
 {
 packet.randomize();
 }
 publisher.publish(variableId, packet.getBytes());

 56

 // Update the UI
 if(PropertySheet.containsProperty("gui"))
 {
 value.setValue(packet.toString());
 }

 // Sleep for a while
 Thread.sleep(pubRate);
 }
 }
 catch(InterruptedException ie)
 {
 logger.fine("Thread: " + publisherName + "@" + edgeSeverName +

":" + variableName + ", interrupted");
 }
 catch(Exception e)
 {
 logger.fine("Exception in Random publisher run: " + e);
 }

 logger.fine("Thread done: " + publisherName + "@" + edgeSeverName

+ ":" + variableName + ", interrupted");
 }
 };

 // Run the publishing thread
 this.runner.start();
 this.publish = true;
 return Constants.COMMAND_OK;
 }

 public void togglePause()
 {
 if(this.paused)
 {
 this.paused = false;
 this.semaphore.release();
 }
 else
 {
 this.paused = true;
 try
 {
 this.semaphore.acquire();
 }
 catch(InterruptedException ie)
 {
 this.logger.severe("PublisherGUI, pausePublish, Exception: " +

ie);
 return;
 }

 }
 }

 public String toString()
 {
 String ret = new String();
 ret += "Publisher Name:\t" + this.publisherName + "\n";
 ret += "Variable Name :\t" + this.variableName + "\n";
 ret += "Edge SR Name :\t" + this.edgeSeverName + "\n";
 ret += "Data Rate :\t" + this.pubRate + " ms/msg\n";

 57

 ret += "Generator Type:\t" + this.publicationType + "\n";
 ret += "Bounds :\t(" + this.lowVal + ", " + this.highVal +

")";
 return ret;
 }

 public Object getColumn(int column)
 {
 switch(column)
 {
 case 0:
 return this.edgeSeverName;
 case 1:
 return this.publisherName;
 case 2:
 return this.variableName;
 case 3:
 return new Boolean(this.publish);
 }
 return null;
 }

 public boolean getIsPublishing()
 {
 return this.publish;
 }

 public String getEdgeManager()
 {
 return this.edgeSeverName;
 }

 public String getPublisherName()
 {
 return this.publisherName;
 }

 public String getStatusName()
 {
 return this.variableName;
 }
}

A.3 PMUPublisherPanel.java

package edu.wsu.gridstatapplication.publisher.PMU;

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;

import edu.wsu.gridstatapplication.common.*;
import edu.wsu.gridstatapplication.common.adapter.*;
import edu.wsu.gridstatapplication.common.ui.*;

/**
 * <p>Title: Gridstat PMU Publisher</p>
 *
 * <p>Description: </p>

 58

 *
 * <p>Copyright: Copyright (c) 2004</p>
 *
 * <p>Company: Washington State University</p>
 *
 * @author Ryan Johnston
 * @version 1.0
 */
public class PMUPublisherPanel extends BasePanel
{
 public PMUPublisherPanel(BaseApplication ba)
 {
 super(ba);
 try
 {
 jbInit();
 addActionListeners();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 PropertySheet.setProperty(new TextFieldAdapter("EdgeServerName",

this.edgeServerNameField));
 PropertySheet.setProperty(new TextFieldAdapter("StatusName",

this.statusNameField));
 PropertySheet.setProperty(new TextFieldAdapter("PublisherName",

this.publisherNameField));
 PropertySheet.setProperty(new IntegerFieldAdapter("Rate",

this.rateField));
 PropertySheet.setProperty(new TextFieldAdapter("Value",

this.valueField));
 PropertySheet.setProperty(new IntegerFieldAdapter("Length", null));

 LinkedList<JRadioButton> datatypelist = new

LinkedList<JRadioButton>();
 PropertySheet.setProperty(new RadioAdapter("DataType",

datatypelist));

 LinkedList<JRadioButton> pubvalueslist = new

LinkedList<JRadioButton>();
 pubvalueslist.add(this.linearRadio);
 pubvalueslist.add(this.randomRadio);
 pubvalueslist.add(this.weightedRadio);
 PropertySheet.setProperty(new RadioAdapter("PublicationType",

pubvalueslist));

 PropertySheet.setProperty(new BooleanFieldAdapter("Alert", null));
 }

 private void addActionListeners()
 {
 connectButton.addActionListener(this.baseApplication);
 //connectButton.addActionListener(this);
 exitButton.addActionListener(this.baseApplication);
 //exitButton.addActionListener(this);
 pauseButton.addActionListener(this.baseApplication);
 //pauseButton.addActionListener(this);
 publishButton.addActionListener(this.baseApplication);
 linearRadio.addActionListener(this);
 randomRadio.addActionListener(this);

 59

 weightedRadio.addActionListener(this);

 }

 private void jbInit() throws Exception
 {
 this.setLayout(borderLayout1);
 esnLabel.setText("Edge Server Name:");
 edgeServerNameField.setText("");
 connectButton.setText("Connect");
 bottomPanel.setLayout(gridLayout2);
 publishButton.setText("Publish");
 pauseButton.setEnabled(false);
 pauseButton.setText("Pause");
 exitButton.setText("Exit");
 statusNameLabel.setText("Variable Name:");
 statusNameField.setText("");
 pubValuesLabel.setText("Pub Values");
 pubNameLabel.setText("Publisher Name:");
 publisherNameField.setText("");
 linearRadio.setText("linear");
 rateLabel.setText("Rate:");
 rateField.setText("");
 randomRadio.setText("random");
 weightedRadio.setText("weighted");
 valueLabel.setText("Value:");
 valueField.setText("");
 valueField.setEditable(false);
 borderLayout1.setHgap(2);
 borderLayout1.setVgap(2);
 gridLayout2.setColumns(5);
 gridLayout2.setHgap(2);
 gridLayout2.setVgap(2);
 topPanel.setLayout(gridBagLayout1);
 this.add(bottomPanel, java.awt.BorderLayout.SOUTH);
 bottomPanel.add(connectButton);
 bottomPanel.add(publishButton);
 bottomPanel.add(pauseButton);
 bottomPanel.add(exitButton);
 this.add(topPanel, java.awt.BorderLayout.CENTER);
 topPanel.add(pubValuesLabel, new GridBagConstraints(2, 1, 1, 1, 0.0,

0.0, GridBagConstraints.WEST, GridBagConstraints.NONE, new
Insets(0, 0, 0, 0), 0, 0));

 topPanel.add(rateLabel, new GridBagConstraints(0, 3, 1, 1, 0.0, 0.0,
GridBagConstraints.WEST, GridBagConstraints.NONE, new
Insets(0, 0, 0, 0), 0, 0));

 topPanel.add(valueLabel, new GridBagConstraints(0, 4, 1, 1, 0.0, 0.0,
GridBagConstraints.WEST, GridBagConstraints.NONE, new
Insets(0, 0, 0, 0), 0, 0));

 topPanel.add(esnLabel, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,
GridBagConstraints.WEST, GridBagConstraints.NONE, new
Insets(0, 0, 0, 0), 0, 0));

 topPanel.add(pubNameLabel, new GridBagConstraints(0, 2, 1, 1, 0.0,
0.0, GridBagConstraints.WEST, GridBagConstraints.NONE, new
Insets(0, 0, 0, 0), 0, 0));

 topPanel.add(statusNameLabel, new GridBagConstraints(0, 1, 1, 1, 0.0,
0.0, GridBagConstraints.WEST, GridBagConstraints.NONE, new
Insets(0, 0, 0, 0), 0, 0));

 topPanel.add(statusNameField, new GridBagConstraints(1, 1, 1, 1, 1.0,
0.0, GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL,
new Insets(0, 0, 0, 0), 0, 6));

 60

 topPanel.add(publisherNameField, new GridBagConstraints(1, 2, 1, 1,
1.0, 0.0, GridBagConstraints.WEST,
GridBagConstraints.HORIZONTAL, new Insets(0, 0, 0, 0), 0, 6));

 topPanel.add(rateField, new GridBagConstraints(1, 3, 1, 1, 1.0, 0.0,
GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL, new
Insets(0, 0, 0, 0), 0, 6));

 topPanel.add(edgeServerNameField, new GridBagConstraints(1, 0, 2, 1,
1.0, 0.0, GridBagConstraints.WEST,
GridBagConstraints.HORIZONTAL, new Insets(0, 0, 0, 0), 0, 6));

 topPanel.add(valueField, new GridBagConstraints(1, 4, 1, 1, 1.0, 0.0,
GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL, new
Insets(0, 0, 0, 0), 0, 6));

 topPanel.add(linearRadio, new GridBagConstraints(2, 2, 1, 1, 0.0,
0.0, GridBagConstraints.WEST, GridBagConstraints.NONE, new
Insets(0, 0, 0, 0), 0, 0));

 topPanel.add(weightedRadio, new GridBagConstraints(2, 4, 1, 1, 0.0,
0.0, GridBagConstraints.WEST, GridBagConstraints.NONE, new
Insets(0, 0, 0, 0), 0, 0));

 topPanel.add(randomRadio, new GridBagConstraints(2, 3, 1, 1, 0.0,
0.0, GridBagConstraints.WEST, GridBagConstraints.NONE, new
Insets(0, 0, 0, 0), 0, 0));

 }

 /**
 * cleanup This method is intended to contain any clean up code that

the
 * application requires.
 */
 public void cleanUp()
 {
 }

 /**
 * Invoked when an action occurs.
 *
 * @param e ActionEvent
 */
 public void actionPerformed(ActionEvent e)
 {
 if(e.getActionCommand() == "Connect")
 {
 this.connectButton.setText("Disconnect");
 this.edgeServerNameField.setEnabled(false);
 this.rateField.setEnabled(false);
 this.publisherNameField.setEnabled(false);
 this.statusNameField.setEnabled(false);
 }
 else if(e.getActionCommand() == "Disconnect")
 {
 this.connectButton.setText("Connect");
 this.publishButton.setText("Publish");
 this.pauseButton.setText("Pause");
 this.pauseButton.setEnabled(false);
 this.edgeServerNameField.setEnabled(true);
 this.rateField.setEnabled(true);
 this.publisherNameField.setEnabled(true);
 this.statusNameField.setEnabled(true);

 }
 else if(e.getActionCommand() == "Pause")
 {
 this.pauseButton.setText("Unpause");

 61

 }
 else if(e.getActionCommand() == "Unpause")
 {
 this.pauseButton.setText("Pause");
 }
 else if(e.getActionCommand() == "Publish")
 {
 this.connectButton.setText("Disconnect");
 this.publishButton.setText("Unpublish");
 this.edgeServerNameField.setEnabled(false);
 this.rateField.setEnabled(false);
 this.publisherNameField.setEnabled(false);
 this.statusNameField.setEnabled(false);
 this.pauseButton.setEnabled(true);
 }
 else if(e.getActionCommand() == "Unpublish")
 {
 this.publishButton.setText("Publish");
 this.pauseButton.setText("Pause");
 this.pauseButton.setEnabled(false);
 }
 else if(e.getActionCommand() == "linear" || e.getActionCommand() ==

"random" || e.getActionCommand() == "weighted")
 {

 (PropertySheet.getProperty("PublicationType")).setValue(e.get
ActionCommand());

 }
 }

 protected BorderLayout borderLayout1 = new BorderLayout();
 protected JLabel esnLabel = new JLabel();
 protected JTextField edgeServerNameField = new JTextField();
 protected JButton connectButton = new JButton();
 protected JPanel bottomPanel = new JPanel();
 protected JButton publishButton = new JButton();
 protected JButton pauseButton = new JButton();
 protected JButton exitButton = new JButton();
 protected JLabel statusNameLabel = new JLabel();
 protected JTextField statusNameField = new JTextField();
 protected JLabel pubValuesLabel = new JLabel();
 protected JLabel pubNameLabel = new JLabel();
 protected JTextField publisherNameField = new JTextField();
 protected JRadioButton linearRadio = new JRadioButton();
 protected JLabel rateLabel = new JLabel();
 protected JTextField rateField = new JTextField();
 protected JRadioButton randomRadio = new JRadioButton();
 protected JRadioButton weightedRadio = new JRadioButton();
 protected JLabel valueLabel = new JLabel();
 protected JTextField valueField = new JTextField();
 protected GridLayout gridLayout2 = new GridLayout();
 protected JPanel topPanel = new JPanel();
 protected BorderLayout borderLayout2 = new BorderLayout();
 protected GridBagLayout gridBagLayout1 = new GridBagLayout();
}

 62

BIBLIOGRAPHY

[1] Bakken, D. “Middleware”, Chapter in Encyclopedia of Distributed Computing,

Urban, J. and Dasgupta, P., eds., Kluwer Academic Publishers, to appear.

Available at http://www.eecs.wsu.edu/~bakken/middleware.pdf.

[2] Carroll, J. “Eastern Interconnect Phasor Project: TVA’s Super Phasor Data

Concentrator Architecture” presentation at the Eastern Interconnect Phasor

Project Meeting, April, 2005, Chattanooga, TN. Retrieved June 2005:

[3] Chandy, K. M. and Lamport, L. “Distributed snapshots: determining global states of

distributed systems”, ACM Transactions on Computer Systems, Volume 3, Issue

1, pg63-75, Febuary 1985.

[4] Comer, D. Network Systems Design Using Network Processors, Prentice Hall, 2003.

[5] Drugan, O., Dionysiou, I., Bakken, D., Plagemann, T., Hauser, C., and Frincke, D.

“On the Importance of Composability of Ad Hoc Mobile Middleware and Trust

Management”, Proceedings of the 2nd International Service Availability

Symposium, Berlin, Germany, 2005. Lecture Notes in Computer Science,

Springer, 2005, to appear.

[6] Gjermundrød, H., Bakken, D., Hauser, C. “GridStat Architecture and Mechanisms”,

in preparation.

[7] Hart, D., Uy, D., Phadke, A., Forsman, S., and Kunsman, S. “PMUs: Overview and

Application to Electric Power Networks”, Proceedings of the 4th Multiconference

on Systemics, Cybernetics, and Informatics (SCI 2000/ISAS 2000), volume IX,

Orlando, USA.

 63

[8] Hauer, J. and Taylor, C. “Information, Reliability and Control in the New Power

System”, American Control Conference, Philadelphia, PA, June, 1998.

[9] Hauser, C., Bakken, D. and Bose, A. "A Failure to Communicate: Next-Generation

Communication Requirements, Technologies, and Architecture for the Electric

Power Grid", IEEE Power and Energy, 3(2), March/April, 2005, 47-55. Retrieved

June 2005: http://gridstat.net/GridStat-Power-Energy-March05.pdf.

[10] IEEE. "IEEE Standard for Synchrophasors for Power Systems", IEEE Std 1344-

1995(2001), New York, 2001.

[11] Kamwa, I., Grondin, R., and Hebért, Y. “Wide-Area Measurement Based Stabilizing

Control of Large Power Systems—A Decentralized/Hierarchical Approach”,

IEEE Transactions on Power Systems, 16(1), February, 2001.

[12] Lamport, L. “Time, clocks, and the ordering of events in a distributed system”,

Communications of the ACM, Volume 21, Issue 7, pg558-565, July 1978.

[13] Larsson, M., Gardner, R., and Rehtanz, C. “Interactive Simulation and Visualization

of Wide-area Monitoring and Control Applications”, submitted to Power Systems

Computation Conference, Liège, Belgium, 2005.

[14] Larsson, M., Rehtanz, C., and Bertsch, J. “Real-time Voltage Stability Assessment

for Transmission Corridors”, Proceedings of IFAC Power Plants and Power

Systems Control Conference, Seoul, Korea, 2003.

[15] Liu, Y. “GPS/Internet Based Frequency Monitoring Network” presentation at the

Eastern Interconnect Phasor Project Meeting, April, 2005, Chattanooga, TN.

Retrieved June 2005: http://phasors.pnl.gov/Meetings/2005

April/presentations/Post this oneEIPP_TVA_Liu_05.pdf

 64

[16] Martin., K. Phasor Measurements at the Bonneville Power Administration. Power

Systems and Communications Infrastructures for the Future, Beijing, China,

September 2002.

[17] Martinez, C., Parashar, M., Dyer, J. and Coroas, J. (eds.), Phasor Data Requirements

for Real Time Wide-Area Monitoring, Control and Protection Applications (Final

Draft), Consortium for Electric Reliability Technology Solutions (CERTS),

January, 2005. Retrieved June 2005:

http://phasors.pnl.gov/resources_realtime/EIPP_RealTimeGroup_DataRequireme

nts_Draft5 - Jan 26 05.pdf

[18] Mittelstadt, W., Krause, P., Overholt, P., Sobajic, D., Hauer, J., Wilson, R., and

Rizy, D. “The DOE Wide Area Measurement System (WAMS) Project—

Demonstration of Dynamic Information Technology for the Future Power

System”, EPRI Conference on the Future of Power Delivery, Washington, D.C.,

April 1996. Retrieved June 2005:

http://www.osti.gov/bridge/purl.cover.jsp?purl=/254951-e5g22f/webviewable/

[19] Object Management Group. Data distribution service for real-time systems

specification. Technical Report Version 1.0, Object Management Group,

December 2004.

[20] Pardo-Castellote, G. “OMG Data-distribution Service: Architectural Overview”.

Proceedings of the 23rd International Conference on Distributed Computing

Systems Workshops (ICDCSW03), Providence, RI, May 2003.

[21] Quintero, J. and Venkatasubramanian, V. “A Real-Time Wide-Area Control

Framework for Mitigating Small-Signal Instability in Large Electric Power

 65

Systems”, Proceedings of the 38th Annual Hawaii International Conference

Software and Systems, Hawaii, 2005.

[22] Tanenbaum, A., van Steen, M. Distributed Systems Principles and Paradigms.

Prentice Hall, Upper Saddle River, New Jersey, 07458, 2002.

[23] Taylor, C., Erickson, D., Martin, K., Wilson, R. and Venkatasubramanian, V.

"WACS—Wide-Area Stability and Voltage Control System: R&D and Online

Demonstration", Proceedings of the IEEE (Special Issue on Energy Infrastructure

Systems), 93(5), May, 2005.

[24] Tomsovic, K., Bakken, D., Venkatasubramanian, V. and Bose, A. "Designing the

Next Generation of Real-Time Control, Communication and Computations for

Large Power Systems", Proceedings of the IEEE (Special Issue on Energy

Infrastructure Systems), 93(5), May, 2005. Retrieved June 2005:

http://gridstat.net/Power-GridStat-ProceedingsIEEE.pdf

[25] van’t Hag, J. “Data-Centric to the Max — The SPLICE Architecture Experience”,

Proceedings of the 23rd International Conference on Distributed Computing

Systems Workshops (ICDCSW03), Providence, RI, May 2003.

[26] Zinky, J., O’Brien, L., Bakken, D., Krishnaswamy, V., and Ahamad, M.. “PASS: A

service for efficient large scale dissemination of time varying data using

CORBA”, International Conference on Distributed Computing Systems, Austin,

TX, June 1999.

	 ACKNOWLEDGEMENT
	 TABLE OF FIGURES
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Power System Monitoring
	2.1.1 Introduction
	2.1.2 Phasors
	2.1.3 PMU data
	2.1.4 PMU Data Applications
	Event Analysis
	System Monitoring
	Real-time Control

	2.2 Distributed Systems
	2.2.1 Overview
	2.2.2 Middleware
	2.2.3 Publish-Subscribe Middleware

	2.3 GridStat architecture and mechanisms
	2.3.1 Architecture
	2.3.2 Status router mechanisms
	Efficient multicast
	Rate filtering
	Packet combining

	2.3.3 Status packetization

	 CHAPTER THREE
	3 RELATED WORK
	3.1 Power Systems Research
	3.1.1 Wide Area Measurement System
	Corridor Voltage Stability Monitoring
	
	Oscillatory Stability Monitoring
	FACTS Set-Point Optimization using Feedback Control
	Topology Detection and State Calculation
	
	Loadability Calculation

	3.1.2 BPA Phasor Data Concentrator
	PDC Definition
	BPA Implementation and Applications

	3.1.3 Eastern Interconnection Phasor Project
	3.1.4 FNET Project
	3.1.5 The Wide-Area Stability and Voltage Control System

	3.2 Centralized Systems
	3.3 Middleware Research
	3.3.1 Data Distribution Service
	3.3.2 PASS System

	 CHAPTER FOUR
	4 USE OF GRIDSTAT MECHANISMS FOR PMU DATA DISSEMINATION
	4.1 Using GridStat
	4.2 Key Issues
	4.2.1 Timestamp Mapping
	4.2.2 Size Overhead

	4.3 Experiments
	4.3.1 PDC requirements
	4.3.2 Experimental setup
	Single Path Delay Jitter
	 Redundant Two-Path Delay Jitter

	4.3.3 Experimental results

	4.4 Conclusion

	 CHAPTER FIVE
	5 APPLICATION DEVELOPMENT
	5.1 Overview
	5.2 Phasor Measurement Unit Emulator
	5.3 Phasor Data Concentrator Emulator
	5.4 GridStat Java Application Framework
	5.4.1 Motivation
	5.4.2 Overview
	5.4.3 User Interface
	Command Line Interface
	Graphical User Interface

	5.4.4 Application
	5.4.5 Property Sheet
	Variable Adapters

	5.4.6 Features of a Base Application
	Command Line Parameter Parsing
	GUI Generated Commands are Strings
	Base Command Set Recognition

	5.4.7 Effectiveness of Framework
	Implementing the PMU Emulator
	Implementing the PDC Emulator

	5.4.8 Conclusion

	 CHAPTER SIX
	6 CONCLUSION
	6.1 Future Work
	6.1.1 Trust Management
	6.1.2 Group Subscription
	Packet Combining
	Rate Filtering Restructure
	Potential Problems

	6.1.3 Command Message Dissemination

	
	APPENDIX
	 APPENDIX A
	7 PMU EMULATOR APPLICATION SOURCE CODE

	 BIBLIOGRAPHY

