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SYNCHRONIZATION OF MULTIPLE ROTATING SYSTEMS

Abstract

by James Slade, M.S.
Washington State University

August 2007

Co-Chair: Sandip Roy

Co-Chair: Ali Saberi

In recent years, distributed control systems have been the topic of a vast amount of research

and literature due to their advantages over their centralized counterparts. A significant advantage

is that a network of cummunicating agents can work in a cooperative manner to achieve complex

dynamic tasks. Tasks that have garnered much attention are those of agreement—those in which

agents with differing initial opinions/states must reach a common opinion. This thesis examines

agreement tasks for networks whose agents have states that are cyclic entities. Since the states

are cyclic entities, even the simplest control laws can result in mode lock, an undesirable stable

equilibrium where the states of the agents are not alligned. There have been methods proposed in

the past for designing controllers that eliminate mode lock. One such method is a nonlinear control

law, which we deconstruct in detail, and use our findings to influence a linear static control design.

We carefully explain mode lock and propose new heuristic algorithms for linear static control design

to eliminate mode lock.
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Chapter 1

Introduction

A variety of algorithms and controllers are needed for communicating-agent networks, i.e. net-

works of autonomous agents with distributed communication/sensing capabilities that coordinate

to complete a global task (e.g., [16,18,21–24]). Within this broad domain, algorithms/controllers for

agreement tasks—those in which agents with differing initial opinions/states must reach a common

opinion, that depends in a prescribed manner on the initial values—have been of particular interest

( [16, 18, 21, 22, 24]). The agreement problem originated in the computer science community [19],

but has been approached by control theorists in the communicating-agent network arena in recent

years, with motivation from e.g. sensor fusion and autonomous vehicle coordination applications.

The control-theoretic approach suggests using local averaging, or weighted averaging rules so as to

achieve a global agreement. This formulation permits development of fully distributed algorithms,

and asymptotic/transient analysis of these algorithms using linear system theory together with

graph theory.

An interesting subset of agreement problems are those in which the states of the systems are

cyclic, or rotational quantities. Nominally, this topic of rotational agreement seems closely related

to agreement in a linear frame; however, the differences between the two are significant. The cyclic

nature of the states makes the system nonlinear, and hence introduces additional equilibrium points
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as well as complex dynamic phenomena. In this article, we pursue the problem of decentralized

controller design for cyclic agreement. More broadly, our study of cyclic agreement serves as a

context for us to study graph-design ideas for networks of communicating agents, an important

component of the on-going effort to design high-performance controllers for networks.

Let us briefly review the literature in cyclical agreement. Agreement tasks in which agents’

states or observations are cyclical quantities have been motivated in several fields. For instance,

the references [4] and [26] describe rotational dynamics in such application areas as environmental

biology (specifically, regarding coordination of e.g. fireflies) and physics. Similar problems also

arise in distributed clocking of multi-processor computers [11, 20], and in aligning the headings of

multiple autonomous vehicles [16].

Based on these motivations, a control-theoretic methodology for agreement in a rotational frame

has been advanced in the articles [11,13,16,20,27]. Specifically, the article [20] notes the possibility

for mode-locking when measurements are phase differences (rather than differences on a linear

scale), and propose a non-linear control scheme which is essentially based on destabilizing the

offending (mode-locked) equilibria. While their control scheme is effective for regular meshes, it

cannot easily be generalized to arbitrary networks because controller synthesis requires computation

of the smallest phase difference between connected agents in all mode-locked states. We also

note that this non-linear methodology in general only destabilizes the mode-locked configurations

(equilibria) and does not eliminate them. The recent efforts [16] have instead taken the perspective

that, by measuring phase differences appropriately, the rotational problem can be rephrased as

a translational one. However, their approach is restricted to only Laplacian topologies, and also

suffers from the difficulty that a small change in an agent’s phase can necessitate an extensive

response by multiple agents (specifically, they must rotate 180o to reach equilibrium again).
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In this work, we propose a new control scheme for agreement in a rotational frame, and explicitly

pursue network topology design for fast agreement. In Chapter 2, we give a brief overview of

agreement tasks and some of the application areas for rotational agreement. Also, we state some

graph theoretic results that were used in analyzing our model. In Chapter 3, we describe our

network model and introduce the rotational agreement problem. Before describing our new control

methodology, we first make precise that only tree networks are not subject to mode-locking, and

report on a strategy for finding all the mode-locked states for a general network topology. These

results motivate us to select observations so as to form a tree network, and in turn use a linear

control law or algorithm (Chapter 4). Thus, we address the problem of designing a tree (or selecting

a spanning tree in a graph) to maximize the rate of settling to agreement of the algorithm.
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Chapter 2

Background Information

In this chapter, we give a brief explanation of agreement tasks and some of the past work done

on the topic. Historically, most of this work has been done for systems with translational states, as

opposed to rotational states. Also, we explain a couple of the areas where our work can be applied.

Finally, we state some graph theoretic results, since network structure and dynamics are of great

importance for our results.

2.1 Agreement Tasks

As embedded systems become more sophisticated, decentralized control and agreement tasks

are becoming more popular. Decentralized control has many advantages over its centralized coun-

terpart. A network of systems working together cooperatively offers more efficiency and operational

capability than a single system working solo. Applications of these decentralized systems are un-

limited, as they are already employed in a number of fields (see [21]).

The goal for these tasks is to create an update rule so that each system in the network, which

start with different initial states/opinions, has a common state. These states can have physical

meaning, such as in systems governed by Newton’s Law. In contrast, the states can have only a
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computational meaning, such as the opinion of a sensor. The update rules range from simple linear

static rules to complex dynamic rules. Each has its advantages for certain applications, and will

remain a topic of research for some time.

2.2 Application Areas

This section describe a couple of networks whose systems have states that are cyclic entities.

Our work was heavily focused on [20], which applied the topic to networks of distributed clocks.

2.2.1 Distributed Clock Networks

A major application for the title topic is in the area of distributed clock networks, such as a

multiprocessor. In the past, clock phases have been alligned by dispersing the output of a central

oscillator over a tree like network. This method is troublesome in that it requires repeaters at

certain intervals, and this method is not robust, has poor reliability, and high clock skew.

Recently, distributed clocking has been a common way of alligning clocks. Multiple local clocks

replace the central oscillator, and an algorithm that uses phase differences between neighboring

clocks alligns the all of the clock phases. Distributed clocking is much more reliable than a tree like

network. The tree like network requires repeaters at necessary intervals, which add to clock skew.

Also, if anything fails in a tree like network, everything downstream of the fault is affected. In a

distributed system, faults are isolated.

Distributed clocking has many advantages over past methods. Since clock signals are highly

succeptible to noise, a tree like network can be problematic. In order to reduce the noise, all clock

lines must be properly terminated and shielded. For large networks, the expense of this can be
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extremely high. In distributed clocking, each clock is generated locally so the need for a tree like

network is eliminated.

Another advantage of distributed clocking is that clock skew is kept to a minimum. High

clock skew can cause unpredictable and undesirable behavior. Since clocks are generated locally in

distributed clocking, skew is low.

Distributed clocking is also a robust mehtod. The tree like network is fixed after manufacture

so if it is found to be inadequate, there is nothing to be done. However, in distributed clocking

additional processors are just added to the existing network.

The design of controllers for aligning the phase of each of these local clocks has been of great

interest. In [20], they propose a method to allign the phase of multiple clocks. The articles [7, 15]

detail a physical implementation of the method proposed in [20]. In [11], a least squares approach

is taken, and in this case clocks are alligned for a wireless network.

2.3 Analyzing Network Structure And Network Dynamics

A network is a system with many distinct but interacting components. We wish to study

properties of the components or of the whole network that change with time (network dynamics).

Graph theory and algebraic graph theory are the tools used to analyze networks. Graph theory is

used to analyze the network structure, while algebraic graph theory connects network dynamics to

network structure.
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2.3.1 Graph Theory

A graph G = (V, E) consists of a set of nodes (vertices) V (G) = {1, 2, · · · , n}, where n is the

number of nodes, and an edge set E(G). The edge set E(G) contains pairs of distinct nodes, with

each pair of nodes representing an edge in the graph. An edge represents a physical connection from

one node, say node A, to another node, say node B, in which node B is able to receive information

from node A. If there is no order associated with pairs of nodes, i.e. an edge from node i to node

j is the same as an edge from node j to node i, the graph is undirected. Otherwise, the graph is a

directed graph. Also, the graph is a weighted graph, one in which each edge has a scalar weight

associated with it. This weight can be any real number. In the special case where each edge weight

is one, the graph is an unweighted graph.

Often, it is beneficial to illustrate graphs. We draw nodes as dots and edges as lines between

nodes. In a network, the individual components are represented as nodes and interactions between

the components are represented as edges. A graph is planar if it we can draw its nodes and edges

in a two dimensional space so that no two edges cross.

The two vertices associated with an edge are called the ends of the edge. If there is an edge

from node i to node, node i is the tail and node j is the head. A node that is an end of an edge

is said to be incident to the edge. Two nodes are said to be adjacent (or neighbors) if there is an

edge between them, or equivalently if there is an edge whose ends are the two nodes. A group of

nodes with no edges in common ( none of which are neighbors) are called independent.

The degree of a node is the number of edges incident to the node (the number of neighbors of

the node). If each node is adjacent to every other node, the graph is complete. If the degrees of all

of the nodes are equal, the graph is regular.

A subgraph is another graph whose vertex set V
′
is a subset of the vertex set V of the original
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graph. The subgraph has an edge set E
′
which is a subset of the edge set E of the original graph

and the ends of each edge in E
′

are in the vertex set G
′
. An induced subgraph is a subgraph in

which, for any pair of nodes i and j in the set V
′
, the edge {i, j} is in the set E

′
only if it is in the

set E.

A path is a sequence of nodes such that two successive nodes in the sequence are adjacent. The

first node in the sequence is denoted the start node, while the last node in the sequence is denoted

the end node. A cycle is a path in a graph in which the start node and the end node are the same.

If there is path between any pair of nodes, the graph is connected. A tree graph, or acyclic graph,

is a graph that doesn’t contain any clcles. A spanning tree is a subgraph such that V
′
= V and

the subgraph is a tree graph.

An edge cut set (or cut set) is a set of edges whose removal results in a graph that is not

connected. A vertex cut set is a set of nodes removal results in a graph that is not connected.

A minimum cut set is the least number of edges whose removal results in a graph that is not

connected.

Here are some aggregate measures and relations for vertices and edges. The number of nodes

and edges in a graph are denoted by |V | and |E|, respectively. The degree of node v is denoted by

d(v). The minimum degree, the maximum degree, and the average degree are

δ(G) = minv∈V d(v)

∆(G) = maxv∈V d(v)

d(G) = 1
|V |

∑|V |
i=1 d(i)

respectively. These measures can be ordered in the following manner: δ(G) ≤ d(G) ≤ ∆(G).

Another expression for the average degree is d(G) = 2|E|
|V | . The degree distribution fG(i) gives

the fraction of the nodes in G that have degree i for i = 0, 1, · · · , |V | − 1. A graph cannot be
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constructed by only knowing the degree distribution. However, degree distributions are important

because real systems have some special degree distributions that might tell us something about

network dynamics.

Here are some aggregate measures for paths and cycles. The distance between two nodes is the

least number of edges in a path between the two nodes. The eccentricity of a node i is the greatest

distance between i and any other node. The minimum distance among all cycles is called the girth.

The maximum distance among all cycles is called the circumference. The minimum eccentricity of

any node is the radius. The maximum eccentricity of any node is the diameter.

2.3.2 Algebraic Graph Theory

All of the entities above help us study the structure of a network. However, they don’t tell us

anything about network dynamics. Algebraic graph theory relates network structure to network

dynamics. Algebraic graph theory is a field that associates matrices with graphs and characterizes

properties of these matrices (most notably eigenvalues). The eigenvalues of these matrices give us

insight into important properties of the network, such as stability and settling rate.

Many real world systems have dynamics that can be modeled with either a combinatorial

Laplacian matrix or an adjacency matrix. For instance, the combinatorial Laplacian can be used to

model the dynamics of a resistor capacitor circuit. The combinatorial Laplacian is an n x n matrix

defined as follows:

Lij =





∑
j 6=i kij , i = j

−kij , i 6= j, i and j adjacent

0, Otherwise

,

where kij is the weight of edge {i, j}. The adjacency matrix can be used to model dynamics

in molecular networks, such as protein-protein interactions. The adjacency matrix is defined as
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follows:

Aij =





kij , {i, j} ∈ E(G)

0, Otherwise

In the case where the combinatorial Laplacian and adjacency matrices are unweighted, i.e.

kij = 1,∀ i, j, the matrices can be related to each other. Let D be the diagonal matrix with the

degree of each node on the diagonal, that is

D =




d(1) 0

d(2)

. . .

0 d(n)




.

The combinatorial Laplacian can be found from L = D - A.

Now that the graph structure has been related to matrices, we need a tool for analyzing these

matrices. The Courant Fisher Theorem is a common method used to find or bound eigenvalues of

these matrices. The Courant Fisher Theorem is a way to find eigenvalues of a symmetric matrix

through an optimization. Since the eigenvalues of a symmetric matrix are real and nonnegative,

they can be ordered as 0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λn−1.

The smallest eigenvalue of a symmetric matrix A can be found by the Courant Fisher Theorem,

which is

λ0 = min
||x||=1

xT Ax,

where x is an n component column vector. The vector x that minimizes the expression is the

eigenvector associated with the eigenvalue. Conversely, we can find the largest eigenvalue λn−1

with the following optimization:

λn−1 = max
||x||=1

xT Ax.
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In the case that the matrix A is a combinatorial Laplacian, the expression for λ0 is equivalent

to

λ0 = min
||x||=1

∑

{i,j}∈E(G)

(xi − xj)2.

From this, it is easy to see that if xi = xj , ∀ {i, j} ∈ E(G), then λ0 = 0 and the associated

eigenvector is a vector of all ones, which is denoted by ~1. If the graph is connected, all of the rest

of the eigenvalues of A are strictly greater than λ0. However, if the graph is not connected, the

eigenvalue at zero is repeated. The number of disconnected subgraphs is the number of times the

zero eigenvalue is repeated.

The rest of the eigenvalues of A can be found in successive order. Let v0 be the eigenvector

corresponding to eigenvalue λ0. Then, λ1 can be found from

λ1 = min
||x||=1,x⊥v0

xT Ax.

In order to find λi, all of the previous eigenvalues and eigenvectors need to be found. Let W be the

space spanned by all of the previous eigenvectors, i.e. W = [v0, v1, · · · , vi−1]. We can find λi from

λi = min
||x||=1,x⊥W

xT Ax.

In a similar manner, we could start at λn−1 and work in decreasing order.

While using the Courant Fisher Theorem to find all eigenvalues and eigenvectors of a symmetric

matrix can be a daunting task, finding just a couple of eigenvalues and eigenvectors is straightfor-

ward. Often times we are very concerned with λ1, which Fiedler termed the algebraic connectivity

of the graph. This eigenvalue dominates the network dynamics, and thus has been the topic of a

large amount of literature ( [1,8,9,14]). Since λ0 and its associated eigenvector are already known,

we can find λ1 from

λ1 = min
||x||=1,x⊥~1

xT Ax.
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Later, it will be our goal to design graphs, specifically tree graphs, with large algebraic connectivity.

Since we are only concerned with tree graphs, we will only present those results. For a tree

graph, λ1 ≤ 1, and has equality if and only if the graph is a star graph (see Chapter 4). Also, for

a tree with at least six nodes that is not a star graph, λ1 < 0.49 (see [1]). Later, we will use these

results to design algorithms for finding tree graphs that yield good settling rates.
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Chapter 3

Synchronization and Mode Locking

for Rotational Systems

We take the following approach to studying the problem of synchronizing rotating systems.

First, Section 3.1 develops the single integrator model that we use, and poses the syncrhonization

problem. In Section 3.2, we explain an algorithm for finding mode lock equilibrium points for a

network, and also give necessary and sufficient conditions for the existence of mode lock.

3.1 Model And Problem Formulation

We first formulate our model for communicating agents with cyclic states and observations by

describing the internal dynamics of each agent and the decentralized observation topology of the

network. We then describe the agreement task, and hence mention several control paradigms for

achieving agreement. We focus especially on static linear control in this paper, and so we elaborate

on the closed loop dynamics in this case.
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3.1.1 Communicating Agent Network Model

We study a network of n agents, where each agent i has a scalar state xi, xi ∈ <. We define

the network state as

x =




x1

x2

...

xn




.

For our purposes, this state represents a cyclic quantity, i.e. one that is indistinguishable modulo

2π. Since the states are indistinguishable modulo 2π, we find it useful to define angles zi =

((xi + π) mod 2π)− π. Notice that each of the angles zi are mappings of the states xi to the unit

circle, i.e. to the interval [−π, π]. For convenience, we define the network angle as

z =




z1

z2

...

zn




.

We model each agent as having single integrator internal dynamics, that is

ẋi = ui, (3.1)

where ui is the input of agent i. This agent model is appropriate both for hardware systems, such

as processor clocks [11,20], and in network algorithms for agreement (see [16,18,21–24]). The input

is generated by the feedback controller or algorithm, as explained below.

We pursue agreement in a decentralized setting, one where each agent only has partial infor-

mation of the network state. Specifically, for applications with cyclic states, it is sensible that
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the information available to an agent consists of angle differences between itself and its neighbors.

Formally, let us define the relative angle between two angles a and b as

d(a, b) = ((π + a− b) mod 2π)− π. (3.2)

A graphical illustration of d(a, b) is shown below in Figure 3.1. We define the set containing the

Fig. 3.1: Illustration of d(a,b).

neighboring agents of an agent i as N (i). We assume that each agent i makes observations

yij = d(zi, zj), ∀ j ∈ N (i). (3.3)

That is, each agent measures the relative angle to each of its neighbors. The observation topology

defines a network of systems with single integrator dynamics, which we refer to as a single integrator

network (SIN).
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3.1.2 The Synchronization Problem

Our goal is to find a control law (algorithm) such that each agent’s angle asymptotically ap-

proaches a common value. In the most general sense, we want to design a controller for each agent

i, i.e. a rule

ui = fi(yij(τ), t), j ∈ N (i), 0 ≤ τ ≤ t, (3.4)

that generates the input ui from the past and current observations made by agent i to achieve this

goal of synchronization.

First, let us more formally define the notion of synchronization. We say an agent i is stationary

if

fi(yij(τ), t) = 0 ∀ t, j ∈ N (i), 0 ≤ τ ≤ t, (3.5)

i.e. the angle zi is no longer evolving with time. The SIN is stationary if all of the agents are

stationary, or equivalently the SIN is at an equilibrium point. The SIN is synchronized if it is

stationary and each angle zi is the same. When the SIN is synchronized, we say it is in a synchronized

state.

Our goal is to find a control law such that the SIN asymptotically approaches a synchronized

state from any initial state. Formally, we say global asymptotic synchronization has been achieved

if, for any intitial state x(0), the network angle z(t) asymptotically approaches a synchronized

state.∗

Global asymptotic synchronization requires a synchronized state to be the only stationary con-

figuration. If the SIN is stationary, and at least one angle zi is different from the other angles,
∗The definition of global asymptotic synchronization is concerned with attractivity of the equilibrium; in fact, our

controllers achieve the stronger notion of asymptotic stability, i.e. attractivity together with stability in the sense of

Lyapunov. We have not been explicit about this in our formulation to avoid a lot of ugly notation.
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the SIN is said to be in mode lock. We call these equilibrium points mode-lock equilibrium points.

If mode-lock equilibrium points exist, our goal of global asymptotic synchronization cannot be

achieved since the SIN’s state will remain at the mode-lock equilibrium point if it starts there.

Further, just as the network angle asymptotically approaches a synchronized state, the network

angle can also asymptotically approach a mode-lock equilibrium point for a certain set of initial

conditions.

Mode lock is a critical issue in the SIN. Because yij is a nonlinear function of x, even a simple

LTI control law f can result in mode-lock equilibrium points, as illustrated below in Example 1.

Example 1

Consider using the simple and widely used averaging control law. This control law aims to drive

the angle of each agent i to the average of its neighbors’ angles by actuating the agent with an

arithmetic average of its relative angle observations. When each agent has the same angle, the

input to each agent is zero and the network remains stationary, so the SIN has a synchronized

state. Unfortunately, the SIN may in general also have mode-lock equilibrium points.

For instance, consider a network of four agents where N (1) = {2, 4}, N (2) = {1, 3}, N (3) =

{2, 4}, N (4) = {1, 3}. It is easily verified that if z1 = 0, z2 = π/2, z3 = −π, z4 = −π/2, each

ui = 0, thus the SIN is stationary. Since the SIN is stationary and at least one angle zi is different

from the other angles, the SIN is in mode lock so global asymptotic synchronization cannot be

achieved. ¤

Since an averaging scheme cannot always achieve global asymptotic synchronization, other

control methods are needed. One method, proposed in [20], makes all of the mode-lock equilibrium

points unstable and hence aims to allow synchronization from all but a measure-zero set of points.

This is accomplished by using a piece-wise linear feedback law. This law is similar to the averaging
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scheme in Example 1. However, if there is a measurement yij such that |yij | > π/2, the sign of the

measurement is flipped before it is averaged with the measurements from other neighbors. Also,

a weighted-average control is permitted. This makes the mode lock equilibrium points unstable

while maintaining the stability of the equilibria corresponding to the synchronized state.

While this method of using a piece-wise linear feedback law often works beautifully, it does have

some drawbacks. The SIN is still susceptible to mode lock (albeit unstable mode lock), despite the

use of the piece-wise linear feedback law. Also, the nonlinearity of the control law can create some

interesting and potentially undesirable behavior. Not only does the piece-wise linear control law

make mode-lock equilibrium points unstable, but it also creates new mode-lock equilibrium points

and destroys existing mode-lock equilibrium points, as illustrated below in Example 2. Also, there

is as yet no justification that asymptotic synchronization results from other (non-mode-lock) initial

conditions: chaotic or periodic behavior could result, for instance. Finally, destabilization of mode

lock can only be guaranteed for certain special observation topologies.

Example 2

Consider a network of six agents with the following observation topology: N (1) = {2, 4}, N (2) =

{1, 3, 5}, N (3) = {2, 6}, N (4) = {1, 5}, N (5) = {2, 4, 6}, N (6) = {3, 5}. If the averaging control

law described in Example 1 is used, the network has a mode-lock equilibrium point at

zT =
(

0 −14π
15 −2π

3
14π
15 −2π

15 −2π
5

)
.

When the piece-wise linear control law is used instead, we find that the SIN has a new mode-lock

equilibrium point at

zT =
(

0 −8π
9

2π
3

8π
9 −2π

9
2π
9

)
,
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and further that the equilibrium point

zT =
(

0 −14π
15 −2π

3
14π
15 −2π

15 −2π
5

)

has disappeared. Thus, the piece-wise linear control law has destroyed a mode-lock equilibrium

point and created a new mode-lock equilibrium point.

The existence of mode-lock equilibrium points is problematic. While these equilibrium points

are in fact unstable, the possibility of mode lock still exists. If the initial network angle starts at

an unstable mode-lock equilibrium point, it will remain there. Also, if the network starts “close”

to one of these unstable mode-lock equilibrium points, it will remain there for a period of time

before it starts to converge to the synchronized state (if indeed convergence can even be proven),

see Figure 3.2.
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Fig. 3.2: The network remaining close to an unstable mode-lock equilibrium point before it starts

to converge to the synchronized state.

Another flaw of the piece-wise linear control law is the existence of a stable manifold around
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a mode-lock equilibrium point. This results from the initial network angle lying in some lower

dimensional space. If the initial network angle lies on this manifold, the network angle approaches

an unstable mode-lock equilibrium point, as illustrated below in Example 3.

Example 3

Consider a network of three agents with the following observation topology: N (1) = {2, 3}, N (2) =

{1, 3}, N (3) = {1, 2}. For the initial network angle

zT =
(

π
4 −11π

16 −13π
16

)
,

a plot of the angles evolving in time is shown below in Figure 3.3. The initial condition lies on
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Fig. 3.3: Initial condition lies on stable manifold around mode-lock equilibrium point and network

angle approaches unstable mode-lock equilibrium point.

the manifold, and the network angle asymptotically approaches an unstable mode lock equilibrium

point. ¤
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3.1.3 Closed Loop Dynamics

In general, each agent in the SIN uses a controller that maps past and present observations yij

to the input ui. Here, our focus is on static linear control, so we write the closed-loop dynamics

for this case. The static linear control law for agent i is the following:

ui = −
∑

j∈N (i)

kijyij , (3.6)

where kij is a gain that is to be designed. Now, substituing Equation 3.6 into Equation 3.1, we get

ẋi = −
∑

j∈N (i)

kijyij . (3.7)

To write the closed loop dynamics in terms of state variables, we substitute Equation 3.3 into

Equation 3.7 and then substitute Equation 3.2 into that result to find

ẋi = −
∑

j∈N (i)

kij [((π + zi − zj) mod 2π)− π], (3.8)

which is a nonlinear system dynamic. To characterize the nonlinear system, the modulo operator

needs to be investigated. It is easy to verify that the following equalities hold:

((π + zi − zj) mod 2π)− π =





zi − zj + 2π, zi − zj < −π

zi − zj , −π ≤ zi − zj ≤ π

zi − zj − 2π, zi − zj > π

(3.9)

Thus, we can model the system as a switched linear system (with state-dependent switching). We

observe that the instantaneous input is linear in the angle difference between two agents i and j.

Only the additive constant changes with the angle difference in Equation 3.9, between zero and

± 2π.

We find it convenient to rewrite the model’s closed loop dynamics in a vector form. To do so, we
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define a graph matrix Gi for each agent in the network. The graph matrix Gi is an mi x n matrix†,

where mi is the number of observations of agent i, i.e. the number of agents in the set N (i). In

each row of Gi, the entry in column i is 1, a different entry j ∈ N (i) is -1, and the remaining entries

are 0. We also define a gain vector Ki for each agent i of the network. The gain vector Ki is an

mi-component row vector that contains the gains kij , j ∈ N (i) (with the order chosen to match

the row-order in Gi). We define the full graph matrix as

G =




G1

G2

...

Gn




,

and the full gain matrix as

K =




K1 0

K2

. . .

0 Kn




.

Later, it will be our goal to design the full gain matrix K such that the network graph matrix KG

is desirable.

The dynamics of the closed loop system can be represented in matrix form as

ẋ = −KGx + C(z), (3.10)

where C(z) is a piecewise constant that is a function of z and hence of x, and where we refer to

KG as the network graph matrix. We use the notation C(z) since each component of C is defined

†Without loss of generality, the graph matrix can represent a weighted graph. We appropriately scale the gain

matrix to accomodate for weighted edges in the graph.
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by Equation 3.9 and so it is natural to phrase the closed loop dynamics in terms of z. We will be

concerned with steady state solutions and dynamics of Equation 3.10. Specifically, we will seek to

design K so that the closed-loop system achieves global asymptotic synchronization, and further so

that the approach to the synchronized state is fast.

The matrix KG is very specially structured. In general, the matrix has row sums of zero. In the

special case that kij is chosen to equal kji, the symmetric matrix KG is the Laplacian matrix. Most

of the results that we present assume this condition on K. The properties of KG (in the general

and symmetric cases) simplify eigenanalysis and hence transient analysis.

Network Graph We define a network graph for the SIN as follows. We associate a node in the

graph with each agent in the network. There is an edge from agent i to agent j if row i and column

j, i 6= j, of KG is nonzero, i.e. j ∈ N (i). This edge is a weighted edge, with the weight equal to kij .

In our case, if there is an edge from node i to node j there is also an edge from nodej to node i;

however, in the general, the gains kij and kji are not equal, so it natural to view the network graph

as a weighted, directed graph. In the special case that kij = kji, the network graph is a weighted,

undirected graph. The network graph matrix KG is a matrix representation of the network graph.

3.2 Mode Locking With A Linear Control Law

This section contains an algorithm for finding mode-lock equilibrium points when the static

linear controller is used. Also, we show that the network angle always converges to an equilibrium

point, and there is no periodic or chaotic behavior. Last, we give a theorem stating a relationship

between network structure and the existence of mode-lock equilibrium points.
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3.2.1 Finding Mode Lock Equilibrium Points

Mode lock equilibrium points are steady state solutions of the n simultaneous differential equa-

tions described by Equation 3.8. To find the mode-lock equilibrium points, each ẋi is set equal to

zero. The ith equation in steady is

0 = −
∑

j∈N (i)

kij [((π + zi − zj) mod 2π)− π] (3.11)

A system of linear equations would result in a unique solution z (to within an additive constant).

However, these equations are piece-wise linear, so different regimes may yield different solutions.

Also, if z is a solution, then z̄ = z + δ, where δ ∈ [−π, π), is also a solution since the relative angles

between each of the agents remain the same. Thus, there are an infinite number of solutions, but

due to the rotational nature of the system, we are not interested in the solutions that differ only by

the addition of a constant. For consistency, we constrain the first components of all our solutions

z to be zero, in which case each linear peice in Equation 3.11 has at most one solution. Let us now

quantify these possibilities. From Equation 3.9 we see that each ((π + zi − zj) mod 2π)− π can

result in one of three expresions. The system of equations described by Equation 3.11 thus has 3e

(e is the number of edges in the graph) domains with different linear expressions for the right side.

To ensure that all the solutions are found, Equation 3.11 needs to be solved for each of these 3e

possibilities. In the case that kij = kji, there are 31/2e possibilities.

After a possible solution z of the system of equations described by Equation 3.11 is found,

it needs to be verified that z is actually a solution. This can be done by simply calculating

zi − zj ∀ i, j ∈ N (i). Recall that the expressions described by Equation 3.11 only hold for certain

domains. One simply has to check whether the solution falls in the proper domain.

The above procedure is illustrated in Example 4.
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Example 4

Consider a network of four agents with the network graph matrix

KG =




11 −2 −4 −5

−2 9 0 −7

−4 0 10 −6

−5 −7 −6 18




.

In the interest of space, we consider only one of the domains over which the right side of Equation

3.11 is linear. The chosen domain is −π ≤ z1 − z2 ≤ π, −π ≤ z1 − z3 ≤ π, −π ≤ z1 − z4 ≤ π,

−π ≤ z2− z4 ≤ π, and z3− z4 > π. For this domain, the system of equations decribed by Equation

3.11 is

0 = −2(z1 − z2)− 4(z1 − z3)− 5(z1 − z4)

0 = −2(z2 − z1)− 7(z2 − z4)

0 = −4(z3 − z1)− 6(z3 − z4 − 2π)

0 = −5(z4 − z1)− 7(z4 − z2)− 6(z4 − z3 + 2π)

.

Solving the system of equations results in a solution zT =
(

0 −1.3096 2.7596 −1.6838

)
.

To verify that this is a solution, the differences zi − zj were calculated and are

z1 − z2 = 1.3096 z2 − z1 = −1.3096

z1 − z3 = −2.7596 z3 − z1 = 2.7596

z1 − z4 = 1.6838 z4 − z1 = −1.6838

z2 − z4 = .3742 z4 − z2 = −.3742

z3 − z4 = 4.4434 z4 − z3 = −4.4434

Thus, we see that z is in the proper domain and so is a solution.
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Solving the system of equations for all possible 3e/2 combinations resulted in only one other

distinct mode lock equilibrium point, which is zT =
(

0 −2.7284 −2.1048 2.7752

)
. ¤

3.2.2 Conditions For Mode Lock and Global Asymptotic Synchronization

Here, we will prove that, in the case of static linear control, and from any initial network

angle, the network angle z(t) asymptotically approaches an equilibrium point. Also, we will a state

condition (with proof) for the existence of mode lock equilibrium points.

First, let us define some of the notation we will use below. Let D be the diagonal matrix with

each of the gains kij on the diagonal, with the order matching the row order of the full graph matrix

G. Note that D is an e x e symmetric matrix with all non-negative entries. We let q be the e x 1

vector containing the additive constants determined by the equalities in Equation 3.9. As with D,

the entries of q are ordered to match the row order of G.

Lemma 1 For any general linear static control law such that each gain kij ≥ 0 and kij = kji ∀ i, j ∈

N (i), and for any network graph, the network angle asymptotically approaches an equilibrium point.

Proof: First, we write the closed loop dynamics as

ẋ = −1
2
(GT D(Gx + q)). (3.12)

First, we will show that this is equivalent to Equation 3.10. Note that in general GT D 6= K, but

GT DG = 2KG. This is due to the special structure of G, along with the fact that kij = kji, ∀ i, j ∈

N (i). To show that GT DG = 2KG, we first start by defining G in a more precise manner. If the
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edges of the graph are numbered 1, 2, . . . , e, then G is as follows:

Gji = 1, node i is the tail and some node m is the head of edge j

Gji = −1, some node m is the tail and node i is the head of edge j

Gji = 0, Otherwise

.

Now, we look at the product DG. This product is:

(DG)ji = kim, node i is the tail and node m is the head of edge j

(DG)ji = −kmi, node m is the tail and node i is the head of edge j

(DG)ji = 0, Otherwise

.

The matrix GT follows from G, and is:

(GT )sj = 1, node s is the tail and some node m is the head of edge j

(GT )sj = −1, some node m is the tail and node s is the head of edge j

(GT )sj = 0, Otherwise

.

Now, multiplying GT by DG yields a square n x n matrix, defined as follows:

(GT DG)si =
e∑

j=1

(GT )sj(DG)ji.

Recall (GT )sj = 1 for each edge that has node s as the tail and some node m as the head, and

(GT )sj = −1 for each edge that has node s as the head and some node m as the tail. Also,

(DG)ij = kim for each edge that has node i as the tail and node m as the head, and (DG)ij = −kmi

for each edge that has node i as the head and node m as the tail. For diagonal entries, (s = i), the

summation over all of the edges result in four cases that are nonzero:

Node s is the tail of edge j, which in this case (GT )sj = 1

1) node i is the tail of edge j, which in this case (DG)ji = kim

2) node i is the head of edge j, which in this case (DG)ji = −kmi
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Node s is the head of edge j, which in this case (GT )sj = −1

3) node i is the tail of edge j, which in this case (DG)ji = kim

4) node i is the head of edge j, which in this case (DG)ji = −kmi.

First, note that case 2 and case 3 are not possible, since the same node cannot be the head and

tail of an edge. Also, (GT )sj = ± 1, and (DG)ji = ± kim for each node m that is a neighbor of node

i (or node s). Thus the summation over all edges is equivalent to a summation over neighboring

nodes. From above, case 1 results in a summation of the form
∑

m∈N(i)(1)(kim) and case 4 results

in a summation of the form
∑

m∈N (i)(−1)(−kmi). Therefore, the diagonal entries are of the form

∑
m∈N (s) ksm −∑

m∈N (s)−kms. Since kms = ksm, this is 2
∑

m∈N (s) ksm.

For the off-diagonal entries (i 6= s) of GT DGsi, the summation over all of the edges result in

the same four cases as above. However, for these entries, case 1 and case 4 are not possible since

an edge must have a tail and a head. If node s is the tail of edge j, (GT )sj = 1, and node i must be

the head of edge j (if node i is a neighbor of node s), so (DG)ji = −ksi. Similarly, if node s is the

head of edge j, (GT )sj = −1, and node i must be the tail of edge j (if node i is a neighbor of node

s), so (DG)ji = kis. Thus, each off-diagonal entry of (GT DG) is of the form (1)(−ksi) + (−1)(kis),

or −2ksi. Notice that if node i and node s are not neighbors, GT DGsi = 0. Since kij = kji, the

matrix KG is a Laplacian matrix. Therefore, 1/2(GT DG) = KG (see Chapter 2 for a description

of the Laplacian).

Next, we need to equate GT Dq and C(z). In the equalities in Equation 3.9, we let csi be the

additive constant. Note that csi = −cis. Thus, from Equation 3.8, each row of C(z) is of the form

∑
i∈N (s) ksicsi. The vector q is a vector containing all of these csi and is ordered in the following
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way:

qj = csi, node s is the tail and node i is the head of edge j. .

The matrix GT D follows from DG, and is:

(GT D)rj = krm, node r is the tail and node m is the head of edge j

(GT D)rj = −kmr, node m is the tail and node r is the head of edge j

(GT D)rj = 0, Otherwise

.

The product GT Dq is:

(GT Dq)r =
e∑

j=1

(GT D)rjqj .

Note that GT D is only nonzero for edges that are incident to node r. Thus, the summation

over all edges is equivalent to a summation over neighboring nodes. Here, the summation over the

neighboring nodes results in only two cases that are nonzero:

1) node r is the tail of and node m is the head of edge j, which in this case (GT D)rj = krm, and

qj = crm

2) node r is the head and node m is the tail of edge j, which in this case (GT D)rj = −kmr, and

qj = cmr

Thus, each row of the product is of the form
∑

m∈N (r)(krm)(crm) +
∑

m∈N (r)(−kmr)(cmr). Since

kmr = krm, and cmr = −crm, this is 2
∑

m∈N (r) krmcrm. Hence, 1/2(GT Dq) = C(z).

Now that we are sure that the model of the dynamics in Equation 3.12 is equivalent to Equation

3.10, we use a Lyapunov arguement to show convergence of the network angle to an equilibrium

point. We consider the quadratic Lyapunov function

V (x) = (xT GT + qT )D(Gx + q). (3.13)
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The Lyapunov function is a weighted sum of the squares of d(xi, xj), so is positive semi-definite.

The derivative of the Lyapunov function is

V̇ = ẋT GT D(Gx + q) + (xT GT + qT )DGẋ. (3.14)

Since D is symmetric, Equation 3.14 is equivalent to

V̇ = 2(xT GT + qT )DGẋ. (3.15)

Now, substitue Equation 3.12 into Equation 3.15 to get

V̇ = 2(xT GT + qT )DG(−1
2
(GT D(Gx + q))). (3.16)

After some algebra, we find that

V̇ = −(Gx + q)T (GT D)T (GT D)(Gx + q), (3.17)

or equivalently

V̇ = −4||ẋ||2. (3.18)

Therefore, V̇ is negative semi-definite, and if V̇ = 0, this implies that ẋ = 0. ¥

Here we note that the arguement does not take into account the switching of q. This is due

to the fact that x is continuous, and there are only jumps in ẋ. Additionally, V̇ is negative on

both sides of switch in q. Also, the switching is not dense, since x has to go 2π before switching is

invoked. Thus, the arguement is valid.

Also, we note that if the network angle converges to a sycnrhonized state, V (x) approaches

zero, and V (0) = 0. If the network angle does not converge, and instead approaches a mode-lock

equilibrium point, V (x) approaches some γ, γ > 0. In both cases, when an equilibrium point is

reached, V̇ = 0. The above Lemma shows that periodic or chaotic behavior is not possilbe. This

guarantees asymptotic convergence of the network angle to an equilibrium point.
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The above Lemma shows that periodic or chaotic behavior is not possilbe. This guarantees

asymptotic convergence of the network angle to an equilibrium point. The Lyapunov function is

illustrated below in Example 5 and Example 6.

Example 5

Consider a network of four agents with the network graph matrix

KG =




11 −2 −4 −5

−2 9 0 −7

−4 0 10 −6

−5 −7 −6 18




.

Below, Figure 3.4a shows the angles of each agent evolving in time, starting from the initial

network angle

zT =
(
−1 0.9 −2.2 2

)
,

while Figure 3.4b shows the Lyapunov function. Figure 3.4c and Figure 3.4d show the results for

the initial network angle

zT =
(
−1.5 .75 −2.2 2.5

)
.

In Figure 3.4c and Figure 3.4d, the switching in the network dynamics is apparent. Even though

the dynamics are switching, the Lyapunov function is still decreasing, and the synchronized state

is asymptotically approached. ¤

Example 6

This example is a network of 20 agents. Figure 3.5a and Figure 3.5c show the network angle

evolving in time for two different initial network angles while Figure 3.5b and Figure 3.5d show the

Lyapunov function.
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Fig. 3.4: Network angle and Lyapunov function for network of four agents.

Now that we know the network angle approaches an equilibrium point, we need to relate network

structure to the existence of mode-lock equilibrium points. This will help us design controllers to

ahcieve our goal of global asymptotic synchronization. A theorem relating network structure to the

existence of mode-lock equilibrium points is given below in Theorem 1.

Theorem 1 For any general linear static control law, any network graph that is a tree graph

does not have any mode lock equilibrium points. Furthermore, the SIN achieves global asymptotic

synchronization in this case.

Proof: A tree graph has at least two nodes that have degree one. Consider any node in the graph

32



a)
0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4
Linear Controller

Time (sec)

A
n

g
le

s 
(R

a
d

ia
n

s)

b)
0 1 2 3 4 5

10

15

20

25

30

35

40

45

50

55

60
Lyapunov Function

Time (sec)

V
(x

(t
))

c)
0 5 10 15 20 25 30 35

−4

−3

−2

−1

0

1

2

3

4
Linear Controller

Time (sec)

A
n

g
le

s 
(R

a
d

ia
n

s)

d)
0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70

80
Lyapunov Function

Time (sec)

V
(x

(t
))

Fig. 3.5: Network angle and Lyapunov function for network of 20 agents.

that has degree one, denote this node by A. Node A is only connected to one other node, say node

B. Thus, the dynamics for agent A are

ẋA = kAB(((π + zB − zA) mod 2π)− π).

From Equation 3.9, it is easy to verify that in steady state, zA = zB (xA is equal to xB or is a 2π

multiple of xB), therefore the angle of agent A will be the same as the angle of agent B. Thus, we

can remove agent A and the edge between agent A and agent B from the graph. The subgraph that

results will in turn have at least two nodes that have degree one. We recursively apply this process

to the leaves (nodes that are only connected to one other node) of the graph, finally arriving at a
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graph with a single agent. Thus, a tree graph will not mode lock.

Global asymptotic synchronization follows from Lemma 1. ¥

Conjecture: Based on numerous simulations, we believe that in the case where KG represents

a tree graph, the restrictions on K can be lessened. Specifically, the requirement kij = kji can be

removed. Also, the condition kij ≥ 0 is sufficient, but may not be necessary. This is a powerful

result in that any LTI controller, with each kij ≥ 0, will achieve the goal of global asymptotic

synchronization. In addition, some of the kij may be negative, but this is not fully understood. An

example where kij 6= kji is shown below in Example 7.

Example 7

Consider a network of seven agents with the following network graph matrix:

KG =




4 0 −4 0 0 0 0

0 13 −13 0 0 0 0

−15 −8 −33 −1 0 −9 0

0 0 −16 32 −16 0 0

0 0 0 −19 19 0 0

0 0 −17 0 0 25 −8

0 0 0 0 0 −13 13




.

Note that this represents a tree graph. Figure 3.6 shows the network angle evolving in time, starting

from the initial network angle

zT =
(
−1.6884 1.2183 −0.5981 −2.7068 −2.3135 1.4729 −2.8351

)
.

The fact that tree graphs do not mode lock is the basis of our methodology for designing

controllers for SINs.

34



0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Linear Controller

Time (sec)

A
n

g
le

s
 (

R
a

d
ia

n
s
)

Fig. 3.6: Tree graph with the symmetric condition on K removed still asymptotically approaches a

synchronized state.
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Chapter 4

Control Design

Now that we know how a SIN’s topological structure affects its asymptotics, we can design

controllers to achieve our goal of global asymptotic synchronization. Specifically, we pursue designs

for which the network graph is a tree, since we know that these designs will not mode lock. Also,

we seek to design tree network graphs that have fast settling to the synchronized state. This

convergence rate is dependent on the eigenvalues of the network graph matrix. As time evolves,

and given that the network state is close to the synchronized state (so that switching is not invoked),

each state trajectory x(t) behaves according to
∑

i cie
−λit, where each λi is an eigenvalue of KG.

The rate of convergence is most strongly dependent on the eigenvalue λ1. More precisely, the

eigenvalue λ0 is identically zero, and its associated dynamics do not effect the rate of convergence,

but only the steady state value to which the SIN converges. We are not concerned with this value,

only the fact that the SIN does converge. Instead, the algebraic connectivity dominates the settling

dynamics of the SIN, so we want to find tree graphs that have the largest algebraic connectivity.

The algorithms presented below are deeply connected to the field of algebraic graph theory (see

[5]), as well as the idea of eigenvalue sensitivity. Eigenvalue sensitivity is a measure of how sensitive

the eigenvalues of a matrix are to small perturbations of the entries of the matrix. Eigenvalue

sensitivity notions are widely used in several application areas, including power networks ( [6]),
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discrete control systems ( [28]), and biological networks ( [2]).

Our controller design strategies make use of the ideas of eigenvalue sensitivity and algebraic

graph theory. Given any network graph, we wish to change the gains kij in such a manner that

KG represents a tree graph, while keeping λ1 as large as possible. Again, we require that K is

chosen such that KG is symmetric. We have developed three different heuristic algorithms, which

are explained below.

4.1 Fixed Observation Topology

Here, we consider a network where the obervations that each agent can make are predefined,

and we can only adjust the gains. Therefore, we want to choose the gains in a manner such that

the network graph matrix KG represents a spanning tree of the original network graph. Also, we

wish to choose a spanning tree that yields a“good” algebraic connectivity, and hence a “good”

settling rate. Here,“good” means that the chosen spanning tree may not yield the largest algebraic

connectivity, but the rate of convergence is satisfactory. We have developed two different algorithms

to find spanning trees, as described below.

4.1.1 Eigenvalue Sensitivity Approach

Given a network graph, we wish to remove edges from the graph (i.e. set controller gains to

zero) until we are left with a connected tree graph. In addition, this resulting tree graph needs to

have a satisfactory algebraic connectivity. Below, we first review the classical eigenvalue-sensitivity

equation, and then describe our eigenvalue-sensitivity algorithm.
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Review: consider a matrix A and a distinct eigenvalue λ associated with A. Also, let v be the

right eigenvector associated with λ, and let wT be the left eigenvector associated with λ. We wish

to find an expression for how λ changes with the entries of A.

We let the matrix ∆A describe the changes to the entries in the matrix A. For small enough

∆A, A + ∆A has an eigenvalue near λ, say λ + ∆λ, which is distinct, and a corresponding right

eigenvector that only varies slightly from v, say v + ∆v.

In order to find how ∆λ changes with ∆A, we start with the expression Av = λv. To find

an eigenvalue of A + ∆A, we use (A + ∆A)(v + ∆v) = (λ + ∆λ)(v + ∆v). After expanding the

expression, we are left with

Av + A ∆v + ∆A v + ∆A∆v = λv + λ∆v +∆λ v + ∆λ∆v .

Now, we multiply both sides of the expression from the left by wT and use the fact that Av = λv

to get

wT A∆v +wT ∆A v + wT ∆A∆v = wT λ∆v +wT ∆λ v + wT ∆λ∆v .

Next, we make use of the expression for finding a left eigenvector, which is wT A = wT λ. Thus, the

first terms on each side of the above equality are equivalent so we are left with

wT ∆A v + wT ∆A∆v = wT ∆λ v + wT ∆λ∆v .

Notice that ∆λ is a scalar, so the first term on the right side of the above equality is equivalent to

∆λwT v. We can normalize wT and v such that wT v = 1. After doing this, we are left with

wT ∆A v + wT ∆A∆v = ∆λ+wT ∆λ∆v .

If we ignore the higher order terms, we find that ∆λ = wT ∆A v is a first order approximation.

We are interested in the sensitivity of the algebraic connectivity of KG to the removal of an

edge of KG. In the above formula, the matrix A is the network graph matrix KG in our case, and
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∆A represents the removal of an edge of the network graph. If the edge {i, j} is removed, then

∆Aii = ∆Ajj = −kij and ∆Aij = ∆Aji = kij . The rest of the entries of ∆A are zero. Since KG

is symmetric, the left eigenvector is the transpose of the right eigenvector. Therefore, with a little

algebra we find that ∆λ = kij(vi − vj)2, where vi and vj are the ith and the jth components of the

right eigenvector, respectively.

From the above sensitivity expression, it is clear that removing the edge with the minimum

weighted difference in eigenvector components results in a small change in the algebraic connectivity

of the graph. This result gave us insight into finding spanning trees. We have developed a heuristic

algorithm from this idea, which is listed below.

1) calculate the eigenvector v associated with the second smallest eigenvalue of KG

2) calculate kij(vi − vj) ∀ i, j ∈ N (i)

3) remove the edge {i, j} that has the minimum weighted difference of eigenvector components,

i.e set kij (and kji) to zero

4) find the new network graph matrix

5) repeat until the resulting network graph is a tree graph

It should be noted that it is possible that the algorithm finds a graph that is not connected. To

avoid this problem, we change the algorithm as follows: if edge {i, j} has the minimum difference

kij(vi−vj) but the removal of this edge would result in a graph that is not connected, then the edge

with the next smallest difference is removed instead. This is of great importance due to the fact

that it is not possible for a network that is not connected to reach a synchronized state. Also, the

algorithm is not guaranteed to find the optimal solution, but the results are generally satisfactory.
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To illustrate the algorithm, we consider the following example.

Example 8

Consider the network graph matrix

KG =




3 −1 −1 −1 0

−1 3 −1 0 −1

−1 −1 3 0 −1

−1 0 0 1 0

0 −1 −1 0 2




.

The first iteration of the algorithm will be shown to illustrate the algorithm in detail.

The eigenvector v associated with second smallest eigenvalue λ1 is

vT =
(
−0.1380 0.2560 0.2560 −0.8115 0.4375

)
.

The edge that has the minimum difference of eigenvector components is the edge {2, 3}.

After this edge is removed, the resulting graph matrix is

KG =




3 −1 −1 −1 0

−1 2 0 0 −1

−1 0 2 0 −1

−1 0 0 1 0

0 −1 −1 0 2




.

The steps above are repeated until the resulting graph is a tree graph.
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The final tree graph is

KGtree =




3 −1 −1 −1 0

−1 1 0 0 0

−1 0 2 0 −1

−1 0 0 1 0

0 0 −1 0 1




.

The algebraic connectivity of the dense graph is 0.8299 while the algebraic connectivity of the tree

graph is 0.5188. ¤

4.1.2 Bushiness Approach

This algorithm is based on a number of observations regarding algebraic connectivities of trees

and other graphs. The articles [1] and [8] give many results on how algebraic connectivity is related

to the network topology. Also, many lower bounds on the algebraic connectivity are given in terms

of graph properties, such as the number of nodes, the number of edges, the diameter of the graph,

and several others. We use these bounds as guidelines for how we want to find spanning trees.

The main observation we made is that graphs with small diameters typically have larger al-

gebraic connectivities. Also, graphs that are more strongly and centrally connected yield a larger

algebraic connectivity. While this algorithm is more of an ad hoc type of approach than the

eigenvalue-sensitivity approach, in many cases it confirms the results of the eigenvalue-sensitivity

approach and in some cases does slightly better. This algorithm begins with an empty graph (graph

of nodes with no edges) and add edges (by setting kij to one) as follows:

1) find an agent that is centrally located and has many neighbors

2) connect this agent to all of its neighbors
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3) find the node with the next-highest degree (number of neighbors) that is already connected

to some other agent

4) connect this agent to all of it’s neighbors that are not already connected

5) repeat until all of the nodes are connected

If possible, branches of the tree that are connected closer to the center of the graph are preferable.

Also, it is possible for a node to be connected to more than one other node. These are usually

nodes that are the last to be connected. In this case, the change in the algebraic connectivity of the

tree graph is so small that the node can be connected to any of the possiblities. If the maximum

algebraic connectivity is desired, a trial and error approach is the best way to determine connections

for these last nodes. The algorithm is illustrated below in Example 9.

Example 9

Consider the network of 12 agents shown below in Figure 4.1a. The algorithm starts with an empty

graph. A centrally connected agent with the largest degree is found, and all of its neighbors are

connected, see Figure 4.1b. Of the agents that are now connected, agent 7 has the highest degree so

it is connected to all of its neighbors that are not already connected (Figure 4.1c). All that remains

to be connected are each of the corner agents. Agent 1 can be connected to either agent 2 or agent

5; angets 5, 16, and 20 also have more than one other node that they can be connected to. A trial

and error approach was used to find the best connections for these agents, and the connected tree

graph shown in Figure 4.1d. ¤
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a)

1 2 3 4

65 7 8

9 10 11 12 b)

1 2 3 4

65 7 8

9 10 11 12

c)

1 2 3 4

65 7 8

9 10 11 12 d)

1 2 3 4

65 7 8

9 10 11 12

Fig. 4.1: Applying the bushiness algorithm.

4.2 Freedom To Design The Network

In this case, we are given the freedom to design the network, i.e we are able to choose the

observations an agent can make, and we can adjust the gains. By setting the gains arbitrarily

large, the algebraic connectivity of the network graph can be made arbitrarily large. However,

this can lead to a number of problems, most notably actuator saturation. This is a problem that

we wish to avoid altogether, so we fix all of the gains at one. Therefore, we want to choose the

observations that each agent can make in a way that eliminates the possibility of mode lock and

leads to satisfactory settling rates. The following theorem provides insight into how we want choose
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the observations for each agent.

Theorem 2 Among tree graphs with n nodes, the star graph has the largest algebraic connectivity.

Proof: If there are n nodes in the network, a star graph has the following graph structure:

KG =




n− 1 −1 −1 · · · −1 −1

−1 1 0 · · · 0 0

−1 0 1 · · · 0 0

...
...

−1 0 0 · · · 0 1




.

Since the gains are all fixed at one, the resulting network graph matrix is symmetric. First, we will

prove that the algebraic connectivity of the star graph is one. Then, we will show that the star

graph has the largest algebraic connectivity among tree graphs.

In order to find the second smallest eigenvalue λ1, consider the associated eigenvector v such

that KGv = λ1v. Let v =




v0

v1

...

vn−1




. Therefore, KGv =




(n− 1)v0 −
∑n−1

i=1 vi

v1 − v0

...

vn−1 − v0




. Let v0 = 0.

Then, KGv =




−(v1 + v2 + . . . + vn−1)

v1

...

vn−1




. Now, set vi = γ and vj = -γ, where γ is any number,

i 6= j, 1 ≤ i ≤ n-1, 1 ≤ j ≤ n-1, and vk = 0, 1 ≤ k ≤ n-1, k 6= i, j. If v is selected in this manner,

KGv = v. Therefore, λ1 = 1. In addition, there are n-1 entries in v that can take the value of ±γ,

but only two at a time. Thus, there are n-2 linearly independent vectors v such that KGv = v.
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Hence, λ1 = 1, λ1 is repeated n-2 times, and λ1 is simple (has n-2 linearly independent eigenvectors

associated with it).

We now know n-1 eigenvalues of the star graph. All that is left to do is to show that the last

eigenvalue is greater than one. Assume that the remaining eigenvalue is the largest eigenvalue. By

the Courant Fischer Theorem, we have

λ = max
vT KGv

vT v
.

Or, equivalently

λ = max

∑
{i,j}∈E(KG)(vi − vj)2∑n−1

i=0 v2
i

.

This becomes

λ = max

∑n−1
i=1 (v0 − vi)2∑n−1

i=0 v2
i

.

Let v be the vector

v =




1√
n

− 1√
n

1√
n

− 1√
n

...




If v is selected in this way, the numerator in the above expression becomes 2 if n is even, and 2 -

2/n if n is odd. The vector v is normalized, so the denominator is 1. Thus, λ = 2 if n is even, and

λ = 2 - 2/n if n is odd. Therefore, λ > 1 ∀ n > 2. We know that the vector that maximizes the

above expression is the eigenvector. Obviously, the vector v is not an eigenvector, since KGv 6=

λv. Hence λ > 2 − 2/n > 1. The algebraic connectivity of a star graph is 1.

Now we want to show that the star graph is the tree graph with the largest algebraic connectivity.

In order to do this, we first start with a star graph. Then, we remove one of the nodes that is
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connected to the center node, and also the edge that this node is incident to. Append this node

to one of the leaves in the graph. Without loss of generality, call the center node node 0, the node

that was moved node 1, and the node that the removed node is appended to node 2. Then, the

graph has the following structure:

KG =




n− 2 0 −1 −1 −1 · · · −1 −1

0 1 −1 0 0 · · · 0 0

−1 −1 2 0 0 · · · 0 0

−1 0 0 1 0 · · · 0 0

...
...

−1 0 0 0 0 · · · 0 1




.

Let v be the vector such that vi = γ and vj = -γ, where γ is any number, i 6= j, 3 ≤ i ≤ n-1, 3

≤ j ≤ n-1, and vk = 0, 1 ≤ k ≤ n-1, k 6= i, j. We know from above that vT KGv
vtv = 1. However, the

vector v is not an eigenvector in this case. We know that the minimizing vector is an eigenvector,

so there is another vector that results in a value of λ1 < 1.

Therefore, this graph has an algebraic connectivity less than that of the star graph. ¥

If we can design the network observation topology, we want to design a star structure. If

the number of agents in the network becomes large, it may not be feasible to implement a star

structure. Some applications may have a maximum degree constraint, so an agent has a limited

number of observations in can make. In a case like this, a series of star graphs is the best. A

series of star graphs is created by starting with a center node and connecting as many leaves to it

as desired/possible. Then, as many nodes as desired/possible are connected to each of the leaves,

keeping in mind that each of the leaves already have one node connected to them. This process of

working outward is then repeated until all of the nodes are included in the graph.
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Remark: While the control strategies above achieve our goal of global asymptotic syncrhoniza-

tion, they are not very robust. This is due to working exclusively with tree graphs. In a tree graph,

if a single link fails, the network is no longer connected.

To robustify the design, we propose a switching controller. The switching controller incorpor-

tates the above design strategies along with the fact that the SIN can reach a synchronized state,

despite the existence of mode-lock equilibria. If the network state is “close” to a synchronized state,

it will approach the synchronized state. If the network state is “close” to a synchronized state, the

resulting measurements each agent makes are sufficiently small. Thus, if we use a tree topology

until all of the measurements of each agent are sufficiently small, we can then switch back to the

dense network graph and still not mode lock. Not only will this make the network more robust, it

will increase the settling rate.

A major issue with this switching controller is knowing when to switch from the tree graph

to the original network graph. For any general linear static control law, once all of the z′is are

contained in a half circle, a syncrhonized state will be reached despite the existence of stable mode-

lock equilibrium points. This makes sense since there is no switching in the dynamics once all of

the relative angles are small enough. In this domain, the dynamics are simply ẋ = −KGx, which

has no mode-lock equilibrium points.
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Chapter 5

Conclusion

In this thesis, we have designed control laws to achieve synchronization for a network of rotating

systems. We carefully examined [20], and used that work to motivate our research. Our methods

are easy to implement, and work for any general network structure.
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