
LOCAL COORDINATION MEDIUM ACCESS CONTROL FOR WIRELESS SENSOR

NETWORKS

By

MONIQUE SACHIE KOHAGURA

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

AUGUST 2008

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of MONIQUE SACHIE KO-
HAGURA find it satisfactory and recommend that it be accepted.

Chair

ii

ACKNOWLEDGEMENT

I would like to thank Dr. Murali Medidi for being a wonderful advisor. His guidance and

inspirational talks helped me to get to where I am today. I would also like to thank Dr. Sirisha

Medidi and Dr. Roger Alexander for being on my thesis committee. Finally, I would like to thank

the members of the SWAN Lab for their support: Ghayathri Garudapuram, Yuanyuan Zhou, Jiong

Wang, Peter Cappetto, Lynsey Compton-Drake, and Christopher Mallery.

iii

LOCAL COORDINATION MEDIUM ACCESS CONTROL FOR WIRELESS SENSOR

NETWORKS

Abstract

by Monique Sachie Kohagura, M.S.
Washington State University

August 2008

Chair: Muralidhar Medidi

Energy-efficient medium access control (MAC) protocols have been at the forefront of research

within wireless sensor networks (WSN) due to the unique resource-constraints of sensor nodes.

With limited processing capabilities, memory space, and battery power, a node is unable to perform

complicated tasks and computations nor can it accurately assess an event alone. Hence, the role of

a base station (sink): the destination for all packet reports to be analyzed. With heavy contention at

the event site and traffic becoming more concentrated towards the sink (known as convergecast), a

new perspective in designing a MAC may be the key to better energy-efficient transmissions. Most

MAC protocols have addressed the issue of contention and collision resolution at the traditional

micro level, trying to access the channel to send a packet to a given destination, which is determined

by the upper routing layer. However, with WSNs, one should look at communication from a

macro perspective since most applications share the same traffic pattern. We propose an energy-

efficient cross-layered MAC protocol which allows a node to locally coordinate amongst others for

productive event reporting, named LoC-MAC. ECR-MAC [57] is used as a basis and we improve

upon it by allowing each node to maintain a list of its multiple next-hop forwarders’ duty cycle

schedules in order to identify when it can ask a forwarder to perform data exchange. Performance

evaluation has shown that LoC-MAC has comparable results with ECR-MAC, while consuming

less energy.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1. INTRODUCTION . 1

1.1 Overview . 1

1.2 Thesis Organization . 3

2. BACKGROUND AND RELATED WORK . 4

2.1 Wireless Sensor Networks . 4

2.2 Energy Efficiency . 5

2.3 Medium Access Control . 7

2.3.1 Synchronous Schedules . 9

2.3.2 Independent Schedules . 18

2.4 Summary . 26

3. LOCAL COORDINATION MEDIUM ACCESS CONTROL 28

3.1 Motivation, Design Choices, and Assumptions . 28

3.2 Initial Setup . 33

3.3 Data Forwarding . 36

v

3.3.1 Basic Scheme . 37

3.3.2 Handling Contention and Collisions . 41

3.3.3 Multiple Base Stations . 45

3.3.4 Base Station to Nodes Traffic . 46

3.4 Maintenance and Scalability . 46

3.5 Analysis . 49

3.5.1 Delay . 49

3.5.2 Energy Consumption . 52

4. PERFORMANCE EVALUATION . 54

4.1 Single-Source Scenario . 55

4.2 Multiple Sources Scenario . 57

4.3 Scalability . 60

4.4 Performance Summary . 61

5. CONCLUSIONS . 62

BIBLIOGRAPHY . 64

vi

LIST OF TABLES

Page

2.1 Sources of Energy Consumption . 6

2.2 WSN Medium Access Control Protocols . 27

3.1 Potential Forwarders Table . 35

3.2 Timers . 44

4.1 Simulation Parameters . 55

vii

LIST OF FIGURES

Page

2.1 Example scenario of nodes sensing the same event 5

2.2 Wireless Network Problems . 9

2.3 Examples of Synchronous Scheduling . 10

2.4 Examples of Independent Scheduling . 19

3.1 Routing methods . 29

3.2 Different Offsets . 34

3.3 States a node goes through, both as a sender and a receiver 39

3.4 Two senders contending for the same forwarder 43

3.5 Complete State Diagram . 45

3.6 Area of Potential Forwarders . 50

3.7 Distributed Wakeup Periods of Potential Forwarders 52

4.1 Single Source Scenario . 56

4.2 Multiple Sources Scenario . 58

4.3 Sparse vs. Dense Network . 59

4.4 Scalability Testing . 60

viii

Dedication

This thesis is dedicated to my parents Michiko and Yukihiro, brother Sean, and my love, Randall.

ix

CHAPTER ONE

INTRODUCTION

1.1 Overview

Wireless sensor networks (WSN) consist of tens to thousands of nodes, each typically being

battery-operated and equipped with a radio transmitter to communicate with other nodes, one or

more sensors for gathering data, and a processor for carrying out tasks and refining data. Types

of applications range from event-triggered (e.g. movements in a battlefield, a forest fire) to obser-

vational (e.g. periodically monitoring habitats or weather patterns). In either case, a sensor node

has the simple task of collecting and reporting data to a base station, where the data is analyzed,

interpreted, and acted on. Instead of the conventional network paradigm where each node is seen

as an autonomous system, the collective work and collaboration between all the sensor nodes are

what comprises a total system.

In order to deploy such large dense networks, both the manufacturing cost and size of each

node should be minimal, resulting in affordable, but resource-constrained sensor nodes. Memory,

battery life, and computational power are limited. Hence, there has been a shift in major focus from

traditional network protocol design, such as latency, fairness, and reliability, to energy-efficiency

and simplicity. The former requirements are still applicable, but are dependent on individual sensor

applications while the latter is essential to the longevity of all sensor systems.

Radio transmitting operations are a major contributor to energy consumption, especially in

cases of collision, overhearing, packet overhead, and idle listening [51]. Reducing the occurrence

of these cases requires some form of coordination amongst nodes when a data transmission is to

take place. For example, to avoid collisions, nodes within the same transmission range should not

send messages at the same time. To avoid overhearing, nodes that are not involved in the current

message exchange within their region should turn off their radio. These issues are addressed at the

1

medium access control (MAC) layer, where a MAC protocol defines when a node should access the

wireless medium for data communication. Besides handling contention and collision resolution,

the notion of duty cycles (or sleep/wake schedules), where a node switches its radio transmitter on

and off periodically to save energy, has been intertwined in most WSN MAC protocol. While this

saves energy due to reduction in idle listening and overhearing, another layer of complexity has

been added in that nodes are no longer free to transmit whenever they want since there may be no

one available for message reception. Thus, there is a further need for a node to better coordinate

transmissions with its neighbors.

To facilitate efficient communication, one could analyze the type of traffic that occurs most

frequently. Data-gathering WSNs involve mainly source-to-sink traffic (convergecast [27]), which

projects an image of the network as a tree in terms of routing (i.e. the sink is the root, with all paths

leading to it). Most WSN MAC protocols assume this model, where a child node has one parent

node that acts as its forwarder, scheduling sleep/wake periods in a way that would allow the child

and parent to communicate. However, this presents an issue in event-triggered sensor applications.

Nodes that sense the same event will want to transmit around the same time, resulting in severe

spatially-correlated contention for those that share the same parent or are in the same tree level

[7, 23]. Packet delay, throughput, and energy usage all suffer from this bottleneck. One method

of relieving this is through the use of data aggregation, which summarizes an ongoing event by

amalgamating collected data from several sources within the event region, but reduces the accuracy

of the data itself [34]. In the case of a large event that spans several regions or multiple different

events occurring around the same area, there is still the issue of major contention.

Recently, techniques employing the availability of multiple potential forwarders, and therefore

having multiple dispersed paths, have been proposed. Keshavarzian et al. [25] and Liu et al. [30]

has shown the benefits of selecting a forwarder from a subset of neighbors based on certain metrics,

such as delay, link stability, etc. Zhou et al. [57] discusses and overcomes spatially-correlated con-

tention by dynamically selecting a forwarder through their Energy-Efficient Contention Resilient

2

MAC (ECR-MAC). When a node wants to send a data packet, a stream of periodic wake-up pack-

ets are transmitted and the first potential forwarder to receive an uncorrupted wake-up will reply to

the sender to notify that it can act as the forwarder.

We propose Local Coordination Medium Access Control LoC-MAC, a cross-layered MAC

protocol which uses ECR-MAC as its basis. It is an improvement upon ECR-MAC in that a node

obtains and maintains the wake-up time (i.e. channel sampling period) of its forwarders as a

means for locally coordinating when and with whom a node should forward its data. This reduces

the time in which a node is awake and the number of control packets that are sent, thus reducing

energy consumption. Results show that LoC-MAC have comparable throughput and delay, while

consuming less energy than ECR-MAC.

1.2 Thesis Organization

The rest of the thesis is organized as followed: Background information on wireless sensor net-

works and medium access control and Related Work are in Chapter 2, Motivation and Protocol

Design are in Chapter 3, Performance Evaluation in Chapter 4, and finally, Conclusions in Chapter

5.

3

CHAPTER TWO

BACKGROUND AND RELATED WORK

2.1 Wireless Sensor Networks

Wireless sensor networks (WSN) differs from traditional networks in several aspects. Nodes are

resource-constrained in terms of energy capacity, radio transmissions, processing capabilities, and

memory storage in order for large deployments to be cost-effective. To ensure the longevity of a

network, energy-efficient processes has become a huge focus in WSN protocols. Another differ-

ence is the type of traffic that takes place, the main one being convergecast in WSN where nodes

that sense an event want to send their reports to the same destination, the base station. Forward-

direction traffic is also possible, where the base-station may send queries or occasional updates to

the rest of the nodes in the network. However, nodes communicating with other individual nodes

that are not their direct one-hop neighbor (i.e. local gossip), are uncommon in event-triggered

applications. While the amount of traffic is generally low (it all really depends on the frequency

of an event), it tends to be bursty. Multi-hop communication is commonplace in WSNs that span

a large region. Each node may increase its transmission range to reach the base station directly,

but this requires a great amount of power, which quickly depletes its battery life. Not only that,

it would take a significant amount of effort to coordinate amongst all the nodes to avoid network-

wide collisions. By having nodes work locally in smaller regions, the throughput is higher and

energy consumption is dispersed among all nodes. Figure 2.1 displays an example image of a

densely deployed network with an event occurring in the bottom right corner and the base station

in the upper right corner.

The unique nature and numerous uses of a WSN has spurred a multitude of research within the

wireless networking area. Examples include redesigning traditional MAC, routing, and transport

protocols and tackling more specific issues such as localization, coverage, and data aggregation.

4

Due to the limited resources of a sensor network, both in terms of capability and energy, researchers

have taken into consideration the need for simple and energy-efficient designs in order to extend

the lifetime of the network.

Figure 2.1: Example scenario of nodes sensing the same event

2.2 Energy Efficiency

In contrast to other wireless devices (e.g. laptops, personal digital assistants) where batteries are

easily replaced or recharged by a user, a sensor node must work with whatever initial energy

it is given. Since they are deployed in the hundreds to thousands range and sometimes in harsh

environments, it would be infeasible to replace the battery of every single sensor node. While some

[45] have suggested harvesting solar energy, the idea does not work in all environments such as

those deployed underwater, in caves, or overcast areas. Battery technology will gradually improve

5

over time, but energy-efficient designs will always be applicable in the present and in the future.

One of the major source of energy consumptions comes from the frequent use of the radio

transmitter. The main cases where the transmitter is used are listed and explained in table 2.1. To

address these energy issues, researchers have been working through the medium access layer for

controlling node transmissions since contention and collision resolution are its major tasks.

Table 2.1: Sources of Energy Consumption

Collision A collision occurs when two or more nodes transmit messages
around the same time in an overlapping region. The receiv-
ing nodes within that region end up with corrupted packets that
are discarded and the senders must retransmit their packets once
more, resulting in energy wastage on both ends.

Overhearing Occurs when a node receives a message that was not destined for
it. Due to the broadcast nature of most wireless devices, a node
may frequently end up overhearing more-so than receiving.

Packet Overhead Control packets are used in accomplishing various tasks, but
should not become a burden on the network by over-transmitting
them and dominating the channel.

Idle Listening Within sensor networks, the amount of traffic may be predictable
(e.g. occasionally sending message on the current status of the
environment) or unpredictable (e.g. event-based). Either way, it
is not required for all nodes to have their radio transmitters on at
all times, wasting energy when nothing is going on.

Traffic Fluctuations With event-triggered applications, traffic can go from non-
existent to overload. A sudden spike in traffic increases the prob-
ability of collisions and the amount of time spent carrier sensing
(i.e. checking if the channel is idle).

The location and role of a sensor node are other factors in the amount of energy that is con-

sumed. Those that are closer to the base station will deplete its energy more quickly since they

have a heavier traffic load than those that are further away (termed the energy hole problem [28]).

Several ways to alleviate this is by deploying more nodes or special nodes with more battery power

near the base station, or aggregating data to reduce the traffic flow. In terms of roles, some nodes

may have more responsibilities than others, requiring additional computations or transmissions.

6

For example, being the data aggregator or being a part of a communication backbone. To over-

come this without having a detrimental effect to the network, these roles are either rotated amongst

other neighboring nodes or replaced by another the moment it dies.

2.3 Medium Access Control

Research of the medium access control (MAC) layer is a flourishing area within wireless sensor

networks. Typical protocols that work for both wired and wireless networks cannot easily translate

over to sensor networks due to the resource constraints. For example, frequency-division multiple

access (FDMA) would require a node to be equipped with a radio transmitter that will allow it to

send and receive messages at different frequencies. With code-division multiple access (CDMA),

a node would have to perform computational-intensive calculations to create and interpret signals,

putting additional stress on the processor. In time-division multiple access (TDMA), nodes are

required to be synchronized (e.g. all must have the same sense of time) in order for them to

know exactly when they are allowed to transmit. Carrier-sense multiple access (CSMA) is the

most simplest in design, where a node has to check if the medium is idle before it is allowed to

transmit and if not, wait for some random time before checking again. FDMA and CDMA puts

an additional strain on the node, both in terms of hardware costs and energy consumption, making

them an infeasible solution for WSNs.

The two types of channel access methods that are most commonly proposed within WSN are

CSMA-based and TDMA-based. Both have their pros and cons in terms of packet delays, band-

width usage, and handling collision. Most MAC protocols have adopted both methods to some

degree, using CSMA for handling contention and TDMA for determining when to transmit. To

further reduce the energy wastage that occurs from transmitting needlessly, an important mecha-

nism was introduced in [51]: the utilization of sleep/wake schedules, where each node follows a

pattern of turning on and off its radio transmitter (and possibly other components such as the sen-

sor) periodically. When a node is asleep, it is not allowed to transmit or receive any messages, thus

7

decreasing idle listening and overhearing. Integrating this notion into the MAC layer has become

a standard for saving energy and is assumed in most protocols.

A common base of comparison for WSN MACs is IEEE 802.11, which uses CSMA/CA (col-

lision avoidance). It acts as the optimal example of delay, but worst case for energy consumptions

since there is no duty cycle. In addition to regular carrier sense, virtual carrier sense is also per-

formed to overcome the hidden terminal and exposed terminal problems (see Figure 2.2). When a

node has data to send, it will first transmit a request-to-send (RTS) packet to the intended receiver,

whom replies back with a clear-to-send (CTS) packet. Those that are not involved with the com-

munication process, but overhears the RTS or CTS packet will know to refrain from transmitting

anything for awhile, overcoming the hidden terminal problem. To conquer the exposed termi-

nal problem, a node that overhears an RTS but not a CTS can confirm that it is safe to transmit.

After receiving the CTS, the sender will know it is safe to transmit, sending its data packet. To

confirm the reception, the receiver will send back an acknowledgment (ACK). Most WSN MACs

have adopted this four-way handshake for reliable transmission of data. However, virtual carrier

sense does not work well with randomly deployed duty cycles. For example, in the case with Fig-

ure 2.2(a) Node B might be sleeping when Node C sends a CTS back to Node A. During the middle

of Node A’s data transmission, Node B might awaken and find that the channel is idle, trying to

send out its own data packet which results in Node C receiving a corrupted packet. Without the

information of a node’s two-hop neighbors’ schedules and controlling the send time of each, both

the hidden and exposed terminal problems continue to exist within sensor networks.

To subdivide WSN MACs, we considered whether a node maintains a synchronized or in-

dependent sleep/wake schedule. With synchronized schedules, groups of nodes follow the same

schedule of going to sleep and waking up. During the wake period, nodes generally contend for a

short period and the winning node transmits its data packet to a neighboring node. With indepen-

dent schedules, each node adopts a random wake/sleep schedule. The wake periods are generally

used for channel sampling (i.e. checking of the channel is busy), allowing for lower duty cycles.

8

(a) Hidden Terminal Problem - Node A cannot hear Node B’s transmissions
(and vice versa) resulting in packet collisions at Node C if the other two

transmits around the same time

(b) Exposed Terminal Problem - Node B wants to transmit to A, while node
C wants to transmit to D, but only one of them is allowed to transmit

Figure 2.2: Wireless Network Problems

For further categorization, there is the notion of employing a single forwarder or multiple for-

warders. Most WSN MACs fulfill the traditional role of not dealing with whom the forwarder is,

since the selection is generally the routing layer’s job, hence the assumption of a single forwarder

for most MACs. However, recent MACs are utilizing multiple forwarders for better handling the

type of traffic that is most frequent and special to WSNs, spatially-correlated convergecast. The

rest of this section summarizes and discusses the differences in types of methods and the protocols

that have been proposed for wireless sensor networks.

2.3.1 Synchronous Schedules

With synchronous schedules, nodes are assigned a sleep/wake schedule that is either shared with

their neighbors or follows a topological pattern. These schedules require some form (either global

or local) of synchronization, where nodes share the common sense of time and can therefore ac-

curately identify when a neighbor is available for communication. Besides the initial set-up cost,

9

synchronized schedules require additional maintenance to adapt to network changes (e.g. dead

nodes and adding new nodes) and overcome clock drifts, a phenomenon where the internal clocks

of each node starts to deviate since they do not run at the exact same speed. Figure 2.3 gives two

examples of synchronous schedules, (a) shows three nodes all sharing the same schedule while

(b) displays a staggered (or ladder) scheduling, where a node does not have to wait long before

forwarding data to another neighbor.

(a) Same Schedules (b) Staggered Schedules

Figure 2.3: Examples of Synchronous Scheduling

Single Forwarder

The general archetype of a MAC is to decide when to access the wireless medium for transmission.

It already knows who the intended receiver is, assuming that the network layer’s routing protocol

is the one that has determined who the next-hop forwarder is. When multiple nodes share the

same forwarder, which commonly occurs in tree-based routing protocols, they must compete for

it if they all have data to send at the same time. Having such a bottleneck in the area where the

event occurred is detrimental to the timely delivery of packets and will deplete the forwarder’s

energy quickly. Most of the following protocols have not explicitly inspect this issue of spatially-

correlated contention, testing only one to two neighboring sources or multiple randomly scattered

sources.

Ye et al. [51] introduced the concept of duty cycles which is employed in their MAC protocol

10

‘sensor MAC’ (S-MAC). Each node goes through a period of discovering their own sleep/wake

schedule, either by randomly selecting a time to go to sleep and broadcasting the message or by

receiving a schedule message from a neighbor and adjusting to it. Certain nodes will end up adopt-

ing two schedules, the one it first selected and the one it receives after from a neighbor. This will

allow each node to be able to communicate with at least one neighbor during their wake period. To

overcome clock drifts and adjust to topological changes, the schedules must be synchronized peri-

odically. For collision avoidance, the authors adopted the RTS/CTS mechanism from CSMA/CA

(collision avoidance). Nodes that overhear an RTS or CTS packet goes to sleep for the duration

of the data packet transmission to avoid both transmitting and further overhearing. When it comes

to forwarding long messages, they suggest fragmenting it into smaller packets and using only one

RTS and CTS to reserve the channel. To test the capabilities of S-MAC, the protocol was im-

plemented on a testbed of Rene Motes (a two-hop network with five nodes). IEEE 802.11 and a

simpler S-MAC with only overhearing avoidance were also implemented as a comparison. Re-

sults have shown that S-MAC consumes half as much energy as 802.11, some due to the reduced

idle listening and mostly due to avoiding overhearing and transmitting a long message efficiently.

In [52], the authors modified S-MAC to include adaptive listening which decreases latency by as

much as five times when the hop distance is long (e.g. 10 hops) and even some energy consumption

compared to the original S-MAC. When a node overhears a RTS or CTS packet, it will wake up for

awhile after the end of the current transmission which, in the case that it happens to be the next-

hop node, allows it to forward a packet quickly instead of having the neighbor wait until the node

wakes up again. Key contribution: Introduced duty cycles where nodes have locally synchronized

fixed sleep/wake schedules which are formed through virtual clusters.

In [12], the authors have proposed Timeout-MAC (T-MAC) to improve upon S-MAC’s fixed

active periods, the time used for nodes to communicate with each other. T-MAC shortens the active

period if an event (such as receiving a packet) does not occur for a certain amount of time, which

should be long enough to include the contention interval, receiving an RTS packet, and the time

11

until the CTS packet is sent. To increase throughput in the case where several nodes are contending

for the medium at the same time, the authors have proposed two solutions. One method involves

allowing a node to send a ‘future request-to-send’ (FRTS) if it overhears a CTS packet that was

destined elsewhere, notifying its own neighbor to wake up when the other transmission ends. At

the same time the FRTS packet is transmitted, the other node that has won the medium will send

out a ‘data send’ packet before transmitting any real data to avoid collisions between the FRTS

and data packets. While this indeed increases throughput, the control packet overhead increases

the energy consumed. The other method suggested is to give sending priority to nodes with a full

buffer. If a node with a full buffer has lost contention at least twice (a threshold) and is asked

to be a receiver, it will not send back a CTS and instead send its own RTS to a neighbor. This

was shown to increase maximum throughput in unidirectional traffic without being detrimental to

heavy loaded omnidirectional traffic. T-MAC was implemented in OMNeT++, a discrete event

simulator, and compared against CSMA and S-MAC in terms of energy efficiency. In both local

unicast, nodes-to-sink, and event-based scenarios, T-MAC is shown to consume less energy than

both S-MAC and CSMA (which has no energy saving features). The authors briefly mentioned

that the maximum throughput of T-MAC is at worst 70% of what S-MAC’s is, suggesting that

under heavy loads, methods such as data aggregation may be used. Implementing the FRTS and

full buffer priority methods has shown that the combination of the two results in better throughput,

but at the same time consumes more energy. After the simulations, T-MAC was implemented on

the EYES wireless sensor nodes and results have showed that they saved about 96% in energy, for

reducing idle time. Key contribution: Shortening wake periods by going to sleep early if nothing

is going on, resulting in less idle time.

TRaffic-Adaptive Medium Access (TRAMA) was introduced in [37], using adaptive transmis-

sion schedules to avoid packet collisions and having nodes switch their radio to low power mode

when there is no packet to send or receive to save energy. There are three main components to

12

TRAMA: the Neighbor Protocol (NP) detects a node’s two-hop neighborhood; the Schedule Ex-

change Protocol (SEP) allows nodes to trade current information on its own traffic and the intended

receivers; and the Adaptive Election Algorithm (AEA), which uses SEP data to determine which

nodes can act as the transmitter and receiver during the current time slot while the rest switch

to low power mode. The types of time slots consist of random access (i.e. contention-based)

signaling slots and scheduled transmission slots. Signaling slots are used for gathering two-hop

neighborhood information (used with NP) while transmission slots are used for exchanging data

and traffic-based information (during SEP). TRAMA has been implemented in Qualnet (a simula-

tion platform) and compared against CSMA, IEEE 802.11, S-MAC, and NAMA (Node Activation

Multiple Access). Types of scenarios tested include having nodes transmit data to a sink that is in

the corner and a sink that is in the center. TRAMA is shown to have higher delivery packet ratio

than its contention-based competitors, but higher queueing delay. Its average sleep time varies

upon the type of scenarios, but follows the general trend of increasing linearly as traffic decreases,

whereas S-MAC has a constant trend of sleep time. Key contribution: Traffic adaptive scheduling

for higher throughput.

The authors of [31] have identified three shortcomings of a fixed low-duty cycle MAC protocol.

First, the accumulation of sleep latency - when a node has to wait for its neighbor to wake up before

it can send a message; secondly, the inability to adapt to traffic variations such as low and high

loads; and thirdly, the increase in probability of collision when nodes wake up at the same time

and contend for the medium. To address these issues, Lu et al. proposed DMAC, a protocol which

allows for continuous data forwarding through the usage of staggered active/sleep schedules. This

is implemented through the use of a data gathering tree representing the network, where the general

pattern is that the parent of a child node wakes up shortly after the child has woken up. To reduce

collisions amongst nodes within the same tree level, nodes must backoff and wait for some random

time before transmitting any packet. In the case that a node has multiple packets to send, it sets

a more data flag in the MAC header to notify the forwarder that it should stay awake longer (the

13

forwarder will decide whether it will stay awake longer by setting the more data flag in an ACK

that is sent back). In the case where two nodes are within the same transmission range, but have

separate parents, only one of them can send its data while the other will have to wait an entire

cycle before it can transmit its own. To reduce the delay time, a node can send a more-to-send

(MTS) packet to its parent to make it wake up more often. DMAC was implemented in ns-2, a

network simulator, and compared against S-MAC with adaptive listening and CSMA/CA in terms

of energy consumption, latency, and delivery ratio. In a multi-hop chain and tree-based scenario,

DMAC consumes the least energy among the two and has less delay than S-MAC, but higher

than CSMA/CA (which does not have a periodic sleep schedule). Key contribution: Staggered

scheduling for minimal delay.

Zebra MAC (Z-MAC) [38] uses CSMA during low contention and TDMA during high con-

tention. CSMA allows for better channel utilization since nodes can contend for the medium

whenever they have data to send, while TDMA reduces the occurrence of collisions by scheduling

when a node can send. During the initialization of the network, Z-MAC performs the following

operations only once: neighbor discovery (to gather two-hop neighbor slot and frame information),

slot assignment (using the DRAND [39] algorithm), local time frame exchange (to fit its own local

neighborhood size), and global time synchronization. When there is low contention, a node does

not have to follow its own time slot (although it has priority over it) and can use other slots which

may or may not belong to another nodes. Using the interfaces of B-MAC, Z-MAC backs off for

some random time, performs carrier sense, and transmits its data if the channel. If the channel is

not clear, the node will wait until it is. In the case that there is high contention, a node can only

transmit during its own time slot or a slot that is not owned by a two-hop neighbor. To find out if

there is high contention, a node must receive an explicit contention notification (ECN) from a two-

hop neighbor that has assessed the amount of collisions have been occurring. The high contention

level times out after some time, going back to a low contention level, unless it continues to receive

ECN messages. To assess the performance of Z-MAC, it has been implemented on both ns-2 and

14

Mica2 motes. Results are compared to PTDMA, Sift, and B-MAC in one-hop, two-hop, and multi-

hop scenarios. Z-MAC is shown to have higher throughput than B-MAC as the number of sources

increases on the Mica motes, but consumes more energy. Key contribution: Combines CSMA and

TDMA to benefit from both types to obtain high channel utilization during low contention and

reduce collisions during high contention.

In [53], the authors designed a MAC protocol called Scheduled Channel Polling (SCP-MAC),

which can achieve ultra low duty cycles of 0.01% - 0.1%. Similar to low power listening (LPL)

protocols (such as B-MAC and WiseMAC - later discussed in the independent schedules sec-

tion) SCP-MAC performs channel polling periodically, checking if activity is going on rather than

checking on the activity itself (which is done in S-MAC). However, SCP-MAC differs with other

LPL protocols in that all neighboring nodes poll the channel in a synchronized manner. Nodes no

longer need to send a long preamble to notify a neighbor when it has data to send and can instead

send a quick tone during the channel polling period. A node will perform carrier sense (selects

a random slot as to when this is done) to check if the channel is idle, before it sends out a tone.

After sending it, the node will check the channel again and if it is idle, it will send the data packet.

Additional mechanisms, such as RTS/CTS, can be added to SCP-MAC in order to deal with high

network contention and other ordeals which may be specific to an application. To maintain these

synchronized schedule, the authors have proposed two methods: periodic synchronization interval

where nodes can exchange their schedules or a piggy-back method, where nodes that send data at-

tach their schedule to it as well. SCP-MAC was implemented in TinyOS, using Mica2 Motes and

compared against a generic LPL protocol. In a 10-node one-hop scenario, SCP-MAC is shown to

consume less energy and has higher throughput. Key contribution: Synchronized channel sampling

to obtain ultra low duty cycles.

Dozer is a data gathering protocol comprised of a MAC, topology control, and routing mech-

anism, stating that having a solid integrated network stack is the way to achieve minimum power

consumption [9]. A tree structure is used as a representation of the physical network, where the

15

root is the sink. With the use of local synchronization, each node fulfills two different roles and

therefore has two different schedules, one as a parent to possibly multiple children and the other

as a child itself to one parent. As a parent, the node will decide the sending schedule for each of

its children, while as a child, it will only have one slot to send data to its own parent. Schedules

are created, adjusted, and known through the use of beacons. During initial setup, all nodes tries

to join the data gathering tree by listening to beacon messages transmitted by neighboring nodes

(which are transmitted periodically to allow new nodes that have just joined the network). To cre-

ate a TDMA schedule, a node uses a rating function, for example, using a node’s distance to the

sink or current traffic load. Network conditions may change over time, so each node keeps a list

of potential parents in the case that its own parent is no longer working (e.g. consecutive transmis-

sions have failed multiple times). If a node failed in finding a replacement parent, it will go back to

scanning the channel for beacons periodically. When a node is allowed to send data, it will try to

transmit all of its queued packets to its parent, dequeueing a packet only if it has received an ACK

back. The ACK contains an additional message, notifying the child how many more packets it is

willing to receive. Although the tree is mainly meant for traffic towards the sink, Dozer also allows

the sink to send command messages to all the nodes through the use of sending it in beacons. For

experimentation, Dozer was implemented over TinyOS, using the TinyNode 584 sensor platform,

in a network of 40 nodes which ran for one month. On average, a node had a duty cycle of 1.67%.

Key contribution: Double schedules for each node.

Application-Adaptive MAC (A2-MAC) recognizes the differing needs among various WSN ap-

plications [56]. For control packets, slotted non-persistent CSMA is employed (i.e. if the channel’s

busy, backoff for some random time, else send). For data transmissions, a TDMA-like schedule

is built based on the applications needs, for example, by giving more slots to nodes that generate

packets at a high rate and less slots to those that send at a low rate. A2-MAC divides the network

into logical cells, where there is a root node (a position which is rotated occasionally) for each

cell. The root node acquires information on the other nodes within the cell and determines their

16

scheduled send time, while it remains awake most of the time for reception from the other nodes.

To communicate with another cell, a root node transmits data to another root node. To evaluate

the performance of A2-MAC, analytical models were built with results showing that it saves more

energy than CSMA. Key contribution: Scheduling built upon packet sending rates of nodes.

Multiple Forwarders

The concept of selecting a forwarder from a list of neighboring nodes generally resides in the

network layer. It is the routing protocol’s task to select a forwarder based on a certain metric, such

as one that would result in the shortest path to the destination or another where the path is reliable

in terms of link communication. However, this information can be used at the MAC layer also to

better schedule wakeup/sleep periods.

Considering the type of traffic in WSN (source-to-sink and sink-to-all nodes), Keshavarzian et.

al proposed several wakeup schedules, one of them involving a multi-parent method which allows

a node to choose a parent forwarder that will allow the for the fastest delivery of its packet [25].

This combined with a staggered schedule can better handle contention without impairing packet

delivery delay. However, their algorithm for assigning parents (basically a graph-coloring problem)

was shown to be NP-complete, providing a heuristic instead for finding two parents per node. The

algorithm is centralized, where the base station or another node with enough computational power

determines the schedules, given information on the connectivity between nodes in the network.

There are several different approximation phases, each involving determining what layer a node

and its possible parents are in. To test the success rate of finding a valid coloring for each phase,

the layering algorithm was implemented in Matlab and C++. Key contribution: Heuristic for

multi-parent scheduling.

In [58], Zhou and Medidi proposed a topology control in the form of a MAC protocol: Multi-

parent Staggered wakeup scheduling MAC (MS-MAC). The idea is to divide the network into

concentric circles, with the base station in the center. A node is placed in a specific ring based on

17

its distance from the base station and has multiple potential forwarders that reside in the next ring.

Wake/sleep schedules are set in a staggering pattern, from ring to ring, to reduce packet delivery

delay. In a set of potential forwarders and a given time frame, the wakeup time slots are evenly

distributed. In other words, when a node has data to send, there will always be a forwarder that is

fairly close to waking up instead of having to wait an entire frame (or cycle) like in most tree-based

topologies. MS-MAC was implemented in ns-2 and compared against IEEE 802.11 and two other

MACs that employ staggered scheduling: DMAC and LEEM. In a multisource scenario, MS-MAC

has higher throughput than DMAC and LEEM, has close to optimal (802.11) delay, and consumes

the least amount of energy. Key contribution: View of the topology as concentric circles to allow

for multi-parent staggered scheduling.

2.3.2 Independent Schedules

Schedules that do not require synchronous wake and sleep periods, being randomly selected in-

stead are what we dub as independent schedules. The wake periods are smaller than those in

synchronized schedules, allowing for extremely low duty cycles (i.e. longer sleep time), since they

are only used to sample the medium and check for activity. When a node has a data packet to send,

it initially sends out a preamble or a wake-up packet to notify a forwarder that a data packet will

be on the way. Figure 2.4 displays examples of methods of data transmission for independently

scheduled nodes. In (a), nodes must remain awake until the end of the preamble to find out if the

following data is meant for them, whereas in (b), a node can find out if it is the intended receiver

or not through the short wakeup packets. Certain protocols allow nodes to keep track of the neigh-

bors wake periods in order to reduce the preamble size or know when to send a wake-up message.

However, this comes at the cost of local synchronization in order to identify the wake-up time.

Single Forwarder

WIreless SEnsor MAC (WiseMAC) [15, 17] employs preamble sampling for both uplink (nodes

to base station) and downlink (base station to nodes) communication. Nodes periodically sample

18

(a) Preamble (b) Wakeup

Figure 2.4: Examples of Independent Scheduling

the medium to check for activity. If a node receives a signal (a preamble), it will remain awake

until it has received a data packet or the channel is idle again. Instead of sending out a long pream-

ble where multiple nodes will end up waking up and wasting energy, nodes employing WiseMAC

learns the sampling schedules of their neighbors in order to send a shortened preamble right be-

fore the intended receiver wakes up. Although nodes exchange their schedules every time data is

exchanged, the preamble must still be long enough to overcome clock drift between the sender and

receiver. In a simulation, WiseMAC is shown to consume less energy than CSMA/CA and T-MAC,

although consumption increases linearly as the traffic increases. For downlink traffic, WiseMAC

was compared against IEEE 802.15.4 ZigBee protocol analytically, where it consumes less energy

ZigBee, but shares the same delay. Key contribution: Uses neighbors sampling schedule to know

when to send a preamble.

Berkeley Media Access Control (B-MAC) was proposed in [36], having in mind simplicity in

implementation, reconfigurability, scalability, tolerance of changes in network condition, and other

factors which previous MAC protocols have not thoroughly addressed. Core functionalities, which

can be tuned to an application’s needs through the use of interfaces, include clear channel assess-

ment, packet backoffs, link layer acknowledgments, and low power listening. Solving the hidden

19

terminal problem (for example, through RTS/CTS) and fragmenting large messages are not a part

of B-MAC, but can be implemented separately on top of it. When a node has a packet to send, it

will first send out a preamble that is as long as the interval in which a neighbor checks the channel

for activity. Instead of going back to sleep, the node will remain awake to receive the data that

comes after the preamble. To test the effectiveness of B-MAC and its variants, in terms of through-

put, energy consumption, and latency, they were implemented in TinyOS and installed in Mica2

wireless sensor nodes. Results are compared to S-MAC (with the motes) and T-MAC (through

Matlab simulations). In a test without duty-cycling, B-MAC (without any ACKs or RTS/CTS)

was shown to achieve higher throughput than S-MAC. With duty-cycling, B-MAC consumes less

energy than S-MAC as the throughput increases, and has less delay. Key contribution: Simple,

configurable MAC interface.

To reduce lengthy preambles, [8] proposed X-MAC, which employs short strobed preambles.

With B-MAC, nodes that are awakened by the long preamble must remain awake until the end

of it to find out if they are the intended recepient, consuming more energy than necessary. In

X-MAC, when a node receives a short preambles, it will know whether or not it is the intended

receiver, going back to sleep if it is not. This is determined by the address of the target that is

included in the stream of short preambles. When the target awakens and hears a preamble, it

will reply with an early ACK message, allowing the sender to transmit the data packet right after

receiving the ACK. Another reason for the usage of short preambles is that it can be used with

the newer generation of sensor motes, which employs packetized radios instead of bit-streaming

radios (which allows the transmission of a long preamble). The authors have also proposed an

algorithm for adapting duty cycles based on optimizing an objective function, which reduce energy

consumption and/or latency. To evaluate the performance of X-MAC, it was implemented on top of

the Mantis Operating System (MOS) and deployed on an indoor testbed of TelosB motes. Results

were compared with a low power listening (LPL) MAC that simulated a long preamble by rapidly

sending a stream of packets followed by the data packet. In a single-source scenario, the duty

20

cycle of X-MAC is 1-2% less than that of LPL. In a multi-source scenario, with varying sending

rates (one packet per second and one packet every ten seconds), X-MAC is shown consuming less

energy for the most part than LPL in all cases of varying sleep time. It is also shown that latency,

reception rate, and fairness are shown to be better in X-MAC. Key contribution: Breaks a long

preamble into short strobed packets.

O-MAC [10] is a receiver-centric protocol, stating that most of the power consumption occurs

at the receiving node. Before discussing their protocol, the authors analyze maximal energy ef-

ficiency (conclusions are shown in parenthesis) for several MAC models: synchronous blinking

(depends on the number of interfering nodes), long preamble (receiver’s duty cycle must be almost

equal to the sender’s duty cycle), asynchronous wakeup (proportional to the total duty cycle), ran-

dom time spreading (has the worst power efficiency due to time and space wastage), staggered-on

(efficiency increases by the number of interfering nodes), and pseudo-random staggered (efficiency

decreases with respect to the number of interfering nodes). The later two are receiver-centric meth-

ods introduced by the authors, with the pseudo-random staggered method being implemented in

O-MAC. Using asynchronous neighbor discovery, each node keeps track of their neighbors and

their next active slots. When a node has data to send to a particular neighbor, it knows when that

neighbor will wake up and can transmit it unicastly. The receiving node will then send back an

ACK using unicast. If broadcast is necessary, a node can keep another schedule where it knows

when all its neighboring nodes will wake up. In an earlier comparison, staggered-on and pseudo-

random theoretically has higher energy-efficiency than the other MAC methods and remains high

as the number of interfering nodes increases. For O-MAC, the authors wrote a simulation of its per-

formance and the results show that it reaches near-optimal energy efficiency at a certain message

sending rate, but decreases as the rate increases. Key contribution: A sender knows its neighbors’

wake-up times and sends packets unicastly.

In [47], Vuran et.al. performed a case study simulation to determine how distorted data rep-

resenting an event can get, using a function of the number of representative nodes that sent data

21

to the base station. Results have shown that while having all nodes that observed the same event

send data achieves minimum distortion, this value can still be intact even if the number of nodes

reporting decreases. Also, there are two factors that contribute to the amount of distortion, a node’s

distance from the event (the closer the more accurate) and a node’s distance from its neighboring

observers (the further apart, the less distortion). Knowing this, the authors proposed an iterative

node selection algorithm to find the minimal number of effective representative nodes, given a dis-

tortion constraint, which in turn decreases energy consumption and latency due to the reduction of

collisions and transmissions. Spatial Correlation-based Collaborative MAC (CC-MAC) is used to

control the sensor node transmissions, allowing only representative nodes to send their event data.

CC-MAC is comprised of two parts, Event MAC (E-MAC) data-generating nodes to filter out cor-

related data and Network MAC (N-MAC) for routing, giving send priority to received packets over

their own. As a base, CSMA/CA is used for accessing the medium, where correlation-information

is added to the RTS/CTS/DATA/ACK packets. Correlation nodes go to sleep while the representa-

tive node sends out data. CC-MAC was implemented in ns-2 and compared with S-MAC, T-MAC,

TRAMA, IEEE 802.11, and CSMA. In terms of packet drop rate and energy consumption, CC-

MAC performs slightly better than others. Its goodput is higher than others, but is outperformed by

TRAMA as the reporting period increases. Delay is less than TRAMA’s, but slightly higher than

the others. Key contribution: Resolves spatially-correlated contention by reducing the number of

reports that are sent from a particular event.

The main goals of Proper MAC (P-MAC) [26] is to minimize idle time, which maximizes sleep

time, and ensures packet reliability. During an initial phase where all nodes are awake, a node will

send out a beacon packet and gather one-hop neighbor information (i.e. node ID and frame offset

- difference between node’s own wake schedule and a neighbor’s). Schedules are calculated so

that nodes do not have overlapping wakeup times as other nodes within its neighborhood. When

a node has data to send, it uses the frame offset to determine when the intended receiver will

be awake for data reception. Once the receiver wakes up, the sender transmits the data, and the

22

receiver will send back an ACK after it acquires the data. For collision resolution, carrier sense is

employed and there is a back-off period in the case a packet has to be retransmited. To evaluate the

performance of P-MAC, it has been implemented in Qualnet [3] and compared with S-MAC. In a

scenario with eight nodes, transmitting 200 packets to each other randomly (rates ranging from 0.2

packets/second to 2 packets/second), P-MAC (with 3% duty cycle) has less idle time and is shown

to save more energy than S-MAC (with 10% duty cycle). Latency is constantly low for P-MAC

whereas S-MAC’s latency increases as the transmission rate increases. In another scenario where

there are multiple sources sending at the same time, P-MAC is shown to have better throughput

and less latency than S-MAC as the number of sources increases. Key contribution: A node keeps

track of its neighbors’ wake-up schedules, none of which overlaps each other, so it can directly

send a data packet to the desired forwarder without the worry of others overhearing it.

In reservation-MAC (R-MAC) [54], Nodes compete for the reservation of time slots (using the

CSMA/CA mechanism for contention) for future transmissions, notifying neighboring nodes of

who will be transmitting or receiving during those slots. During the reservation period, which is

initiated by the first sender to win the channel, those that want to transmit data exchange RTS/CTS

packets with the intended receiver, notifying the intent of when the data transmission/reception will

take place. Nodes that are not participating during any reserved slot will send out a go-to-sleep

(GTS) packet at the end of the reservation period before entering going to sleep. The listening

and sleep periods are adaptable by observing the traffic load, allowing for longer listens in the

case of high traffic. In the case of overlapping reservations, a node that overhears two or more

reservations (from different node-initiated periods) will have to choose one of them to follow. R-

MAC was implemented in OPNET (in a scenario of 32 sensor nodes and 1 sink) and compared

with S-MAC and T-MAC in terms of average percentage of time a node goes to sleep, average

energy consumption, and the occurrence rate of collisions. With low packet rate, R-MAC spends

less time sleeping and consumes more energy than S-MAC and T-MAC. However, as the packet

rate increases, R-MAC spends more time sleeping and consumes less energy than the other two

23

protocols. Due to the reservations, R-MAC avoids collisions between data packets and hence has

less collisions than S-MAC and T-MAC. Key contribution: Reservation period allows nodes to

notify intended receivers ahead of time that data transmissions need to take place, avoiding data

packet collisions.

Multiple Forwarders

Energy-efficient Contention Resilient MAC (ECR-MAC) [57] is able to overcome the spatially-

correlted problem (where when an event occurs, nodes all sensing that event contend for the

medium at around the same time), while saving energy, decreasing latency, and increasing over-

all network throughput. Previous MACs imply that a sender only has one receiver, where a node

would have to wait for the intended receiver to wake up. Not only that, nodes that share the same

forwarder (through synchronized scheduling) will result in more collisions and delay in the case

they all have data to send. With ECR-MAC, all nodes have a random wake/sleep schedule and

employs a Dynamic Forwarder Selection (DFS), where a sender has multiple potential forwarders

instead of one. When a node has data to send, it will transmit wake up packets in a strobed pattern

until one of the potential forwarders replies. Even if multiple nodes try to send around the same

time, the path in which these packets follow are dispersed, away from the contention area. To

avoid overhearing, if a node wakes up and senses that the channel is busy, it will go to sleep for

some time. ECR-MAC was implemented in ns-2 and compared against three CSMA-type proto-

cols which employ dual radios: STEM, PTW, and LEEM. In a single-source scenario, ECR-MAC

consumes the least amount of energy and is fairly constant as the packet generation rate increases.

Although ECR-MAC’s end-to-end delay is less than STEM’s, it is higher than PTW and LEEM

since those two employ a pipeline (i.e. staggered) technique. However, in the case of eight sources

(multi-source), ECR-MAC’s end-to-end delay (for first 10% of reports) and energy consumption is

less than STEM, PTW, and LEEM, and has the highest packet delivery ratio, even as the packet rate

increases. Key contribution: Utilizes multiple forwarders without any synchronized scheduling.

24

Similar to X-MAC and ECR-MAC, Convergent MAC (CMAC) [30] reduces the length of a

long preamble (like the one in B-MAC) by sending a burst of RTS packets separated by gaps that

are long enough for a CTS to be sent back. The sending node will then transmit the data packet to

the forwarder that has sent back a CTS. CMAC additionally employs a double channel check and

anycast based forwarding, which is similar to ECR-MAC’s dynamic forwarder selection. When

a node wants to assess the channel, it will do so twice (sampling the channel up to five times

during the assessment) in order to make sure it does not miss an RTS packet. Nodes that hear

an RTS packet can send back a CTS if it is included in the sender’s forwarding set. If there is

more than one forwarder that wants to send back a CTS, the forwarder will use a routing metric

to determine when the CTS should be sent, rather than having them all transmit at the same time.

Forwarders that overhear a CTS can cancel their own CTS, to avoid causing unnecessary collisions.

CMAC uses geographical distance as an example for a routing metric, where nodes that are closer

to the main destination are allowed to send a CTS quicker as opposed to nodes that are further

away. Convergent packet forwarding occurs when a node has a forwarder with a good routing

metric, deciding to unicast to it. To reduce delay, the authors suggest that a synchronized staggered

schedule (like in DMAC) can be implemented with CMAC. For experimental evaluation, CMAC

was implemented and tested on XSM motes, over a Kansei testbed of 105 nodes, and compared

with B-MAC. With a low duty cycle (1%), CMAC is shown to have better throughput, lower

latency, and lower energy consumption per packet than B-MAC. For larger scenarios, CMAC (both

regular and staggered) was implemented in ns2 and compared against CSMA/CA, Anycast (CMAC

without convergence), GeRaF, and S-MAC. Key contribution: Nodes can decide to anycast an RTS

to multiple forwarders or unicast to an optimal forwarder.

The technique Dynamic Switch-based Forwarding (DSF) [20] is a routing protocol that ad-

dresses the issue of both the unreliability of radio communication and sleep-latency in order to

obtain optimal expected delivery ratio (EDR), expected end-to-end delay (EED), and/or expected

25

energy consumption (EEC). A node keeps track of the times in which its neighbors wake up, allow-

ing it to select a forwarder that is closest to waking up when it has data to send. If a transmission

has failed, the node will select the next forwarder that will wake up soon. If the node has tried all

forwarders, it will drop the packet. Each node calculates its own EDR, EED, and EEC values in

order to optimize its forwarding sequence by selecting a subsequence that meets the desired crite-

ria. If link quality exceeds a certain threshold, these calculated values are updated by exchanging

information with neighboring nodes. DSF, using CSMA as its base MAC, has been implemented

on TinyOS, using 20 MicaZ motes. ETX, expected transmission count metric for finding high-

throughput paths, has also been implemented as a source of comparison. In an experiment where

one source node sends 100 packets to the sink node, DSF (with EED forwarding sequence) is

shown to have the least set of delays. For a larger-scaled experiment, the authors have used sim-

ulation to test a 250 node scenario and compared results with ETX, PRRxD (uses the product of

packet reception rate and distance toward destination as a metric), and DESS. Key contribution:

Utilizes multiple forwarders to overcome unreliable communication links, selecting the next-hop

forwarder based on an expected calculated metric.

2.4 Summary

Figure 2.2 displays a list of summarized MAC protocols that were discussed in the previous section.

All of them have acknowledged the need for energy-efficient access of the medium, trying to reduce

idle listening and overhearing; most of them recognize the convergecast pattern; however, only a

handful of them have addressed the issue of spatially-correlated contention [47, 57, 58]. With the

placement of duty cycles, network performance such as latency and throughput tend to suffer. Most

WSN MAC protocols tried to emphasize on the improvement of these metrics while continuing to

suggest more energy-efficient schemes.

26

Table 2.2: WSN Medium Access Control Protocols

Protocol Year Keywords Evaluation

Sy
nc

hr
on

iz
ed

Si
ng

le

S-MAC [51] 2002 Synchronized group schedules Sim, Testbed
T-MAC [12] 2003 Adaptive wake periods Sim
TRAMA [37] 2003 Traffic-adaptive schedules Sim
DMAC [31] 2004 Staggered Schedule Sim
Z-MAC [38] 2005 CSMA for low, TDMA for high contention Sim, Testbed
SCP-MAC [53] 2006 Synchronized channel sensing Testbed
Dozer [9] 2007 Double schedules Testbed
A2-MAC [56] 2007 Group schedules based on traffic rate Anayltic

M
ul

t Multi-parent [25] 2006 Synchronized group schedules, parent assignment Analytic, Sim
MS-MAC [58] 2007 Concentric circle topology, staggered Sim

In
de

pe
nd

en
t

Si
ng

le

WiseMAC [15] 2003 Short preamble, knows neighbors’ schedules Analytic, Sim
B-MAC [36] 2004 Low-power listening, configurable interface Testbed
X-MAC [8] 2006 Strobed-shorten preambles Testbed
O-MAC [10] 2006 Unicastly transmits, knows neighbors’ schedules Sim
CC-MAC [47] 2006 Reduce number of event reports Sim
P-MAC [26] 2006 Non-overlapping schedules, knows neighbors’ schedules Sim
R-MAC [54] 2007 Reserve data transmission ahead of time Sim

M
ul

t

ECR-MAC [57] 2007 Multiple forwarder selection Analytic, Sim
CMAC [30] 2007 Anycast or unicast forwarder selection Sim, Testbed
DSF [20] 2007 Metric-based forwarder selection Sim, Testbed

27

CHAPTER THREE

LOCAL COORDINATION MEDIUM ACCESS CONTROL

3.1 Motivation, Design Choices, and Assumptions

Deviating from the traditional view of designing layer-specific protocols (i.e. reliability in trans-

port layer, routing in network layer, medium access in data-link layer), we propose a cross-layered

protocol, providing medium access control additional flexibility through the use of routing in-

formation. Wireless sensor networks are unique in that while individual nodes are autonomous

devices, the collaborative work of the nodes are what makes up a complete system. Protocols can

either be designed from the individual node perspective or at a higher level, considering the overall

network by taking into account traffic patterns and application needs. As mentioned before, the

major pattern for all event-triggered WSNs is convergecast: where all nodes report their data to the

nearest base station. Most MAC protocols have acknowledged this pattern and views the network

topology as a tree, with the sink as the root and routes that represent the shortest path. Duty cycle

schedules are set amongst the nodes in a manner that can reduce delay (staggered) or reduce colli-

sions (allocated time slots). However, a tree structure can be problematic. Figure 3.1(a) shows an

example of the paths (the dark, filled arrows) that are taken for the set of nodes that sense the same

event. Nodes that share the same parent will have to take turns, either contending for the medium

or waiting for their time slot in order to upload their data to the parent. Not only that, neighbor-

ing nodes that do not share the same parent may also have to contend for the medium. Having

such high contention and being restrained to only one forwarder may result in packet drops, less

throughput, longer delay due to the contending periods, and quick energy depletion amongst key

forwarding nodes.

Selecting one among several forwarders is generally a task of the network layer, where the

routing protocol selects the next-hop forwarder from a routing table toward the direction of the

28

(a) Single (b) Multiple

Figure 3.1: Routing methods

intended receiver and/or based on a performance metric. With WSNs, there is only one major

destination when an event occurs: the closest base station. Figure 3.1(b) shows the same example

scenario as in (a), but instead has the option of choosing one among several forwarders (arrows with

dotted-line represent other possible routes). The paths selected may not be shortest in distance, but

this does not strongly correlate with the time it takes for a packet to reach the destination since duty

cycles are employed. The use of multiple forwarders can overlay a MAC protocol (for example,

[20] uses DSF with CSMA) or used as a means of setting up synchronized wake-up schedules [25].

Integrating forwarder selection with the functions of the MAC layer can ease heavily congested

areas caused by spatially-correlated contention through disseminating traffic, reduce end-to-end

delay, and better disperse energy consumption. Neighboring nodes that want to transmit can select

an uncommon forwarder and will no longer have to wait an entire duty cycle frame to elapse for

each data transmission that is to take place. Instead of having a few forwarders quickly drain

their energy and requiring a new tree layout in the case one dies, traffic and hence energy usage is

instead distributed among several forwarders.

29

The concept of designing network protocols based on abstract layers was first introduced in

the Open Systems Interconnection Basic (OSI) Reference model and later adapted into the TCP/IP

model for the Internet. Each layer concentrates on a set of services and can assume they are fulfilled

when receiving a message from a lower layer. The higher levels apply to application needs while

the lower levels deal with the actual next-hop transmission without having to know application

details. With wireless sensor networks, layering can be upheld, but resource constraints can deter

any adequate means of clearly designing energy-efficient, individual layered protocols at the lower

levels. Others have already seen the advantage in designing cross-layered protocols [21, 42]. We

believe that both the MAC and network layer can benefit from each other. Since duty cycles are

employed in WSNs, a node would have to wait an entire frame to retransmit each time it fails to

send a packet to the selected forwarder. If the routing layer is notified of this failure (caused by a

collision, busy channel, or a bad link), it could select a new forwarder with the next best routing

metric immediately. This dynamic hop-by-hop process of routing a packet along different paths is

not detrimental to the end-to-end delivery of a packet. Paths do not have to be constructed ahead

of time as done with source initiated and distance vector routing in wireless networks since a WSN

is generally connectionless (i.e. a node and a base station does not have to establish a connection

before any data is transmitted between the two) and the shortest path is not necessarily the best

path to take, especially when there is high contention within an event area. Dynamically creating

routes is instead advantageous, since paths with less delay or stable links (depends on the metric)

are chosen and congested areas are relieved quicker.

The choice of employing independent scheduling over synchronized scheduling is very simple:

creating synchronized schedules in a meaningful manner can be a complex task and requires a set

of heavy assumptions. Lu et al. [32] has proved that creating delay efficient sleep schedules is

NP-complete and Keshavarzian et al. [25] has shown assigning multiple parents that share dif-

ferent schedules is also NP-complete. Both have provided heuristics which require a centralized

algorithm (e.g. a base station knows the location of each node in the network and computes a

30

schedule for each one). The latter has proposed localized algorithms, but has shown that a cen-

tralized algorithm provides better results. Zhou et al. [58] proposed a staggered, multi-parent

scheduling algorithm that is performed in a distributed manner. However, it assumes all nodes

are globally synchronized and location information is available. Some applications may already

require individual node location information or accurate packet timestamps due to the type of data

that is collected, which can conveniently be used with the aforementioned MACs. Applications

that do not utilize such information will suffer energy consumption needlessly in order to obtain

the requirements of the MAC. One could argue that a protocol stack can be designed to fit the

needs for each type of application. However, in a world where the idea of ubiquitous computing

is indeed becoming a reality, the number of WSNs will increase and each application should not

have to worry about the specific details of the lower levels in networking, which is the case for

other computer networks today.

With duty cycles in place, there is a trade off between energy efficiency and performance met-

rics such as delay, throughput, packet in-delivery arrival, and fairness. Packet latency is important

in surveillance applications that require a quick notification of a certain event in order to respond

immediately (e.g. natural disaster warnings, medical response units). With throughput, the higher

it is, the more accurate an event can be represented. Duty cycles have a detrimental effect on these

metrics in that at each hop, a node must wait for its intended receiver to wake up, thus accumu-

lating what is termed sleep latency. The performance of latency and throughput are fairly critical

and we intend on improving them without compromising energy-efficiency in comparison to other

MAC predecessors. As for in-delivery arrival and fairness, these do not play as important roles in

WSNs since the aim is to report an event more-so than making sure packets arrive in the order they

were generated and having each node get a chance at delivering its own packet.

Our goal for protocol design is to use very little assumptions while still making a significant

impact on energy savings. Besides simplicity of implementation, independent scheduling allows

duty cycles to be very low since wake-up periods tend to be used for sampling the channel rather

31

than being long enough to receive an actual data packet. Combining this with multiple forwarders

becomes a powerful idea in that sleep latency is reduced since each forwarder should be waking

up at different times. However, without a wake-up prediction scheme for independent schedules,

nodes would have to use a preamble [36] or a stream of strobed packets [8, 57] in order to notify

the intended forwarder that a data transmission needs to take place. These wake-up messages

consume energy needlessly and dominates the wireless channel, preventing neighboring nodes

from transmitting. With a simple design of hurling packets forward as fast as possible, ECR-MAC

[57] has shown significant results in terms of energy consumption, end-to-end delay, throughput,

and scalability in comparison to MACs that employ dual radios under scenarios with spatially-

correlated contention. One natural progression towards further improving its performance would

be for a node to reduce the busy wake-up mechanism that is used. To do so, we suggest that each

node maintains the wake/sleep schedules of its forwarders so it knows when to send data. This can

easily be done when a node is gathering and exchanging one-hop neighborhood information. There

is the issue of being able to predict a forwarder’s wake-up time accurately due to clock drifts, so

we do require a loose local synchronization. Nodes do not need to change their internal clocks, but

can instead take into account the differing time offsets of its neighbors when notifying a forwarder

at its wake-up time.

Overall, our proposed Local Coordination MAC LoC-MAC will use ECR-MAC as its basis

while utilizing information on its neighborhood to achieve additional energy-efficiency, without

compromising delay and throughput. Unlike synchronized scheduling, which usually involves

global coordination amongst the nodes, we localize coordination to a node and its neighbors. We

assume that the network is densely deployed and static. There may be more than one base station

throughout the network, each remaining awake at all times and therefore available for packet re-

ception at any time, but for the sake of simplicity, LoC-MAC assumes there is one base station.

It is still possible to accommodate multiple base stations in that a node keeps track of a table of

forwarders that creates routes towards the closest base station. Acknowledging that convergecast is

32

the main source of traffic in an event-triggered sensor application, LoC-MAC mainly assists com-

munication in the source-to-sink direction. However, LoC-MAC can also work with other traffic

patterns, such as sink-to-nodes (ex. for querying). To make such communication possible without

maintaining a huge routing table that stores next-hop forwarders to all other nodes, geographic lo-

cation information must be available such that a node can select a forwarder that is geographically

closer to the destination.

3.2 Initial Setup

Before any event reporting can take place, there is a series of steps that a node must follow to ready

itself for the data forwarding involved in LoC-MAC. While ECR-MAC only requires each node

to find out the distance from the base station and how many forwarders it has that are one-hop

closer, we require a more detail on a node’s neighborhood to identify a forwarder’s next wake-up

period in real time. To determine these times, there are two offsets we need to account for: a frame

offset for calculating the difference between the node’s own wake schedule and its neighbor’s, and

a time offset to account for the clock differences. With these time identification schemes, a node

no longer has to remain awake, actively searching for a node that can act as a forwarder as done in

ECR-MAC. The time spent searching is now spent sleeping in LoC-MAC, waiting for the selected

forwarder to wake-up.

Prior to filling its forwarder table, a node should determine when it should first go to sleep, the

time value we dub as the node’s frame offset Fo. It selects a random time slot within a given frame

f , which consists of an entire sleep period Tw and a wake period Ts. The amount of time a node

sleeps or is awake depends on the length of the frame and the duty cycle percentage (dc = Tw

Ts+Tw
),

where the number of wake slots that are available within a frame can be calculated as 1
dc

. During

a wake period Tw, a node scans the channel to see if a neighbor wants to use it as a forwarder,

thus the period must at least be long enough for the neighbor to receive a notification (WAKEUP)

message. Since a node does not know when its neighbors wake up in ECR-MAC, it requires the

33

wake/active period to be long enough for the reception of two WAKEUP messages, some carrier

sensing, and a REPLY message to ensure that a forwarder does not miss out on any WAKEUP

messages. By reducing the wake period, we were able to reduce ECR-MAC’s duty cycle of 1%

to 0.8%, which results in more energy savings since less time is spent idling and the chances of

overhearing have decreased.

(a) Frame Offset (b) Time Offset

Figure 3.2: Different Offsets

At some scheduled time, after a node is done gathering information on its neighbors and per-

forming any other application tasks, all nodes will wait for their own Fo time before going to sleep

for the first time. This “scheduled time” is relative to each node’s clock as opposed to real time

(e.g. all nodes will start its duty cycle after 10 minutes have passed, which may be at different

points in real time), so in order to account for the clock differences, the time offset To must be

determined between each node and its forwarder. Figure 3.2(a) and (b) shows an example of three

nodes and their selected frame offsets and calculated time offsets. In (b), at time 1.5 for N3, N1’s

current time is 1.7 and N2’s current time is 1.2. Knowing this, we can see that N3 is behind N1

by 0.2 and ahead of N2 by 0.3. In addition to storing these offsets for each neighbor, a node needs

34

to differentiate amongst neighbors that are one-hop closer to the base station or the same hop dis-

tance. Since packets should always be moving towards the base station, a node does not have to

keep track of its neighbors that are further away. We store the neighbor’s hop distance Hn and

the number of forwarders Pn it has to achieve a similar effect of ECR-MAC, but instead actively

selects a neighbor that is closest to waking up if it is one hop closer or is in the same hop distance,

but has ‘more’ one-hop closer forwarders. The latter case has been included to reduce end-to-end

delay, since a same-hop neighbor with more one-hop forwarders may be able to route a packet

faster than waiting for its own forwarder to wake up. Table 3.1 shows the entry needed for each

potential forwarder Nid. To achieve comparable performance results as ECR-MAC, the size of the

table should depend on the density of the network. The more forwarders a node has, the less it

would have to wait to forward the packet.

Table 3.1: Potential Forwarders Table

Nid Hn Fo To Pn

Getting into the details of filling the table, Hn and Fo can both be obtained by an initial broad-

cast from the base station (view Algorithm 1), with a ‘hop-distance’ counter Hn initially set to

zero. The nodes receiving this first broadcast message (line 1-2) will know that it is one-hop away

from the base station. They will create a new message by adding their own node ID myNodeID,

frame offset myFrameOffset, and an incremented ‘hop-distance’ counter myHopDistance, and then

broadcast it (line 3). This will continue until every node in the network has received and sent out

a broadcast. To prevent some collisions amongst these broadcasts, a node will randomly select

a time to perform carrier sense, where if the channel is idle, it will broadcast, otherwise select

another time to try again. To prevent a broadcast storm from occurring, a node will broadcast the

hop/frame message only once. Neighbors that are one-hop closer to the base station are kept in the

potential forwarders table. Those that do not have many of these neighbors or has enough room in

35

their table should also keep neighbors that are in the same hop-distance away from the base station

and has more potential forwarders than itself (InsertIntoTable function in line 6 will determine

this).

Algorithm 1 ReceiveBroadcastInformation
Input: Hn, Fo, Nid

1: if myHopDistance is empty then {First time receiving this message, broadcast}
2: myHopDistance = Hn + 1
3: SendBroadcast(myNodeID, myHopDistance, myFrameOffset)
4: end if
5: if Hn ≤ myHopDistance then {This is a neighbor I want to keep}
6: InsertIntoTable(Nid, Fo, Hn, Pn)
7: end if

The time offset To and number of parents Pn can be retrieved after the table has been filled

with who the potential forwarders are. A node can roughly calculate To through the exchange of

time-stamped packets. Maroti et. al has taken into account all the delays that occur from sending

to reception of a packet and introduced a flooding time synchronization protocol with accuracy

from tens of microseconds to 1.4µs [33]. The one-hop version can be used for a node to get the

time offsets of its potential forwarders. The value of To may change over time since the clocks

between two nodes tend to drift. The periodicity of updating To is dependent on the frequency

differences between a node and its neighbor’s clock, which is beyond the scope of this thesis. Pn is

only needed for neighbors in the same-hop distance from the base station and thus can be included

in these time-exchange packets. After gathering this information and the ‘scheduled time’ has

approached, the node will set a timer for Fo time units, where when it expires, the node will go to

sleep by turning off its radio transmitter for the first time.

3.3 Data Forwarding

Once a node senses an event, it will put together a report that is to be interpreted and analyzed by the

base station. In a network spanning a large area, packets from afar will have to travel multiple hops.

With duty cycles employed, sleep latency starts to accumulate with each hop which can cripple

36

event-critical applications where immediate action is needed to a reported and confirmed event.

While synchronized schedules can be set such that there is a staggered pattern where forwarders

wake up one after the other to facilitate quicker delivery, the overhead in maintaining such a system

can be expensive and is not necessarily robust to spatially-correlated contention. Another approach

most proposed protocols tend to take is assuming the usage of a data gathering tree based on

the shortest path. In a network with low duty cycles, making the most of the next hop in terms

of physical distance does not always result in the faster delivery of a packet. ECR-MAC has

recognized such limitations and utilizes a simple greedy approach, where any neighbor that meets

the requirement of being closer or has more forwarders that are closer to the base station can

reply to a wake-up call. This in turn overruns the channel with a series of messages coming from

several sources, consuming energy needlessly on both sending and receiving ends (which end up

with corrupted messages). To mitigate this concern, LoC-MAC uses a light coordination such that

nodes still have the opportunity to select the next best forwarder (in terms of delay) while providing

courtesy towards neighboring senders in terms of channel usage.

3.3.1 Basic Scheme

Before going into the details of handling contention, let us go over the basics of data forwarding.

The data exchange that takes place between two nodes utilizes a four-way handshake, where the

sender transmits a WAKEUP message asking if the intended receiver can be the forwarder, and

if so send back a REPLY. The DATA is sent and is followed by an ACK that notifies the sender

of the successful reception. Since LoC-MAC can calculate the next wake-up periods of each

of its potential forwarder, it knows when is the appropriate time to send a WAKEUP message,

thus relieving the need for sending out periodic WAKEUP messages as in ECR-MAC. To ease the

understanding of a node’s state in terms of its radio transmitter and status, we have four main states:

WAKE (radio transmitter is on to sense the channel for wakeup messages), SLEEP (transmitter is

turned off to save energy), WAIT (transmitter is off until node’s selected forwarder is awake),

37

and ACTIVE (transmitter is on until data exchange is completed). The details of the four-way

handshake for LoC-MAC between two nodes are described below (view Figure 3.3 for a graphical

depiction of the steps):

1. A node Nid first selects a neighbor FTi.Nid that is closest to waking up and also obtains the

amount of time that is left before the neighbor is scheduled to wake-up (see Algorithm 2 for

selection method, which is described in detail later).

2. The node Nid goes to sleep and sets itself to WAIT mode, only waking up when its selected

forwarder FTi.Nid also wakes (to perform its routine channel sensing)

3. When Nid wakes up, it goes into ACTIVE mode and sends a WAKEUP message to FTi.Nid,

which in turn

4. returns a REPLY message to Nid (if it is free to be the forwarder) and remains awake in an

ACTIVE mode (overriding the duty cycle schedule) that is long enough to receive the data.

5. The DATA packet is sent to FTi.Nid. If it has been received succesfully, the forwarder

6. sends an ACK back to Nid. FTi.Nid stores the DATA in its queue and selects the next

forwarder (go back to step 1, this time assuming the role of a sender).

7. Nid ends ACTIVE mode after receiving an ACK. Remove the DATA packet that was just

sent from its queue. If there is still DATA in its queue, go back to step 1, else go back to its

original sleep schedule state (either SLEEP or WAKE).

While the data exchange is going on, both nodes will continue to keep track of their wake/sleep

schedule by running a timer in the background, although the ACTIVE state overrides the status

of the radio transmitter. Neighboring nodes rely on the periodicity of these schedules in order to

accurately identify the forwarders’ wake-up times, hence the need for the continual switch between

38

Figure 3.3: States a node goes through, both as a sender and a receiver

WAKE and SLEEP states in the background. To ensure the continuous flow of forwarding data

quickly, once a node receives a data packet, it will assume the row of the sender by selecting the

next-hop forwarder. Sticking with this theme of getting a packet out quickly, there is a point during

the WAIT period where a node should wake up as normally scheduled (represented in Figure 3.3

as the dotted arrows). For example, a node A is in WAIT mode but node B wants to use A as

a forwarder, relying on it to wake up. If there is enough time for node A to go through a data

exchange before its own forwarder wakes up, it should wake up to show that it is available for

reception. This requires the use of a queue (mentioned in steps 6 and 7), so that a node is allowed

to act as a forwarder for more than one packet.

Several routing metrics may be used in the selection of a forwarder. For LoC-MAC, delay is

chosen as the factor in order to emulate ECR-MAC’s network performance and therefore select

a forwarder that is closest to waking up and fits the criteria of being one-hop closer to the base

station or a same-hop forwarder that has more forwarders than the sender. Neighbor selection in

Algorithm 2 utilizes the fields within the potential forwarders table that was constructed during

initial setup. Line 2 starts a loop that runs until all entries in the table have been observed. If the

39

Algorithm 2 ForwarderSelection
Input: TnextWake, Fme

Output: fID, Twait

1: firstForwarder= true
2: for i = 0 to |FT | do
3: if FTi.ID =baseStationID then {no need to wait or select any other forwarder}
4: Twait = 0
5: fID = i
6: Return fID, Twait

7: else if FTi.Hn ≤ Hme then {neighbor that is one-hop closer or same-hop to the BS}
8: off = FTi.Fo − Fme

9: off + = FTi.To

10: if off < 0 then
11: off + = Tframe

12: end if
13: if off +TnextWake > Tframe then
14: off − = Tframe

15: end if
16: if firstForwarder or ((off + TnextWake < Twait) and (FTi.Hn < Hme) or (FTi.Pn ≥ Pme+

MAXDIFF)) then
17: fID = FTi.ID
18: Twait = off +TnextWake {saving the forwarder that is closest to waking up so far}
19: firstForwarder = false
20: end if
21: end if
22: end for
23: if firstForwarder == false then {a forwarder was not found}
24: fID = −1
25: end if
26: Return fID, Twait

node happens to have the base station as its next-hop neighbor, it will exit the function immediately

and the node will know that it does not have to wait to send its data packet since the base station

is awake at all times (lines 3-6). Line 7 determines whether the current neighbor has the same hop

distance or less. If so, the predicted wake-up time is determined by lines 8-15. The calculations

ensure that the wake-up time is within a valid time-span (e.g. wake-up slot is between the current

time and an entire frame later: CurrentTime < TwakeSlot < CurrentTime+f). Lines 16-20 check if

this is the first forwarder we have come across (firstForwarder) or if we have found a forwarder

that wakes up sooner than the current one that is stored. If so, store the node ID and the predicted

40

wake up time. Once a forwarder is found, the node goes to sleep and sets a timer for the scheduled

wake up time of the intended forwarder.

3.3.2 Handling Contention and Collisions

Contention occurs when several nodes within the same area want to use the wireless medium at

the same time. Nodes must ‘fight’ amongst each other, where the winning node is allowed to use

the channel while the other nodes should hold back from sending anything to avoid collisions.

In surveillance WSNs, spatially-correlated contention is very much an issue, but has only been

addressed by a few. Jamieson et al. [23] explicitly brought up the concern of this contention and

proposed an event-driven MAC called Sift which is a CSMA-based protocol with a fixed contention

window to reduce delay, but does not employ any duty cycles which will deplete the network’s life

quickly. With CC-MAC [47], the authors have proposed reducing the number of nodes reporting

their sensed event, by selecting a few representative nodes. While this reduces contention and

collision, some applications may still require more reports for reliability. Akan et al. [6] discusses

the importance of moving from the notion of end-to-end reliability to event-to-sink reliability as

a new paradigm for transport in WSNs. ECR-MAC has focused on trying to subdue the effects

of spatially-correlated contention on throughput and end-to-end delay, through the use of multiple

forwarders. LoC-MAC follows similar methods as ECR-MAC to achieve the same performance,

while lowering overall energy consumption.

Multiple neighboring nodes that want to send data at the same time may share several for-

warders, and hence select the same forwarder that is closest to waking up. Senders within each

others’ transmission range can perform carrier sense to avoid colliding with each other, but those

that are hidden from each other will end up sending corrupted messages to the intended receiver.

Several methods are out there to prevent the hidden terminal problem, but they do not work with

protocols that employ independent schedules. 802.11 utilizes a virtual carrier sense, where nodes

that overhear an RTS or CTS packet will know that a transmission is going to take place, and

41

should avoid sending anything until the data exchange is over. This would not work effectively

with nodes that employ random duty cycles, since nodes can easily miss out on hearing the first

two control packets and will not know that a transmission is occurring two hops away. Another so-

lution is to schedule time slots in a manner that avoids two-hop neighbors from transmitting at the

same time, but this results in a more complex mechanism to maintain. With multiple forwarders

however, nodes are not stuck with waiting for one forwarder until it is available, but instead can

move on to another available forwarder. ECR-MAC has pointed out how unlikely it is for two

non-neighboring senders to share all the same forwarders and hence, these nodes will eventually

select a forwarder that does not interfere with each other.

Since nodes know the wake-up times of their forwarders in LoC-MAC, it is possible for two

neighboring nodes to select the same forwarder and send a WAKEUP message at the same time.

To prevent such collisions, LoC-MAC allows for a small contention period where nodes perform

carrier sense at a random time before sending a WAKEUP message (view Figure 3.4 for an exam-

ple). The one that senses the channel to be idle first will get to send its message, while others can

overhear the WAKEUP and immediately move on to selecting a new forwarder. The WAKE pe-

riod is then extended to contain this contention period, which is still less than ECR-MAC’s active

period. A concern that exists in ECR-MAC, but not in LoC-MAC, due to allowing any poten-

tial forwarder to reply to a WAKEUP call, is the occurrence of REPLY collisions. Two or more

non-neighboring forwarders may send back a REPLY at around the same time, which prompts

the sender to broadcast another WAKEUP message (after receiving a certain number of corrupted

messages) to notify them that they should reschedule their wake/sleep periods so that they do not

overlap each other. LoC-MAC does not have to worry about this since a node explicitly selects a

forwarder, inserting the forwarder’s address into the WAKEUP message. If a node happens to over-

hear a WAKEUP that was not meant for it, it will simply go back to its own schedule. However, the

idea of readjusting can still be used to better spread the wake-up times of a node’s neighbors and

notify senders that it may not be desirable to select it as a forwarder for the current event reporting

42

period. If a forwarder receives several corrupted messages (perhaps WAKEUP messages sent by

two non-neighboring nodes), it can readjust its own schedule to make itself available at later times.

This not only reduces overhearing, but also sleep latency. While readjustment comes at no cost for

ECR-MAC, LoC-MAC has to take care of notifying nodes that a change in schedule has occurred

for a forwarder (further discussed in the Maintenance section).

Figure 3.4: Two senders contending for the same forwarder

Understanding that collisions can still occur and knowing that the wireless medium is unreli-

able, we cannot assume that when a packet is sent out, it has been received successfully. Even if

the DATA has been received correctly, the sender may receive a corrupted ACK packet and will

end up assuming that the DATA transmission has failed. To be more persistent about the assurance

of packet delivery, timers are employed at different points during the data exchange such that when

one expires, it is assumed that a packet has been lost or corrupted and the node should try again.

The periods at which a timer is set and the action taken is listed in Table 3.2 (in conjunction with

other timers that have been mentioned in the past). Note that Tw, Tr, Td, and Ta represent the time

it takes to transmit/receive a WAKEUP, REPLY, DATA, and ACK packet respectively. α represents

some leeway time that accounts for carrier sense and other time delay factors. Some timers are set

differently according to a state the node is in.

If a node has been successful in receiving the desired packet, certain timers will be cancelled

in order to avoid the execution of the expiration handle. For example, if a node has received a

43

Table 3.2: Timers

Timer Scheduled Length Expiration Action

DutyCycle
SLEEP State: begin-
ning of sleep period

f × (1− dc) Set state to WAKE

WAKE State: begin-
ning of wake period

f × (dc) Set state to SLEEP

WaitMode When the node has se-
lected a forwarder

Forwarder’s wakeup
time - current time

Select a random slot to
perform carrier sense
(before WAKEUP
packet is sent)

ActiveMode
Transmitter: be-
ginning of data
transmission

Tw +Tr +Td +Ta +α Go back to regular
schedule

Receiver: beginning of
data reception

Tr + Td + Ta + α DATA was not re-
ceived, go back to reg-
ular schedule

RetransmitWakeup When the transmitter
sends a WAKEUP
packet

Tw + Tr + α REPLY was not re-
ceived, select a new
forwarder

RetransmitData When the transmitter
sends a DATA packet

Td + Ta + α ACK was not received,
select a new forwarder

wake-up REPLY, it will cancel the RetransmitWakeup timer. A modified diagram that is built upon

Figure 3.3 by including contention periods and collision resolution with the use of timers is shown

in Figure 3.5. If a sender was unable to transmit its DATA packet, it will try again by selecting

another forwarder, whereas the intended receiver will go back to its own schedule if it has not

received a DATA packet after some time. Retransmissions are necessary for reliable delivery of a

DATA packet, but can cause an unwanted side effect of having duplicate DATA packets flowing

throughout the network. While the base station can discount duplicates, the rest of the network

will not be able to differentiate between an original and a duplicate. This occurs when DATA has

been delivered successfully, but the ACK packet did not reach the sender. The sender will try to

forward the data again, while the previous forwarder will continue to route the packet. By reducing

the size of the ACK packet, we can reduce the creation of duplicate packets.

44

Figure 3.5: Complete State Diagram

In the case a node has been unable to send its packet for awhile (meets a certain threshold of

retransmissions) due to high congestion, it will employ a back-off system similar to CSMA. It will

select a random amount of time Tbackoff such that the next earliest forwarder that is selected must

wake up at least after Tbackoff time units. This will allow the node to save energy by allowing it to

wait and sleep for a longer time, and reduce the chances that another neighboring node will select

the same forwarder again.

3.3.3 Multiple Base Stations

If multiple base stations are deployed within a wireless sensor network, nodes can maintain a list of

potential forwarders that would direct packets towards the closest base station. Following the same

steps as described in Initial Setup, each base station can broadcast a packet that contains a hop

distance counter and its ID. A node can determine which one is the closest by the hop messages it

receives, selecting the one that is closest so far, and only forwarding the messages containing the

base station ID it has selected.

45

3.3.4 Base Station to Nodes Traffic

While convergecast is the predominant traffic pattern, base station to nodes (also known as forward-

direction traffic) is another form of traffic that is possible in wireless sensor networks. The base

may want to query a particular region of nodes for information or issue commands [25]. In such

a case, we assume that localization has been performed such that each node knows the geographic

location of its neighbors and its own location, whether it’d be relative or absolute. Readers can

refer to [5, 22] for examples on localization techniques. The routing table should contain one-hop

neighbors from all directions and their location in addition to the time offset and frame offset.

When a packet is sent out from a base station, we assume that the destination’s location is also

embedded into the packet such that a router will know which direction the packet is heading and

therefore who the best-suited forwarder is. To reduce delay, a node can select a forwarder that is

closest to waking up and is closer to the destination than it is. An altered neighbor selection algo-

rithm is shown in Algorithm 3 where dstX and dstY are the coordinates of the desired destination

and calcDistance calculates the distance between two nodes.

The path taken may not be the shortest, but each hop results in the packet moving closer to the

destination in the fastest manner possible. Contention and collisions can be solved in the same way

that was explained in the previous section, where the node can select a new forwarder that is also

closer to the destination.

3.4 Maintenance and Scalability

With forwarders readjusting their duty cycles dynamically throughout the course of the network

and clock drifts affecting the stored time offsets, LoC-MAC requires nodes to keep their table

information fresh in order to continue accurately predicting their forwarders’ wake periods. In

ECR-MAC, nodes can easily adjust their duty cycles at no cost and has no worries about neighbor-

ing nodes’ sense of time. For a longer lifetime of energy savings, LoC-MAC has a small price to

pay of additionally maintaining its information.

46

Algorithm 3 ForwarderSelection
Input: TnextWake, Fme, dstX , dstY
Output: fID, Twait

1: firstForwarder = true
2: for i = 0 to |FT | do
3: if FTi.ID = baseStationID then {no need to wait or select any other forwarder}
4: Twait = 0
5: fID = i
6: Return fID, Twait

7: else
8: off = FTi.Fo − Fme

9: off + = FTi.To

10: if off < 0 then
11: off + = Tframe

12: end if
13: if off +TnextWake > Tframe then
14: off − = Tframe

15: end if
16: myDst = calcDistance(myX,myY, dstX, dstY)
17: neiDst = calcDistance(FTi.X, FTi.Y, dstX, dstY)
18: if firstForwarder or ((off + TnextWake < Twait) and (neiDst ¡ myDst)) then
19: fID = FTi.ID
20: Twait = off + TnextWake {saving the forwarder that is closest to waking up so far}
21: firstForwarder = false
22: end if
23: end if
24: end for
25: if firstForwarder == false then {a forwarder was not found}
26: fID = −1
27: end if
28: Return fID, Twait

Since a node does not know who it acts as a forwarder for, the challenge lies in when and

how update messages should be sent out. Further understanding when and why a node would

want to change its schedule will give a better perspective on how to devise a solution. When there

is no activity, nodes will go about their normal schedules. As soon as an event occurs, sources

will be going after forwarders that are the closest to waking, some of which may be shared by

non-neighboring nodes. If a forwarder is consistently receiving corrupted messages, it can assume

that non-neighboring senders have been trying to reach it or it just happened to wake-up at a bad

47

time where other transmissions are already taking place. By having a node select a new schedule,

after reaching a threshold of collided or overheard packets, an immediate notification of the change

can warn senders not to select this forwarder for awhile to avoid future collisions. Not only that,

wake-up periods start to become more evenly dispersed in the eyes of a sender, which lessens sleep

latency.

One extreme, yet complete, solution would be for a node to store information on all its one-hop

neighbors. Knowing each of their wake schedules, a node can individually notify all its same-hop

and one-hop further away neighbors with an update message. This would not scale well at all,

since as node density increases, the larger the potential forwarders table would have to be and the

more messages that would have to be sent out. Also, at a time of high contention and congestion,

the node would be out of commission while senders may continue to select this node. To have

an immediate affect on notifying at least some of the senders when a forwarder decides to change

its offset, it can send out a broadcast (not unicast anymore) REPLY message with the new offset

value included after receiving the last collided or overheard WAKEUP message. This message

plays two roles, one is to notify the updated frame offset and the other as a warning that an unseen

neighbor may also be utilizing it as a forwarder currently. Senders can then flag this node and

avoid selecting it as a forwarder for the current event reporting period, thus saving energy by not

wasting it on future collisions. There still lies the issue of notifying other neighboring nodes of

the change in schedule, who may have been sleeping when it issued a broadcast REPLY. Once the

channel has been idle for some time, indicating that the last event reporting is over, the node can

broadcast small back-to-back UPDATE messages for each available wake-up slot within one frame

(Tsleep + Twake). To reduce the cost of sending out the message, it contains minimal information

such as the node’s ID and its new frame offset. A neighboring node that receives an UPDATE,

will search through the table to see if the sender of the message is one of its forwarders, and if so,

update the frame offset field.

For overcoming the effects of clock drifts, a node should periodically exchange time-stamped

48

packets during down time with its forwarders using the method described by Maroti et. al [33]. A

node should keep an additional field in the routing table which describes the last time a neighbor’s

time offset information has been updated. This can be used to calculate the estimated time before

the clock drift has an effect on the time offset value, and thus when a node should update the time

offset before it becomes too inaccurate in that it is no longer able to predict the wake-up period

and cannot even start a time-exchange task. The periodocity of such needed updates depend on the

difference between two nodes’ crystal frequencies.

In terms of scalability, the more dense a network is, the more set of potential forwarders a node

will have. Average latency will be reduced since a node will have less sleep latency at each hop

due to the increase in number of forwarders waking up within a time frame. The more sparse a

deployment, the less the number of potential forwarders a node has which increases overall latency.

Instead of staying stagnant, performance can improve as the density increases.

3.5 Analysis

Here we provide an analysis on the average performance of LoC-MAC in terms of end-to-end

delay and energy consumed for a single-source scenario. For simplicity, we assume the network

has an even distribution of n nodes across an l × l area.

3.5.1 Delay

The total end-to-end delay is dependent on the source’s distance from the base station in terms of

hops H and the time it takes for a data exchange:

Tdelay = H × Texchange = H × (Tsetup + Tcontention + Tw + Tr + Td + Ta) (3.1)

Within Texchange, Tsetup represents the amount of time a node had to wait before its desired for-

warder wakes up, Tcontention is the random period a node waits before checking if the channel is

idle, and the others are the time it takes to transmit WAKEUP, REPLY, DATA, and ACK messages.

49

Here we follow ECR-MAC’s method of calculating Tsetup, which is first done by identifying

the number of potential forwarders PFnum a node has on average. Let us first look at figure 3.6,

which displays an example of three nodes (A, B, and C) and their transmission range. The set of

rings represents the hop distance a packet would have to travel to reach the base station (which is

at the center of all ther rings). The shaded regions represent forwarders that are one-hop closer to

the base station. Node B has a large set, whereas node C has a smaller set and may need to rely

on other neighbors that are in the same ring. Node A represents an average set, such that a packet

travels half a hop closer to the base station, and will be used as the example for determining the

average number of forwarders. Using rules of geometry and trigonometry, we can estimate the

area where one-hop closer forwarders reside, and then multiply it by the network density
(

n
l2

)
to

obtain an average number of forwarders.

Figure 3.6: Area of Potential Forwarders

Below are the set of equations used to approximately calculate segment X̂MZ (note that θ

50

represents the angle ∠XAZ which is 2π
3

radians).

Asegment = Asector − Atriangle

=
1

2
R2 (θ − sinθ)

=
1

2
R2

(
2π

3
− sin

2π

3

)
≈ 0.614185×R2

(3.2)

The average number of potential forwarders (that are one hop closer to the base station) is then:

PFnum =
(
0.614185×R2

)
× n

l2
(3.3)

We assume that the randomly selected wake-up slots for each forwarder is evenly distributed

among a frame (f = Twake+Tsleep), such that the time between each slot is TmxWait = f−PFnumTwake

PFnum

(example in Figure 3.7). There are two different instances for Tsetup which depend on the total

length during a frame which is occupied by wake-up slots:

1. f < PFnumTwake: Tsetup = 0

2. f ≥ PFnumTwake: Tsetup = f−PFnumTwake

2PFnum

For the first instance, an entire frame is consumed by wake-up slots such that a node would

not have to wait at all. For the second, there are still periods at which a forwarder is not available.

In the best case, a node has a forwarder that is immediately available, having a wait time of zero;

while in the worst case a node has to wait TmxWait. The average should then be TmxWait

2
.

Tcontention is essentially the sum of the contention window and Tw which all occurs within a

wake-up period Twake. We have set the contention window to half of Twake, while the other half

is the time it takes to send a WAKEUP packet. On average, a node will then select a carrier sense

slot at contention window
2

= Twake

4
.

51

Figure 3.7: Distributed Wakeup Periods of Potential Forwarders

3.5.2 Energy Consumption

To calculate the overall energy consumption of the entire network (summing energy consumed by

all n nodes), we take into account energy spent during idle time Eidle, transmission Etx, reception

Erx, and sleep Esp. Given a time Trun, the total energy consumed since the network started running

up to Trun is:

Etotal = Ewake +

(
P∑
1

Eexchange

)
+ Esleep (3.4)

Ewake approximates the total energy consumed while the node was in its wake period, Eexchange is

the sum of energy consumed for each packet that is reported (P being the total number of reports),

and Esleep is the approximated energy consumed during total sleep time.

Ewake ≈ dc× Trun × Eidle × n (3.5)

Eexchange = [EidleTcontention + EsleepTsetup + Texchange (Etx + Erx)]×H (3.6)

Esleep ≈ Esp × [n× Trun − [H × (Tcontention + Tsetup + 2Texchange) + (n× dc× Trun)]] (3.7)

Note that Texchange = Tw + Tr + Td + Ta. Ewake uses the duty cycle ratio dc to determine the

percentage of time in Trun where nodes are in WAKE mode. This may overlap the time spent

during message exchange (in ACTIVE mode) and hence is an over-approximation. Eexchange is

calculated by taking into account the distance the data has to travel (H hops) and the time spent in

contention, setup, and data exchange. In the case that the entire network is active (has their radio

52

transmitter on) at all times during Trun, Esleep = 0. Otherwise, Esleep is calculated by subtracting

the total time spent awake and during data exchange from the total run time.

53

CHAPTER FOUR

PERFORMANCE EVALUATION

To evaluate the performance of LoC-MAC, we have implemented and tested the protocol in ns-2, a

discrete network event simulator [1], against varying parameters and scenarios. CSMA and ECR-

MAC [57] are used as experimental comparisons and their code were also run on ns-2. CSMA

is a fully active MAC (i.e. all nodes have their radio on at all times), which is used as a baseline

in measuring delay since it does not suffer from any sleep latency. ECR-MAC is the basis for

our work, making it a necessary comparison to see if the implemented changes has improved its

performance. Simulation parameters are shown in Table 4.1 and experimental procedures are the

same as those that were done with ECR-MAC in [57] in order to assess LoC-MAC’s performance

in a similar manner. With a single-source scenario, we can take a close look at how LoC-MAC

performs in end-to-end delay without the concern of congestion and how much energy is consumed

as packet generation rate increases. To emulate a more realistic situation in a dense network where

spatially-correlated contention is indeed prevalent, we had a multiple-source scenario where sev-

eral nodes sense the same ‘event’ and report data around the same time. Scalability has also been

tested, where throughput and energy consumption were evaluated across the average number of

neighbors a node has.

In all experiments (except for scalability), 500 nodes are randomly spread across an 80m×80m

field and each node has a transmission range of 15m. For ECR-MAC, its duty cycle is 1% and the

wake period is 88ms (as reported in its experiment). LoC-MAC’s duty cycle is 0.8% and has a

wake period of 70.4ms, which is sufficiently long enough for a small contention period and the

reception of a WAKEUP packet. In terms of routing for CSMA, we used a data gathering tree

for forwarder selection, where the next hop for a node is the closest neighbor to the base station.

Simulations were run for 150 seconds which is long enough for an event to be reported, and each

reported data point is an average of 20 simulation runs with different seeds.

54

Table 4.1: Simulation Parameters

Parameter Value
of Nodes 500
Area 80m× 80m
Node Density 0.078 nodes/m2

Transmission Range 15 m
Data Packet Size 64 bytes
Bandwidth 2.4 Kbps
Transmit Power 14.88 mW
Receive Power 12.50 mW
Idle Power 12.36 mW
Sleep Power 0.016 mW

4.1 Single-Source Scenario

With a single-source scenario, we examined the end-to-end delay depending on a node’s distance

from the base station and the amount of energy consumed over the number of packets reported.

For each simulation run, a source node is randomly selected from the scene with the base station

remaining in the upper right corner of the topology. 95% confidence intervals are plotted for LoC-

MAC results, to show the effect of randomly selected duty cycles at each run. Figure 4.1 displays

the results for three types of LoC-MAC, two for convergecast traffic (both 0.8% and 1% duty cycle)

and the other being forward direction (with 0.8% duty cycle), ECR-MAC, and CSMA (for delay

only).

In the end-to-end delay test (Figure 4.1(a)), one packet was sent from a randomly selected

source under different hop distances from the base station. For forward-direction LoC-MAC, the

base station was the source and the destination was a random node in the network. The X-axis is

labeled ‘ideal’ in that even if we select a node that is, for example, six hops away from the base

station, ECR-MAC and LoC-MAC will not necessarily take a path that is six hops long. CSMA

has the best delay since all nodes are active at all times, thus a packet can be delivered without

any concern of sleep latency. We first expected LoC-MAC (convergecast) to have similar results

55

(a) End-to-end Delay vs. Hop Distance (b) Energy Consumed vs. Packets Reported

Figure 4.1: Single Source Scenario

with ECR-MAC in terms of delay since both end up with a forwarder that is closest to waking up.

However, we must keep in mind that there is a trade-off between delay and energy efficiency. By

having a lower duty cycle, the sleep latency at each hop has increased. While the occurrence of

the number of wake periods within a frame (wake+sleep time) should be around the same as ECR-

MAC since we both use a frame of 8.8 seconds and the same node density, the length of the overall

wake periods has decreased. Thus, a node ends up having to wait longer for a forwarder to wake-

up in LoC-MAC than in ECR-MAC. A LoC-MAC with 1% duty cycle (changed frame to 7.04

seconds) has been plotted to show this difference, which has similar results as ECR-MAC. Due to

the variation of duty cycle schedules with each simulation run, the error bars in LoC-MAC increase

with each hop distance, since there are cases where the randomly selected schedules either work in

favor or against a sender. With the forward direction LoC-MAC, the delay is slightly higher since

the path taken is not determinant on trying to find a forwarder that is “one-hop closer,” but rather

finding any forwarder that is closer to the destination than the sending node itself and is the closest

to waking up.

For energy consumption (Figure 4.1(b)), a randomly selected node that is six hops away from

the base station sends out packets with differing intervals. The energy consumed is an average

56

among all nodes. CSMA has not been plotted since the numbers are too high, which is expected

due to nodes being awake at all times, wasting energy over idle listening and overhearing. With

the reduction in its duty cycle, both convergecast and forward-direction versions of LoC-MAC

consume less energy than ECR-MAC. However, it is not only the change in duty cycle, but the

method itself that is energy-saving. LoC-MAC with 1% duty cycle still saves more energy than

ECR-MAC, due to the decrease in control packet transmissions. Forward-direction traffic con-

sumes a little more in energy than its counterpart due to the longer end-to-end delay. Although

LoC-MAC was designed with convergecast in mind, its forwarding mechanism does not have any

detrimental effect on forward-direction traffic.

4.2 Multiple Sources Scenario

In a densely deployed network, an event can trigger several nodes into generating and sending out

reports. To better simulate an event-reporting activity, we randomly selected an event site that is

six hops away from the base station with eight sources that are within ten meters of the event.

Each of them send a packet around the same time, having some variance to emulate differences

in the time spent sensing and generating reports. Figure 4.2 has the results from our experiments

which test throughput, energy consumption, and the end-to-end delay of the first 10% of generated

reports that arrive.

As packet rate increases, the probability of collision increases due to the hidden node prob-

lem, which in turn results in more packet retransmissions. For ECR-MAC and LoC-MAC, with

every ACK that is lost, a duplicate packet is created, injecting more packets into the network. For

throughput, we only count the number of original packets that reach the base station, discounting

duplicate packets. Regular CSMA, without a virtual carrier sense, cannot avoid collisions that oc-

cur from a node transmitting at the same time a hidden node is, which puts it in the same position

as LoC-MAC and ECR-MAC. However, the difference in results lies in the fact that the data gath-

ering tree used causes high contention and the backoff period increases with each failed attempt

57

(a) Reports Received by the Base Station (b) Energy Consumption

(c) End-to-end Delay of First 10% Reports

Figure 4.2: Multiple Sources Scenario

(i.e. the contention window increases by two), which is why the throughput is the least among the

three. LoC-MAC, for both 0.8% and 1%, has around the same throughput in the beginning (receiv-

ing all packets that are generated), but overtakes ECR-MAC as packet generation rate increases,

showing the effectiveness of the technique as contention increases. The channel is not dominated

by WAKEUP packets as in ECR-MAC, but is instead more available to allow other data to flow.

Energy consumption (Figure 4.2(b)) is again, lower for LoC-MAC due to the low duty cycle

which reduces idle time and overhearing, and the reduction in control packets used. There is also

less time spent in an active/wake mode since a node can go to sleep and wait until its selected

forwarder wakes up as opposed to ECR-MAC, which remain awake for as long as necessary until

58

(a) 140-Node Scenario (b) 770-Node Scenario

Figure 4.3: Sparse vs. Dense Network

a forwarder replies to one of its wake-up messages. For 1% LoC-MAC, the same trend is followed

as 0.8%, but the energy consumed rises slightly higher than ECR-MAC as packet generation rate

increases. For end-to-end delay (Figure 4.2(c)), we average the delay of the first 10% of packets

that have been reported (e.g. for 120 reports that are generated, we calculate the delay of the first

12 packets that have been reported) as done in ECR-MAC since there are applications that require

a base station to respond to an event immediately [23]. CSMA still has the lowest delay since

there is no sleep latency and packets have not yet backlogged. Unlike in the single source scenario,

LoC-MAC has much lower delay than ECR-MAC as packet rate increases due to the availability of

the channel, since a node goes to sleep while it is waiting for its forwarder to wake-up. This allows

other neighboring nodes to communicate in the mean time, allowing for a faster method of moving

data packets away from the event site. While CSMA is the lowest among delays, LoC-MAC has

shown that it follows a similar trend, whereas ECR-MAC starts to increase in delay at a higher

rate.

59

(a) Density vs. Energy Consumption (b) Density vs. Packets Reported

Figure 4.4: Scalability Testing

4.3 Scalability

To test scalability performance, we varied the number of deployed nodes across an 80m × 80m

field. Figure 4.3 displays what a sparse versus a dense network would look like. Similar to the

multi-source experiments, a random ‘event’ site is detected six hops away from the base station

with eight sources generating reports on it. Packets are sent every 30 seconds, which result in a

total of 40 packets that should arrive at the base station.

In Figure 4.4(a) and (b), we have the results for the total energy that is consumed amongst all

nodes (as opposed to the average that was calculated in the prior experiments) and the throughput.

The average neighbor of nodes was determined by multiplying a node’s transmission area (πr2)

with the network density (n
l2

). LoC-MAC follows the general trend of ECR-MAC in terms of

energy consumption, but is lower due to the smaller duty cycle. For throughput, both LoC-MAC

and ECR-MAC suffers at a lower density since nodes have to wait a longer time for one of its

forwarders to wake up. ECR-MAC suffers from the occurrence of REPLY collisions. The more

neighbors it has, the higher the possibility that two non-neighboring forwarders will reply to a

WAKEUP message around the same time. Whereas with LoC-MAC, there are no REPLY colli-

sions and there is less sleep latency since a node has more neighbors to select from as the density

60

increases.

4.4 Performance Summary

Overall, we have seen the tradeoff between energy and delay in the single source scenario, where

LoC-MAC has higher delay than ECR-MAC, but consumes less energy. A fully active MAC

(CSMA) always has better delay since it does not suffer from any sleep latency, but at the cost

of the entire network depleting its energy quickly. LoC-MAC has around the same performance

with ECR-MAC in terms of throughput for multiple source scenarios and even better in delay,

handling spatially-correlated contention quicker. As for differences in duty cycles (1% and 0.8%),

the lower duty cycle is shown to have similar performance as the higher one, while still saving more

energy overall. Scalability-wise, LoC-MAC performs better in throughput as the network density

increases since it explicitly selects the forwarder that is closest to waking up, as opposed to ECR-

MAC which allows any forwarder that has woken up to respond, resulting in REPLY collisions.

All in the meanwhile, LoC-MAC expended the least amount of energy by reducing the time a node

is spent awake and the amount of control packets that are sent out.

61

CHAPTER FIVE

CONCLUSIONS

Energy-efficiency has been a focal point of discussion within medium access control in wireless

sensor networks in order to ensure its longevity. Communication is a draining task and having

a node listen to the medium at all times depletes energy quickly, not only due to idle time, but

overhearing. With duty cycles in place, nodes can switch their radio transmitters on and off to save

energy. Several MACs have been proposed which either synchronizes schedules to allow nodes to

be awake around the same time to communicate or uses independent schedules, where preambles

and wake-up packets have been used to notify a neighboring node that data needs to be transmitted.

ECR-MAC came up with a novel approach of utilizing multiple forwarders to facilitate faster

communication in convergecast traffic and overcome spatially-correlated contention. Predecessors

assumed there is only one forwarder that it is allowed to transmit to (selected by the routing layer),

not looking at contention from a higher perspective.

Our proposed LoC-MAC uses neighborhood information to improve upon ECR-MAC’s energy

consumption, with the goal of still maintaining the same performance. Since ECR-MAC does not

know about its neighbors, it sends a stream of periodic messages to notify any potential forwarder

that data is to be sent, consuming unnecessary energy. With LoC-MAC, a node maintains infor-

mation on its neighbors wake and sleep schedules to predict when a potential forwarder is going to

wake up next. When there is data to send, a node searches through its table of forwarder informa-

tion for the neighbor that is closest to waking up. By employing this mechanism, we were able to

reduce the duty cycle, since less time is required for a node to scan the channel for a wake-up mes-

sage, and the time that is spent in active mode, searching for a neighbor that can act as a forwarder

as done in ECR-MAC.

Performance evaluation has shown LoC-MAC has better results than ECR-MAC in terms of

throughput and has better delay in a multiple source scenario, while consuming less energy overall.

62

In a single-source scenario, we have seen the trade-off between energy and delay, where LoC-MAC

suffers from higher sleep latency at each hop, despite the higher energy savings. Future work can

include employing a more intelligent forwarder selection method which can take into account other

performance metrics or analyzing the surrounding traffic to better handling coordination.

63

BIBLIOGRAPHY

[1] The Network Simulator (ns-2), a discrete event simulator, http://www.isi.edu/nsnam/ns.

[2] OPNET, network simulator, http://www.opnet.com.

[3] QualNet, software virtual network, http://www.scalable-networks.com/

[4] TinyOS, an open-source OS for the network sensor regime, http://www.tinyos.net/

[5] A. Ahmed, H. Shi, and Y. Shang, “Sharp: A new approach to relative localization in wire-

less sensor network,” in IEEE International Conference on Distributed Computing Systems

Workshop (ICDCSW), pp. 892-898, 2005.

[6] O.B. Akan and I.F. Akyildiz, “Event-to-sink reliable transport in wireless sensor networks,”

in IEEE Infocom, 2005.

[7] M. Ali et al., “Medium access control issues in sensor networks,” in ACM SIGCOMM Com-

puter Communication Review, vol. 36, no. 2, April 2006.

[8] M. Buettner, G. Yee, E. Anderson, and R. Han, “X-MAC: a short preamble MAC protocol for

duty-cycled wireless sensor networks,” in International Conference on Embedded Networked

Sensor Systems (SenSys), 2006, pp.307-320.

[9] N. Burri, P. von Rickenbach, and R. Wattenhofer, “Dozer: ultra-low power data gathering

in sensor networks,” in International Conference on Information Processing in Sensor Net-

works., April 2007.

[10] H. Cao, K. Parker, and A. Arora, “O-MAC: A Receiver Centric Power Management Proto-

col,” in 14th IEEE International Conference on Network Protocols, November 2006.

[11] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards optimal sleep scheduling in sensor

networks for rare-event detection,” in Information Processing in Sensor Networks, 2005.

64

[12] T.V. Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for wireless sen-

sor networks,” in 1st ACM International Conference on Embedded Networked Sensor Systems

(SenSys), November 2003.

[13] I. Demirkol, C. Ersoy, and F. Alagoz, “MAC protocols for wireless sensor networks: a sur-

vey,” in IEEE Comunications Magazine, vol. 44, 2006, pp. 115-121.

[14] M. Dhanaraj, B. S. Manoj, and C.S.R. Murthy, “A new energy efficient protocol for minimiz-

ing multi-hop latency in wireless sensor networks,” in Pervasive Computing and Communi-

cations, 2005, pp. 117-126.

[15] A. El-Hoiydi and J.D. Decotignie, “WiseMAC: An Ultra Low Power MAC Protocol for the

Downlink of Infrastructure Wireless Sensor Networks,” in IEEE Symposium on Computers

and Communication, June 2004, pp. 244-251.

[16] J. Elson, L. Girod, and D. Estrin, “Fine-Grained network Time Synchronization using Ref-

erence Broadcasts,” in Proceedings of the fifth symposium on Operating System Design and

Implementation (OSDI), December 2002.

[17] C.C. Enz et al., “WiseNET: An ultralow-power wireless sensor network solution,” in IEEE

Comp., vol. 37, no. 8, August 2004.

[18] S. Ganeriwal, R. Kumar, and M.B. Srivastava, “Timing-Sync Protocol for Sensor Networks,”

in ACM International Conference on Embedded Networked Sensor Systems (SenSys), pp.

138-149, November 2003.

[19] M. Gastpar and M. Vertterli, “Source-channel communication in sensor networks,” in Proc.

2nd Int. Workshop on Information Processing in Sensor Networks (IPSN’03), vol.219,

pp.162-177, 2003.

65

[20] Y. Gu and T. He, “Data Forwarding in Extremely Low Duty-Cycle Sensor Networks with Un-

reliable Communication Links,” in International Conference on Embedded Networked Sensor

Systems (SenSys), November 2007.

[21] I. Hakala and M. Tikkakoski, “From vertical to horizontal architecture: a cross-layer imple-

mentation in a sensor network node,” in ACM International Conference on Integrated Internet

Ad Hoc and Sensor Networks, 2006.

[22] J. Hightower and G. Borrilello, “Location systems for ubiquitous computing,” in IEEE Com-

puter, 2001.

[23] K. Jamieson, H. Balakrishnan, and Y. Tay, “Sift: A mac protocol for event-driven wireless

sensor networks,” in Third European Workshop on Wireless Sensor Networks (EWSN), Febru-

aru 2006.

[24] I. Joe and H. Ryu, “A Patterned Preamble MAC Protocol for Wireless Sensor Networks,” in

International Conference on Computer Communications and Networks, August 2007.

[25] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in wireless sensor net-

works,” in International Symposium on Mobile Ad Hoc Networking and Computing., 2006,

pp. 322-333.

[26] N.P. Khan and C. Boncelet, “PMAC: Energy Efficient Medium Access Control Protocol for

Wireless Sensor Networks,” in Military Communications Conference, October 2006.

[27] K. Langendoen and G. Halkes, “Energy-Efficient Medium Access Control” in The Embedded

Systems Handbook, CRC Press, 2005.

[28] J. Li and P. Mohapatra, “An analytical model for the energy hole problem in many-to-one sen-

sor networks,” in IEEE Vehicular Technology Conference, pp. 2721-2725, September 2005.

66

[29] A. Liu, L. Li, H. Yu, and D. Zhang, “An Energy-efficient MAC Protocol Based on Routing In-

formation for Wireless Sensor Networks,” in IEEE Wireless Communications & Networking

Conference (WCNC), 2007.

[30] S. Liu, K. Fan, and P. Sinha, “CMAC: An Energy Efficient MAC Layer Protocol Using

Convergent Packet Forwarding for Wireless Sensor Networks,” in IEEE Communications

Society Conference on Sensor, Mesh, and Ad Hoc Communications and Networks (SECON),

June 2007.

[31] G. Lu, B. Krishnamachari, and C.S. Raghavendra, “An adaptive energy-efficient and low-

latency MAC for data gathering in wireless sensor networks,” in Parallel and Distributed

Processing Symposium., April 2004, pp. 224.

[32] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, ”Delay efficient sleep scheduling in

wireless sensor networks,” in IEEE INFOCOM, 2005, pp. 2470-2481.

[33] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The Flooding Time Synchronization Proto-

col,” in International Conference on Embedded Networked Sensor Systems (SenSys), 2004.

[34] E. Nakamura, A. Loureiro, and A. Frery, “Information fusion for wireless sensor networks:

Methods, models, and classifications,” in ACM Computing Surveys (CSUR), vol. 39, no. 3,

September 2007.

[35] S. Pack, J. Choi, T. Kwon, and Y. Choi, “TA-MAC: Task Aware MAC Protocol for Wireless

Sensor Networks,” in Vehicular Technology Conference (VTC), vol. 1, pp. 294-298, 2006.

[36] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor

networks,” in International Conference on Embedded Networked Sensor Systems (SenSys),

November 2004.

67

[37] V. Rajendran, K. Obraczka, J.J. Garcia-Luna-Aceves, “Energy-Efficient, Collision-Free

Medium Access Control for Wireless Sensor Networks,” in International Conference on Em-

bedded Networked Sensor Systems (SenSys), November 2003.

[38] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: a hybrid MAC for wireless sensor net-

works,” in International Conference on Embedded Networked Sensor Systems (SenSys), 2005.

[39] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed Randomized TDMA

Schedulilng For Wireless Ad-hoc Networks,” in MobiHoc, May 2006.

[40] X. Shi and G. Stromberg, “SyncWUF: An Ultra Low-Power MAC Protocol for Wireless

Sensor Networks,” in IEEE Transactions on Mobile Computing, vol. 6, January 2007.

[41] S. Singh and C.S. Raghavendra, “PAMAS- power aware multi-access protocol with signalling

for ad hoc networks,” in ACM SIGCOMM Computer Communication Review, vol. 28, no. 3,

July 1998.

[42] L. Song and D. Hatzinakos, “A cross-layer architecture of wireless sensor networks for target

tracking,” in IEEE/ACM Transactions on Networking (TON), vol. 15, no. 1, February 2007.

[43] F. Stann, J. Heidemann, R. Shroff, and M. Murtaza, “RBP: robust broadcast propagation in

wireless networks,” in International Conference on Embedded Networked Sensor Systems

(SenSys), 2006, pp. 85-98.

[44] C. Suh and Y. Ko, “A Traffic Aware, Energy Efficient MAC Protocol for Wireless Sensor

Networks,” in IEEE International Symposium on Circuits and Systems, 2005.

[45] C. Vigorito, D. Ganesan, and A. Barto, “Adaptive Control of Duty Cycling in Energy-

Harvesting Wireless Sensor Networks,” in IEEE Communications Society Conference on

Sensor, Mesh, and Ad Hoc Communications and Networks (SECON), 2007.

68

[46] M.C. Vuran, O.B. Akan, and I.F. Akyildiz, “Spatio-temporal correlation: theory and appli-

cations for wireless sensor networks,” Computer Networks: The International Journal of

Computer and Telecommunications Networking, vol. 45, no. 3, pp. 245-259, June 2004.

[47] M. Vuran and I. Akyildiz, “Spatial Correlation-based Collaborative Medium Access Control

in Wireless Sensor Networks,” in IEEE/ACM Transactions on Networking, vol. 14, pp. 316-

329, April 2006.

[48] L. Wang and K. Liu, “An Energy-Efficient and Low-Latency MAC Protocol for Wireless

Sensor Networks,” in IEEE International Symposium on Microwave, Antenna, Propagation,

and EMC Technologies For Wireless Communications, August 2007.

[49] G. Xing, and et. al., “Minimum power configuration for wireless communication in sensor

networks,” in ACM Transactions on Sensor Networks, vol. 3, no. 2, 2007.

[50] X. Yang and N. Vaidya, “A wakeup scheme for sensor networks: Achieving balance between

energy saving and end-to-end delay,” in Proceedings of the 10th IEEE Real-Time and Em-

bedded Technology and Applications Symposium (RTAS), 2004.

[51] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol for Wireless Sensor

Networks,” in INFOCOM, 2002.

[52] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated, adaptive

sleeping for wireless sensor networks,” in IEEE/ACM Trans. Net., vol. 12, no. 3, pp.493-506,

June 2004.

[53] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle MAC with scheduled channel

polling,” in International Conference on Embedded Networked Sensor Systems (SenSys),

2006.

69

[54] S. Yessad, F. Nait-Abdesselam, T. Taleb, and B. Bensaou, “R-MAC: Reservation Medium

Access Control Protocol for Wireless Sensor Networks,” in IEEE Conference on Local Com-

puter Networks, pp. 719-724, October 2007.

[55] M. Zhao, Z. Chen, Z. Ge., and L. Zhang, “HS-Sift: a Hybrid Spatial Correlation-based MAC

for Event-driven Wireless Sensor Networks,” in First International Conference on Commu-

nications and Networking in China, October 2006.

[56] S. Zhou, R. Liu, D. Everitt, and J. Zic, “A2-MAC: an application adaptive medium access

control protocol for data collections in wireless sensor networks,” in International Symposium

on Communications and Information Technologies (ISCIT), October 2007.

[57] Y. Zhou and M. Medidi, “Energy-efficient contention-resilient medium access for wireless

sensor networks,” in IEEE International Conference on Communications (ICC), 2007.

[58] Y. Zhou and M. Medidi, “Sleep-based topology control for wakeup scheduling in wireless

sensor networks,” in IEEE Communications Society Conference on Sensor, Mesh, and Ad

Hoc Communications and Networks (SECON), June 2007.

[59] M. Zorzi and R.R. Rao, “Geographic random forwarding (GeRaF) for ad hoc and sensor

networks: energy and latency performance,” in IEEE Transactions on Mobile Computing,

vol. 2, no. 4, October-December 2003.

70

