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A FOURIER ANALYSIS OF THE U.S. DAIRY INDUSTRY

Abstract

by Tristan D. Skolrud
Washington State University

August 2009

Chair: Richard C. Shumway

The measurement of economies of scale and scope are extremely valuable for 

predicting growth and/or product diversification.  However, the measurement of these 

estimates is only useful to the extent the model of the production technology is unbiased 

and accurate to an appropriate degree.  Due to the changing dynamics in the U.S. dairy 

industry, several economic studies have been conducted to measure economies of scale 

and scope with the hope of understanding the rapid change in this near perfectly-

competitive industry.  

This study measures both economies of scale and scope using data from the 

National ARMS survey and a cost function modeled on the Fourier functional form, 

which has been shown to provide a global approximation of the unknown function.  We 

find evidence of economies of scale and scope in the dairy industry.  We compare our 

estimates to estimates using other functional forms, including the translog.
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1.  INTRODUCTION

The estimation of cost economies has proven invaluable for industry and 

policy makers alike.  Measurements of returns to scale for example, are often used to 

explain why larger firms enjoy a higher degree of cost reduction.  However, these 

measurements are only useful if they are estimated from an unbiased, accurate 

approximation of the underlying (unknown) production technology.  Since their 

introduction in the 1970’s, the so-called Diewert-flexible (or locally-flexible) functional 

forms, such as the translog, have been widely used to calculate these measurements 

despite their well-documented limitations.  In fact, Huang and Wang (2004) and 

Wheelock and Wilson (2001) document that using the translog yields unreliable estimates 

of economies of scale in the banking industry.  To determine the extent of imprecision of 

the translog, this paper will develop cost economy estimates using both the translog and 

the globally-flexible Fourier functional form proposed by Gallant (1981, 1982).  The

semi non-parametric form of the Fourier leads to a more complicated and cumbersome 

estimation process, but it allows for more reliable estimates of our desired measurements

because of its global flexibility.  

We chose the U.S. Dairy industry for analysis due to the dramatic changes it 

has recently experienced and because economies of scope and scale have been estimated 

for the industry by other methods.  The number of dairy firms has decreased dramatically.

Both Nonparametric and parametric research has been conducted to test for economies of 

scale and scope, which are viewed as possible explanations for the decrease in firm 

numbers as firms consolidate to take advantage of these economies.  Previous estimates 
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indicate the presence of both economies of scale and scope for the dairy industry, and this 

study will use a semi non-parametric approach to determine whether those findings are 

corroborated using the translog and Fourier functional forms. 

This paper will estimate translog and Fourier cost functions in order to

measure scale and scope economies for the dairy industry using data from the 2000 

ARMS Phase III Survey of dairy farms.  Four cost economy measures will be calculated 

– overall scale economies, ray scale economies, scope economies, and within-sample 

scope economies.  

The Fourier flexible form has been used extensively in the banking industry 

(e.g., Huang and Wang (2004), Mitchell and Onvural (1996), Kasman (2002), Wheelock 

and Wilson (2001), but, except for the early work done by Chalfant and Gallant (1985), it 

has seen little use in studies of U.S. agriculture.  This is perhaps due to the technical 

difficulties associated with its construction and estimation (Huang and Wang 2004) and 

to the need for a large number of firm-level observations.  Using firm-level data from the 

ARMS Survey, we hope to shed light on scale and scope economies in the dairy industry 

with this ideal functional form.

Following a short, non-technical introduction to the Fourier series in Section 

2, we explain how the model is constructed in Section 3, along with the estimation 

procedure and a definition of the scale and scope estimates we plan to measure.  We 

describe the data in Section 4, report results in Section 5, and conclude in Section 6.
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2.  FOURIER COST FUNCTION

While the translog, Box-Cox, and other Diewert-flexible functional forms 

have been used frequently to measure economies of scale and scope, there are in fact 

several well-documented problems with these forms that prevent accurate, unbiased 

estimation.  To understand why this is the case, it is essential to recognize that the 

translog functional from is merely a second-order Taylor series expansion, ignoring the 

higher order terms.  It is merely a local approximation of an unknown function about a 

point, typically the sample mean.  This results in parameter estimates which are globally 

inconsistent with the Taylor expansion of the unknown function.  To illustrate why this is 

the case, consider the diagram from White (1980) in Figure 1.

In Figure 1, )( iZg represents the unknown function to be estimated, )( iZT is the 

Taylor series approximation of )( iZg at the data means, and )( iZL is the ordinary least 

squares estimate based on the regression of iY on Z (White 1980).  It can be seen in 

Figure 1 that )( iZT and )( iZL have different slopes and intercepts, and in fact, most of 

the observations (represented above by dots) lie below the Taylor series approximation.  

In the early 1980s, Gallant provided one solution to the problem raised by 

White and others by using a Fourier series to produce a global approximation of the 

unknown function.  A Fourier series is an expansion of a periodic function in terms of an 

infinite sum of sines and cosines (Weisstein 2009):

(1) 









11

0 )]cos([)]cos([
2

1
)(

h
h

h
h xvxuuxf



4

where uh and vh are parameters to be estimated or solved for depending on the 

application, x is the independent variable, cos is cosine, and sin is sine.  In reality, any 

two mutually orthogonal polynomials could be used in the infinite sum, but sine and 

cosine are used most frequently for simplicity.  Using a Fourier series is an excellent way 

to break up an arbitrary unknown function into a collection of sums that can be 

approximated to a “practical” level of accuracy (Weisstein).  The practical level of 

accuracy suggested by Gallant is the Sobolev norm, which is the level that will be used 

for this study (Gallant 1982).  For a visual representation of a Fourier series, consider 

Figure 2.  In Figure 2, the black lines indicate the function to be approximated, and the 

lighter lines indicate Fourier series for increasing orders of approximation.  The light red 

line indicates the first order, the yellow indicates the second order, green is the third 

order, and blue indicates the fourth order.  As the order increases, the approximation 

becomes closer to the unknown function.  In the next section we explain how this series 

is used to create an econometric model that provides an excellent fit of the underlying 

unknown cost function.

3.  METHODOLOGY

In this section, we provide a brief, non-technical description of how the 

Fourier series is used to represent a cost function in an econometric model, and then 

briefly explain the estimation procedure and tests used to examine scale and scope 

economies.  
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As noted in Figure 2, the ability to represent an unknown function with a 

Fourier series depends on the number of trigonometric terms used in the approximation.  

Depending on the function, sometimes an infinite number of trigonometric terms are 

needed to represent a function exactly.  Data limitations force the researcher to use a 

truncated Fourier series, incorporating only the trigonometric polynomials that seem most 

appropriate. 

Gallant (1981) proved that a truncated Fourier series can better achieve a 

specified approximation when it includes a second-order polynomial.  Details of that 

proof are omitted here in the interest of space, and the interested reader can consult 

Gallant (1981) for more detail.  Researchers utilizing the Fourier series typically express 

this second-order polynomial in natural log form, or as it is now known, the translog 

function.  This is especially convenient for the sake of comparison since the translog 

model is nested within the Fourier model.      

3.1 Model

Following Gallant (1982), the Fourier flexible cost function is specified in the 

following manner:

(2)  


H

h hhhho vuAuLnC
1

)]'sin()'cos(['5.0' xkxkxxxb

The translog cost function is simply the Fourier flexible cost function without the sum 

of trigonometric terms, specifically:

(3)  xxb AxuLnC o '5.0'
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where LnC is the natural log of total cost; ou is a constant term to be estimated; 

],...,,...[ 11 zMzlNl bbbbb is an N+M vector of coefficients to be estimated; N is the number 

of input prices; M is the number of output quantities used in the estimation  (for this 

study, N=3, M=4); the independent variable, ]','[ zlx  , is an N+M vector of l scaled, 

natural log, input prices and z scaled, natural log, output quantities; ][ ijaa is an (N+M) 

x (N+M) square symmetric matrix of coefficients to be estimated; hh vu , are coefficients 

to be estimated; and ],...,,...[ 11 hzMhzhlNhlh kkkkk is an N+M integer vector which 

indicates which trigonometric terms to include in the Fourier cost function (the l and z

subscripts are used to differentiate between k h components that indicate input prices and 

output quantities, respectively) .  Explanations of the variables used in equations (2) and 

(3) are summarized in Table 1 below.

The hk vector and the selection of the H parameter is what sets the Fourier 

cost function apart from the translog.  It would be ideal to select hk and H to allow for 

the inclusion of all eligible trigonometric combinations, but this is prevented due to a 

finite sample size.  The finite sample size also controls the value for H, which is equal to 

N2/3, where N is the sample size.  Setting a value for H in this manner is the result of 

research from Chalfant and Gallant (1985) and Eastwood and Gallant (1991) who proved 

that this method allows for consistent and asymptotically normal parameter estimates. 

Huang and Wang (2004b) further noted that the hk vector has to meet the following 

three stipulations: (1) hk cannot be a zero vector; (2) its elements cannot have a common 

integer divisor; and (3) they must be arranged into a sequence such that their lengths are 
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non-decreasing.  Implementing these procedures, our selection of  hk and H yields the 

following sequence of trigonometric terms:  

(4)
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To satisfy theoretical expectations for a cost minimizing firm, a cost function 

is linear homogeneous, concave, and monotonic in input prices. Linear homogeneity 

restrictions on the input price variables are satisfied by normalizing the three input prices 

by the price of a fourth input, which serves as our numeraire.  Although we do not 

impose concavity or monotonicity restrictions, they would not affect the ability of the 

Fourier flexible form to approximate a function that satisfies them (Gallant 1982).  We 

also maintain symmetry restrictions on share equation parameters, which are implied by a 

twice continuously differentiable cost function.    

To implement the Fourier functional form, it is necessary to scale the l and z

variables such that they exist within an interval of 0 to 2π.  This corresponds directly to 

the period length of the orthogonal trigonometric polynomials used in the cost function, 
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sine and cosine.  The scaling procedure used in this analysis was first suggested by 

Gallant (1982), and is outlined here for clarity.  

Step 1:  Identify the minimum and maximum values of the ith input prices and 

output quantities, i = 1, 2, 3.  Denote these values 

maxminmaxmin ,and, iiii yypp for input prices and output quantities, respectively.

Step 2:  Define yipi ww and   such that: 

(5)          
min

min

00001.0

00001.0

iyi

ipi

Lnyw

Lnpw





Step 3:  Define M, λ, and i for i =1, 2, 3 (note that Lnpi
max  is the largest price 

across all inputs) such that:

(6)          





]/[6

                                 /6
max

max

yiii

pii

wLny

M

wLnpM







Step 4: Finally, define vectors ii zl and for i = 1, 2, 3 (which are composed to 

create the independent variable vector ],[ zlx  in Equation (4)) as follows:

(7)          




iyiii

piii

wLnyz

wLnpl

)(

)(





Summary statistics of the above variables in their scaled form are reported in Table 2.
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3.1 Share Equations

To increase the efficiency of the estimation, we estimate the Fourier cost 

equation jointly with its input share equations as an iterative seemingly unrelated system, 

where the input share is the ratio of expenditures on the input to total expenditures.  This 

approach increases efficiency because of the added restrictions placed on the independent 

variables.  To avoid a singular covariance matrix, one of the share equations will be 

dropped in the estimation.  By using iterative seemingly unrelated regression estimation, 

the estimated parameters are invariant to the equation deleted.  Using Shepard’s Lemma, 

we can recover the share equation as the derivative of ln C(p,y) with respect to ln pi.  We 

define the input share equation is for input i as:

(8)
i

i p

ypC
s

ln

),(ln






Using the Fourier functional form, the share equations for i = 1, 2, 3 are:

(9)
)]}'cos(       

)'sin([{
3

1

6

4 13

xk

xk

hhlih

j hhlij

H

h hjijjijlii

kv

kuzalabs



     

where the variables, parameters, and subscripts in Equation 9 are the same as in Equation 

4.  Note that the share equations for the translog are identical to the share equations of the 

Fourier model except for the trigonometric terms.
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3.3 Scale and Scope Economies

Overall scale economies (OSE) are defined in accordance with Baumol, 

Panzar, and Willig (1982) as follows.  This measure has also been referred to as multi-

output scale economies, and it accounts for both product-specific scale economies and 

scope economies.  

(10)





3

1

),(

),(

i
ii ypCy

ypC
OSE

Returns to scale are decreasing, constant, or increasing for OSE values of less than, equal 

to, or greater than one respectively.  

To calculate economies of scope, we follow Baumol, Panzar, and Willig 

(1982):

(12)
),,(

)],,()()()([

321

321321
mmm

mmmmmm

zzzC

zzzCzCzCzC
SCOPE




where m
iz is the sample mean of output iz .  SCOPE measures the percentage in cost 

saving by producing outputs jointly by the same firm rather than by separate firms.  

Economies of scope exist for the industry when SCOPE > 0, and diseconomies exist 

when SCOPE < 0.  
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4.  DATA

For data on output quantities (to create the scaled vector z), we used farm-

level data from the 2000 Agricultural Resource Management Survey-Phase III (ARMS) 

for dairy farms.  Our sample consists of 870 dairy farms in 22 dairy-producing states, 

which represents about 1% of U.S. dairy farms in operation in the year 2000.  Farms were 

grouped within each state by size and commodity.  Sampling weights were used in the 

estimation procedure to adjust for the different sampling weights of groups in the data 

(Melhim 2009).  We obtained input prices (to create the scaled vector l) and output prices 

from the Economic Research Service (ERS) (Ball, Hallahan, and Nehring 2004).  

We aggregated outputs into three major categories – dairy ( 1z ), livestock ( 2z ), 

and crops ( 3z ) using the farm-level output quantity and state-level output price data.  The 

output aggregation process follows Melhim (2009):

1. “From the ARMS farm-level data, we identified the individual commodities (i)

which had positive values of production in 2000 in any state (s).

2. From the ERS state-level data, we divided the annual state-level receipts plus 

government payments for each identified commodity by its annual quantity of 

production, Qist to compute the state-level annual commodity price, Pist, 

(including per-unit government payments), for each year (t).

3. For each year, we used the computed state-level prices from the previous step to 

compute a geometric mean U.S. price for each output (i), itP using each state’s 

share of production quantity, istW as weights as follows:
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(13)   istW

it ist
S

P P where ist
ist

ist
S

Q
W

Q



4. For each year, we used the computed geometric mean prices from the previous 

step to compute the U.S. geometric mean aggregate price, mtP where m={dairy, 

other livestock, crops}. As weights, we used the share of output i’s receipts in 

total U.S. receipts for the aggregate (m), itW as follows: 

(14) where ,i m t
it

it
i m

R
W

R







5. Finally, for each year, we used the relative differences in the state’s output prices,

Pist (step 2) from the geometric mean U.S. prices, itP (step 3) to calculate the 

geometric mean state-level aggregate prices, mstP using the share of output i’s 

receipts in total receipts for the aggregate (m) in state (s), istW as follows:

(15)   istW

mst ist it mt
i m

P P P P


 
  
 
 where ,i m st

ist
st

i m

R
W

R







.”

The ERS data set provided state-level annual prices for major input categories.  

However, since the land variable in ARMS is in acres, we calculated a land rental rate per 

acre instead of using the ERS land price index. First, we calculated the average rental rate 

for land in Iowa in 2000 by dividing the state’s total rent by its total acreage in 

production. Then, we divided this rate by the ERS land price index for Iowa in 2000. We 

then multiplied the land price index for all states by that number. This procedure yields 

an inter-spatially consistent set of land rental prices per acre. The final price index for 
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capital was computed as a geometric mean of the land rental rate and the price of other 

capital components using expenditure shares as weights. The price indices for material, 

labor, and non-land capital were already computed as geometric means (Melhim 2009).

After this procedure, we grouped farm-level input quantities into three 

categories; materials ( 1l ), labor ( 2l ) and capital ( 3l ).  The material input included 

purchased livestock, feed, seed and plant, fertilizer, chemicals, fuel and oil, utilities, and 

other livestock-related inputs.  The labor input category included hired, principal 

operator, and unpaid family labor.  Capital inputs consisted of maintenance and repair, 

machine hire and custom work, interest, rental and lease payments, depreciation, 

insurance, and property taxes.  We then used state-level prices for the three input groups 

to derive farm-level implicit input quantities by dividing the farm-level expenses for each 

input group by its state-level price (Melhim 2009).

5. RESULTS 

Both the translog and Fourier models converged using the iterative seemingly 

unrelated estimation procedure in SAS with system adjusted R-squared values of 0.3982 

and 0.8875 respectively.  Coefficient estimates are presented in Table A.1 for the translog 

model and in Table A.2 for the Fourier model.  Fourteen of the 27 translog parameter 

estimates are significant at the 5% level, and 41 of the 99 Fourier parameter estimates are 

significant at the same level.  To determine whether the translog is an adequate 

specification of the cost function, we computed a Wald test statistic to test whether all the 

sine and cosine parameters of the Fourier model are jointly zero.  With a test statistic of 
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270.03, we reject this hypothesis at the 5% level of significance (and also at the 1% 

level).  This rejection serves as a rejection of the translog model. Considering the test 

statistic, the large number of significant Fourier parameters, and its much larger R-square 

value, we conclude that the Fourier model does indeed provide a closer approximation 

and more reliable estimation of the unknown cost function.  We therefore use the Fourier 

model as a criterion for judging the extent of error in the translog estimates.  Estimates 

for the overall economies of scale (also referred to as multi-output scale economies) and 

the economies of scope measures for both the Fourier and translog models can be found 

in Table 3.  All measures are computed at the data means.

The measure of economies of scale suggests that the dairy industry operates in 

the region of increasing returns to scale at the data means.  That result is consistent across

functional forms.  However, although both functional forms render similar conclusions, 

only the economies of scale measures obtained from the Fourier are significantly greater 

than 1.0 at the 5% level.  The overall scale economies measure estimated by the translog 

is numerically only slightly greater than 1.0. In comparison with the Fourier model, the 

translog model understates the returns to scale, which is counter to the result found by 

Huang and Wang (2004) for the banking industry.

Our estimates of economies of scope are both much greater than zero and 

imply increasing returns to diversification.  As is the case with the economies of scale 

measures, the translog function also understates the gains from diversifying output.  

While both the Fourier and translog estimates are both large numerically, only the Fourier 

is significantly different from zero at the 5% level.  The Fourier estimates are 1.32 and 
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0.986, respectively for the OSE and SCOPE measures, compared to translog estimates of 

1.02 and 0.758. While the Fourier and translog models both imply that the mean dairy 

farm experiences multi-output economies of scale (OSE) and economies of scope 

(SCOPE), the much better fit of the Fourier model indicates that the estimated gains from 

increasing scale and diversifying output are underestimated by using the translog 

functional form.  Using a t-test, we conclude that the Fourier model estimates are 

significantly different than the estimates produced by the translog model for scale 

economies but not for scope economies.  The associated statistics (computed at the mean) 

are 3.45 and 0.45.  However, the large economies of scope results from both functional 

forms indicate that firms in the U.S. Dairy industry would be well advised to aggressively 

consider joint production of outputs to realize and enjoy economies of scope, which will 

allow for the highest degree of cost savings.  

Our conclusion about positive economies of scale and scope for the mean firm 

in this industry are consistent with Melhim (2009) who used an alternative locally 

flexible functional form, the normalized quadratic, with the same data as we used.  

Melhim’s (2009) estimate (under certainty) of economies of scope was a statistically 

significant 0.27, which is also an underestimation when compared to the globally 

accurate Fourier model.  Like the translog, it rendered evidence of statistically 

insignificant increasing returns to scale.  We therefore conclude that both the translog and 

normalized quadratic functional forms numerically underestimate both scale and scope 

economies.  Our conclusion of increasing returns to scale and positive scope economies is 

qualitatively the same as Melhim, O’Donoghue, and Shumway’s (2009) study which 
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used a nonparametric approach and data from the 1992, 1997, and 2002 US Agricultural 

Censuses.  

In considering alternate firm sizes, we find that scale and scope economies 

diminish as firm size increases.  The Fourier estimates imply that the largest 5% of dairy 

farms experience constant overall returns to scale and significant and very large scope 

economies.  The translog consistently underestimates the gains to be had from economies 

of scale and scope even for the largest firms; it implies that they experience significantly 

decreasing overall returns to scale and insignificant scope economies.   We conclude that 

dairy farms of all sizes would be well advised to continue diversification of production in 

order to reap the benefits of economies of scope and that the smallest 75% of dairy farms 

can reap overall economies of scale by additional growth.  

6. CONCLUSIONS

Using a Fourier globally flexible functional form, we conclude that the United 

States dairy industry enjoys both increasing returns to scale and increasing returns to 

diversification.  We conclude that the Fourier model provides a much better fit of the 

ARMS data than the translog does and that the translog underestimates each economy 

measure.  The significant differences in policy implications and the substantial 

differences in model fit based on the functional form used should lead more researchers 

to consider the Fourier flexible form.  While in some studies (e.g., Huang and Wang 

2004) the translog model overstates the gains to be made from expanding production 

and/or diversifying and in others it underestimates those gains (e.g., the current study), it 
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is clear that the lack of reliability in estimates from the locally flexible functional form 

should motivate further attention to the global flexibility of the Fourier form.  This same 

conclusion applies relative to alternative locally flexible functional forms.

Policies geared towards increasing diversification by better access to 

information could potentially help firms in this industry, as could policies aimed at 

increasing the scale of production for some, such as the consolidation of smaller firms.  

However, consolidation warrants careful monitoring due to the potential for adverse 

environmental consequences (Melhim 2009) and the unlikely but real possibility of 

adverse impact on the perfectively competitive nature of the dairy industry (Skolrud, 

O’Donoghue, Shumway, and Melhim 2007). 

Further research is warranted in searching for the best basis polynomials for 

the Fourier series.  Sine and cosine are the standard polynomials used for Fourier 

research in economics, but other orthogonal trigonometric polynomials such as the Jacobi 

or the Laguerre could perhaps provide a closer approximation than sine and cosine.  

While it has been shown frequently that the translog functional form is indeed inferior to

the Fourier functional form, the use of alternative basis polynomials could improve this 

newer method even more.   
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FIGURE 1. Taylor series illustration

SOURCE: White 1980

FIGURE 2. Fourier series illustration

SOURCE: Weisstein 2009. 
Order of approximation: red-1, yellow-2, green-3, blue-4
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TABLE 1. Variable Definitions for Equations (2) and (3)

Variable/Coefficient Explanation

LnC Natural log of total cost

ou Constant term to be estimated

],...,,...[ 11 zMzlNl bbbbb an N+M vector of coefficients to be estimated, where N is 
the number of input prices and M is the number of output 
quantities used in the estimation.  For this study, N=3, 
M=4.

]','[ zlx  an N+M vector of l scaled natural log-input prices and z 
scaled natural log-output quantities.  The derivation of l 
and z are described in the text.

][ ijaA  an (N+M) x (N+M) square symmetric matrix of 
coefficients to be estimated

hh vu , coefficients to be estimated

],...,,...[ 11 hzMhzhlNhlh kkkkk an N+M vector which indicates which trigonometric terms 
to include in the Fourier Cost Function
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TABLE 2. Summary Statistics for Scaled Data

Summary Statistics

Variable Mean
Standard 
Deviation

Minimum Maximum

Sm 0.389 0.144 0.0368 0.853

Sl 0.290 0.134 0.0404 0.886

Sc 0.243 0.098 0.0073 0.738

l1 1.315 0.812 0.00003 5.253

l2 1.907 1.230 0.00002 5.999

l3 1.175 0.777 0.00003 4.748

z1 3.450 0.767 6.965E-6 6.000

z2 4.721 0.769 2.384E-6 5.999

z3 2.094 2.373 2.608E-6 5.999
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TABLE 3. Scale and Scope Results

Scale and Scope Results

Estimate Computed at: Fourier Translog

log

log0

:

:

TransFourierA

TransFourier

BBH

BBH





OSE Mean 1.32*** 1.02 3.45R

(0.09) (0.01)
OSE 75th Percentile 1.28*** 0.95 3.11R

(0.09) (0.05)
OSE 90th Percentile 1.04 0.89 0.84F

(0.15) (0.09)
OSE 95th Percentile 1.03 0.74*** 2.72R

(0.07) (0.08)

Estimate Computed at: Fourier Translog

SCOPE Mean 0.98*** 0.76* 0.45F

(0.26) (0.44)
SCOPE 75th Percentile 0.85*** 0.69** 0.50 F

(0.08) (0.31)
SCOPE 90th Percentile 0.78*** 0.57 0.48 F

(0.12) (0.42)
SCOPE 95th Percentile 0.74*** 0.53 0.36 F

(0.09) (0.57)
*** Implies significance at the 1% level, ** implies significance at the 5% level, and * 
implies significance at the 10% level relative to the null hypothesis of constant returns to 
scale for OSE and zero scope economies for SCOPE.  R Indicates a rejection of the null 
hypothesis and F indicates a failure to reject the null hypothesis of equal economy 
measures for both functional forms.
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APPENDIX
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TABLE A.1. Translog Iterated Seemingly Unrelated Parameter Estimates 

Parameter1 Estimate Standard Error t-Value tPr

bl1 -0.046 0.028 -1.62 0.106

bl2 0.895 0.032 27.26 <.0001

bl3 -0.007 0.028 -0.25 0.803

bz1 -0.271 0.279 -0.97 0.332

bz2 0.090 0.244 0.37 0.710

bz3 4.094 0.932 4.39 <.0001

a11 0.014 0.014 0.99 0.321

a12 -0.032 0.005 -6.28 <.0001

a13 0.013 0.018 0.74 0.459

a14 0.126 0.004 26.16 <.0001

a15 0.004 0.005 0.69 0.492

a16 0.00026 0.001 0.19 0.851

a22 -0.0051 0.003 -1.32 0.188

a23 0.031 0.006 4.77 <.0001

a24 -0.145 0.005 -26.03 <.0001

a25 -0.011 0.006 -1.62 0.104

a26 -0.015 0.001 -9.53 <.0001

a33 -0.022 0.024 -0.91 0.364

a34 0.042 0.004 8.70 <.0001

a35 0.007 0.005 1.29 0.197



27

a36 0.009 0.001 6.72 <.0001

a44 0.502 0.051 9.72 <.0001

a45 -0.053 0.059 -0.89 0.372

a46 -0.066 0.014 -4.72 <.0001

a55 0.099 0.043 2.30 0.021

a56 -0.122 0.011 -10.51 <.0001

a66 -0.048 0.02 -2.43 0.015

1Parameters starting with “b” indicate single variables (bl1 is the parameter for l1), and parameters starting 
with “a” indicate variables multiplied together (a11 is the parameter for l1*l1).  Parameters starting with 
“u” and “v” in Table A.2 indicate variables in the Fourier series (sine and cosine).
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TABLE A.2. Fourier Iterated Seemingly Unrelated Parameter Estimates

Parameter2 Estimate Standard Error t-Value tPr

bl1 -0.024 0.049 -0.500 0.620

bl2 0.288 0.025 11.580 <.0001

bl3 0.091 0.055 1.650 0.099

bz1 -0.282 0.430 -0.660 0.512

bz2 -0.160 0.767 -0.210 0.833

bz3 7.087 1.029 6.890 <.0001

a11 0.014 0.038 0.380 0.706

a12 -0.017 0.004 -3.970 <.0001

a13 0.027 0.011 2.520 0.012

a14 0.050 0.004 13.610 <.0001

a15 0.000 0.003 0.060 0.948

a16 0.000 0.001 -0.090 0.932

a22 0.007 0.007 0.980 0.329

a23 0.045 0.014 3.290 0.001

a24 -0.057 0.003 -17.900 <.0001

a25 -0.004 0.003 -1.450 0.148

a26 -0.005 0.001 -7.680 <.0001

a33 -0.149 0.038 -3.940 <.0001

a34 0.018 0.003 5.830 <.0001
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a35 0.002 0.003 1.000 0.320

a36 0.000 0.001 1.020 0.308

a44 0.307 0.133 2.320 0.021

a45 -0.026 0.042 -0.630 0.527

a46 -0.027 0.018 -1.520 0.130

a55 0.165 0.256 0.650 0.517

a56 -0.010 0.012 -0.870 0.385

a66 -0.243 0.026 -9.540 <.0001

u1 0.136 0.394 0.350 0.729

u2 -4.140 1.010 -4.100 <.0001

u3 0.279 0.351 0.790 0.427

u4 0.016 0.024 0.680 0.497

u5 -0.016 0.013 -1.290 0.196

u6 -0.026 0.023 -1.110 0.267

u7 0.117 0.153 0.770 0.442

u8 -0.594 0.255 -2.330 0.020

u9 -0.065 0.086 -0.760 0.446

u10 0.256 0.221 1.160 0.247

u11 0.384 0.267 1.440 0.151

u12 -0.068 0.097 -0.710 0.477

u13 0.020 0.003 5.880 <.0001

u14 -0.006 0.005 -1.360 0.174
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u15 -0.016 0.008 -2.070 0.038

u16 -0.006 0.006 -1.200 0.232

u17 -0.101 0.026 -3.870 0.000

u18 -0.038 0.021 -1.790 0.074

u19 0.010 0.003 3.290 0.001

u20 -0.012 0.004 -2.890 0.004

u21 -0.009 0.005 -1.990 0.047

u22 1.120 0.235 4.770 <.0001

u23 0.007 0.006 1.310 0.189

u24 1.095 0.232 4.730 <.0001

u25 0.000 0.002 0.410 0.680

u26 0.007 0.003 2.440 0.015

u27 0.005 0.003 1.900 0.058

u28 0.000 0.002 0.180 0.855

u29 0.007 0.003 2.130 0.034

u30 -0.012 0.004 -3.070 0.002

u31 1.093 0.232 4.720 <.0001

u32 -0.003 0.006 -0.470 0.635

u33 1.137 0.235 4.840 <.0001

u34 0.002 0.002 1.200 0.231

u35 0.001 0.002 0.780 0.434

u36 0.000 0.003 -0.190 0.848
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v1 -0.389 0.323 -1.210 0.229

v2 1.496 0.480 3.120 0.002

v3 -0.019 0.152 -0.110 0.768

v4 0.021 0.054 0.390 0.698

v5 0.050 0.014 3.650 0.000

v6 -0.103 0.049 -2.110 0.035

v7 -0.021 0.162 -0.130 0.896

v8 -0.164 0.222 -0.740 0.460

v9 -0.027 0.081 -0.340 0.735

v10 0.008 0.158 0.060 0.956

v11 -0.100 0.176 -0.570 0.568

v12 -0.036 0.078 -0.460 0.647

v13 -0.021 0.005 -3.930 <.0001

v14 0.018 0.005 3.240 0.001

v15 0.036 0.013 2.820 0.005

v16 -0.004 0.008 -0.550 0.580

v17 0.006 0.015 0.400 0.690

v18 0.023 0.013 1.790 0.075

v19 0.007 0.003 2.340 0.019

v20 0.001 0.004 0.340 0.735

v21 0.007 0.004 1.790 0.074

v22 -0.060 0.012 -5.140 <.0001
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v23 -0.026 0.007 -3.910 <.0001

v24 -0.063 0.015 -4.230 <.0001

v25 0.001 0.002 0.760 0.445

v26 0.000 0.001 0.140 0.891

v27 0.005 0.003 1.420 0.156

v28 0.004 0.003 1.170 0.241

v29 0.002 0.003 0.470 0.638

v30 -0.006 0.004 -1.650 0.099

v31 0.051 0.013 4.010 <.0001

v32 0.025 0.007 3.760 0.000

v33 0.064 0.015 4.410 <.0001

v34 -0.005 0.002 -2.130 0.034

v35 -0.001 0.003 -0.340 0.736

v36 0.073 .0015 4.182 <.0001

     

    


