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AN EXPLORATION OF NAÏVE BAYESIAN CLASSIFICATION AUGMENTED

WITH CONFIDENCE INTERVALS

Abstract

by Paul Anthony Mancill Jr, MS
Washington State University

August 2010

Chair: Scott A. Wallace

Instance classification using machine learning techniques has numerous applications,

from automation to medical diagnosis. In problem domains such as spam filtering, clas-

sification must be performed quickly across large datasets. In this paper we begin with

machine learning techniques based on näıve Bayes and attempt to improve classification

accuracy by taking into account attribute and class confidence intervals. Our classifiers

operate over nominal datasets and retain the asymptotic time complexity of linear learn-

ing and prediction algorithms. We present results indicating a modest improvement over

the näıve Bayes classifier alone across a range of multi-class nominal datasets.
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Chapter 1

Introduction

1.1 Problem Space

Machine learning surrounds us, even if we do not recognize it as such, comprising the

core of every Internet search engine, spam filter, and data mining application. Conceived

of as a general technology tool, supervised learning provides the computer scientist with

the opportunity to apply the knowledge of subject matter experts to vast seas of data.

Discussing attributes of rational agents in their text on artificial intelligence, Russell

and Norvig list machine learning (ML) as a necessary capability in order to pass the

Turing test, defining it as “the [ability] to adapt to new circumstances and to detect

and extrapolate patterns” [1, p. 3]. Witten and Frank approach the subject from the

perspective of a world in which we are inundated with potentially valuable data, provided

we can make sense of it, and treat ML as synonymous with the term data mining. We

focus on a specific problem in ML, that of supervised learning for classification, wherein

the ML algorithm develops a statistical model by observing instances during training. An

instance is the smallest quantum of a pattern to be learned by an algorithm; training

consists of exposing the ML algorithm to example instances for which the correct answer

(or class) is known and provided to the algorithm. Once trained, the algorithm is tasked
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with predicting the correct class for subsequent instances, known as either testing or

prediction. Machine learning is a subfield of artificial intelligence because when performed

with a high level of accuracy, we might say that the computer has “learned” to recognize

instances of a pattern and is acting rationally by consistently classifying them correctly.

Instances are comprised of one or more attributes or features (the terms are used in-

terchangeably), each of which has a value. The values can be character strings, integers

or real-valued numbers, Boolean flags, members of a discrete set of values (of any of the

aforementioned types), and in some cases absent within an instance. Not all ML algo-

rithms perform equally well in all problem domains, or are suited for particular attributes

types or classes. Classification datasets for which all of the attribute and class values

belong to a discrete set are referred to nominal. In order to classify real-valued data,

either the ML algorithm must be equipped to construct a model from it, or the data can

discretized into ranged buckets to create a nominal dataset. Nominal datasets can rep-

resent a wide variety of real-world classification problems. Email filtering is an example

where headers and keywords can be represented as nominal attributes, and the classifica-

tion is either spam or ham (non-spam). Also consider a medical diagnosis dataset where

the attributes are a series questions of the form “the patient exhibits symptom x,” and

the resulting diagnosis (class) belongs to the set {immune, susceptible, infected}. The

difference in possible classes between these examples illustrates the delineation between

2-class or binary classification and the multi-class medical diagnosis.

The nominal, multi-class classification problem in machine learning is the province in

which our research takes place. We focus specifically on näıve Bayesian (NB) classifiers

and how their performance, in terms of classification accuracy, might be improved through

the use of confidence intervals. Confidence intervals represent the expected uncertainty

the classifier may have in a specific attribute or class based on its prevalence in the dataset.

We defer a more thorough introduction of confidence intervals to Section 2.2, and proceed
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as follows.

In the remainder of the introductory chapter, we posit our problem statement and

the contributions of this thesis. We then provide an introduction to our tool set, back-

ground on näıve Bayes classification, and methods of evaluation for machine learning

classifiers. Next we discuss related work before delving into the background material and

initial experiments with confidence intervals in Chapter 2. One particular CI-augmented

classifier presented itself as a successful candidate during initial experimentation and is

thus the subject of the remainder of the thesis. In Chapter 3 we evaluate our classifier’s

performance against both stock and real-world datasets and in the presence of noise and

underflow, the latter suggesting a potentially useful heuristic based on the prediction con-

fidence interval attribute. We conclude with a discussion of the run-time performance of

NB-variants in Chapter 4 and future logical steps for our research in Chapter 5.

1.1.1 Problem Statement

With the volume of data to be classified growing exponentially, and despite Moore’s Law

and the steady progress in the speed of commodity hardware, an imperative remains for

ML algorithms with low asymptotic run-time complexity. The idea of a classifier that

enhances performance over näıve Bayes while maintaining its asymptotic complexity is

therefore one component of our motivation. The other is to explore the utility of confidence

intervals (that is, the frequency of occurrence of an attribute or class value relative to

sample size) as an aspect of classification. These frequencies are gleaned during training,

and so are in essence “free” in the sense of time complexity. Thus our task is to either

lend credence to or dispel the notion of confidence intervals or derivatives thereof as a

useful facet of the machine learning problem.
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1.1.2 Contributions of the Thesis

This work extends upon prior work regarding confidence intervals in the area of nomogram

visualization of näıve Bayesian classifiers by Možina et al. [2] by expanding upon their

proposition that confidence is useful as an element of visualization through the conjecture

that confidence is useful for classification itself. We first establish a correspondence be-

tween confidence intervals and NB prediction accuracy for the multi-class problem, and

then proceed to investigate the viability of confidence intervals in the prediction calcula-

tion. We contribute a new variant to the family of näıve Bayesian classifiers that often

out-performs standard NB for several stock and real-world datasets based on three sep-

arate evaluation metrics. Furthermore, we propose that our CI-augmented NB classifier

can be used as a general replacement for NB, based on empirical observations that it “does

no harm,”1 meaning that the incorporation of CI does not significantly reduce classifier

performance on datasets for which it does not improve it.

1.1.3 Glossary of Terms

We introduce several terms that will be used throughout this work which may have specific

definitions in the field of machine learning or usage which we adopt by convention to reduce

confusion.

attribute Attribute, feature, and attribute-value are all synonymous and refer to any

datum other than class appearing in the training set and used during model creation

or in the test set and evaluated during prediction.

conditional probability The probability of an attribute value, given the class.

conviction The term conviction, often qualified by either weak or strong, is used in lieu

of confidence to denote the relative magnitude of a confidence interval in the sense

1Often attributed to the Hippocratic Oath, but originally from the Latin primum non nocere.
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of smaller confidence intervals implying stronger conviction (lower variability) than

larger ones. The term confidence is used to refer to both various confidence intervals

(or CIs) and the confidence used when evaluating statistical relevance.

ensemble learning Machine learning techniques that train and test multiple classifiers,

employing a (possibly weighted) voting algorithm to produce the final prediction.

normalize To scale the numbers in an array such that the sum of the normalized numbers

is 1. This is often done to allow class predictions to be interpreted as percentages.

overfitting Term used to describe a ML algorithm that has learned its training set to

the point that it fails to generalize well during testing.

prior Term referring to the probability of a class in the dataset.

1.2 Background Topics

In this section we introduce the Weka data-mining software and then review the me-

chanics of näıve Bayesian classification and the related topic of Laplace estimation before

demonstrating a classification example.

1.2.1 Weka

Although not a direct subject of our research, the Weka machine learning and data-mining

software [3] figures prominently in our work and should be afforded a brief introduction

as we will refer to it throughout this thesis. Weka is an collection of machine learning

algorithms and tools for data-mining tasks supported by the University of Waikato in

New Zealand.2 It includes tools for data pre-processing, visualization, and classification,

2It is also the name of a flightless bird endemic to New Zealand also known as a woodhen (Gallirallus
australis).
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in addition to other approaches to the ML problem including regression, clustering, and

association rules. The toolkit reduces the barrier to entry to ML tasks by providing a

large collection of implemented algorithms, integrated with GUI-based tools for interactive

evaluation (the Explorer and KnowledgeFlow modules) and algorithm comparison (the

Experimenter) within a Swing-based GUI. The Experimenter enables the evaluation and

comparison of multiple ML algorithms as part of a single logical experiment, aggregating

and comparing results from any number of individual classifiers. Command-line modes of

interaction are also supported, including support for many ancillary tasks to ML research,

e.g. attribute selection and filtering, discretization, and conversion between various data

formats. The automation of the arduous and error-prone tasks of evaluation and statistical

comparison (discussed further in Section 1.3) permits rapid investigation into strategies

of classifier improvement, allowing us to cover a greater breadth of hypotheses. The

software is written in Java and available as open source under the GNU General Public

License, providing both an accessible source of information for implementation details

of other researchers’ code and a convenient and formidable library upon which to base

our research. For these reasons, Weka is an ideal foundation for our work on confidence

intervals.

1.2.2 Näıve Bayesian Classification

The basis of näıve Bayesian classification is Bayes’ rule, shown in (1.1), which allows the

computation of a conditional probability, P (b|a), given the two class priors P (a) and P (b),

and the conditional probability of P (a|b).

P (b|a) =
P (a|b)P (b)

P (a)
(1.1)

The rule is quite useful in a classification context where the datum sought is the

probability of class c given a set of attribute values, X (an instance). The method
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requires that the probability of each attribute value ai relative to the class be known

or estimated, and employs the product rule—that is, assumes conditional independence

amongst the attribute values P (ai|c)—resulting in the following formulation:

P (c|X) =
P (c)

∏
i P (ai|c)

P (X)
(1.2)

Because the machine learning classification task is supervised, both the probabilities

P (c), or priors, and the attribute probabilities P (ai|c) are easily determined simply by

counting occurrences in the training set. For a NB classifier to make a prediction, the

probability P (c|X) for all possible classifications, c ∈ C, is calculated in order to find the

maximum-likelihood classification hypothesis, often referred to as maximum a posteriori

or MAP [1, p. 718].

For this computation the P (X) terms are constant and therefore typically ignored.

Thus the prediction task is reduced to computing Equation 1.3 for each instance in the

test set. For more information about näıve Bayesian classification, Elkan provides concise

overview in [4].

predX(c) = argmax
c

P (c)
∏
i

P (ai|c) (1.3)

1.2.3 Laplace Estimators

One potential complication when computing class probabilities is that one or more of

the attribute probability terms, P (ai|c), is zero. This occurs whenever a specific attribute

value does not appear in for the class c during the training of the classifier. The effect is to

cause the predicted class probability of the instance, P (c|X), to become zero, irrespective

of either the class prior or other attribute probability terms. An approach frequently

employed is to initialize all attribute value counts to a minimum of one (or another

small constant), referred to in the literature as a Laplace estimator [3, p. 91]. In actual
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implementations of NB, such as the NaiveBayes classifier found in Weka, the estimator

follows slightly more complex rules for nominal datasets to ensure that probabilities are

strictly in the range (0.0–1.0), to wit:

• When calculating the class priors for a given class (P (c) in Equation (1.3)), the

number of instance of the given class (the dividend) is taken as the actual number

of instances of that class plus 1. For the overall count of instances in a dataset (the

divisor), the estimator uses the number of instances plus the number of classes.

P (c) =
nc + 1

n+ |C|
(1.4)

• When calculating the conditional probabilities for a given class, P (ai|c), the numer-

ator is the count of instances of a specific attribute value increased by 1, divided

by the count of all instances of that attribute (given the class) plus the number of

values the attribute can assume given the class.

P (ai|c) =
nai(c) + 1

na(c) + |Aic|
(1.5)

Viewed in the limit as n → ∞, the estimator terms are insignificant. However, for

datasets with few instances relative to the number of attributes or classes, the use of a

Laplace estimator has a potentially disproportionate effect on the class priors and con-

ditional probabilities. Specifically, when nc = 0 or nai(c) = 0, the probability of such

features is assumed to be uniformly the smallest representable probability in the model.

In practice the values of n are sufficiently large relative to the class and attribute value

counts so as not to pose a practical issue, and teaching machines to learn very small prob-

lems is not a worthwhile pursuit anyway. However, the use of the estimator may detract

somewhat from our intuitive sense of the probabilities when working out small illustrative

problems by hand, as we will observe in the following example.
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1.2.4 Example NB Calculation

We perform a simple multi-class prediction using a näıve Bayesian classifier with a Laplace

estimator to illustrate the procedure. We train our classifier with four instances of the

Boolean logic functions XOR, AND, and NOR as per Table 1.1 and observe the state of

the model after training in Table 1.2. The effect of the Laplace estimator on such a small

training set is evident. For example, we would expect the class prior of XOR to be 2/4 (2

of 4 instances), but instead it is 3/7 as per Equation (1.4). The conditional probabilities

for each attribute value are affected by the estimator as well; attribute values such as

p(x = 0|AND), which we would compute to be 0 from the training data becomes 1/3.

By Equation (1.5), the numerator contains 0 instances where the class is AND and x = 0

plus the constant 1, and the denominator enumerates 2 instances for the class AND plus

1 possible value of x given the class AND.

x y Class

0 1 xor
1 0 xor
1 1 and
0 0 nor

Table 1.1: Näıve Bayes Example Dataset

Priors
Conditional Probabilities

x=0 x=1 y=0 y=1

xor 3/7 2/4 2/4 2/4 2/4
and 2/7 1/3 2/3 1/3 2/3
nor 2/7 2/3 1/3 2/3 1/3

Table 1.2: Näıve Bayes Example Model After Training

We can now take an instance, say x = 1, y = 0, and apply Equation (1.2) by looking up

the values in the model (Table 1.2). For each class, we compute the predicted probability
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as demonstrated in Table 1.3. We then apply Equation (1.3) to the values in the raw

result column to make a prediction of the correct class XOR. Predictions for the other

possible values of x and y also yield the expected class.

Prediction p(c)× px=1(c)× py=0(c) Raw Result Normalized Result

p(xor|x = 1, y = 0) 3/7 × 2/4 × 2/4 0.1071 0.4576
p(and|x = 1, y = 0) 2/7 × 2/3 × 1/3 0.0634 0.2712
p(nor|x = 1, y = 0) 2/7 × 1/3 × 2/3 0.0634 0.2712

Table 1.3: Näıve Bayes Example Prediction

1.3 Performance Evaluation

If we were to test our NB classifier model with an instance of each of our 3 functions, we

would observe that it is able to predict instances of each correctly, i.e. it would have an

accuracy of 100%. Admittedly, this is not overly impressive as the training set and test set

are identical, and we have done a moderate amount of counting and floating point math

to replicate the functions of a few basic logic gates. However, we use this opportunity

to introduce the topic of how classifiers are evaluated in the supervised learning context.

The first item to address is the notion that we are not really learning anything if we are

testing using the same data used to train the model. After all, we could have implemented

a lookup table just as easily (although we would not be able classify instances with

unobserved attribute values). The technique of cross-validation, in conjunction with the

Student’s t-test, addresses this concern.

Next we then turn to metrics of evaluation to the end of comparing one classifier to

another. In [5], Ferri, Hernández and Modroiu compare 18 classification performance

measures and group them into 3 separate families: those based on a threshold and a

qualitative understanding of error, those based on a probabilistic understanding of error,
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and those based on how well the model ranks instances. Their paper provides a good

overview of the metrics available and then goes on to discuss correlation between metrics

within families. In our work, we select a metric from each family, accuracy, root mean-

squared error (RMSE ), and area under the curve, or AUC. These are introduced in turn

following the discussion of cross-fold validation.

1.3.1 Cross-fold Validation

“The standard way of predicting the error rate of a learning technique given a single, fixed

sample of data is to use stratified 10-fold cross-validation” [3, p. 150]. Cross-validation

(CV) is the technique of partitioning the dataset into n approximately equally sized

partitions, or folds. Each fold of becomes a test set, and the remaining instances comprise

its corresponding training set. The machine learning algorithm is trained and evaluated

for each fold and the results averaged to determine the overall accuracy of the algorithm.

Stratification is a variant upon partitioning where the relative class frequencies present in

the dataset are maintained within each fold. Another variant of cross-validation is leave

one out, often seen in the literature as LOOV, in which the number of folds equals the

number of instances. For a dataset with k instances, there are k folds, each comprised

of a test set of one instance and a training set of k − 1 instances. This technique can be

computationally expensive for large datasets, and according to the evaluation by Kohavi

[6], standard deviation of NB classification accuracy does not improve significantly in

k-fold validation once k > 10. 10-fold cross-validation is used prevalently for algorithm

evaluation in machine learning research and is used in our work unless noted.

An alternative to cross-validation is bootstrapping or 0.632 bootstrap, wherein a train-

ing set of size n is constructed from a dataset (also of size n) by random sampling with

replacement. Due to the random sampling, there will be some repetition in the training

set; any instance not selected for training is added to the test set. The probability of an in-
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stance not being selected for the training set is (1−1/n)n ≈ e−1 = 0.368, leaving (1−1/e)

(or 63.2%) of the instances to appear in the training set) [3, p. 152]. This process is done

multiple times and the results of each evaluation averaged. “The bootstrap procedure is

good at estimating [classifier] error for very small datasets. However, like [LOOV] it has

disadvantages” that in some situations make it “misleadingly optimistic” [3, p. 153].

Another standard technique is to evaluate a learner’s performance across multiple

cross-fold validations, each initiated with a different random seed, in order to minimize

the potential random bias of any one of the cross-fold validation runs [3, p. 151]. The

mean of those runs, again typically numbering 10, is taken as the performance of the

learning method. The Student’s t-test, or simply t-test is used to determine whether the

mean of a set of samples is significantly greater or less than the mean of another [3,

p. 154]. Specifically, we use Weka’s paired corrected t-test unless otherwise noted to

determine whether a classifier’s performance is statistically different than another’s after

10 times 10-fold cross validation. The significance threshold used for the t-test is 0.05.

Despite describing a procedure for constructing and evaluating 100 individual models

per learning method, we have not yet declared what value it is we are averaging—i.e. what

metrics do we use to compare the relative merit of learners to each other, and how do we

visualize classifier results?

1.3.2 Accuracy and the Confusion Matrix

The confusion matrix is a tabular representation of the predictions of a nominal machine

learning classifier. It has one row and one column for each class in a nominal classification

problem; typically rows represent the predicted classes while columns represent the actual

classes. At the intersection of each row and column are the counts of test instances that

meet the row and column criteria when the model is evaluated (i.e. predicted) by the

classifier. For a 2-class problem, the general form of the matrix is shown in Table 1.4.
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Predicted Class

a b

actual class
a true positive (TN) false negative (FN)
b false positive (FP) true negative (TN)

Table 1.4: Confusion Matrix for 2-class Problem

Couched in the nomenclature of the confusion matrix, the accuracy for a 2-class learn-

ing problem is calculated via Equation 1.6, although it is equally valid to think of accuracy

as simply the ratio of the correct predictions over the total number of instances.

accuracy =
TP + TN

TP + TN + FP + FN
(1.6)

Therefore accuracy is a unit-less scalar that ranges between 0–1 that can be used to

compare ML classifiers directly. It benefits from an immediately accessible interpretation

as the percentage of correctly identified instances in the test dataset—i.e. as a grade—and

is very often expressed as a percentage between 0 and 100%.

Multi-class problems extend the dimensions of the matrix to k×k for a k-class problem.

The 4× 4 confusion matrix output for a 4-class problem appears in Table 1.5. The layout

varies somewhat from the example 2-class problem merely as a matter of convention; the

layout in Table 1.5 is similar to the layout used by Weka. In this example the classifier was

unable to correctly classify any of the test instances of the class d (secondary hypothyroid),

instead predicting these instances as belonging to class a (negative).

a b c d ← classified as

3470 2 9 0 a = negative
14 180 0 0 b = compensated hypothyroid
5 0 90 0 c = primary hypothyroid
2 0 0 0 d = secondary hypothyroid

Table 1.5: Example Confusion Matrix for 4-class Problem

13



Accuracy in the multi-class case is calculated by taking the ratio of the sum of the

diagonal of the confusion matrix to the sum of all entries in the matrix. For this example,

hypothyroid from the UCI dataset [7], the accuracy is 3740 over 3740 + 32 (the diagonal

plus the non-diagonal terms), for a result of 99.15%. Referring back to Equation (1.6),

obviously the concepts of true and false positives and negatives must be grounded in an

evaluation of the predictor for a particular class, echoing back to the MAP evaluation

for NB discussed in Section 1.2.2. That is, true positives do not appear along the entire

diagonal of the confusion matrix; they only appear in a single cell along the diagonal for

class being evaluated. Similarly, it is nonsensical to consider false positives in any other

column save this same column. Evaluating accuracy for a multi-class problem is thus

equivalent to weighting the accuracy for each of the k classes by the number of instances

in that class, and then dividing by the total number instances.

The qualitative nature of accuracy is quite evident in this formulation. Any correct

prediction is a good prediction, or true; any incorrect prediction is false. However, recall

that the NB classifier not only predicts the class. The individual class predictions in

Equation (1.3) each have a real-valued number associated with them. Another common

practice is to take the predicted class probabilities and scale them such that they sum

to 1. This is referred to as normalizing the predictions so they can be interpreted as

percentages, and the task is used for other values in our work as well.

1.3.3 Root Mean-Squared Error (RMSE)

Root mean-squared error is an other scalar metric from the probabilistic family as per

Ferri, Hernández and Modroiu [5] which measures the deviation from the true probability.

“These measures are especially useful when we want an assessment of the reliability of the

classifiers, not measuring when they fail but whether they have selected the wrong class

with high or low probability.” Witten and Frank [3] point out that RMSE is typically used
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to evaluate numeric predictions (regression), but include it in their evaluation of nominal

classifiers. The standard equation is given in Equation (1.7), where pi is the predicted

value, ai the actual value, for n instances. Equation (1.8) extends this for k classes. In

the context of a nominal predictions, the actual value is taken to be 1 for the actual class

of the instance and 0 for all other classes. The pi terms are the normalized prediction

probabilities introduced in Section 1.3.2.

RMSE =

√∑
i(pi − ai)2

n
(1.7)

RMSEnominal =

√∑
i

∑
k(pik − aik)2

nk
(1.8)

In order for a nominal classifier to achieve a perfect RMSE of 0, it would not only

have to be 100% accurate, but also assign a prediction probability of 100% to the correct

class for each instance and 0% to any other classes. We know from the Laplace estimator

discussion that 0% predictions will not occur (except in the case of underflow or rounding

due to limited precision), so clearly the RMSE can only asymptotically approach the

ideal. However, we may consider a classifier that assigns a probability of 95% to a true

positive to perform better than one that assigns a probability of 51%, hence we include the

metric. We note however that for the multi-class problem the situation is more pronounced

because the “winning” prediction probability may only slightly exceed 1/k for the k-class

problem. For this reason we take care to only compare RMSE metrics between classifiers

evaluating the same datasets.

In Table 1.6 we demonstrate a sample calculation of RMSE from our 3-class NB

example (Table 1.3) for the first (XOR) prediction. As you can see, there is error despite

predicting the class correctly. We interpret lower error values as indicators of greater

certainty in the classifier’s predictions.
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Predicted (normalized) Actual |actual − predicted|

0.4576 1.0 0.5424
0.2712 0.0 0.2712
0.2712 0.0 0.2712

RMSEx=1,y=0 =
√

0.54242+0.27122+0.27122

1×3
= 0.3835

Table 1.6: RMSE Example Calculation

1.3.4 Area Under the ROC Curve (AUC)

AUC (area under the curve) of the Receiver Operating Characteristic (ROC) graph is

another metric frequently used to compare machine learning algorithms. The ROC curve

plots the rate of true positives versus false positives by evaluating the ranked predictions

of the classifier. The plotting is performed on a standard Cartesian n × n graph, where

n is the number of test instances, although the x and y axes are typically labelled as

percentages of the total number of attributes. Ranking involves sorting predictions by

their predicted class probabilities in descending order and then evaluating each prediction

to determine whether it is correct. Correct predictions increment the y-coordinate whereas

incorrect predictions increment the x-coordinate.

A classifier that ranks well will accumulate true positives “more quickly” (as a rate with

respect to the number of instances) than false positives. When expressed as percentages,

the rates and therefore the axes range between 0–1. The AUC metric is the area under

the curve constructed when the points on the graph are connected with line segments; by

convention a line segment connects the last prediction with the point 1,1. Thus the AUC

also ranges between 0–1, where higher values indicate better classifier performance. The

ideal graph is simply a vertical line from the origin and forms a unit square with an AUC

of 1.

These rates are affected by the order in which instances are evaluated (hence the reason

for using ranked predictions), and they also depend on the training and test mixture.
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Figure 1.1: ROC Curve for Credit-G Dataset

For this reason, the ROC curve is typically generated taking the average of the ranked

prediction after several rounds of cross-validation [3, p. 169]. Because the AUC is a

scalar, it can be used like accuracy and RMSE to assess relative classifier performance.

An example depicting an ROC curve is show in Figure 1.1. The AUC for this classifier is

0.8158.

For multi-class problems, the definition of AUC must be expanded because each class

has its own concept of true or false positive/negative classification results. To depict this

in 2 dimensions requires k AUC curves, one for each class ck, where TP and TN indicate

the that instance truly belongs to class ck, and instances of all other classes are treated

as negatives. In the 3-class case one intuitive approach is to extend to 3 dimensions and

calculate the volume under the surface (VUS), which like AUC is unit-scaled and provides
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a metric for comparison. The general k-class case can only be visualized piecewise using

projections and loses its intuitive interpretation. Weka employs the weighted average

approach taken by Provost and Domingos in [8] and depicted in Equation (1.9), and hence

our work uses this formulation of AUC as well. In [9] Fawcett notes that Provost and

Domingo’s approach has the disadvantage of being sensitive to class distributions—i.e. the

AUC of classes with higher prior probabilities are weighted more heavily. An alternative

proposed by Hand and Till [10] found in the literature is to compute the multi-class AUC

by calculating the AUC for each class pairwise with respect to every other class and sum

these terms and scale by 2/(k(k − 1)) to give a measure they call M . The advantage of

this approach is that it results in the pairwise discriminability between classes, but the

disadvantage is that it is quadratic in the number of classes (there k(k − 1)/2 such pairs

of classes) and, according to Fawcett, there is no easy way to visualize the surface whose

area is being calculated.

AUCtotal =
∑
ci∈C

AUC(ci)ṗ(ci) (1.9)

We note that performance evaluation and AUC in particular are areas of active research

[11, 12]. For binary classification problems there are 4 different types of AUC according

to Vanderlooy and Hüllermeier [13]. The binary AUC we first introduced is equivalent

to the Wilcoxon-Mann-Whitney statistic. According to the work in [14, 15], AUC is

a better indicator of classifier performance than accuracy. This claim is based on an

increased sensitivity to in ANOVA (analysis of variance), independence with respect to

the decision threshold (meaning that any correct prediction is preferred), and is invariant

to a priori class distribution in the dataset (although this only holds true for binary

class problems). Finally, Fawcett provides a good academic overview of both binary and

multi-class ROC analysis in [9].

18



1.3.5 Other Metrics

For accuracy, RMSE and AUC, the relative merit of a correct or incorrect prediction is

considered equal—that is, they carry the same weight, and this across all classes. In

some domains, the cost of an incorrect prediction (false positive or false negative) differs

from the cost of a correct prediction (true positive or true negative). Examples include

the field of information retrieval, where emphasis is placed on the true positive rate (as

compared to the true negative rate; after all, knowing the number of documents that truly

do not match a query is not very useful to a search engine user), and medicine, where

the predictive power of a diagnostic test is relative to the overall number of cases that

go either detected or undetected, not necessarily the overall patient population. Several

classifier metrics frequently encountered in domain-specific literature are introduced here

briefly.

precision The ratio of relevant results to the overall number of results classified as true.

precision =
TP

TP + FP
(1.10)

recall The ratio of relevant results to the number of relevant instances in the corpus.

recall =
TP

TP + FN
(1.11)

F-measure (also known as F-score or F1) The harmonic mean of precision and recall,

this weights precision and recall equally in terms of importance (cost).

F-measure =
2 ∗ precision ∗ recall
precision+ recall

(1.12)

sensitivity Common terminology in the medical field equivalent to recall.
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specificity In medicine, the ratio of patients without a condition who receive a negative

test result to the overall number of patients without the condition.

specificity =
TN

TN + FP
(1.13)

Although the examples above are typically used for 2-class problems (either a docu-

ment is relevant or irrelevant to a search; either a patient diagnosis is correct or incorrect),

the concept of cost is readily extended to multi-class domains. For an overview of cost-

based classifier evaluation, see [3, Section 5.7]. In our work, we compare the accuracy,

RMSE, and AUC of classifiers using 10 times 10-fold cross-validation for the general case,

irrespective of cost.

1.4 Related Work

Although not universally accepted as detrimental [16, 17], one of the primary criticisms

of näıve Bayes is that the assumption of truly independent conditional attributes prob-

abilities is often incorrect (even “grossly violated”) in real-world datasets, and that this

harms performance [18, 19, 20]. For this reason, a classifier should somehow account for

feature interaction. Various approaches exist for improving the classification performance

of näıve Bayes based on this assumption; these can generally be categorized into two

groups. The first is feature selection, where irrelevant, noisy, or redundant attributes are

removed from the dataset, improving the classifier’s performance and reducing its run-

time and memory requirements. The second is the combination of NB with other machine

learning algorithms, which we term hybrid or structural variants of NB.

In [21] Jiang et al. posit four general categorizations, the two above, and a third

utilizing local learning (citing NBTree as an example) and a fourth referred to as data

expansion. We assert that NBTree [22] can be considered a structural approach, blending
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the structure of a decision tree with a forest of NB classifiers, each trained on attributes

remaining after traversal of the decision tree. Their fourth approach describes a lazy

learner algorithm that expands the training set with clones of existing instances based

on the similarity of the test instance to training instances. This can also be considered

a hybrid approach in which a nearest neighbor algorithm is used to detect similarity,

and then bootstrapping or another commonly used ensemble learning technique adjusts

the instance counts in the NB model. We briefly examine each approach to establish a

categorization for our algorithms based on attribute and instance confidence intervals.

1.4.1 Feature Selection

Feature selection comes in two forms, filters and wrappers [23]. At their core, both appeal

to Ockham’s razor in that equivalent or improved classifier performance on the training set

using fewer attributes should result in less overfitting and therefore increased generality

of the learned hypothesis when the model is applied [24]. Features may be filtered based

on metrics such as the covariance of attribute values. Filters select attributes prior to

construction of the model and so are independent of the algorithm used for machine

learning. Wrappers, by contrast, select attributes based on their effect on the machine

learning algorithm’s performance. Attributes are added (or removed) and then the model

is built and evaluated. Each evaluation is compared to those prior, resulting in a search for

the optimal feature set. Both filters and wrappers can be computationally intensive, the

former because it involves search across all features in the training set (and its complexity

therefore expressed in terms of the number of attributes), and the latter because it requires

search, each step of which necessitates construction and evaluation of the model.

Related to feature section (and an idea that we will attempt to incorporate into our

CI-based classifiers later) is emphasizing and deemphasizing features so that the relative

influence of an attribute on the prediction depends upon its weight. Zhang and Sheng’s
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work on weighted näıve Bayes [25] modifies attribute weights by exponentiation. Their

task is to learn an optimal (or at least improved) set of attribute weights during training

that result in improved performance.

1.4.2 Hybrid Variants

Structural variants have received considerable research attention, many with implemen-

tations available directly within Weka. In addition to NBTree, in which decision trees

employ NB classifiers as leaves, we introduce several others here. Many of them apply to

Bayesian networks, which are a generalization of the flat näıve Bayesian classifier that is

our primary focus. As discussed in [26], learning an optimal Bayesian network classifier

is NP-Hard, hence the research interest in heuristic approaches.

• Hidden Näıve Bayes (HNB) modifies the structure of the learner by creating a

(hidden) parent for each attribute to construct a Bayesian network that accounts

for the influences of other attributes [27].

• DMNBtext [28] (Discriminative Multinominal Näıve Bayes) is another Bayesian

network learner geared towards text classification that employs a discriminative

learning technique to establish and refine parameters (frequency estimates of the

conditional probabilities of attribute parents) during model creation.

• AODE (Averaged One-Dependence Estimators) “achieves highly accurate classifi-

cation by averaging over all of a small space of alternative näıve Bayes-like mod-

els that have weaker (and hence less detrimental) independence assumptions than

näıve Bayes. The resulting algorithm is computationally efficient while delivering

highly accurate classification on many learning tasks” [29].

• Classified as a rules-based classifier in Weka, Hall and Frank’s DTNB [30] (decision

tree/näıve Bayes hybrid) is an example of a classifier that incorporates a number of
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techniques into one algorithm, including filtering, a wrapper, and a hybrid structure.

The authors describe their classifier as follows:

At each point in the search, the algorithm evaluates the merit of dividing

the attributes into two disjoint subsets: one for the decision table, the

other for näıve Bayes. A forward selection search is used, where at each

step, selected attributes are modeled by näıve Bayes and the remainder

by the decision table, and all attributes are modelled by the decision table

initially. At each step, the algorithm also considers dropping an attribute

entirely from the model.

1.4.3 The m-Estimate

Through the course of our research we did not encounter other works where confidence

intervals are used directly as an attribute for NB classification. However we note the

potential similarity between the m-estimate, which is a parameterized alternative to the

Laplace estimator, and confidence intervals. Updating the equations in Section 1.2.3, we

include the parameter m and a term p which is the prior estimate of the probability being

calculated yields:

P (c) =
nc +mp

n+m
(1.14)

P (ai|c) =
nai(c) +mp

na(c) +mp
(1.15)

In [31] Džeroski et al. offer three interpretations ofm. First, it is described as “inversely

proportional to the initial variance. . . meaning the higher the value of m the lower the

initial variance and [thus] the initial expectation of p. Second, it controls balance between

the relative frequency and prior probability. Finally, m can be set to correspond to the
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level of noise in the data.” It is the connection to variance we believe relates to our work.

Their work varies m from 0–999 and then compares the performance of an algorithm using

Laplace estimator with the best value found for m.

In [19] Jiang et al. fix m = 1 and apply the m-estimate to four NB classifiers and

compare them on the basis of accuracy. They observe improvements across a subset of the

UCI datasets; their work differs from ours in that m is parameterized and is applicable to

both binary and multi-class problems, whereas our confidence interval metrics only affect

prediction in the multi-class context.
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Chapter 2

Confidence Intervals

2.1 Nomograms and Orange

Before delving into the mathematical definition of confidence intervals, let us first relate

the inspiration for their use in the context of classification. It begins with the nomogram,

a type of graph first attributed to the French mathematician Maurice d’Ocagne in 18991

and which was used during World War I to direct anti-aircraft fire [32]. The nomogram is

essentially a two-dimensional plot of a function where both the function’s range and the

interrelation between its parameters and their domains are depicted such that the result

of the function calculation can be read directly from the graph. Unlike standard Cartesian

coordinates, nomograms can represent functions of more than two variables, and provide

approximate answers very quickly, similar to the operation of a slide rule. Nomograms are

quite prevalent in the medical profession and also in engineering, with the most common

example being the Smith chart used to calculate impedance over transmission lines. In

addition to allowing the user to calculate an answer, they also aid in the visualization of

the function. To illustrate the nomogram, we refer the reader to Figure 2.1.2

1Traité de nomographie: Théorie des abaques, applications pratiques (Paris: Gauthier-Villars, 1899)
2Source: PyNomo.org
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Figure 2.1: Nomogram Depicting a Second Order Equation

Enter Orange, a open source component-based machine learning library for Python

developed by the Laboratory of Artificial Intelligence, Faculty of Computer and Informa-

tion Science, University of Ljubljana, Slovenia [33]. Orange’s authors set out to create

software similar in purpose to Weka, but also to demonstrate their research [2, 34] on the

topic of visualization of classification problems based on nomograms.3 Specifically, their

graphical representations depict attribute values using either a log-odds ratio or points

scale and allow one to visualize the prediction directly from the nomogram. Furthermore,

their nomograms include confidence intervals expressed as error bars, and it is those error

bars that led us to ponder the question of whether these confidence intervals could be

used as part of the classification process. To wit, the error bars potentially represent

3Strictly speaking, Orange does not produce traditional nomograms, but its interface captures the
spirit and expressivity of the nomogram in a context not given to visualization.
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Figure 2.2: Nomogram of NB Classification and Confidence Intervals in Orange

information that could be incorporated into the ML process. Figure 2.2 is Orange’s rep-

resentation of a binary classification problem of three attributes. You can “read” the

nomogram by adding up the points assigned to an attribute and then use the probability

scale to ascertain the (normalized percentage) result of the class prediction.

2.2 Confidence Interval Calculations

We now turn from nomograms to confidence intervals and how to calculate them. As noted

previously, the probabilities used in Equation (1.3) are derived by counting occurrences

that occur in the training set, and as such are necessarily merely estimates of the true

probabilities. Because counting in involved, there is an estimated error, or confidence

interval, associated with each probability. The smaller the sample size, the larger the

confidence interval, which we interpret as the greater the likelihood that the estimated

probability varies from the calculated value.

Related to (but not to be confused with) this calculation is the confidence, sometimes

referred to in statistics as confidence level or simply α, with which the confidence interval
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is calculated. This term assumes a normal distribution for the confidence interval and

has the effect of scaling it. For our experiments we use a confidence level of 95%, which

corresponds to a scaling factor of zα/2 = 1.96 [35, p. 613]. A higher confidence, for

example 99%, would result in a scaling factor of 2.576. One can think of the zα/2 as the

coefficient in order for the area under the normal distribution curve at α to be 1. The

confidence will also appear as z(1−α)/2, which is equal to zα/2.

This term appears in Equation (2.3), taken from the section on confidence intervals

in the Možina et al. paper regarding nomograms for NB classification [2]. We vary our

nomenclature slightly from that paper in favor of more mnemonic variable names with

which to refer to the various confidence interval calculations, but acknowledge their work

as the source of these formulae.

The first of these is the confidence interval calculation for an individual attribute value,

which we refer to as aciai , or attribute CI. Shown in (2.1), this value is calculated once

for every attribute value and class found in the training set:

aciai(c) =

√
1

NaiPai(c)Pai(c̄)
− (cic)2 (2.1)

The subtrahend under the square root, cic, is the confidence interval associated with

the class itself (and corresponds to V̂ ar(logitP̂ (c)) in [2]). It is calculated once per class

from the size of the training set and priors, as shown in (2.2):

cic(c) =

√
1

NP (c)P (c̄)
(2.2)

With these values calculated for a training set and stored in our classifier model, we

can calculate yet a third confidence interval that is associated with the attribute values

of a test set instance. The expected error, or prediction CI for a training instance X is

depicted in (2.3). This calculation is taken from the portion of the Orange [33] source

code that calculates the width of the confidence interval error bars for the nomogram.
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pciX(c) = ±z1−α/2

√√√√ |A|∑
i=1

acii(c)2 + cic(c)2 (2.3)

Please refer back to Figure 2.2 to observe an example of the confidence intervals asso-

ciated with attribute values and with the overall prediction. This nomogram represents

the probability of survival of a male child in the first class on the Titanic being predicted

using näıve Bayes. The error bars can be seen just below the attribute values. The wider

the error bar, the higher the aciai(c), i.e. the less confident we may choose to be about the

attribute, which we refer to as weak conviction. In this particular dataset, there are far

fewer children than adults, hence the difference in width of their error bars. At the bottom

of the graph, the confidence interval associated with the prediction itself, pciX(c) can be

seen to range between 59–77%, or 68± 8%. Because the dataset is a binary classification

problem, either passengers are predicted to survive or not. Therefore the confidence in-

tervals associated with the attributes and prediction for class yes (survived) are the same

as those for class no (perished). This follows from equations (2.1) and (2.2) because it

is necessarily the case in binary class datasets that P (yes) = P (n̄o). Multi-class class

datasets do not exhibit this property, and so their confidence intervals become potentially

more interesting from a classification perspective.

One potential source of consternation is that the confidence interval formulas used in

Orange do not match up with those found in other resources for standard margin or error

or confidence interval calculations. Because our exploration of the utility of confidence

intervals is done using the CI found in Možina’s work we do not dwell on this topic

further at this point. Instead, we launch into our investigation of confidence interval and

its correlation to näıve Bayesian prediction.
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2.3 Experiment I: CI Correlation to Prediction

The notion of a confidence interval associated with dataset features and classifier predic-

tion is intriguing, at least intuitively, because it would seem to offer some indication as to

how much a prediction made using those features might be trusted. The question then be-

comes whether that intuition has any basis, and if so are there any practical applications

of this “extra” feature? Our initial experiment is thus divided into 2 related parts. First,

is there any relationship between prediction confidence intervals and prediction accuracy?

That is, if we compute prediction CIs for each class and then compare those CI for correct

predictions (hits) to incorrect predictions (misses), is there any observable pattern? The

remainder of this section addresses this question, describing our extensions to Weka to

compute CI and the subsequent analysis. In Section 2.4 we begin to tackle the follow-on

question of whether any such patterns can be put to use.

2.3.1 Extending Weka to Incorporate CI

Our initial approach was to implement a log-odds ratio based NB classifier in Weka,

taking the same approach to classification taken in Orange. Such an implementation

computes the sum of log-odds ratios instead of the product of probabilities, and then

exponentiates to calculate the prediction probability. Elkan covers this formulation in his

introduction to näıve Bayes [4]. This implementation was completed, but abandoned due

to minor discrepancies between prediction results for this new module, NBLor, and Weka’s

NaiveBayesSimple classifier, which we use as our baseline. That is, we felt that it was

vital to ensure that comparisons were being made between like quantities. (In hindsight,

we suspect that the inconsistencies stem from differences in the implementation of the

Laplace estimator.) Instead, we modified Weka’s NaiveBayesSimple classifier to calculate

the attribute and prediction confidence intervals discussed in Section 2.2 during training,

and then extended the output format to emit the prediction CI along with the class
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probability during classification.

This new classifier, NBCi, was evaluated using the Experimenter to verify that no

changes to model generation or prediction were introduced through the modifications.

Similarly, the CI terms for attributes and predictions were compared with the values

generated by an instrumented version of the Orange software to ensure correct operation.

This manual verification step was done for 3 standard machine learning datasets: titanic

(binary), iris (3 classes), and zoo (7 classes); introduced in Section 2.3.2. During the

verification of prediction CI, we discovered another aspect of the CI calculations preformed

in Orange, that being the notion of an “infinite attribute CI.” When the value of the CI

for an attribute cannot be calculated using Equation (2.1), either because there are no

instances of the attribute-value in the training set or because the attribute probability

is 0 or 1, the attribute CI is arbitrarily set to 99.99. Unlike the calculation of class and

attribute prior probabilities, no Laplace estimator is used for the attribute CI calculations.

2.3.2 UCI Datasets

The evaluation was conducted using 37 classification datasets from the UCI Machine

Learning Repository [7], which are prevalent in the ML literature. 17 of these are binary

classification problems, while the 20 multi-class sets range from 3 to 26 classes, with an

average number of classes of 8.65. The source datasets contain a mixture of nominal, in-

teger, and real-valued attributes. Because our confidence interval calculations are defined

only for counts of nominal attributes, all datasets are discretized using Weka’s discretiza-

tion class.4 The datasets range from as few as 24 instances for contact-lenses to 20000

for letter, with an average of slightly more than 1700 instances. The UCI datasets are

listed in Table 2.1 for reference. The table is divided into sections for multi-class and

binary-class datasets; the latter are used in our early experiments that employ class and

4weka.filters.supervised.attribute.Discretize
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attribute CI—prediction CI only varies for multi-class problems.

2.3.3 Generating NBCiDisplay Output

With NBCiDisplay, a classifier extended from our NBCi class, we generated predictions

with confidence intervals for all 37 datasets. The predictions use 10-fold cross-validation

(CV), i.e. 90% of the dataset was available for training and 10% for test. By default,

Weka performs stratification during CV, so except in the case of datasets with very few

instances, training and test sets retain ratios of the class and attribute values consistent

with those found in the full dataset. The output format of the extended classifier is

tabular and lists the index of the actual class, predicted class, number of classes, and then

a list of class probability and CI tuples for each class prediction. Class probabilities are

normalized between 0–1, as is customary within Weka, while the CI values are the raw

prediction CI as calculated by Equation (2.3). Sample output for 5 test instances in the

iris dataset are shown in Table 2.2. Note that the first 2 predictions are correct because

the classes in the first 2 columns are equal, but in the third prediction, the classifier failed

to predict the actual class b, instead predicted c with a probability of over 61%. The

confidence interval for this prediction was slightly higher (weaker conviction) than for the

actual class, but both of these were small relative to the CI for the first class prediction

(to which the classifier assigned a predicted probability of nearly 0).

2.3.4 Correlation of CI with Prediction Accuracy

Once these raw data had been prepared, the next question was how to compare prediction

CIs for correctly and misclassified instances, which we refer to hits and misses, respec-

tively. We travailed several false starts in this area of our research. The goal of locating

a correlation led us to perform several “what if” analyses employing spreadsheets. We

document the results of two of those in this section.
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Dataset Classes Attributes Instances

anneal 6 39 898
audiology 24 70 226

autos 7 26 205
balance-scale 3 5 625

contact-lenses 3 5 24
glass 7 10 214

heart-c 5 14 303
heart-h 5 14 294

hypothyroid 4 30 3772
iris 3 5 150

letter 26 17 20000
lymphography 4 19 148
primary-tumor 22 18 339

segment 7 20 2310
soybean 19 36 683

splice 3 62 3190
vehicle 4 19 846
vowel 11 14 990

waveform 3 41 5000
zoo 7 18 101

breast-cancer 2 10 286
breast-w 2 10 699

colic 2 23 368
credit-a 2 16 690
credit-g 2 21 1000
diabetes 2 9 768

heart-statlog 2 14 270
hepatitis 2 20 155

ionosphere 2 35 351
kr-vs-kp 2 37 3196

labor 2 17 57
mushroom 2 23 8124

schizo 2 15 340
sick 2 30 3772

sonar 2 61 208
titanic 2 4 2201

vote 2 17 435

Table 2.1: UCI Datasets
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Actual Predicted preda predb predc

Class Class pct pci pct pci pct pci

c c 0.00017 277.18878 0.00960 2.27939 0.99023 2.27727
b b 0.00001 277.19177 0.99781 2.28350 0.00218 2.29994
b c 0.00001 339.48489 0.38835 1.42062 0.61164 1.42411
b c 0.00008 339.48248 0.26468 1.52322 0.73524 1.50541
a a 0.99999 277.18790 0.00001 277.19371 0.00000 277.19433

Table 2.2: Comparison of Prediction CI for Classifier Predictions

Average Prediction CI

Our initial approach was to average the prediction CIs for each class prediction in a

test instance. We then averaged that value across all instances, yielding the average

instance CI. This value was then compared to two other aggregates, the average of the

hit prediction CIs (i.e. the prediction CI for each instance where the prediction matched

the true class) and the average of the prediction CIs for misses. The result was 3 scalars

per dataset which can be compared directly. Our hypothesis was that we would observe

a higher missed instance CI than average CI, indicating that when conviction is weak

(prediction CI is high), it is more likely that the NB classifier would make a classification

error. Recall that for binary datasets the prediction CI is the same for both class outcomes

(refer to Equation (2.3)). Therefore, we only conduct this test on the multi-class datasets

and present the results in Table 2.3.

The 14 of 20 (70%) of datasets marked with a • are those for which the average missed

CIs exceeds the average CI. We interpret these results as a positive indication that there

may be a correlation between missed predictions and weak conviction (high prediction

CI). Otherwise, we would hope to observe no connection whatsoever. Nonetheless, we

had some concerns about the use of averages across all instances of a datasets. For one,

once the model has been constructed each prediction is episodic, and therefore unrelated

to the prediction of other (distinct) instances. The use of an average lumps the instances
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Dataset Classes Accuracy Avg CI Hit CI Miss CI

anneal 6 0.967 101.129 99.398 151.207 •
audiology 24 0.735 112.166 71.316 225.185 •

autos 7 0.717 101.231 78.858 157.934 •
balance-scale 3 0.707 0.409 0.406 0.416 •

contact-lenses 3 0.708 99.392 139.188 2.745
glass 7 0.743 9.434 7.401 15.312 •

heart-c 5 0.845 4.746 2.652 16.149 •
heart-h 5 0.840 16.355 16.886 13.563

hypothyroid 4 0.986 45.954 44.756 131.624 •
iris 3 0.940 108.081 112.126 44.719

letter 26 0.740 7.973 6.458 12.293 •
lymphography 4 0.838 34.513 31.857 48.232 •
primary-tumor 22 0.502 14.528 11.748 17.324 •

segment 7 0.915 96.545 97.606 85.109
soybean 19 0.930 52.164 50.258 77.378 •

splice 3 0.953 196.711 196.645 198.043 •
vehicle 4 0.627 19.014 22.777 12.702
vowel 11 0.671 14.797 16.097 12.150

waveform 3 0.807 0.662 0.621 0.835 •
zoo 7 0.931 259.618 255.963 308.700 •

Table 2.3: Average vs. Missed Prediction CI for Multi-class Datasets

of all classes into a single metric. (However, we avoid a per-class analysis in the interest

of not needlessly widening our search space.) Furthermore, if there is in fact a strong

correlation, why wouldn’t the miss CI be consistently higher than the average CI or the

hit CI?

Over/Under Ratios

Starting from the same source data like that in Table 2.2, we attempt to locate a correla-

tion between NB prediction misses and prediction CIs through another approach. In the

place of averages we opt for a more instance-centric view of CI. We modify our analysis

scripts to count the following two occurrences. When the NB classifier misses the predic-
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tion, we note the number of instances where the prediction CI for the actual class is over

(greater than) the prediction CI for the predicted class. This is interpreted as the pool

of misses that could potentially be improved by the taking prediction CI into account.

When the NB classifier correctly predicts the actual class for an instance, we are faced

with small dilemma because the prediction CI for the predicted class matches the pci of

the actual class. In this case, we compare the prediction CI of the actual class with the

other prediction CI values to determine whether it is the prediction of weakest conviction

(highest CI) in the set. If it is the CI with weakest conviction, then the prediction CI

might have been used to dissuade the NB classifier from choosing the correct class. For

hits we count the positive cases, meaning those where the actual class prediction CI was

not the weakest conviction prediction CI.

Table 2.4 depicts the results from the analysis. For the misses, we observe that the

prediction CI for the actual class is of stronger conviction (lower CI) than the predicted

class in 20% of classifier misses for the anneal dataset yet over in 83% for the vehicle and

vowel datasets. These data imply that there is a correlation between the classifier missing

a prediction and the prediction CI for the actual class having a CI implying stronger

conviction. For 13 of the 20 datasets, the majority of misses exhibit this property. We

are concerned with a majority because we would like to develop an algorithm that does

not require a (potentially expensive) heuristic to assess whether to utilize the prediction

CI in the prediction. That is to say, we would like to believe a priori that applying the

prediction CI will augment the actual class prediction more often than it detracts from it.

Also bear in mind that the pools of hits and misses are distinct, apportioned as per the

classifier accuracy. In the case of a dataset like anneal the 20% ratio applies to the 3.3%

of instances classified incorrectly. The hits column shows that the pci for the predicted

class is only very rarely the weakest conviction prediction CI in the set. These numbers

would appear overwhelmingly positive, but the statement being made about the actual
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Dataset Classes Accuracy Miss Over Hit Under

anneal 6 0.967 0.200 1.000
audiology 24 0.735 0.817 1.000

autos 7 0.717 0.431 1.000
balance-scale 3 0.707 0.885 1.000

contact-lenses 3 0.708 0.714 1.000
glass 7 0.743 0.873 1.000

heart-c 5 0.845 0.404 1.000
heart-h 5 0.840 0.404 1.000

hypothyroid 4 0.986 0.365 1.000
iris 3 0.940 0.667 0.986

letter 26 0.740 0.715 1.000
lymphography 4 0.838 0.667 1.000
primary-tumor 22 0.502 0.710 1.000

segment 7 0.915 0.495 1.000
soybean 19 0.930 0.583 1.000

splice 3 0.953 0.520 0.995
vehicle 4 0.627 0.839 0.998
vowel 11 0.671 0.831 1.000

waveform 3 0.807 0.604 0.997
zoo 7 0.931 0.429 1.000

Table 2.4: Over/Under Ratios of Prediction CI Ratios w.r.t. Misses and Hits

class prediction CI not being that of least conviction in the set is considerably weaker

than saying it is the strongest conviction CI of the set. The percentages where the hit

prediction CI is in fact the best in the set are found in Table 2.5, where we observe that,

as expected, the prediction CI alone is not a strong indicator of the actual class. In the

next section we present our findings as we set out to attempt to use this correlation to

improve NB classifier performance.

2.4 Experiment II: Classifiers and CI

Armed with a notion of prediction CI’s relation to NB class predictions from Section 2.3.4,

we attempt to develop new classifiers based on NB that take into account the confidence
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Dataset Classes Accuracy Hit Under (Strict)

anneal 6 0.967 0.158
audiology 24 0.736 0.115

autos 7 0.717 0.191
balance-scale 3 0.707 0.000

contact-lenses 3 0.708 0.294
glass 7 0.743 0.120

heart-c 5 0.845 0.406
heart-h 5 0.840 0.360

hypothyroid 4 0.986 0.020
iris 3 0.940 0.255

letter 26 0.740 0.018
lymph 4 0.838 0.161

primary-tumor 22 0.501 0.418
segment 7 0.915 0.030
soybean 19 0.930 0.038

splice 3 0.953 0.475
vehicle 4 0.626 0.036
vowel 11 0.671 0.241

waveform 3 0.807 0.007
zoo 7 0.931 0.021

Table 2.5: Prediction CI Ratios where Hit CI is of Strongest Conviction

intervals calculated during training. These classifiers are described in Section 2.4.1 and

their evaluation in Section 2.4.2. Once again appealing to the intuitive sense of confidence,

we assume we should be able to temper NB predictions either by examining attribute CI

or the overall prediction CI. Attribute CI might be useful in selecting which attributes to

use during prediction, and as such act as a type of dynamic (in the sense of context-aware)

attribute selection algorithm; attributes with weak conviction should not be allowed to

influence a prediction causing it to miss. Similarly, the overall prediction CI could be

useful for discriminating between class predictions for multi-class datasets; for binary

datasets the prediction CI varies only with instance, not with class.
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2.4.1 Classifiers Utilizing Confidence Intervals

The NBCi classifier developed for Section 2.3.1 implements a näıve Bayesian classifier that

calculates and stores attribute and prediction CIs in the model built during training. This

class is thus easily extended to experiment with alternative prediction algorithms. This

section describes attempts during the course of our research to incorporate CI into NB

prediction. These attempts admittedly depict a random walk through ideas informed

by other research in conjunction with our intuitive sense of how conviction might be

used. They are based in part upon earlier experiments we conducted with LOR-based

NB classifiers and CI which failed to yield a positive outcome. We do not include the

results of those experiments in the interest of saliency and because they are documented

in our poster submission to the FLAIRS conference [36].

We now describe the classifiers which we implemented in Weka and evaluated using

the Experimenter module. CI values may range from very close to zero (very strong

conviction) to 99.99 for attributes (defined by convention to be the weakest possible

conviction) and are normalized for use within our classifiers. When a term x has been

normalized, it appears in the equations below as n(x).

• NBCiAttr—This classifier multiplies the predicted class probability by the normal-

ized prediction CI. The intended effect is to diminish class predictions for which

the prediction conviction is weak (prediction CI is high). The additional pciX

term has no influence on binary predictions, because pciX(c) = pciX(c̄), and thus

n(pciX(c)) = n(pciX(c̄)) = 0.5. This classifier is noteworthy because it the subject

of the remainder of our thesis.

predX(c) = argmax
c

P (c) n(
1

pciX(c)
)
∏
i

P (ai|c) (2.4)
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• NBCiAugmentHigh—This classifier augments the attribute term with the highest

associated confidence by skipping over it, which is equivalent to changing the con-

ditional attribute probability to 1. Therefore its prediction equation is the same

as (1.3) with an added condition to eliminate the P (ai|c) term with the strongest

conviction (smallest attribute CI).

• NBCiDropLow—This classifier eliminates the contribution of the weakest conviction

(greatest attribute CI) by not including it in the product of attribute probabilities.

It can be viewed as a complement of NBCiAugmentHigh.

• NBCiExp—Individual attribute confidence intervals are normalized and then used as

exponents for their corresponding attribute probabilities. The intent is to adjust the

influence of each term in the classification probability according to the confidence

interval of the attribute. If the CI array cannot be normalized, all exponents are

given equal weights. The idea for weighting attributes by exponentiation is taken

from Zhang and Sheng’s work on weighted näıve Bayes [25].

predX(c) = argmax
c

P (c)
∏
i

P (ai|c)n(acix(c)) (2.5)

• NBCiExpInv—Identical to NBCiExp, except that the normalized attribute CIs are

inverted, this classifier better captures the intent of increasing the influence of high

confidence attributes and diminishing the influence of lower confidence attributes.

The reader will note that NBCiExp does the opposite, effectively increasing the im-

pact of low confidence attributes.

predX(c) = argmax
c

P (c)
∏
i

P (ai|c)n(acix(c))−1

(2.6)
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2.4.2 Classifier Evaluation

We evaluate these classifiers against the datasets in the UCI corpus. Datasets marked

with the β superscript are binary, all others are multi-class. Weka’s NaiveBayes classifier

serves as the baseline, and the full results using accuracy as the basis of comparison

are given in Table 2.6. The results depict classifier accuracy after 10-times 10-fold cross

validation. The (x/y/z) notation is one we will use henceforth to indicate the number of

(wins/ties/losses) relative to the baseline; the ◦ denotes a win while the • a loss. In all

results for which wins and losses are tallied, the victory must be statistically significant

in terms of the paired Student’s t-test with a twin-tailed confidence of 0.05 (95%).

Running the experiment all six classifiers across the 37 datasets takes about 6.5 min-

utes on reasonably current workstation-class PC. Weka’s Experimenter interface provides

visual feedback during the experiment, and the results include average classifier time for

model generation and testing. Although we will take up the topic of run-time performance

in some detail in Section 4.1, it is anecdotally mentioned here as we will not return to the

exponentiation-based classifiers. Model generation is equivalent across all classifiers due

to the shared model, but significant differences in prediction time were noted for classifiers

employing exponentiation. NBCiExp and NBCiExpInv required from 3 to 6 times longer

to perform testing than the other classifiers due to the exponentiation operations, raising

floating point numbers to fractional powers. This is an area for possible performance

improvement by moving the computation to occur via log-based arithmetic.

2.4.3 CI Classifier Evaluation Discussion

As is evident in Table 2.6, all of our experimental classifiers save but one are, generally-

speaking, less accurate than stock NB. NBCiDropLow and NBCiExpInv are both appallingly

poor performers, offering no advantages whatsoever while for many datasets decreasing

accuracy (often significantly). We interpret this to mean that attributes with low sup-
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Dataset NB NBCiAttr NBCiAH NBCiDL NBCiExp NBCiExpInv

anneal 96.13± 2.16 96.11± 2.15 96.05± 2.16 90.79± 3.02 • 87.59± 1.74 • 76.17± 0.55 •
audiology 72.64± 6.10 72.15± 6.49 72.73± 6.14 66.75± 6.83 • 61.14± 7.13 • 25.21± 1.85 •
autos 70.59±10.20 75.22± 9.81 ◦ 70.59±10.20 68.87±10.08 71.65± 8.96 34.58± 4.67 •
balance-scale 71.08± 4.29 71.10± 4.29 71.11± 4.40 72.29± 3.96 71.35± 4.21 71.52± 4.16
breast-cancerβ 72.70± 7.74 72.70± 7.74 73.08± 7.63 73.93± 7.09 69.91± 1.68 70.30± 1.37
breast-wβ 97.18± 1.79 97.18± 1.79 97.43± 1.64 97.27± 1.81 97.11± 1.82 92.16± 3.06 •
colicβ 79.68± 5.72 79.68± 5.72 79.73± 5.71 75.85± 6.79 • 75.82± 5.86 63.05± 1.13 •
contact-lenses 76.17±25.54 72.83±27.69 72.50±27.26 64.33±32.40 64.33±23.69 64.33±23.69
credit-aβ 86.39± 3.98 86.39± 3.98 86.23± 3.94 84.91± 3.70 83.07± 3.97 • 70.48± 3.75 •
credit-gβ 75.43± 3.84 75.43± 3.84 75.43± 3.84 74.23± 3.75 70.00± 0.00 • 70.00± 0.00 •
diabetesβ 77.85± 4.67 77.85± 4.67 77.85± 4.67 71.52± 4.15 • 73.39± 3.24 • 65.11± 0.34 •
glass 74.39± 7.95 74.15± 7.87 74.21± 8.04 66.71± 8.84 • 68.79± 7.53 • 46.47± 8.46 •
heart-c 83.97± 6.37 83.97± 6.37 83.97± 6.37 81.96± 8.31 81.81± 6.21 67.05± 5.38 •
heart-h 84.24± 6.31 84.24± 6.31 84.24± 6.31 83.51± 6.38 80.29± 5.70 63.95± 1.36 •
heart-statlogβ 83.74± 6.25 83.74± 6.25 83.74± 6.25 82.37± 7.05 82.00± 6.72 55.56± 0.00 •
hepatitisβ 85.12± 9.73 85.12± 9.73 85.12± 9.73 86.21± 9.54 83.89± 5.19 79.38± 2.26
hypothyroid 98.62± 0.56 99.20± 0.47 ◦ 98.62± 0.56 93.78± 1.26 • 93.21± 0.42 • 92.29± 0.09 •
ionosphereβ 90.77± 4.76 90.77± 4.76 90.77± 4.76 90.51± 4.55 94.30± 3.34 ◦ 64.50± 1.73 •
iris 94.47± 5.61 93.93± 5.61 94.67± 5.69 96.53± 4.07 93.67± 5.56 88.80± 9.13 •
kr-vs-kpβ 87.79± 1.91 87.79± 1.91 87.78± 1.91 77.62± 2.16 • 81.73± 2.13 • 52.22± 0.10 •
laborβ 92.53±11.68 92.53±11.68 92.53±11.68 93.30±10.27 90.53±12.50 64.67± 3.07 •
letter 74.00± 0.88 74.91± 0.83 ◦ 74.00± 0.88 67.84± 1.00 • 74.17± 0.93 2.00± 0.37 •
lymphography 84.97± 8.30 83.66± 7.84 84.97± 8.19 81.94± 9.29 75.78± 8.97 • 54.76± 2.32 •
mushroomβ 95.76± 0.73 95.76± 0.73 95.76± 0.73 90.28± 0.95 • 99.77± 0.18 ◦ 58.23± 0.77 •
primary-tumor 49.71± 6.46 49.12± 5.60 49.82± 6.41 43.81± 6.81 • 24.87± 1.56 • 24.78± 1.47 •
schizoβ 59.12± 6.89 59.12± 6.89 58.15± 6.93 54.79± 7.18 • 59.47± 7.45 57.97± 6.33
segment 91.71± 1.68 93.22± 1.50 ◦ 91.71± 1.68 88.81± 1.73 • 94.30± 1.42 ◦ 7.94± 1.47 •
sickβ 97.22± 0.80 97.22± 0.80 97.22± 0.80 93.63± 1.39 • 93.88± 0.08 • 93.88± 0.08 •
sonarβ 85.16± 7.52 85.16± 7.52 85.16± 7.52 82.66± 8.01 81.42± 8.78 53.38± 1.63 •
soybean 92.94± 2.92 94.41± 2.29 ◦ 92.97± 2.90 90.16± 3.24 • 89.87± 3.43 • 17.00± 2.72 •
splice 95.41± 1.18 95.40± 1.18 95.07± 1.27 95.42± 1.14 16.79± 4.59 • 51.88± 0.16 •
titanicβ 77.85± 2.40 77.85± 2.40 78.20± 2.52 77.42± 1.93 77.10± 2.76 68.33± 0.53 •
vehicle 62.52± 3.81 63.10± 3.82 62.29± 3.73 61.84± 4.06 64.49± 3.89 54.03± 4.51 •
voteβ 90.02± 3.91 90.02± 3.91 89.75± 4.34 88.02± 4.73 • 90.44± 4.50 88.21± 4.63
vowel 65.23± 4.53 66.23± 4.57 65.28± 4.42 60.61± 4.38 • 55.09± 4.63 • 11.99± 2.11 •
waveform 80.72± 1.50 80.89± 1.45 80.72± 1.50 78.45± 1.53 • 82.33± 1.40 ◦ 33.84± 0.08 •
zoo 93.21± 7.35 94.56± 6.81 93.21± 7.35 93.98± 7.14 60.43± 3.06 • 40.61± 2.92 •

(0/37/0) (5/32/0) (0/37/0) (0/20/17) (6/15/16) (0/8/29)
◦, • statistically significant improvement or degradation

Table 2.6: Accuracy of CI-augmented Classifier Performance Relative to Näıve Bayes.

port are significant components of the näıve Bayes proposition—they very likely serve to

diminish the probability calculation for the incorrect class sufficiently so as to exclude it

from consideration, an important function. NBCiAugmentHigh neither suffers losses nor

garners wins and in many cases has identical accuracy to NB. We explicate this result by

observing that the classifier merely increases the probability for the attribute value with

the greatest amount of support in the dataset, which in almost all cases is the attribute

value with the highest conditional probability (by virtue of the fact that both are based
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on counts). Therefore, the slight differences from unadulterated NB would be due to

predictions where the class priors are similar and the augmented attribute probability is

sufficient to modify the prediction outcome.

In general the mixed results are not particularly surprising given that their use of CI

is based on intuition and not founded in statistical theory. Nonetheless, it is encouraging

that one classifier is able to outperform NB on some datasets without sacrificing accuracy

on others. We posit that one component of the success of NBCiAttr is that it does not

modify individual terms in the Bayesian product. It thereby avoids disrupting predictions

which hinge on specific attributes and instead serves to nudge the classifier towards the

correct prediction, lending support support to the hypothesis that weak conviction (high

prediction CI) is a contributor to missed predictions. The degree of success for the multi-

class datasets, 25% of which showed improvement and 75% of which were statistically

equivalent to NB, warrants additional investigation. It could be that classes for which

there is very little support (i.e. low confidence) are effectively removed from consideration

by argmax. Or the opposite could be the case, wherein several competing classes have

similar probabilities until the confidence-based term is factored in, which effectively boosts

the correct prediction to obtain a plurality. Although their performance is generally

dismal, we believe the other classifiers need more research before their approaches can be

entirely discounted. We maintain the notion that it could well be a single attribute that

causes a missed prediction. However we do not dwell on them further in our research,

focusing instead on the potentially promising results of NBCiAttr by vetting the algorithm

more thoroughly.

Before moving on we motivate the use of prediction CI with one additional basis of

comparison. Figure 2.3 combines the results of the average versus missed CI investigation

in Section 2.3.4 (Table 2.3) and the results of the NBCiAttr classifier for multi-class

class datasets. Points to the right of 1.0 are desired, and points in the upper right
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quadrant (noting that the y-axis is log-scale) best support the hypothesis that high ratios

of missed instance CI to average instance CI are indicative of the usefulness of CI during

classification.
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Figure 2.3: CI Miss to Average Prediction Ratio vs. Accuracy Ratio

We close this chapter with a demonstration of the NBCiAttr classifier in action. We

take the example problem given in Section 1.2.4 and extend it such that NB fails to

correctly classify an instance in the test set. We then show the use of prediction CI to

“correct” the instance where näıve Bayes fails to predict the correct class.
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2.5 An Example of CI-Augmented NB in Action

The intuitive conceptualization of why prediction CI (2.3) aids in NB prediction is that

the value indicates how much support exists for each class hypothesis about an instance.

The larger the CI for a given hypothesis, the weaker our conviction in its support, and

the more cautious we should be of it. When we take the prediction confidence intervals

for each class and invert them, we have a ranking of 1–k for which prediction we believe

to be the strongest in terms of CI. The fact that the value is normalized is immaterial, as

this multiplies all of the inverted prediction CIs by the same factor. It merely serves to

scale our CI attribute into a familiar range (0–1).

To motivate this notion of support, we provide an example for which NB fails to

correctly learn the example pattern given back in Section 1.2.4, in this case due to noise

in the dataset. The training dataset is shown in Table 2.7; it is the same dataset as used

in the original example replicated four times and with four additional training instances.

The first three of these are valid instances of XOR, while the fourth is an example of class

noise. Table 2.8 contains the results of the model after training, including the class and

attribute confidence intervals. Note that we employ the same Laplace estimators as in

the previous example, hence the denominator 23 in the class priors.

x y Class Comment

0 1 xor

repeated 4x
1 0 xor
1 1 and
0 0 nor

1 0 xor
1 0 xor
1 0 xor
0 0 xor (noise!)

Table 2.7: NB and NBCiAttr Example Training Dataset
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Conditional probabilities and aci

Prior cci x=0 x=1 y=0 y=1

xor 13/23 0.4206 6/14 0.5226 8/14 0.4647 9/14 0.4451 5/14 0.5684
and 5/23 0.5055 1/6 99.9999 5/6 0.3705 1/6 99.9999 5/6 0.4944
nor 5/23 0.5055 5/6 0.4410 1/6 99.9999 5/6 0.3456 1/6 99.9999

Table 2.8: NB and NBCiAttr Example Model After Training

We calculate predictions for the test instance x = 0, y = 0 in Table 2.9 using both

NB and our CI-augmented classifier that incorporates pci as a prediction term (NBCiAttr

Equation (2.4)). In this example näıve Bayes fails to calculate the true class NOR, instead

predicting XOR, and will unfortunately do so forevermore unless the model is updated

with additional training instances to improve the likelihood of NOR for instances with

these attribute values. NBCiAttr is able classify the test instance correctly by slightly

deemphasizing class XOR in favor of class NOR.

Prediction p(c)× px=0(c)× py=0(c) 1/pci Result Normalized

p(xor|x = 0, y = 0) 13/23 × 6/14 × 9/14 0.15572 0.49795
p(and|x = 0, y = 0) 5/23 × 1/6 × 1/6 0.06038 0.01931
p(nor|x = 0, y = 0) 5/23 × 5/6 × 5/6 0.15097 0.48274

p(xor|x = 0, y = 0) 13/23 × 6/14 × 9/14 1.24218 0.19343 0.49154
p(and|x = 0, y = 0) 5/23 × 1/6 × 1/6 0.00707 0.00004 0.00010
p(nor|x = 0, y = 0) 5/23 × 5/6 × 5/6 1.32517 0.20005 0.50836

Table 2.9: NB and NBCiAttr Example Prediction
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Chapter 3

NBCiAttr Evaluation

3.1 Evaluation of NBCiAttr on UCI Datasets

Our emphasis from this point forward is on validating the performance of the NBCiAttr

classifier. This means that we will no longer be concerned with binary datasets, and ac-

curacy comparisons will be against näıve Bayes alone; the metrics considered now include

root mean squared error (RMSE) and the area under the ROC curve (AUC). Next we

investigate the performance of our classifier in the presence of noise, which in this context

refers to random permutations of the class from its true value. From there we expand our

domain beyond the UCI datasets and exercise NBCiAttr on real-world document classi-

fication datasets. This in turn leads to a discussion regarding the problem of underflow,

which NB and derivatives are susceptible to when finding patterns in datasets with large

numbers of attributes.

3.1.1 Accuracy

The results in Table 3.1 for NBCiAttr are the same as those found in Table 2.6; the binary

datasets have been removed, the precision has been increased, and the standard deviation

47



of the accuracy across the 10 iterations of 10-fold cross validation is included. Of the 20

datasets total, there are 5 for which NBCiAttr improves accuracy and 15 for which the

results are statistically equivalent. Importantly, there are no datasets for which there are

statistically significant decreases in accuracy—for NBCiAttr to be a viable alternative to

NB without predicating analysis as to its applicability beforehand (which raises the self-

referential issue of not knowing when a tool is applicable until after it has been applied

to the problem), it must above all do no harm.

We also add secondary indicators: σ to draw attention to datasets where the standard

deviation is improved (lower) for NBCiAttr than it is for NB; and ε to indicate a higher

standard deviation. Unlike for accuracy, the Student’s t-test is not applied to test for

statistical significance as standard deviation is already a statistical entity. The results

for standard deviation are varied, with 13 wins, 2 ties, and 5 losses. The ties are for the

heart-c and heart-h for which there is also no change whatsoever in accuracy, indicative

of a case where the prediction CI attribute has no effect on the prediction. Four of the

five standard deviation losses occur with datasets for which the missed prediction CI is

less than the average prediction CI (see Section 2.3.4, Table 2.3), and so based on our

supposition that CI would not play a factor in improving prediction (and in fact it did

not improve accuracy for those datasets 5 datasets) we accept these results as expected.

We also bring to the reader’s attention the fact that there are no datasets for which the

standard deviation is worse while accuracy is improved.

We have not encountered other research that compares standard deviation directly,

but believe it is worthy of investigation because it signifies lower variance in classifier ac-

curacy across the 100 runs. We claim that decreased standard deviation is a positive trait

indicative of a dampening or tightening of the variability of accuracy, which we interpret

as decreased sensitivity to fluctuations in the training dataset—recall that we are exer-

cising different folds for each iteration—and potentially a sign of a classifier that is better
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generalized. Or in Dietterich’s parlance in [24], the classifier is narrowing the hypothesis

space to find a better approximation of the true function f . Although the differences in

accuracy and standard deviation are small, we assert that the novelty of employing CI is

that the time complexity of NB is maintained and therefore the incremental improvement

is “free.” This is in distinct contrast to many other approaches to modifying näıve Bayes.

Dataset NB NBCiAttr

anneal 96.1350 ± 2.1573 96.1126 ± 2.1463 σ
audiology 72.6383 ± 6.1010 72.1482 ± 6.4929 ε
autos 70.5881 ± 10.2016 75.2238 ± 9.8054 ◦ σ
balance-scale 71.0817 ± 4.2925 71.0978 ± 4.2891 σ
contact-lenses 76.1667 ± 25.5418 72.8333 ± 27.6923 ε
glass 74.3939 ± 7.9461 74.1515 ± 7.8746 σ
heart-c 83.9667 ± 6.3678 83.9667 ± 6.3678
heart-h 84.2356 ± 6.3085 84.2356 ± 6.3085
hypothyroid 98.6188 ± 0.5580 99.1995 ± 0.4734 ◦ σ
iris 94.4667 ± 5.6102 93.9333 ± 5.6134 ε
letter 73.9960 ± 0.8763 74.9080 ± 0.8305 ◦ σ
lymphography 84.9667 ± 8.2978 83.6571 ± 7.8369 σ
primary-tumor 49.7068 ± 6.4618 49.1159 ± 5.5955 σ
segment 91.7100 ± 1.6787 93.2208 ± 1.5049 ◦ σ
soybean 92.9422 ± 2.9175 94.4077 ± 2.2913 ◦ σ
splice 95.4075 ± 1.1842 95.4013 ± 1.1839 σ
vehicle 62.5169 ± 3.8093 63.0965 ± 3.8248 ε
vowel 65.2323 ± 4.5291 66.2323 ± 4.5746 ε
waveform 80.7180 ± 1.4980 80.8920 ± 1.4465 σ
zoo 93.2091 ± 7.3452 94.5636 ± 6.8079 σ

◦, • statistically significant improvement or degradation
σ, ε decreased or increased standard deviation

Table 3.1: Accuracy - UCI Datasets
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3.1.2 RMSE

We now turn to root mean squared error, shown in Table 3.2. Note that when evaluating

RMSE, lower numbers are better as they indicate less error in terms of the how close

the classifier’s predicted probabilities were to the actual class value (arbitrarily assigned

a value of 1) or the non-class values (arbitrarily assigned to be 0) for nominal datasets.

In the multi-class context, RMSE cannot be meaningfully compared between datasets

of different class cardinalities. For RMSE across the UCI datasets, our first look at the

probabilistic understanding of error, NBCiAttr offers 9 improvements, 10 ties, and 1 loss

compared to NB. The comparison of standard deviation of the RMSE values for both

classifiers is depicted alongside RMSE wins. Although there are only 2 wins, with 9 ties

and 9 losses, the absolute differences for the losses are small, and so do not indicate large

variations in RMSE amongst different folds compared to NB.

3.1.3 AUC

For our last analysis using the stock UCI datasets, we compare the area under the receiver

operating characteristic curve (AUC) in order to gain some insight into the ranking per-

formance of our classifier compared to näıve Bayes; these results are found in Table 3.3.

Recall from Section 1.3.4 that AUC is essentially a race to collect true positives more

quickly than false positives. Of the 20 datasets total, there are 5 for which NB exhibits

an AUC of 1.0 which NBCiAttr retains, and so there are 15 datasets for which AUC can

be improved. NBCiAttr accomplishes this for 4 of those 15 with no statistically significant

decreases. Again we compare standard deviation in AUC and observe mixed results of 8

wins, 8 ties, and 4 losses. We note that averaging of multiple AUC is a complex topic

with several possible interpretations, even in the case of binary datasets, and is beyond

the scope of our evaluation. The interested reader can find more information on this topic

in [9].
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Dataset NB NBCiAttr

anneal 0.095 ± 0.025 0.090 ± 0.025 ◦
audiology 0.135 ± 0.014 0.138 ± 0.016 ε
autos 0.255 ± 0.049 0.241 ± 0.053 ◦ ε
balance-scale 0.326 ± 0.013 0.324 ± 0.014 ◦ ε
contact-lenses 0.296 ± 0.107 0.353 ± 0.167 ε
glass 0.230 ± 0.034 0.237 ± 0.037 ε
heart-c 0.221 ± 0.047 0.221 ± 0.047
heart-h 0.216 ± 0.045 0.216 ± 0.045
hypothyroid 0.074 ± 0.011 0.062 ± 0.011 ◦
iris 0.127 ± 0.098 0.136 ± 0.095 σ
letter 0.119 ± 0.002 0.118 ± 0.002 ◦
lymphography 0.232 ± 0.068 0.247 ± 0.057 σ
primary-tumor 0.175 ± 0.008 0.181 ± 0.009 • ε
segment 0.141 ± 0.014 0.129 ± 0.014 ◦
soybean 0.080 ± 0.016 0.071 ± 0.016 ◦
splice 0.151 ± 0.017 0.151 ± 0.017
vehicle 0.380 ± 0.018 0.378 ± 0.019 ε
vowel 0.205 ± 0.009 0.202 ± 0.011 ◦ ε
waveform 0.327 ± 0.011 0.326 ± 0.012 ◦ ε
zoo 0.089 ± 0.052 0.084 ± 0.052

◦, • statistically significant improvement or degradation
σ, ε decreased or increased standard deviation

Table 3.2: RMSE - UCI Datasets

3.2 Resistance to Class Noise

Li et al. [37] assert that class noise is indeed a problem worthy of scientific inquiry and

develop an approach to detect and compensate for noise using a probabilistic Kernel Fisher

method. Zhu and Wu [38] investigate both class noise and attribute noise and conclude

that attribute noise is “usually less harmful” (than class noise) and can be addressed with

noise correction, whereas class noise is best addressed by filtering noisy instances from

the dataset. Both refer to earlier work in this area by Brodley and Friedl [39] that asserts

that mislabeled classes occur due to subjectivity, data-entry error and incomplete data
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Dataset NB NBCiAttr

anneal 0.9879 ± 0.0377 0.9760 ± 0.0737 ε
audiology 0.9703 ± 0.0907 0.9606 ± 0.1239 ε
autos 1.0000 ± 0.0000 1.0000 ± 0.0000
balance-scale 0.8924 ± 0.0347 0.8917 ± 0.0345 σ
contact-lenses 0.9750 ± 0.1486 0.9400 ± 0.2165 ε
glass 0.8973 ± 0.0626 0.8986 ± 0.0600 σ
heart-c 0.9124 ± 0.0529 0.9135 ± 0.0523 σ
heart-h 0.9210 ± 0.0481 0.9224 ± 0.0474 σ
hypothyroid 0.9966 ± 0.0022 0.9979 ± 0.0022 ◦
iris 1.0000 ± 0.0000 1.0000 ± 0.0000
letter 0.9858 ± 0.0049 0.9896 ± 0.0035 ◦ σ
lymphography 1.0000 ± 0.0000 1.0000 ± 0.0000
primary-tumor 0.8970 ± 0.0600 0.8964 ± 0.0559 σ
segment 0.9990 ± 0.0012 0.9994 ± 0.0008 ◦ σ
soybean 1.0000 ± 0.0000 1.0000 ± 0.0000
splice 0.9949 ± 0.0029 0.9949 ± 0.0029
vehicle 0.7744 ± 0.0449 0.7839 ± 0.0449 ◦
vowel 0.9919 ± 0.0081 0.9926 ± 0.0096 ε
waveform 0.9443 ± 0.0093 0.9443 ± 0.0092 σ
zoo 1.0000 ± 0.0000 1.0000 ± 0.0000

◦, • statistically significant improvement or degradation
σ, ε decreased or increased standard deviation

Table 3.3: AUC - UCI Datasets

during creation of the training set, and go on to discuss algorithms to filter class noise.

Their approach is to develop consensus filters (ensembles) based on outlier detection in

regression analysis.

We recognize the validity and utility of these efforts, but would argue that such ap-

proaches are only reasonable if one can expect to know a priori that instances can contain

noise and has a sufficient time and processing budget to employ noise/outlier detection

algorithms. Given our focus on maintaining the time complexity of näıve Bayes, we eval-

uate the performance of NBCiAttr relative to NB in the presence of class noise. Because

prediction CI, Equation (2.3), includes attribute confidence terms relative to class, we
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submit that there is a basis upon which to believe that our CI-augmented algorithm can

accommodate class outliers without a severe degradation in performance—i.e. that we

may be able to improve classification performance amidst ambient noise.

3.2.1 Evaluation at Fixed Percentages

We begin by preparing 4 variants of the 20 multi-class UCI input datasets using Weka’s

AddNoise filter1 to introduce 5, 10, 15, and 20% noise to each. We then perform 10 times

10-fold CV across datasets and compare the results, found in Tables 3.4a–3.4d, to plain

NB. Recall from Table 3.1 that in the absence of noise, NBCiAttr delivered 5 wins across

the 20 datasets. There continue to be some wins as noise increases. However, the data

do not bear our hypothesis regarding improved performance in detecting outliers with

respect to class. At 5% noise, the result is 6 wins without any losses, with the addition

of two datasets, anneal and waveform to the win column, moving hypothyroid to the tie

column. At 10% noise, 2 of those wins (autos and waveform) dissipate. For 15% noise

we observe our first statistical loss with NBCiAttr, for the audiology dataset, and record

only 3 statistical wins (soybean has dropped out of the wins column). And finally at 20%

noise, the result is 4 wins and 16 ties, again back to anneal, letter, segment, and soybean,

the same winners at the 10% noise level.

Tables 3.5a and 3.5b compare the RMSE and AUC metrics at the 5% noise level.

In the interest of space we summarize the RMSE and AUC results at the various noise

levels in Table 3.6. From this table we note that while classifier performance in terms of

accuracy is maintained in the presence of increasing noise, RMSE and AUC degrade, and

between those two, RMSE more quickly.

1weka.filters.unsupervised.attribute.AddNoise
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Dataset NB NBCiAttr

anneal-n05 90.19 ± 2.54 91.58 ± 2.33 ◦
audiology-n05 69.77 ± 6.80 68.88 ± 7.33
autos-n05 68.04 ± 9.23 72.22 ± 8.93 ◦
balance-scale-n05 69.36 ± 3.98 69.41 ± 4.07
contact-lenses-n05 74.17 ± 28.27 73.50 ± 27.43
glass-n05 69.84 ± 7.69 69.18 ± 7.56
heart-c-n05 79.48 ± 6.37 79.55 ± 6.39
heart-h-n05 79.83 ± 5.56 80.21 ± 5.48
hypothyroid-n05 93.15 ± 0.95 93.36 ± 0.96
iris-n05 89.00 ± 7.95 88.40 ± 8.19
letter-n05 69.63 ± 1.06 70.43 ± 1.06 ◦
lymphography-n05 79.44 ± 10.51 78.90 ± 11.00
primary-tumor-n05 46.58 ± 5.72 45.13 ± 5.99
segment-n05 85.76 ± 2.10 86.80 ± 2.09 ◦
soybean-n05 87.85 ± 3.47 89.13 ± 3.48 ◦
splice-n05 89.79 ± 1.54 89.79 ± 1.54
vehicle-n05 60.37 ± 4.45 60.52 ± 4.51
vowel-n05 60.05 ± 4.49 60.93 ± 4.25
waveform-n05 76.90 ± 1.51 77.06 ± 1.53 ◦
zoo-n05 88.78 ± 9.35 89.49 ± 9.05

◦, • statistically significant improvement or degradation

(a) 5% Noise

Dataset NB NBCiAttr

anneal-n10 82.63 ± 3.50 84.14 ± 3.41 ◦
audiology-n10 63.54 ± 7.62 63.72 ± 7.46
autos-n10 67.10 ± 10.51 70.13 ± 9.88
balance-scale-n10 67.81 ± 4.53 67.92 ± 4.59
contact-lenses-n10 54.00 ± 30.90 55.33 ± 29.48
glass-n10 67.75 ± 8.75 66.91 ± 8.95
heart-c-n10 75.30 ± 6.72 75.07 ± 6.75
heart-h-n10 75.84 ± 5.65 76.38 ± 5.09
hypothyroid-n10 87.82 ± 1.20 88.03 ± 1.03
iris-n10 87.00 ± 8.96 87.60 ± 8.53
letter-n10 65.75 ± 1.04 66.34 ± 1.05 ◦
lymphography-n10 74.37 ± 9.03 73.84 ± 9.65
primary-tumor-n10 42.12 ± 7.68 41.76 ± 6.65
segment-n10 80.72 ± 2.52 81.29 ± 2.55 ◦
soybean-n10 82.66 ± 4.31 84.38 ± 4.10 ◦
splice-n10 84.15 ± 1.87 84.15 ± 1.87
vehicle-n10 56.86 ± 4.94 56.72 ± 4.85
vowel-n10 56.11 ± 4.94 56.47 ± 4.86
waveform-n10 73.15 ± 1.46 73.25 ± 1.45
zoo-n10 83.16 ± 9.66 85.15 ± 10.01

◦, • statistically significant improvement or degradation

(b) 10% Noise

Dataset NB NBCiAttr

anneal-n15 78.56 ± 3.89 80.08 ± 3.60 ◦
audiology-n15 61.45 ± 7.70 58.54 ± 7.59 •
autos-n15 62.39 ± 9.14 64.91 ± 9.11
balance-scale-n15 66.29 ± 4.14 66.48 ± 4.22
contact-lenses-n15 55.67 ± 28.84 56.00 ± 27.88
glass-n15 63.32 ± 10.30 64.30 ± 9.47
heart-c-n15 70.80 ± 6.93 70.63 ± 7.07
heart-h-n15 71.89 ± 6.13 72.16 ± 6.05
hypothyroid-n15 83.15 ± 1.21 83.33 ± 1.17
iris-n15 82.60 ± 10.33 82.60 ± 10.33
letter-n15 61.79 ± 1.00 62.25 ± 1.00 ◦
lymphography-n15 71.16 ± 9.94 70.62 ± 9.62
primary-tumor-n15 38.17 ± 6.71 37.02 ± 6.93
segment-n15 75.80 ± 3.19 76.20 ± 3.13 ◦
soybean-n15 77.78 ± 4.40 78.53 ± 4.52
splice-n15 78.77 ± 2.10 78.77 ± 2.10
vehicle-n15 54.74 ± 4.14 54.63 ± 4.14
vowel-n15 52.91 ± 4.68 53.29 ± 4.72
waveform-n15 69.27 ± 2.06 69.33 ± 2.04
zoo-n15 76.65 ± 10.41 77.84 ± 10.16

◦, • statistically significant improvement or degradation

(c) 15% Noise

Dataset NB NBCiAttr

anneal-n20 73.31 ± 3.79 74.83 ± 3.57 ◦
audiology-n20 56.38 ± 6.60 54.43 ± 6.22
autos-n20 57.66 ± 9.68 59.08 ± 9.68
balance-scale-n20 63.27 ± 4.99 63.27 ± 4.98
contact-lenses-n20 55.17 ± 28.69 55.17 ± 28.30
glass-n20 56.30 ± 8.21 56.68 ± 8.49
heart-c-n20 66.95 ± 6.31 66.71 ± 6.50
heart-h-n20 67.57 ± 7.02 67.50 ± 6.89
hypothyroid-n20 77.90 ± 1.31 78.23 ± 1.17
iris-n20 78.07 ± 11.50 77.87 ± 11.37
letter-n20 57.90 ± 0.93 58.37 ± 0.95 ◦
lymphography-n20 66.95 ± 12.37 67.42 ± 12.14
primary-tumor-n20 34.84 ± 5.99 35.25 ± 6.01
segment-n20 70.77 ± 2.87 71.26 ± 2.85 ◦
soybean-n20 72.39 ± 3.91 73.52 ± 3.79 ◦
splice-n20 73.55 ± 2.49 73.55 ± 2.49
vehicle-n20 52.22 ± 4.71 52.27 ± 4.66
vowel-n20 50.96 ± 4.53 50.95 ± 4.42
waveform-n20 65.92 ± 1.87 65.99 ± 1.87
zoo-n20 72.96 ± 12.44 72.76 ± 12.49

◦, • statistically significant improvement or degradation

(d) 20% Noise

Table 3.4: Accuracy - UCI Datasets with Variable Noise

3.2.2 Visualizing Accuracy as a Function of Class Noise

In an attempt to gain a better understanding of how classifier accuracy degrades as a

function of noise, we plot the accuracy of NB and NBCiAttr as noise increases from 0–20%
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Dataset NB NBCiAttr

anneal-n05 0.165 ± 0.021 0.156 ± 0.021 ◦
audiology-n05 0.142 ± 0.015 0.147 ± 0.017 •
autos-n05 0.266 ± 0.042 0.256 ± 0.042
balance-scale-n05 0.353 ± 0.016 0.351 ± 0.016 ◦
contact-lenses-n05 0.341 ± 0.102 0.367 ± 0.164
glass-n05 0.251 ± 0.029 0.259 ± 0.033 •
heart-c-n05 0.257 ± 0.037 0.259 ± 0.038
heart-h-n05 0.252 ± 0.034 0.251 ± 0.035
hypothyroid-n05 0.179 ± 0.011 0.177 ± 0.011 ◦
iris-n05 0.225 ± 0.110 0.230 ± 0.112
letter-n05 0.130 ± 0.002 0.129 ± 0.002 ◦
lymphography-n05 0.281 ± 0.074 0.290 ± 0.076
primary-tumor-n05 0.179 ± 0.007 0.185 ± 0.009 •
segment-n05 0.189 ± 0.014 0.183 ± 0.014 ◦
soybean-n05 0.107 ± 0.016 0.102 ± 0.017 ◦
splice-n05 0.239 ± 0.019 0.239 ± 0.019 ◦
vehicle-n05 0.394 ± 0.023 0.391 ± 0.023 ◦
vowel-n05 0.221 ± 0.009 0.219 ± 0.009
waveform-n05 0.361 ± 0.012 0.360 ± 0.012 ◦
zoo-n05 0.141 ± 0.070 0.139 ± 0.072

•, ◦ statistically significant improvement or degradation

(a) RMSE

Dataset NB NBCiAttr

anneal-n05 0.711 ± 0.228 0.676 ± 0.241
audiology-n05 0.545 ± 0.108 0.582 ± 0.130
autos-n05 0.110 ± 0.061 0.130 ± 0.059
balance-scale-n05 0.854 ± 0.041 0.852 ± 0.041
contact-lenses-n05 0.930 ± 0.248 0.930 ± 0.248
glass-n05 0.884 ± 0.068 0.882 ± 0.067
heart-c-n05 0.870 ± 0.061 0.871 ± 0.060
heart-h-n05 0.885 ± 0.062 0.890 ± 0.063
hypothyroid-n05 0.801 ± 0.037 0.804 ± 0.037
iris-n05 0.940 ± 0.078 0.938 ± 0.081
letter-n05 0.957 ± 0.012 0.958 ± 0.013
lymphography-n05 0.663 ± 0.345 0.661 ± 0.350
primary-tumor-n05 0.882 ± 0.069 0.879 ± 0.072
segment-n05 0.971 ± 0.021 0.970 ± 0.022
soybean-n05 0.939 ± 0.112 0.953 ± 0.101
splice-n05 0.944 ± 0.016 0.944 ± 0.016
vehicle-n05 0.755 ± 0.059 0.763 ± 0.059 ◦
vowel-n05 0.984 ± 0.014 0.987 ± 0.014
waveform-n05 0.908 ± 0.014 0.908 ± 0.014
zoo-n05 0.965 ± 0.078 0.966 ± 0.078

◦, • statistically significant improvement or degradation

(b) AUC

Table 3.5: RMSE and AUC - UCI Datasets 5% Noise

Noise % Accuracy RMSE AUC

0 (5/15/0) (9/10/1) (4/16/0)
5 (6/14/0) (9/8/3) (1/19/0)

10 (4/16/0) (7/11/2) (1/19/0)
15 (3/16/1) (4/11/5) (1/19/0)
20 (4/16/0) (2/10/8) (0/20/0)

Table 3.6: Summary of NBCiAttr vs. NB with Class Noise (wins/ties/losses)

in 1 percentage point increments. This is done for several of the UCI datasets, 3 for which

NBCiAttr outperforms NB (without noise) and 3 for which there is no statistical difference.

The accuracy is found in Figures 3.1a–3.1f, and the associated standard deviations of

accuracy in Figures 3.2a–3.2f.

Aside from contact-lenses, which is a very small dataset (24 instances), the remaining

graphs indicate a fairly straight-forward correlation between the performance of NB and

NBCiAttr as noise increases, both in terms of accuracy and the standard deviation of
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accuracy. We therefore conclude that NBCiAttr is not contributing to improved classifier

performance in the presence of class noise. This could be due to the decrease in at-

tribute conviction (increase in attribute confidence intervals) established during training

in Equation (2.1), causing the overall effect of confidence to be muted.
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Figure 3.1: Accuracy with respect to Class Noise
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Figure 3.2: Standard Deviation of Accuracy with respect to Class Noise
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3.3 The Document Pipeline

We now describe the application of our CI-augmented NBCiAttr classifier to datasets

other than the stock machine-learning UCI datasets. We construct classification problems

using a real-world dataset in the field of document classification to lend support to the

generality of our algorithm.

The source documents are legal documents from various county recording offices in

Oregon and Washington that have been digitized using commodity scanners and then

converted to text using the Tesseract OCR Engine [40]. The business problem is to

automate the classification of these documents as belonging to a given class, a job currently

performed manually by information workers. The problem space is rich due to the number

of individual document types, 113 in all, and the multi-level taxonomy that defines the

relationships between document types. At the top level of the taxonomy there are 5

logical groupings of documents, which we take as a 5-class classification problem. For this

dataset, TL5C, the prior class distribution ranges greatly, as seen in Table 3.7.

Class Count Pct

Acknowledgement 88 1.99%
Legal 182 4.11%

Property 3548 80.07%
Claim 429 9.68%
Notice 184 4.15%

Table 3.7: Class Distribution for TL5C Dataset

At the bottom level of the taxonomy are the 113 different document types. We take

the 6 most prevalent document types regardless of their taxonomic affiliation to create

a 6-class dataset, MT6C, in which no single class dominates the prior class distribution

(Table 3.8).

These datasets were prepared via the following steps. The documents are placed into
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Class Count Pct

Deed of Trust 636 29.61%
Statutory Warranty Deed 290 13.50%

Appointment of Successor Trustee 237 11.03%
Full Reconveyance 229 10.66%

Substitution of Trustee and Deed of Reconveyance 515 23.98%
Deed of Reconveyance 241 11.22%

Table 3.8: Class Distribution for MT6C Dataset

a directory structure suitable for Weka’s TextDirectoryLoader utility, which creates

a “raw” document data ARFF file with 2 attributes, the class of the document and a

string containing the document. Weka’s StringToWordVector filter is then applied to

the raw class file, converting it to a set of attributes, each of which represents a word (or

term) found in the document. Only the n most prevalent terms across the corpus are

included, configurable either on a per class basis or across all terms in the corpus. The

value n and hence number of term attributes can be varied along with other parameters,

such as the minimum number of occurrences of a term to be considered for inclusion as an

attribute, any stemming to be applied to words in the raw dataset, and how the document

string in the raw dataset is tokenized into words. The output of StringToWordVector is

a dataset with numeric attributes for term counts and a nominal class attribute. The

StringToWordVector filter supports a number of different counting methods for the term

count attributes, including metrics typically used in document classification such as term

frequency and inverse document term frequency. Because our goal is to create nominal

datasets, the domain in which our CI-based classifiers are applicable, we eschew real-

valued attributes in favor of these 2 representations: an integer count (0–k instances of

a given term found in the document), and a binary term presence (0 or 1, indicating

whether the term is found at least minimum term count times in the document). The

settings used for our Document Pipeline experiment are summarized in Table 3.9. The
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final step in dataset preparation is to convert the numeric attributes into nominal values,

accomplished with the NumericToNominal filter.

Setting Value

stemmer weka.core.stemmers.LovinsStemmer
tokenizer weka.core.tokenizers.AlphabeticTokenizer

minimum term count 1
minimum term count scope per class

term attribute integer count or binary presence
term count 10, 100 or 1000

Table 3.9: Document Pipeline StringToWordVector Settings

Once the datasets are prepared, we compare the performance of NaiveBayes to that of

our CI-augmented classifiers, the results of which appear in Section 3.4. We also note that

it is during the course of these experiments that we encountered issues with underflow.

The impact of underflow and its effect on our classifier implementation is covered in

Section 3.5

3.4 Document Pipeline Experiment Results

The experiments compare classifier accuracy, RMSE, and AUC for the two Document

Pipeline datasets, each of which is present with (3) different terms counts and in both

binary presence (nom suffix) and nominal term count variants (nomtc). Statistical rel-

evance of the results are determined by Weka’s Experimenter module using the paired

corrected t-test. The range of term counts seeks to demonstrate that our classifier is not

biased towards datasets with either few or many attributes; likewise the nominalized term

count datasets dispel a preference for binary attribute values. The TL5C nominal term

count datasets all include 9 attributes with 129 or more distinct values per attribute. In

this evaluation we use a variant of NBCiAttr dubbed NBCiAttrCiUF; this classifier makes
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accommodations for underflow and is introduced fully in Section 3.5.

Dataset NB NBCiAttrCiUF

mt6c-10-nom 84.87 ± 2.29 84.79 ± 2.30
mt6c-10-nomtc 94.16 ± 1.57 94.76 ± 1.53 ◦
mt6c-100-nom 95.34 ± 1.41 96.71 ± 1.23 ◦
mt6c-100-nomtc 96.39 ± 1.36 96.64 ± 1.34 ◦
mt6c-1000-nom 95.42 ± 1.59 96.72 ± 1.28 ◦
mt6c-1000-nomtc 96.71 ± 1.28 98.01 ± 0.97 ◦

tl5c-10-nom 84.96 ± 1.27 86.74 ± 1.46 ◦
tl5c-10-nomtc 81.02 ± 1.69 81.78 ± 1.56 ◦
tl5c-100-nom 76.16 ± 2.44 78.25 ± 2.40 ◦
tl5c-100-nomtc 82.93 ± 1.74 87.03 ± 1.39 ◦
tl5c-1000-nom 44.38 ± 2.84 45.38 ± 2.86 ◦
tl5c-1000-nomtc 61.24 ± 2.89 61.93 ± 2.75

◦, • statistically significant improvement or degradation

Table 3.10: Accuracy - Document Pipeline Datasets

The accuracy results are shown in Table 3.10. NBCiAttrCiUF outperforms NaiveBayes

in accuracy for 10 of the 12 test datasets, and the standard deviations are comparable. As

with the UCI datasets (see Section 2.4.2), the standard deviation is lower for a majority

of the datasets (9 of 12). Table 3.11 documents the evaluation of RMSE, where the

results are mixed. For the MT6C datasets, 2 wins are balanced by 2 ties and 2 losses

(2/2/2), while the 10 and 100-term variants of TL5C datasets fare better with 4 wins,

offset by losses for both of the 1000-term versions. The area under the ROC curve results

in Table 3.12 are also mixed, with one statistical improvement for the MT6C dataset

(1/5/0), and one improvement, three ties, and two degradations (1/3/2) for the TL5C

dataset.

We do not find this result entirely surprising given the general difficultly that NB

classifiers have with this dataset. Simply guessing the class based on the prior probability

of the Property class for the 1000 term datasets well outperforms NB, yielding over 80%
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Dataset NB NBCiAttrCiUF

mt6c-10-nom 0.189 ± 0.012 0.188 ± 0.012
mt6c-10-nomtc 0.126 ± 0.017 0.120 ± 0.018 ◦
mt6c-100-nom 0.115 ± 0.018 0.100 ± 0.019 ◦
mt6c-100-nomtc 0.105 ± 0.021 0.106 ± 0.020
mt6c-1000-nom 0.120 ± 0.021 0.130 ± 0.017 •
mt6c-1000-nomtc 0.101 ± 0.021 0.214 ± 0.007 •

tl5c-10-nom 0.219 ± 0.009 0.212 ± 0.009 ◦
tl5c-10-nomtc 0.261 ± 0.011 0.257 ± 0.011 ◦
tl5c-100-nom 0.285 ± 0.014 0.273 ± 0.014 ◦
tl5c-100-nomtc 0.256 ± 0.013 0.239 ± 0.012 ◦
tl5c-1000-nom 0.465 ± 0.012 0.478 ± 0.010 •
tl5c-1000-nomtc 0.390 ± 0.014 0.416 ± 0.010 •

◦, • statistically significant improvement or degradation

Table 3.11: RMSE - Document Pipeline Datasets

Dataset NB NBCiAttrCiUF

mt6c-10-nom 1.000000 ± 0.000000 1.000000 ± 0.000000
mt6c-10-nomtc 0.999993 ± 0.000027 0.999994 ± 0.000025
mt6c-100-nom 0.999995 ± 0.000027 0.999995 ± 0.000027
mt6c-100-nomtc 0.999992 ± 0.000035 0.997967 ± 0.004645
mt6c-1000-nom 0.995261 ± 0.006133 0.999796 ± 0.000525 ◦
mt6c-1000-nomtc 0.983265 ± 0.012908 0.989018 ± 0.008099

tl5c-10-nom 0.932383 ± 0.038136 0.934524 ± 0.037563 ◦
tl5c-10-nomtc 0.850876 ± 0.037811 0.846137 ± 0.040103
tl5c-100-nom 0.920551 ± 0.052094 0.921045 ± 0.052690
tl5c-100-nomtc 0.869363 ± 0.039091 0.872045 ± 0.038419
tl5c-1000-nom 0.930677 ± 0.037959 0.847430 ± 0.064392 •
tl5c-1000-nomtc 0.897950 ± 0.041813 0.710352 ± 0.112131 •

◦, • statistically significant improvement or degradation

Table 3.12: AUC - Document Pipeline Datasets
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accuracy. A check of the confusion matrices for the TL5C dataset (Tables 3.13 and 3.14)

shows that the classifiers have difficulty differentiating between the classes, particularly

when binary presence is used. (Although it is remarkable to note that the accuracy of

the minority classes—all save for Property—is increased when only the binary presence is

used.) We acknowledge that better ML algorithms for text classification are available, but

assert that our CI-augmented NB algorithm can be substituted for NB across a variety of

nominal datasets without an impact to performance with respect to accuracy. We turn

next topic of underflow and the rationale behind the NBCiAttrCiUF variant of NBCiAttr.

a b c d e ← classified as

0 0 57 31 0 a = Acknowledgement
0 38 74 70 0 b = Legal
0 0 2253 1295 0 c = Property
0 0 39 390 0 d = Claim
0 0 34 92 58 e = Notice

Table 3.13: Confusion Matrix for NBCiAttrCiUF on TL5C-1000-NOMTC

a b c d e ← classified as

46 10 15 13 0 a = Acknowledgement
3 150 10 19 0 b = Legal

175 285 1326 1309 453 c = Property
10 7 10 397 5 d = Claim
4 3 6 72 99 e = Notice

Table 3.14: Confusion Matrix for NBCiAttrCiUF on TL5C-1000-NOM

3.5 Underflow

One obstacle encountered during the evaluation our CI-augmented classifiers on the Docu-

ment Pipeline datasets is that our initial implementation, based on the NaiveBayesSimple
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found in Weka, failed during prediction of all 1000-term and the 100-term nominative term

count datasets due to underflow.2 We validate that the behavior is not due to our CI-

related extensions as it is also exhibited by the NaiveBayesSimple classifier alone. In this

context, this error occurs when all class predictions are zero and Weka’s Utils.normalize()

method is unable to assign relative percentages to the class distribution array because

the sum of the raw prediction scores is 0. In the NaiveBayesSimple implementation no

attempt is made to detect underflow; the product of the prior and attribute probabilities

terms is returned as the result, causing a null prediction whenever all classes predic-

tions underflow. This difficulty encouraged us to explore potential heuristics to cope with

underflow, beginning with the approach taken in the NaiveBayes implementation.

3.5.1 Underflow Detection in Weka’s NaiveBayes

The algorithm used within NaiveBayes is depicted in Listing 3.1; note that this code

has been simplified to call out the salient aspects—namely that the outer loop is over

attributes while the inner loop is over the class predictions. After each attribute is ex-

amined, the value of max is examined to see whether it is less than 1 × 10−75. If so,

then all of the probability predictions are scaled up by 1× 1075 before the next attribute

is added during the next loop iteration. The calculations use the Java primitive double

type, represented internally as a 64-bit IEEE 754 number.3

2The specific exception observed in Weka is java.lang.IllegalArgumentException: Can’t

normalize array. Sum is zero.
3http://java.sun.com/docs/books/jls/third edition/html/typesValues.html#4.2.3
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� �
for ( int j = 0 ; j < m NumClasses ; j++) {

probs [ j ] = m Clas sDi s t r ibut i on . g e t P r o b a b i l i t y ( j ) ;
}
for ( int i = 0 ; i < m NumAttributes ; i++) {

double temp , max = 0 ;
for ( int j = 0 ; j < m NumClasses ; j++) {

temp = Math . max(1 e−75, g e t A t t r i b u t e P r o b a b i l i t y ( i ) ) ;
probs [ j ] ∗= temp ;
i f ( probs [ j ] > max) {

max = probs [ j ] ;
}
i f ( Double . isNaN ( probs [ j ] ) ) { // throw Except ion }

}
i f ( (max > 0) && (max < 1e−75)) {

// Danger o f under f low ; s c a l e up a l l p r o b a b i l i t i e s .
for ( int j = 0 ; j < m NumClasses ; j++) {

probs [ j ] ∗= 1 e75 ;
}

}
}� �

Listing 3.1: Underflow Protection in NaiveBayes

3.5.2 Underflow Heuristics for NBCiAttr

Our first step was to reimplement our CI-augmented classifier based on Weka’s NaiveBayes

source code using its scaling approach to underflow. This allowed evaluation to proceed,

and the resulting classifier was equivalent in the absence of underflow to the NBCiAttr

classifier used throughout our work. However, we were disappointed to note that this

classifier did not perform as well across all of the Document Pipeline datasets as one

of our interim attempts to solve the underflow problem in our original implementation.

In that interim incarnation, when underflow is detected, the prediction results based on

Bayes’ rule are ignored, and the classifier returns the prior class probabilities. That is,

the classifier merely guesses the most likely class. We call this classifier NBCiAttrPUF

(PUF indicates Priors UnderFlow). We investigate another approach when Bayes’ rule

does not produce a prediction due to underflow, which is to instead base the prediction

on the inverse of the prediction CIs calculated, as depicted in Equation (3.1). Recall that

smaller prediction CIs indicate stronger conviction, and so choosing the largest inverse of
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the prediction CI selects the class prediction with the strongest conviction.

predX(c) = argmax
c

1

pciX(c)
(3.1)

We refer to this classifier as NBCiAttrCiUF. It is compared to plain NaiveBayes (or

simply NB), CI-augmented NaiveBayes, and our PUF heuristic alternative in Tables 3.15–

3.17.4 We observe that NBCiAttrPUF is able to provide a statistical improvement in accu-

racy over NB in 4 of 6 cases, and NBCiAttrCiUF in 5 of 6 cases, but that both approaches

fail to deliver consistent improvements when RMSE or AUC is used as the metric. How-

ever by employing the underflow implementation (in Listing 3.1) in conjunction with CI

(i.e. NBCiAttr), RMSE is improved across the board, and AUC results are comparable

to or improved over those for NB. Focusing in on only the NBCiAttr and NBCiAttrCiUF,

there are 3 out of 6 cases where the CiUF heuristic increases the overall classification

accuracy by a full percentage point or greater. We conclude this line of inquiry with the

observation that prediction CI can be a useful indicator of class when other mechanisms

to predict class have been exhausted due to underflow. This information is immediately

available at prediction time and can be employed by the classifier when underflow is de-

tected. The heuristic incurs only trivial additional computational overhead, as merely

the index of the smallest prediction CI (strongest conviction) class need be determined,

requiring O(c) time. In the next chapter we turn to the time complexity and run-time

characteristics of näıve Bayesian classifiers in more detail.

4Dataset names abbreviated in the interest of space; the datasets are those used in other experiments.
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Dataset NB NBCiAttr NBCiAttrPUF NBCiAttrCiUF

m100tc 96.392 ± 1.36 96.643 ± 1.34 ◦ 96.643 ± 1.34 ◦ 96.643 ± 1.34 ◦
m1000 95.423 ± 1.59 95.493 ± 1.60 96.629 ± 1.34 ◦ 96.718 ± 1.28 ◦
m1000tc 96.708 ± 1.28 96.741 ± 1.29 97.243 ± 1.11 98.007 ± 0.97 ◦

t100tc 82.934 ± 1.74 83.579 ± 1.69 ◦ 86.985 ± 1.38 ◦ 87.028 ± 1.39 ◦
t1000 44.381 ± 2.84 45.225 ± 2.86 ◦ 45.202 ± 2.88 ◦ 45.380 ± 2.86 ◦
t1000tc 61.244 ± 2.89 61.950 ± 2.82 ◦ 61.763 ± 2.73 61.927 ± 2.75

◦, • statistically significant improvement or degradation

Table 3.15: Accuracy Employing Various Approaches to Underflow

Dataset NB NBCiAttr NBCiAttrPUF NBCiAttrCiUF

m100tc 0.105 ± 0.02 0.101 ± 0.02 ◦ 0.105 ± 0.02 0.106 ± 0.02
m1000 0.120 ± 0.02 0.118 ± 0.02 ◦ 0.119 ± 0.02 0.130 ± 0.02 •
m1000tc 0.101 ± 0.02 0.100 ± 0.02 ◦ 0.185 ± 0.01 • 0.214 ± 0.01 •

t100tc 0.256 ± 0.01 0.252 ± 0.01 ◦ 0.224 ± 0.01 ◦ 0.239 ± 0.01 ◦
t1000 0.465 ± 0.01 0.462 ± 0.01 ◦ 0.462 ± 0.01 ◦ 0.478 ± 0.01 •
t1000tc 0.390 ± 0.01 0.386 ± 0.01 ◦ 0.386 ± 0.01 0.416 ± 0.01 •

◦, • statistically significant improvement or degradation

Table 3.16: RMSE Employing Various Approaches to Underflow

Dataset NB NBCiAttr NBCiAttrPUF NBCiAttrCiUF

m100tc 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9980 ± 0.0046 0.9980 ± 0.0046
m1000 0.9953 ± 0.0061 0.9953 ± 0.0061 0.99987 ± 0.0005 ◦ 0.9998 ± 0.0005 ◦
m1000tc 0.9833 ± 0.0129 0.9833 ± 0.0129 0.9892 ± 0.0080 0.9890 ± 0.0081

t100tc 0.8694 ± 0.0391 0.8714 ± 0.0375 0.8733 ± 0.0382 0.8720 ± 0.0384
t1000 0.9307 ± 0.0380 0.9321 ± 0.0375 ◦ 0.8482 ± 0.0601 • 0.8474 ± 0.0644 •
t1000tc 0.8980 ± 0.0418 0.8986 ± 0.0416 ◦ 0.6571 ± 0.1125 • 0.7106 ± 0.1121 •

◦, • statistically significant improvement or degradation

Table 3.17: AUC Employing Various Approaches to Underflow
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Chapter 4

Run-time Performance

4.1 Run-time Analysis

As intimated in Section 1.4, modifications to NB with the aim of improving the classi-

fication accuracy of NB may trade accuracy for asymptotic run-time complexity. It is

reasonable to expect that all conceivable variants execute in polynomial time—to exceed

polynomial time an algorithm would have to perform super-polynomial or exponential

work either with respect to the number of classes, instances or attributes. As we will see,

not all implementations exhibit polynomial time complexity, and not all of those that do

share the equivalent polynomial time complexity.

4.1.1 Time Complexity of Näıve Bayes

For a classification problem with n instances, k attributes, and c classes, the algorithm

requires only a single pass over the training data in order to construct a model, which

completes in O(nk) time. Since k is frequently small, Elkan refers to this as linear in [4],

going on to state that “no learning algorithm that examines all of its training data can be

faster.” Strictly speaking, the time complexity of many implementations is slightly higher.
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Given v possible nominal values the attribute can assume, the model must contain kcv cells

to store the counts for each attribute value, and ergo requires O(kcv) time (and space)

to allocate and initialize those counts. Then to subsequently compute the conditional

probabilities for all attribute values requires again O(kcv) calculations. Implementations

can be clever regarding efficient data structures to accumulate counts; for example Weka

uses a data format that converts all nominal classes and attribute values to non-negative

integers, allowing the class and attribute values to be used as indices directly into the

model during training.

For implementations that support indexing by attribute value, each classification oc-

curs in the O(k) time needed to compute the class prediction, repeated c times (once per

class), and then c comparisons to select the maximum, yielding O(kc+c) or simply O(kc).

The normalization step required in order to be able to calculate RMSE and AUC then

requires c more steps. This can be thought of as approaching k for many datasets, where

c� k.

4.1.2 Time Complexity of CI-Augmented Näıve Bayes

Our CI-based classifiers maintain both the original attributes and näıve Bayes structure.

During model creation, the attribute CI, aciai(c) (Equation (2.1)), and class confidence,

cic(c) (Equation (2.2)), terms are calculated and stored in the model. Equation (2.1) con-

tains a term Nai that refers to the number of times an attribute is observed irrespective of

class. These counts can be accumulated during training without requiring any additional

time and allocate only k elements of memory alongside the c elements for the class CIs

(Equation (2.2)) and the kcv elements to store the attribute CIs. Therefore, the memory

requirements are slightly greater than double the memory required for NB.

When prediction is performed, the prediction confidence for the test instance pciX(c)

(Equation (2.3)) is computed in O(kc) time, just as with the NB, and then applied to the
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prediction. To be sure, we are not claiming that the run-time performance of NBCiAttr is

equivalent to NB, only the asymptotic time complexity. The are several constant factors

difference between the two, not the least of which being the operations to compute pciX(c).

This term entails k+ 1 multiplications (the squaring of the attribute and class CI terms)

and then the calculation of a square root, which is far more CPU intensive than any

of the operations in basic NB. We address some potential performance improvements in

Section 5.2.

4.1.3 Time Complexity of NB Variants

We now take a cursory glance at the time complexity of other approaches to improving

NB classification introduced in Section 1.4 to motivate why we believe that NBCiAttr is

distinct in its ability to improve classification accuracy without requiring additional com-

putational complexity. Much of the literature on hybrid variants of NB we encountered

neglects to discuss time complexity directly, and we found scant treatment of the topic in

the form of surveys. Therefore, we introduce the theoretical reasons for time complexity

related to these approaches and then attempt to address the question empirically.

When performing feature selection via either filters or wrappers, an exhaustive search

of the attribute space—i.e. trying all possible combinations of attributes—requires eval-

uation of 2k attribute sets, and so is only feasible for datasets with small numbers of

attributes. In practice, feature selection often employs heuristic or greedy local search

methods to traverse the search space typically in O(k2) time [41, 23]. Both features and

wrappers must then perform an evaluation of each proposed feature set in order to eval-

uate its goodness relative to competitors, so the overall training time is on the order of

O(k3cv). Obviously ensemble learning methods pay the penalty of a constant factor equal

to the number of classifiers deployed, and the asymptotic run-time is that of the most

expensive classifier in the ensemble.
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Hall’s attribute-weighted näıve Bayes (AWNB) [20] learns attribute weights by con-

structing decision trees of attributes, and thus incurs the cost of tree construction. In the

case of this algorithm the cost is log-linear in the number of instances, adding a factor of

O(log n) to the training time. (Unfortunately we are not able to locate an implementation

of this algorithm to investigate its implementation or evaluate its runtime performance.

From the description Hall’s paper, it seems that the weighting scheme incurs another

factor of O(log k) when constructing the attribute tree.) It should be noted that one of

the advantages of decision trees is that their traversal only requires log-based time in the

number of attributes, a potential advantage over NB during prediction, which requires

linear time to examine every attribute. However, in terms of training time the theoretical

lower bound for tree construction for tree-based hybrids remains O(k log2 k) for attributes

or O(n log2 n) for instances.

HNB (Hidden Näıve Bayes) [42] also seeks to learn weights and must compare all at-

tributes pair-wise during training to do so. Jiang et al. document its training complexity

as O(nk2 +ck2v2) and the classification time as O(ck2), and claim their algorithm exhibits

better runtime performance than TAN (tree-augmented NB) [43], for which the training

time is O(nk2 + ck2v2 + k2 log k). (This last term would be significant for datasets like

those in the Document Pipeline, where c � log k.) Next, we note the time complexity

of AODE, which trains in O(nk2) time and classifies in O(ck2) time, but requires more

space—O(ck2v2). Finally, we estimate the training complexity of DMNBtext based on the

description in [28].1 In order to generate the discriminative frequency estimate (DFE)

for each of k attributes, the algorithm performs an arbitrary (parameterized) number of

iterations across the attributes to improve the frequency estimate. Each iteration and

update of the classifier (i.e. for all n instances in the training set) requires c steps to

calculate the current prediction distribution. Therefore, DMNBtext varies from NB only

1The authors compare training time in their evaluation, but do not posit the algorithm’s computational
complexity.
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in the factor for c and the number of iterations, and the learning complexity is O(cnkM),

where M is the (constant) number of iterations desired to improve the DFE. There is

also an additional factor of c required for prediction of multi-class datasets, as the core

DMNB algorithm only supports binary prediction.

4.2 Run-time Experiment

In order to validate our assertions about the computational complexity of NBCiAttr, we

devise an experiment to record the training and testing time of NB, NBCiAttr, and several

of the hybrid NB algorithms introduced in Sections 1.4 and 4.1.3. For the basis of compar-

ison, we include J48, a pure decision tree ML algorithm that is Weka’s implementation

of Quinlan’s seminal C4.5 [44]. Our list of ML algorithms is: NaiveBayes, NBCiAttr,

HNB, BayesNet, AODE, DTNB, DMNBtext, and J48. As related work we cite an experiment

by Williams et al. [45] wherein the model creation and classification runtime of five ML

algorithms applied to the topic of IP traffic flow classification are compared using Weka’s

Experimenter.

For input datasets we initially selected the 1000-term variants of the Document Pipeline

datasets from Section 3.3 but discovered that it was not only NaiveBayesSimple that was

incapable of coping with large numbers of attributes without generating exceptions due to

underflow. Hidden Näıve Bayes (HNB) also fails during prediction of these high-attribute

datasets. Therefore, we took the 10 and 100-term versions of the MT6C datasets and

expanded the number of instances by a factor of 20. The intention here being to increase

the amount of time spent training and testing so as not to encounter timer resolution

fidelity issues in either the JVM or operating system. The statistics for resulting datasets

are shown in Table 4.1.2 Note that the average number of attribute values decreases as the

2DMNBtext only allows numeric attributes, and we use separate but equivalent datasets for its evalu-
ation.
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number of terms considered increases because the dataset incorporates more infrequently

encountered terms.

Dataset Attributes Values (avg) Classes Instances

mt6c-10x20-nom 27 2.0 6 42960
mt6c-100x20-nom 262 2.0 6 42960

mt6c-1000x20-nom 2763 2.0 6 42960
mt6c-10x20-nomtc 27 65.8 6 42960

mt6c-100x20-nomtc 262 24.0 6 42960
mt6c-1000x20-nomtc 2763 7.1 6 42960

Table 4.1: Datasets Considered for Empirical Run-time Experiment

4.2.1 Pragmatic Issues

Experimentation using these datasets led to several other issues. The first was that after

running for over 19 hours, the first of 10 runs of Hall and Frank’s DTNB classifier against

the first 100x20 dataset had not completed. Although not explicitly stated in the DTNB

paper [30], the computational complexity is obviously high relative to other classifiers.

We examine the classifier source code to ascertain that the algorithm performs a search

the authors describe as “forward selection [for attributes to use for NB] and backward

elimination [for attributes to use for the decision table]” as well as considering which

attributes to drop entirely. This search appears to require up to O(2k) time, refuting the

notion that all NB variants should run in polynomial time.

The next issue we encountered was related to space complexity. The authors of HNB

do not make a claim as to its memory requirements, and we know that they are bounded

above by the time complexity because the algorithm cannot cover more space than the

allocated time. However the space complexity could be as great as the time complexity,

which includes the potentially large terms for k2v2 (230.73 for mt6c-100x20-nomtc, for

which v averages 24, but ranges to a maximum of 161) and nk2 (over 231.46 for either
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of the 100x20 datasets). Even assuming only the storage of an array of 64-bit doubles

of either of those values would far exceed the addressable memory of a 32-bit operating

system. We obtained access to a 64-bit JVM, which supports the creation of larger heaps,

but the physical memory of the system itself was a limiting factor—it is not valid to

compare the time required by an algorithm that is running in core to one for which

virtual memory is being swapped to disk. Empirically we can assert that the nk2 term

does not appear in the space complexity, as we are able to process the mt6c-100x20-nom

version of the dataset on our system without swapping.

We finally settled on a few compromises to our envisioned experiment. We drop the

nomtc variants of the datasets entirely, exclude the DTNB algorithm, and exclude the

1000x20 datasets for the AODE and HNB algorithms. Also, instead of conducting 10 runs

of 10-fold cross-validation, we use 10 runs with a 66% training, 34% test split of the

datasets. This reduces the overall number of runs by a factor of 10, and slightly decreases

the memory requirements during training as only 66% of the dataset is analyzed instead of

90%. We assert that these concessions benefit the algorithms with higher computational

complexity than NB and NBCiAttr, but still allow us to formulate a relative picture of

their runtime performance.

Evaluation was conducted on a headless (i.e. no graphics adapter or input devices)

2.2GHz dual-core system running 64-bit Linux. No other tasks or users were allowed on

the system during the experiment to minimize interference from other jobs. By default

Weka executes experiments sequentially within a single thread, a useful property for our

test because we could depend on sufficient head-room on the second core to handle kernel

tasks.
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4.2.2 Results and Discussion

Results are those reported by Weka’s UserCPU Time fields and so represent the operating

system’s view of training and testing time. We represent training and testing in Tables

4.2 and 4.3. Empty cells indicate that the algorithm was not evaluated for that dataset.

Datasets
Algorithm mt6c-10x20-nom mt6c-100x20-nom mt6c-1000x20-nom

NaiveBayes 0.17 1.73 35.05
NBCiAttr 0.16 1.63 33.34

HNB 0.28 27.19 -
BayesNet 0.58 7.31 104.94

AODE 0.25 36.88 -
J48 3.36 26.1 297.24

DMNBtext 4.61 23.76 65.04

Table 4.2: Training Time for Various ML Algorithms

Datasets
Algorithm mt6c-10x20-nom mt6c-100x20-nom mt6c-1000x20-nom

NaiveBayes 0.29 2.93 49.73
NBCiAttr 0.58 6.18 85.41

HNB 1.24 235.81 -
BayesNet 0.39 4.01 96.91

AODE 0.91 83.2 -
J48 0.08 0.10 0.16

DMNBtext 0.04 0.14 0.32

Table 4.3: Testing Time for Various ML Algorithms

We note that training time for NB and NBCiAttr are consistent with each other

across all datasets, and that testing time is greater for the CI-augmented classifier by

approximately a factor of 2. This corresponds well to our expectations in Section 4.1.2; we

anticipate a higher constant factor in order to calculate and apply the prediction CI. One

puzzling aspect of the results is that both NaiveBayes and NBCiAttr lose ground when
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we make the jump from the 100-term to the 1000-term dataset. We do not have a ready

explanation for this discrepancy, as the computational complexity of both algorithms

scales linearly in the number of attributes, and the number of instances is constant across

all three datasets. Our conjecture is that there is an implementation-related factor at

play here. Another subtle oddity is that NBCiAttr trains slightly faster than NaiveBayes.

There is no reason to anticipate this, as NBCiAttr actually calculates a few extra model

statistics during training (the attribute CI and class CI terms in Equations (2.1) and

(2.2)). To verify, we executed the benchmark multiple times, including reversing the

order of algorithm evaluation (in an attempt to expose any bias due to the first algorithm

having to load the dataset prior it it being cached by the operating system), and the

results do not change.

As expected we observe higher training times for hybrid variants, and a hodgepodge

of testing times. The algorithms that employ tree structures take longer to train, but

demonstrate the beauty of this data structure when prediction is performed. By com-

parison, HNB and AODE both exhibit longer testing times than training times (and this

for testing sets half as large as the training set), a property they share with NB and

NBCiAttr. Distinct from NB, both HNB and AODE appear to defer work at training time

in favor of the creation of data structures and computation during testing.

DMNBtext stands out, both in terms of its classification accuracy3 and runtime per-

formance. For the experiment we set the iterations parameter for this classifier to 10,

which should result in a linear increase in training time over NB, but the empirical results

contradict this. We note that the algorithm could employ a stopping criterion to detect

when subsequent iterations do not improve the DFE, but analysis of the implementation

does not indicate the presence of such. The data structures used DMNBtext are lighter-

weight than those used in Weka’s NaiveBayes (simply arrays instead of Weka’s Estimator

3DMNBtext is a very accurate classifier for text classification problems like those discussed in Section
3.3.
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objects). At classification time, the dramatic difference is almost certainly due to the use

of log-based calculations in the implementation—i.e. addition instead of multiplication.

We make one final comparison between the run-time of the algorithms, depicted in

Figures 4.1 and 4.2. To generate this graphs, we normalize the times reported in Tables

4.2 and 4.3 twice. First we adjust for the number of attributes in our benchmark datasets

(see Table 4.1); i.e. we scale the values for the 10x20 dataset by roughly a factor of

1000 (or exactly, 2763/27) and the values for the 100x20 dataset by a factor of about

10 (2763/262). We then normalize those results such that the time required for NB to

train and test on the 42960 instances for the 10x20 dataset sums to 1. In essence, we are

assuming that NB learning the 10-term dataset is the benchmark problem and want to

observe how other algorithms compare as we vary the number of attributes. Therefore,

the other values on the bar graph are relative factors of that the NB “unit” time. Figure

4.2 omits the long-running AODE and HNB algorithms for the sake of fidelity.
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Figure 4.1: Training+Testing Time Normalized by Attribute Count

We note that the combined time for NB is the best; this is true regardless of the nor-

malization. However DMNBtext gains relative speed as the number of attributes increase,
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Figure 4.2: Training+Testing Time Normalized by Attribute Count (Detail)

and both it and J48 spend so little time performing predictions so as not even to be visible

on the graph.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

Our initial concept, to investigate the interaction between the confidence intervals (con-

viction) associated with conditional probabilities and class priors, led us through multiple

ancillary topics: different metrics for the evaluation of classifier performance, analysis

of performance in the presence of noise, and implementation issues such as the Laplace

estimator and underflow. The goal of creating a classifier that makes use of confidence

intervals has been realized. After several false starts documented in Section 2.4, we iden-

tified an approach applicable to multi-class datasets that warrants additional exploration

and go on to evaluate NBCiAttr against laboratory datasets and real-life datasets using

three diverse metrics of machine learning classifier performance.

This evaluation demonstrated a moderate improvement in classifier accuracy for some

datasets without any statistically significant loss of accuracy. When considering RMSE

and AUC, the results were similar to those for accuracy for the laboratory datasets, but

not consistently statistically equivalent when working with real-world datasets containing

large numbers of features. We hypothesize that this decrease in probability estimation and

ranking ability is due to having numerous low conviction (infinite CI) attributes that are
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in fact irrelevant to classification, but disrupt the prediction probabilities. Our conjecture

that the use of CI may help classifier performance when class noise is present in the

dataset is not supported by our experiments. Classifier accuracy for our CI-augmented

classifier essentially tracked that of NB, although we acknowledge that our experiments

only consider class noise and not attribute noise. We also experimented with two heuristics

that can be utilized in absence of a prediction from the näıve Bayesian calculation due

to underflow and observed an improvement in classifier accuracy in the majority of cases.

Because the heuristics employ information directly available from the model, they can be

used without any increase time or space requirements.

Given that NBCiAttr exhibited improved prediction performance in only a subset of

our test cases, we sought to motivate its use by referring to its computational time and

space complexity, which is asymptotically equivalent to näıve Bayes. We demonstrated

this empirically, comparing the training and testing time of NB, NBCiAttr and several

variants we deem related to our work. We conclude that NBCiAttr lives up to its promise,

but is, along with all others, outclassed by Su et al. ’s DMNBtext classifier in text clas-

sification situations where numeric instead of nominal attribute values are applicable.

We thus close our exploration of confidence intervals and näıve Bayesian classification by

documenting areas left unaddressed by this thesis and ideas for future work.

5.2 Future Work

As noted in Section 1.4, there is a great deal of prior work on improving näıve Bayes; much

of that prior work focuses on either attribute selection (to address the näıve assumption

of attribute independence) or the development of hybrid classifiers that combine NB

with other ML algorithms. The drawback to these approaches is additional, in some

cases significant, computational overhead for the improvement in accuracy realized. In

applications where the model must be constructed quickly and classification should be
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linear in the number of instances, we believe our CI-augmented classifiers to be unique

and hold promise. We conclude with some open questions and ideas for future work in

this area.

Despite the moderate successes of NBCiAttr, it is somewhat unsatisfying that the

calculated prediction CI values cannot be applied directly to the conditional probabilities

in Bayes’ rule, as they are when the calculations are done in log-space as they are in

Orange. Intuitively, it would be reassuring to look at an attribute CI and state that it

affects the conditional probability by ±3%, for example. However, we note that such

an interpretation does not affect classifier accuracy and would potentially necessitate

additional research into the alternatives for calculating probabilistic error and ranking-

based metrics such as RMSE and AUC, as now predictions overlap by some margin of

uncertainty.

We are aware that the class CI calculation in Equation (2.2) differs from the stan-

dard error calculation found in standard texts on statistics, which is ± zα/2
√
p(1− p)/n

(referred to as confidence intervals for proportions in [35, p. 366]). Class CI uses the

same terms, but all three of them appear in the denominator of the fraction. We would

find this more troubling if there were a theoretical basis for applying the margin of error

as a term when calculating P (c|X). In the absence of this type of interpretation, we

hypothesize that NBCiAttr functions by decreasing the highest conviction prediction by

the least amount, while lower conviction predictions are more likely to be rejected by the

classifier. Nonetheless, we would like to develop a mathematical model that explains the

success of the NBCiAttr classifier. This would allow for a more comprehensive heuristic

regarding when to use this classifier than “only useful for multi-class nominal datasets.”

Because NBCiAttr does not incorporate any truly new information into the model creation

or prediction (the counts were already known), there could be an interpretation of it as

shallow Bayes network a fixed structure that incorporates the prediction CI calculation.
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We find the evidence that the use of prediction CI decreases the standard deviation

in classifier accuracy (see Table 3.1) in a majority of cases interesting. The fact that the

accuracy across 100 runs of the CI-augmented classifier remains more tightly clustered

around the average accuracy implies that this classifier is more consistent and stable as

the instances in the evaluated folds vary. We speculate as to whether this indicates a NB

model less susceptible to over-fitting. Therefore we propose an experiment to evaluate

resistance to overfit, such as that conducted by Dietterich in [24]. More specifically, future

research includes conducting an evaluation of NBCiAttr in the presence of attribute noise

instead of or in addition to class noise. Because the class CI and attribute CI will be using

the proper (i.e. noise-free) class priors, NBCiAttr may function to filter attribute-value

outliers by assigning them a weak conviction (high attribute CI).

Another avenue of potential inquiry is to explore the relationship of confidence intervals

and the m-estimate (Section 1.4.3) and the DFE discriminative frequency estimate used

in DMNBtext. In that work, the NB conditional probability terms are supplanted by

their respective DFE counterparts. We ponder whether the prediction CI could be used

in conjunction with the m-estimate or the DMNBtext prediction, or the attribute CIs as

a component a stopping criterion during the DFE calculation. In the course of research

on variants of NB, the m-estimate and DFE ideas (along with confidence intervals) strike

us as the most promising approaches to improving NB while maintaining its desirable

asymptotic complexity.

From our early work with log odds ratio (LOR) based NB classifiers, we believe that

LOR-based classifiers are a potential area for research into a quicker NB classifier. The

LOR-based NB classifier has the same asymptotic complexity for model construction, but

with a slightly higher constant due to the more computationally expensive calculations.

However, it enjoys a much smaller constant during prediction tasks, which can be done

with addition, and any exponentiation for attribute weighting becomes multiplication.
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The is evidenced by the superlative run-time of the DMNBtext classifier for large numbers

of attributes seen in Section 4.2.2. Although the training task dominates in the laboratory

where 90/10% folds are the norm, the prohibitive cost of manually classifying training

data in non-synthetic environments suggests that trading training performance for run-

time performance is warranted. Furthermore, the use of logarithms may avoid issues with

underflow when large numbers of attributes are present as discussed in Section 3.5, or on

architectures where high precision calculation come at a premium, e.g. in small embedded

systems or wireless sensor networks. This effort is simply one of implementation. Finally,

we conclude with a list of implementation-specific proposals to increase the usefulness of

our CI-augmented NB classifier:

• Modify the CI-based classifiers to allow numeric attributes by ignoring these when

CI is calculated (behavior would fall back to normal NB for those attributes). This

extends the usefulness of this classifier to support datasets containing a mixture of

nominal and numeric attributes.

• Modify the CI-based classifiers to support updates to the model after initial training.

This merely entails a modification of the implementation to calculate the class and

attribute confidence intervals whenever the model is updated. Prediction confidence

intervals are calculated as they are currently.

• Optimize the run-time performance of NBCiAttr (at the expense of memory re-

quired) by caching the prediction confidence intervals pciX(c) as they are calculated.

Similarly, once an instance prediction has taken place, subsequent instances with

the same attribute values need not be calculated at all. This would serve to reduce

the constant factor NBCiAttr pays over NB.
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