
AN EFFICIENT KEY UPDATE SCHEME FOR WIRELESS

SENSOR NETWORKS

By

KAMINI B. PRAJAPATI

A thesis submitted in partial fulfillment of
 the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

DECEMBER 2005

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of KAMINI B.

PRAJAPATI find it satisfactory and recommend that it be accepted.

 Chair

 iii

ACKNOWLEDGEMENT

First, I would like to thank my advisor Professor Jabulani Nyathi for all his help,

support and guidance in my research work. I would also like to thank Professor

Murali Medidi and Professor Sirisha Medidi for being the committee members of this

research.

Next, I would like to thank the Center for Teaching, Learning and Technology

(CTLT) for awarding me Research Assistantships.

And last but not least, I would like to thank my parents and my husband for their

encouragement and support.

 iv

AN EFFICIENT KEY UPDATE SCHEME FOR WIRELESS SENSOR

NETWORKS

Abstract

by Kamini B. Prajapati, M.S.
Washington State University

December 2005

Chair: Jabulani Nyathi

Wireless sensors are highly resource constrained in terms of memory, power and

processing capability. However, critical applications of these networks demand

security features to be implemented. Some researchers have approached this problem

and provided schemes like TinySec, TinyPK, Localized Encryption and

Authentication Protocol (LEAP), Elliptical curve Cryptography (ECC), etc. TinySec

is the most successful implementation till now. This research enhances the basic

TinySec security by providing an efficient key update mechanism on top of TinySec.

The simulation results show that the memory overhead for this scheme is 1.66% and

the computational cost is minimal. There is no latency or bandwidth overhead.

 v

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENT………………………………………………………...iii

ABSTRACT………………………………………………………………………..iv

LIST OF TABLES………………………………………………………………..vii

LIST OF FIGURES………………………………………………………………viii

CHAPTERS

1. INTRODUCTION…………………………………………………………1

1.1 WSN Models (Topology)…………………………………………….....2

1.2 Need for security in WSNs…………………………………………….5

1.3 WSN Models (Key distribution)……………………………………....6

1.4 Components of Sensor Node…………………...……………………...8

1.5 Problem Statement……………………………………………………18

1.6 Conclusion……….…………………………………………………….19

2. BACKGROUND WORK...……………………………………………….20

2.1 TinySec…………………………………………………………………20

2.2 Conclusion …………………………………………………………...24

3. RELATED WORK………………………………………………………...25

3.1 ECC…………………………………………………………………….25

3.2 SPAWKU and SPAGKU……………………………………………...29

3.3 LEAP…………………………………………………………………...33

3.4 TinyPK…………………………………………………………………37

3.5 Conclusion……………………………………………………………..40

 vi

4. PROPOSED SCHEME…………………………………………………..41

4.1 Basic Algorithm……………………………………………………....42

4.2 Cost Analysis………………………………………………………….43

4.3 Security Analysis……………………………………………………..43

4.4 Applicability to WSN Models (Topology)…………………………..45

4.5 Conclusion…………………………………………...………………..48

5. IMPLMENTATION……………………………………………………..49

5.1 TOSSIM………………………………………………………………49

5.2 Compiling and Executing an Application with TOSSIM…………53

5.3 Algorithm Implementation and Results...………………………….53

5.4 Comparison with other schemes……………………………………62

5.5Conclusion…………………………………………………………….63

6. CONCLUSION AND FUTURE WORK………………..……………...64

6.1 Implementation on Motes…………………………………………...64

6.2 Enhancement of the Scheme………………………………………...64

 7. BIBLIOGRAPHY………………………………………………………65

 vii

LIST OF TABLES

Table 1.1: Hardware characteristics of Motes...…………………………………..9

Table 1.2: Sensor Boards for Mica2 Motes……………………………………….11

Table 2.1: TinySec Overhead Summary…………………………………………..24

Table 3.1: SPAWKU and SPAGKU - Memory requirements …………………..32

Table 3.2: LEAP - RAM requirements as a function of number of neighbors…35

Table 3.3: TinyPK – Memory requirements for Diffie-Hellman key exchange..40

Table 5.1: Memory Overhead – Proposed Algorithm…….……………………...54

Table 5.2: Power measurement results – TinySec modes………….…………….55

Table 5.3: CPU cycle results – TinySec modes…………...………………………56

Table 5.4: CPU cycle measurement for key update task..……………………….57

Table 5.5: Power results – 10 node network……………………………………...58

Table 5.6: CPU cycle results – 10 node network…………………………………60

Table 5.7: Key Update Schemes - Comparison Summary……………………….63

 viii

LIST OF FIGURES

Figure 1.1: Network Models………………………………………………………...2

Figure 1.2: Hardware Block diagram for Sensor node……………………………9

Figure 1.3: TinyOS component structure and communication………………….13

Figure 1.4: Layered Model of TinyOS components………………………………16

Figure 1.5: Typical TinyOS component graph for entire application…………..17

Figure 1.6: TinyOS CRC packet format…………………………………………..18

Figure 2.1: Block Diagram for SkipJack Encryption/Decryption……………….21

Figure 2.2: TinySec – Auth packet format………………………………………..23

Figure 2.3: TinySec – AE packet format………………………………………….23

Figure 3.1: SPAWKU/SPAGKU Key Update packet format…………………...30

Figure 3.2: TinyPK – Execution time for first exponentiation (DH)……………39

Figure 3.3: TinyPK – Execution time for second exponentiation (DH)…………39

Figure 5.1: TOSSIM Architecture………………………………………………...50

Figure 5.2: Screenshot of TinyViz for 10 node simulation……………………….62

Figure 5.3: Multi-Hop Network Simulation Results……………………………..63

 1

CHAPTER ONE

INTRODUCTION

The advancement in fields of wireless communication and electronics enabled the

development of low cost, low power, multifunctional sensor nodes. These tiny sensor

nodes, which consist of sensing, data processing, and communication components,

leverage the idea of sensor networks. Sensor networks represent a significant

improvement over traditional sensors, [1]. The term ‘sensor network’ refers to a

heterogeneous system consisting of tiny sensors and actuators with general purpose

computing elements, [2]. Typical application involves deploying hundreds or

thousands of low-power, low-cost sensor nodes for a specified purpose, like habitat

monitoring, burglar alarms, prognostic health management, battlefield management,

etc. For the majority of applications, sensor networks are designed to be unattended

for long periods after deployment and battery recharging or replacement may not be

possible, [2].

Sensors being primarily wireless devices, the sensor networks seem to have a

close resemblance to the typical wireless networks, except for the fact that sensor

nodes are highly resource constrained with very limited memory, power and

computational capabilities. However, this resource constrained nature of sensor nodes

influence the network design and behavior to such an extent that sensor networks

have significant differences when compared to typical wireless networks. Most

importantly, any protocol for sensor networks should be designed keeping the

constrained resources in mind. Secondly, because of low power, the transmission

range of sensor nodes is limited leading to multi-hop transmission/communication

 2

pattern. Further, life of low-powered sensor nodes is short, and so a large number of

nodes are densely deployed in a network to keep it functional for longer time, [3].

Sensor networks employ some techniques for in-network processing to save the

resources and improve the processing time. One of them is passive participation

which refers to taking the action based on overheard traffic for optimized usage of

resources. The other is data aggregation, in which some intermediate nodes process

the readings coming form multiple nodes and forward a single message to the base

station or the gateway instead of forwarding every reading. This helps in eliminating

redundancy, minimizing the number of transmissions, and thus saving energy.

1.1 Wireless Sensor Network Models based on Network Topology

This section classifies the sensor networks based on their configuration and types of

nodes. Primarily they can be classified into two types as shown in figure 1.1:

Figure 1.1: Network Models – Hierarchical and Distributed Wireless Sensor

Networks, [4]

 3

1.1.1 Hierarchical/ Infrastructure based wireless sensor networks

In these networks, there is a hierarchy of nodes in terms of resources and functions.

The most powerful element is the Base Station. Base station is a powerful data

processing and storage unit which collects sensor readings, perform costly operations

and manage the network. It is usually the gateway to another network, or an access

point for human interface. Transmission power of base station is usually enough to

reach all sensor nodes, [4].

The next level of sensor nodes is called group heads or cluster heads. The

inclusion of these nodes is optional depending on the network size and the

application. These nodes have better resources compared to the sensor nodes which

form the lowest level of this model. Cluster heads are responsible for intermediate

data processing/in network processing, data aggregation, e.g. collect and process the

readings of group nodes and send a single reading to the base station. The base

station, in turn, performs computation on readings from multiple cluster heads.

The sensor nodes i.e. nodes with least resources form the majority of the

network. They provide the readings for the parameters being sensed by the network.

Since their transmission range is limited, they significantly depend on the ad-hoc

communication for reaching distant nodes and the base station. Thus, the

communication pattern, [2] in these networks is commonly of the following three

types:

• One-to-Many

This can be further classified into two categories:

 4

o Broadcast – A message sent by the base station to all the nodes in the

network. It is also referred to as network-wise communication. e.g. control

information like routing beacons, etc.

o Multicast – This refers to a message sent by a cluster head to all the group

nodes. It is also called group-wise communication.

• Many-to-One

Many-to-One refer to messages sent by multiple sensor nodes to the base station or to

the cluster heads. Usually, these messages are the data readings as sensed by the

node. Multi-hop communication approach is followed to reach the desired node.

• One-to-One

This is link-wise or pair-wise communication between two sensor nodes. Neighboring

nodes send localized messages to discover each other and for mutual coordination.

This is also called unicast transmission.

1.1.2 Distributed Wireless sensor networks

The communication paradigm of distributed wireless sensor networks is similar to

wireless ad hoc networks, where network nodes self-organize in an ad hoc fashion. A

group of wireless nodes form a network without any fixed and centralized

infrastructure. Network topology is not known prior to deployment, and sensor nodes

are randomly scattered over the target area. After deployment, each sensor node scans

its radio coverage area to figure out its neighbors, [4]. When two nodes wishing to

communicate are relatively far apart, intermediate nodes forward packets along a

multi-hop wireless route. The network nodes rely on peers for all or most of the

services needed and for basic needs of communications. Due to the lack of centralized

 5

control and management, nodes rely on fully distributed and self-organizing protocols

to coordinate their activities, [3].

Unlike the wireless ad-hoc networks, sensor nodes are stationary. However,

the topology can still change frequently due to high probability of node failure. Also,

the number of nodes in sensor networks is much larger than that of wireless ad hoc

networks and the nodes are densely deployed.

In these networks all the nodes have the same capabilities. These networks

follow similar communication patterns to that of hierarchical networks, namely One-

to-Many, Many-to-One, and One-to-One as previously described.

1.2 Need for security in Wireless Sensor Networks

Sensor networks can facilitate large-scale, real-time data processing in complex

environments. They interact closely with their physical environment and with people.

Their applications involve protecting and monitoring critical military, environmental,

safety-critical or domestic infrastructures and resources.

Security is important in sensor networks for the following reasons:

• Since sensor networks actively monitor their surroundings, it often easy to deduce

information other than the data monitored. Such unwanted information leakage

often results in privacy breaches of the people in the environment.

• Wireless communication employed by the sensor networks facilitates

eavesdropping and packet injection by an adversary.

The combination of these factors demand security for sensor networks to ensure

operation safety, secrecy of sensitive data, and privacy for people in sensor

environment. Without proper security mechanisms, networks will be confined to

 6

limited controlled environment. This will restrict their application scope. Therefore,

in order to monitor and protect safety-critical resources and structures, security is

needed in wireless sensor networks.

1.3 Wireless sensor network Models based on Key Distribution

Secure sensor networks can be categorized based on key distribution within the

network. In the following subsections I briefly describe the three main distribution

categories.

1.3.1 Network-wide shared key

In these networks, all the nodes in a particular network share the same key for secure

communication/security provision. The advantage is that key distribution is easy and

keys can be pre-loaded into the sensor nodes prior to deployment. As only one key

need to be stored, the memory overhead is less. Security operations are fast since the

issue of selection from multiple keys does not arise. This scheme is scalable and

suitable for large networks. However, the major disadvantage of this keying

mechanism is that compromise of a single node reveals the key and thus, the entire

network can become insecure, [5].

1.3.2 Pair-wise Shared Key

In this keying mechanism, every node of a network shares a unique key with every

other node in the network, hence the name pair-wise, e.g. the base station has a pair-

wise key with every node in the network.

There is another variant of this keying mechanism which is slightly different

from pair-wise, and is commonly referred to as link-wise keying mechanism. In link-

wise structure, every node shares a unique key with only its first hop neighbors or the

 7

nodes in its transmission range. The link-wise scheme is suitable for small to medium

sized distributed networks where two distant nodes have to rely on multi-hop

communication anyways. However, the disadvantage is that the message needs to be

decrypted and re-encrypted at each intermediate node causing wastage of scarce

computational resources.

The pair-wise network is most resilient when it comes to node capture attacks,

[5]. A compromised node can only decrypt traffic addressed to it. The main issues

with these networks are memory requirements and scalability. If there are N nodes in

a network, a node needs to store N-1 keys. This number can be high for densely

deployed sensor networks. The link-wise structure does provide reduced memory

needs, however as mentioned earlier, power consumption increases. For sending a

message to a particular node, the node has to select the appropriate key from N-1

keys. This selection time may increase for larger N. Also, the key distribution is more

challenging in this case, especially for distributed networks. Further, passive

participation and local broadcast are incompatible with this mechanism as a node

cannot decrypt and authenticate message not addressed to it.

1.3.3 Group-wise shared key

In this mechanism, the nodes belonging to a group share the same key whereas the

nodes in different groups have different keys. For the application of this key structure,

it becomes necessary to divide the network into groups, each having one key. The

cluster heads or group heads will be the point of interaction between different groups.

This structure is more suitable for hierarchical networks. However, it can be applied

to distributed networks as well.

 8

This network has an intermediate level of resilience between the network-wide and

pair-wise structures. In case of compromised node attacks, there is graceful

degradation as the adversary can decrypt and inject traffic only for particular group

nodes and the confidentiality of other group’s messages is retained. The impact would

be more if the compromised node is a group head or cluster head. The benefit of this

scheme is that it enables passive participation and local broadcast and this helps in

resource conservation. Also, the number of keys stored by each node is less, usually

one for all group nodes except for group head who need to store the keys for other

neighboring group heads. The drawback is that for inter group messages, the group

head has to decrypt them first and then re-encrypt them with suitable key for

neighboring group, leading to extra resource consumption.

1.4 Components of a Sensor node

Researchers at UC Berkeley were the first to come up with the concept of intelligent

wireless sensors and sensor networks. They have developed sensor devices called

‘motes’ and an operating system called ‘TinyOS’ which is specifically designed to

run on the motes, [6]. The term ‘mote’ is used to refer the sensor node as whole;

however, it’s the hardware component of the sensor node. The software component

includes the TinyOS operating system and various applications and protocols

developed on top of it.

1.4.1 Motes

 A mote is essentially a microcontroller along with a number of sensors attached to it.

Some motes have integrated sensors. These motes are very small in size due to the

nature and purpose of sensor networks applications. Some examples of motes are

 9

Telos, Rene, Mica and Mica2. Table 1.1 gives the hardware and radio specifications

for some of these motes. Mica2 is the most representative of all and the majority of

the research done today in the field of wireless sensor networks use Mica2 motes.

Table 1.1: Hardware characteristics of motes, [6]

Mote Type Renee Mica Mica2 Mica2Dot
Microcontroller
Type Atmega163 Atmega128 Atmega128 Atmega128
CPU Clock (MHz) 4 4 8 4
Program Memory (KB) 16 128 128 128
RAM (KB) 1 4 4 4
Non-volatile Storage
Size (KB) 32 512
Radio Communication
Radio RFM TR1000 Chipcon CC1000
Frequency 916 916 / 433
Transmit Power Control Programmable resistor

potentiometer
Programmable via CC1000

registers
Encoding SecDed (Software) Manchester (Hardware)

Mica2 Components

Mica2 consists of five hardware blocks as shown in figure 1.2 below.

Figure 1.2 – Hardware Block diagram for sensor node, [6]

AVR

Sensor
Interface

Radio

LED

Flash

 10

The main block of Mica2 is the microcontroller or processor - Atmel Atmega128

AVR. AVR is an 8-Bit Harvard architecture, with separate instruction and data

memory. AVR micro controllers provide several sleep modes. The purpose of these

modes is to provide a way of suspending program execution when necessary, thereby

reducing power consumption. The microcontroller unit (MCU) is responsible for

control of the sensors and the execution of communication protocols and signal

processing algorithms on the gathered sensor data. The microcontroller interfaces

with Radio, LEDS, Flash Memory and Sensor board/Programming interface, [6].

• LEDS - Three Programmable LEDs are connected to the AVR in the Mica2

motes. These may be used for status and output of digital values.

• Flash Memory - A 512KB Serial Flash memory chip is attached to one of the

AVR's UART ports to allow permanent storage and data logging in the motes.

• Radio - The radio used is a low-power, single-chip UHF transceiver from

Chipcom called CC1000. The CC1000 is designed for very low power and very

low voltage wireless applications. The circuit is mainly intended for frequency

bands at 315, 433, 868 and 915 MHz, but can easily be programmed for operation

at other frequencies in the 300-1000 MHz range. The main operating parameters

of CC1000 can be programmed via a serial bus, thus making CC1000 a very easy

to use transceiver. In general radio can operate in four distinct modes of

operation: Transmit, Receive, Idle, and Sleep (Off).

The features of mica2 radio can be summarized as:

o Frequency selectable from 300-1000 MHz

o Frequency Shift Keying modulation with data rates up to 19.2 Kbps

 11

o Hardware based Manchester encoding

o Integrated bit synchronizer

o -110 dBm sensitivity

o selectable power states

o digital control interface using special function register

• Sensing Hardware - The modular design of the motes allows a wide range of

analog and digital sensors to be attached to the mote. However, the reference

sensor board for the mica platform is the “Mica Sensorboard". A variety of these

sensor boards are available. They allow for a range of different sensing modalities

as well as interface to external sensor via prototyping areas or screw terminals.

Table 1.2 gives a list of sensor boards available for Mica2.

Table 1.2 – Sensor Boards for Mica2 motes, [6]

Part Number Motes Supported Sensors and Features
MTS101CA MICA, MICA2 Light, Temperature, Prototype Area
MTS300CA MICA, MICA2 Light, Temperature, Acoustic, and Sounder
MTS310CA MICA, MICA2 Light, Temperature, Acoustic, Sounder, 2-

Axis Accelerometer(ADXL202), and 2-Axis
Magnetometer

MDA300CA MICA Light, Humidity, General Purpose Interface
for External Sensors

MDA500CA MICA2DOT General Purpose Interface

1.4.2 TinyOS

TinyOS is a small event-driven, component based operating system, designed

specifically for supporting the concurrency intensive operations required by

networked sensors with minimum hardware requirements, [7]. The TinyOS

framework contains numerous pre-built sensor applications and algorithms e.g. multi-

hop ad-hoc routing and supports different sensor node platforms. The design of

 12

TinyOS is based on the specific sensor network characteristics: small physical size,

low-power consumption, concurrency-intensive operation, multiple flows, limited

physical parallelism and controller hierarchy, diversity in design and usage, and

robust operation to facilitate the development of reliable distributed applications, [8].

TinyOS is optimized in terms of memory usage and energy efficiency. It provides

defined interfaces between the components which reside in neighboring layers.

1.4.2.1 TinyOS Design

A complete system configuration in TinyOS consists of a tiny scheduler and a graph

of components.

• Components - There are two types of components in TinyOS: Modules and

Configurations. Modules provide application code, implementing one or more

interface. Configurations are used to assemble other components together,

connecting interfaces used by components to interfaces provided by others. As

shown in Figure 1.3, a component provides and uses interfaces. These interfaces

are the only point of access to the component, and are bi-directional. An interface

declares a set of functions called commands that the interface provider must

implement and another

 13

Figure 1.3: TinyOS Component Structure and Communication

set of functions called events that the interface user must implement. For a component

to call the commands in an interface, it must implement the events of that interface. A

single component may use or provide multiple interfaces and multiple instances of the

same interface. The events give rise to tasks which are non-critical and they handle

computation and processing associated with the events.

Thus, a component has four interrelated parts:

o a set of command handlers

o a set of event handlers

o an encapsulated fixed-size frame

o a bundle of simple tasks

Tasks, commands, and handlers execute in the context of the frame and operate on its

state.

���������	���
��
������

��������	���
��
������

�������
���������

�	�����
���������

�������������

�������������������

�	����
�������

�	����
������

 14

• Scheduler - The design of the TinyOS Kernel is based on a two (2) level

scheduling structure consisting of events and tasks.

o Events: Events are intended to do a small amount of processing (e.g. Timer

interrupts, ADC interrupts) and can preempt (i.e. interrupt) longer running

tasks.

o Tasks: Tasks are intended to do a larger amount of processing and are not

time critical (e.g. computing an average on an array). Tasks always run to

completion with respect to other Tasks. This "run to completion" property of

tasks is very important and implies that a TinyOS system application only

needs a single stack.

The scheduler support Concurrency Model. TinyOS executes only one program

consisting of selected system components and custom components needed for a single

application. There are two threads of execution: tasks and hardware event handlers,

[8]. Tasks are functions whose execution can be deferred. Tasks execute

asynchronously with respect to events, thereby, simulating concurrency within each

component. However, tasks must never block or spin wait or they will prevent

progress in other components. Context Switching is not possible with TinyOS

because it utilizes a single stack.

1.4.2.2 Active Message

In TinyOS, legacy communication (TCP/IP, sockets, routing protocols like OSPF,etc)

cannot be used because they require intensive bandwidth and are centered on “stop

and wait” semantics, [6,10]. The socket/TCP/IP uses too much memory for buffering

and threads. Further data are buffered in network stack until application threads read

 15

it and application threads are blocked until data is available. Sensor networks need to

follow real time constraints and have low processing overhead. The Active Message

(AM) types are similar to port numbers in TCP/IP. The AM type specifies the

appropriate handler function to extract and interpret the message on the receiver.

The Active messaging layer is responsible for:

• Integrating communication and computation

• Matching communication primitives to hardware capabilities

• Providing a distributed event model where networked nodes send events to each

other

Message contains a user-level handler which is invoked on arrival at the receiver and

the data payload passed as argument. Message handlers are executed quickly to

prevent network congestion and provide adequate performance. Event-centric nature

enables network communication to overlap with sensor-interaction.

Active Message and TinyOS form “Tiny Active Messages” that support three

basic primitives: best effort message transmission, addressing and dispatch, [10].

With Active Message every message contains the name of an event handler; the

sender declares buffer storage in a frame, names a handler, requests transmission and

does completion signal. On the other side receiver’s event handler is fired

automatically in a target node. So there are no blocked or waiting threads on the

receiver and we have a single buffering.

1.4.2.3 Layered model of TinyOS components

A layered model of TinyOS components is shown in figure 1.4 reproduced from [6].

The hardware abstraction layer maps the physical hardware into the component

 16

model. It converts the hardware interrupts to appropriate signaling events and exports

the commands to set/reset the individual pin/bus line of hardware component for

which it provides abstraction. The next layer represents the communication, sensing

and acting component stack. Each of these stacks can have multiple components

arranged hierarchically.

Figure 1.4 – Layered model of TinyOS components, [6]

The application layer has a stack of user defined components for that particular

application. And finally at the top, there is the main component which is executed

first in any TinyOS application. It initializes the hardware, scheduler, and the

application.

 17

1.4.2.4 TinyOS component graph for an application

Figure 1.5 – Typical TinyOS component graph for entire application, [6]

Figure 1.5 represents a complete application. The lowest layer of components directly

corresponds to the hardware of the system. They simply map the physical hardware

into the software based component model. The user application sits at the top of the

hierarchy issuing commands down into the lower level components and responding to

events propagating up from the system components. During execution, all events are

directly or indirectly triggered from the propagation of hardware events up through

the component graph. This comes directly from the state machine based programming

model, where state changes are the result of changes on the input pins.

 18

1.4.2.5 TinyOS Programming Language

The programming language used for TinyOS is ‘nesC’ which is a new language for

programming structured component-based applications. It is primarily intended for

embedded systems such as sensor networks. It has a C like syntax and it supports

TinyOS concurrency model, as well as mechanisms for structuring, naming, and

linking together software components into robust network embedded systems.

1.4.2.6 TinyOS packet format

Dest
(2)

AM
(1)

Len
(1)

Grp
(1)

Data
(0..29)

CRC
(2)

Figure 1.6 –TinyOS CRC Packet Format, [5]

Figure 1.6 shows a typical TinyOS packet format structure. The first field is the

destination address and is two bytes long. AM represents the Active Message Handler

type and is one byte long. The third field gives the length of the data payload. The

group field is like the network ID and is one byte long. The data payload can be any

number of bytes with a maximum limit of 29 bytes. TinyOS sender computes 16-bit

Cyclic Redundancy Check (CRC) over the packet to detect transmission errors.

1.5 Problem Statement

As discussed in the previous sections, sensor networks are resource constrained.

However, their mission-critical applications need security features. Work has been

underway to explore adding security features without straining the very limited

resources. TinySec [5] provides the basic security features of Authentication and

Encryption, and is one of the successful security protocols adopted in sensor

networks. In this study we propose an efficient key update scheme for TinySec keys.

 19

This scheme is not compute intensive, does not add significantly to storage

requirements and is applicable to the majority of the sensor network architectures.

1.6 Conclusion

This chapter introduced the wireless sensor networks and gave their types based on

network topology and key distribution structure. The hardware and software feature

of sensor nodes gives an overview of the application development and execution for

the sensor networks.

 20

CHAPTER TWO

BACKGROUND WORK

The background work for this thesis is mainly the link layer security mechanism

called TinySec. TinySec was proposed by researchers at UC Berkeley. TinySec is a

lightweight and an efficient link-layer security protocol that is adapted to the sensor

networks, [5]. It was designed with the goals of achieving the basic security without

causing excessive overhead for the resource constrained sensor networks. Further,

being a link layer protocol, it is transparent to all TinyOS applications, and thus, has

the scope of widespread deployment.

2.1 TinySec

2.1.1 Security Features of TinySec

It provides three basic security features: Access Control, Message Integrity and

Message Confidentiality, [5]. Access control and Message integrity are provided by

means of Message Authentication Code (MAC). Unauthorized parties are prevented

from participating in network communication by means of access control. The nodes

can identify the traffic coming from illegitimate nodes and reject it. Message integrity

ensures that the message is not tampered with or modified in transit. Both these

features are provided by message authentication code (MAC). MAC is the checksum

computed on message using a key i.e. cryptographically. The sender computes a

MAC over the packet, and sends it with the packet. On receiving the packet, the

receiver, re-computes the checksum and compares it with the original MAC; if they

are the same it accepts the packet else rejects it. Since the MAC is computed using

 21

the shared key, it provides authentication of the sender. Verification of the MAC

provides message integrity.

 Message confidentiality refers to keeping the data secret from the adversary, and this

is achieved by means of encryption of the plaintext data. The authors decided to use

SkipJack encryption algorithm operating in Cipher Block Chaining (CBC) mode. In

this mode, encryption is initialized by an Initialization Vector (IV). The IV is changed

for each message encrypted to provide semantic security, i.e. the same plaintext is

encrypted differently each time. However, identical plaintext produces identical

ciphertext for the same key and IV.

Figure 2.1: Block Diagram SkipJack encryption/Decryption, [11]

Ideally, IV should be unique for every message transmitted, and for this the length of

IV should be as large as possible. But due to the resource constrained nature of sensor

networks, an 8 byte long IV is selected. The structure of the IV is as follows:

dst | AM | l | src | ctr, where:

• dst is the destination address of the receiver,

• AM is the active message (AM) handler type,

• l is the length of the data payload

 22

• src is the source address of the sender

• ctr is a 16 bit counter; The counter starts at 0, and the sender increases it by 1

after each message sent.

Thus, as we can see a node can send 216 packets without reusing IV. Therefore, to

achieve semantic security the key has to be updated. The designers acknowledge the

IV reuse problem and suggest that a key update protocol be instituted to exchange

new TinySec keys, however this is not their primary focus. We provide a key update

scheme that has potential to fill this need and provide semantic security.

2.1.2 TinySec Security Modes

TinySec supports two different security options:

• Authenticated encryption (AE) - In this option, TinySec encrypts the data

payload and authenticates the packet with a MAC. The MAC is computed over

the encrypted data and the packet header.

• Authentication only (Auth) – In this option, MAC is computed over the data

payload and the packet header.

To distinguish the packets for these modes, TinySec makes use of first two bits of

the length field. Since, the default maximum data payload of TinyOS is 29 bytes, only

the last five bits of the length field are used.

2.1.3 Packet formats for TinySec

As we have seen in the previous chapter (section 1.3.2.6), the default TinyOS packet

contains six fields; destination address, AM type, length, group, data payload and

CRC. Since TinySec supports two security modes, it has one packet format for each

mode. In both these formats, the first three fields i.e. destination address, AM type

 23

and length are same as that of TinyOS packet. Also, the data payload is 29 bytes.

However, TinySec replaces the default CRC (2 bytes) of TinyOS with a MAC (4

bytes). Also, the group field is eliminated.

For TinySec AE, 2 bytes of Source address and 2 bytes of counter are added after the

length field and before the data field as shown if Fig 2.3.

Figure 2.2: TinySec-Auth

Figure 2.3: TinySec - AE

As we can see from the figures, the packet overhead is as follows:

 TinySec - Auth only: +8 Bytes

 TinySec -Auth + Encryption: +12 Bytes

Transmission of 29-byte plaintext and its cyclic redundancy check (CRC) requires a

packet of 36 bytes. Transmission of that plaintext’s ciphertext and MAC under

TinySec requires a packet of 41 bytes. Thus, this additional security of TinySec

comes at a cost of five extra bytes compared to the original format of TinyOS

(Chapter 1, Figure 1.6)

2.1.4 Keying Mechanism

TinySec protocol can work with all the three keying mechanism as described in

Chapter 1. There is no limitation for applying it with any keying mechanism.

2.1.5 Implementation and Results

The authors implemented TinySec on Mica, Mica2, and Mica2Dot platforms.

 24

They analytically estimated the costs and also experimentally measured TinySec’s

performance costs using a variety of microbenchmarks and macrobenchmarks. Their

results could be summarized as follows:

Table 2.1: TinySec Overhead Summary

 Packet Size
Increase

Latency
Overhead

BW Overhead Energy
overhead

CRC (no
TinySec)

- - - -

Tinysec - Auth 1.5 % 1.7 % Negligible 3 %
TinySec - AE 8 % 7.3 % 6 % less thrpt 10 %

TinySec’s implementation requires 728 bytes of RAM and 7146 bytes of program

space, [5]. TinyOS was required to be modified for implementing TinySec. A two-

level priority scheduler was employed in which cryptographic operations were given

higher priority and other tasks ran at low priority. They used network wide shared key

structure for their implementations and experiments.

2.2 Conclusion

Thus, as we see TinySec was the first attempt to develop security protocol at link

layer with detailed specifications. The authors implemented it successfully and it is

being used by many researchers as a security platform e.g. companies like SRI,

Bosch, BBN, UMass, Intel.

 25

CHAPTER THREE

RELATED WORK

Recently, some researchers have tried to provide key update mechanisms for wireless

sensor networks, particularly for MICA2 motes. The approaches of each of these

schemes are different and provide a good comparative analysis with respect to

resources, complexity, security provisions. There are four main schemes; ECC [12],

SPAWKU and SPAGKU [13], LEAP [14] TinyPK [15]. Each of these schemes is

described below in detail with its advantages and disadvantages.

3.1 Elliptical Curve Cryptography (ECC)

The authors of [12] emphasize that public key cryptography is viable on sensor nodes,

especially Mica2. It can be useful for infrequent distribution of shared secret like the

network wide shared key used in TinySec. TinySec IV is 4-byte long, therefore, after

232 packets, it will be reused. This bound may be insufficient for embedded networks

whose lifespans demands long-lasting security. Public key infrastructure can help

these types of networks to securely re-key themselves.

To address this problem, Malan et al experimented with two public key methods:

• Diffie-Hellman Key exchange based on DLP

• Elliptical Curve Cryptography based on ECDLP

3.1.1 DLP / Diffie-Hellman scheme of key exchange:

Diffie-Hellman is a popular way of key exchange in asymmetric cryptography. In

this, two communicating parties, say Alice and Bob, agree on a prime number p and a

primitive root g (i.e. a number between 1 to p-1, also called the generator or base).

 26

Alice chooses a secret integer (private key) A, and computes her public key gA mod

p. Bob does the same thing, selects an integer B, computes gB mod p Now, both send

their public keys to each other. They compute their shared secret using the formula

gAB mod p. (Since, (gA mod p)B mod p = (gB mod p)A mod p = gAB mod p)

Once Alice and Bob compute the shared secret they can use it as an encryption key,

known only to them, for sending messages across the same open communications

channel.

According to the authors, to generate TinySec key (80 bits), the prime number

(p) used should be 1024 bits long, and the exponent (private key of each node) used

should be 160 bits long.

3.1.1.1 Implementation and Results:

They computed different values for 2x mod p, x being a 160 bit integer and p being

1024 bit long prime number. Their results measured through instrumentation showed

that the time for calculating one exponentiation was 54.9 seconds, and the energy

consumed was 1.185 Joules. Two such calculations are required for complete

operation. Also, the Memory overhead is �11.3 KB of ROM, and 1KB of RAM.

Their argument is that this is too much overhead for resource constrained Mica2

motes. Also, 1024 bits have to be transmitted in more than one TinyOS packets.

(Max payload for one packet = 29 bytes = 29 x 8 = 232 bits, so it would require

around 5 packets for transmission of public key -1024 bit long)

 27

3.1.2 ECDLP / Elliptical Curve Cryptography based key distribution:

Of all the cryptosystems known today, Elliptical curve cryptography provides the

highest strength-per-bit. As an example, the strength given by 1024 bit RSA keys, is

provided by just 163 bit keys in ECC, [12]. The basic scheme works as follows:

Two parties (Alice and Bob) wishing to do a secure communication agree on an

Elliptical curve E and a generator point G on this curve. E is defined over Fq, where

Fq is a finite field containing q elements. However, in practice, q is typically a power

of 2 (2m) or an odd prime number p.

Then, each party selects a random number, k (private key of that party). It

then computes k * G which is its public key and sends that key to another party. The

security assumption here is that it is hard to compute the private key k given the

public key kG due to the complexity of elliptical curves. The shared secret is then

computed by each party, which is the product of one’s private key with another’s

public key. In short,

• Alice chooses kA, sends kA * G to Bob.

• Bob chooses kB, sends kB * G to Alice.

• Both agree on shared secret = kA * kB * G for future communications.

The authors selected the Elliptical curve defined over the field q = 2m since it allowed

the implementation of space and time efficient algorithms. It is also particularly good

for hardware implementations. The public key was 163 bits long.

 28

3.1.2.1 Implementation and Results:

Their first implementation attempt, EccM 1.0, was a failure. The module caused

resetting of the mote due to stack overflow condition. Their second implementation,

EccM 2.0, was a Java based code and they successfully accomplished it.

The time required to compute the public/private key pair was around 34.161 seconds,

and the time required to calculate the shared secret, given one’s private key and

another’s public key was 34.173 seconds, [12]. Thus, the approximate computation

time required for total key derivation was about one minute and 8 seconds per node.

The energy consumed was around 0.9 Joules. The code space (ROM) required was

about 34.3 KB, and it consumed around 1 KB of SRAM. (public key is transmitted in

two 22 byte payloads = 22 x 8 x 2 = 352 bits).

3.1.3 Analysis:

The authors of ECC did very good work of precisely measuring the time, energy and

memory requirements by instrumentation on Mica2 motes. They did this for

computing TinySec overhead, DLP and ECDLP modules. However, certain things

remain unattended with ECC.

• They claim that ECC is a viable solution; however it is expensive in terms of

memory and power.

• Secondly, the public key of the initiator node is broadcasted in two 22 byte

payloads. So, for this scheme to be efficient, it is imperative that both the packets

of public key reach the other nodes in sequence without any packet losses.

• Further, network wide impact is not considered. e.g. Node 1 (Alice) broadcasts

her public key, and is received by one or multiple nodes. But, how is the scenario

 29

in reverse direction handled in case of network-wide key? There are two

possibilities:

o If this is between two nodes only, then each node will need to do the

computation for each of its neighbor, and what is the guarantee of shared

secret being the same for all neighbors?

o If multiple nodes are targeted by Alice, then whose public key will be

considered to compute the shared secret? Since k is selected randomly, so all

neighbors will have different k values.

Admittedly sensor nodes of the future might successfully employ this key updating

scheme, but where the thrust is miniaturization the scheme’s reception might remain

low, more so because of the transmission update overhead.

3.2 SPAWKU and SPAGKU Key Update Protocols

The author of [13] describes two different key update protocols for dense sensor

networks having network-wide shared key and using link layer security like TinySec.

The main assumption of this research is that each node is preloaded with two keys:

• Interchange key – used only for key update of session key

• Session key – used for all other communication purposes

Further it is assumed that due to dense distribution of network, there exist multiple

paths between any pair of sensor nodes.

The two protocols are described as follows:

3.2.1 Sequenced pair-wise key update protocol (SPAWKU)

This protocol gives the mechanism to update key between any pair of nodes. For

global key update, it is assumed that an algorithm on top decides key update pairs for

 30

complete network and this algorithm is based on network topology. e.g. cluster heads,

spanning tree. The scalability of the protocol depends on the underlying network

topology on which it is based.

Protocol Description:

The handshaking for key update is done with 4 types of messages. Each message is

15 bytes long (15 x 4 = 60 bytes overhead). All messages have the same structure as

shown in the figure below. Further, the key used for encryption is written with

subscripts i.e. Ks is session key and Ki is interchange key.

Figure 3.1: SPAWKU and SPAGKU - Key Update Packet Format

The key update takes place as follows:

• First, the initiator node sends the Key Update Request (KUR) packet. Its

format is (KUR, SN, RAND)Ks, MAC.

• The receiver node replies with Key Update Request Ack (KURA) packet. Its

format is (KURA, SN, RAND)Ks, MAC.

• Then the initiator sends the new session key encrypted with the interchange

key by using Key Update (KU) packet. Its format is (KU, SN,Key)Ki, MAC.

• And, finally the process is completed with the receiver sending the Key

Update Ack (KUA) packet. Format is (KUA, SN,Key) Ki, MAC.

Analysis:

• The protocol does not guarantee key update in case of packet losses.

 31

• The protocol does not promote load balancing; i.e. some nodes may be

involved in more key update transactions than others.

Further more, the author does not provide any implementation or experimental results

about this protocol.

3.2.2 Sequenced Partial Global key update protocol(SPAGKU)

This protocol takes the advantage of the redundant deployment in sensor networks. It

treats the node without the most recent updated session key as temporarily disabled

node. The protocol assures that a large fraction of network (and not the complete

network) is updated with the new session key. The key update process takes place in

following two steps:

• First, the initiator (external micro-server) broadcasts a request message to update

the session key. All the nodes change to their interchange key.

• Then it sends the second message containing the new session key encrypted with

the interchange key. All the nodes update their session key.

Packet format for the above process is same as that for the previous protocol,

however only 2 packets (KUR and KU) are sent in this case.

3.2.2.1 Implementation and Results:

According to the author, both these protocols were tested using TOSSIM and Mica2

motes. In terms of measurements/results, the code size required for both these

protocols is quoted. The code size is measured without considering storage for reused

modules. Table 3.1 gives the memory requirements quoted.

 32

Table 3.1: SPAWKU and SPAGKU - Memory requirements

 SPAWKU SPAGKU
Code Size in Bytes 2062 1932

Memory Footprint in Bytes 81 80

The author did the general evaluation of the 2nd protocol by measuring the

consistency ratio (Number of nodes with updated key/total number of nodes in the

network) as a function of network size (9–900 nodes), network density (100 node

network, spacing increased from 1-40 feet), and network traffic (packet load (20-200

byte packets) and packet frequency). His graphs based on Nido (TOSSIM)

simulations show that the network maintains a consistency ratio of 1 in most of the

cases.

However, he does not perform encryption and decryption along with this

(revealed from the fact that they increase the packet load from 20 bytes to 200 bytes).

Analysis:

• Key-aging problem is solved, but the security is not enhanced. All nodes have

the same interchange key, so compromise of a single node will reveal the key

and further updates of session key will have no meaning. Anyone knowing the

interchange key can decrypt the packet sent with new session key.

• The partial global key update protocol makes the assumption that the number

of nodes updated is sufficient enough to maintain the network functionality.

This assumption seems to unrealistic.

 33

3.3 Localized Encryption and Authentication Protocol (LEAP)

The authors of LEAP, [14], propose a key management protocol in which each sensor

node has four different keys for different security requirements. These keys are: an

Individual key shared with the base station; a pairwise key shared with each

neighboring sensor node; a Cluster key shared with multiple neighboring nodes; a

group key shared by all the nodes in the network. LEAP provides schemes to

establish and update all of these keys.

3.3.1 Establishing all keys

Individual keys: The base station generates it, and pre-loads it into the node. Master

key, Km is only known to the base station and all the individual keys are derived from

it. Pairwise shared keys- All the nodes are also pre-loaded with initial key KI which is

used by the nodes to derive their respective master keys and also the master key for

other nodes. Each node discovers its neighbors, generates the neighbor’s master key,

and then generates the pairwise key it shares with this neighbor. This is done in initial

time Tmin for each node. The key is actually not transmitted.

For sleeping neighboring nodes, it gives an alternative which is complex and

computationally intensive. (to obtain the list of working nodes from the neighbors).

Overhead – Derive neighbor’s master key, verify MAC, compute pairwise key. Both

nodes do this. The node deletes the key of neighbor when it detects that it is

compromised. Cluster Key- One node generates key, encrypts it with pairwise keys,

and sends to its neighbors. Group Key- It is also pre-loaded in each node.

3.3.2 Updating Keys

The focus is on updating the group and cluster keys.

 34

Cluster key Update:

When one of the neighbors of a node is revoked, the node generates a new cluster key

and transmits it to the remaining neighbors. It uses the pairwise key for encrypting the

cluster key to be sent to each neighbor.

Group Key Update:

Group re-keying implies updating the key for the entire network and is considered

one of the most difficult tasks by the authors. They claim to do this task in a unique

and most secure way. The group key will be updated when any node in the network is

compromised.

The scheme involves two stages:

Authenticated Node Revocation: Since the base station can never be compromised

(one of the assumptions), it is the appropriate entity to announce the node revocation.

Further, its announcement must be authenticated. The authors use �TESLA for this

purpose. The first key (commitment/seed) of the key chain is pre-loaded in all the

nodes prior to deployment. The revocation message consist of node name (id) for the

node to be revoked, the seed/verification key for the new group key, the �TESLA

disclosure key and the MAC. Each node stores the message for one �TESLA interval,

receives the MAC key, and verifies the authenticity of base station. If the verification

is successful, it stores verification key for the new group key. Further, if the

revocation node indicated is one of its neighbors, it deletes the pairwise key for that

node and updates the cluster key.

Secure Key Distribution: They assume the existence of a suitable routing protocol,

like TinyOS beaconing protocol for key distribution sequence. The base station sends

 35

the new group key to all its children in the spanning tree using the cluster key for

encryption. This process continues until the key is distributed to all the legitimate

nodes in the network.

3.3.3 Implementation and Results:

The authors implemented LEAP on TinyOS platform using RC5 block cipher for

CBC-MAC and encryption. They just give the memory overhead. The ROM space

required is 17.9KB for their code and the RAM space depends on the number of

neighbors for an individual node as shown in the table below.

Table 3.2: RAM requirements as a function of number of neighbors d

d 1 5 10 15 20 25 30
RAM (bytes) 600 736 906 1076 1246 1416 1586

In their performance evaluation section, the authors give the approximate

mathematical formulas for computation, communication and memory needs (costs)

for LEAP. They consider the cost only for updating the cluster keys and group key.

According to them, generating the key using pseudo-random generator is a negligible

overhead.

Computational cost: For updating Cluster keys, the number of encryptions required
is d0
 Se = � di ; where d0 is the number of neighbors revoked and di is the number of
 i= 1
legitimate neighbors for each for these d0 nodes. Overall, for a network consisting of

N nodes, the average number of operations performed by a node is 2Se/N.

For updating group keys, the number of decryptions is equal to network size N. Since,

each parent has to encrypt only once for all its children, maximum possible

encryptions is also N. Thus, maximum operations required are 2N.

 36

Communication cost: For cluster key update, the communication cost is (d-1)2 /(N-

1) for a network of degree (maximum number of neighbors for each node) d and size

N. For group key update, it is 2N.

Storage Cost: For each node, the memory (RAM) requirements will depend on the

number of neighbors and it is equal to 3d + 2 + L; where d is the number of neighbors

a node has and L is the length of node’s one way key chain.

3.3.4 Analysis:

LEAP is an extensive, robust and an excellent protocol for key establishment and key

update. It considers security from different perspectives like routing, key

management, node compromise, etc. It attempts to consider all possible situations

when establishing or updating a key. However, there are some issues as described

below.

• Their assumption that the nodes have memory to store hundreds of bytes of

keying materials is kind of impractical. Sensor nodes are highly resource

constrained, and will remain that way for the foreseeable future; this fact makes

this assumption somewhat unrealistic.

• There is ambiguity about the node revocation. They neither make any assumption

regarding how the base station will come to know of malicious/compromised

node nor do they state explicitly something about it.

• Their overhead requirements ignore certain things, like the costs for �TESLA in

group key update mechanism.

 37

• In their implementation on TinyOS, they don’t specify any details about the type

of network, or the number of nodes in the network, network topology, etc.

Further, no mention of whether they tested it for node revocation or not.

• There is inconsistency in the RAM values quoted.

• In pairwise key establishment, handling the sleeping nodes is complex and

involves more computation which they never account for. Also, for nodes which

are added later, the key establishment seems contradictory. As per their

explanation, pairwise key is computed by both the nodes and not exchanged. For

computing it, the node needs to derive the master key of neighbor from the initial

key KI. Once this is done, the nodes delete KI and the master key for all the

neighbors. Now, for lately added node, they say that it can establish pairwise key

with the node which has erased KI.

3.4 TinyPK

The main focus of this research was the design and implementation of public key

based protocols for authentication and key agreement between the sensor network and

a third party as well as between two sensor networks.

TinyPK design has a RSA based public-key infrastructure. There is a

Certification Authority (CA), which is an entity with a private and public key pair

that is trusted (or can establish an authenticated chain to a trusted entity), by all

friendly units. Any third party that wishes to interact with the motes also requires its

own public/private key pair and must have its public key signed (not on a hash of the

data, but by transforming the data directly) by the CA's private key for establishing its

identity, [15]. Also, as each mote is loaded with software before being deployed to

 38

the field, it must have the CA's public key installed. TinyPK eliminates certificates

due to lack of computational power for sensor networks.

TinyPK has a challenge-response protocol which performs two functions:

• authenticates the external party to the sensor network

• Securely transfers a session key from the sensor network to the third party.

3.4.1 Implementation and Results:

This whole design was done based on RSA cryptosystem using e=3 as public

exponent. Their implementation involved performing private operations on PC and

public operations on motes. Private operations take tens of minutes on motes, and

thus their implementation of RSA scheme can be considered partial.

They also tried Diffie-Hellman (DH) key exchange on Mica2 motes to

generate the key which would serve as an equivalent replacement for TinySec keys

and can be used to create new TinySec keys. The basic scheme/mechanism of DH

key exchange is same as explained in section 3.1.1. They could do it successfully,

although the computational time and memory requirements were high.

The generator used by them is g = 2, and they showed the graphs for execution time

versus the exponent size for three lengths of prime number p; 512 bits, 768 bits and

1024 bits. There are two graphs showing the results for both, the first and the second

exponentiation.

 39

Figure 3.2: Execution time for first exponentiation

Figure 3.3: Execution time for second exponentiation

Further, the ROM bytes needed are around 12KB, and 1 KB of RAM bytes are

needed.

 40

Table 3.3: Memory requirements for Diffie-Hellman Key Exchange

Modulus Size

512 768 1024
ROM (bytes) 12340 12376 12408
RAM (bytes) 847 1007 1167

This research is far from our concern, however we mention it here to emphasize that

public key cryptography is very expensive for resource constrained sensor networks.

3.5 Conclusion

Thus, as we see, asymmetric cryptography is very expensive for resource constrained

sensor nodes. LEAP is a good scheme but it is highly complex. Note that none of

these schemes are implemented along with TinySec.

 41

CHAPTER FOUR

PROPOSED SCHEME

As explained in chapter two, the encryption scheme of TinySec uses an initialization

vector (IV) which is 8 bytes long. The structure of the IV is dst | AM | l | src | ctr

where dst stands for destination address, AM represents the active message type, l is

the length, src is the source address and ctr is the counter value. So, ideally speaking,

for a particular node, the IV will be repeated after it has sent 232 packets. However,

we see that the source field remains constant always since it is the sending node’s

address. The fields like destination, AM type, and length may or may not change

depending on the application and the node’s position in the network with respect to

other nodes, e.g. if the node is periodically sending a reading to the group head/data

aggregation point or broadcasting it then the destination field will remain constant.

Also, the AM type would be the same. The length could be constant if the sensor is

designed to give fixed length reading. Conclusively, the field which is sure to be

changed every time is the 2 byte counter field, irrespective of other fields. Thus, as

we can see a node can send 216 packets without reusing IV. Therefore, in order to

achieve semantic security the key has to be changed. Hence, the need for key update.

ECC, LEAP and SPAKGU are good attempts to provide this functionality. As

discussed in chapter three, each scheme has its own pros and cons.

In the next section, I propose a different key update scheme for updating the

encryption key of TinySec. In chapter five, the results of implementation of this

scheme are reported.

 42

4.1 Proposed Algorithm

As we have seen in the first two chapters, the maximum data payload length for

TinyOS packet is 29 bytes. This length can be encoded using 5 bits (25 = 32).

TinySec uses the first two bits of length field to encode the two TinySec modes

namely:

TinySec-Auth – 10 (Auth => Authentication)

TinySec -AE – 11 (AE => Authentication and encryption)

The third bit is still left unused. I will utilize this bit for my key update scheme.

Whenever the time for key update comes, the base station or the node wishing to do a

key update first sets this third bit. It then rotates the existing encryption key. It

encrypts the data with this new key and sends the packet. The receiver node(s), first

decodes the length byte as it does for TinySec. It determines the TinySec mode from

the first two bits and the status of the third bit indicates whether the key has to be

modified or not. It will consider this status only if the mode is TinySec-AE. If the bit

is set, the receiver will first rotate its encryption key, and then decrypt the data. In this

way, we achieve two things at the same time; the synchronization and key update.

Steps for Key Rotation

• The 8 byte key is separated into two 4 byte parts (blocks)

• Each part i.e. 4 byte block is rotated to left by 1 bit

• The MSB of one block is inserted as LSB for another block

Since TinyOS follows little endian format for the memory structure, the resulting key

is not just a shifted version of the original key, but its kind of random value.

 43

4.2 Cost Analysis

The proposed algorithm is very efficient and simple. The key update does not involve

generating a new key. Also, the sender need not send any key update message prior to

key update. This purpose is served by setting the third bit at the time for key update.

Further, no key is sent in the message since the key update is achieved by rotation of

bits of the already existing key. In this way, the overhead of sending the key update

message and the key are avoided. There is no bandwidth overhead at all. The latency

overhead is also avoided since the packet size remains the same as that of TinySec

and so no additional time is required to send the key update request or the key. In

terms of computational time and energy, the operations required in the whole process

are as follows:

• Setting the bit in the length field

• Performing circular rotation

These operations take very few instructions. Thus, the computational time and the

power required are minimal.

Conclusively, bandwidth, latency and computational overheads per node are very

minimal.

4.3 Security Analysis

Since we follow the TinySec model, our security provisions are at the same level as

TinySec. We are enhancing the TinySec security level, in the sense that we are

providing a better encryption security by means of key update method to prevent the

IV reuse. Since TinySec is a link layer mechanism, it guarantees the authenticity,

integrity and confidentiality of the messages between the neighboring nodes, while

 44

permitting in-network processing, [5]. As in TinySec, we do not address resource

consumption attacks, node capture attacks, and replay attacks. The keying mechanism

applied by the application will decide whether these attacks are counteracted or not.

e.g. Pair-wise key structure is robust against individual node capture, but network-

wide is not. TinySec, and so does our scheme, are applicable with both the above

keying mechanisms and so node capture attack is not handled by this scheme.

In TinySec, a 16 byte key is preloaded into the motes. The first 8 bytes are

used for encryption key and the next 8 bytes are used for MAC key. These bytes are

copied to their respective buffers. Since there are only 8 bytes, there is a limitation on

the number of different/unique keys possible. The number of different keys possible

is 64. We consider this number to be good enough for sensor networks. The best case

would imply using the key update sparingly, for example, updating key once per day

the scheme would enable for 64 days before the key repeats. However, if there is a

need to overcome this limitation, then we can do that by swapping any two

neighboring bits once the key update count has reached 64, and then again rotate the

key 64 times.

4.3.1 Key Quality Analysis

For any security mechanism, the value of the key plays an important role in providing

security strength. Key size and randomness of the key value are the major factors

influencing the key quality. A key length of 80 bits is generally considered the

minimum for strong security with symmetric encryption algorithms. TinySec takes

the 64 bit value and expands it to 80 bits before performing encryption as required in

SkipJack Block Cipher. Regarding the key value, according to the Report [16], there

 45

exist no key value which can be considered as weak key for SkipJack cipher. Even

the key with all ‘0’s or all ‘1’s is not weak because of the design of SkipJack

algorithm. There is no pattern of symmetry in the SKIPJACK algorithm which could

lead to weak keys.

In the proposed scheme the key is rotated circularly. Depending on the initial

value of the preloaded key, the updated key will have various combinations of ‘1’s

and ‘0’s. However, if we go by the analysis report of [16], any key value will not

reduce the strength of encryption/decryption. Further, the number of ‘1’s and ‘0’s

present in the original key and the updated key remains same due to rotation.

4.3.1.1 Rotation versus other simple operations

Besides rotation, if we consider other options like incrementing the key by 1 for key

update, the resources consumed will be the same since the Atmega processor takes

one cycle for any instruction. However, depending on the initial key value, after some

updates the key value will become all ‘1’s. So, we need to store the initial value of the

key somewhere to prevent the overflow. In spite of this, we can consider increment

operation as an option since SkipJack cannot have weak keys. Similarly, we can

consider any other simple arithmetic operation for updating the key as far as the key

strength is concerned.

4.4 Applicability to WSN Models based on Topology

Section 1.1 describes two types of sensor networks based on their topology. The

following subsections describe how the key update will be implemented network-

wide.

 46

4.4.1 Hierarchical/ Infrastructure based wireless sensor networks

In these networks, the time for key update will be decided by the base station. Since

the base station is a trusted authority, it is an appropriate entity to take the decision

regarding the timing for key update. It can update key periodically, once a day or

decide the time based on some mathematical formula which is known only to it.

Whenever, it wants to do the key update, it will send the packet with the third bit of

length set and the data encrypted with new (shifted) key. The propagation of key

update request within the network will be done based on the key distribution structure

of the network.

4.4.1.1 Network-wide shared key structure

This is the simplest network key structure. In this case the base station will broadcast

the key update request packet and since its transmission range covers all the nodes, it

implies that all the nodes in the network update their key at the same time. So, the

henceforth communication between all the nodes is done with the new encryption

key.

This key update scheme can provide a partial protection against the node

capture attack in the situation that a compromised node removed from the network by

the adversary for some time and placed again in the network. If this time is larger

than the key update interval determined by the base station, then the adversary will

not know the key. The base station is the only one who knows the key update interval

and so even after knowing the key update mechanism there are chances that the

adversary will not be able to detect the current key.

 47

4.4.1.2 Group-wise shared key structure

In this type of network, we can do the key update with the help of routing protocol or

by following the hierarchy. Again, the base station will determine the time for key

update. It will update the keys with its neighboring group heads. The group heads in

turn will send the key update request to their group nodes and their neighboring group

heads. This process continues till all the nodes update their respective keys. Note that

first the group head will modify its key based on the message received from the base

station. Then, it will send the key update request to all the group nodes belonging to

his group with the third bit set, but no shifting operation since it has already done it

when it received the key update request. We assume that a group head shares a pair-

wise key with all its neighbors for inter-group communication. So, it updates this key

and then sends the key update request to that respective neighbor. The neighbor in

turn will update its pair-wise key shared with the sender, update its group key and

then send a request to its group nodes for the key update.

4.4.1.3 Pair-wise shared key structure

This structure is the most robust one and does not need key update on regular basis

since every node has to decrypt the message received and re-encrypt it with the key

for next node. Nevertheless, the scheme could be applied if needed with just two

neighbors involved in the key update.

4.4.2 Distributed Wireless sensor networks

In these networks, there is no base station but there is one or more node(s) which act

as the gateway or the access point for human interface to send the

readings/data/information collected from the entire network. We assume that this

 48

node will be given the instruction by the application controller for the key update.

This node will, then, broadcast/multicast the key update request after updating its own

key to all nodes within its range. They would in turn, update their key and propagate

the request further. The issue here could be the time required to update the key for the

entire network, especially in the case of network-wide shared key. This time will

depend on the size of the network.

4.5 Conclusion

We proposed an efficient and resource aware key update scheme which consumes

very minimal computational resources. This scheme is developed with TinySec as the

reference security protocol. It enhances the confidentiality provided by TinySec. This

scheme is more apt for hierarchical networks as compared to pure distributed ones.

 49

CHAPTER FIVE

IMPLEMENTATION

To test the algorithm presented in chapter four, we implemented it with TOSSIM -

the simulator for TinyOS, [8]. TOSSIM is a simulator specifically designed for sensor

network running TinyOS; an operating system specifically designed for resource

constrained sensor nodes. TOSSIM is a de-facto for testing, debugging, and analyzing

TinyOS applications.

5.1 TOSSIM

TOSSIM, [17] provides a scalable simulation environment for sensor networks based

on TinyOS. Unlike machine-level simulators, TOSSIM compiles a TinyOS

application into a native executable that runs on the simulation host. This design

allows TOSSIM to be extremely scalable, supporting thousands of simulated nodes.

Deriving the simulation from the same code that runs on real hardware greatly

simplifies the development process. TOSSIM supports several realistic radio-

propagation models and has been validated against real deployments for several

applications, [18].

In TOSSIM, the TinyOS application is compiled directly into an event-driven

simulator that runs on the simulation host. This design exploits the component-

oriented nature of TinyOS by effectively providing drop-in replacements for the

TinyOS components that access hardware; TOSSIM provides simulated hardware

components such as a simple radio stack, sensors, and other peripherals. This design

allows the same code that is run on real hardware to be tested in simulation at scale.

 50

Figure 5.1: TOSSIM Architecture, [17]

TOSSIM captures the behavior and interactions of networks of thousands of TinyOS

motes at network bit granularity. Figure 5.1 shows a graphical overview of TOSSIM.

The TOSSIM architecture is composed of five parts:

• Support for compiling TinyOS component graphs into the simulation

infrastructure

• A discrete event queue

• A small number of re-implemented TinyOS hardware abstraction components

• Mechanisms for extensible radio and ADC models

• Communication services for external programs to interact with a simulation

 51

TOSSIM takes advantage of TinyOS structure and whole system compilation to

generate discrete-event simulations directly from TinyOS component graphs. By

replacing a few low-level components (e.g., those shaded in Figure 5.1), TOSSIM

translates hardware interrupts into discrete simulator events; the simulator event

queue delivers the interrupts that drive the execution of TinyOS application. The

remainder of the code runs unchanged, [17].

TinyOS abstracts each hardware resource as a component. By replacing a

small number of these components, TOSSIM emulates the behavior of the underlying

raw hardware. These include the Analog-to-Digital Converter (ADC), the Clock, the

transmit strength variable potentiometer, the EEPROM, the boot sequence

component, and several of the components in the radio stack. The low level

components that abstract sensors or actuators also provide the connection point for

the simulated environment.

The nesC compiler (ncc) is modified to support compilation from TinyOS

component graphs into the simulator framework. With the change of a compiler

option, an application can be compiled for simulation instead of mote hardware, and

vice versa.

TOSSIM provides run-time configurable debugging output, allowing a user to

examine the execution of an application from different perspectives without needing

to recompile. TOSSIM also incorporates TinyViz, a Java-based GUI that allows for

visualization and control of the simulation as it runs, inspecting debug messages,

radio and UART packets, and so forth. It has a set of plugins like debug messages,

radio model, ADC readings, etc which provide the desired functionality. A TinyViz

 52

plugin is a software module that watches for events coming from the simulation and

reacts by drawing information on the display, setting simulation parameters or

actuating the simulation itself, [19]. Plugins can be selectively enabled or disabled

depending on what information is required during simulation. e.g. we can set the

ADC readings by activating the ADC plugin.

5.1.1 PowerTOSSIM

Although TOSSIM captures TinyOS behavior at very low level, it does not model

power consumption for motes. This is because it does not model CPU execution time,

and thus, cannot provide accurate information for calculating CPU energy

consumption, [18]. The authors of [19] designed a tool called PowerTOSSIM to

measure the CPU cycles and power consumption for a particular node running a

specific application. PowerTOSSIM generates an event-driven simulator directly

from TinyOS code and emits power state transitions for multiple hardware

peripherals (radio, sensors, LEDs, etc.). In addition, PowerTOSSIM obtains an

accurate estimate of CPU cycle counts for each mote by measuring basic block

execution counts and mapping each basic block to microcontroller instructions.

PowerTOSSIM obtains very accurate power consumption results for a wide range of

TinyOS applications and exhibits very little overhead above that of the TOSSIM

environment upon which it is based. PowerTOSSIM’s accuracy for power

measurement is 0.45-13% of true power consumed by nodes running identical

application program, [19]. The power is modeled with respect to Mica2 Energy

model. This tool is integrated in all the version of TinyOS after version 1.1.9.

 53

5.2 Compiling and executing an application with TOSSIM

For compiling an application for TOSSIM, we have to use ‘make pc’ after entering

into an application directory. The TOSSIM executable is called main.exe and it

resides in build/pc directory within the application directory. This main.exe file is run

with various usage options for the required network parameters. The compulsory

parameter for TOSSIM to run is the number of nodes to be simulated. All the other

parameters are optional. We can specify the simulation time, enable power

measurement, select ADC model, select the radio model, etc.

TinyOS source code contains a lot of debugging statements which are

displayed in the command window during the execution/simulation run. By default,

TOSSIM prints out all the debugging information which is huge. So, we can

configure the TOSSIM output instead by setting the DBG environment variable in the

shell. e.g. export DBG=leds will just display the debugging statements for LEDS.

DBG option crypto displays the TinySec specific messages and the option power is

used for displaying power related information. We can add our own debugging

statements in the TinyOS code using options like usr1,usr2, usr3 and temp. For

measuring power, there are a set of special powerTOSSIM instructions which gives

the total energy consumed by each simulated mote, and the CPU cycles required for

total runtime.

5.3 Algorithm Implementation and Results

I used TinyOS 1.1.14 which is the latest version of TinyOS for implementation.

The component TinySecM.nc, present in the library, is the main component for

TinySec implementation. It contains the code for cryptographic operations. I

 54

manipulated this file to include the key update code. TinySecMode interface contains

commands to specify the TinySec transmission and reception modes. I added new

command to set the key update mode.

I used three different applications to get the results for memory overhead, CPU

cycles, power consumption and network behavior for my scheme. The main thrust of

my results is to show the efficiency of my algorithm in terms of resource

consumption on a single node.

5.3.1 Memory overhead measurement

I used the application called TestTinySec as reference for memory overhead

evaluation. This application is pre-built in TinyOS and comes with its download

package. The simulation results with debugging option crypto shows the encryption

and MAC details.

To get the memory size for actual motes, I compiled the application with

mica2 option. The compilation output shows the ROM and RAM sizes for Mica2

executable. I compiled the original TestTinySec application before and after adding

my code. The percentage increase in memory is as shown in table 5.1 below.

Table 5.1: Memory Overhead – Proposed Algorithm

 Memory % Increase
ROM 1.66%
RAM 0.347%

Thus, memory overhead for my scheme is minimal.

5.3.2 Power and CPU cycle measurement

To measure these two parameters, I used powerTOSSIM. PowerTOSSIM rely on

some other intermediate tools like CIL (C Intermediate Language) and OCaml

 55

(Objective Caml) for computing CPU cycles. CIL library code and OCaml source

code are needed to get the CPU cycle results.

5.3.2.1 Power Measurement

To measure the amount of power consumed by key update process, I simulated the

TestTinySec application without invoking key update and then by invoking key

update periodically. However, the resulting values were same. I could not get any

difference in the power values. One reason for this could be that my algorithm takes

very little power and powerTOSSIM cannot capture it. Another possibility is that

powerTOSSIM ignores the dynamic runtime behavior. To find the exact cause, I

measured power for two modes (AE and Auth_only) of TinySec itself without

involving key update. Encryption operation is expected to consume a significant

amount of power and so, the power difference is expected definitely. However, I got

almost the same values for both the modes of TinySec. There was a little difference,

but it was due to radio power.

Table 5.2: Power measurement results

AE mode – 180 seconds, 2 motes Auth_only – 180 seconds, 2 motes

Mote 0, cpu total: 2215.837732
Mote 0, radio total: 3821.707598
Mote 0, adc total: 0.000000
Mote 0, leds total: 1177.586503
Mote 0, sensor total: 370.200493
Mote 0, eeprom total: 0.000000
Mote 0, cpu_cycle total: 0.000000
Mote 0, Total energy: 7585.332327

Mote 1, cpu total: 2208.342711
Mote 1, radio total: 3808.821858
Mote 1, adc total: 0.000000
Mote 1, leds total: 1175.987241
Mote 1, sensor total: 368.948298

Mote 0, cpu total: 2215.807996
Mote 0, radio total: 3814.067606
Mote 0, adc total: 0.000000
Mote 0, leds total: 1177.586503
Mote 0, sensor total: 370.195525
Mote 0, eeprom total: 0.000000
Mote 0, cpu_cycle total: 0.000000
Mote 0, Total energy: 7577.657631

Mote 1, cpu total: 2208.312975
Mote 1, radio total: 3801.202602
Mote 1, adc total: 0.000000
Mote 1, leds total: 1175.987241
Mote 1, sensor total: 368.943330

 56

Mote 1, eeprom total: 0.000000
Mote 1, cpu_cycle total: 0.000000

 Mote 1, Total energy: 7562.100108

Mote 1, eeprom total: 0.000000
Mote 1, cpu_cycle total: 0.000000

 Mote 1, Total energy: 7554.446148

As revealed from table 5.2, PowerTOSSIM will not be helpful for measuring power

consumption for my scheme.

5.3.2.1 CPU cycle Measurement

For this also, I followed the same procedure as done for power measurement. Here

also, the results were on similar lines. There was no difference between the CPU

cycle counts for the two modes of TinySec.

Table 5.3: CPU cycle measurement results

AE – 180 seconds, 2 motes Auth_only – 180 seconds, 2 motes

Mote 0 CPU_CYCLES 126229.5 at
720000029
Mote 1 CPU_CYCLES 125966.5 at
720000029

Mote 0 CPU_CYCLES 126229.5 at
7200000291
 Mote 1 CPU_CYCLES 125966.5 at
720000029

Since the results were same, I analyzed the way powerTOSSIM computes CPU cycle.

As a result of my analysis and trials, I concluded that powerTOSSIM measures the

CPU cycles based on the compile time information it gathers. For applications which

uses TinySec, looks like it is unable to capture correct power. To further verify, I

looked into PowerTOSSIM paper, [18] where they have tabulated the power

measurements for many build-in applications. Unfortunately, TestTinySec is not

listed there. This might be because they are unable to capture the power calculation of

applications which use TinySec.

 57

To measure the CPU cycle count for my algorithm, I made a new application with

just the code involved in key update. This code is put into a task. The task is called

every second when the timer fires. To get the difference, I compiled and ran the

application for two cases:

1) Measuring CPU cycle count without calling the task

2) Measuring CPU cycle count by calling the task at each timer firing event.

Table 5.4: CPU cycle measurement for key update task

CPU cycle count with KeyUpdate
Task

CPU cycle count without KeyUpdate
Task

CPU_CYCLES 10310.0 at 239401694 CPU_CYCLES 991.5 at 239401694

Since the simulation is run for 60 seconds, the task is executed 60 times.

CPU cycles = (10310 – 991.5) / 60 = 155.308 cycles.

The number of CPU cycles required for this operation is comparatively less than

other cryptographic operations, for example, the encryption which takes 103756

cycles. This shows the efficiency of this scheme.

5.3.3 Network Behavior for this algorithm

To simulate the network behavior, I designed a new application having multiple

nodes and a base station. TOSSIM programs all the simulated nodes with the same

code (both for base station and normal node) but they could be distinguished at

runtime by their node number or node ID. Here node 0 is the base station and all the

other nodes sense the environment and send their readings to the base station. Each

node has two sensors attached to it; temperature and light (photo). They sample the

readings of these sensors alternately and send them to the base station at each timer

firing event. The data is sent after encryption. The base station sends a key update

 58

request periodically (after every 20 timer firing events) and all the nodes are expected

to update their keys and send the future data encrypted with the new key.

I varied the number of nodes in steps of 5 and ran the simulations for 3 minutes to

check their performance. The results for 10 mote simulations are shown below. Also,

some screen shots of TinyViz GUI for these simulations are shown.

Table 5.5: Power results

With base station sending key update
messages

Base station not sending any messages

maxseen 9
Mote 0, cpu total: 2215.966439
Mote 0, radio total: 3786.756697
Mote 0, adc total: 0.000000
Mote 0, leds total: 1076.597958
Mote 0, sensor total: 370.221996
Mote 0, eeprom total: 0.000000
Mote 0, cpu_cycle total: 0.000000
Mote 0, Total energy: 7449.543091

Mote 1, cpu total: 2212.550457
Mote 1, radio total: 3792.002861
Mote 1, adc total: 0.000000
Mote 1, leds total: 1073.616636
Mote 1, sensor total: 369.651287
Mote 1, eeprom total: 0.000000
Mote 1, cpu_cycle total: 0.000000
Mote 1, Total energy: 7447.821241

Mote 2, cpu total: 2212.550457
Mote 2, radio total: 3641.495513
Mote 2, adc total: 0.000000
Mote 2, leds total: 1050.834728
Mote 2, sensor total: 369.651287
Mote 2, eeprom total: 0.000000
Mote 2, cpu_cycle total: 0.000000
Mote 2, Total energy: 7274.531985

Mote 3, cpu total: 2212.550457
Mote 3, radio total: 3684.812769
Mote 3, adc total: 0.000000
Mote 3, leds total: 1057.279628
Mote 3, sensor total: 369.651287
Mote 3, eeprom total: 0.000000
Mote 3, cpu_cycle total: 0.000000
Mote 3, Total energy: 7324.294141

Mote 4, cpu total: 2212.550457
Mote 4, radio total: 3778.133508
Mote 4, adc total: 0.000000

maxseen 9
Mote 0, cpu total: 2215.966975
Mote 0, radio total: 3784.647721
Mote 0, adc total: 0.000000
Mote 0, leds total: 1079.766559
Mote 0, sensor total: 370.222085
Mote 0, eeprom total: 0.000000
Mote 0, cpu_cycle total: 0.000000
Mote 0, Total energy: 7450.603341

Mote 1, cpu total: 2212.550993
Mote 1, radio total: 3791.861213
Mote 1, adc total: 0.000000
Mote 1, leds total: 538.374193
Mote 1, sensor total: 369.651377
Mote 1, eeprom total: 0.000000
Mote 1, cpu_cycle total: 0.000000
Mote 1, Total energy: 6912.437777

Mote 2, cpu total: 2212.550993
Mote 2, radio total: 3641.353865
Mote 2, adc total: 0.000000
Mote 2, leds total: 515.592000
Mote 2, sensor total: 369.651377
Mote 2, eeprom total: 0.000000
Mote 2, cpu_cycle total: 0.000000
Mote 2, Total energy: 6739.148234

Mote 3, cpu total: 2212.550993
Mote 3, radio total: 3684.671121
Mote 3, adc total: 0.000000
Mote 3, leds total: 522.036900
Mote 3, sensor total: 369.651377
Mote 3, eeprom total: 0.000000
Mote 3, cpu_cycle total: 0.000000
Mote 3, Total energy: 6788.910391

Mote 4, cpu total: 2212.550993
Mote 4, radio total: 3777.991860
Mote 4, adc total: 0.000000

 59

Mote 4, leds total: 1072.536061
Mote 4, sensor total: 369.651287
Mote 4, eeprom total: 0.000000
Mote 4, cpu_cycle total: 0.000000
Mote 4, Total energy: 7432.871313

Mote 5, cpu total: 2212.550457
Mote 5, radio total: 3640.965758
Mote 5, adc total: 0.000000
Mote 5, leds total: 1050.834728
Mote 5, sensor total: 369.651287
Mote 5, eeprom total: 0.000000
Mote 5, cpu_cycle total: 0.000000
Mote 5, Total energy: 7274.002230

Mote 6, cpu total: 2212.550457
Mote 6, radio total: 3627.806326
Mote 6, adc total: 0.000000
Mote 6, leds total: 1048.310333
Mote 6, sensor total: 369.651287
Mote 6, eeprom total: 0.000000
Mote 6, cpu_cycle total: 0.000000
Mote 6, Total energy: 7258.318404

Mote 7, cpu total: 2212.550457
Mote 7, radio total: 3634.504447
Mote 7, adc total: 0.000000
Mote 7, leds total: 1050.406474
Mote 7, sensor total: 369.651287
Mote 7, eeprom total: 0.000000
Mote 7, cpu_cycle total: 0.000000
Mote 7, Total energy: 7267.112665

Mote 8, cpu total: 2212.550457
Mote 8, radio total: 3798.946116
Mote 8, adc total: 0.000000
Mote 8, leds total: 1075.789489
Mote 8, sensor total: 369.651287
Mote 8, eeprom total: 0.000000
Mote 8, cpu_cycle total: 0.000000
Mote 8, Total energy: 7456.937350

Mote 9, cpu total: 2179.798490
Mote 9, radio total: 3742.898319
Mote 9, adc total: 0.000000
Mote 9, leds total: 1066.946978
Mote 9, sensor total: 364.179409
Mote 9, eeprom total: 0.000000
Mote 9, cpu_cycle total: 0.000000
Mote 9, Total energy: 7353.823195

Mote 4, leds total: 537.293618
Mote 4, sensor total: 369.651377
Mote 4, eeprom total: 0.000000
Mote 4, cpu_cycle total: 0.000000
Mote 4, Total energy: 6897.487848

Mote 5, cpu total: 2212.550993
Mote 5, radio total: 3640.824110
Mote 5, adc total: 0.000000
Mote 5, leds total: 515.592000
Mote 5, sensor total: 369.651377
Mote 5, eeprom total: 0.000000
Mote 5, cpu_cycle total: 0.000000
Mote 5, Total energy: 6738.618480

Mote 6, cpu total: 2212.550993
Mote 6, radio total: 3627.664678
Mote 6, adc total: 0.000000
Mote 6, leds total: 513.067891
Mote 6, sensor total: 369.651377
Mote 6, eeprom total: 0.000000
Mote 6, cpu_cycle total: 0.000000
Mote 6, Total energy: 6722.934939

Mote 7, cpu total: 2212.550993
Mote 7, radio total: 3634.362799
Mote 7, adc total: 0.000000
Mote 7, leds total: 515.164031
Mote 7, sensor total: 369.651377
Mote 7, eeprom total: 0.000000
Mote 7, cpu_cycle total: 0.000000
Mote 7, Total energy: 6731.729200

Mote 8, cpu total: 2212.550993
Mote 8, radio total: 3798.804468
Mote 8, adc total: 0.000000
Mote 8, leds total: 540.547047
Mote 8, sensor total: 369.651377
Mote 8, eeprom total: 0.000000
Mote 8, cpu_cycle total: 0.000000
Mote 8, Total energy: 6921.553885

Mote 9, cpu total: 2179.799026
Mote 9, radio total: 3742.756671
Mote 9, adc total: 0.000000
Mote 9, leds total: 531.704250
Mote 9, sensor total: 364.179498
Mote 9, eeprom total: 0.000000
Mote 9, cpu_cycle total: 0.000000
Mote 9, Total energy: 6818.439445

The results of table 5.5 show that there is some difference in the powers of normal

motes, however that is due to LED power.

 60

Table 5.6: CPU cycle results

With base station sending key update
messages

Base station not sending any messages

Mote 0 CPU_CYCLES 147764.0 at
720000150
Mote 1 CPU_CYCLES 71912.5 at
720000150
Mote 2 CPU_CYCLES 68733.0 at
720000150
Mote 3 CPU_CYCLES 69583.0 at
720000150
Mote 4 CPU_CYCLES 71487.5 at
720000150
Mote 5 CPU_CYCLES 68733.0 at
720000150
Mote 6 CPU_CYCLES 68512.5 at
720000150
Mote 7 CPU_CYCLES 68512.5 at
720000150
Mote 8 CPU_CYCLES 71912.5 at
720000150
Mote 9 CPU_CYCLES 70858.0 at
720000150

Mote 0 CPU_CYCLES 145718.0 at
720000123
Mote 1 CPU_CYCLES 71764.0 at
720000123
Mote 2 CPU_CYCLES 68584.5 at
720000123
Mote 3 CPU_CYCLES 69434.5 at
720000123
Mote 4 CPU_CYCLES 71339.0 at
720000123
Mote 5 CPU_CYCLES 68584.5 at
720000123
Mote 6 CPU_CYCLES 68364.0 at
720000123
Mote 7 CPU_CYCLES 68364.0 at
720000123
Mote 8 CPU_CYCLES 71764.0 at
720000123
Mote 9 CPU_CYCLES 70709.5 at
720000123

There is a difference in the CPU cycle count for the base station. This is due to the

inclusion of the code for sending the Key update messages in the application

component.

 61

Figure 5.2: Screenshot of TinyViz for 10 node simulation

 62

5.3.4 Multi-Hop Network Simulation

For implementation in multi-hop environment, I used a simple network consisting of

3 nodes, in which node 0 acts as base station and broadcast the key update request.

However, here node 1 is in the range of node 0 but node 2 is not. Due to this, only

node 1 can hear the key update request. It first updates it key and then propagates the

request to node 2. Node 2 then updates its key. The screenshot in figure 5.3 shows

this simulation.

Figure 5.3: Multi-Hop Network Simulation Results

5.4 Comparisons with other key update schemes

The table 5.7 gives the comparison of my scheme with the schemes described in

chapter 3. Since each scheme has different platforms/parameters for measurements,

this is a broad comparison.

 63

Table 5.7: Key Update Schemes - Comparison Summary

 ECC LEAP SPAGKU My Scheme
RAM

requirements 1 KB 3d + 2 + L 80 bytes 3 bytes
(0.347%)

ROM
requirements

34.1KB
(26.5% of
128KB)

17.9KB 1.9KB 402 bytes
(1.66%)

Time Required 1 minute 8
secs - - 38.75�sec

Complexity of
key generation

High, ECC
algorithm

Random
Number

generation

Random
generation Key rotation

Complexity of
key distribution N/A Very high

Flooding the
network with

message

1 message with
the third bit set

Computational
costs

0.9 joules of
energy, 1

minute 8 secs

2N (2 per
node)

encryption
/decryption
operations

One
decryption

operation per
node

155 CPU
cycles

5.5 Conclusion

It is evident from the results that the proposed scheme is extremely efficient in terms

of resource consumption. Due to the limitations of TOSSIM, we could not get the

exact computational overhead for this algorithm.

 64

CHAPTER SIX

CONCLUSION AND FUTURE WORK

We proposed an extremely efficient algorithm for updating the encryption key in

TinySec. The cost analysis and the results show that it is highly resource aware. There

is no bandwidth or latency overhead since we are modifying the already existing key

and not generating or sending the new key. However, there are some limitations to it

e.g. there could be a maximum of 64 values for the key. So, there is a tradeoff

between resource consumption and complexity which is the case for all the other

schemes described in chapter three. The proposed algorithm is equally secure when

compared to these schemes. Further, we have implemented it along with TinySec and

the simulations were successful.

6.1 Implementation on Motes

Since our scheme is not that computationally intensive, TOSSIM and PowerTOSSIM

were unable to model the results accurately therefore good future work would involve

implementing the code on actual motes and verifying the results. Since the

researchers of [12], [13] and [14] had access to the Berkeley mote environment, they

implemented their code on Mica2 motes and presented their results.

6.2 Extension of the Scheme

As described in section 4.3, the extension to this scheme for making the key values

less predictable would be to swap some intermediate neighboring bits after a certain

number of key updates.

 65

BIBLIOGRAPHY

[1] Ian f. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam and Erdal Cayirci, “A

Survey on Sensor Networks”, IEEE Communications Magazine, Aug. 2002

[2] Chris Karlof and David Wagner, “Secure Routing in Wireless Sensor Networks:

Attacks and Countermeasures”, IEEE International Workshop on Sensor Network

Protocols and Applications, 2003

[3] Zhihua Hu and Baochun Li, “Fundamental Performance Limits of Wireless

Sensor Networks”, May 2005

[4] Seyit A Camtepe, Bulent Yener, “Key Distribution Mechanisms for Wireless

Sensor Networks”, Technical Report TR-05-07, March 23, 2005, Department of

Computer Science, Rensselaer Polytechnic Institute.

[5] Chris Karlof, Naveen Sastry and David Wagner, “TinySec: A Link Layer Security

Architecture for Wireless Sensor Networks”, SenSys’04, November 3–5, 2004,

Baltimore, Maryland, USA.

[6] Alessio Falchi, “The Berkeley Motes Environment”, Chapter 3.

http://etd.adm.unipi.it/theses/available/etd-05252004-154652/unrestricted/Chap3.pdf

[7] http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson1.html

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.Pister, “System

architecture directions for networked sensors”, In Proc. of ASPLOS IX, 2000.

[9] http://www.di.unipi.it/~scordino/sisop/tinyos_intro.pdf

[10] Philip Buonadonna, Jason Hill and David Culler, “Active Message

Communication for Tiny Networked Sensors”,

[11] Complete SkipJack and KEA Specifications,

 66

http://csrc.nist.gov/CryptoToolkit/skipjack/skipjack.pdf

[12] David J. Malan, Matt Welsh, Michael D. Smith, “A Public-Key Infrastructure for

Key Distribution in TinyOS Based on Elliptic Curve Cryptography”, IEEE

International Conference on Sensor and Ad Hoc Communications and Networks

(SECON04), 2004

[13] Moshe Golan, “Key Update in Sensor Networks”, project report,

http://lecs.cs.ucla.edu/~mosheg/Projects/KUReport.htm

[14] Sencun Zhu, Sanjeev Setia, Sushil Jajodia, “LEAP: Efficient Security

Mechanism for Large-Scale Distributed Sensor Networks”, Tech-Report (ACM), Aug.

2004.

[15] Ronald Watro, Derrick Kong, Sue-fen Cuti, Charles Gardiner, Charles Lynn1

and Peter Kruus, “TinyPK: Securing Sensor Networks with Public Key Technology”,

SASN’04 (ACM), October 25, 2004, Washington, DC, USA.

[16] Ernest F. Brickell, Dorothy E. Denning,Stephen T. Kent, David P. Maher and

Walter Tuchman, “SKIPJACK Review - Interim Report”,July 28, 1993

[17] Philip Levis, Nelson Lee, Matt Welsh, and David Culler, “TOSSIM: Accurate

and Scalable Simulation of Entire TinyOS Applications”, In Proceedings of the First

ACM Conference on Embedded Networked Sensor Systems (SenSys) 2003, Nov.

2003.

[18] Philip Levis and Nelson Lee, “TOSSIM: A Simulator for TinyOS Networks”,

http://www.tinyos.net/tinyos-1.x/doc/nido.pdf

 67

[19] Victor Shnayder, Mark Hempstead, Borrong Chen, Geoff Werner Allen, and

Matt Welsh, “Simulating the Power Consumption of LargeScale Sensor Network

Applications”, SenSys’04, November 3–5, 2004, Baltimore, Maryland, USA.

[20] http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson5.html

[21] http://www.eecs.harvard.edu/~shnayder/ptossim/install.html

